id
stringlengths
1
260
contents
stringlengths
1
234k
23173
\section{Unsatisfiable Set minus Tautology is Unsatisfiable} Tags: Formal Semantics \begin{theorem} Let $\LL$ be a logical language. Let $\mathscr M$ be a formal semantics for $\LL$. Let $\FF$ be an $\mathscr M$-unsatisfiable set of formulas from $\LL$. Let $\phi \in \FF$ be a tautology. Then $\FF \setminus \set {\phi}$ is also $\mathscr M$-unsatisfiable. \end{theorem} \begin{proof} Suppose $\FF \setminus \set {\phi}$ were satisfiable. Then by Satisfiable Set Union Tautology is Satisfiable, so would $\FF$ be, because: :$\FF = \paren {\FF \setminus \set {\phi} } \cup \set {\phi}$ by Set Difference Union Intersection and Intersection with Subset is Subset. Therefore, $\FF \setminus \set {\phi}$ must be unsatisfiable. {{qed}} \end{proof}
23174
\section{Unsigned Stirling Number of the First Kind of 0} Tags: Stirling Number, Stirling Numbers, Examples of Stirling Numbers of the First Kind, Binomial Coefficients \begin{theorem} :$\ds {0 \brack n} = \delta_{0 n}$ where: :$\ds {0 \brack n}$ denotes an unsigned Stirling number of the first kind :$\delta_{0 n}$ denotes the Kronecker delta. \end{theorem} \begin{proof} By definition of unsigned Stirling number of the first kind: $\ds x^{\underline 0} = \sum_k \paren {-1}^{0 - k} {0 \brack k} x^k$ Thus we have: {{begin-eqn}} {{eqn | l = x^{\underline 0} | r = 1 | c = Number to Power of Zero Falling is One }} {{eqn | r = x^0 | c = {{Defof|Integer Power}} }} {{end-eqn}} Thus, in the expression: :$\ds x^{\underline 0} = \sum_k \paren {-1}^{-k} {0 \brack k} x^k$ we have: :$\ds {0 \brack 0} = 1$ and for all $k \in \Z_{>0}$: :$\ds {0 \brack k} = 0$ That is: :$\ds {0 \brack k} = \delta_{0 k}$ {{qed}} \end{proof}
23175
\section{Unsigned Stirling Number of the First Kind of Number with Greater} Tags: Stirling Numbers, Unsigned Stirling Number of the First Kind of Number with Greater \begin{theorem} Let $n, k \in \Z_{\ge 0}$. Let $k > n$. Let $\ds {n \brack k}$ denote an unsigned Stirling number of the first kind. Then: :$\ds {n \brack k} = 0$ \end{theorem} \begin{proof} By definition, unsigned Stirling number of the first kind are defined as the polynomial coefficients $\displaystyle \left[{n \atop k}\right]$ which satisfy the equation: :$\displaystyle x^{\underline n} = \sum_k \left({-1}\right)^{n - k} \left[{n \atop k}\right] x^k$ where $x^{\underline n}$ denotes the $n$th falling factorial of $x$. Both of the expressions on the {{LHS}} and {{RHS}} are polynomials in $x$ of degree $n$. Hence the coefficient $\displaystyle \left[{n \atop k}\right]$ of $x^k$ where $k > n$ is $0$. {{qed}} \end{proof}
23176
\section{Unsigned Stirling Number of the First Kind of Number with Greater/Proof 1} Tags: Stirling Numbers, Unsigned Stirling Number of the First Kind of Number with Greater \begin{theorem} Let $n, k \in \Z_{\ge 0}$ such that $k > n$. {{:Unsigned Stirling Number of the First Kind of Number with Greater}} \end{theorem} \begin{proof} By definition, unsigned Stirling number of the first kind are defined as the polynomial coefficients $\ds {n \brack k}$ which satisfy the equation: :$\ds x^{\underline n} = \sum_k \paren {-1}^{n - k} {n \brack k} x^k$ where $x^{\underline n}$ denotes the $n$th falling factorial of $x$. Both of the expressions on the {{LHS}} and {{RHS}} are polynomials in $x$ of degree $n$. Hence the coefficient $\ds {n \brack k}$ of $x^k$ where $k > n$ is $0$. {{qed}} Category:Unsigned Stirling Number of the First Kind of Number with Greater \end{proof}
23177
\section{Unsigned Stirling Number of the First Kind of Number with Greater/Proof 2} Tags: Stirling Numbers, Unsigned Stirling Number of the First Kind of Number with Greater \begin{theorem} Let $n, k \in \Z_{\ge 0}$ such that $k > n$. {{:Unsigned Stirling Number of the First Kind of Number with Greater}} \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \N_{> 0}$, let $\map P v$ be the proposition: :$\ds k > n \implies {n \brack k} = 0$ \end{proof}
23178
\section{Unsigned Stirling Number of the First Kind of Number with Self} Tags: Stirling Numbers \begin{theorem} :$\ds {n \brack n} = 1$ where $\ds {n \brack n}$ denotes an unsigned Stirling number of the first kind. \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \N_{> 0}$, let $\map P n$ be the proposition: :$\ds {n \brack n} = 1$ \end{proof}
23179
\section{Unsigned Stirling Number of the First Kind of n+1 with 0} Tags: Stirling Numbers, Examples of Stirling Numbers of the First Kind \begin{theorem} Let $n \in \Z_{\ge 0}$. Then: :$\ds {n + 1 \brack 0} = 0$ where $\ds {n + 1 \brack 0}$ denotes an unsigned Stirling number of the first kind. \end{theorem} \begin{proof} We are given that $k = 0$. So by definition of unsigned Stirling number of the first kind: :$\ds {n \brack k} = \delta_{n k}$ where $\delta_{n k}$ is the Kronecker delta. Thus: {{begin-eqn}} {{eqn | l = n | o = \ge | r = 0 | c = by hypothesis }} {{eqn | ll= \leadsto | l = n + 1 | o = > | r = 0 | c = }} {{eqn | ll= \leadsto | l = n + 1 | o = \ne | r = 0 | c = }} {{eqn | ll= \leadsto | l = \delta_{\paren {n + 1} 0} | r = 0 | c = }} {{end-eqn}} Hence the result. {{qed}} \end{proof}
23180
\section{Unsigned Stirling Number of the First Kind of n+1 with 1} Tags: Stirling Numbers, Examples of Stirling Numbers of the First Kind \begin{theorem} Let $n \in \Z_{\ge 0}$. Then: :$\ds {n + 1 \brack 1} = n!$ where: :$\ds {n + 1 \brack 1}$ denotes an unsigned Stirling number of the first kind :$n!$ denotes $n$ factorial. \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds {n + 1 \brack 1} = n!$ \end{proof}
23181
\section{Unsigned Stirling Number of the First Kind of n with n-1} Tags: Stirling Numbers, Examples of Stirling Numbers of the First Kind \begin{theorem} Let $n \in \Z_{> 0}$ be an integer greater than $0$. Then: :$\ds {n \brack n - 1} = \binom n 2$ where: :$\ds {n \brack n - 1}$ denotes an unsigned Stirling number of the first kind :$\dbinom n 2$ denotes a binomial coefficient. \end{theorem} \begin{proof} The proof proceeds by induction. \end{proof}
23182
\section{Unsigned Stirling Number of the First Kind of n with n-2} Tags: Examples of Stirling Numbers of the First Kind \begin{theorem} Let $n \in \Z_{\ge 2}$ be an integer greater than or equal to $2$. Then: :$\ds {n \brack n - 2} = \binom n 4 + 2 \binom {n + 1} 4$ where: :$\ds {n \brack n - 2}$ denotes an unsigned Stirling number of the first kind :$\dbinom n 4$ denotes a binomial coefficient. \end{theorem} \begin{proof} The proof proceeds by induction. \end{proof}
23183
\section{Unsigned Stirling Number of the First Kind of n with n-3} Tags: Examples of Stirling Numbers of the First Kind \begin{theorem} Let $n \in \Z_{\ge 3}$ be an integer greater than or equal to $3$. Then: :$\ds {n \brack n - 3} = \binom n 6 + 8 \binom {n + 1} 6 + 6 \binom {n + 2} 6$ where: :$\ds {n \brack n - 3}$ denotes an unsigned Stirling number of the first kind :$\dbinom n 6$ denotes a binomial coefficient. \end{theorem} \begin{proof} The proof proceeds by induction. \end{proof}
