id
stringlengths
1
260
contents
stringlengths
1
234k
22973
\section{Uniformly Convergent iff Difference Under Supremum Metric Vanishes} Tags: Uniform Convergence, Metric Spaces, Metric Spaces \begin{theorem} Let $X$ and $Y$ be metric spaces Let $\sequence {f_n}$ be a sequence of mappings defined on $X$. Let $f: X \to Y$ be a mapping. Let $d_S: S \times S \to Y$ denote the supremum metric on $S \subseteq X$. Then: :$\sequence {f_n}$ converges uniformly to $f$ on $S$ {{iff}}: :$\map {d_S} {f_n, f} \to 0$ as $n \to \infty$. \end{theorem} \begin{proof} We have the following string of equivalences: Start by {{Defof|Uniform Convergence}}: :$\forall \epsilon \in \R_{>0}: \exists N \in \R: \forall n \ge N, \forall x \in S: \map d {\map {f_n} x, \map f x} < \epsilon$ By {{Defof|Upper Bound of Set}}, this is equivalent to: :$\forall \epsilon \in \R_{>0}: \exists N \in \R: \forall n \ge N: \epsilon$ is an upper bound of $\set {\map d {\map {f_n} x, \map f x} : x \in X}$. So, by {{Defof|Supremum of Set}}, this is equivalent to: :$\forall \epsilon \in \R_{>0}: \exists N \in \R: \forall n \ge N: \sup_{x \mathop \in X} \map d {\map {f_n} x, \map f x} \le \epsilon$ By {{Defof|Supremum Metric}}, this is equivalent to: :$\forall \epsilon \in \R_{>0}: \exists N \in \R: \forall n \ge N: \map {d_S} {f_n, f} \le \epsilon$ By {{Defof|Limit of Sequence in Metric Space}}, this is equivalent to: :$\map {d_S} {f_n, f} \to 0$ as $n \to \infty$ {{qed}} Category:Metric Spaces Category:Uniform Convergence \end{proof}
22974
\section{Union Distributes over Intersection/Family of Sets} Tags: Intersection, Set Intersection, Families, Set Union, Indexed Families, Union, Families of Sets, Union Distributes over Intersection \begin{theorem} Let $I$ be an indexing set. Let $\family {A_\alpha}_{\alpha \mathop \in I}$ be an indexed family of subsets of a set $S$. Let $B \subseteq S$. Then: :$\ds \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B$ where $\ds \bigcap_{\alpha \mathop \in I} A_\alpha$ denotes the intersection of $\family {A_\alpha}_{\alpha \mathop \in I}$. \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = x | o = \in | r = \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} | c = }} {{eqn | ll= \leadsto | q = \forall \alpha \in I | l = x | o = \in | r = A_\alpha \cup B | c = Intersection is Subset }} {{eqn | ll= \leadsto | q = \forall \alpha \in I | l = x | o = \in | r = A_\alpha | c = {{Defof|Set Union}} }} {{eqn | lo= \lor | l = x | o = \in | r = B | c = }} {{eqn | ll= \leadsto | l = x | o = \in | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} | c = {{Defof|Intersection of Family}} }} {{eqn | lo= \lor | l = x | o = \in | r = B | c = }} {{eqn | ll= \leadsto | l = x | o = \in | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B | c = {{Defof|Set Union}} }} {{end-eqn}} By definition of subset: :$\ds \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} \subseteq \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B$ {{qed|lemma}} {{begin-eqn}} {{eqn | l = x | o = \in | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B | c = }} {{eqn | ll= \leadsto | l = x | o = \in | r = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} | c = {{Defof|Set Union}} }} {{eqn | lo= \lor | l = x | o = \in | r = B | c = }} {{eqn | ll= \leadsto | q = \forall \alpha \in I | l = x | o = \in | r = A_\alpha | c = Intersection is Subset }} {{eqn | lo= \lor | l = x | o = \in | r = B | c = }} {{eqn | ll= \leadsto | q = \forall \alpha \in I | l = x | o = \in | r = A_\alpha \cup B | c = {{Defof|Set Union}} }} {{eqn | ll= \leadsto | l = x | o = \in | r = \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} | c = {{Defof|Intersection of Family}} }} {{end-eqn}} By definition of subset: :$\ds \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B \subseteq \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B}$ {{qed|lemma}} By definition of set equality: :$\ds \map {\bigcap_{\alpha \mathop \in I} } {A_\alpha \cup B} = \paren {\bigcap_{\alpha \mathop \in I} A_\alpha} \cup B$ {{qed}} \end{proof}
22975
\section{Union Distributes over Union} Tags: Distributive Operations, Union Distributes over Union, Set Union, Union, Order Theory, Class Theory \begin{theorem} Set union is distributive over itself: :$\forall A, B, C: \paren {A \cup B} \cup \paren {A \cup C} = A \cup B \cup C = \paren {A \cup C} \cup \paren {B \cup C}$ where $A, B, C$ are sets. \end{theorem} \begin{proof} We have: * Union is Associative * Union is Commutative * Union is Idempotent The result follows from Associative Commutative Idempotent Operation is Distributive over Itself. {{qed}} Category:Set Union Category:Distributive Operations Category:Union Distributes over Union \end{proof}
22976
\section{Union Distributes over Union/Families of Sets} Tags: Union Distributes over Union, Families, Set Union, Indexed Families, Union, Families of Sets \begin{theorem} Let $I$ be an indexing set. Let $\family {A_\alpha}_{\alpha \mathop \in I}$ and $\family {B_\alpha}_{\alpha \mathop \in I}$ be indexed families of subsets of a set $S$. Then: :$\ds \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha}$ where $\ds \bigcup_{\alpha \mathop \in I} A_\alpha$ denotes the union of $\family {A_\alpha}_{\alpha \mathop \in I}$. \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = x | o = \in | r = \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} | c = }} {{eqn | ll= \leadsto | q = \exists \beta \in I | l = x | o = \in | r = A_\beta \cup B_\beta | c = {{Defof|Union of Family}} }} {{eqn | ll= \leadsto | l = x | o = \in | r = A_\beta | c = {{Defof|Set Union}} }} {{eqn | lo= \lor | l = x | o = \in | r = B_\beta | c = }} {{eqn | ll= \leadsto | l = x | o = \in | r = \bigcup_{\alpha \mathop \in I} A_\alpha | c = Set is Subset of Union }} {{eqn | lo= \lor | l = x | o = \in | r = \bigcup_{\alpha \mathop \in I} B_\alpha | c = Set is Subset of Union }} {{eqn | ll= \leadsto | l = x | o = \in | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha} | c = {{Defof|Set Union}} }} {{end-eqn}} Thus by definition of subset: :$\ds \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} \subseteq \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha}$ {{qed|lemma}} {{begin-eqn}} {{eqn | l = x | o = \in | r = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha} | c = }} {{eqn | ll= \leadsto | l = x | o = \in | r = \bigcup_{\alpha \mathop \in I} A_\alpha | c = {{Defof|Set Union}} }} {{eqn | lo= \lor | l = x | o = \in | r = \bigcup_{\alpha \mathop \in I} B_\alpha | c = }} {{eqn | ll= \leadsto | q = \exists \beta \in I | l = x | o = \in | r = A_\beta | c = {{Defof|Union of Family}} }} {{eqn | lo= \lor | q = \exists \beta \in I | l = x | o = \in | r = B_\beta | c = }} {{eqn | ll= \leadsto | q = \exists \beta \in I | l = x | o = \in | r = A_\beta \cup B_\beta | c = {{Defof|Union of Family}} }} {{eqn | ll= \leadsto | l = x | o = \in | r = \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} | c = }} {{end-eqn}} Thus by definition of subset: :$\ds \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha} \subseteq \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha}$ {{qed|lemma}} By definition of set equality: :$\ds \map {\bigcup_{\alpha \mathop \in I} } {A_\alpha \cup B_\alpha} = \paren {\bigcup_{\alpha \mathop \in I} A_\alpha} \cup \paren {\bigcup_{\alpha \mathop \in I} B_\alpha}$ {{qed}} \end{proof}
22977
\section{Union Distributes over Union/General Result} Tags: Set Union, Union Distributes over Union, Union \begin{theorem} Let $\family {\mathbb S_i}_{i \mathop \in I}$ be an $I$-indexed family of sets of sets. Then: :$\ds \bigcup_{i \mathop \in I} \bigcup \mathbb S_i = \bigcup \bigcup_{i \mathop \in I} \mathbb S_i$ \end{theorem} \begin{proof} By the definition of set union, we have: :$\ds \forall i \in I: \forall S \in \mathbb S_i: S \in \bigcup_{j \mathop \in I} \mathbb S_j$ Hence, by Set is Subset of Union: General Result: :$\ds \forall i \in I: \forall S \in \mathbb S_i: S \subseteq \bigcup \bigcup_{j \mathop \in I} \mathbb S_j$ By Union is Smallest Superset: General Result, it follows that: :$\ds \forall i \in I: \bigcup \mathbb S_i \subseteq \bigcup \bigcup_{j \mathop \in I} \mathbb S_j$ Therefore, by Union is Smallest Superset: Family of Sets, we conclude that: :$\ds \bigcup_{i \mathop \in I} \bigcup \mathbb S_i \subseteq \bigcup \bigcup_{j \mathop \in I} \mathbb S_j$ By Set is Subset of Union General Result and then Set is Subset of Union: Family of Sets, we have: :$\ds \forall i \in I: \forall S \in \mathbb S_i: S \subseteq \bigcup \mathbb S_i \subseteq \bigcup_{j \mathop \in I} \bigcup \mathbb S_j$ Because $\subseteq$ is transitive, we can apply the definition set union to conclude that: :$\ds \forall S \in \bigcup_{i \mathop \in I} \mathbb S_i: S \subseteq \bigcup_{j \mathop \in I} \bigcup \mathbb S_j$ Hence, by Union is Smallest Superset: General Result: :$\ds \bigcup \bigcup_{i \mathop \in I} \mathbb S_i \subseteq \bigcup_{j \mathop \in I} \bigcup \mathbb S_j$ By definition of set equality, the result follows. {{qed}} Category:Union Distributes over Union \end{proof}
22978
\section{Union Distributes over Union/Sets of Sets} Tags: Set Union, Union Distributes over Union, Union \begin{theorem} Let $A$ and $B$ denote sets of sets. Then: :$\ds \bigcup \paren {A \cup B} = \paren {\bigcup A} \cup \paren {\bigcup B}$ where $\ds \bigcup A$ denotes the union of $A$. \end{theorem} \begin{proof} Let $\ds s \in \bigcup \paren {A \cup B}$. Then by definition of union of set of sets: :$\exists X \in A \cup B: s \in X$ By definition of set union, either: :$X \in A$ or: :$X \in B$ If $X \in A$, then: :$s \in \set {x: \exists X \in A: x \in X}$ If $X \in B$, then: :$s \in \set {x: \exists X \in B: x \in X}$ Thus by definition of union of set of sets, either: :$\ds s \in \bigcup A$ or: :$\ds s \in \bigcup B$ So by definition of set union: :$\ds s \in \paren {\bigcup A} \cup \paren {\bigcup B}$ So by definition of subset: :$\ds \bigcup \paren {A \cup B} \subseteq \paren {\bigcup A} \cup \paren {\bigcup B}$ Now let $\ds s \in \paren {\bigcup A} \cup \paren {\bigcup B}$. By definition of set union, either: :$\ds s \in \bigcup A$ or: :$\ds s \in \bigcup B$ That is, by definition of union of set of sets, either: :$s \in \set {x: \exists X \in A: x \in X}$ or: :$s \in \set {x: \exists X \in B: x \in X}$ {{WLOG}}, let $s \in X$ such that $X \in A$. Then by Set is Subset of Union: :$s \in X$ such that $X \in A \cup B$ That is: :$\ds s \in \bigcup \paren {A \cup B}$ Similarly if $x \in X$ such that $X \in B$. So by definition of subset: :$\ds \paren {\bigcup A} \cup \paren {\bigcup B} \subseteq \bigcup \paren {A \cup B}$ Hence by definition of equality of sets: :$\ds \bigcup \paren {A \cup B} = \paren {\bigcup A} \cup \paren {\bigcup B}$ {{qed}} Category:Union Distributes over Union \end{proof}
22979
\section{Union Operation on Supersets of Subset is Closed} Tags: Set Union \begin{theorem} Let $S$ be a set. Let $T \subseteq S$ be a given subset of $S$. Let $\powerset S$ denote the power set of $S$ Let $\mathscr S$ be the subset of $\powerset S$ defined as: :$\mathscr S = \set {Y \in \powerset S: T \subseteq Y}$ Then the algebraic structure $\struct {\mathscr S, \cup}$ is closed. \end{theorem} \begin{proof} Let $A, B \in \mathscr S$. We have that: {{begin-eqn}} {{eqn | l = T | o = \subseteq | r = A | c = Definition of $\mathscr S$ }} {{eqn | l = T | o = \subseteq | r = B | c = Definition of $\mathscr S$ }} {{eqn | n = 1 | ll= \leadsto | l = T | o = \subseteq | r = A \cup B | c = Set is Subset of Union }} {{end-eqn}} and: {{begin-eqn}} {{eqn | l = A | o = \subseteq | r = S | c = {{Defof|Power Set}} }} {{eqn | l = B | o = \subseteq | r = S | c = {{Defof|Power Set}} }} {{eqn | ll= \leadsto | l = A \cup B | o = \subseteq | r = S | c = Union is Smallest Superset }} {{eqn | n = 2 | ll= \leadsto | l = A \cup B | o = \in | r = \powerset S | c = {{Defof|Power Set}} }} {{end-eqn}} Thus we have: {{begin-eqn}} {{eqn | l = T | o = \subseteq | r = A \cup B | c = from $(1)$ }} {{eqn | l = A \cup B | o = \in | r = \powerset S | c = from $(2)$ }} {{eqn | ll= \leadsto | l = A \cup B | o = \in | r = \mathscr S | c = Definition of $\mathscr S$ }} {{end-eqn}} Hence the result by definition of closed algebraic structure. {{qed}} \end{proof}
22980
\section{Union as Symmetric Difference with Intersection} Tags: Symmetric Difference, Intersection, Set Intersection, Set Union, Union \begin{theorem} Let $A$ and $B$ be sets. Then: :$A \cup B = \paren {A \symdif B} \symdif \paren {A \cap B}$ where: :$A \cup B$ denotes set union :$A \cap B$ denotes set intersection :$A \symdif B$ denotes set symmetric difference \end{theorem} \begin{proof} From the definition of symmetric difference: :$\paren {A \symdif B} \symdif \paren {A \cap B} = \paren {\paren {A \symdif B} \cup \paren {A \cap B} } \setminus \paren {\paren {A \symdif B} \cap \paren {A \cap B} }$ Also from the definition of symmetric difference: {{explain}} :$\paren {A \symdif B} \cap \paren {A \cap B} = \paren {\paren {A \cup B} \setminus \paren {A \cap B} } \cap \paren {A \cup B}$ From Set Difference Intersection with Second Set is Empty Set: :$\paren {S \setminus T} \cap T = \O$ Hence: :$\paren {\paren {A \cup B} \setminus \paren {A \cup B} } \cap \paren {A \cup B} = \O$ This leaves: {{begin-eqn}} {{eqn | o = | r = \paren {\paren {A \symdif B} \cup \paren {A \cap B} } \setminus \paren {\paren {A \symdif B} \cap \paren {A \cap B} } | c = }} {{eqn | r = \paren {\paren {A \symdif B} \cup \paren {A \cap B} } \setminus \O | c = }} {{eqn | r = \paren {A \symdif B} \cup \paren {A \cap B} | c = Set Difference with Empty Set is Self }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | o = | r = \paren {A \symdif B} \cup \paren {A \cap B} | c = }} {{eqn | r = \paren {A \setminus B} \cup \paren {B \setminus A} \cup \paren {A \cap B} | c = {{Defof|Symmetric Difference|index = 1}} }} {{eqn | r = \paren {\paren {A \setminus B} \cup \paren {A \cap B} } \cup \paren {\paren {B \setminus A} \cup \paren {A \cap B} } | c = Union is Idempotent, Union is Commutative and Union is Associative }} {{eqn | r = A \cup B | c = Set Difference Union Intersection }} {{end-eqn}} Hence the result. {{qed}} Category:Set Union Category:Set Intersection Category:Symmetric Difference \end{proof}
