modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-19 06:28:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
565 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-19 06:22:35
card
stringlengths
11
1.01M
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755919920
sampingkaca72
2025-08-23T03:57:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:57:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zuruyu/blockassist-bc-endangered_pesty_chinchilla_1755921368
zuruyu
2025-08-23T03:57:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "endangered pesty chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:57:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - endangered pesty chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755919455
rvipitkirubbe
2025-08-23T03:56:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:56:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755921295
IvanJAjebu
2025-08-23T03:55:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:55:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755921269
roeker
2025-08-23T03:55:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:55:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Hirun9/openthaigpt1.5-7b-instruct
Hirun9
2025-08-23T03:53:38Z
0
0
peft
[ "peft", "safetensors", "qwen2", "generated_from_trainer", "dataset:finetune_data_clean.json", "base_model:openthaigpt/openthaigpt1.5-7b-instruct", "base_model:adapter:openthaigpt/openthaigpt1.5-7b-instruct", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-08-23T03:52:51Z
--- library_name: peft license: other base_model: openthaigpt/openthaigpt1.5-7b-instruct tags: - generated_from_trainer datasets: - finetune_data_clean.json model-index: - name: outputs/mymodel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.8.0.dev0` ```yaml adapter: lora base_model: openthaigpt/openthaigpt1.5-7b-instruct bf16: auto dataset_processes: 32 datasets: - message_property_mappings: content: content role: role path: finetune_data_clean.json type: alpaca conversation: chatml field_role: role field_content: content trust_remote_code: false gradient_accumulation_steps: 1 gradient_checkpointing: false learning_rate: 0.0002 lisa_layers_attribute: model.layers load_best_model_at_end: false load_in_4bit: false load_in_8bit: true lora_alpha: 16 lora_dropout: 0.05 lora_r: 8 lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj loraplus_lr_embedding: 1.0e-06 lr_scheduler: cosine max_prompt_len: 512 mean_resizing_embeddings: false micro_batch_size: 1 num_epochs: 1.0 optimizer: adamw_bnb_8bit output_dir: ./outputs/mymodel pretrain_multipack_attn: true pretrain_multipack_buffer_size: 10000 qlora_sharded_model_loading: false ray_num_workers: 1 resources_per_worker: GPU: 1 sample_packing_bin_size: 200 sample_packing_group_size: 100000 save_only_model: false save_safetensors: true sequence_len: 4096 shuffle_merged_datasets: true skip_prepare_dataset: false strict: false train_on_inputs: false trl: log_completions: false ref_model_mixup_alpha: 0.9 ref_model_sync_steps: 64 sync_ref_model: false use_vllm: false vllm_device: auto vllm_dtype: auto vllm_gpu_memory_utilization: 0.9 use_ray: false val_set_size: 0.0 weight_decay: 0.0 ``` </details><br> # outputs/mymodel This model is a fine-tuned version of [openthaigpt/openthaigpt1.5-7b-instruct](https://huggingface.co/openthaigpt/openthaigpt1.5-7b-instruct) on the finetune_data_clean.json dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
sandhyavs/dusty_450eps_smolvla
sandhyavs
2025-08-23T03:52:37Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:sandhyavs/dusty_450_eps", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-23T03:52:22Z
--- base_model: lerobot/smolvla_base datasets: sandhyavs/dusty_450_eps library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - lerobot - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.* ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details * **License:** apache-2.0
GENGx/a2c-PandaReachDense-v3
GENGx
2025-08-23T03:52:33Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-23T03:00:43Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.17 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755921024
IvanJAjebu
2025-08-23T03:51:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:51:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
casque/ashikaga_flower_park_ponyDiffusionV6XL_v6_Lion_3000_v1.02
casque
2025-08-23T03:48:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-23T03:48:03Z
--- license: creativeml-openrail-m ---
VIDEOS-18-Chitra-Tripathi-viral-video-Clip/New.full.videos.Chitra.Tripathi.Viral.Video.Official.Tutorial
VIDEOS-18-Chitra-Tripathi-viral-video-Clip
2025-08-23T03:45:11Z
0
0
null
[ "region:us" ]
null
2025-08-23T03:44:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/33jbhbsj?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755919093
