modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-19 06:28:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
565 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-19 06:22:35
card
stringlengths
11
1.01M
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755925557
sampingkaca72
2025-08-23T05:31:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:31:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Medved444/blockassist-bc-bellowing_finicky_manatee_1755925800
Medved444
2025-08-23T05:30:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:30:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755925458
chainway9
2025-08-23T05:30:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:30:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755926931
0xaoyama
2025-08-23T05:29:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:29:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
llencia/blockassist-bc-wiry_wise_hedgehog_1755926891
llencia
2025-08-23T05:28:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:28:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755925296
indoempatnol
2025-08-23T05:26:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:26:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755925056
katanyasekolah
2025-08-23T05:26:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:26:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tosnufc/my_awesome_eli5_clm-model
tosnufc
2025-08-23T05:26:18Z
0
0
null
[ "safetensors", "gpt2", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "region:us" ]
null
2025-08-23T05:25:54Z
--- license: apache-2.0 base_model: distilbert/distilgpt2 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1755926574
hssnjfry
2025-08-23T05:24:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:23:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755926612
0xaoyama
2025-08-23T05:24:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:24:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755924785
coelacanthxyz
2025-08-23T05:20:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:20:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755926346
IvanJAjebu
2025-08-23T05:19:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:19:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sapie-model/sapie-sql-32b-54k
sapie-model
2025-08-23T05:18:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T03:45:52Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # qwen2.5-32b_text2sql_r64a64_syn64k_mergekit-2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using /data2/models/Qwen2.5-Coder-32B/ as a base. ### Models Merged The following models were included in the merge: * /data2/outputs/qwen2.5-32b_text2sql_r64a64_lr1e-4_wu10_eval40_0822/merged/ * /data2/models/Qwen2.5-Coder-32B-Instruct/ ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /data2/outputs/qwen2.5-32b_text2sql_r64a64_lr1e-4_wu10_eval40_0822/merged/ parameters: weight: 1 density: 1 - model: /data2/models/Qwen2.5-Coder-32B-Instruct/ parameters: weight: 1 density: 1 merge_method: ties base_model: /data2/models/Qwen2.5-Coder-32B/ parameters: weight: 1 density: 1 normalize: true int8_mask: true tokenizer_source: /data2/outputs/qwen2.5-32b_text2sql_r64a64_lr1e-4_wu10_eval40_0822/merged/ dtype: bfloat16 # mergekit-yaml /data/mergekit/examples/ties.yml "/data2/outputs/qwen2.5-32b_text2sql_r64a64_syn64k_mergekit-2" --cuda ```
roeker/blockassist-bc-quick_wiry_owl_1755926260
roeker
2025-08-23T05:18:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:18:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755924774
koloni
2025-08-23T05:18:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:18:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755924730
mang3dd
2025-08-23T05:18:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:18:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_7943
luckeciano
2025-08-23T05:18:08Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T02:13:26Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-v2_7943 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-v2_7943 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_7943", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/n0r05yae) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1755926111
hssnjfry
2025-08-23T05:16:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:16:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1755924707
aleebaster
2025-08-23T05:16:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:16:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
llencia/blockassist-bc-wiry_wise_hedgehog_1755926151
llencia
2025-08-23T05:16:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry wise hedgehog", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:16:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry wise hedgehog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755926114
0xaoyama
2025-08-23T05:16:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:15:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aiface/xlm-roberta-base_massive_crf_v1
aiface
2025-08-23T05:15:21Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-08-23T05:06:59Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base_massive_crf_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_massive_crf_v1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.4117 - Slot P: 0.6934 - Slot R: 0.7706 - Slot F1: 0.7300 - Slot Exact Match: 0.6995 - Intent Acc: 0.8495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:----------------:|:----------:| | No log | 1.0 | 45 | 22.8757 | 0.0 | 0.0 | 0.0 | 0.3187 | 0.0300 | | 95.1993 | 2.0 | 90 | 15.1787 | 0.3194 | 0.2164 | 0.2580 | 0.3015 | 0.1117 | | 36.1644 | 3.0 | 135 | 10.7793 | 0.4180 | 0.4502 | 0.4335 | 0.4506 | 0.1864 | | 24.5568 | 4.0 | 180 | 7.5359 | 0.5813 | 0.6333 | 0.6062 | 0.5706 | 0.3586 | | 16.5092 | 5.0 | 225 | 5.7306 | 0.6266 | 0.7020 | 0.6621 | 0.6203 | 0.5957 | | 11.609 | 6.0 | 270 | 4.9020 | 0.6610 | 0.7363 | 0.6966 | 0.6626 | 0.7280 | | 8.4757 | 7.0 | 315 | 4.4249 | 0.6701 | 0.7448 | 0.7055 | 0.6744 | 0.7762 | | 6.8454 | 8.0 | 360 | 4.3691 | 0.6841 | 0.7532 | 0.7170 | 0.6960 | 0.7973 | | 5.6898 | 9.0 | 405 | 4.4460 | 0.6747 | 0.7647 | 0.7169 | 0.6886 | 0.8141 | | 4.6831 | 10.0 | 450 | 4.2133 | 0.7067 | 0.7552 | 0.7302 | 0.7073 | 0.8342 | | 4.6831 | 11.0 | 495 | 4.4300 | 0.6954 | 0.7542 | 0.7236 | 0.6995 | 0.8347 | | 3.9992 | 12.0 | 540 | 4.3942 | 0.6977 | 0.7637 | 0.7292 | 0.7024 | 0.8416 | | 3.5154 | 13.0 | 585 | 4.4117 | 0.6934 | 0.7706 | 0.7300 | 0.6995 | 0.8495 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.4
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755925933
lqpl
2025-08-23T05:14:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:13:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755924907
Sayemahsjn
2025-08-23T05:14:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:14:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