22981
\section{Union equals Intersection iff Sets are Equal} Tags: Set Union, Set Intersection, Union, Intersection \begin{theorem} Let $S$ and $T$ be sets. Then: :$\paren {S \cup T = S} \land \paren {S \cap T = S} \iff S = T$ where: :$S \cup T$ denotes set union :$S \cap T$ denotes set intersection. \end{theorem} \begin{proof} From Intersection with Subset is Subset: :$S \subseteq T \iff S \cap T = S$ From Union with Superset is Superset: :$S \subseteq T \iff S \cup T = T$ That is: :$T \subseteq S \iff S \cup T = S$ Thus: :$\paren {S \cup T = S} \land \paren {S \cap T = S} \iff S \subseteq T \subseteq S$ By definition of set equality: :$S = T \iff S \subseteq T \subseteq S$ Hence the result. {{qed}} \end{proof}
22982
\section{Union is Associative} Tags: Set Theory, Set Union, Union is Associative, Union, Direct Proofs, Associativity, Examples of Associative Operations \begin{theorem} Set union is associative: :$A \cup \paren {B \cup C} = \paren {A \cup B} \cup C$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | o = | r = x \in A \cup \paren {B \cup C} | c = {{Defof|Set Union}} }} {{eqn | o = \leadstoandfrom | r = x \in A \lor \paren {x \in B \lor x \in C} | c = {{Defof|Set Union}} }} {{eqn | o = \leadstoandfrom | r = \paren {x \in A \lor x \in B} \lor x \in C | c = Rule of Association: Disjunction }} {{eqn | o = \leadstoandfrom | r = x \in \paren {A \cup B} \cup C | c = {{Defof|Set Union}} }} {{end-eqn}} Therefore: :$x \in A \cup \paren {B \cup C}$ {{iff}} $x \in \paren {A \cup B} \cup C$ Thus it has been shown that: : $A \cup \paren {B \cup C} = \paren {A \cup B} \cup C$ {{qed}} \end{proof}
22983
\section{Union is Associative/Family of Sets} Tags: Subsets, Set Union, Union is Associative, Union, Subset \begin{theorem} Let $\family {S_i}_{i \mathop \in I}$ and $\family {I_\lambda}_{\lambda \mathop \in \Lambda}$ be indexed families of sets. Let $\ds I = \bigcup_{\lambda \mathop \in \Lambda} I_\lambda$ denote the union of $\family {I_\lambda}_{\lambda \mathop \in \Lambda}$. Then: :$\ds \bigcup_{i \mathop \in I} S_i = \bigcup_{\lambda \mathop \in \Lambda} \paren {\bigcup_{i \mathop \in I_\lambda} S_i}$ \end{theorem} \begin{proof} For every $\lambda \in \Lambda$, let $\ds T_\lambda = \bigcup_{i \mathop \in I_\lambda} S_i$. Then: {{begin-eqn}} {{eqn | l = x | o = \in | r = \bigcup_{i \mathop \in I} S_i | c = }} {{eqn | ll= \leadstoandfrom | q = \exists i \in I | l = x | o = \in | r = S_i | c = {{Defof|Union of Family}} }} {{eqn | ll= \leadstoandfrom | q = \exists \lambda \in \Lambda: \exists i \in I_\lambda | l = x | o = \in | r = S_i | c = }} {{eqn | ll= \leadstoandfrom | q = \exists \lambda \in \Lambda | l = x | o = \in | r = \bigcup_{i \mathop \in I_\lambda} S_i = T_\lambda | c = }} {{eqn | ll= \leadstoandfrom | l = x | o = \in | r = \bigcup_{\lambda \mathop \in \Lambda} T_\lambda | c = }} {{end-eqn}} Thus: :$\ds \bigcup_{i \mathop \in I} S_i = \bigcup_{\lambda \mathop \in \Lambda} T_\lambda = \bigcup_{\lambda \mathop \in \Lambda} \paren {\bigcup_{i \mathop \in I_\lambda} S_i}$ {{qed}} \end{proof}
22984
\section{Union is Commutative/Family of Sets} Tags: Set Union, Commutativity, Union is Commutative \begin{theorem} Let $\family {S_i}_{i \mathop \in I}$ be an indexed family of sets. Let $\ds I = \bigcup_{i \mathop \in I} S_i$ denote the union of $\family {S_i}_{i \mathop \in I}$. Let $J \subseteq I$ be a subset of $I$. Then: :$\ds \bigcup_{i \mathop \in I} S_i = \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k = \bigcup_{k \mathop \in \relcomp I J} S_k \cup \bigcup_{j \mathop \in J} S_j$ where $\relcomp I J$ denotes the complement of $J$ relative to $I$. \end{theorem} \begin{proof} We have that both $\ds \bigcup_{j \mathop \in J} S_j$ and $\ds \bigcup_{k \mathop \in \relcomp I J} S_k$ are sets. Hence by Union is Commutative we have: :$\bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k = \bigcup_{k \mathop \in \relcomp I J} S_k \cup \bigcup_{j \mathop \in J} S_j$ It remains to be demonstrated that $\ds \bigcup_{i \mathop \in I} S_i = \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k$. So: {{begin-eqn}} {{eqn | l = x | o = \in | r = \bigcup_{i \mathop \in I} S_i | c = }} {{eqn | ll= \leadstoandfrom | l = \exists i \in I: x | o = \in | r = S_i | c = {{Defof|Union of Family}} }} {{eqn | ll= \leadstoandfrom | l = \exists j \in J: x | o = \in | r = S_j | c = {{Defof|Relative Complement}} }} {{eqn | lo= \lor | l = \exists k \in \relcomp I J: x | o = \in | r = S_k | c = }} {{eqn | ll= \leadstoandfrom | l = x | o = \in | r = \bigcup_{j \mathop \in J} S_j | c = {{Defof|Union of Family}} }} {{eqn | lo= \lor | l = x | o = \in | r = \bigcup_{k \mathop \in \relcomp I J} S_k | c = {{Defof|Union of Family}} }} {{eqn | ll= \leadstoandfrom | l = x | o = \in | r = \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k | c = {{Defof|Set Union}} }} {{end-eqn}} That is: :$\ds x \in \bigcup_{i \mathop \in I} S_i \iff x \in \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k$ The result follows by definition of set equality. {{qed}} \end{proof}
22985
\section{Union is Dominated by Disjoint Union} Tags: Set Theory \begin{theorem} Let $I$ be an indexing set. For all $i \in I$, let $S_i$ be a set. Then: :$\ds \bigcup_{i \mathop \in I} S_i \preccurlyeq \bigsqcup_{i \mathop \in I} S_i$ where $\preccurlyeq$ denotes domination, $\bigcup$ denotes union, and $\bigsqcup$ denotes disjoint union. \end{theorem} \begin{proof} For all $\ds x \in \bigcup_{i \mathop \in I} S_i$, there exists a $\map i x \in I$ such that $x \in S_{\map i x}$. Thus the mapping $\ds \iota : \bigcup_{i \mathop \in I} S_i \to \bigsqcup_{i \mathop \in I} S_i$ defined by: :$\map \iota x = \tuple {x, \map i x}$ is an injection. {{handwaving}} {{qed}} Category:Set Theory \end{proof}
22986
\section{Union is Empty iff Sets are Empty} Tags: Empty Set, Set Union, Union is Empty iff Sets are Empty, Union \begin{theorem} If the union of two sets is the empty set, then both are themselves empty: :$S \cup T = \O \iff S = \O \land T = \O$ \end{theorem} \begin{proof} {{begin-equation}} {{equation | l=<math>S \cup T = \varnothing</math> | o=<math>\iff</math> | r=<math>\neg \exists x: x \in \left ({S \cup T}\right)</math> | c=Definition of Empty Set }} {{equation | o=<math>\iff</math> | r=<math>\forall x: \neg \left ({x \in \left ({S \cup T}\right)}\right)</math> | c=De Morgan's Laws (Predicate Logic) }} {{equation | o=<math>\iff</math> | r=<math>\forall x: \neg \left ({x \in S \or x \in T}\right)</math> | c=Definition of Set Union }} {{equation | o=<math>\iff</math> | r=<math>\forall x: x \notin S \and x \notin T</math> | c=De Morgan's Laws }} {{equation | o=<math>\iff</math> | r=<math>S = \varnothing \and T = \varnothing</math> | c=Definition of Empty Set }} {{end-equation}} {{qed}} Category:Union Category:Empty Set 45818 27146 2011-02-15T07:45:33Z Prime.mover 59 45818 wikitext text/x-wiki \end{proof}
22987
\section{Union is Increasing} Tags: Set Union, Union \begin{theorem} Let $U$ be a set. Let $\FF$ and $\GG$ be sets of subsets of $U$. Then $\FF \subseteq \GG \implies \bigcup \FF \subseteq \bigcup \GG$. That is, $\bigcup$ is an increasing mapping from $\struct {\powerset {\powerset U}, \subseteq}$ to $\struct {\powerset U, \subseteq}$, where $\powerset U$ is the power set of $U$. \end{theorem} \begin{proof} Let $\FF \subseteq \GG$. Let $x \in \bigcup \FF$. Then by the definition of union: :$\exists S \in \FF: x \in S$ By the definition of subset: :$S \in \GG$ Thus by the definition of union: :$x \in \bigcup \GG$ Since this holds for all $x \in \bigcup \FF$: :$\bigcup \FF \subseteq \bigcup \GG$ {{qed}} Category:Set Union \end{proof}
22988
\section{Union is Increasing Sequence of Sets} Tags: Set Union \begin{theorem} Let $\sequence {D_n}_{n \mathop \in \N}$ be a sequence of sets. Then: :the sequence $\ds \sequence {\bigcup_{k \mathop = 1}^n D_k}_{n \mathop \in \N}$ is increasing. \end{theorem} \begin{proof} We have: :$\ds \bigcup_{k \mathop = 1}^{n + 1} D_k = D_n \cup \bigcup_{k \mathop = 1}^n D_k$ From Set is Subset of Union, we have: :$\ds \bigcup_{k \mathop = 1}^n D_k \subseteq D_n \cup \bigcup_{k \mathop = 1}^n D_k$ so: :$\ds \ds \bigcup_{k \mathop = 1}^n D_k \subseteq \bigcup_{k \mathop = 1}^{n + 1} D_k$ So: :$\ds \sequence {\bigcup_{k \mathop = 1}^n D_k}_{n \mathop \in \N}$ is increasing. {{qed}} Category:Set Union \end{proof}
22989
\section{Union is Smallest Superset/General Result} Tags: Set Union, Subsets, Subset, Union \begin{theorem} Let $S$ and $T$ be sets. Let $\powerset S$ denote the power set of $S$. Let $\mathbb S$ be a subset of $\powerset S$. Then: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \iff \bigcup \mathbb S \subseteq T$ \end{theorem} \begin{proof} Let $\mathbb S \subseteq \powerset S$. By Union of Subsets is Subset: Subset of Power Set: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \implies \bigcup \mathbb S \subseteq T$ {{qed|lemma}} Now suppose that $\ds \bigcup \mathbb S \subseteq T$. Consider any $X \in \mathbb S$ and take any $x \in X$. From Set is Subset of Union: General Result we have that: :$\ds X \subseteq \bigcup \mathbb S$ Thus: :$\ds x \in \bigcup \mathbb S$ But: :$\ds \bigcup \mathbb S \subseteq T$ So it follows that: :$X \subseteq T$ So: :$\ds \bigcup \mathbb S \subseteq T \implies \paren {\forall X \in \mathbb S: X \subseteq T}$ {{qed|lemma}} Hence: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \iff \bigcup \mathbb S \subseteq T$ {{Qed}} \end{proof}
22990
\section{Union is Smallest Superset/Set of Sets} Tags: Set Union, Subsets, Subset, Union \begin{theorem} Let $T$ be a set. Let $\mathbb S$ be a set of sets. Then: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \iff \bigcup \mathbb S \subseteq T$ \end{theorem} \begin{proof} By Union of Subsets is Subset: Set of Sets: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \implies \bigcup \mathbb S \subseteq T$ {{qed|lemma}} For the converse implication, suppose that $\ds \bigcup \mathbb S \subseteq T$. Consider any $X \in \mathbb S$ and take any $x \in X$. From Set is Subset of Union: Set of Sets we have that $X \subseteq \bigcup \mathbb S$. Thus $\ds x \in \bigcup \mathbb S$. But $\ds \bigcup \mathbb S \subseteq T$. So it follows that $X \subseteq T$. So: :$\ds \bigcup \mathbb S \subseteq T \implies \paren {\forall X \in \mathbb S: X \subseteq T}$ {{qed|lemma}} Hence: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \iff \bigcup \mathbb S \subseteq T$ {{Qed}} \end{proof}
22991
\section{Union of Bijections with Disjoint Domains and Codomains is Bijection} Tags: Set Union, Mapping Theory, Bijections, Union of Bijections with Disjoint Domains and Codomains is Bijection \begin{theorem} Let $A$, $B$, $C$, and $D$ be sets or classes. Let $A \cap B = C \cap D = \O$. Let $f: A \to C$ and $g: B \to D$ be bijections. Then $f \cup g: A \cup B \to C \cup D$ is also a bijection. \end{theorem} \begin{proof} By the definition of bijection, $f$ and $g$ are many-to-one and one-to-many relations. By Union of Many-to-One Relations with Disjoint Domains is Many-to-One and Union of One-to-Many Relations with Disjoint Images is One-to-Many: :$f \cup g$ is many-to-one and one-to-many. Thus to show $f \cup g$ is a bijection requires us only to demonstrate that it is both left-total and right-total. We will show that $f \cup g$ is left-total. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$ then since $f$ is left-total there is a $y \in C$ such that $\tuple {x, y} \in f$. By the definition of union, $\tuple {x, y} \in f \cup g$. If $x \in B$ then since $g$ is left-total there is a $y \in D$ such that $\tuple {x, y} \in g$. Then by the definition of union, $\tuple {x, y} \in f \cup g$. As this holds for all $x$, $f \cup g$ is left-total. The proof that $f \cup g$ is right-total is similar. Thus it has been demonstrated that: :$f \cup g$ is many-to-one :$f \cup g$ is one-to-many :$f \cup g$ is left-total :$f \cup g$ is right-total and therefore, by definition, a bijection. {{qed}} Category:Bijections Category:Set Union Category:Union of Bijections with Disjoint Domains and Codomains is Bijection \end{proof}
22992
\section{Union of Bijections with Disjoint Domains and Codomains is Bijection/Corollary} Tags: Bijections, Mapping Theory, Union of Bijections with Disjoint Domains and Codomains is Bijection \begin{theorem} Let $A$, $B$, $C$, and $D$ be sets or classes. Let $A \cap B = C \cap D = \varnothing$. Let $f: A \to C$ and $g: D \to B$ be bijections. Then $f \cup g^{-1}: A \cup B \to C \cup D$ is also a bijection. \end{theorem} \begin{proof} By definition of bijection, $g^{-1}: B \to D$ is a bijection. Hence the result by Union of Bijections with Disjoint Domains and Codomains is Bijection. {{qed}} Category:Union of Bijections with Disjoint Domains and Codomains is Bijection \end{proof}
22993
\section{Union of Blocks is Set of Points} Tags: Design Theory, Union of Blocks is Set of Points \begin{theorem} Let $\struct {X, \BB}$ be a pairwise balanced design. That is, let $\struct {X, \BB}$ be a design, with $\size X \ge 2$, and the number of occurrences of each pair of distinct points in $\BB$ be $\lambda$ for some $\lambda > 0$ constant. Then the set union of all the subset elements in $\BB$ is precisely $X$. \end{theorem} \begin{proof} Let $X = \set {x_1, x_2, \ldots, x_v}$. Let $\BB = \multiset {y_1, y_2,\ldots, y_b}$, where the notation denotes a multiset. Let $Y = \ds \bigcup_{i \mathop = 1}^b y_i$. We shall show that $Y \subseteq X$ and $X \subseteq Y$. \end{proof}