ihsanridzi
2025-08-23T03:44:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:44:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755919127
mang3dd
2025-08-23T03:44:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:43:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755919491
Sayemahsjn
2025-08-23T03:43:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:43:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755918735
coelacanthxyz
2025-08-23T03:40:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:40:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gensynme/blockassist-bc-powerful_fluffy_mongoose_1755920396
gensynme
2025-08-23T03:40:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "powerful fluffy mongoose", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:39:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - powerful fluffy mongoose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755918719
katanyasekolah
2025-08-23T03:40:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:39:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hoangthanhkien829/blockassist-bc-flightless_unseen_parrot_1755919422
hoangthanhkien829
2025-08-23T03:39:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless unseen parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:38:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless unseen parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755918800
manusiaperahu2012
2025-08-23T03:39:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:38:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755920240
0xaoyama
2025-08-23T03:38:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:37:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755918565
unitova
2025-08-23T03:37:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:37:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anwensmythadv/blockassist-bc-pawing_stocky_walrus_1755918215
anwensmythadv
2025-08-23T03:37:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing stocky walrus", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:37:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing stocky walrus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Noelesther/blockassist-bc-ravenous_tiny_bee_1755918470
Noelesther
2025-08-23T03:35:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ravenous tiny bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:35:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ravenous tiny bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755918606
thanobidex
2025-08-23T03:35:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:35:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shiqian7969/blockassist-bc-foxy_durable_lemur_1755918279
shiqian7969
2025-08-23T03:34:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "foxy durable lemur", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:34:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - foxy durable lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755919873
0xaoyama
2025-08-23T03:32:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:31:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nema122/blockassist-bc-robust_fluffy_ram_1755919846
nema122
2025-08-23T03:32:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:31:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yuntian-deng/computer-model-s-origunet-nospatial-online-x0-joint-onlineonly-222222k722n222-138k
yuntian-deng
2025-08-23T03:32:00Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-23T03:30:10Z
# yuntian-deng/computer-model-s-origunet-nospatial-online-x0-joint-onlineonly-222222k722n222-138k This is a LatentDiffusion model for frame prediction.
RogerHarri87859/blockassist-bc-beaked_bipedal_woodpecker_1755918194
RogerHarri87859
2025-08-23T03:31:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked bipedal woodpecker", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:31:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked bipedal woodpecker --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755918295
helmutsukocok
2025-08-23T03:30:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:30:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755919676
0xaoyama
2025-08-23T03:28:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:28:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eason668/b03b427e-9997-4999-b4a0-c67e5abf09c3
eason668
2025-08-23T03:26:35Z
0
0
null
[ "safetensors", "llama", "region:us" ]
null
2025-08-22T16:31:16Z
# b03b427e-9997-4999-b4a0-c67e5abf09c3
stewart46/blockassist-bc-galloping_docile_puma_1755919526
stewart46