biswa921/gemma-3-270m-it-tnewshf-pn-2000-30
biswa921
2025-08-23T05:12:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:biswa921/gemma-3-270m-it-tnewshf-2000-30", "base_model:finetune:biswa921/gemma-3-270m-it-tnewshf-2000-30", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T03:57:32Z
--- base_model: biswa921/gemma-3-270m-it-tnewshf-2000-30 library_name: transformers model_name: gemma-3-270m-it-tnewshf-pn-2000-30 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gemma-3-270m-it-tnewshf-pn-2000-30 This model is a fine-tuned version of [biswa921/gemma-3-270m-it-tnewshf-2000-30](https://huggingface.co/biswa921/gemma-3-270m-it-tnewshf-2000-30). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="biswa921/gemma-3-270m-it-tnewshf-pn-2000-30", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755924206
hakimjustbao
2025-08-23T05:11:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:11:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755924258
thanobidex
2025-08-23T05:10:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:10:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1755925711
hssnjfry
2025-08-23T05:10:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:09:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anon-huggingface-acct/simple_typehint_model
anon-huggingface-acct
2025-08-23T05:07:20Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-23T05:06:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nilu2536/blockassist-bc-subtle_feline_dragonfly_1755925444
nilu2536
2025-08-23T05:05:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "subtle feline dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:04:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - subtle feline dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sachinsabne99/blockassist-bc-bold_prickly_ox_1755925411
sachinsabne99
2025-08-23T05:04:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold prickly ox", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:04:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold prickly ox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755923539
kojeklollipop
2025-08-23T05:01:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:01:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755923703
sampingkaca72
2025-08-23T05:01:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:01:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755925211
0xaoyama
2025-08-23T05:00:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:00:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wjddntjd51161/blockassist-bc-nimble_lightfooted_bat_1755923697
wjddntjd51161
2025-08-23T05:00:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nimble lightfooted bat", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T05:00:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nimble lightfooted bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755923547
chainway9
2025-08-23T04:59:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:59:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755925061
IvanJAjebu
2025-08-23T04:58:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:58:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
halcyonzhou/whisper-small
halcyonzhou
2025-08-23T04:58:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-22T10:40:27Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7639 - Wer: 0.2875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adafactor and the args are: No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0001 | 62.5333 | 500 | 0.7211 | 0.2680 | | 0.0 | 125.0 | 1000 | 0.7639 | 0.2875 | ### Framework versions - Transformers 4.51.0 - Pytorch 2.8.0+cu129 - Datasets 3.6.0 - Tokenizers 0.21.4
sumitraadrian/new-2-multilangual-bert-sentiment-indo
sumitraadrian
2025-08-23T04:58:18Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-23T04:57:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755925022
0xaoyama
2025-08-23T04:57:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:57:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755924924
roeker
2025-08-23T04:56:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:56:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755923477
indoempatnol
2025-08-23T04:56:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:56:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sarayusapa/T5_large_GEC_FullFT
sarayusapa
2025-08-23T04:54:05Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-23T04:49:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koh43/distilbert-base-uncased-txt-cls-imdb
koh43
2025-08-23T04:51:09Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-23T04:50:46Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-txt-cls-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-txt-cls-imdb This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5420 - Accuracy: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2298 | 1.0 | 1563 | 0.2700 | 0.8966 | | 0.1597 | 2.0 | 3126 | 0.2355 | 0.9283 | | 0.1032 | 3.0 | 4689 | 0.3154 | 0.9223 | | 0.0623 | 4.0 | 6252 | 0.3467 | 0.9293 | | 0.0445 | 5.0 | 7815 | 0.4015 | 0.9257 | | 0.0291 | 6.0 | 9378 | 0.4603 | 0.9288 | | 0.0183 | 7.0 | 10941 | 0.4710 | 0.9298 | | 0.0086 | 8.0 | 12504 | 0.5196 | 0.9296 | | 0.0082 | 9.0 | 14067 | 0.5372 | 0.9310 | | 0.0023 | 10.0 | 15630 | 0.5420 | 0.9308 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.4
Sankar6374/Merged_model_finetuning_whisper_testing
Sankar6374
2025-08-23T04:49:52Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-23T04:48:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AIDC-AI/Ovis2.5-2B
AIDC-AI
2025-08-23T04:49:52Z
8,835
169
transformers
[ "transformers", "safetensors", "ovis2_5", "text-generation", "MLLM", "image-text-to-text", "conversational", "custom_code", "en", "zh", "dataset:AIDC-AI/Ovis-dataset", "arxiv:2508.11737", "arxiv:2405.20797", "license:apache-2.0", "autotrain_compatible", "region:us" ]
image-text-to-text
2025-08-15T05:53:42Z