22994
\section{Union of Boundaries} Tags: Boundaries, Set Boundaries \begin{theorem} Let $T = \struct {S, \tau}$ be a topological space. Let $A, B$ be subsets of $S$. Then: :$\partial A \cup \partial B = \map \partial {A \cup B} \cup \map \partial {A \cap B} \cup \paren {\partial A \cap \partial B}$ where $\partial A$ denotes the boundary of $A$. \end{theorem} \begin{proof} First we will prove that :$\partial A \subseteq \map \partial {A \cup B} \cup \map \partial {A \cap B} \cup \paren {\partial A \cap \partial B}$ Let $x \in \partial A$. {{AimForCont}} that :$x \notin \map \partial {A \cup B} \cup \map \partial {A \cap B} \cup \paren {\partial A \cap \partial B}$ Then by definition of union: :$x \notin \map \partial {A \cup B} \land x \notin \map \partial {A \cap B} \land x \notin \paren {\partial A \cap \partial B}$ By Characterization of Boundary by Open Sets: :$\exists Q \in \tau: x \in Q \land \paren {\paren {A \cup B} \cap Q = \O \lor \relcomp S {A \cup B} \cap Q = \O}$ By Intersection Distributes over Union. Complement of Union: :$\paren {A \cap Q} \cup \paren {B \cap Q} = \O \lor \relcomp S A \cap \relcomp S B \cap Q = \O$ Because $x \notin \paren {\partial A \cap \partial B}$ therefore by definition of intersection: :$x \notin \partial B$ By Characterization of Boundary by Open Sets: :$\exists U \in \tau: x \in U \land \paren {B \cap U = \O \lor \relcomp S B \cap U = \O}$ As $x \in \partial A$ by Characterization of Boundary by Open Sets: :$A \cap Q \ne \O$ Then by Union is Empty iff Sets are Empty: :$\paren {A \cap Q} \cup \paren {B \cap Q} \ne \O$ Hence: :$\relcomp S A \cap \relcomp S B \cap Q = \O$ We will show that: :$B \cap U = \O \implies \relcomp S A \cap Q \cap U = \O$ Assume: :$B \cap U = \O$ Then: :$U \subseteq \relcomp S B$ By Intersection with Empty Set: :$\relcomp S A \cap Q \cap \relcomp S B \cap U = \O \cap U = \O$ Thus by Intersection with Subset is Subset: :$\relcomp S A \cap Q \cap U = \O$ By definition of intersection: :$x \in Q \cap U$ By definition of topological space: :$Q \cap U$ is open. Then by Characterization of Boundary by Open Sets: :$\relcomp S A \cap Q \cap U \ne \O$ Hence: :$B \cap U \ne \O$ Then: :$\relcomp S B \cap U = \O$ Therefore: :$U \subseteq B$ Because $x \notin \map \partial {A \cap B}$ by Characterization of Boundary by Open Sets: :$\exists V \in \tau: x \in V \land \paren {A \cap B \cap V = \O \lor \relcomp S {A \cap B} \cap V = \O}$ By Complement of Intersection: :$A \cap B \cap V = \O \lor \paren {\relcomp S A \cup \relcomp S B} \cap V = \O$ By Intersection Distributes over Union: :$A \cap V \cap B = \O \lor \paren {\relcomp S A \cap V} \cup \paren {\relcomp S B \cap V} = \O$ Because $x \in \partial A$ therefore by Characterization of Boundary by Open Sets: :$\relcomp S A \cap V \ne \O$ Then by Union is Empty iff Sets are Empty: :$\paren {\relcomp S A \cap V} \cup \paren {\relcomp S B \cap V} \ne \O$ Hence: :$A \cap V \cap B = \O$ By Intersection with Empty Set: :$A \cap V \cap B \cap U = \O \cap U = \O$ By Intersection with Subset is Subset: :$A \cap V \cap U = \O$ By definition of intersection: :$x \in V \cap U$ By definition of topological space: :$V \cap U$ is open. Then by Characterization of Boundary by Open Sets: :$A \cap Q \cap V \ne \O$ This contradicts with $A \cap V \cap U = \O$ Thus the inclusion is proved. {{qed|lemma}} Analogically: :$\partial B \subseteq \map \partial {A \cup B} \cup \map \partial {A \cap B} \cup \paren {\partial A \cap \partial B}$ By Union of Subsets is Subset: :$\partial A \cup \partial B \subseteq \map \partial {A \cup B} \cup \map \partial {A \cap B} \cup \paren {\partial A \cap \partial B}$ By Boundary of Union is Subset of Union of Boundaries: :$\map \partial {A \cup B} \subseteq \partial A \cup \partial B$ By Boundary of Intersection is Subset of Union of Boundaries: :$\map \partial {A \cap B} \subseteq \partial A \cup \partial B$ By Intersection is Subset of Union: :$\partial A \cap \partial B \subseteq \partial A \cup \partial B$ Hence by Union of Subsets is Subset: :$\map \partial {A \cup B} \cup \map \partial {A \cap B} \cup \paren {\partial A \cap \partial B} \subseteq \partial A \cup \partial B$ Thus by definition of set equality the result follows: :$\partial A \cup \partial B = \map \partial {A \cup B} \cup \map \partial {A \cap B} \cup \paren {\partial A \cap \partial B}$ {{qed}} \end{proof}
22995
\section{Union of Bounded Above Real Subsets is Bounded Above} Tags: Set Union, Boundedness \begin{theorem} Let $A$ and $B$ be sets of real numbers. Let $A$ and $B$ be bounded above. Then $A \cup B$ is also bounded above. \end{theorem} \begin{proof} Let $A$ and $B$ both be bounded above. Then by definition $A$ and $B$ both have an upper bound $U_A$ and $U_B$ respectively. Suppose $U_A \le U_B$. Then: :$\forall a \in A: a \le U_B$ and also, by definition: :$\forall b \in B: b \le U_B$ and so $U_B$ is an upper bound for $A$. Otherwise, suppose $U_A > U_B$. Then: :$\forall b \in B: b \le U_A$ and also, by definition: :$\forall a \in A: a \le U_A$ Let $x \in A \cup B$. Then from the above, either $x \le U_A$ or $x \le U_B$. So either $U_A$ or $U_B$ is an upper bound for $A \cup B$. Hence, by definition, $A \cup B$ is bounded above by either $U_A$ or $U_B$. {{qed}} \end{proof}
22996
\section{Union of Bounded Below Real Subsets is Bounded Below} Tags: Set Union, Boundedness \begin{theorem} Let $A$ and $B$ be sets of real numbers. Let $A$ and $B$ be bounded below. Then $A \cup B$ is also bounded below. \end{theorem} \begin{proof} Let $A$ and $B$ both be bounded below. Then by definition $A$ and $B$ both have a lower bound $L_A$ and $L_B$ respectively. Suppose $L_A \ge L_B$. Then: :$\forall a \in A: a \ge L_B$ and also, by definition: :$\forall b \in B: b \ge L_B$ and so $L_B$ is a lower bound for $A$. Otherwise, suppose $L_A < L_B$. Then: :$\forall b \in B: b \ge L_A$ and also, by definition: :$\forall a \in A: a \ge L_A$ Let $x \in A \cup B$. Then from the above, either $x \ge L_A$ or $x \ge L_B$. So either $L_A$ or $L_B$ is a lower bound for $A \cup B$. Hence, by definition, $A \cup B$ is bounded below by either $L_A$ or $L_B$. {{qed}} \end{proof}
22997
\section{Union of Chain of Proper Ideals is Proper Ideal} Tags: Ring Theory, Ideal Theory \begin{theorem} Let $R$ be a ring with unity. Let $\struct {P, \subseteq}$ be the ordered set consisting of all ideals of $R$, ordered by inclusion. Let $\sequence {I_\alpha}_{\alpha \mathop \in A}$ be a non-empty chain of proper ideals in $P$. Let $\ds I = \bigcup_{\alpha \mathop \in A} I_\alpha$ be their union. Then $I$ is a proper ideal of $R$. \end{theorem} \begin{proof} By Union of Chain of Ideals is Ideal, $I$ is an ideal. It remains to show that $I \subsetneq R$. The ideals $I_\alpha$ are all proper, so none of them contain the unity. Thus $I$ does not contain $1$, which means $I \subsetneq R$. {{qed}} \end{proof}
22998
\section{Union of Class is Subset implies Class is Transitive} Tags: Class Union, Class is Transitive iff Union is Subset, Transitive Classes \begin{theorem} Let $A$ be a class. Let $\ds \bigcup A$ denote the union of $A$. Let: :$\ds \bigcup A \subseteq A$ Then $A$ is transitive. \end{theorem} \begin{proof} Let $\ds \bigcup A \subseteq A$. Let $x \in \ds \bigcup A$. Then by definition: :$\exists y \in A: x \in y$ By definition of subclass: :$x \in A$ Thus we have that: :$x \in y \land y \in A \implies x \in A$ It follows by definition that $A$ is a transitive class. {{qed}} \end{proof}
22999
\section{Union of Class is Transitive if Every Element is Transitive} Tags: Class Union, Transitive Classes \begin{theorem} Let $A$ be a class. Let $\bigcup A$ denote the union of $A$. Let $A$ be such that every element of $A$ is transitive. Then $\bigcup A$ is also transitive. \end{theorem} \begin{proof} Let $A$ be such that every $y \in A$ is transitive. Let $x \in \bigcup A$. Then $x$ is an element of some element $y$ of $A$. By hypothesis, $y$ is transitive. Hence, by definition of transitive, $x \subseteq y$. Because $y \in A$, by definition of union of class, $y \subseteq \bigcup A$. So $x \subseteq \bigcup A$. As this is true for all $x \in A$, it follows by definition that $\bigcup A$ is transitive. {{qed}} \end{proof}
23000
\section{Union of Closed Intervals of Positive Reals is Set of Positive Reals} Tags: Real Intervals \begin{theorem} Let $\R_{>0}$ be the set of strictly positive real numbers. For all $x \in \R_{> 0}$, let $B_x$ be the closed real interval $\closedint 0 x$. Then: :$\ds \bigcup_{x \mathop \in \R_{>0} } B_x = \R_{\ge 0}$ \end{theorem} \begin{proof} Let $\ds B = \bigcap_{x \mathop \in \R_{>0} } B_x$. Let $y \in B$. Then by definition of union of family: :$\exists x \in \R_{>0}: y \in B_x$ As $B_x \subseteq \R_{>0}$ it follows by definition of subset that: :$y = 0$ or :$y \in \R_{>0}$ In either case, $y \in \R_{\ge 0}$ So: :$\ds \bigcap_{x \mathop \in \R_{>0} } B_x \subseteq \R_{\ge 0}$ {{qed|lemma}} Let $y \in \R_{\ge 0}$. If $y = 0$ then $y \in \R_{\ge 0}$ by definition. Otherwise, by the Archimedean Property: :$\exists z \in \N: z > y$ and so: :$y \in B_z$ That is by definition of union of family: :$\ds y \in \bigcap_{x \mathop \in \R_{\ge 0} } B_x$ So by definition of subset: :$\ds \R_{\ge 0} \subseteq \bigcap_{x \mathop \in \R_{>0} } B_x$ {{qed|lemma}} By definition of set equality: :$\ds \bigcup_{x \mathop \in \R_{>0} } B_x = \R_{\ge 0}$ {{qed}} \end{proof}
23001
\section{Union of Closure with Closure of Complement is Whole Space} Tags: Set Closures, Relative Complements, Set Union, Union, Relative Complement \begin{theorem} Let $T = \left({S, \tau}\right)$ be a topological space. Let $H \subseteq S$ be a subset of $S$. Let $H^-$ denote the closure of $H$ in $T$. Let $S \setminus H$ denote the complement of $H$ relative to $S$. Then: :$H^- \cup \left({S \setminus H}\right)^- = S$ \end{theorem} \begin{proof} We have that: :$H^- \cup \left({S \setminus H}\right)^- \subseteq S$ by definition of $S$. From Union with Relative Complement: :$H \cup \left({S \setminus H}\right) = S$ From Set is Subset of its Topological Closure: {{begin-eqn}} {{eqn | l = H | o = \subseteq | r = H^- }} {{eqn | l = \left({S \setminus H}\right) | o = \subseteq | r = \left({S \setminus H}\right)^- }} {{end-eqn}} From Set Union Preserves Subsets: :$H \subseteq H^-, \left({S \setminus H}\right) \subseteq \left({S \setminus H}\right)^- \implies H \cup \left({S \setminus H}\right) \subseteq H^- \cup \left({S \setminus H}\right)^-$ which means: :$S \subseteq H^- \cup \left({S \setminus H}\right)^-$ The result follows by definition of equality of sets. {{qed}} Category:Set Closures Category:Set Union Category:Relative Complement \end{proof}
23002
\section{Union of Closures of Singleton Rationals is Rational Space} Tags: Singletons, Rational Number Space \begin{theorem} Let $\struct {\Q, \tau_d}$ be the rational number space under the usual (Euclidean) topology $\tau_d$. Let $B_\alpha$ denote the singleton containing the rational number $\alpha$. Then the union of the closures in the set of real numbers $\R$ of all $B_\alpha$ is $\Q$: :$\ds \bigcup_{\alpha \mathop \in \Q} \map \cl {B_\alpha} = \Q$ \end{theorem} \begin{proof} Let $\alpha \in \Q$. By Real Number is Closed in Real Number Line, $B_\alpha = \set \alpha$ is closed in $\R$. From Closed Set Equals its Closure, it follows that: :$B_\alpha = \map \cl {B_\alpha}$ Hence the result. {{qed}} \end{proof}
23003
\section{Union of Conjugacy Classes is Normal} Tags: Normal Subgroups \begin{theorem} Let $G$ be a group. Let $H \le G$. Then $H$ is normal in $G$ {{iff}} $H$ is a union of conjugacy classes of $G$. \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = H | o = \lhd | r = G | c = where $\lhd$ denotes that $H$ is normal in $G$ }} {{eqn | ll= \leadstoandfrom | q = \forall g \in G | l = g H g^{-1} | o = \subseteq | r = H | c = {{Defof|Normal Subgroup}} }} {{eqn | ll= \leadstoandfrom | q = \forall x \in H: \forall g \in G | l = g x g^{-1} | o = \in | r = H | c = }} {{eqn | ll= \leadstoandfrom | q = \forall x \in H | l = \conjclass x | o = \subseteq | r = H | c = where $\conjclass x$ is the conjugacy class of $x \in G$ }} {{eqn | ll= \leadstoandfrom | l = H | r = \bigcup_{x \mathop \in H} \conjclass x | c = }} {{end-eqn}} Hence the result. {{qed}} \end{proof}
23004
\section{Union of Connected Sets with Common Point is Connected} Tags: Connected Spaces, Union of Connected Sets with Common Point is Connected \begin{theorem} Let $T = \struct {S, \tau}$ be a topological space. Let $\family {B_\alpha}_{\alpha \mathop \in A}$ be a family of connected sets of $T$. Let $\exists x \in \ds \bigcap \family {B_\alpha}_{\alpha \mathop \in A}$. Then :$\ds \bigcup \family {B_\alpha}_{\alpha \mathop \in A}$ is a connected set of $T$. \end{theorem} \begin{proof} Let $U, V$ be disjoint open sets of the subspace of $\displaystyle \bigcup_{\alpha \in A} B_\alpha$ such that: :$U \cup V = \displaystyle \bigcup_{\alpha \in A} B_\alpha$ {{WLOG}} assume $x \in U$. From Set is Subset of Union, :$\displaystyle \forall \alpha \in A : B_\alpha \subseteq \bigcup_{\alpha \in A} B_\alpha = U \cup V$ From Leigh.Samphier/Sandbox/Connected Subset of Union of Disjoint Open Sets, :$\forall \alpha \in A : B_\alpha \subseteq U$ From Union is Smallest Superset, :$\displaystyle \bigcup_{\alpha \in A} B_\alpha = U$ Hence $\displaystyle \bigcup_{\alpha \in A} B_\alpha$ admits no separation. And so $\displaystyle \bigcup_{\alpha \in A} B_\alpha$ is a connected set of $T$ by definition. {{qed}} \end{proof}
23005