2025-08-23T03:26:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "galloping docile puma", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:26:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - galloping docile puma --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Punjabi-mms-uppal-farm-girl-viral-video/New.full.videos.Punjabi.uppal.farm.girl.Viral.Video.Official.Tutorial
Punjabi-mms-uppal-farm-girl-viral-video
2025-08-23T03:26:07Z
0
0
null
[ "region:us" ]
null
2025-08-23T03:25:48Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/33jbhbsj?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755919443
0xaoyama
2025-08-23T03:24:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:24:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755917993
sampingkaca72
2025-08-23T03:24:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:24:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jordansky/2f793e2d-c729-401b-92f2-570bc6b890f2
Jordansky
2025-08-23T03:20:24Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "grpo", "lora", "transformers", "trl", "unsloth", "text-generation", "conversational", "arxiv:1910.09700", "base_model:unsloth/mistral-7b-instruct-v0.2", "region:us" ]
text-generation
2025-08-23T03:20:15Z
--- base_model: unsloth/mistral-7b-instruct-v0.2 library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/mistral-7b-instruct-v0.2 - grpo - lora - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
NaderAli/lama_fp32.onnx
NaderAli
2025-08-23T03:20:19Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-23T03:20:19Z
--- license: apache-2.0 ---
lautan/blockassist-bc-gentle_patterned_goat_1755917682
lautan
2025-08-23T03:20:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:20:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755919088
0xaoyama
2025-08-23T03:18:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:18:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755918888
IvanJAjebu
2025-08-23T03:18:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:18:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755917575
chainway9
2025-08-23T03:18:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:18:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rettertop/blockassist-bc-pesty_toothy_mallard_1755919073
rettertop
2025-08-23T03:18:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty toothy mallard", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:17:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty toothy mallard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1755918999
mohda
2025-08-23T03:17:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:17:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755918909
0xaoyama
2025-08-23T03:15:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:15:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nema122/blockassist-bc-robust_fluffy_ram_1755918855
nema122
2025-08-23T03:15:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:15:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755917166
kojeklollipop
2025-08-23T03:15:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:15:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aiface/ModernBERT-base_massive_modern_base_crf_v1
aiface
2025-08-23T03:10:26Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-23T02:46:29Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: ModernBERT-base_massive_modern_base_crf_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ModernBERT-base_massive_modern_base_crf_v1 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 19.7145 - Slot P: 0.5406 - Slot R: 0.6025 - Slot F1: 0.5699 - Slot Exact Match: 0.5848 - Intent Acc: 0.7496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:----------------:|:----------:| | No log | 1.0 | 45 | 43.1123 | 0.0 | 0.0 | 0.0 | 0.3187 | 0.0576 | | 179.6545 | 2.0 | 90 | 30.0614 | 0.1686 | 0.0716 | 0.1006 | 0.3074 | 0.1672 | | 72.1388 | 3.0 | 135 | 21.0393 | 0.2894 | 0.2493 | 0.2678 | 0.3369 | 0.3468 | | 44.9919 | 4.0 | 180 | 16.7777 | 0.3668 | 0.3617 | 0.3642 | 0.4004 | 0.4801 | | 29.7573 | 5.0 | 225 | 14.9362 | 0.4282 | 0.4408 | 0.4344 | 0.4584 | 0.5430 | | 20.8656 | 6.0 | 270 | 13.8422 | 0.4479 | 0.5 | 0.4725 | 0.5007 | 0.6173 | | 13.791 | 7.0 | 315 | 14.2036 | 0.4469 | 0.4881 | 0.4666 | 0.5042 | 0.6557 | | 9.486 | 8.0 | 360 | 14.5381 | 0.4677 | 0.5159 | 0.4907 | 0.5219 | 0.6763 | | 6.4651 | 9.0 | 405 | 14.5455 | 0.4717 | 0.5552 | 0.5101 | 0.5421 | 0.6926 | | 4.6616 | 10.0 | 450 | 15.0882 | 0.5020 | 0.5672 | 0.5326 | 0.5637 | 0.7177 | | 4.6616 | 11.0 | 495 | 14.6622 | 0.4818 | 0.5861 | 0.5288 | 0.5489 | 0.7231 | | 3.4254 | 12.0 | 540 | 15.3736 | 0.4835 | 0.6050 | 0.5375 | 0.5622 | 0.7241 | | 2.4577 | 13.0 | 585 | 15.5837 | 0.4923 | 0.6030 | 0.5420 | 0.5652 | 0.7334 | | 1.977 | 14.0 | 630 | 16.2094 | 0.5082 | 0.5856 | 0.5442 | 0.5667 | 0.7368 | | 1.4042 | 15.0 | 675 | 16.3909 | 0.4922 | 0.5960 | 0.5392 | 0.5588 | 0.7314 | | 1.0461 | 16.0 | 720 | 16.8022 | 0.5050 | 0.6005 | 0.5486 | 