--- license: apache-2.0 datasets: - AIDC-AI/Ovis-dataset library_name: transformers tags: - MLLM pipeline_tag: image-text-to-text language: - en - zh --- # Ovis2.5-2B <div align="center"> <img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/> </div> <p align="center"> <a href="https://arxiv.org/abs/2508.11737"><img src="https://img.shields.io/badge/📖_Technical_Report-Ovis2.5-b31b1b.svg" alt="technical report"></a> <a href="https://github.com/AIDC-AI/Ovis"><img src="https://img.shields.io/badge/GitHub-AIDC--AI/Ovis-blue?style=flat&logo=github" alt="code"></a> <a href="https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B"><img src="https://img.shields.io/badge/🎨_HF_Spaces-AIDC--AI/Ovis2.5--2B-lightblack" alt="demo"></a> <a href="https://huggingface.co/collections/AIDC-AI/ovis25-689ec1474633b2aab8809335"><img src="https://img.shields.io/badge/🤗_Models-AIDC--AI/Ovis2.5-yellow" alt="models"></a> </p> ## Introduction We are pleased to announce the release of **Ovis2.5**, the successor to Ovis2, designed for native-resolution visual perception and enhanced multimodal reasoning. It integrates a native-resolution vision transformer (NaViT) that processes images at their original, variable resolutions, eliminating the need for fixed-resolution tiling and preserving both fine details and global layout—crucial for visually dense content such as charts and diagrams. To strengthen reasoning, Ovis2.5 is trained not only on linear chain-of-thought (CoT) but also on reflective reasoning, including self-checking and revision. This advanced capability is available at inference as an optional *thinking mode*, enabling users to trade latency for higher accuracy on complex inputs. Building on these advances, **Ovis2.5-9B** achieves an average score of 78.3 on the OpenCompass multimodal evaluation suite (SOTA among open-source MLLMs under 40B parameters), while the lightweight **Ovis2.5-2B** scores 73.9, continuing the “small model, big performance” philosophy for resource-constrained scenarios. <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/kh-1dhZRAduP-P4SkIhXr.png" width="100%" /> </div> **Key Features** * **Native-Resolution Perception** — NaViT vision encoder preserves fine details and global structure without lossy tiling. * **Deep-Reasoning Capability** — Optional *thinking mode* for self-checking and revision beyond linear CoT. *Thinking budget* supported. * **Chart & Document OCR** — State-of-the-art at its scale for complex chart analysis, document understanding (including tables and forms), and OCR. * **Broad Task Coverage** — Demonstrates leading performance on image reasoning, video understanding, and grounding benchmarks, showcasing strong general multimodal capability. <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/4kw2RRUhXDiMZdU7wGOfP.png" width="100%" /> </div> ## Quick Inference Below is a simple example demonstrating how to run Ovis2.5 with a single image input. For accelerated inference with **vLLM**, refer to [GitHub](https://github.com/AIDC-AI/Ovis). First, install the required dependencies: ```bash pip install torch==2.4.0 transformers==4.51.3 numpy==1.25.0 pillow==10.3.0 moviepy==1.0.3 pip install flash-attn==2.7.0.post2 --no-build-isolation ``` Then, run the following code. ```python import torch import requests from PIL import Image from transformers import AutoModelForCausalLM MODEL_PATH = "AIDC-AI/Ovis2.5-2B" # Thinking mode & budget enable_thinking = True enable_thinking_budget = True # Only effective if enable_thinking is True. # Total tokens for thinking + answer. Ensure: max_new_tokens > thinking_budget + 25 max_new_tokens = 3072 thinking_budget = 2048 model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, trust_remote_code=True ).cuda() messages = [{ "role": "user", "content": [ {"type": "image", "image": Image.open(requests.get("https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png", stream=True).raw)}, {"type": "text", "text": "Calculate the sum of the numbers in the middle box in figure (c)."}, ], }] input_ids, pixel_values, grid_thws = model.preprocess_inputs( messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking ) input_ids = input_ids.cuda() pixel_values = pixel_values.cuda() if pixel_values is not None else None grid_thws = grid_thws.cuda() if grid_thws is not None else None outputs = model.generate( inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, enable_thinking=enable_thinking, enable_thinking_budget=enable_thinking_budget, max_new_tokens=max_new_tokens, thinking_budget=thinking_budget, ) response = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` The thinking and thinking budget logic can be applied in the same way for multi-image, video and pure text scenarios. **Note (answer extraction for CoT/Thinking):** To make evaluation and usage easier, we recommend appending a fixed suffix to prompts when using chain-of-thought (CoT) or thinking mode. This ensures the model clearly outputs a final answer that can be extracted programmatically: ``` End your response with 'Final answer: '. ``` For example: ``` Calculate the sum of the numbers in the middle box in figure (c). End your response with 'Final answer: '. ``` **Tip:** The sections below include an optional streaming helper (compatible with two-phase thinking/budget runs) and extra inference modes: multi-image, video, and text-only. <details> <summary>Optional: Streaming (Advanced)</summary> To support thinking budget, we modified the implementation of the Ovis `generate` method and the default `TextIteratorStreamer` is now incompatible. If you need to stream model output, be sure to use the helper class below. ```python # --- Budget-aware streamer helper --- from transformers import TextIteratorStreamer class BudgetAwareTextStreamer(TextIteratorStreamer): """A streamer compatible with Ovis two-phase generation. Call .manual_end() after generation to flush any remaining text. """ def manual_end(self): if len(self.token_cache) > 0: text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) printable_text = text[self.print_len:] self.token_cache = [] self.print_len = 0 else: printable_text = "" self.next_tokens_are_prompt = True self.on_finalized_text(printable_text, stream_end=True) # Disable base class's end hook; we'll finalize via manual_end() def end(self): pass ``` Example usage: ```python streamer = BudgetAwareTextStreamer( model.text_tokenizer, skip_prompt=True, skip_special_tokens=True ) outputs = model.generate( inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, enable_thinking=enable_thinking, enable_thinking_budget=enable_thinking_budget, max_new_tokens=max_new_tokens, thinking_budget=thinking_budget, streamer=streamer ) ``` </details> <details> <summary>Example: Multi-image</summary> Demonstrates how to run inference with multiple images and a related question. ```python # Multi-image inference multi_image_files = [ "/path/to/image_1.jpg", "/path/to/image_2.jpg", "/path/to/image_3.jpg", ] content = [{"type": "image", "image": Image.open(p).convert("RGB")} for p in multi_image_files] content.append({"type": "text", "text": "Describe the images."}) messages = [{"role": "user", "content": content}] input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896) input_ids = input_ids.cuda() pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None grid_thws = grid_thws.cuda() if grid_thws is not None else None with torch.no_grad(): outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, max_new_tokens=1024, do_sample=True, eos_token_id=model.text_tokenizer.eos_token_id, pad_token_id=model.text_tokenizer.pad_token_id) print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> <details> <summary>Example: Video</summary> Demonstrates how to run inference on a video by sampling multiple frames and asking the model to describe the content. ```python # Video inference from moviepy.editor import VideoFileClip # pip install moviepy==1.0.3 video_file = "/path/to/video_1.mp4" num_frames = 8 with VideoFileClip(video_file) as clip: total_frames = int(clip.fps * clip.duration) indices = [int(i * total_frames / num_frames) for i in range(num_frames)] frames = [Image.fromarray(clip.get_frame(t)) for t in (idx / clip.fps for idx in indices)] messages = [{"role": "user", "content": [ {"type": "video", "video": frames}, {"type": "text", "text": "Describe this video in detail."