23184
\section{Unsymmetric Functional Equation for Riemann Zeta Function} Tags: Riemann Zeta Function, Zeta Function \begin{theorem} Let $\zeta$ be the Riemann zeta function. Let $\Gamma$ be the gamma function. Then for all $s \in \C$: :$\map \zeta {1 - s} = 2^{1 - s} \pi^{-s} \map \cos {\dfrac {\pi s} 2} \map \Gamma s \map \zeta s$ \end{theorem} \begin{proof} We have for $s \notin \Z$ Euler's Reflection Formula: :$\map \Gamma s \map \Gamma {1 - s} = \dfrac \pi {\map \sin {\pi s} }$ Replacing $s \mapsto \dfrac {1 + s} 2$ we deduce: {{begin-eqn}} {{eqn | l = \map \Gamma {\frac {1 + s} 2} \, \map \Gamma {\frac {1 - s} 2} | r = \frac \pi {\map \sin {\pi \paren {1 + s} / 2} } | c = substituting $s \mapsto \dfrac {1 + s} 2$ }} {{eqn | r = \frac \pi {\map \cos {\pi s / 2} } | c = Sine and Cosine are Periodic on Reals }} {{end-eqn}} Also, we have Legendre's Duplication Formula for $z \notin -\dfrac 1 2 \N_0$: :$\map \Gamma s \map \Gamma {s + \dfrac 1 2} = 2^{1 - 2 s} \sqrt \pi \map \Gamma {2 s}$ Replacing $s \mapsto s / 2$ this yields: :$\map \Gamma {\dfrac s 2} \map \Gamma {\dfrac {1 + s } 2} = 2^{1 - s} \sqrt \pi \map \Gamma s$ Together these give: :$(1): \quad \dfrac {\map \Gamma {s / 2} } {\map \Gamma {\paren {1 - s} / 2} } = 2^{1 - s} \pi^{-1/2} \map \Gamma s \map \cos {\pi s / 2}$ Now we take the Functional Equation for Riemann Zeta Function: :$\pi^{-s/2} \map \zeta s \map \Gamma {s / 2} \map \Gamma {\dfrac {1 - s} 2}^{-1} = \pi^{\paren {s - 1} / 2} \map \zeta {1 - s}$ and substitute $(1)$ to give: :$\pi^{\paren {s - 1} / 2} \map \zeta {1 - s} = \pi^{-\paren {s + 1} / 2} \map \zeta s 2^{1 - s} \map \Gamma s \map \cos {\pi s / 2}$ Multiplying by $\pi^{\paren {s - 1} / 2}$ this becomes: :$\map \zeta {1 - s} = \pi^{-s} 2^{1 - s} \map \cos {\pi s / 2} \map \Gamma s \map \zeta s$ as desired. {{qed}} Category:Riemann Zeta Function \end{proof}
23185
\section{Up-Complete Lower Bounded Join Semilattice is Complete} Tags: Complete Lattices \begin{theorem} Let $\struct {S, \preceq}$ be an up-complete lower bounded join semillattice. Then $\struct {S, \preceq}$ is complete. \end{theorem} \begin{proof} Let $X$ be a subset of $S$. In the case when $X = \O$: by definition of lower bounded: :$\exists L \in S: L$ is lower bound for $S$. By definition of empty set: :$L$ is upper bound for $X$. By definition of lower bound: :$\forall x \in S: x$ is upper bound for $X \implies L \preceq x$ Thus by definition :$L$ is a supremum of $X$. Thus: :$X$ admint a supremum. {{qed|lemma}} In the case when $X \ne \O$: Define :$Y := \set {\sup A: A \in \map {\operatorname {Fin} } X \land A \ne \O}$ where $\map {\operatorname {Fin} } X$ denotes the set of all finite subsets of $X$. By Existence of Non-Empty Finite Suprema in Join Semilattice :all suprema in $Y$ exist, By definition of non-empty set: :$Y$ is a non-empty set. We will prove that :$Y$ is directed Let $x, y \in Y$. By definition of $Y$: :$\exists A \in \map {\operatorname {Fin} } X \setminus \set \O: x = \sup A$ and :$\exists B \in \map {\operatorname {Fin} } X \setminus \set \O: y = \sup B$ By Finite Union of Finite Sets is Finite: :$A \cup B$ is finite :$A \cup B \ne \O$ By Union is Smallest Superset: :$A \cup B \subseteq X$ By definition of $Y$: :$\map \sup {A \cup B} \in Y$ By Set is Subset of Union: :$A \subseteq A \cup B$ and $B \subseteq A \cup B$ Thus by Supremum of Subset: :$x \preceq \map \sup {A \cup B}$ and $y \preceq \map \sup {A \cup B}$ Thus by definition: :$Y$ is directed. By definition up-complete: :$Y$ admits a supremum By definition of supremum :$\sup Y$ is upper bound for $Y$ We will prove that :$X \subseteq Y$ Let $x \in X$. By definitions of subset and singleton: :$\set x \subseteq X$ :$\set x$ is finite :$\set x \ne \O$ By definition of $Y$: :$\sup {\set x} \in Y$ Thus by Supremum of Singleton: :$x \in Y$ By Upper Bound is Upper Bound for Subset: :$\sup Y$ is upper bound for $X$ We will prove that :$\forall x \in S: x$ is upper bound for $X \implies \sup Y \preceq x$ Let $x \in S$ such that :$x$ is upper bound for $X$ We will prove as sublemma that :$x$ is upper bound for $Y$ Let $y \in Y$. By definition of $Y$: :$\exists A \in \map {\operatorname {Fin} } X \setminus \set \O: y = \sup A$ By definition of $\operatorname {Fin}$: :$A \subseteq X$ By Upper Bound is Upper Bound for Subset :$x$ is upper bound for $A$ Thus by definition of supremum: :$y \preceq x$ Thus by definition :$x$ is upper bound for $Y$ This ends the proof of sublemma. Thus by definition of supremum: :$\sup Y \preceq x$ This ends the proof of lemma. By definition :$\sup Y$ is a supremum of $X$ and thus: :$X$ admits a supremum. {{qed|lemma}} Thus result follows by Lattice is Complete iff it Admits All Suprema. {{qed}} \end{proof}
23186
\section{Up-Complete Product/Lemma 1} Tags: Order Theory \begin{theorem} {{:Up-Complete Product}} Let $X$ be a directed subset of $S$. Let $Y$ be a directed subset of $T$. Then $X \times Y$ is also a directed subset of $S \times T$. \end{theorem} \begin{proof} Let $\tuple {s_1, t_1}, \tuple {s_2, t_2} \in X \times Y$. By definition of Cartesian product: :$s_1, s_2 \in X$ and $t_1, t_2 \in Y$ By definition of directed subset: :$\exists h_1 \in X: s_1 \preceq_1 h_1 \land s_2 \preceq_1 h_1$ and :$\exists h_2 \in X: t_1 \preceq_2 h_2 \land t_2 \preceq_2 h_2$ By definition of simple order product: :$\exists \tuple {h_1, h_2} \in X \times Y: \tuple {s_1, t_1} \preceq \tuple {h_1, h_2} \land \tuple {s_2, t_2} \preceq \tuple {h_1, h_2}$ Thus by definition: :$X \times Y$ is a directed subset of $S \times T$. {{qed}} \end{proof}
23187
\section{Up-Complete Product/Lemma 2} Tags: Order Theory \begin{theorem} {{:Up-Complete Product}} Let $X$ be a directed subset of $S \times T$. Then :$\map {\pr_1^\to} X$ and $\map {\pr_2^\to} X$ are directed where :$\pr_1$ denotes the first projection on $S \times T$ :$\pr_2$ denotes the second projection on $S \times T$ :$\map {\pr_1^\to} X$ denotes the image of $X$ under $\pr_1$ \end{theorem} \begin{proof} Let $x, y \in \map {\pr_1^\to} X$. By definitions of image of set and projections: :$\exists x' \in T: \tuple {x, x'} \in X$ and :$\exists y' \in T: \tuple {y, y'} \in X$ By definition of directed: :$\exists \tuple {a, b} \in X: \tuple {x, x'} \preceq \tuple {a, b} \land \tuple {y, y'} \preceq \tuple {a, b}$ By definition of simple order product: :$\exists a \in \map {\pr_1^\to} X: x \preceq_1 a \land y \preceq_1 a$ Thus by definition :$\map {\pr_1^\to} X$ is directed. By mutatis mutandis: :$\map {\pr_2^\to} X$ is directed. {{qed}} \end{proof}
23188