\section{Union of Connected Sets with Non-Empty Intersections is Connected} Tags: Connected Spaces, Space with Connected Intersection has Connected Union, Union of Connected Sets with Non-Empty Intersections is Connected, Topology, Connectedness \begin{theorem} Let $T = \struct {S, \tau}$ be a topological space. Let $I$ be an indexing set. Let $\AA = \family {A_\alpha}_{\alpha \mathop \in I}$ be an indexed family of subsets of $S$, all connected in $T$. Let $\AA$ be such that no two of its elements are disjoint: :$\forall B, C \in \AA: B \cap C \ne \O$ Then $\ds \bigcup \AA$ is itself connected. \end{theorem} \begin{proof} Let $A := \ds \bigcup \AA$. Let $D = \set {0, 1}$, with the discrete topology. Let $f: A \to D$ be continuous. To show that $A$ is connected, we need to show that $f$ is not a surjection. Since each $C \in \AA$ is connected and the restriction $f \restriction_C$ is continuous: :$\map f C = \set {\map \epsilon C}$ where $\map \epsilon C = 0$ or $1$. But, for all $B, C \in \AA$: :$B \cap C \ne \O$ Hence $\map \epsilon B = \map \epsilon C$. Thus $f$ is constant on $A$ as required. {{qed}} \end{proof}
23006
\section{Union of Countable Sets of Sets} Tags: Set Union, Union of Countable Sets of Sets, Countable Sets, Union \begin{theorem} Let $\AA$ and $\BB$ be countable sets of sets. Then: :$\set {A \cup B: A \in \AA, B \in \BB}$ is also countable. \end{theorem} \begin{proof} Since $\mathcal A$ is countable, its contents can be arranged in a sequence: :$\mathcal A = \left\{{A_1, A_2, \ldots}\right\}$ Let $B \in \mathcal B$. Consider the sequence of sets: :$\left \langle A_1 \cup B, A_2 \cup B, \ldots \right \rangle$ We may leave out any possible repetitions, and obtain a countable set: :$\left({A \cup B: A \in \mathcal A}\right\}$ for every $B \in \mathcal B$. Thus as $B$ varies over all the elements of $\mathcal B$, we obtain the countable family: :$\left\{{A \cup B: A \in \mathcal A}\right\}_{\left({B \in \mathcal B}\right)}$ From Union of Countable Sets, their union is countable. {{qed}} {{AoC|Union of Countable Sets}} \end{proof}
23007
\section{Union of Derivatives is Subset of Derivative of Union} Tags: Set Derivatives, T1 Spaces \begin{theorem} Let $T = \struct {S, \tau}$ be a topological space. Let: :$\FF \subseteq \powerset S$ be a set of subsets of $S$ where $\powerset S$ denotes the power set of $S$. Then: :$\ds \bigcup_{A \mathop \in \FF} A' \subseteq \paren {\bigcup_{A \mathop \in \FF} A}'$ where $A'$ denotes the derivative of $A$. \end{theorem} \begin{proof} Let $\ds x \in \bigcup_{A \mathop \in \FF} A'$. Then by definition of union there exists $A \in \FF$ such that: :$(1): \quad x \in A'$ By Set is Subset of Union: :$\ds A \subseteq \bigcup_{A \mathop \in \FF} A$ Then by Derivative of Subset is Subset of Derivative: :$\ds A' \subseteq \paren {\bigcup_{A \mathop \in \FF} A}'$ Hence by $(1)$ the result: :$\ds x \in \paren {\bigcup_{A \mathop \in \FF} A}'$ follows by definition of subset. {{qed}} \end{proof}
23008
\section{Union of Disjoint Singletons is Doubleton} Tags: Doubletons, Set Union, Singletons, Union \begin{theorem} Let $\set a$ and $\set b$ be singletons such that $a \ne b$. Then: :$\set a \cup \set b = \set {a, b}$ \end{theorem} \begin{proof} Let $x \in \set a \cup \set b$. Then by the Axiom of Unions: :$x = a \lor x = b$ It follows from the Axiom of Pairing that: :$x \in \set {a, b}$ Thus by definition of subset: :$\set a \cup \set b \subseteq \set {a, b}$ {{qed|lemma}} Let $x \in \set {a, b}$. Then by the Axiom of Pairing: :$x = a \lor x = b$ So by the Axiom of Unions: :$x \in \set a \cup \set b$ Thus by definition of subset: :$\set {a, b} \subseteq \set a \cup \set b$ {{qed|lemma}} The result follows by definition of set equality. {{qed}} \end{proof}
23009
\section{Union of Elements of Power Set} Tags: Set Union, Power Set, Union \begin{theorem} Let $S$ be a set. Then: :$\ds S = \bigcup_{X \mathop \in \powerset S} X$ where $\powerset S$ denotes the power set of $S$. \end{theorem} \begin{proof} By Subset of Union: :$\ds \forall X \in \powerset S: X \subseteq \bigcup_{X \mathop \in \powerset S} X$ From Set is Subset of Itself, $S \subseteq S$ and so $S \in \powerset S$. So: :$\ds S \subseteq \bigcup_{X \mathop \in \powerset S} X$ From Union is Smallest Superset: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \iff \bigcup \mathbb S \subseteq T$ where $\mathbb S \subseteq \powerset S$. But as $\powerset S \subseteq \powerset S$ from Set is Subset of Itself: :$\ds \paren {\forall X \in \powerset S: X \subseteq S} \iff \bigcup \powerset S \subseteq S$ The {{LHS}} is no more than the definition of the power set, making it a tautological statement, and so: :$\ds \bigcup \powerset S \subseteq S$ The result follows by definition of set equality. {{qed}} \end{proof}
23010
\section{Union of Empty Set} Tags: Set Union, Empty Set, Union \begin{theorem} Consider the set of sets $\mathbb S$ such that $\mathbb S$ is the empty set $\O$. Then the union of $\mathbb S$ is $\O$: :$\mathbb S = \O \implies \ds \bigcup \mathbb S = \O$ \end{theorem} \begin{proof} Let $\mathbb S = \O$. Then from the definition: :$\ds \bigcup \mathbb S = \set {x: \exists X \in \mathbb S: x \in X}$ from which it follows directly: :$\ds \bigcup \mathbb S = \O$ as there are no sets in $\mathbb S$. {{qed}} \end{proof}
23011
\section{Union of Equivalence Classes is Whole Set} Tags: Quotient Sets, Equivalence Relations, Fundamental Theorem on Equivalence Relations \begin{theorem} Let $\RR \subseteq S \times S$ be an equivalence on a set $S$. Then the set of $\RR$-classes constitutes the whole of $S$. \end{theorem} \begin{proof} We have that: {{begin-eqn}} {{eqn | q = \forall x \in S | l = x | o = \in | r = \eqclass x \RR | c = {{Defof|Equivalence Class}} }} {{eqn | n = 1 | ll= \leadsto | l = x | o = \in | r = \set {y \in S: x \mathrel \RR y} | c = {{Defof|Equivalence Class}} }} {{end-eqn}} and: {{begin-eqn}} {{eqn | l = \eqclass x \RR | r = \set {y: x \mathrel \RR y} | c = {{Defof|Equivalence Class}} }} {{eqn | n = 2 | o = \subseteq | r = S | c = {{Defof|Subset}} }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = S | r = \bigcup_{x \mathop \in S} \set x | c = {{Defof|Union of Set of Sets}} }} {{eqn | o = \subseteq | r = \bigcup_{x \mathop \in S} \eqclass x \RR | c = from $(1)$ }} {{eqn | o = \subseteq | r = \bigcup_{x \mathop \in S} S | c = from $(2)$ }} {{eqn | r = S | c = }} {{end-eqn}} {{qed}} \end{proof}
23012
\section{Union of Event with Complement is Certainty} Tags: Set Union, Complementary Events \begin{theorem} Let the probability space of an experiment $\EE$ be $\struct {\Omega, \Sigma, \Pr}$. Let $A \in \Sigma$ be an events of $\EE$, so that $A \subseteq \Omega$. Then: :$A \cup \overline A = \Omega$ where $\overline A$ is the complementary event to $A$. That is, $A \cup \overline A$ is a certainty. \end{theorem} \begin{proof} By definition: :$A \subseteq \Omega$ and: :$\overline A = \relcomp \Omega A$ From Union with Relative Complement: :$A \cup \overline A = \Omega$ We then have from Kolmogorov axiom $(2)$ that: :$\map \Pr \Omega = 1$ The result follows by definition of certainty. {{qed}} {{LEM|Union with Relative Complement}} Category:Complementary Events Category:Set Union \end{proof}
23013
\section{Union of Filtered Sets is Filtered} Tags: Preorder Theory \begin{theorem} Let $\struct {S, \preceq}$ be a preordered set. Let $A$ be a set of subsets of $S$ such that :$\forall X \in A: X$ is filtered and :$\forall X, Y \in A: \exists Z \in A: X \cup Y \subseteq Z$ Then: :$\bigcup A$ is also filtered. \end{theorem} \begin{proof} Let $x, y \in \bigcup A$. By definition of union: :$\exists X \in A: x \in X$ and :$\exists Y \in A: y \in Y$ By assumption: :$\exists Z \in A: X \cup Y \subseteq Z$ By definition of union: :$x, y \in X \cup Y$ By definition of subset: :$x, y \in Z$ By assumption: :$Z$ is filtered. By definition of filtered: :$\exists z \in Z: z \preceq x \land z \preceq y$ Thus by definition of union: :$z \in \bigcup A$ Hence :$\bigcup A$ is filtered. {{qed}} \end{proof}
23014
\section{Union of Finite Sets is Finite} Tags: Union of Finite Sets is Finite, Set Union, Union, Finite Sets, Cardinals \begin{theorem} Let $S$ and $T$ be finite sets. Then $S \cup T$ is a finite set. \end{theorem} \begin{proof} Note that $\left|{ S \cup T }\right| \le \left|{ S \times T }\right|$ by Cardinal of Union Less than Cardinal of Cartesian Product. The theorem follows from the fact that $S \times T$ is finite by Product of Finite Sets is Finite. {{qed}} \end{proof}
23015
\section{Union of Functions Theorem} Tags: Mapping Theory, Named Theorems \begin{theorem} Let $X$ be a set. Let $\sequence {X_i: i \in \N}$ be an exhausting sequence of sets on $X$. For each $i \in \N$, let $g_i: X_i \to Y$ be a mapping such that: :$g_{i + 1} \restriction X_i = g_i$ where $g_{i + 1} \restriction X_i$ denotes the restriction of $g_{i + 1}$ to $g_i$. Then: :$\ds \bigcup \set {g_i: i \in \N}$ is a mapping from $X$ to $Y$. \end{theorem} \begin{proof} By definition, $\ds g = \bigcup \set {g_i: i \in \N}$ is a relation whose domain is $X$. {{AimForCont}} $g$ is not a mapping. Then for some $x \in X$ and $i, h \in \N$: :$(1): \quad x \in X_i, \map {g_i} x \ne \map {g_{i + h} } x$ Let $k \in \N$ be the smallest such that: :$\map {g_i} x \ne g_{i + k}$ where $x$ and $i$ are the same as in $(1)$. Then: :$\map {g_{i + k - 1} } x = g_i$ But then: :$g_{i + k} \restriction X_{i + k - 1} = g_{i + k - 1}$ From this contradiction it follows that our supposition that $g$ is not a mapping must be false. That is: :$\ds \bigcup \set {g_i: i \in \N}$ is a mapping from $X$ to $Y$. {{qed}} \end{proof}
23016
\section{Union of Functions Theorem/Corollary} Tags: Inverse Mappings \begin{theorem} Let $X$ be a set. Let $\sequence {X_i: i \in \N}$ be an exhausting sequence of sets on $X$. For each $i \in \N$, let $g_i: X_i \to Y$ be a mapping such that: :$g_{i + 1} \restriction X_i = g_i$ where $g_{i + 1} \restriction X_i$ denotes the restriction of $g_{i + 1}$ to $g_i$. For each $i \in \N$, let $g_i : X_i \to Y$ be invertible. Then $\ds \bigcup \set {g_i: i \in \N}$ is invertible and: :$\ds \paren {\bigcup \set {g_i: i \in \N} }^{-1} = \bigcup \set {g_i^{-1}: i \in \N}$ \end{theorem} \begin{proof} {{ProofWanted}} Category:Inverse Mappings \end{proof}
23017
\section{Union of Horizontal Sections is Horizontal Section of Union} Tags: Set Union, Horizontal Section of Sets \begin{theorem} Let $X$, $Y$ and $A$ be sets. Let $\set {E_\alpha : \alpha \in A}$ be a set of subsets of $X \times Y$. Let $y \in Y$. Then: :$\ds \paren {\bigcup_{\alpha \in A} E_\alpha}^y = \bigcup_{\alpha \in A} \paren {E_\alpha}^y$ where: :$\ds \paren {\bigcup_{\alpha \in A} E_\alpha}^y$ is the $y$-horizontal section of $\ds \bigcup_{\alpha \in A} E_\alpha$ :$\paren {E_\alpha}^y$ is the $y$-horizontal section of $E_\alpha$. \end{theorem} \begin{proof} Note that: :$\ds x \in \bigcup_{\alpha \in A} \paren {E_\alpha}^y$ {{iff}}: :$x \in \paren {E_\alpha}^y$ for some $\alpha \in A$. From the definition of the $y$-horizontal section, this is equivalent to: :$\tuple {x, y} \in E_\alpha$ for some $\alpha \in A$. This in turn is equivalent to: :$\ds \tuple {x, y} \in \bigcup_{\alpha \in A} E_\alpha$ Again applying the definition of the $y$-horizontal section, this is the case {{iff}}: :$\ds x \in \paren {\bigcup_{\alpha \in A} E_\alpha}^y$ So: :$\ds x \in \bigcup_{\alpha \in A} \paren {E_\alpha}^y$ {{iff}} $\ds x \in \paren {\bigcup_{\alpha \in A} E_\alpha}^y$ giving: :$\ds \paren {\bigcup_{\alpha \in A} E_\alpha}^y = \bigcup_{\alpha \in A} \paren {E_\alpha}^y$ {{qed}} Category:Set Union Category:Horizontal Section of Sets \end{proof}
23018
\section{Union of Indexed Family of Sets Equal to Union of Disjoint Sets} Tags: Union of Indexed Family of Sets Equal to Union of Disjoint Sets, Indexed Families \begin{theorem} Let $\family {E_n}_{n \mathop \in \N}$ be a countable indexed family of sets where at least two $E_n$ are distinct. Then there exists a countable indexed family of disjoint sets $\family {F_n}_{n \mathop \in \N}$ defined by: :$\ds F_k = E_k \setminus \paren {\bigcup_{j \mathop = 0}^{k \mathop - 1} E_j}$ satisfying: :$\ds \bigsqcup_{n \mathop \in \N} F_n = \bigcup_{n \mathop \in \N} E_n$ where $\bigsqcup$ denotes disjoint union. \end{theorem} \begin{proof} Denote: {{begin-eqn}} {{eqn | l = E | r = \bigcup_{k \mathop \in \N} E_k }} {{eqn | l = F | r = \bigcup_{k \mathop \in \N} F_k }} {{end-eqn}} where: :$\ds F_k = E_k \setminus \paren {\bigcup_{j \mathop = 0}^{k \mathop - 1} E_j}$ We first show that $E = F$. That $x \in E \implies x \in F$ follows from the construction of $F$ from subsets of $E$. Thus $E \subseteq F$. Then: {{begin-eqn}} {{eqn | l = x | o = \in | r = \bigcup_{k \mathop \in \N} F_k }} {{eqn | ll= \leadsto | q = \exists k \in \N | l = x | o = \in | r = F_k }} {{eqn | ll= \leadsto | q = \exists k \in \N | l = x | o = \in | r = E_k }} {{eqn | lo= \land | l = x | o = \notin | r = \paren {E_0 \cup E_1 \cup E_2 \cup \cdots \cup E_{k - 1} } }} {{eqn | ll= \leadsto | q = \exists k \in \N | l = x | o = \in | r = E_k | c = Rule of Simplification }} {{end-eqn}} so $F \subseteq E$. Thus $E = F$ by definition of set equality. To show that the sets in $F$ are (pairwise) disjoint, consider an arbitrary $x \in F$. Then $x \in F_k$ for some $F_k$. By the Well-Ordering Principle, there exists a smallest such $k$. Then: :$\forall j < k: x \notin F_j$ Choose any distinct $\ell, m \in \N$. We have: If $m > \ell$, then: {{begin-eqn}} {{eqn | l = x \in F_\ell | o = \implies | r = x \in E_\ell }} {{eqn | l = x \in F_m | o = \implies | r = x \notin E_m }} {{end-eqn}} If $m < \ell$, then: {{begin-eqn}} {{eqn | l = x \in F_m | o = \implies | r = x \in E_m }} {{eqn | l = x \in F_\ell | o = \implies | r = x \notin E_\ell }} {{end-eqn}} So the sets $F_\ell, F_m$ are disjoint. Thus $F$ is the disjoint union of sets equal to $E$: :$\ds \bigcup_{k \mathop \in \N} E_k = \bigsqcup_{k \mathop \in \N} F_k$ {{qed}} \end{proof}
23019