}, ]}] input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896) input_ids = input_ids.cuda() pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None grid_thws = grid_thws.cuda() if grid_thws is not None else None with torch.no_grad(): outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, max_new_tokens=1024, do_sample=True, eos_token_id=model.text_tokenizer.eos_token_id, pad_token_id=model.text_tokenizer.pad_token_id) print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> <details> <summary>Example: Text-only</summary> Demonstrates how to run inference using only text input without any images or videos. ```python # Text-only inference messages = [{"role": "user", "content": "Hi, please introduce Yellow Mountain."}] input_ids, _, _ = model.preprocess_inputs(messages=messages, add_generation_prompt=True) input_ids = input_ids.cuda() with torch.no_grad(): outputs = model.generate(inputs=input_ids, max_new_tokens=1024, do_sample=True, eos_token_id=model.text_tokenizer.eos_token_id, pad_token_id=model.text_tokenizer.pad_token_id) print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> To enable grounding, end your prompt with `Please provide the bounding box coordinates.` (for boxes) or `Please provide the point coordinates.` (for points). To target a specific object, wrap its description in `<ref>` tags, e.g.: ```text Find the <ref>red apple</ref> in the image. Please provide the bounding box coordinates. ``` Coordinates are normalized to `[0,1)` with the origin `(0,0)` at the top-left corner of the image. * Point: `<point>(x,y)</point>` * Bounding box: `<box>(x1,y1),(x2,y2)</box>` where `(x1,y1)` is top-left, `(x2,y2)` is bottom-right. * Multiple results can be listed in square brackets: `[<box>(...)</box>,<box>(...)</box> ]` Example: ```text The image features a serene scene with <ref>three birds</ref>[ <box>(0.401,0.526),(0.430,0.557)</box>, <box>(0.489,0.494),(0.516,0.526)</box>, <box>(0.296,0.529),(0.324,0.576)</box> ] flying in formation against a clear blue sky. ``` ## Model Zoo | Ovis MLLMs | ViT | LLM | Model Weights | Demo | |:-----------|:-----------------------:|:---------------------:|:-------------------------------------------------------:|:--------------------------------------------------------:| | Ovis2.5-2B | siglip2-so400m-patch16-512 | Qwen3-1.7B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-2B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B) | | Ovis2.5-9B | siglip2-so400m-patch16-512 | Qwen3-8B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-9B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-9B) | ## Performance We evaluate Ovis2.5 using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), as employed in the OpenCompass multimodal and reasoning evaluation suite. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zYtwH4Yw6q6591en_FVX-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zWbsInYCHZYEPlY75xrRd.png) ## Citation If you find Ovis useful, please consider citing the paper ```bibtex @article{lu2025ovis25technicalreport, title={Ovis2.5 Technical Report}, author={Shiyin Lu and Yang Li and Yu Xia and Yuwei Hu and Shanshan Zhao and Yanqing Ma and Zhichao Wei and Yinglun Li and Lunhao Duan and Jianshan Zhao and Yuxuan Han and Haijun Li and Wanying Chen and Junke Tang and Chengkun Hou and Zhixing Du and Tianli Zhou and Wenjie Zhang and Huping Ding and Jiahe Li and Wen Li and Gui Hu and Yiliang Gu and Siran Yang and Jiamang Wang and Hailong Sun and Yibo Wang and Hui Sun and Jinlong Huang and Yuping He and Shengze Shi and Weihong Zhang and Guodong Zheng and Junpeng Jiang and Sensen Gao and Yi-Feng Wu and Sijia Chen and Yuhui Chen and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang}, year={2025}, journal={arXiv:2508.11737} } @article{lu2024ovis, title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model}, author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye}, year={2024}, journal={arXiv:2405.20797} } ``` ## License This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0). ## Disclaimer We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755922858
coelacanthxyz
2025-08-23T04:48:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:48:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
moonuio/blockassist-bc-roaring_flightless_ibis_1755924461
moonuio
2025-08-23T04:47:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring flightless ibis", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:47:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring flightless ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755924348
0xaoyama
2025-08-23T04:46:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:46:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aneesarom/test
aneesarom
2025-08-23T04:46:31Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-23T04:37:58Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8066 - Accuracy: 0.8412 - F1: 0.8864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5381 | 1.0 | 58 | 0.4061 | 0.8214 | 0.8669 | | 0.3253 | 2.0 | 116 | 0.3933 | 0.8209 | 0.8625 | | 0.1943 | 3.0 | 174 | 0.4147 | 0.8307 | 0.8734 | | 0.099 | 4.0 | 232 | 0.7017 | 0.8180 | 0.8739 | | 0.0578 | 5.0 | 290 | 0.7371 | 0.8348 | 0.8799 | | 0.0305 | 6.0 | 348 | 0.7759 | 0.8429 | 0.8879 | | 0.0187 | 7.0 | 406 | 0.8006 | 0.8394 | 0.8851 | | 0.0161 | 8.0 | 464 | 0.8066 | 0.8412 | 0.8864 | ### Framework versions - Transformers 4.54.0 - Pytorch 2.7.1+cu118 - Datasets 3.0.2 - Tokenizers 0.21.2
yookty/blockassist-bc-roaring_flightless_ibis_1755924174
yookty
2025-08-23T04:43:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring flightless ibis", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:42:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring flightless ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755922670
manusiaperahu2012
2025-08-23T04:43:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:43:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755924113
IvanJAjebu
2025-08-23T04:42:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:42:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anwensmythadv/blockassist-bc-pawing_stocky_walrus_1755922211
anwensmythadv
2025-08-23T04:42:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing stocky walrus", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:42:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing stocky walrus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755924091