0.5730 | 0.7359 | | 0.7993 | 17.0 | 765 | 16.9952 | 0.5128 | 0.6080 | 0.5563 | 0.5735 | 0.7398 | | 0.5947 | 18.0 | 810 | 17.6901 | 0.5205 | 0.5990 | 0.5570 | 0.5681 | 0.7447 | | 0.457 | 19.0 | 855 | 18.4398 | 0.5231 | 0.5856 | 0.5526 | 0.5691 | 0.7462 | | 0.3941 | 20.0 | 900 | 18.8391 | 0.5340 | 0.6010 | 0.5655 | 0.5834 | 0.7427 | | 0.3941 | 21.0 | 945 | 19.8849 | 0.5409 | 0.5886 | 0.5637 | 0.5848 | 0.7486 | | 0.2892 | 22.0 | 990 | 18.9729 | 0.5356 | 0.6134 | 0.5719 | 0.5794 | 0.7550 | | 0.2669 | 23.0 | 1035 | 19.5638 | 0.5404 | 0.5955 | 0.5666 | 0.5829 | 0.7531 | | 0.2357 | 24.0 | 1080 | 19.5290 | 0.5362 | 0.6045 | 0.5683 | 0.5824 | 0.7501 | | 0.2012 | 25.0 | 1125 | 19.7145 | 0.5406 | 0.6025 | 0.5699 | 0.5848 | 0.7496 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.4
0xKevin76/blockassist-bc-shrewd_hunting_lemur_1755918444
0xKevin76
2025-08-23T03:08:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shrewd hunting lemur", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:08:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shrewd hunting lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755917021
manusiaperahu2012
2025-08-23T03:08:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:08:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755916556
katanyasekolah
2025-08-23T03:05:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:05:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1755918277
mohda
2025-08-23T03:05:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:05:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Immac/NetaYume-Lumina-Image-2.0-GGUF
Immac
2025-08-23T03:04:17Z
0
0
null
[ "gguf", "text-to-image", "diffusion", "image-generation", "quantized", "en", "base_model:duongve/NetaYume-Lumina-Image-2.0", "base_model:quantized:duongve/NetaYume-Lumina-Image-2.0", "license:apache-2.0", "region:us" ]
text-to-image
2025-08-23T01:40:16Z
--- license: apache-2.0 base_model: - duongve/NetaYume-Lumina-Image-2.0 tags: - text-to-image - diffusion - image-generation - quantized - gguf language: - en pipeline_tag: text-to-image --- # NetaYume Lumina Image 2.0 GGUF This repository contains the quantized version of NetaYume-Lumina-Image-2.0 in GGUF format. ## Model Description NetaYume Lumina Image 2.0 is a text-to-image diffusion model that has been quantized for improved performance and reduced memory usage. ## Usage This is my first attempt at quantization so if I made a mistake or there is something amiss do tell. ## Model Details - **Base Model**: duongve/NetaYume-Lumina-Image-2.0 - **Format**: GGUF - **License**: Apache 2.0 - **Task**: Text-to-Image Generation ## Requirements - Compatible GGUF runtime environment - Sufficient system memory for model loading ## Citation If you use this model, please cite the original NetaYume-Lumina-Image-2.0 model. ## License This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755916705
lisaozill03
2025-08-23T03:04:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:04:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755916443
vwzyrraz7l
2025-08-23T03:01:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T03:00:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/gpt-oss-20b-q8-hi-mlx
nightmedia
2025-08-23T02:57:13Z
313
0
mlx
[ "mlx", "safetensors", "gpt_oss", "vllm", "text-generation", "conversational", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-08-06T02:24:51Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: mlx tags: - vllm - mlx base_model: openai/gpt-oss-20b --- # gpt-oss-20b-q8-hi-mlx This model [gpt-oss-20b-q8-hi-mlx](https://huggingface.co/gpt-oss-20b-q8-hi-mlx) was converted to MLX format from [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("gpt-oss-20b-q8-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Abby-OGV/Llama-3.1-8B-train_set_80percent-short-r64-alpha128
Abby-OGV
2025-08-23T02:55:54Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-23T02:55:07Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koloni/blockassist-bc-deadly_graceful_stingray_1755916133
koloni
2025-08-23T02:55:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:55:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
habilisl/blockassist-bc-lazy_coiled_raven_1755917606
habilisl
2025-08-23T02:53:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy coiled raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:53:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy coiled raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yuntian-deng/computer-model-s-origunet-nospatial-online-x0-joint-onlineonly-222222k722n22n-230k
yuntian-deng
2025-08-23T02:51:13Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-23T02:49:08Z
# yuntian-deng/computer-model-s-origunet-nospatial-online-x0-joint-onlineonly-222222k722n22n-230k This is a LatentDiffusion model for frame prediction.