\section{Union of Indexed Family of Sets Equal to Union of Disjoint Sets/General Result} Tags: Union of Indexed Family of Sets Equal to Union of Disjoint Sets \begin{theorem} Let $I$ be a set which can be well-ordered by a well-ordering $\preccurlyeq$. Let $\family {E_\alpha}_{\alpha \mathop \in I}$ be a countable indexed family of sets indexed by $I$ where at least two $E_\alpha$ are distinct. Then there exists a countable indexed family of disjoint sets $\family {F_\alpha}_{\alpha \mathop \in I}$ defined by: :$\ds F_\beta = E_\beta \setminus \paren {\bigcup_{\alpha \mathop \prec \beta} E_\alpha}$ satisfying: :$\ds \bigsqcup_{\alpha \mathop \in I} F_n = \bigcup_{\alpha \mathop \in I} E_n$ where: :$\bigsqcup$ denotes disjoint union. :$\alpha \prec \beta$ denotes that $\alpha \preccurlyeq \beta$ and $\alpha \ne \beta$. \end{theorem} \begin{proof} Denote: {{begin-eqn}} {{eqn | l = E | r = \bigcup_{\beta \mathop \in I} E_\beta }} {{eqn | l = F | r = \bigcup_{\beta \mathop \in I} F_\beta }} {{end-eqn}} where: :$\ds F_\beta = E_\beta \setminus \paren {\bigcup_{\alpha \mathop \prec \beta} E_\alpha}$ We first show that $E = F$. That $x \in E \implies x \in F$ follows from the construction of $F$ from subsets of $E$. Thus $E \subseteq F$. Then: {{begin-eqn}} {{eqn | l = x | o = \in | r = \bigcup_{\beta \mathop \in I} F_\beta }} {{eqn | ll= \leadsto | q = \exists \beta \in I | l = x | o = \in | r = F_\beta }} {{eqn | ll= \leadsto | q = \exists \beta \in I | l = x | o = \in | r = E_\beta }} {{eqn | lo= \land | l = x | o = \notin | r = \paren {\bigcup_{\gamma \mathop \prec \beta} E_\gamma} }} {{eqn | ll= \leadsto | q = \exists \beta \in I | l = x | o = \in | r = E_\beta | c = Rule of Simplification }} {{end-eqn}} so $F \subseteq E$. Thus $E = F$ by definition of set equality. To show that the sets in $F$ are (pairwise) disjoint, consider an arbitrary $x \in F$. Then $x \in F_\beta$ for some $F_\beta$. By the Well-Ordering Principle, there is a smallest such $\beta$ with respect to $\preccurlyeq$. Then: :$\forall \gamma \prec \beta: x \notin F_\gamma$ Choose any distinct $\eta, \zeta \in I$. We have: If $\eta \prec \zeta$, then: {{begin-eqn}} {{eqn | l = x \in F_\eta | o = \implies | r = x \in E_\eta }} {{eqn | l = x \in F_\zeta | o = \implies | r = x \notin E_\zeta }} {{end-eqn}} If $\zeta < \eta$, then: {{begin-eqn}} {{eqn | l = x \in F_\zeta | o = \implies | r = x \in E_\zeta }} {{eqn | l = x \in F_\eta | o = \implies | r = x \notin E_\eta }} {{end-eqn}} So the sets $F_\eta, F_\zeta$ are disjoint. Thus $F$ is the disjoint union of sets equal to $E$: :$\ds \bigcup_{\alpha \mathop \in I} E_\alpha = \bigsqcup_{\alpha \mathop \in I} F_\alpha$ {{qed}} \end{proof}
23020
\section{Union of Initial Segments is Initial Segment or All of Woset} Tags: Order Theory, Union of Initial Segments is Initial Segment or All of Woset \begin{theorem} Let $\struct {X, \preccurlyeq}$ be a well-ordered non-empty set. Let $A \subseteq X$. Let: :$\ds J = \bigcup_{x \mathop \in A} S_x$ be a union of initial segments defined by the elements of $A$. Then either: :$J = X$ or: :$J$ is an initial segment of $X$. \end{theorem} \begin{proof} Suppose the hypotheses of the theorem hold. If $J = X$ then the theorem is satisfied. Assume $J \ne X$. Then $X \setminus J$ is non-empty. By Subset of Well-Ordered Set is Well-Ordered, $X \setminus J$ is itself well-ordered. Thus $X \setminus J$ has a smallest element; call it $b$. {{AimForCont}} there exists a $y \in J$ with $b \preccurlyeq y$. Then there exists some $x_0 \in A$ with $y$ in the initial segment $S_{x_0}$. Thus $b \in S_{x_0}$ and so $b \in J$. This contradicts the fact that $b \in X \setminus J$. Thus there cannot exist a $y \in J$ with $b \preccurlyeq y$. {{stub}} \end{proof}
23021
\section{Union of Interiors is Subset of Interior of Union} Tags: Set Union, Set Interiors \begin{theorem} Let $T$ be a topological space. Let $\H$ be a set of subsets of $T$. That is, let $\H \subseteq \powerset T$ where $\powerset T$ is the power set of $T$. Then the union of the interiors of the elements of $\H$ is a subset of the interior of the union of $\H$. :$\ds \bigcup_{H \mathop \in \H} H^\circ \subseteq \paren {\bigcup_{H \mathop \in \H} H}^\circ $ \end{theorem} \begin{proof} In the following, $H^-$ denotes the closure of the set $H$. {{begin-eqn}} {{eqn | l = \paren {\bigcup_{H \mathop \in \mathbb H} H}^\circ | r = T \setminus \paren {T \setminus \bigcup_{H \mathop \in \mathbb H} H}^- | c = Complement of Interior equals Closure of Complement }} {{eqn | r = T \setminus \paren {\paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H} }^-} | c = De Morgan's Laws: Difference with Union }} {{end-eqn}} At this point we note that: :$(1): \quad \ds \paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H} }^- \subseteq \bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H}^-$ from Closure of Intersection is Subset of Intersection of Closures. Then we note that: :$\ds T \setminus \paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H}^-} \subseteq T \setminus \paren {\paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H} }^-} $ from $(1)$ and Set Complement inverts Subsets. Then we continue: {{begin-eqn}} {{eqn | l = T \setminus \paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H}^-} | r = T \setminus \paren {\bigcap_{H \mathop \in \mathbb H} T \setminus H^\circ} | c = Complement of Interior equals Closure of Complement }} {{eqn | r = T \setminus \paren {T \setminus \paren {\bigcup_{H \mathop \in \mathbb H} H^\circ} } | c = De Morgan's Laws: Difference with Union }} {{eqn | r = \bigcup_{H \mathop \in \mathbb H} H^\circ | c = Relative Complement of Relative Complement }} {{end-eqn}} {{qed}} \end{proof}
23022
\section{Union of Inverse of Relations is Inverse of their Union} Tags: Set Union, Inverse Relations, Set Unions \begin{theorem} For $i \in \set {1, 2}$, let $\RR_i \subseteq S_i \times T_i$ be relations on $S_i \times T_i$. Let ${\RR_i}^{-1} \subseteq T_i \times S_i$ be the inverse of $\RR_i$. Then: :${\RR_1}^{-1} \cup {\RR_2}^{-1} = \paren {\RR_1 \cup \RR_2}^{-1}$ \end{theorem} \begin{proof} Let $\tuple {t, s} \in {\RR_1}^{-1} \cup {\RR_2}^{-1}$. By definition of union: :$\tuple {t, s} \in {\RR_1}^{-1} \lor \tuple {t, s} \in {\RR_2}^{-1}$. For $i \in \set {1, 2}$, let $\tuple {t, s} \in {\RR_i}^{-1}$. By definition of inverse: :$\tuple {s, t} \in \RR_i$ That is: :$\tuple {s, t} \in \RR_1 \lor \tuple {s, t} \in \RR_2$ By definition of union: :$\tuple {s, t} \in \RR_1 \lor \tuple {s, t} \in \RR_2 \iff \tuple {s, t} \in \RR_1 \cup \RR_2$ By the definition of inverse: :$\tuple {t, s} \in \paren {\RR_1 \cup \RR_2}^{-1}$ {{qed}} Category:Inverse Relations Category:Set Union \end{proof}
23023
\section{Union of Inverses of Mappings is Inverse of Union of Mappings} Tags: Set Union, Inverse Relations, Indexed Families, Union \begin{theorem} Let $I$ be an indexing set. Let $\family {f_i: i \in I}$ be an indexed family of mappings. For each $i \in I$, let $f^{-1}$ denote the inverse of $f$. Then the inverse of the union of $\family {f_i: i \in I}$ is the union of the inverses of $f_i, i \in I$. That is: :$\ds \paren {\bigcup \family {f_i: i \in I} }^{-1} = \bigcup \family {f_i^{-1}: i \in I}$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \tuple {y, x} | o = \in | r = \paren {\bigcup \family {f_i: i \in I} }^{-1} }} {{eqn | ll= \leadstoandfrom | l = \tuple {x, y} | o = \in | r = \family {f_i: i \in I} | c = {{Defof|Inverse Relation}} }} {{eqn | ll= \leadstoandfrom | q = \exists i \in I | l = \tuple {x, y} | o = \in | r = f_i | c = {{Defof|Union of Family}} }} {{eqn | ll= \leadstoandfrom | q = \exists i \in I | l = \tuple {y, x} | o = \in | r = f_i^{-1} | c = {{Defof|Inverse Relation}} }} {{eqn | ll= \leadstoandfrom | l = \tuple {y, x} | o = \in | r = \bigcup \family {f_i^{-1}: i \in I} | c = {{Defof|Union of Family}} }} {{end-eqn}} {{qed}} Category:Inverse Relations Category:Set Union Category:Indexed Families \end{proof}
23024
\section{Union of Left-Total Relations is Left-Total} Tags: Relation Theory \begin{theorem} Let $S_1, S_2, T_1, T_2$ be sets or classes. Let $\RR_1 \subseteq S_1 \times T_1$ and $\RR_2 \subseteq S_2 \times T_2$ be left-total relations. Then $\RR_1 \cup \RR_2$ is left-total. \end{theorem} \begin{proof} Let both $\RR_1$ and $\RR_2$ be left-total. Let $\RR = \RR_1 \cup \RR_2$. Let $s \in S_1 \cup S_2$. By the definition of union: :$s \in S_1 \lor s \in S_2$ Thus $s \in S_i$ for $i \in \set {1, 2}$. By definition of left-total relation, there is a $t \in T_i$ such that $\tuple {s, t} \in \RR_i$. We have that $\RR$ is a superset of $\RR_i$. Hence from Union is Smallest Superset: :$\tuple {s, t} \in \RR_i \subseteq \RR \implies \tuple {s, t} \in \RR$ {{qed}} \end{proof}
23025
\section{Union of Local Bases is Basis} Tags: Topology, Topological Bases \begin{theorem} Let $T = \struct {X, \tau}$ be a topological space. For each $x \in X$, let $\BB_x$ be a local basis at $x$ which consists entirely of open sets. Then $\ds \BB = \bigcup_{x \mathop \in X} \BB_x$ is a basis for the topology $\tau$. \end{theorem} \begin{proof} Let $U \in \tau$ be any open set of $T$. Consider any $x \in U$. Then, by definition of local basis, there exists a $B_x \in \BB_x$ such that $B_x \subseteq U$. Also by definition of local basis: :$x \in B_x$ So by Set Union Preserves Subsets: :$U = \ds \bigcup_{x \mathop \in U} \set x \subseteq \bigcup_{x \mathop \in U} B_x$ Also, since $B_x \subseteq U$ for all $x$, by Union is Smallest Superset: General Result: :$\ds \bigcup_{x \mathop \in U} B_x \subseteq U$ Thus by definition of set equality: :$\ds U = \bigcup_{x \mathop \in U} B_x$ So, by definition, $\ds \BB = \bigcup_{x \mathop \in X} \BB_x$ is a basis for the topology $\tau$. {{qed}} \end{proof}
23026
\section{Union of Many-to-One Relations with Disjoint Domains is Many-to-One} Tags: Relation Theory \begin{theorem} Let $S_1, S_2, T_1, T_2$ be sets or classes. Let $\RR_1$ be a many-to-one relation on $S_1 \times T_1$. Let $\RR_2$ be a many-to-one relation on $S_2 \times T_2$. Suppose that the domains of $\RR_1$ and $\RR_2$ are disjoint. Then $\RR_1 \cup \RR_2$ is a many-to-one relation on $\paren {S_1 \cup S_2} \times \paren {T_1 \cup T_2}$. \end{theorem} \begin{proof} Let $\RR = \RR_1 \cup \RR_2$. Let $\tuple {x, y_1}, \tuple {x, y_2} \in \RR$. By the definition of union, $\tuple {x, y_1}$ and $\tuple {x, y_2}$ are each in $\RR_1$ or $\RR_2$. Suppose that both are in $\RR_1$. Then since $\RR_1$ is a many-to-one relation, $y_1 = y_2$. Suppose that $\tuple {x, y_1} \in \RR_1$ and $\tuple {x, y_2} \in \RR_2$. Then $x$ is in the domain of $\RR_1$ and that of $\RR_2$, contradicting the premise, so this cannot occur. The other two cases are precisely similar. Thus in all cases $y_1 = y_2$. As this holds for all such pairs, $\RR$ is many-to-one. {{qed}} Category:Relation Theory \end{proof}
23027
\section{Union of Mappings which Agree is Mapping} Tags: Set Union, Mapping Theory \begin{theorem} Let $A, B, Y$ be sets. Let $f: A \to Y$ and $g: B \to Y$ be mappings. Let $X = A \cup B$. Let $f$ and $g$ agree on $A \cap B$. Then $f \cup g: X \to Y$ is a mapping. \end{theorem} \begin{proof} By definition, $f \cup g$ is a relation whose domain is $X = A \cup B$. Let $\tuple {x, y_1} \in f \cup g$ and $\tuple {x, y_2} \in f \cup g$. At least one of the following must be true: :$(1): \quad \tuple {x, y_1} \in f, \tuple {x, y_2} \in f$ :$(2): \quad \tuple {x, y_1} \in g, \tuple {x, y_2} \in g$ :$(3): \quad \tuple {x, y_1} \in f, \tuple {x, y_2} \in g$ :$(4): \quad \tuple {x, y_1} \in g, \tuple {x, y_2} \in f$ Because $f$ and $g$ are mappings, $(1)$ and $(2)$ imply that $y_1 = y_2$. If $(3)$ holds, then $y_1 = \map f x$ and $y_2 = \map g x$. But then $x \in A \cup B$. So by hypothesis: :$y_1 = \map f x = \map g x = y_2$ Similarly if $(4)$ holds. Thus in all cases: :$\tuple {x, y_1}, \tuple {x, y_2} \in f \cup g \implies y_1 = y_2$ and so by definition $f \cup g: X \to Y$ is a mapping. {{qed}} \end{proof}
23028
\section{Union of Mappings with Disjoint Domains is Mapping} Tags: Set Union, Mapping Theory, Mappings, Union \begin{theorem} Let $S_1, S_2, T_1, T_2$ be sets. Let $f: S_1 \to T_1$ and $g: S_2 \to T_2$ be mappings. Let $h = f \cup g$ be their union. If $S_1 \cap S_2 = \O$, then $h: S_1 \cup S_2 \to T_1 \cup T_2$ is a mapping whose domain is $S_1 \cup S_2$. \end{theorem} \begin{proof} From the definition of mapping, it is clear that $h$ is a relation. Suppose $\tuple {x, y_1}, \tuple {x, y_2} \in h$. Clearly $x \in S_1$ or $x \in S_2$ but as $S_1 \cap S_2 = \O$ it is not in both. If $x \in S_1$ then $y_1 = y_2$ as $\tuple {x, y_1}, \tuple {x, y_2} \in f$, and $f$ is a mapping. Similarly, if $x \in S_2$ then $y_1 = y_2$ as $\tuple {x, y_1}, \tuple {x, y_2} \in g$, and $g$ is a mapping. So $\tuple {x, y_1}, \tuple {x, y_2} \in h \implies y_1 = y_2$. Now suppose $x \in \Dom h$. Either $x \in S_1$ or $x \in S_2$. As both $f$ and $g$ are mappings it follows that either $\exists y \in T_1: \tuple {x, y} \in f$ or $\exists y \in T_2: \tuple {x, y} \in g$. In either case, $\exists y \in T_1 \cup T_2: \tuple {x, y} \in h$. So $h$ is a mapping whose domain is $S_1 \cup S_2$, as we were to show. {{qed}} \end{proof}
23029
\section{Union of Matroid Base with Element of Complement is Dependent} Tags: Matroid Theory \begin{theorem} Let $M = \struct {S, \mathscr I}$ be a matroid. Let $B \subseteq S$ be a base of $M$. Let $x \in S \setminus B$. Then: :$B \cup \set x$ is a dependent superset of $B$ \end{theorem} \begin{proof} From Set is Subset of Union: :$B \subseteq B \cup \set x$ Because $x \in B \cup \set x$ and $x \notin B$: :$B \ne B \cup \set x$ Hence: :$B \subsetneq B \cup \set x$ By definition of base: :$B$ is a maximal independent subset Hence: :$B \cup \set x \notin \mathscr I$ {{qed}} Category:Matroid Theory \end{proof}
23030