0xaoyama
2025-08-23T04:42:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:42:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Koberocks156/blockassist-bc-scruffy_monstrous_swan_1755922242
Koberocks156
2025-08-23T04:41:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy monstrous swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:41:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy monstrous swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckycanucky/meta-llama-toxic-1
luckycanucky
2025-08-23T04:41:26Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "unsloth", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-23T03:36:20Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RogerHarri87859/blockassist-bc-beaked_bipedal_woodpecker_1755922180
RogerHarri87859
2025-08-23T04:39:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked bipedal woodpecker", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:39:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked bipedal woodpecker --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755922443
thanobidex
2025-08-23T04:38:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:38:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755923766
roeker
2025-08-23T04:37:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:36:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MomlessTomato/maki-nishikino
MomlessTomato
2025-08-23T04:37:11Z
19
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "base_model:adapter:cagliostrolab/animagine-xl-3.0", "license:mit", "region:us" ]
text-to-image
2024-02-05T05:18:09Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- defined eyes, masterpiece, high quality, defined pupil, looking at viewer, rounded pupil, parameters: negative_prompt: >- bad_anatomy, deformation, amputation, deformity, deformed_nipples, duplicated_torso, deformed_torso, long_torso, large_torso, unproportioned_torso, (deformed_pussy:1.2), (deformed_hands:1.2), unproportioned_eyes, unproportioned_head, small_head, duplicated_nose, big_nose, fusioned_clothes, fusioned_arms, undefined_limbs, divided_pussy, red_pussy, duplicated_pussy, deformed_anus, deformed_pussy, output: url: demo-1.png base_model: cagliostrolab/animagine-xl-3.0 instance_prompt: id_maki_nishikino license: mit --- # Maki Nishikino <Gallery /> ## Model description This model was trained to generate high quality images based on SIFAS cards. To achieve better quality, you should be using hako-mikan&#39;s regional prompter, along with Latent Mode, which modifies the way Stable Diffusion isolates the LoRA resulting in a significant improvement. ## Trigger words You should use `id_maki_nishikino` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/theidoldaily/maki-nishikino/tree/main) them in the Files & versions tab.
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755922207
helmutsukocok
2025-08-23T04:35:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:35:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755922127
quantumxnode
2025-08-23T04:34:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:34:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755923609
0xaoyama
2025-08-23T04:34:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:34:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NeelKondapalli/claim-bert
NeelKondapalli
2025-08-23T04:34:00Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-23T04:33:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755923515
IvanJAjebu
2025-08-23T04:32:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:32:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vega46655/blockassist-bc-scaly_fierce_hornet_1755923460
vega46655
2025-08-23T04:31:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scaly fierce hornet", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:31:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scaly fierce hornet --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755923410
0xaoyama
2025-08-23T04:30:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:30:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755921742
sampingkaca72
2025-08-23T04:28:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:28:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755923189
roeker
2025-08-23T04:27:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:27:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755923149
IvanJAjebu
2025-08-23T04:26:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:26:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755921669
indoempatnol
2025-08-23T04:26:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:26:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755921679
calegpedia
2025-08-23T04:26:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:26:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755921522
chainway9
2025-08-23T04:25:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:25:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755922900
roeker
2025-08-23T04:22:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:22:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
taipro/blockassist-bc-arctic_snappy_goat_1755922778
taipro
2025-08-23T04:21:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic snappy goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:21:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic snappy goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pinktulip888/qwencatgen3
pinktulip888
2025-08-23T04:20:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-14T09:14:53Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pinktulip888 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755922778
IvanJAjebu
2025-08-23T04:20:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:20:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755922670
roeker
2025-08-23T04:19:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:18:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmennzbsv07ystlqbcvdwycdo_cmenof9fx07zbtlqborhu7qqu
BootesVoid
2025-08-23T04:19:03Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-23T04:19:01Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SOSO777 --- # Cmennzbsv07Ystlqbcvdwycdo_Cmenof9Fx07Zbtlqborhu7Qqu <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SOSO777` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SOSO777", "lora_weights": "https://huggingface.co/BootesVoid/cmennzbsv07ystlqbcvdwycdo_cmenof9fx07zbtlqborhu7qqu/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmennzbsv07ystlqbcvdwycdo_cmenof9fx07zbtlqborhu7qqu', weight_name='lora.safetensors') image = pipeline('SOSO777').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmennzbsv07ystlqbcvdwycdo_cmenof9fx07zbtlqborhu7qqu/discussions) to add images that show off what you’ve made with this LoRA.