\section{Upper Adjoint Preserves All Infima} Tags: Galois Connections, Order Theory \begin{theorem} Let $\left({S, \preceq}\right)$, $\left({T, \precsim}\right)$ be ordered sets. Let $g: S \to T$ be an upper adjoint of Galois connection. Then $g$ preserves all infima. \end{theorem} \begin{proof} By definition of upper adjoint :$\exists d: T \to S: \left({g, d}\right)$ is a Galois connection Let $X$ be a subset of $S$ such that :$X$ admits an infimum. We will prove as lemma 1 that :$\forall t \in T: t$ is lower bound for $g^\to\left({X}\right) \implies t \precsim g\left({\inf X}\right)$ Let $t \in T$ such that :$t$ is lower bound for $g^\to\left({X}\right)$ We will prove as sublemma that :$d\left({t}\right)$ is lower bound for $X$ Let $s \in X$. By definition of image of set: :$g\left({s})\right) \in g^\to\left({X}\right)$ By definition of lower bound: :$t \precsim g\left({s}\right)$ Thus by definition of Galois connection: :$d\left({t}\right) \preceq s$ This ends the proof of sublemma. By definition of infimum: :$d\left({t}\right) \preceq \inf X$ Thus by definition of Galois connection: :$t \precsim g\left({\inf X}\right)$ This ends the proof of lemma 1. We will prove as lemma 2 that :$g\left({\inf X}\right)$ is lower bound for $g^\to\left({X}\right)$ Let $t \in g^\to\left({X}\right)$. By definition of image of set: :$\exists s \in S: s \in X \land g\left({s}\right) = t$ By definition of infimum: :$\inf X$ is lower bound for $X$ By definition of lower bound: :$\inf X \preceq s$ By definition of Galois connection: :$g$ is increasing mapping. Thus by definition of increasing mapping: :$g\left({\inf X}\right) \precsim t$ This ends the proof of lemma 2. Thus by definition of infimum: :$g^\to\left({X}\right)$ admits an infimum and :$\inf\left({g^\to\left({X}\right)}\right) = g\left({\inf X}\right)$ Thus by definition: :$g$ preserves infimum on $X$ Thus by definition: :$g$ preserves all infima. {{qed}} \end{proof}
23189
\section{Upper Adjoint of Galois Connection is Surjection implies Lower Adjoint at Element is Minimum of Preimage of Singleton of Element} Tags: Galois Connections \begin{theorem} Let $L = \struct {S, \preceq}, R = \paren {T, \precsim}$ be ordered sets. Let $g: S \to T, d:T \to S$ be mappings such that: :$\tuple {g, d}$ is a Galois connection and :$g$ is a surjection. Then :$\forall t \in T: \map d t = \min \set {g^{-1} \sqbrk {\set t} }$ \end{theorem} \begin{proof} By definition of Galois connection: :$g$ is an increasing mapping. Let $t \in T$. By definition of surjection: :$\Img g = T$ By Image of Preimage under Mapping/Corollary: :$g \sqbrk {g^{-1} \sqbrk {t^\succeq} } = t^\succeq$ By Galois Connection is Expressed by Minimum: :$\map d t = \min \set {g^{-1} \sqbrk {t^\succeq} }$ By definition of min operation: :$\map d t = \inf \set {g^{-1} \sqbrk {t^\succeq} }$ and $\map d t \in g^{-1} \sqbrk {t^\succeq}$ By definition of image of set: :$\map g {\map d t} \in g \sqbrk {g^{-1} \sqbrk {t^\succeq} }$ By definition of upper closure of element: :$t \precsim \map g {\map d t}$ By definition of minimum element: :$g^{-1} \sqbrk {t^\succeq}$ admits an infimum. By definition of infimum: :$\map d t$ is lower bound for $g^{-1} \sqbrk {t^\succeq}$ By definition of surjection: :$\exists s \in S: t = \map g s$ By definition of singleton: :$t \in \set t$ By Set is Subset of Upper Closure :$\set t \subseteq \set t^\succeq$ By Upper Closure of Singleton: :$\set t^\succeq = t^\succeq$ By definition of image of set: :$s \in g^{-1} \sqbrk {t^\succeq}$ By definition of lower bound: :$\map d t \preceq s$ By definition of increasing mapping: :$\map g {\map d t} \precsim t$ By definition of antisymmetry: :$\map g {\map d t} = t$ By definition of preimage of set: :$\map d t \in g^{-1} \sqbrk {\set t}$ By Image of Subset under Relation is Subset of Image/Corollary 3: :$g^{-1} \sqbrk {\set t} \subseteq g^{-1} \sqbrk {t^\succeq}$ We will prove that :$\map d t$ is an infimum of $g^{-1} \sqbrk {\set t}$ Thus by Lower Bound is Lower Bound for Subset: :$\map d t$ is lower bound for $g^{-1} \sqbrk {\set t}$ Thus by definition: :$\forall s \in S: s$ is lower bound for $g^{-1} \sqbrk {\set t} \implies s \preceq \map d t$ {{qed|lemma}} Thus by definition of min operation: :$\map d t = \min \set {g^{-1} \sqbrk {\set t} }$ {{qed}} \end{proof}
23190
\section{Upper Bound for Abscissa of Absolute Convergence of Product of Dirichlet Series} Tags: Dirichlet Series \begin{theorem} Let $f, g: \N \to \C$ be arithmetic functions with Dirichlet convolution $h = f * g$. Let $F, G, H$ be their Dirichlet series. Let $\sigma_f, \sigma_g, \sigma_h$ be their abscissae of absolute convergence. Then: :$\sigma_h \le \max \set {\sigma_f, \sigma_g}$ \end{theorem} \begin{proof} Follows from Dirichlet Series of Convolution of Arithmetic Functions {{ProofWanted}} Category:Dirichlet Series \end{proof}
23191
\section{Upper Bound for Binomial Coefficient} Tags: Binomial Coefficients \begin{theorem} Let $n, k \in \Z$ such that $n \ge k \ge 0$. Then: :$\dbinom n k \le \left({\dfrac {n e} k}\right)^k$ where $\dbinom n k$ denotes a binomial coefficient. \end{theorem} \begin{proof} From Lower and Upper Bound of Factorial, we have that: :$\dfrac {k^k} {e^{k - 1} } \le k!$ so that: :$(1): \quad \dfrac 1 {k!} \le \dfrac {e^{k - 1} } {k^k}$ Then: {{begin-eqn}} {{eqn | l = \dbinom n k | r = \dfrac {n^\underline k} {k!} | c = {{Defof|Binomial Coefficient}} }} {{eqn | o = \le | r = \dfrac {n^k} {k!} | c = }} {{eqn | o = \le | r = \dfrac {n^k e^{k - 1} } {k^k} | c = from $(1)$ }} {{eqn | o = \le | r = \dfrac {n^k e^k} {k^k} | c = }} {{end-eqn}} Hence the result. {{qed}} \end{proof}
23192
\section{Upper Bound for Harmonic Number} Tags: Harmonic Numbers \begin{theorem} :$H_{2^m} \le 1 + m$ where $H_{2^m}$ denotes the $2^m$th harmonic number. \end{theorem} \begin{proof} :$\ds \sum_{n \mathop = 1}^\infty \frac 1 n = \underbrace 1_{s_0} + \underbrace {\frac 1 2 + \frac 1 3}_{s_1} + \underbrace {\frac 1 4 + \frac 1 5 + \frac 1 6 + \frac 1 7}_{s_2} + \cdots$ where $\ds s_k = \sum_{i \mathop = 2^k}^{2^{k + 1} \mathop - 1} \frac 1 i$ From Ordering of Reciprocals: :$\forall m, n \in \N_{>0}: m > n: \dfrac 1 m < \dfrac 1 n$ so each of the summands in a given $s_k$ is less than $\dfrac 1 {2^k}$. The number of summands in a given $s_k$ is $2^{k + 1} - 2^k = 2 \times 2^k - 2^k = 2^k$, and so: :$s_k < \dfrac {2^k} {2^k} = 1$ Hence the harmonic sum $H_{2^m}$ satisfies the following inequality: {{begin-eqn}} {{eqn | l = \sum_{n \mathop = 1}^{2^m} \frac 1 n | r = \sum_{k \mathop = 0}^m \paren {s_k} | c = }} {{eqn | o = < | r = \sum_{a \mathop = 0}^m 1 | c = }} {{eqn | r = 1 + m | c = }} {{end-eqn}} Hence the result. {{qed}} \end{proof}
23193
\section{Upper Bound for Lucas Number} Tags: Lucas Numbers, Proofs by Induction \begin{theorem} Let $L_n$ denote the $n$th Lucas number. Then: :$L_n < \paren {\dfrac 7 4}^n$ \end{theorem} \begin{proof} The proof proceeds by complete induction. For all $n \in \Z_{\ge 1}$, let $\map P n$ be the proposition: :$L_n < \paren {\dfrac 7 4}^n$ $\map P 1$ is the case: {{begin-eqn}} {{eqn | l = L_1 | r = 1 | c = }} {{eqn | o = < | r = \dfrac 7 4 | c = }} {{end-eqn}} Thus $\map P 1$ is seen to hold. \end{proof}