\section{Union of Meager Sets is Meager Set} Tags: Set Union, Meager Spaces \begin{theorem} Let $T = \struct {S, \tau}$ be a topological space. Let $A$ and $B$ be meager in $T$. Then $A \cup B$ is meager in $T$. \end{theorem} \begin{proof} Since $A$ is meager in $T$: :there exists a countable collection of sets $\set {U_n: n \in \N}$ nowhere dense in $T$ such that $\ds A = \bigcup_{n \in \N} U_n$. Since $B$ is meager in $T$: :there exists a countable collection of sets $\set {V_m: m \in \N}$ nowhere dense in $T$ such that $\ds B = \bigcup_{m \in \N} V_m$. Then: :$\ds A \cup B = \paren {\bigcup_{n \in \N} U_n} \cup \paren {\bigcup_{m \in \N} V_m}$ The {{RHS}} is a countable union of sets nowhere dense in $T$, so: :$A \cup B$ is meager in $T$. {{qed}} Category:Meager Spaces Category:Set Union \end{proof}
23031
\section{Union of Nest of Orderings is Ordering} Tags: Set Theory, Order Theory \begin{theorem} Let $S$ be a set. Let $C$ be a nonempty nest of orderings on $S$. Then $\bigcup C$ is an ordering on $S$. \end{theorem} \begin{proof} Let $\preceq$ be an arbitrary element of $C$. Let $\sim \, = \, \bigcup C$. Checking in turn each of the criteria for an ordering: Let $a, b \in S$. Let $a \sim b$ and $b \sim a$. Since $a \sim b$ and $b \sim a$, there exist $\preceq_1, \preceq_2 \, \in \, C$ such that $a \preceq_1 b$ and $b \preceq_2 a$. Since $C$ is a chain: :$\preceq_1 \, \subset \, \preceq_2$ or: :$\preceq_2 \, \subset \, \preceq_1$ {{WLOG}}, suppose $\preceq_1 \, \subset \, \preceq_2$. Then it must hold that $a \preceq_2 b$. Since: :$a \preceq_2 b$ :$b \preceq_2 a$ :$\preceq_2 \, \in \, T$ is an ordering it follows that: :$a = b$ and so $\sim$ is antisymmetric. {{qed|lemma}} \end{proof}
23032
\section{Union of Non-Disjoint Bounded Subsets of Metric Space is Bounded} Tags: Bounded Metric Spaces \begin{theorem} Let $M = \struct {A, d}$ be a metric space. Let $B$ and $C$ be bounded subsets of $M$ such that $B \cap C \ne \O$. Let $\map \diam B$ and $\map \diam C$ denote the diameters of $B$ and $C$. Then $B \cup C$ is a bounded subset of $M$ such that: :$\map \diam {B \cup C} \le \map \diam B + \map \diam C$ \end{theorem} \begin{proof} {{AimForCont}} there exists $x, y \in B \cup C$ such that: :$\map d {x, y} > \map \diam B + \map \diam C$ $x$ and $y$ cannot both be in $B$ or $C$, otherwise either $\map d {x, y} \le \map \diam B$ or $\map d {x, y} \le \map \diam C$. {{WLOG}}, let $x \in B$ and $y \in C$. Let $z \in B \cap C$. This is possible because $B \cap C \ne \O$ {{hypothesis}}. Then: {{begin-eqn}} {{eqn | l = \map d {x, z} | o = \le | r = \map \diam B | c = {{Defof|Diameter of Subset of Metric Space|Diameter of $B$}} }} {{eqn | l = \map d {z, y} | o = \le | r = \map \diam C | c = {{Defof|Diameter of Subset of Metric Space|Diameter of $C$}} }} {{eqn | ll= \leadsto | l = \map d {x, z} + \map d {z, y} | o = \le | r = \map \diam B + \map \diam C | c = }} {{eqn | ll= \leadsto | l = \map d {x, y} | o = \le | r = \map \diam B + \map \diam C | c = {{Metric-space-axiom|2}}: $\map d {x, y} \le \map d {x, z} + \map d {z, y}$ }} {{end-eqn}} This contradicts our supposition that $\map d {x, y} > \map \diam B + \map \diam C$. Hence: {{begin-eqn}} {{eqn | q = \forall x, y \in B \cup C | l = \map d {x, y} | o = \le | r = \map \diam B + \map \diam C | c = }} {{eqn | ll= \leadsto | l = \sup \set {\map d {x, y}: x, y \in B \cup C} | o = \le | r = \map \diam B + \map \diam C | c = {{Defof|Supremum}} }} {{eqn | ll= \leadsto | l = \map \diam {B \cup C} | o = \le | r = \map \diam B + \map \diam C | c = {{Defof|Diameter of Subset of Metric Space}} }} {{end-eqn}} {{qed}} \end{proof}
23033
\section{Union of Non-Disjoint Convex Sets is Convex Set} Tags: Set Union, Convex Sets (Order Theory), Convex Sets, Union \begin{theorem} Let $\struct {S, \preccurlyeq}$ be an ordered set. Let $\CC$ be a set of convex sets of $S$ such that their intersection is non-empty: :$\ds \bigcap \CC \ne \O$ Then the union $\ds \bigcup \CC$ is also convex. \end{theorem} \begin{proof} Let $x, y, z \in S$ be arbitrary elements of $S$ such that $x \prec y \prec z$. Let $x, z \in \ds \bigcup \CC$. First let $x, z \in C$ where $C \in \CC$. Then as $C$ is convex, $y \in C$. Hence, by definition of union, $y \in \ds \bigcup \CC$. Now let $x \in C_1, z \in C_2$ where $C_1, C_2 \in \CC$. We have that $\ds \bigcap \CC \ne \O$. Thus $C_1 \cap C_2 \ne \O$. Then $\exists a \in C_1 \cap C_2: x < a < z$. Hence one of the following cases holds: :$(1): \quad x < y < a < z$, whence $y \in C_1$, by convexity of $C_1$ :$(2): \quad x < a < y < z$, whence $y \in C_2$, by convexity of $C_2$ :$(3): \quad y = a$, whence $y \in C_1$ and $y \in C_2$, by definition of $a$. Thus in all cases $y \in \ds \bigcup \CC$. Thus $\ds \bigcup \CC$ is convex by definition. {{qed}} \end{proof}
23034
\section{Union of One-to-Many Relations with Disjoint Images is One-to-Many} Tags: Relation Theory \begin{theorem} Let $S_1, S_2, T_1, T_2$ be sets or classes. Let $\RR_1$ be a one-to-many relation on $S_1 \times T_1$. Let $\RR_2$ be a one-to-many relation on $S_2 \times T_2$. Suppose that the images of $\RR_1$ and $\RR_2$ are disjoint. Then $\RR_1 \cup \RR_2$ is a one-to-many relation on $\paren {S_1 \cup S_2} \times \paren {T_1 \cup T_2}$. \end{theorem} \begin{proof} Let $\QQ = \RR_1 \cup \RR_2$. Then $\QQ \subseteq \paren {S_1 \times T_1} \cup \paren {S_2 \times T_2} \subseteq \paren {S_1 \cup S_2} \times \paren {T_1 \cup T_2}$. Thus $\QQ$ is a relation on $\paren {S_1 \cup S_2} \times \paren {T_1 \cup T_2}$. Let $T'_1$ and $T'_2$ be the images of $\RR_1$ and $\RR_2$, respectively. Let $\tuple {x_1, y}, \tuple {x_2, y} \in \QQ$. Then $y \in T'_1$ or $y \in T'_2$. If $y \in T'_1$ then $y \notin T'_2$, so neither $\tuple {x_1, y}$ nor $\tuple {x_2, y}$ is in $\RR_2$, so these pairs are both in $\RR_1$. As $\RR_1$ is one-to-many, $x_1 = x_2$. A similar argument leads to the same result for $y \in T'_2$. As this holds for all such $x_1, x_2, y$: $\QQ$ is a one-to-many relation. {{qed}} Category:Relation Theory \end{proof}
23035
\section{Union of Open Intervals of Positive Reals is Set of Strictly Positive Reals} Tags: Real Intervals \begin{theorem} Let $\R_{>0}$ be the set of strictly positive real numbers. For all $x \in \R_{>0}$, let $A_x$ be the open real interval $\openint 0 x$. Then: :$\ds \bigcup_{x \mathop \in \R_{>0} } A_x = \R_{>0}$ \end{theorem} \begin{proof} Let $\ds A = \bigcap_{x \mathop \in \R_{>0} } A_x$. Let $y \in A$. Then by definition of union of family: :$\exists x \in \R_{>0}: y \in A_x$ As $A_x \subseteq \R_{>0}$ it follows by definition of subset that: :$y \in \R_{>0}$ So: :$\ds \bigcap_{x \mathop \in \R_{>0} } A_x \subseteq \R_{>0}$ {{qed|lemma}} Let $y \in \R_{>0}$. By the Archimedean Property: :$\exists z \in \N: z > y$ and so: :$y \in A_z$ That is by definition of union of family: :$y \in \ds \bigcap_{x \mathop \in \R_{>0} } A_x$ So by definition of subset: :$\ds \R_{>0} \subseteq \bigcap_{x \mathop \in \R_{>0} } A_x$ {{qed|lemma}} By definition of set equality: :$\ds \bigcup_{x \mathop \in \R_{>0} } A_x = \R_{>0}$ {{qed}} \end{proof}
23036
\section{Union of Open Irreducible Non-Disjoint Subspaces is Irreducible} Tags: Irreducible Spaces \begin{theorem} Let $T = \left({S, \tau}\right)$ be an irreducible toplogical space. Let $U$ and $V$ be open irreducible subspaces. Let their intersection $U \cap V$ be non-empty. Then their union $U \cup V$ is irreducible. \end{theorem} \begin{proof} {{ProofWanted}} Category:Irreducible Spaces \end{proof}
23037
\section{Union of Open Sets of Metric Space is Open} Tags: Set Union, Open Sets, Metric Spaces, Union \begin{theorem} Let $M = \struct {A, d}$ be a metric space. The union of a set of open sets of $M$ is open in $M$. \end{theorem} \begin{proof} Let $I$ be any indexing set. Let $U_i$ be open in $M$ for all $i \in I$. Let $\ds x \in \bigcup_{i \mathop \in I} U_i$. Then by definition of set union, $x \in U_k$ for some $k \in I$. Since $U_k$ is open in $M$: :$\ds \exists \epsilon > 0: \map {B_\epsilon} x \subseteq U_k$ where $\map {B_\epsilon} x$ is the open $\epsilon$-ball of $x$ in $M$. By Set is Subset of Union: :$\ds U_k \subseteq \bigcup_{i \mathop \in I} U_i$ Hence by Subset Relation is Transitive: :$\ds \map {B_\epsilon} x \subseteq \bigcup_{i \mathop \in I} U_i$ and the result follows by definition of open set in metric space. {{qed}} \end{proof}
23038
\section{Union of Open Sets of Neighborhood Space is Open} Tags: Neighborhood Spaces \begin{theorem} Let $S$ be a neighborhood space. Let $I$ be an indexing set. Let $\family {U_\alpha}_{\alpha \mathop \in I}$ be a family of open sets of $\struct {S, \NN}$ indexed by $I$. Then their union $\ds \bigcup_{\alpha \mathop \in I} U_i$ is an open set of $\struct {S, \NN}$. \end{theorem} \begin{proof} Let $\ds x \in \bigcup_{\alpha \mathop \in I} U_\alpha$. Then $x \in U_\beta$ for some $\beta \in I$. By definition of open set, $U_\beta$ is a neighborhood of $x$. But from Set is Subset of Union: :$\ds U_\beta \subseteq x \in \bigcup_{\alpha \mathop \in I} U_\alpha$ By neighborhood space axiom $N 3$ it follows that $\ds \bigcup_{\alpha \mathop \in I} U_\alpha$ is a neighborhood of $x$. As $x$ is arbitrary, it follows that the above is true for all $\ds x \in \bigcup_{\alpha \mathop \in I} U_\alpha$. It follows by definition that $\ds \bigcup_{\alpha \mathop \in I} U_\alpha$ is an open set of $\struct {S, \NN}$. {{qed}} \end{proof}
23039
\section{Union of Open Sets of Normed Vector Space is Open} Tags: Set Union, Open Sets \begin{theorem} Let $M = \struct {X, \norm {\, \cdot \,} }$ be a normed vector space. The union of a set of open sets of $M$ is open in $M$. \end{theorem} \begin{proof} Let $I$ be any indexing set. Let $U_i$ be open in $M$ for all $i \in I$. Let $\ds x \in \bigcup_{i \mathop \in I} U_i$. Then $x \in U_k$ for some $k \in I$. Since $U_k$ is open in $M$: :$\ds \exists \epsilon > 0: \map {B_\epsilon} x \subseteq U_k \subseteq \bigcup_{i \mathop \in I} U_i$ where $\map {B_\epsilon} x$ is the open $\epsilon$-ball of $x$ in $M$. The result follows. {{qed}} \end{proof}
23040
\section{Union of Ordinals is Least Upper Bound} Tags: Ordinals \begin{theorem} Let $A \subset \On$. That is, let $A$ be a class of ordinals (every member of $A$ is an ordinal). Then $\bigcup A$, the union of $A$, is the least upper bound of $A$: :$\ds \forall x \in A: x \le A$ :$\ds \forall y \in A: y \le x \implies \bigcup A \le x$ \end{theorem} \begin{proof} First, we must show that $\ds \bigcup A$ is an upper bound. Take any member $a \in A$. Then by Subset of Union: :$\ds a \subseteq \bigcup A$ By Ordering on Ordinal is Subset Relation: :$a \le A$ By generalizing for all $a \in A$: :$\ds \forall x \in A: x \le \bigcup A$ Similarly, suppose now that $x$ is an upper bound of $A$. We shall denote $<$ for ordering on the ordinal numbers. By Ordering on Ordinal is Subset Relation and Transitive Set is Proper Subset of Ordinal iff Element of Ordinal, $<$ is the same as both $\in$ and $\subsetneq$. Then: {{begin-eqn}} {{eqn | l = z \in \bigcup A | o = \leadsto | r = \exists y: \paren {z \in y \land y \in A} | c = {{Defof|Union of Set of Sets}} }} {{eqn | o = \leadsto | r = \exists y: \paren {z \in y \land y < x} | c = {{hypothesis}} (as $y \in A$, $y < x$) }} {{eqn | o = \leadsto | r = z \in x | c = transitivity of $\in$: see Alternative Definition of Ordinal }} {{end-eqn}} Thus, by definition of subset: :$\ds \bigcup A \subseteq x$ Therefore: :$\ds \forall y \in A: y \le x \implies \bigcup A \le x$ {{qed}} \end{proof}
23041
\section{Union of Ordinals is Ordinal} Tags: Ordinals \begin{theorem} Let $y$ be a set. Let $\map F z$ be a mapping such that: :$\ds \forall z \in y: \map F z \in \On$ Then: :$\ds \bigcup_{z \mathop \in y} \map F z \in \On$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = x | o = \in | r = \bigcup_{z \mathop \in y} \map F z | c = }} {{eqn | ll= \leadsto | q = \exists z \in y | l = x | o = \in | r = \map F z | c = {{Defof|Set Union}} }} {{eqn | ll= \leadsto | l = x | o = \in | r = \On | c = {{hypothesis}} }} {{end-eqn}} So: :$\ds \bigcup_{z \mathop \in y} \map F z \subseteq \On$ {{begin-eqn}} {{eqn | l = x | o = \in | r = \bigcup_{z \mathop \in y} \map F z | c = }} {{eqn | ll= \leadsto | q = \exists z \in y | l = x | o = \in | r = \map F z | c = {{Defof|Set Union}} }} {{eqn | ll= \leadsto | q = \exists z \in y | l = x | o = \subseteq | r = \map F z | c = Ordinals are Transitive }} {{eqn | ll= \leadsto | l = x | o = \subseteq | r = \bigcup_{z \mathop \in y} \map F z | c = Union Preserved Under Subset Relation }} {{end-eqn}} So $\ds \bigcup_{z \mathop \in y} \map F z$ is a transitive set. Therefore $\ds \bigcup_{z \mathop \in y} \map F z$ is an ordinal. :$\ds \bigcup_{z \mathop \in y} \map F z = \bigcup \Img y$ Let $U$ denote the universal class. {{begin-eqn}} {{eqn | l = y | o = \in | r = V | c = }} {{eqn | ll= \leadsto | l = \bigcup \Img y | o = \in | r = V | c = Axiom of Replacement Equivalents }} {{eqn | ll= \leadsto | l = \bigcup \bigcup \Img y | o = \in | r = V | c = Axiom of Unions Equivalents }} {{eqn | ll= \leadsto | l = \bigcup_{z \mathop \in y} \map F z | o = \in | r = V | c = Equality given above }} {{end-eqn}} Therefore $\ds \bigcup_{z \mathop \in y} \map F z$ is a set, so it is a member of the ordinal class. {{qed}} Category:Ordinals \end{proof}
23042
\section{Union of Overlapping Convex Sets in Toset is Convex} Tags: Total Orderings \begin{theorem} Let $\struct {S, \preceq}$ be a totally ordered set. Let $U$ and $V$ be convex sets in $S$. Let $U \cap V \ne \O$. Then $U \cup V$ is also convex. \end{theorem} \begin{proof} Let $a,b,c \in S$ Let $a,c \in U \cup V$. Let $a \prec b \prec c$. If $a, c \in U$ then $b \in U$ because $U$ is convex. Thus $b \in U \cup V$ by the definition of union. Similarly, if $a,c \in V$ then $b \in U \cup V$. Otherwise, {{WLOG}}, suppose that $a \in U$ and $c \in V$. Since $U \cap V$ is nonempty by the premise, it has an element $p$. Since $\preceq$ is a total ordering: :$b \preceq p$ or $p \preceq b$. If $b \preceq p$, then since $a \prec b$, $a,p \in U$, and $U$ is convex, we can conclude that :$b \in U$ so $b \in U \cup V$. A similar argument shows that it $p \preceq b$ then $b \in V$, so $b \in U \cup V$. Thus in all cases we can conclude that $b \in U \cup V$, so $U \cup V$ is convex. {{qed}} Category:Total Orderings \end{proof}