unitova/blockassist-bc-zealous_sneaky_raven_1755920727
unitova
2025-08-23T04:18:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:18:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaoyaozuru/blockassist-bc-waddling_stealthy_koala_1755922675
yaoyaozuru
2025-08-23T04:18:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "waddling stealthy koala", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:18:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - waddling stealthy koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Medved444/blockassist-bc-bellowing_finicky_manatee_1755921563
Medved444
2025-08-23T04:18:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:18:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
svjack/Qwen_Image_Edit_OmniConsistency_lora
svjack
2025-08-23T04:16:35Z
0
0
null
[ "region:us" ]
null
2025-08-23T03:15:09Z
# Qwen-Image-Edit OmniConsistency LoRA: Artistic Style Transfer Model This repository provides a **LoRA (Low-Rank Adaptation)** fine-tuned variant of the Qwen-Image-Edit model integrated with OmniConsistency technology, optimized for transforming images into 22 distinct artistic styles while preserving content consistency and facial details. --- ## 🎨 Supported Art Styles | Style Category | Example Prompt | Visual Characteristics | |----------------|----------------|------------------------| | **3D Chibi Style** | `transform it into 3D Chibi style` | Exaggerated cute proportions with three-dimensional rendering and soft shading | | **American Cartoon Style** | `transform it into American Cartoon style` | Bold outlines, vibrant colors, and exaggerated expressions typical of Western animation | | **Chinese Ink Style** | `transform it into Chinese Ink style` | Flowing brushstrokes, monochromatic tones, and traditional shan shui aesthetics | | **Clay Toy Style** | `transform it into Clay Toy style` | Matte textures with visible fingerprints and soft plasticine-like appearance | | **Fabric Style** | `transform it into Fabric style` | Woven textile appearance with stitch details and cloth-like folds | | **Ghibli Style** | `transform it into Ghibli style` | Soft watercolor-like backgrounds, expressive eyes, and whimsical Studio Ghibli aesthetic | | **Irasutoya Style** | `transform it into Irasutoya style` | Clean vector graphics with flat colors and simple shapes (Japanese clipart style) | | **Jojo Style** | `transform it into Jojo style` | Dynamic "bizarre" poses, exaggerated muscles, and dramatic manga shading | | **LEGO Style** | `transform it into LEGO style` | Blocky construction with cylindrical hands and studded surfaces | | **Line Style** | `transform it into Line style` | Minimalist continuous-line drawings with negative space emphasis | | **Macaron Style** | `transform it into Macaron style` | Pastel colors with soft gradients and candy-like textures | | **Oil Painting Style** | `transform it into Oil Painting style` | Visible impasto brushstrokes and rich pigment textures | | **Origami Style** | `transform it into Origami style` | Geometric folded paper appearance with crisp edges | | **Paper Cutting Style** | `transform it into Paper Cutting style` | Silhouette art with intricate negative space patterns | | **Picasso Style** | `transform it into Picasso style` | Cubist fragmentation and abstract facial rearrangements | | **Pixel Style** | `transform it into Pixel style` | 8-bit/16-bit retro game aesthetic with visible square pixels | | **Poly Style** | `transform it into Poly style` | Low-polygon 3D models with flat-shaded triangular facets | | **Pop Art Style** | `transform it into Pop Art style` | Ben-Day dots, bold colors, and high-contrast comic book styling | | **Rick Morty Style** | `transform it into Rick Morty style` | Squiggly lines, grotesque proportions, and adult swim animation style | | **Snoopy Style** | `transform it into Snoopy style` | Simple black-and-white comic strip aesthetic with round features | | **Vector Style** | `transform it into Vector style` | Clean geometric shapes with gradient fills and sharp edges | | **Van Gogh Style** | `transform it into Van Gogh style` | Swirling brushwork, thick impasto, and post-impressionist color fields | --- ## 🖼️ Style Transformation Examples ### 1. 3D Chibi Style (包拯) | Source Image | Target Image without LoRA | Target Image with OmniConsistency LoRA | |--------------|---------------------------|----------------------------------------| | ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/R6L9T6HdUCS_qlGYOByIb.jpeg) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/z-o_0rZlMPfeuLajj94cH.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/C5NVJ00bHhtn7M5aam_0P.png) | | *Prompt*: `transform it into 3D Chibi style` | *Issues*: Weak rendering | *Advantages*: relatively exaggerated 3D rendering | ### 2. Jojo Style (叶卡捷琳娜二世) | Source Image | Target Image without LoRA | Target Image with OmniConsistency LoRA | |--------------|---------------------------|----------------------------------------| | ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/nZtFe_U_tGda15u-4EVsy.jpeg) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/no9nUtaRI433sILFVaxZu.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/L1u53WvTlrl61UCKcpHa4.png) | | *Prompt*: `transform it into Jojo style` | *Issues*: Weak pose dynamics, inconsistent shading | *Advantages*: Enhanced "bizarre" poses, dramatic manga lighting | ### 3. Snoopy Style (土耳其神枪手) | Source Image | Target Image without LoRA | Target Image with OmniConsistency LoRA | |--------------|---------------------------|----------------------------------------| | ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/CQxGW4HilpQtE3UGLVRW-.jpeg) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/3UZBw7q7p-22eFudzKT-n.