23194
\section{Upper Bound for Subset} Tags: Orderings, Order Theory \begin{theorem} Let $\left({S, \preceq}\right)$ be an ordered set. Let $U$ be an upper bound for $S$. Let $\left({T, \preceq}\right)$ be a subset of $\left({S, \preceq}\right)$. Then $U$ is an upper bound for $T$. \end{theorem} \begin{proof} By definition of upper bound: :$\forall x \in S: x \preceq U$ But as $\forall y \in T: y \in S$ by definition of subset, it follows that: :$\forall y \in T: y \preceq U$. Hence the result, again by definition of upper bound. {{qed}} \end{proof}
23195
\section{Upper Bound is Dual to Lower Bound} Tags: Order Theory \begin{theorem} Let $\struct {S, \preceq}$ be an ordered set. Let $a \in S$ and $T \subseteq S$. The following are dual statements: :$a$ is an upper bound for $T$ :$a$ is a lower bound for $T$ \end{theorem} \begin{proof} By definition, $a$ is an upper bound for $T$ {{iff}}: :$\forall t \in T: t \preceq a$ The dual of this statement is: :$\forall t \in T: a \preceq t$ by Dual Pairs (Order Theory). By definition, this means $a$ is a lower bound for $T$. The converse follows from Dual of Dual Statement (Order Theory). {{qed}} \end{proof}
23196
\section{Upper Bound is Upper Bound for Subset} Tags: Preorder Theory \begin{theorem} Let $\left({S, \preceq}\right)$ be a preordered set. Let $A, B$ be subsets of $S$ such that :$B \subseteq A$ Let $U$ be an upper bound for $A$. Then $U$ is an upper bound for $B$. \end{theorem} \begin{proof} Assume that: : $U$ is upper bound for $A$. By definition of upper bound: :$\forall x \in A: x \preceq U$ By definition of subset: :$\forall x \in B: x \in A$ Hence: :$\forall x \in B: x \preceq U$ Thus by definition : $U$ is sn upper bound for $B$. {{qed}} \end{proof}
23197
\section{Upper Bound of Natural Logarithm} Tags: Inequalities, Natural Logarithms, Analysis, Logarithms, Upper Bound of Natural Logarithm \begin{theorem} Let $\ln x$ be the natural logarithm of $x$ where $x \in \R_{>0}$. Then: :$\ln x \le x - 1$ \end{theorem} \begin{proof} From Logarithm is Strictly Increasing and Strictly Concave, $\ln$ is (strictly) concave. From Mean Value of Concave Real Function: : $\ln y - \ln 1 \le \left({D \ln 1}\right) \left({y - 1}\right)$ From Derivative of Natural Logarithm: : $D \ln 1 = \dfrac 1 1 = 1$ So: : $\ln y - \ln 1 \le \left({y - 1}\right)$ But from Logarithm of 1 is 0: : $\ln 1 = 0$ Hence the result. {{qed}} \end{proof}
23198
\section{Upper Bound of Natural Logarithm/Corollary} Tags: Inequalities, Logarithms, Upper Bound of Natural Logarithm \begin{theorem} Let $\ln y$ be the natural logarithm of $y$ where $y \in \R_{>0}$. Then: :$\forall s \in \R_{>0}: \ln x \le \dfrac {x^s} s$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = s \ln x | r = \ln {x^s} | c = Logarithm of Power }} {{eqn | o = \le | r = x^s - 1 | c = Upper Bound of Natural Logarithm }} {{eqn | o = \le | r = x^s | c = }} {{end-eqn}} The result follows by dividing both sides by $s$. {{qed}} \end{proof}
23199
\section{Upper Bound of Order of Non-Abelian Finite Simple Group/Corollary} Tags: Simple Groups, Self-Inverse Elements, Finite Groups, Centralizers \begin{theorem} Let $H$ be a finite group of even order. Let $u \in H$ be a self-inverse element of $H$. Then there are finitely many types of finite simple group $G$ such that: :$G$ has a self-inverse element $t \in G$ :$\map {C_G} t \cong H$ \end{theorem} \begin{proof} First suppose that $G$ is abelian. Then by Abelian Group is Simple iff Prime, $\order G = 2$. So let $G$ be non-abelian. From Upper Bound of Order of Non-Abelian Finite Simple Group: :$\order G \le \paren {\dfrac {\order H \paren {\order H + 1} } 2}!$ which depends completely upon the given group $H$. The result follows from Finite Number of Groups of Given Finite Order. {{qed}} \end{proof}
23200
\section{Upper Bound of Ordinal Sum} Tags: Ordinal Arithmetic \begin{theorem} Let $x$ and $y$ be ordinals. Suppose $x > 1$. Let $\sequence {a_n}$ be a finite sequence of ordinals such that: :$a_n < x$ for all $n$ Let $\sequence {b_n}$ be a strictly decreasing finite sequence of ordinals such that: :$b_n < y$ for all $n$ Then: :$\ds \sum_{i \mathop = 1}^n x^{b_i} a_i < x^y$ \end{theorem} \begin{proof} The proof shall proceed by finite induction on $n$: For all $n \in \N_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \sum_{i \mathop = 1}^n x^{b_i} a_i < x^y$ \end{proof}
23201
\section{Upper Bounds are Equivalent implies Suprema are equal} Tags: Order Theory, Suprema \begin{theorem} Let $L = \struct {S, \preceq}$ be an ordered set. Let $X, Y$ be subsets of $S$. Assume that :$X$ admits a supremum and :$\forall x \in S: x$ is upper bound for $X \iff x$ is upper bound for $Y$ Then $\sup X = \sup Y$ \end{theorem} \begin{proof} We will prove that :$\forall b \in S: b$ is upper bound for $Y \implies \sup X \preceq b$ Let $b \in S$ such that :$b$ is upper bound for $Y$. By assumption: :$b$ is upper bound for $X$. Thus by definition of supremum: :$\sup X \preceq b$ {{qed|lemma}} By definition of supremum: :$\sup X$ is upper bound for $X$. By assumption: :$\sup X$ is upper bound for $Y$. Thus by definition of supremum: :$\sup X = \sup Y$ {{qed}} \end{proof}
23202
\section{Upper Bounds for Prime Numbers} Tags: Prime Numbers, Number Theory, Upper Bounds for Prime Numbers \begin{theorem} Let $p: \N \to \N$ be the prime enumeration function. Then $\forall n \in \N$, the value of $\map p n$ is bounded above. In particular: \end{theorem} \begin{proof} Let us write $p_n = p \left({n}\right)$. \end{proof}
23203
\section{Upper Bounds for Prime Numbers/Result 1} Tags: Prime Numbers, Number Theory, Upper Bounds for Prime Numbers \begin{theorem} Let $p: \N \to \N$ be the prime enumeration function. Then $\forall n \in \N$, the value of $\map p n$ is bounded above. In particular: :$\forall n \in \N: \map p n \le 2^{2^{n - 1} }$ \end{theorem} \begin{proof} Proof by strong induction: Let us write $p_n = \map p n$. For all $n \in \N_{>0}$, let $\map P n$ be the proposition: :$\map p n \le 2^{2^{n - 1} }$ \end{proof}
23204
\section{Upper Bounds for Prime Numbers/Result 2} Tags: Prime Numbers, Number Theory, Upper Bounds for Prime Numbers \begin{theorem} Let $p: \N \to \N$ be the prime enumeration function. Then $\forall n \in \N$, the value of $\map p n$ is bounded above. In particular: :$\forall n \in \N: \map p n \le \paren {p \paren {n - 1} }^{n - 1} + 1$ \end{theorem} \begin{proof} Let us write $p_n = \map p n$. Let us take $N = p_1 p_2 \cdots p_n + 1$. By the same argument as in Euclid's Theorem, we have that either $N$ is prime, or it is not. If $N$ is prime, then either $N = p_{n + 1}$ or not, in which case $N > p_{n + 1}$. In the second case, $N$ has a prime factor not in $\set {p_1, p_2, \ldots, p_n}$ Therefore it must have a prime factor greater than any of $\set {p_1, p_2, \ldots, p_n}$. In any case, the next prime after $p_n$ can be no greater than $p_1 p_2 \cdots p_n + 1$. Hence the result. {{qed}} \end{proof}