u-10bei/qwen3-8b-sft-merged
u-10bei
2025-08-23T02:51:02Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "sft", "fsdp", "qlora", "custom", "conversational", "en", "ja", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T02:48:45Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-8B tags: - qwen3 - sft - fsdp - qlora - custom language: - en - ja pipeline_tag: text-generation --- # Qwen3-8B SFT Model ## Model Description This is a fine-tuned version of Qwen3-8B using Supervised Fine-Tuning (SFT) with FSDP (Fully Sharded Data Parallel) + QLoRA (Quantized Low-Rank Adaptation) techniques. ## Training Details ### Base Model - **Model**: Qwen/Qwen3-8B - **Architecture**: Transformer-based causal language model - **Parameters**: 8 billion ### Training Configuration - **Method**: FSDP + QLoRA - **Quantization**: 4-bit QLoRA - **LoRA Parameters**: - r: 64 - alpha: 16 - dropout: 0.1 - target: linear layers - **Hardware**: 8x H100 80GB HBM3 - **Precision**: bfloat16 - **Flash Attention**: Enabled ### Training Hyperparameters - **Epochs**: 1 - **Micro Batch Size**: 1 - **Gradient Accumulation Steps**: 16 - **Learning Rate**: 1e-4 - **Scheduler**: Cosine with warmup - **Warmup Ratio**: 0.03 - **Optimizer**: AdamW - **Sequence Length**: 1024 ### Dataset - Custom SFT dataset (SFT_004_origin_4.parquet) - Validation split: 10% - Sample packing enabled for training efficiency ## Model Performance The model has been trained for efficient instruction following and maintains the original Qwen3 capabilities while being optimized for custom tasks. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained( "u-10bei/qwen3-8b-sft-merged", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( "u-10bei/qwen3-8b-sft-merged", trust_remote_code=True ) # Chat format messages = [ {"role": "user", "content": "Hello! How can I help you today?"} ] # Format conversation text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize inputs = tokenizer(text, return_tensors="pt") # Generate with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id ) # Decode response response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) print(response) ``` ### Direct Chat Format ```python # Manual chat formatting prompt = "<|im_start|>user\nHello! How are you?<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_new_tokens=100, do_sample=True, temperature=0.7, eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>") ) response = tokenizer.decode(outputs[0], skip_special_tokens=False) print(response) ``` ## Special Tokens - **BOS Token**: `<|im_start|>` - **EOS Token**: `<|im_end|>` - **UNK Token**: `<|endoftext|>` - **PAD Token**: `<|endoftext|>` ## Technical Specifications ### Model Architecture - **Attention**: Flash Attention 2 (training and inference) - **Precision**: bfloat16 native support - **Context Length**: 1024 tokens (training), extensible for inference - **Vocabulary Size**: 151,669 tokens ### Optimization Features - **Memory Efficient**: FSDP sharding reduces memory footprint - **Quantization Ready**: QLoRA-compatible for efficient fine-tuning - **Multi-GPU**: Optimized for distributed inference ## Training Infrastructure - **Distributed Training**: FSDP (Fully Sharded Data Parallel) - **Communication**: NCCL with Ethernet backend - **Memory Management**: Expandable segments, optimized allocation - **Monitoring**: Weights & Biases integration ## Limitations - This model is optimized for the specific training dataset and may not generalize to all use cases - Context length is limited to 1024 tokens during training - Performance may vary depending on the specific task and input format ## Ethical Considerations This model inherits the capabilities and limitations of the base Qwen3-8B model. Users should be aware of potential biases and use the model responsibly. ## Citation If you use this model, please cite: ```bibtex @model{qwen3-8b-sft-merged, title={Qwen3-8B SFT Model with FSDP+QLoRA}, author={u-10bei}, year={2025}, url={https://huggingface.co/u-10bei/qwen3-8b-sft-merged} } ``` ## Model Card Authors - u-10bei ## Training Date August 2025 --- *This model was trained using advanced distributed training techniques (FSDP + QLoRA) on high-performance H100 hardware for optimal efficiency and scalability.*
bimabk/018e873a-0f4d-4ebe-9052-c2e88c3ae11c
bimabk
2025-08-23T02:49:47Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B", "region:us" ]
text-generation
2025-08-23T01:41:58Z
--- base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755917256
IvanJAjebu
2025-08-23T02:48:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:48:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755915713
chainway9
2025-08-23T02:47:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:47:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