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/0-OhkiaRyhTJzwB7qMPeM.png) | | *Prompt*: `transform it into Snoopy style` | *Issues*: Missing signature details, inconsistent linework | *Advantages*: Preserved weapon details, authentic comic strip aesthetic | ### 4. Pop Art Style (猫咪太师大壮和西洋蔡) | Source Image | Target Image without LoRA | Target Image with OmniConsistency LoRA | |--------------|---------------------------|----------------------------------------| | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/wida_2PItL3OICYeEUrZI.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/HfIM6goWtbH39jgcnMU6i.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/xbAIGAXVlH8_ZoIHBrseY.png) | | *Prompt*: `transform it into Pop Art style` | *Issues*: Weak Ben-Day dots, color bleeding | *Advantages*: Crisp dot patterns, vibrant color separation | --- ## ✨ Technical Workflow ```mermaid graph LR A[Original Image] --> B(Qwen-Image Encoder) B --> C{OmniConsistency Module} C -->|Style Prompt| D[LoRA Adapter Bank] D -->|3D Chibi| E["<img src='https://huggingface.co/datasets/svjack/Xiang_idol_Kontext_OmniConsistency_lora_Images/resolve/main/chibi_example.jpg' width='120'/>"] D -->|Jojo| F["<img src='https://huggingface.co/datasets/svjack/Premier_Zhou_OmniConsistency_Images/resolve/main/jojo_example.jpg' width='120'/>"] D -->|Snoopy| G["<img src='https://example.com/snoopy_example.jpg' width='120'/>"] D -->|Pop Art| H["<img src='https://example.com/popart_example.jpg' width='120'/>"] ``` **Key Features**: - **Consistency Preservation**: Maintains facial features and complex scene details - **Flexible Layout Control**: Supports creative structural changes like chibi proportions - **Multi-Style Compatibility**: Plug-and-play integration with any style LoRA module **Explore More Examples**: - https://huggingface.co/datasets/svjack/Xiang_hoodies_Qwen_Image_Edit_OmniConsistency_lora_Images --- ## Model Details - **Base Architecture**: Qwen-Image (ViT-H/16 visual encoder + Qwen-7B text encoder) - **LoRA Configuration**: - Rank: 32 (visual), 32 (text) - **Training Data**: 2,600 curated image pairs across 22 styles - **Model File**: https://huggingface.co/svjack/Qwen_Image_Edit_OmniConsistency_lora > **Acknowledgement**: Incorporates OmniConsistency research from National University of Singapore
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755920823
katanyasekolah
2025-08-23T04:15:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:15:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755921348
Sayemahsjn
2025-08-23T04:14:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:14:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755920784
coelacanthxyz
2025-08-23T04:14:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:14:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joseph3008/Ternal
joseph3008
2025-08-23T04:14:06Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-23T04:14:06Z
--- license: apache-2.0 ---
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755920689
manusiaperahu2012
2025-08-23T04:10:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:10:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755922148
0xaoyama
2025-08-23T04:09:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:09:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
greenw0lf/whisper-child-75
greenw0lf
2025-08-23T04:09:34Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:openai/whisper-large-v2", "lora", "transformers", "nl", "dataset:jasmin", "dataset:jasmin-cgn", "base_model:openai/whisper-large-v2", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-23T04:09:25Z
--- library_name: peft language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - base_model:adapter:openai/whisper-large-v2 - lora - transformers datasets: - jasmin - jasmin-cgn metrics: - wer model-index: - name: whisper-child-75 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: JASMIN-CGN type: jasmin metrics: - type: wer value: 19.079410876639717 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-child-75 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the JASMIN-CGN dataset. It achieves the following results on the evaluation set: - Loss: 0.3811 - Wer: 19.0794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 70 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.0406 | 0.1078 | 25 | 1.2208 | 38.0682 | | 1.0219 | 0.2155 | 50 | 1.1918 | 37.6556 | | 0.9715 | 0.3233 | 75 | 1.1313 | 36.7397 | | 0.9105 | 0.4310 | 100 | 1.0425 | 35.4715 | | 0.8408 | 0.5388 | 125 | 0.9366 | 34.8576 | | 0.7305 | 0.6466 | 150 | 0.8256 | 32.5058 | | 0.6843 | 0.7543 | 175 | 0.7052 | 31.1974 | | 0.5954 | 0.8621 | 200 | 0.6055 | 28.8187 | | 0.5398 | 0.9698 | 225 | 0.5391 | 25.5074 | | 0.5099 | 1.0776 | 250 | 0.4902 | 23.0952 | | 0.4845 | 1.1853 | 275 | 0.4555 | 22.3236 | | 0.4858 | 1.2931 | 300 | 0.4344 | 21.1897 | | 0.4741 | 1.4009 | 325 | 0.4224 | 20.9213 | | 0.4589 | 1.5086 | 350 | 0.4143 | 20.1161 | | 0.4294 | 1.6164 | 375 | 0.4081 | 20.6428 | | 0.426 | 1.7241 | 400 | 0.4027 | 21.2467 | | 0.406 | 1.8319 | 425 | 0.3984 | 20.2469 | | 0.4443 | 1.9397 | 450 | 0.3948 | 19.9416 | | 0.4351 | 2.0474 | 475 | 0.3920 | 20.7804 | | 0.4394 | 2.1552 | 500 | 0.3897 | 21.1393 | | 0.4167 | 2.2629 | 525 | 0.3874 | 19.6196 | | 0.3827 | 2.3707 | 550 | 0.3855 | 19.3981 | | 0.4164 | 2.4784 | 575 | 0.3842 | 19.1767 | | 0.4046 | 2.5862 | 600 | 0.3830 | 18.9855 | | 0.4196 | 2.6940 | 625 | 0.3821 | 18.9184 | | 0.4008 | 2.8017 | 650 | 0.3814 | 19.0861 | | 0.3902 | 2.9095 | 675 | 0.3811 | 19.0794 | ### Framework versions - PEFT 0.16.0 - Transformers 4.52.0 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2
thanobidex/blockassist-bc-colorful_shiny_hare_1755920572
thanobidex
2025-08-23T04:08:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:08:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755922004