23205
\section{Upper Bounds for Prime Numbers/Result 3} Tags: Prime Numbers, Number Theory, Upper Bounds for Prime Numbers \begin{theorem} Let $p: \N \to \N$ be the prime enumeration function. Then $\forall n \in \N$, the value of $p \left({n}\right)$ is bounded above. In particular: : $\forall n \in \N_{>1}: p \left({n}\right) < 2^n$ \end{theorem} \begin{proof} Let us write $p_n = p \left({n}\right)$. From Bertrand's Conjecture, for each $n \ge 2$ there exists a prime $p$ such that $n < p < 2 n$. For all $n \in \N_{>0}$, let $P \left({n}\right)$ be the proposition: : $p_n < 2^n$ $P(1)$ is the statement: :$p_1 = 2 = 2^1$ As this does not fulfil the criterion: :$p \left({n}\right) < 2^n$ it is not included in the result. \end{proof}
23206
\section{Upper Closure in Ordered Subset is Intersection of Subset and Upper Closure} Tags: Upper Closures \begin{theorem} Let $L = \left({S, \preceq}\right)$ be an ordered set. Let $\left({T, \precsim}\right)$ be an ordered subset of $L$. Let $t \in T$. Then $t^\succsim = T \cap t^\succeq$ \end{theorem} \begin{proof} By definition of ordered subset: :$T \subseteq S$ We will prove that :$t^\succsim \subseteq T \cap t^\succeq$ Let $x \in t^\succsim$ By definition of upper closure of element: :$x \in T$ and $t \precsim x$ By definition of ordered subset: :$t \preceq x$ By definition of upper closure of element: :$x \in t^\succeq$ Thus by definition of intersection: :$x \in T \cap t^\succeq$ {{qed|lemma}} We will prove that :$T \cap t^\succeq \subseteq t^\succsim$ Let $x \in T \cap t^\succeq$ By definition of intersection: :$x \in T$ and $x \in t^\succeq$ By definition of upper closure of element: :$t \preceq x$ By definition of ordered subset: :$t \precsim x$ Thus by definition of upper closure of element: :$x \in t^\succsim$ {{qed|lemma}} By definition of set equality: :$t^\succsim = T \cap t^\succeq$ {{qed}} Category:Upper Closures \end{proof}
23207
\section{Upper Closure is Compact in Topological Lattice} Tags: Compact Spaces, Topological Order Theory \begin{theorem} Let $L = \struct {S, \preceq, \tau}$ be a topological lattice. Suppose that: :for every subset $X$ of $S$ if $X$ is open, then $X$ is upper. Let $x \in S$. Then $x^\succeq$ is compact where $x^\succeq$ denotes the upper closure of $x$. \end{theorem} \begin{proof} Let $\FF$ be a set of subsets of $S$ such that: :$\FF$ is open cover of $x^\succeq$ By definition of cover: :$x^\succeq \subseteq \bigcup \FF$ By definitions of upper closure of element and reflexivity: :$x \in x^\succeq$ By definition of subset: :$x \in \bigcup \FF$ By definition of union: :$\exists Y \in \FF: x \in Y$ Define $\GG = \set Y$. By definition of open cover: :$Y$ is open. We will prove that: :$x^\succeq \subseteq \bigcup \GG$ Let $y \in x^\succeq$. By definition of upper closure of element: :$x \preceq y$ By Union of Singleton: :$\bigcup \GG = Y$ By assumption: :$Y$ is upper. Thus by definition of upper set: :$x \in \bigcup \GG$ {{qed|lemma}} Then by definition: :$\GG$ is cover of $x^\succeq$ By definitions of singleton and subset: :$\GG \subseteq \FF$ By definition: :$\GG$ is subcover of $\FF$. By Singleton is Finite: :$\GG$ is finite. Thus by definition: :$\GG$ is finite subcover of $\FF$. {{qed}} \end{proof}
23208
\section{Upper Closure is Decreasing} Tags: Upper Closures \begin{theorem} Let $\struct {S, \preceq}$ be an ordered set. Let $x, y$ be elements of $S$ such that :$x \preceq y$ then $y^\succeq \subseteq x^\succeq$ where $y^\succeq$ denotes the upper closure of $y$. \end{theorem} \begin{proof} Let $z \in y^\succeq$. By definition of upper closure of element: :$y \preceq z$ By definition of ordering, $\preceq$ is transitive. From $x \preceq y$ and $y \preceq z$: :$x \preceq z$ Thus again by definition of upper closure of element: :$z \in x^\succeq$ {{qed}} \end{proof}
23209
\section{Upper Closure is Smallest Containing Upper Set} Tags: Upper Closures, Upper Sets, Order Theory \begin{theorem} Let $\struct {S, \preceq}$ be an ordered set. Let $T \subseteq S$. Let $U = T^\succeq$ be the upper closure of $T$. Then $U$ is the smallest upper set containing $T$ as a subset. \end{theorem} \begin{proof} Follows from Upper Closure is Closure Operator and Set Closure is Smallest Closed Set/Closure Operator. {{qed}} \end{proof}
23210
\section{Upper Closure is Upper Set} Tags: Upper Closures, Upper Sets, Order Theory \begin{theorem} Let $(S, \preceq, \tau)$ be an ordered set. Let $T$ be a subset of $S$. Let $U$ be the upper closure of $T$. Then $U$ is an upper set. \end{theorem} \begin{proof} Let $a \in U$. Let $b \in S$ with $a \preceq b$. By the definition of upper closure, there is a $t \in T$ such that $t \preceq a$. By transitivity, $t \preceq b$. Thus, agin by the definition of upper closure, $b \in U$. Since this holds for all such $a$ and $b$, $U$ is an upper set. {{qed}} \end{proof}
23211
\section{Upper Closure of Coarser Subset is Subset of Upper Closure} Tags: Preorder Theory, Upper Closures \begin{theorem} Let $L = \left({S, \preceq}\right)$ be a preordered set. Let $A, B$ be subsets of $S$ such that :$A$ is coarser than $B$. Then $A^\succeq \subseteq B^\succeq$ \end{theorem} \begin{proof} Let $x \in A^\succeq$ By definition of upper closure of subset: :$\exists y \in A: y \preceq x$ By definition of coarser subset: :$\exists z \in B: z \preceq y$ By definition of transitivity: :$z \preceq x$ Thus by definition of upper closure of subset: :$x \in B^\succeq$ {{qed}} \end{proof}
23212
\section{Upper Closure of Element is Filter} Tags: Upper Closures \begin{theorem} Let $\struct {S, \preceq}$ be an ordered set. Let $s$ be an element of $S$. Then: :$s^\succeq$ is a filter in $\struct {S, \preceq}$ where $s^\succeq$ denotes the upper closure of $s$. \end{theorem} \begin{proof} By Singleton is Directed and Filtered Subset :$\set s$ is a filtered subset of $S$ By Filtered iff Upper Closure Filtered: :$\set s^\succeq$ is a filtered subset of $S$ By Upper Closure is Upper Set: :$\set s^\succeq$ is a upper set in $S$ By Upper Closure of Singleton :$\set s^\succeq = s^\succeq$ By definition of reflexivity: :$s \preceq s$ By definition of upper closure of element: :$s \in s^\succeq$ Thus by definition: :$s^\succeq$ is non-empty, filtered and upper. Thus by definition: :$s^\succeq$ is a filter in $\struct {S, \preceq}$ {{qed}} \end{proof}
23213