puneetpanwar/so101_act_table_cleanup
puneetpanwar
2025-08-23T02:46:56Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:puneetpanwar/so101-table_cleanup", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-23T02:45:59Z
--- datasets: puneetpanwar/so101-table_cleanup library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
nhatle308/Qwen3-0.6B-Gensyn-Swarm-downy_pawing_anaconda
nhatle308
2025-08-23T02:46:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am downy_pawing_anaconda", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T02:25:40Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am downy_pawing_anaconda --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
habilisl/blockassist-bc-lazy_coiled_raven_1755917157
habilisl
2025-08-23T02:46:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy coiled raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:46:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy coiled raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bensalem14/rl_course_vizdoom_health_gathering_supreme
bensalem14
2025-08-23T02:44:34Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-23T02:17:49Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.00 +/- 4.35 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r bensalem14/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
netninja9/my-url-detector-2
netninja9
2025-08-23T02:44:20Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-23T01:01:16Z
# My URL Detector Model [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prismvale/url-detector-colab/blob/main/inference_demo.ipynb) This is a DistilBERT + handcrafted features model for phishing URL detection. Click the badge above to try it out directly in Colab.
nema122/blockassist-bc-robust_fluffy_ram_1755916905
nema122
2025-08-23T02:43:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:42:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ijustabi/blockassist-bc-lethal_nimble_cockroach_1755916937
ijustabi
2025-08-23T02:42:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lethal nimble cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:42:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lethal nimble cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755909137
IvanJAjebu
2025-08-23T02:42:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T00:33:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Abby-OGV/Llama-3.1-8B-train_set_80percent-short-r64-alpha32
Abby-OGV
2025-08-23T02:41:14Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-23T02:40:26Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
asifhaider/my_custom_7B_model
asifhaider
2025-08-23T02:39:27Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/qwen2.5-coder-7b-instruct-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "arxiv:1910.09700", "region:us" ]
null
2025-08-23T02:37:49Z
--- base_model: unsloth/qwen2.5-coder-7b-instruct-bnb-4bit library_name: peft tags: - base_model:adapter:unsloth/qwen2.5-coder-7b-instruct-bnb-4bit - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755915139
kojeklollipop
2025-08-23T02:39:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:39:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755915173
mang3dd
2025-08-23T02:39:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:39:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755915600
Sayemahsjn
2025-08-23T02:38:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:38:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755915075
manusiaperahu2012
2025-08-23T02:37:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:37:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
casque/ShinobuKocho-Pony
casque
2025-08-23T02:36:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-23T02:34:52Z
--- license: creativeml-openrail-m ---
lunita123/luna-lora
lunita123
2025-08-23T02:35:19Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:emilianJR/chilloutmix_NiPrunedFp32Fix", "base_model:adapter:emilianJR/chilloutmix_NiPrunedFp32Fix", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-08-23T02:33:47Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/ComfyUI_00001_.png text: '-' base_model: emilianJR/chilloutmix_NiPrunedFp32Fix instance_prompt: luna12 license: creativeml-openrail-m --- # luna12.safetensors <Gallery /> ## Model description # LoRA – luna12 Este es un modelo LoRA entrenado sobre Stable Diffusion 1.5 (checkpoint ChilloutMix_NiPrunedFp32Fix). Se recomienda usar con un weight entre 0.6 – 0.9 para mejores resultados. 📂 Colocar en: &#x2F;ComfyUI&#x2F;models&#x2F;loras&#x2F; 🔖 Licencia: CreativeML OpenRAIL-M ## Trigger words You should use `luna12` to trigger the image generation. ## Download model [Download](/lunita123/luna-lora/tree/main) them in the Files & versions tab.