23043
\section{Union of Overlapping Convex Sets in Toset is Convex/Infinite Union} Tags: Total Orderings \begin{theorem} Let $\struct {S, \preceq}$ be a totally ordered set. Let $\AA$ be a set of convex subsets of $S$. For any $P, Q \in \AA$, let there be elements $C_0, \dotsc, C_n \in \AA$ such that: :$C_0 = P$ :$C_n = Q$ :For $k = 0, \dotsc, n - 1: C_k \cap C_{k + 1} \ne \O$ Then $\bigcup \AA$ is convex in $S$. \end{theorem} \begin{proof} Let $a, c \in \bigcup \AA$. Let $b \in S$. Let $a \prec b \prec c$. Since $a, c \in \bigcup \AA$, there are $P, Q \in \AA$ such that $a \in P$ and $c \in Q$. By the premise, there are elements $C_0, \dots, C_n \in \AA$ such that: :$C_0 = P$ :$C_n = Q$ :For $k = 0, \dotsc, n - 1: C_k \cap C_{k + 1} \ne \O$ {{explain|details of induction. Consider putting the finite chain case into a separate lemma.}} Applying Union of Overlapping Intervals is Interval inductively: :$\ds \bigcup_{k \mathop = 0}^n C_k$ is convex. Since $\ds a, c \in \bigcup_{k \mathop = 0}^n C_k$, by the definition of convexity: :$\ds b \in \bigcup_{k \mathop = 0}^n C_k$ Thus: :$\ds b \in \bigcup \AA$ Since this holds for all such triples $a, b, c$, it follows that $\AA$ is convex. {{qed}} Category:Total Orderings \end{proof}
23044
\section{Union of Path-Connected Sets with Common Point is Path-Connected} Tags: Connected Spaces \begin{theorem} Let $T = \struct {S, \tau}$ be a topological space. Let $\family {B_\alpha}_{\alpha \mathop \in A}$ be a family of path-connected sets of $T$. Let $\exists x \in \ds \bigcap \family {B_\alpha}_{\alpha \mathop \in A}$. Then :$\ds \bigcup \family {B_\alpha}_{\alpha \mathop \in A}$ is a path-connected set of $T$. \end{theorem} \begin{proof} Let $B = \ds \bigcup \family {B_\alpha}_{\alpha \mathop \in A}$. Let $a, b \in B$. Then :$\exists \alpha, \beta \in A: a \in B_\alpha \land b \in B_\beta$. As $B_\alpha$ is a path-connected set in $T$ then $a$ and $x$ are path-connected points. Similarly, $x$ and $b$ are path-connected points. From Joining Paths makes Another Path, $a$ and $b$ are path-connected points. Since $a$ and $b$ were arbitrary points then $B$ is a path-connected set of $T$. {{qed}} \end{proof}
23045
\section{Union of Power Sets not always Equal to Powerset of Union} Tags: Set Union, Power Set, Subsets \begin{theorem} The union of the power sets of two sets $S$ and $T$ is not necessarily equal to the power set of their union. \end{theorem} \begin{proof} Proof by Counterexample: Let $S = \set {1, 2, 3}, T = \set {2, 3, 4}, X = \set {1, 2, 3, 4}$. {{begin-eqn}} {{eqn | l = S \cup T | r = \set {1, 2, 3, 4} | c = }} {{eqn | ll= \leadsto | l = X | o = \subseteq | r = S \cup T | c = }} {{eqn | ll= \leadsto | l = X | o = \in | r = \powerset {S \cup T} | c = }} {{end-eqn}} But note that $X \nsubseteq S \land X \nsubseteq T$. Thus: {{begin-eqn}} {{eqn | l = X | o = \nsubseteq | r = S \land X \nsubseteq T | c = }} {{eqn | ll= \leadsto | l = X | o = \notin | r = \powerset S \land X \notin \powerset T | c = }} {{eqn | ll= \leadsto | l = \neg (X | o = \in | r = \powerset S \lor X \in \powerset T) | c = }} {{eqn | ll= \leadsto | l = X | o = \notin | r = \powerset S \cup \powerset T | c = }} {{eqn | ll= \leadsto | l = \powerset {S \cup T} | o = \nsubseteq | r = \powerset S \cup \powerset T | c = }} {{end-eqn}} So: :$\powerset {S \cup T} \ne \powerset S \cup \powerset T$ {{qed}} \end{proof}
23046
\section{Union of Primitive Recursive Sets} Tags: Set Union, Primitive Recursive Functions, Union \begin{theorem} Let $A, B \subseteq \N$ be subsets of the set of natural numbers $\N$. Let $A$ and $B$ both be primitive recursive. Then $A \cup B$, the union of $A$ and $B$, is primitive recursive. \end{theorem} \begin{proof} $A$ and $B$ are primitive recursive, therefore so are their characteristic functions $\chi_A$ and $\chi_B$. Let $n \in \N$ be a natural number. Then $n \in A \cup B \iff \chi_A \left({n}\right) + \chi_B \left({n}\right) > 0$. So: {{begin-eqn}} {{eqn | l = \chi_{A \cup B} \left({n}\right) | r = \operatorname{sgn} \left({\chi_A \left({n}\right) + \chi_B \left({n}\right)}\right) | c = Signum Function is Primitive Recursive }} {{eqn | r = \operatorname{sgn} \left({\operatorname{add} \left({\chi_A \left({n}\right), \chi_B \left({n}\right)}\right)}\right) | c = Addition is Primitive Recursive }} {{end-eqn}} Thus $A \cup B$ is defined by substitution from the primitive recursive functions $\operatorname{sgn}$, $\operatorname{add}$, $\chi_A$ and $\chi_B$. Hence the result. {{qed}} Category:Primitive Recursive Functions Category:Set Union \end{proof}
23047
\section{Union of Real Intervals is not necessarily Real Interval} Tags: Real Intervals \begin{theorem} Let $I_1$ and $I_2$ be real intervals. Then $I_1 \cup I_2$ is not necessarily a real interval. \end{theorem} \begin{proof} Proof by Counterexample: Consider the real intervals: :$I_1 = \left({0 \,.\,.\, 2}\right)$ :$I_2 = \left({4 \,.\,.\, 6}\right)$ Then we have that: :$1 < 3 < 5$ where: :$1 \in I_1 \cup I_2$ :$5 \in I_1 \cup I_2$ but: :$3 \notin I_1 \cup I_2$ Thus $I_1 \cup I_2$ is not a real interval. {{qed}} \end{proof}
23048
\section{Union of Reflexive Relations is Reflexive} Tags: Reflexive Relations, Intersection, Set Union, Union, Relations \begin{theorem} The union of two reflexive relations is also a reflexive relation. \end{theorem} \begin{proof} Let $\RR_1$ and $\RR_2$ be reflexive relations on a set $S$. From Relation Contains Diagonal Relation iff Reflexive, we have that: : $\Delta_S \subseteq \RR_1$ : $\Delta_S \subseteq \RR_2$ Hence from Subset Relation is Transitive: : $\Delta_S \subseteq \RR_1 \cup \RR_2$ Hence the result, by definition of reflexive relation. {{qed}} Category:Reflexive Relations Category:Set Union \end{proof}
23049
\section{Union of Regular Open Sets is not necessarily Regular Open} Tags: Open Sets, Regular Open Sets, Set Union \begin{theorem} Let $T = \struct {S, \tau}$ be a topological space. Let $U$ and $V$ be regular open sets of $T$. Then $U \cup V$ is not also necessarily a regular open set of $T$. \end{theorem} \begin{proof} Proof by Counterexample: By Open Real Interval is Regular Open, the open real intervals: :$\openint 0 {\dfrac 1 2}, \openint {\dfrac 1 2} 1$ are both regular open sets of $\R$. Consider $A$, the union of the adjacent open intervals: :$A := \openint 0 {\dfrac 1 2} \cup \openint {\dfrac 1 2} 1$ From Interior of Closure of Interior of Union of Adjacent Open Intervals: :$A^{- \circ} = \openint 0 1$ Thus $A$ is not a regular open set of $\R$. {{qed}} \end{proof}
23050
\section{Union of Relations Compatible with Operation is Compatible} Tags: Compatible Relations \begin{theorem} Let $\struct {S, \circ}$ be a closed algebraic structure. Let $\FF$ be a family of relations on $S$. Let each element of $\FF$ be compatible with $\circ$. Let $\QQ = \bigcup \FF$. Then $Q$ is a relation compatible with $\circ$. \end{theorem} \begin{proof} Let $x, y, z \in S$. Let $x \mathrel \QQ y$. Then for some $\RR \in \FF$: :$x \mathrel \RR y$. Since $\RR$ is a relation compatible with $\circ$: :$\tuple {x \circ z} \mathrel \RR \tuple {y \circ z}$ Since $\RR \in \FF$: :$\RR \subseteq \bigcup \FF = \QQ$ Thus :$\tuple {x \circ z} \mathrel \QQ \tuple {y \circ z}$ We have shown that: :$\forall x, y, z \in S: x \mathrel \QQ y \implies \tuple {x \circ z} \mathrel \QQ \tuple {y \circ z}$ A similar argument shows that: :$\forall x, y, z \in S: x \mathrel \QQ y \implies \tuple {z \circ x} \mathrel \QQ \tuple {z \circ y}$ So $Q$ is a relation compatible with $\circ$. {{qed}} Category:Compatible Relations \end{proof}
23051
\section{Union of Relations is Relation} Tags: Relation Theory \begin{theorem} Let $S$ and $T$ be sets. Let $\FF$ be a family of relations from $S$ to $T$. Let $\ds \RR = \bigcup \FF$, the union of all the elements of $\FF$. Then $\RR$ is a relation from $S$ to $T$. {{expand|Binary case}} \end{theorem} \begin{proof} By the definition of a relation from $S$ to $T$, each element of $\FF$ is a subset of $S \times T$. By Union of Subsets is Subset: Set of Sets: :$\RR \subseteq S \times T$ Therefore, by the definition of a relation from $S$ to $T$, $\RR$ is a relation from $S$ to $T$. {{qed}} Category:Relation Theory \end{proof}
23052
\section{Union of Relative Complements of Nested Subsets} Tags: Set Union, Relative Complement, Union \begin{theorem} Let $R \subseteq S \subseteq T$ be sets with the indicated inclusions. Then: :$\complement_T \left({S}\right) \cup \complement_S \left({R}\right) = \complement_T \left({R}\right)$ where $\complement$ denotes relative complement. Phrased via Set Difference as Intersection with Relative Complement: :$\left({T \setminus S}\right) \cup \left({S \setminus R}\right) = T \setminus R$ where $\setminus$ denotes set difference. \end{theorem} \begin{proof} From Union with Set Difference: :$T = T \setminus S \cup S$ and therefore by Set Difference is Right Distributive over Union: :$T \setminus R = \left({\left({T \setminus S}\right) \setminus R}\right) \cup \left({S \setminus R}\right)$ Now, by Set Difference with Union and Union with Superset is Superset: :$\left({T \setminus S}\right) \setminus R = T \setminus \left({S \cup R}\right) = T \setminus S$ Combining the above yields: :$T \setminus R = \left({T \setminus S}\right) \cup \left({S \setminus R}\right)$ {{qed}} \end{proof}
23053
\section{Union of Right-Total Relations is Right-Total} Tags: Relation Theory \begin{theorem} Let $S_1, S_2, T_1, T_2$ be sets or classes. Let $\RR_1 \subseteq S_1 \times T_1$ and $\RR_2 \subseteq S_2 \times T_2$ be right-total relations. Then $\RR_1 \cup \RR_2$ is right-total. \end{theorem} \begin{proof} Define the predicates $L$ and $R$ by: :$\map L X \iff \text {$X$ is left-total}$ :$\map R X \iff \text {$X$ is right-total}$ {{begin-eqn}} {{eqn | l = \map R {\RR_1} \land \map R {\RR_2} | o = \leadsto | r = \map L {\RR_1^{-1} } \land \map L {\RR_2^{-1} } | c = Inverse of Right-Total Relation is Left-Total }} {{eqn | o = \leadsto | r = \map L {\RR_1^{-1} \cup \RR_2^{-1} } | c = Union of Left-Total Relations is Left-Total }} {{eqn | o = \leadsto | r = \map L {\paren {\RR_1 \cup \RR_2}^{-1} } | c = Union of Inverse of Relations is Inverse of their Union }} {{eqn | o = \leadsto | r = \map R {\RR_1 \cup \RR_2} | c = Inverse of Right-Total Relation is Left-Total }} {{end-eqn}} {{qed}} \end{proof}
23054
\section{Union of Set of Dense-in-itself Sets is Dense-in-itself} Tags: Set Derivatives, Denseness \begin{theorem} Let $T$ be a topological space. Let $\FF \subseteq \powerset T$ such that :every element of $\FF$ is dense-in-itself. Then the union $\bigcup \FF$ is also dense-in-itself. \end{theorem} \begin{proof} By Dense-in-itself iff Subset of Derivative: :$\forall A \in \FF: A \subseteq A'$ where $A'$ denotes the derivative of $A$. Then by Set Union Preserves Subsets: :$\ds \bigcup \FF \subseteq \bigcup_{A \mathop \in \FF} A'$ By Union of Derivatives is Subset of Derivative of Union: :$\ds \bigcup_{A \mathop \in \FF} A' \subseteq \paren {\bigcup \FF}'$ Then by Subset Relation is Transitive: :$\ds \bigcup \FF \subseteq \paren {\bigcup \FF}'$ The result follows by Dense-in-itself iff Subset of Derivative. {{qed}} \end{proof}
23055
\section{Union of Set of Sets when a Set Intersects All} Tags: Set Union, Union \begin{theorem} Let $F$ be a set of sets. Let $S$ be a set or class. Suppose that: :$\forall A \in F: A \cap S \ne \O$ Then: :$\ds F = \bigcup_{x \mathop \in S} \set {A \in F: x \in A}$ \end{theorem} \begin{proof} Suppose that $B \in F$. Then $B \cap S$ has an element $x_B$. Thus $B \in \set {A \in F: x_B \in A}$. By the definition of union: :$\ds B \in \bigcup_{x \mathop \in S} \set {A \in F: x \in A}$ Suppose instead that $\ds B \in \bigcup_{x \mathop \in S} \set {A \in F: x \in A}$. Then by the definition of union, there exists an $x_B \in S$ such that $B \in \set {A \in F: x_B \in A} \subseteq F$. Thus $B \in F$. We have shown that $\ds \forall B: \paren {B \in F \iff B \in \bigcup_{x \mathop \in S} \set {A \in F: x \in A} }$. Therefore $\ds F = \bigcup_{x \mathop \in S} \set {A \in F: x \in A}$ by the Axiom of Extension. {{qed}} Category:Set Union \end{proof}
23056
\section{Union of Singleton} Tags: Set Union, Singletons, Union \begin{theorem} Consider the set of sets $\mathbb S$ such that $\mathbb S$ consists of just one set $S$. Then the union of $\mathbb S$ is $S$: :$\ds \mathbb S = \set S \implies \bigcup \mathbb S = S$ \end{theorem} \begin{proof} Let $\mathbb S = \set S$. Then from the definition of set union: :$\ds \bigcup \mathbb S = \set {x: \exists X \in \mathbb S: x \in X}$ from which it follows directly that: :$\ds \bigcup \mathbb S = \set {x: x \in S}$ as $S$ is the only set in $\mathbb S$. That is: :$\ds \bigcup \mathbb S = S$ {{qed}} \end{proof}
23057
\section{Union of Small Classes is Small} Tags: Set Union, Zermelo-Fraenkel Class Theory, Union \begin{theorem} Let $x$ and $y$ be small classes. Then $x \cup y$ is also small. \end{theorem} \begin{proof} Let $\map {\mathscr M} A$ denote that $A$ is small. {{begin-eqn}} {{eqn | l = \map {\mathscr M} x \land \map {\mathscr M} y | o = \leadsto | r = \map {\mathscr M} {\set {x, y} } | c = Axiom of Pairing }} {{eqn | o = \leadsto | r = \map {\mathscr M} {\bigcup \set {x, y} } | c = Axiom of Unions }} {{eqn | o = \leadsto | r = \map {\mathscr M} {x \cup y} | c = Union of Doubleton }} {{end-eqn}} {{qed}} \end{proof}
23058