\section{Upper Closure of Element without Element is Filter implies Element is Meet Irreducible} Tags: Order Theory, Meet Irreducible \begin{theorem} Let $L = \struct {S, \vee, \wedge, \preceq}$ be a lattice. Let $x \in S$. Let : $x^\succeq \setminus \left\{ {x}\right\}$ be a filter in $L$. Then $x$ is meet irreducible. \end{theorem} \begin{proof} Let $a, b \in S$. {{AimForCont}} :$x = a \wedge b$ and $x \ne a$ and $x \ne b$ By Meet Precedes Operands: :$x \preceq b$ and $x \preceq a$ By definition of upper closure of element: :$b, a \in x^\succeq$ By definitions of singleton and difference: :$b, a \in x^\succeq \setminus \left\{ {x}\right\}$ By definition of filtered: :$\exists z \in x^\succeq \setminus \left\{ {x}\right\}: z \preceq a \land z \preceq b$ By definition of infimum: :$z \preceq x$ By definition of upper set: :$x \in x^\succeq \setminus \left\{ {x}\right\}$ Thus this contradicts $x \in \left\{ {x}\right\}$ by definition of singleton. {{qed}} \end{proof}
23214
\section{Upper Closure of Subset is Subset of Upper Closure} Tags: Upper Closures, Order Theory \begin{theorem} Let $\left({S, \preceq}\right)$ be an ordered set. Let $X, Y$ be subsets of $S$. Then :$X \subseteq Y \implies X^\succeq \subseteq Y^\succeq$ where $X^\succeq$ denotes the upper closure of $X$. \end{theorem} \begin{proof} Let $X \subseteq Y$. Let $x \in X^\succeq$. By definition of upper closure of subset: :$\exists y \in X: y \preceq x$ By definition of subset: :$y \in Y$ Thus by definition of upper closure of subset: :$x \in Y^\succeq$ {{qed}} \end{proof}
23215
\section{Upper Limit of Number of Unit Fractions to express Proper Fraction from Greedy Algorithm} Tags: Fibonacci's Greedy Algorithm \begin{theorem} Let $\dfrac p q$ denote a proper fraction expressed in canonical form. Let $\dfrac p q$ be expressed as the sum of a finite number of distinct unit fractions using Fibonacci's Greedy Algorithm. Then $\dfrac p q$ is expressed using no more than $p$ unit fractions. \end{theorem} \begin{proof} Let $\dfrac {x_k} {y_k}$ and $\dfrac {x_{k + 1} } {y_{k + 1} }$ be consecutive stages of the calculation of the unit fractions accordingly: :$\dfrac {x_k} {y_k} - \dfrac 1 {\ceiling {y_n / x_n} } = \dfrac {x_{k + 1} } {y_{k + 1} }$ By definition of Fibonacci's Greedy Algorithm: :$\dfrac {x_{k + 1} } {y_{k + 1} } = \dfrac {\paren {-y_k} \bmod {x_k} } {y_k \ceiling {y_k / x_k} }$ It is established during the processing of Fibonacci's Greedy Algorithm that: :$\paren {-y_k} \bmod {x_k} < x_k$ Hence successive numerators decrease by at least $1$. Hence there can be no more unit fractions than there are natural numbers between $1$ and $p$. Hence the result. {{Qed}} \end{proof}
23216
\section{Upper Semilattice on Classical Set is Semilattice} Tags: Abstract Algebra, Order Theory, Semilattices \begin{theorem} Let $\struct {S, \vee}$ be an upper semilattice on a classical set $S$. Then $\struct {S, \vee}$ is a semilattice. \end{theorem} \begin{proof} To show that the algebraic structure $\struct {S, \vee}$ is a semilattice, the following need to be verified: : Closure : Associativity : Commutativity : Idempotence In order: \end{proof}
23217
\section{Upper Set is Convex} Tags: Convex Sets (Order Theory), Upper Sets, Convex Sets, Order Theory \begin{theorem} Let $\struct {S, \preceq}$ be an ordered set. Let $T \subseteq S$ be an upper set. Then $T$ is convex in $S$. \end{theorem} \begin{proof} Let $a, c \in T$. Let $b \in S$. Let $a \preceq b \preceq c$. Since: :$a \in T$ :$a \preceq b$ :$T$ is an upper set it follows that: :$b \in T$ This holds for all such $a$, $b$, and $c$. Therefore, by definition, $T$ is convex in $S$. {{qed}} \end{proof}
23218
\section{Upper Set with no Smallest Element is Open in GO-Space} Tags: Topology, Generalized Ordered Spaces, Total Orderings \begin{theorem} Let $\struct {S, \preceq, \tau}$ be a generalized ordered space. Let $U$ be an upper set in $S$ with no smallest element. Then $U$ is open in $\struct {S, \preceq, \tau}$. \end{theorem} \begin{proof} By Minimal Element in Toset is Unique and Smallest, $U$ has no minimal element. By Upper Set with no Minimal Element: :$U = \bigcup \set {u^\succ: u \in U}$ where $u^\succ$ is the strict upper closure of $u$. By Open Ray is Open in GO-Space and the fact that a union of open sets is open, $U$ is open. {{qed}} \end{proof}
23219
\section{Upper Sum Never Smaller than Lower Sum} Tags: Real Analysis, Analysis \begin{theorem} Let $\closedint a b$ be a closed interval of the set $\R$ of real numbers. Let $P = \set {x_0, x_1, x_2, \ldots, x_{n - 1}, x_n}$ be a finite subdivision of $\closedint a b$. Let $f: \R \to \R$ be a real function. Let $f$ be bounded on $\closedint a b$. Let $\map L P$ be the lower sum of $\map f x$ on $\closedint a b$ belonging to the subdivision $P$. Let $\map U P$ be the upper sum of $\map f x$ on $\closedint a b$ belonging to the subdivision $P$. Then $\map L P \le \map U P$. \end{theorem} \begin{proof} For all $\nu \in 1, 2, \ldots, n$, let $\closedint {x_{\nu - 1} } {x_\nu}$ be a closed subinterval of $\closedint a b$. As $f$ is bounded on $\closedint a b$, it is bounded on $\closedint {x_{\nu - 1} } {x_\nu}$. So, let $m_\nu$ be the infimum and $M_\nu$ be the supremum of $\map f x$ on the interval $\closedint {x_{\nu - 1} } {x_\nu}$. By definition, $m_\nu \le M_\nu$. So $m_\nu \paren {x_\nu - x_{\nu - 1} } \le M_{\nu} \paren {x_\nu - x_{\nu - 1} }$. It follows directly that $\ds \sum_{\nu \mathop = 1}^n m_\nu \paren {x_\nu - x_{\nu - 1} } \le \sum_{\nu \mathop = 1}^n M_\nu \paren {x_\nu - x_{\nu - 1} }$. {{qed}} \end{proof}
23220
\section{Upper Sum Never Smaller than Lower Sum for any Pair of Subdivisions} Tags: Real Analysis \begin{theorem} Let $\closedint a b$ be a closed real interval. Let $f$ be a bounded real function defined on $\closedint a b$. Let $P$ and $Q$ be finite subdivisions of $\closedint a b$. Let $\map L P$ be the lower sum of $f$ on $\closedint a b$ with respect to $P$. Let $\map U Q$ be the upper sum of $f$ on $\closedint a b$ with respect to $Q$. Then $\map L P \le \map U Q$. \end{theorem} \begin{proof} Let $P' = P \cup Q$. We observe: :$P'$ is either equal to $P$ or finer than $P$ :$P'$ is either equal to $Q$ or finer than $Q$ We find: :$\map L P \le \map L {P'}$ by Lower Sum of Refinement :$\map L {P'} \le \map U {P'}$ by Upper Sum Never Smaller than Lower Sum :$\map U {P'} \le \map U Q$ by Upper Sum of Refinement By combining these inequalities, we conclude: :$\map L P \le \map U Q$ {{qed}} \end{proof}
23221