AnkushWaghmare/movie-similarity-model
AnkushWaghmare
2025-08-23T02:33:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-23T02:21:38Z
--- license: apache-2.0 ---
Abby-OGV/Llama-3.1-8B-train_set_80percent-short-r32-alpha128
Abby-OGV
2025-08-23T02:33:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-23T02:33:10Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
model-Ava-Johnson-Official-videos/Ava.Johnson.viral.video.Clip
model-Ava-Johnson-Official-videos
2025-08-23T02:29:13Z
0
0
null
[ "region:us" ]
null
2025-08-23T02:29:01Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/33jbhbsj?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755914604
vwzyrraz7l
2025-08-23T02:29:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:29:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755914402
katanyasekolah
2025-08-23T02:28:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:28:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755914240
coelacanthxyz
2025-08-23T02:27:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:27:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
habilisl/blockassist-bc-lazy_coiled_raven_1755915977
habilisl
2025-08-23T02:26:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy coiled raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:26:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy coiled raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nhatle308/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-skittish_silky_starfish
nhatle308
2025-08-23T02:26:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am skittish_silky_starfish", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T02:26:25Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am skittish_silky_starfish --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
justinian336/gemma-3N-finetune
justinian336
2025-08-23T02:23:20Z
0
0
transformers
[ "transformers", "safetensors", "gemma3n", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-23T01:51:15Z
--- base_model: unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3n license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** justinian336 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755914181
hakimjustbao
2025-08-23T02:23:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:22:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anwensmythadv/blockassist-bc-pawing_stocky_walrus_1755913729
anwensmythadv
2025-08-23T02:22:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing stocky walrus", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:22:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing stocky walrus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755914153
sampingkaca72
2025-08-23T02:20:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:20:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
New-Clip-Arisleidy-viral-video-links/Orginal.full.Videos.Arisleidy.viral.video.Official.Tutorial
New-Clip-Arisleidy-viral-video-links
2025-08-23T02:20:27Z
0
0
null
[ "region:us" ]
null
2025-08-23T02:20:16Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/33jbhbsj?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Abby-OGV/Llama-3.1-8B-train_set_80percent-short-r32-alpha32
Abby-OGV
2025-08-23T02:20:16Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-23T02:19:31Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
chainway9/blockassist-bc-untamed_quick_eel_1755913799
chainway9
2025-08-23T02:16:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:16:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
godijef/blockassist-bc-peaceful_singing_panther_1755915300
godijef
2025-08-23T02:15:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful singing panther", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:15:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful singing panther --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DAKARA555/seijoui
DAKARA555
2025-08-23T02:14:05Z
0
0
null
[ "ja", "base_model:Wan-AI/Wan2.2-I2V-A14B", "base_model:finetune:Wan-AI/Wan2.2-I2V-A14B", "license:apache-2.0", "region:us" ]
null
2025-08-23T01:56:47Z
--- license: apache-2.0 language: - ja base_model: - Wan-AI/Wan2.2-I2V-A14B --- https://civitai.com/models/1331682?modelVersionId=1623136 https://huggingface.co/DAKARA555/seijoui/resolve/main/wan2.2_i2v_highnoise_pov_missionary_v1.0.safetensors?download=true
nema122/blockassist-bc-robust_fluffy_ram_1755915106
nema122
2025-08-23T02:13:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:12:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alok0777/blockassist-bc-masked_pensive_lemur_1755915039
alok0777
2025-08-23T02:12:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked pensive lemur", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T02:11:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked pensive lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_7412
luckeciano
2025-08-23T02:11:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-22T22:25:41Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-v2_7412 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-v2_7412 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_7412", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/k5bvpmx4) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```