IvanJAjebu
2025-08-23T04:07:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:07:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1755921774
liukevin666
2025-08-23T04:06:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:05:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755920483
lisaozill03
2025-08-23T04:05:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:05:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nema122/blockassist-bc-robust_fluffy_ram_1755921859
nema122
2025-08-23T04:05:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:05:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755921819
roeker
2025-08-23T04:04:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:04:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crislmfroes/svla-panda-open-base-cabinet-sim-v18
crislmfroes
2025-08-23T04:02:32Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:crislmfroes/panda-open-base-cabinet-v18", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-23T04:02:21Z
--- base_model: lerobot/smolvla_base datasets: crislmfroes/panda-open-base-cabinet-v18 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - robotics - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
u-10bei/qwen3-14b-sft-merged
u-10bei
2025-08-23T04:02:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "sft", "fsdp", "qlora", "custom", "conversational", "en", "ja", "base_model:Qwen/Qwen3-14B", "base_model:finetune:Qwen/Qwen3-14B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T03:58:50Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-14B tags: - qwen3 - sft - fsdp - qlora - custom language: - en - ja pipeline_tag: text-generation --- # Qwen3-14B SFT Model ## Model Description This is a fine-tuned version of Qwen3-14B using Supervised Fine-Tuning (SFT) with FSDP (Fully Sharded Data Parallel) + QLoRA (Quantized Low-Rank Adaptation) techniques. ## Training Details ### Base Model - **Model**: Qwen/Qwen3-14B - **Architecture**: Transformer-based causal language model - **Parameters**: 14 billion ### Training Configuration - **Method**: FSDP + QLoRA - **Quantization**: 4-bit QLoRA - **LoRA Parameters**: - r: 64 - alpha: 16 - dropout: 0.1 - target: linear layers - **Hardware**: 8x H100 80GB HBM3 - **Precision**: bfloat16 - **Flash Attention**: Enabled ### Training Hyperparameters - **Epochs**: 1 - **Micro Batch Size**: 1 - **Gradient Accumulation Steps**: 16 - **Learning Rate**: 1e-4 - **Scheduler**: Cosine with warmup - **Warmup Ratio**: 0.03 - **Optimizer**: AdamW - **Sequence Length**: 1024 ### Dataset - Custom SFT dataset (SFT_004_origin_4.parquet) - Validation split: 10% - Sample packing enabled for training efficiency ## Model Performance The model has been trained for efficient instruction following and maintains the original Qwen3 capabilities while being optimized for custom tasks. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained( "u-10bei/qwen3-14b-sft-merged", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( "u-10bei/qwen3-14b-sft-merged", trust_remote_code=True ) # Chat format messages = [ {"role": "user", "content": "Hello! How can I help you today?"} ] # Format conversation text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize inputs = tokenizer(text, return_tensors="pt") # Generate with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id ) # Decode response response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) print(response) ``` ### Direct Chat Format ```python # Manual chat formatting prompt = "<|im_start|>user\nHello! How are you?<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_new_tokens=100, do_sample=True, temperature=0.7, eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>") ) response = tokenizer.decode(outputs[0], skip_special_tokens=False) print(response) ``` ## Special Tokens - **BOS Token**: `<|im_start|>` - **EOS Token**: `<|im_end|>` - **UNK Token**: `<|endoftext|>` - **PAD Token**: `<|endoftext|>` ## Technical Specifications ### Model Architecture - **Attention**: Flash Attention 2 (training and inference) - **Precision**: bfloat16 native support - **Context Length**: 1024 tokens (training), extensible for inference - **Vocabulary Size**: 151,669 tokens ### Optimization Features - **Memory Efficient**: FSDP sharding reduces memory footprint - **Quantization Ready**: QLoRA-compatible for efficient fine-tuning - **Multi-GPU**: Optimized for distributed inference ## Training Infrastructure - **Distributed Training**: FSDP (Fully Sharded Data Parallel) - **Communication**: NCCL with Ethernet backend - **Memory Management**: Expandable segments, optimized allocation - **Monitoring**: Weights & Biases integration ## Limitations - This model is optimized for the specific training dataset and may not generalize to all use cases - Context length is limited to 1024 tokens during training - Performance may vary depending on the specific task and input format ## Ethical Considerations This model inherits the capabilities and limitations of the base Qwen3-14B model. Users should be aware of potential biases and use the model responsibly. ## Citation If you use this model, please cite: ```bibtex @model{qwen3-14b-sft-merged, title={Qwen3-14B SFT Model with FSDP+QLoRA}, author={u-10bei}, year={2025}, url={https://huggingface.co/u-10bei/qwen3-14b-sft-merged} } ``` ## Model Card Authors - u-10bei ## Training Date August 2025 --- *This model was trained using advanced distributed training techniques (FSDP + QLoRA) on high-performance H100 hardware for optimal efficiency and scalability.*
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755921581
IvanJAjebu
2025-08-23T04:00:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T04:00:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).