\section{Upper Sum of Refinement} Tags: Real Analysis \begin{theorem} Let $\closedint a b$ be a closed interval. Let $P$ be a finite subdivision of $\closedint a b$. Let $Q$ be a refinement of $P$. Then: :$\map U {f, P} \le \map U {f, Q}$ where $\map U {f, P}$ and $\map U {f, Q}$ denote the upper sum of $f$ with respect to $P$ and $Q$ respectively. \end{theorem} \begin{proof} Write: :$P = \set {x_0, x_1, \ldots, x_k}$ and: :$Q = \set {y_0, y_1, \ldots, y_l}$ where: :$a = x_0 < x_1 < \ldots < x_k = b$ and: :$a = y_0 < y_1 < \ldots < y_l = b$ Since $P \subseteq Q$, we have $k \le l$ from Cardinality of Subset of Finite Set. Set: :$M_i = \sup \set {\map f x : x \in \closedint {x_{i - 1} } {x_i} }$ for each $1 \le i \le k$. Also set: :${\tilde M}_j = \sup \set {\map f x : x \in \closedint {y_{j - 1} } {y_j} }$ for each $1 \le j \le l$. Consider a pair of elements $\tuple {x_{i - 1}, x_i}$ in $P$. Since $P \subseteq Q$, there exists $a_i, b_i$ such that: :$\tuple {x_{i - 1}, x_i} = \tuple {y_{a_i}, y_{b_i} }$ We can see that: :$a_1 = 0$ and: :$b_k = l$ We also clearly have: :$b_{i - 1} = a_i$ for each $1 \le i \le k$. Note that: :$\closedint {y_{j - 1} } {y_j} \subseteq \closedint {x_{i - 1} } {x_i}$ for all $a_i + 1 \le j \le b_i$. So: :$\set {\map f x : x \in \closedint {y_{j - 1} } {y_j} } \subseteq \set {\map f x : x \in \closedint {x_{i - 1} } {x_i} }$ for all $a_i + 1 \le j \le b_i$. So, from Supremum of Subset, we have: :$\sup \set {\map f x : x \in \closedint {y_{j - 1} } {y_j} } \le \sup \set {\map f x : x \in \closedint {x_{i - 1} } {x_i} }$ for all $a_i + 1 \le j \le b_i$. That is: :${\tilde M}_j \le M_i$ for each $\tuple {i, j}$ with $a_i + 1 \le j \le b_i$ We can then write: :$\ds x_i - x_{i - 1} = \sum_{j \mathop = a_i + 1}^{b_i} \paren {y_j - y_{j - 1} }$ for each $1 \le i \le k$, giving: {{begin-eqn}} {{eqn | l = \map U {f, P} | r = \sum_{i \mathop = 1}^k M_i \paren {x_i - x_{i - 1} } | c = {{Defof|Upper Sum}} }} {{eqn | r = \sum_{i \mathop = 1}^k M_i \paren {\sum_{j \mathop = a_i + 1}^{b_i} \paren {y_j - y_{j - 1} } } }} {{eqn | r = \sum_{i \mathop = 1}^k \paren {\sum_{j \mathop = a_i + 1}^{b_i} M_i \paren {y_j - y_{j - 1} } } }} {{eqn | o = \ge | r = \sum_{i \mathop = 1}^k \paren {\sum_{j \mathop = a_i + 1}^{b_i} {\tilde M}_j \paren {y_j - y_{j - 1} } } | c = since $M_i \ge {\tilde M}_j$ for each $\tuple {i, j}$ with $a_i + 1 \le j \le b_i$ }} {{eqn | r = \sum_{j \mathop = 1}^l {\tilde M}_j \paren {y_j - y_{j - 1} } }} {{eqn | r = \map U {f, Q} }} {{end-eqn}} {{qed}} \end{proof}
23222
\section{Upper Way Below Open Subset Complement is Non Empty implies There Exists Maximal Element of Complement} Tags: Complete Lattices \begin{theorem} Let $L = \struct {S, \vee, \wedge, \preceq}$ be a complete lattice. Let $X$ be upper way below open subset of $S$. Let $x \in S$ such that :$x \in \relcomp S X$ Then :$\exists m \in S: x \preceq m \land m = \max \relcomp S X$ \end{theorem} \begin{proof} Define $A := \set {C \in \map {\mathit {Chains} } L: C \subseteq \relcomp S X \land x \in C}$ where $\map {\mathit {Chains} } L$ denotes the set of all chains of $L$. We will prove that :$\forall Z: Z \ne \O \land Z \subseteq A \land \paren {\forall X, Y \in Z: X \subseteq Y \lor Y \subseteq X} \implies \bigcup Z \in A$ Let $Z$ such that :$Z \ne \O \land Z \subseteq A \land \paren {\forall X, Y \in Z: X \subseteq Y \lor Y \subseteq X}$ We will prove that :$\bigcup Z$ is a chain of $L$ Let $a, b \in \bigcup Z$ By definition of union: :$\exists Y_1 \in Z: a \in Y_1$ and :$\exists Y_2 \in Z: b \in Y_2$ By assumption: :$Y_1 \subseteq Y_2$ or $Y_2 \subseteq Y_1$ By definition of subset: :$a, b \in Y_1$ or $a, b \in Y_2$ By definition of $A$: :$Y_1, Y_2 \in \map {\mathit {Chains} } L$ Thus by definition of connected relation :$a \preceq b$ or $b \preceq a$ {{qed|lemma}} By definition of non-empty set: :$\exists Y: Y \in Z$ By definition of $A$: :$x \in Y$ By definition of union: :$x \in \bigcup Z$ By definition of $A$: :$\forall Y \in Z: Y \subseteq \relcomp S X$ By Union of Subsets is Subset/Set of Sets: :$\bigcup Z \subseteq \relcomp S X$ Thus by definition of $A$ :$\bigcup Z \in A$ {{qed|lemma}} By Singleton is Chain: :$\set x$ is a chain of $L$. By definition of $A$: :$\set x \in A$ By Zorn's Lemma: :$\exists Y \in A: Y$ is a maximal element of $A$. By definition of maximal element: :$\forall Z \in A: Y \subseteq Z \implies Y = Z$ By definition of $A$: :$Y \in \map {\mathit {Chains} } L \land Y \subseteq \relcomp S X \land x \in Y$ By definition of supremum: :$\sup Y$ is upper bound for $Y$. By definition of upper bound: :$x \preceq \sup Y$ We will prove that :$\lnot \exists y \in S: y \in \relcomp S X \land y \succ \sup Y$ {{AimForCont}} :$\exists y \in S: y \in \relcomp S X \land y \succ \sup Y$ By definition of antisymmetry: :$y \notin Y$ By definition of $\succ$ :$\sup Y \preceq y$ We wiil prove that :$Y \cup \set y$ is a chain of $L$. Let $a, b \in Y \cup \set y$ Case $a, b \in Y$. Thus by definition of connected relation: :$a \preceq b$ or $b \preceq a$ Case $a \in Y \land b \in \set y$ By definition of singleton: :$b = y$ By definition of supremum: :$a \preceq \sup Y$ By definition of transitivity: :$a \preceq b$ Thus :$a \preceq b$ or $b \preceq a$ Case $a \in \set y \land b \in Y$ Analogical case as previous. Case $a, b \in \set y$ By definition of singleton: :$ a = y$ and $b = y$ Be definition of reflexivity: :$a \preceq b$ Thus :$a \preceq b$ or $b \preceq a$ {{qed|lemma}} By definitions of singleton and subset: :$\set y \subseteq \relcomp S X$ By Union of Subsets is Subset: :$Y \cup \set y \subseteq \relcomp S X$ By definition of union: :$x \in Y \cup \set y$ By definition of $A$: :$Y \cup \set y \in A$ By Set is Subset of Union: :$Y \subseteq Y \cup \set y$ Then :$Y = Y \cup \set y$ By definitions of union and singleton: :$y \in Y$ This contradicts $y \notin Y$. {{qed|lemma}} We will prove that :$\sup Y \in \relcomp S X$ {{AimForCont}} :$\sup Y \in X$ By definition of way below open: :$\exists y \in X: y \ll \sup Y$ By Chain is Directed: :$Y$ is directed. By definition of way below relation: :$\exists d \in Y: y \preceq d$ By definition of upper set: :$d \in X$ Thus it contradicts $d \in \relcomp S X$ by definition of subset. {{qed|lemma}} By definition of maximal element :$\sup Y = \max \relcomp S X$ Hence :$\exists m \in S: x \preceq m \land m = \max \relcomp S X$ {{qed}} \end{proof}
23223
\section{Upper and Lower Bound of Fibonacci Number} Tags: Fibonacci Numbers, Golden Mean \begin{theorem} For all $n \in \N_{> 0}$: :$\phi^{n - 2} \le F_n \le \phi^{n - 1}$ where: :$F_n$ is the $n$th Fibonacci number :$\phi$ is the golden section: $\phi = \dfrac {1 + \sqrt 5} 2$ \end{theorem} \begin{proof} From Fibonacci Number greater than Golden Section to Power less Two: :$F_n \ge \phi^{n - 2}$ From Fibonacci Number less than Golden Section to Power less One: :$F_n \le \phi^{n - 1}$ {{qed}} \end{proof}
23224
\section{Upper and Lower Bounds of Integral} Tags: Integral Calculus \begin{theorem} Let $f$ be a real function which is continuous on the closed interval $\closedint a b$. Let $\ds \int_a^b \map f x \rd x$ be the definite integral of $\map f x$ over $\closedint a b$. Then: :$\ds m \paren {b - a} \le \int_a^b \map f x \rd x \le M \paren {b - a}$ where: :$M$ is the maximum of $f$ :$m$ is the minimum of $f$ on $\closedint a b$. \end{theorem} \begin{proof} This follows directly from the definition of definite integral: From Continuous Image of Closed Interval is Closed Interval it follows that $m$ and $M$ both exist. The closed interval $\closedint a b$ is a finite subdivision of itself. By definition, the upper sum is $M \paren {b - a}$, and the lower sum is $m \paren {b - a}$. The result follows. {{qed}} \end{proof}