\section{Union of Subclass is Subset of Union of Class} Tags: Class Union \begin{theorem} Let $A$ and $B$ be classes. Let $\ds \bigcup A$ and $\ds \bigcup B$ denote the union of $A$ and union of $B$ respectively. Let $A$ be a subclass of $B$: :$A \subseteq B$ Then $\ds \bigcup A$ is a subset of $\ds \bigcup B$: :$\ds \bigcup A \subseteq \ds \bigcup B$ \end{theorem} \begin{proof} By the axiom of unions, both $\ds \bigcup A$ and $\ds \bigcup B$ are sets. Let $x \in \ds \bigcup A$. Then: :$\exists y \in A: x \in y$ But as $A \subseteq B$ it follows that $y \in B$. That is: :$\exists y \in B: x \in y$ That is: :$x \in \ds \bigcup B$ Hence the result by definition of subset. {{Qed}} \end{proof}
23059
\section{Union of Subgroups} Tags: Subgroups, Group Theory, Set Union, Union of Subgroups, Union \begin{theorem} Let $\struct {G, \circ}$ be a group. Let $H, K \le G$ be subgroups of $G$. Let neither $H \subseteq K$ nor $K \subseteq H$. Then $H \cup K$ is ''not'' a subgroup of $G$. \end{theorem} \begin{proof} As neither $H \subseteq K$ nor $K \subseteq H$, it follows from Set Difference with Superset is Empty Set that neither $H \setminus K = \O$ nor $K \setminus H = \O$. So, let $h \in H \setminus K, k \in K \setminus H$. Thus, $h \notin K, k \notin H$. If $\struct {H \cup K, \circ}$ is a group, then it must be closed. If $\struct {H \cup K, \circ}$ is closed, then $h \circ k \in H \cup K \implies h \circ k \in H \lor h \circ k \in K$. If $h \circ k \in H$ then $h^{-1} \circ h \circ k \in H \implies k \in H$. If $h \circ k \in K$ then $h \circ k \circ k^{-1} \in K \implies h \in K$. So $h \circ k$ can be in neither $H$ nor $K$. Therefore $\struct {H \cup K, \circ}$ is not closed. Therefore $H \cup K$ is not a subgroup of $G$. {{qed}} \end{proof}
23060
\section{Union of Subgroups/Corollary 1} Tags: Union of Subgroups \begin{theorem} Let $\struct {G, \circ}$ be a group. Let $H, K \le G$. Let $H \cup K$ be a subgroup of $G$. Then either $H \subseteq K$ or $K \subseteq H$. \end{theorem} \begin{proof} {{AimForCont}} neither $H \subseteq K$ nor $K \subseteq H$. Then from Union of Subgroups it follows that $H \cup K$ is not a subgroup of $G$. The result follows by Proof by Contradiction. {{qed}} \end{proof}
23061
\section{Union of Subgroups/Corollary 2} Tags: Set Union, Union of Subgroups, Subgroups, Union \begin{theorem} Let $\struct {G, \circ}$ be a group. Let $H, K \le G$. Let $H \vee K$ be the join of $H$ and $K$. Then $H \vee K = H \cup K$ {{iff}} $H \subseteq K$ or $K \subseteq H$. \end{theorem} \begin{proof} From the definition of join, $H \vee K$ is the smallest subgroup of $G$ containing $H \cup K$. The result follows from Union of Subgroups. {{qed}} \end{proof}
23062
\section{Union of Subset of Ordinals is Ordinal} Tags: Ordinals \begin{theorem} {{explain|If $A$ is a proper class, then its union may be the class of all ordinals, which we do not consider an ordinal.}} Let $A$ be a class of ordinals. That is, $A \subseteq \On$, where $\On$ denotes the ordinal class. Then $\bigcup A$ is an ordinal. \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = x \in \bigcup A | o = \leadsto | r = \exists y \in A: x \in y | c = }} {{eqn | o = \leadsto | r = \exists y \subseteq \bigcup A: x \subseteq y | c = }} {{eqn | o = \leadsto | r = x \subseteq \bigcup A | c = }} {{end-eqn}} From this, we conclude that $\ds \bigcup A$ is a transitive class. From Class is Transitive iff Union is Subset, it follows that: :$\ds \bigcup A \subseteq A \subseteq \On$ By Subset of Well-Ordered Set is Well-Ordered, $A$ is also well-ordered by $\Epsilon$. Thus by Alternative Definition of Ordinal, $\bigcup A$ is an ordinal. \end{proof}
23063
\section{Union of Subset of Ordinals is Ordinal/Corollary} Tags: Ordinals \begin{theorem} Let $y$ be a set. Let $\On$ be the class of all ordinals. Let $F: y \to \On$ be a mapping. Then: :$\ds \bigcup \map F y \in \On$ where $\map F y$ is the image of $y$ under $F$. \end{theorem} \begin{proof} By the Axiom of Replacement, $\map F y$ is a set. Thus by the Axiom of Unions, $\ds \bigcup \map F y$ is a set. By Union of Subset of Ordinals is Ordinal, $\ds \bigcup \map F y$ is transitive. By the epsilon relation $\ds \bigcup \map F y$ is well-ordered. Thus $\ds \bigcup \map F y$ is a member of $\On$, the ordinal class. {{qed}} Category:Ordinals \end{proof}
23064
\section{Union of Subsets is Subset} Tags: Subsets, Set Union, Union, Union of Subsets is Subset, Subset \begin{theorem} Let $S_1$, $S_2$, and $T$ be sets. Let $S_1$ and $S_2$ both be subsets of $T$. Then: :$S_1 \cup S_2 \subseteq T$ That is: :$\paren {S_1 \subseteq T} \land \paren {S_2 \subseteq T} \implies \paren {S_1 \cup S_2} \subseteq T$ \end{theorem} \begin{proof} {{improve|The version for set of sets doesn't rely on the more sophisticated Set Union Preserves Subsets. Change this to match.}} Let $\left({S_1 \subseteq T}\right) \land \left({S_2 \subseteq T}\right)$. Then: {{begin-eqn}} {{eqn | l=S_1 \cup S_2 | o=\subseteq | r=T \cup T | c=Set Union Preserves Subsets }} {{eqn | ll=\implies | l=S_1 \cup S_2 | o=\subseteq | r=T | c=as $T = T \cup T$ from Union is Idempotent Operation }} {{end-eqn}} So: :$\left({S_1 \subseteq T}\right) \land \left({S_2 \subseteq T}\right) \implies \left({S_1 \cup S_2}\right) \subseteq T$ {{qed}} \end{proof}
23065
\section{Union of Subsets is Subset/Family of Sets} Tags: Subsets, Set Union, Union, Union of Subsets is Subset, Subset \begin{theorem} Let $\family {S_i}_{i \mathop \in I}$ be a family of sets indexed by $I$. Then for all sets $X$: :$\ds \paren {\forall i \in I: S_i \subseteq X} \implies \bigcup_{i \mathop \in I} S_i \subseteq X$ where $\ds \bigcup_{i \mathop \in I} S_i$ is the union of $\family {S_i}$. \end{theorem} \begin{proof} Suppose that $\forall i \in I: S_i \subseteq X$. Consider any $\ds x \in \bigcup_{i \mathop \in I} S_i$. By definition of set union: :$\exists i \in I: x \in S_i$ But as $S_i \subseteq X$ it follows that $x \in X$. Thus it follows that: :$\ds \bigcup_{i \mathop \in I} S_i \subseteq X$ So: :$\ds \paren {\forall i \in I: S_i \subseteq X} \implies \bigcup_{i \mathop \in I} S_i \subseteq X$ {{qed}} \end{proof}
23066
\section{Union of Subsets is Subset/Set of Sets} Tags: Subsets, Set Union, Union, Union of Subsets is Subset, Subset \begin{theorem} Let $T$ be a set. Let $\mathbb S$ be a set of sets. Suppose that for each $S \in \mathbb S$, $S \subseteq T$. Then: :$\ds \bigcup \mathbb S \subseteq T$ \end{theorem} \begin{proof} Let $x \in \ds \bigcup \mathbb S$. By the definition of union, there exists an $S \in \mathbb S$ such that $x \in S$. By premise, $S \subseteq T$. By the definition of subset, $x \in T$. Since this result holds for each $x \in \ds \bigcup \mathbb S$: :$\ds \bigcup \mathbb S \subseteq T$ {{qed}} Category:Union of Subsets is Subset \end{proof}
23067
\section{Union of Subsets is Subset/Subset of Power Set} Tags: Set Union, Subsets, Subset, Union \begin{theorem} Let $S$ and $T$ be sets. Let $\powerset S$ be the power set of $S$. Let $\mathbb S$ be a subset of $\powerset S$. Then: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \implies \bigcup \mathbb S \subseteq T$ \end{theorem} \begin{proof} Let $\mathbb S \subseteq \powerset S$. Suppose that $\forall X \in \mathbb S: X \subseteq T$. Consider any $\ds x \in \bigcup \mathbb S$. By definition of set union, it follows that: :$\exists X \in \mathbb S: x \in X$ But as $X \subseteq T$ it follows that $x \in T$. Thus it follows that: :$\ds \bigcup \mathbb S \subseteq T$ So: :$\ds \paren {\forall X \in \mathbb S: X \subseteq T} \implies \bigcup \mathbb S \subseteq T$ {{qed}} Category:Set Union Category:Subsets \end{proof}
23068
\section{Union of Successor Ordinal} Tags: Ordinals \begin{theorem} Let $x$ be an ordinal. Let $x^+$ denote the successor of $x$. Then: :$\ds \map \bigcup {x^+} = x$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \map \bigcup {x^+} | r = \map \bigcup {x \cup \set x} | c = {{Defof|Successor Set}} }} {{eqn | r = \paren {\bigcup x \cup \bigcup \set x} | c = Union Distributes over Union/Sets of Sets }} {{eqn | r = \paren {\bigcup x \cup x} | c = Union of Singleton }} {{eqn | r = x | c = Class is Transitive iff Union is Subset }} {{end-eqn}} {{qed}} Category:Ordinals \end{proof}
23069
\section{Union of Symmetric Differences} Tags: Set Union, Symmetric Difference, Union \begin{theorem} Let $R, S, T$ be sets. Then: :$\paren {R \symdif S} \cup \paren {S \symdif T} = \paren {R \cup S \cup T} \setminus \paren {R \cap S \cap T}$ where $R \symdif S$ denotes the symmetric difference between $R$ and $S$. \end{theorem} \begin{proof} From the definition of symmetric difference, we have: :$R \symdif S = \paren {R \setminus S} \cup \paren {S \setminus R}$ Thus, expanding: {{begin-eqn}} {{eqn | l = \paren {R \symdif S} \cup \paren {S \symdif T} | r = \paren {R \setminus S} \cup \paren {S \setminus R} \cup \paren {S \setminus T} \cup \paren {T \setminus S} }} {{eqn | r = \paren {\paren {R \setminus S} \cup \paren {T \setminus S} } \cup \paren {\paren {S \setminus R} \cup \paren {S \setminus T} } }} {{eqn | r = \paren {\paren {R \cup T} \setminus S} \cup \paren {\paren {S \setminus R} \cup \paren {S \setminus T} } | c = Set Difference is Right Distributive over Union }} {{eqn | r = \paren {\paren {R \cup T} \setminus S} \cup \paren {S \setminus \paren {R \cap T} } | c = De Morgan's Laws: Difference with Intersection }} {{eqn | r = \paren {\paren {R \cup S \cup T} \setminus S} \cup \paren {S \setminus \paren {R \cap T} } | c = Set Difference with Union is Set Difference }} {{eqn | r = \paren {R \cup S \cup T} \setminus \paren {R \cap S \cap T} | c = De Morgan's Laws for Difference with Intersection: Corollary }} {{end-eqn}} {{qed}} \end{proof}
23070
\section{Union of Symmetric Relations is Symmetric} Tags: Set Union, Relations, Symmetric Relations, Union \begin{theorem} The union of two symmetric relations is also a symmetric relation. \end{theorem} \begin{proof} Let $\RR_1$ and $\RR_2$ be symmetric relations on a set $S$. Let $\RR_3 = \RR_1 \cup \RR_2$. Then: {{begin-eqn}} {{eqn | l = \tuple {x, y} | o = \in | r = \RR_3 | c = }} {{eqn | ll= \leadsto | l = \tuple {x, y} | o = \in | r = \RR_1 | c = {{Defof|Set Union}} }} {{eqn | lo= \lor | l = \tuple {x, y} | o = \in | r = \RR_2 | c = }} {{eqn | ll= \leadsto | l = \tuple {y, x} | o = \in | r = \RR_1 | c = {{Defof|Symmetric Relation}} }} {{eqn | lo= \lor | l = \tuple {y, x} | o = \in | r = \RR_2 | c = }} {{eqn | ll= \leadsto | l = \tuple {y, x} | o = \in | r = \RR_3 | c = {{Defof|Set Union}} }} {{end-eqn}} {{qed}} Category:Symmetric Relations Category:Set Union \end{proof}
23071
\section{Union of Topologies is not necessarily Topology} Tags: Topology \begin{theorem} Let $\tau_1$ and $\tau_2$ be topologies on a set $S$. Then $\tau_1 \cup \tau_2$ is not necessarily also a topology on $S$. \end{theorem} \begin{proof} Let $S := \set {0, 1, 2}$ be a set. Let: :$\tau_1 := \set {\O, \set 0, \set 1, \set {0, 1}, S}$ :$\tau_2 := \set {\O, \set 0, \set 2, \set {0, 2}, S}$ be topologies on $S$. Then: :$\tau := \tau_1 \cup \tau_2 = \set {\O, \set 0, \set 1, \set 2, \set {0, 1} \set {0, 2}, S}$ For $\tau$ to be a topology the union of any number of elements of $\tau$ should also be in $\tau$. But: :$\set 1 \cup \set 2 = \set {1, 2} \not \in \tau$ Therefore $\tau$ is not atopology on $S$. Hence the result. {{qed}} \end{proof}
23072
\section{Union of Topologies on Singleton or Doubleton is Topology} Tags: Doubletons, Singletons, Topology, Set Union \begin{theorem} Let $S$ be a set which is either a singleton or a doubleton. Let $\family {\tau_i}_{i \mathop \in I}$ be an arbitrary non-empty indexed set of topologies on $S$. Then $\tau := \ds \bigcup_{i \mathop \in I} {\tau_i}$ is also a topology on $S$. \end{theorem} \begin{proof} Let $S$ be a singleton. Let $S = \set a$. From Topology on Singleton is Indiscrete Topology, the only possible topology on $S$ is the indiscrete topology. From Union is Idempotent, the union of any number of indiscrete topologies on $S$ is the indiscrete topology. Thus the union of any number of topologies on a singleton is a topology on that singleton. {{qed|lemma}} Let $S$ be a doubleton. Let $S = \set {a, b}$. By Topologies on Doubleton, there are $4$ possible different topologies on $S$: {{begin-eqn}} {{eqn | l = \tau_1 | r = \set {\O, \set {a, b} } | c = Indiscrete Topology }} {{eqn | l = \tau_2 | r = \set {\O, \set a, \set {a, b} } | c = Sierpiński Topology }} {{eqn | l = \tau_3 | r = \set {\O, \set b, \set {a, b} } | c = Sierpiński Topology }} {{eqn | l = \tau_4 | r = \set {\O, \set a, \set b, \set {a, b} } | c = Discrete Topology }} {{end-eqn}} It remains to show that every union of elements in $\set {\tau_1, \tau_2, \tau_3, \tau_4}$ is a topology on $S$. By inspection, the following statements are seen to hold: :$\tau_1 \cup \tau_2 = \tau_2$ :$\tau_1 \cup \tau_3 = \tau_3$ :$\tau_1 \cup \tau_4 = \tau_4$ :$\tau_2 \cup \tau_3 = \tau_4$ :$\tau_2 \cup \tau_4 = \tau_4$ :$\tau_3 \cup \tau_4 = \tau_4$ Now let $\family {\tau_i}_{i \mathop \in I}$ be an arbitrary non-empty indexed set of topologies for a set $S$. By the above, if $\tau_4$ is one of the $\tau_i$: :$\ds \tau = \bigcup_{i \mathop \in I} \tau_i = \tau_4$ So assume that $\tau_4$ is not one of the $\tau_i$. If both $\tau_2$ and $\tau_3$ are in $\family {\tau_i}_{i \mathop \in I}$, then by the above: :$\ds \tau = \bigcup_{i \mathop \in I} \tau_i = \tau_4$ Now suppose that $\tau_3$ is in $\family {\tau_i}_{i \mathop \in I}$ and $\tau_2$ is not. Then by the above it follows that: :$\tau = \tau_3$ Now suppose that $\tau_2$ is in $\family {\tau_i}_{i \mathop \in I}$ and $\tau_3$ is not. Then by the above it follows that: :$\tau = \tau_2$ Finally, assume that $\tau_2$ and $\tau_3$ are not in $\family {\tau_i}_{i \mathop \in I}$. Then the only topology in $\family {\tau_i}_{i \mathop \in I}$ is $\tau_1$. In this, we find: :$\tau = \tau_1$ Hence the result. {{qed}} \end{proof}