23225
\section{Upper and Lower Closures are Convex} Tags: Lower Closures, Convex Sets, Convex Sets (Order Theory), Order Theory, Upper Closures \begin{theorem} Let $\left({S, \preceq}\right)$ be an ordered set. Let $a \in S$. Then $a^\succeq$, $a^\succ$, $a^\preceq$, and $a^\prec$ are convex in $S$. \end{theorem} \begin{proof} The cases for upper and lower closures are dual, so we need only prove the case for upper closures. Suppose, then, that $C = a^\succeq$ or $C = a^\succ$. Suppose that $x, y, z \in S$, $x \prec y \prec z$, and $x, z \in C$. Then $a \preceq x \prec y$, so $a \prec y$ by Extended Transitivity. Therefore $y \in a^\succ \subseteq C$. Thus $C$ is convex. {{qed}} Category:Lower Closures Category:Upper Closures Category:Convex Sets (Order Theory) \end{proof}
23226
\section{Upper and Lower Closures of Open Set in GO-Space are Open} Tags: Topology, Total Orderings \begin{theorem} Let $\left({X, \preceq, \tau}\right)$ be a Generalized Ordered Space/Definition 1. Let $A$ be open in $X$. Then the upper and lower closures of $A$ are open. \end{theorem} \begin{proof} We will show that the upper closure $U$ of $A$ is open. The lower closure can be proven open by the same method. By the definition of upper closure: :$U = \left\{ {u \in X: \exists a \in A: a \preceq u}\right\}$ But then: {{begin-eqn}} {{eqn | l = U | r = \left\{ {u \in X: \left({u \in A}\right) \lor \left({\exists a \in A: a \prec u}\right) }\right\} }} {{eqn | r = A \cup \bigcup \left\{ {a^\succeq: a \in A }\right\} }} {{end-eqn}} where $a^\preceq$ denotes the upper closure of $a$. By Open Ray is Open in GO-Space/Definition 1, each $a^\succeq$ is open. Thus $U$ is a union of open sets. Thus $U$ is open by the definition of a topology. {{qed}} Category:Topology Category:Total Orderings \end{proof}
23227
\section{Upward Löwenheim-Skolem Theorem} Tags: Mathematical Logic, Model Theory \begin{theorem} {{Disambiguate|Definition:Model|I suspect model of a first-order theory $\LL$, which is more specific than what is linked to now}} Let $T$ be an $\LL$-theory with an infinite model. Then for each infinite cardinal $\kappa \ge \card \LL$, there exists a model of $T$ with cardinality $\kappa$. \end{theorem} \begin{proof} The idea is: :to extend the language by adding $\kappa$ many new constants and: :to extend the theory by adding sentences asserting that these constants are distinct. It is shown that this new theory is finitely satisfiable using an infinite model of $T$. Compactness then implies that the new theory has a model. Some care needs to be taken to ensure that we construct a model of exactly size $\kappa$. Let $\LL^*$ be the language formed by adding new constants $\set {c_\alpha: \alpha < \kappa}$ to $\LL$. Let $T^*$ be the $\LL^*$-theory formed by adding the sentences $\set {c_\alpha \ne c_\beta: \alpha, \beta < \kappa, \ \alpha \ne \beta}$ to $T$. We show that $T^*$ is finitely satisfiable: Let $\Delta$ be a finite subset of $T^*$. Then $\Delta$ contains: :finitely many sentences from $T$ along with: :finitely many sentences of the form $c_\alpha \ne c_\beta$ for the new constant symbols. Since $T$ has an infinite model, it must have a model $\MM$ of cardinality at most $\card \LL + \aleph_0$. This model already satisfies everything in $T$. So, since we can find arbitrarily many distinct elements in it, it can also be used as a model of $\Delta$ by interpreting the finitely many new constant symbols in $\Delta$ as distinct elements of $\MM$. Since $T^*$ is finitely satisfiable, it follows by the Compactness Theorem that $T^*$ itself is satisfiable. Since $T^*$ ensures the existence of $\kappa$ many distinct elements, this means it has models of size at least $\kappa$. It can be proved separately or observed from the ultraproduct proof of the compactness theorem that $T^*$ then has a model $\MM^*$ of exactly size $\kappa$. {{explain|That proof needs to be proved, and / or a link needs to be provided to that ultraproduct proof and its implications explained.}} Since $T^*$ contains $T$, $\MM^*$ is a model of $T$ of size $\kappa$. {{qed}} {{Namedfor|Leopold Löwenheim|name2 = Thoralf Albert Skolem|cat = Löwenheim|cat2 = Skolem}} \end{proof}
23228
\section{Urysohn Space is Completely Hausdorff Space} Tags: Completely Hausdorff Spaces, Urysohn Spaces, Separation Axioms \begin{theorem} Let $\struct {S, \tau}$ be an Urysohn space. Then $\struct {S, \tau}$ is also a $T_{2 \frac 1 2}$ (completely Hausdorff) space. \end{theorem} \begin{proof} Let $T = \struct {S, \tau}$ be an Urysohn space. Then for any distinct points $x, y \in S$ (i.e. $x \ne y$), there exists an Urysohn function for $\set x$ and $\set y$. {{proof wanted|Then we do some stuff.}} Thus: :$\forall x, y \in S: x \ne y: \exists U, V \in \tau: x \in U, y \in V: U^- \cap V^- = \O$ which is precisely the definition of a $T_{2 \frac 1 2}$ (completely Hausdorff) space. {{qed}} \end{proof}
23229
\section{Vajda's Identity} Tags: Vajda's Identity, Fibonacci Numbers \begin{theorem} Let $F_n$ be the $n$th Fibonacci number. \end{theorem} \begin{proof} From Fibonacci Number in terms of Smaller Fibonacci Numbers: :$F_{n + i} = F_n F_{i - 1} + F_{n + 1} F_i$ :$F_{n + j} = F_n F_{j - 1} + F_{n + 1} F_j$ :$F_{n + i + j} = F_{i - 1} F_{n + j} + F_i F_{n + j + 1}$ Therefore: {{begin-eqn}} {{eqn | o = | r = F_{n + i} F_{n + j} - F_n F_{n + i + j} }} {{eqn | r = \left({F_n F_{i - 1} + F_{n + 1} F_i}\right) F_{n + j} - F_n \left({F_{i - 1} F_{n + j} + F_i F_{n + j + 1} }\right) | c = from above }} {{eqn | r = \left({F_n F_{i - 1} + F_{n + 1} F_i}\right) F_{n + j} - F_n F_{i - 1} F_{n + j} - F_n F_i F_{n + j + 1} | c = }} {{eqn | r = \left({F_n F_{i - 1} + F_{n + 1} F_i - F_n F_{i - 1} }\right) F_{n + j} - F_n F_i F_{n + j + 1} | c = }} {{eqn | r = \left({F_{n + 1} F_i}\right) F_{n + j} - F_n F_i F_{n + j + 1} | c = }} {{eqn | r = F_i \left({F_{n + 1} F_{n + j} - F_n F_{n + j + 1} }\right) | c = }} {{eqn | r = F_i \left({-1}\right)^{2 n + 1} \left({F_n F_{n + j + 1} - F_{n + 1} F_{n + j} }\right) | c = }} {{eqn | r = F_i \left({-1}\right)^{n - j - 1} \left({\left({-1}\right)^{n + j} F_n F_{n + j + 1} - \left({-1}\right)^{n + j} F_{n + 1} F_{n + j} }\right) | c = }} {{eqn | r = F_i \left({-1}\right)^{n - j - 1} \left({\left({-1}\right)^{n + j} F_n F_{n + j + 1} + \left({-1}\right)^{n + j + 1} F_{n + 1} F_{n + j} }\right) | c = }} {{eqn | r = F_i \left({-1}\right)^{n - j - 1} F_{\left({n + 1}\right) - \left({n + j + 1}\right)} | c = Fibonacci Number in terms of Larger Fibonacci Numbers }} {{eqn | r = F_i \left({-1}\right)^{n - j - 1} F_{-j} | c = }} {{eqn | r = F_i \left({-1}\right)^{n - j - 1} \left({-1}\right)^{j + 1} F_j | c = Fibonacci Number with Negative Index }} {{eqn | r = \left({-1}\right)^n F_i F_j | c = }} {{end-eqn}} {{qed}} {{Namedfor|Steven Vajda|cat = Vajda}} Category:Fibonacci Numbers 359988 359845 2018-07-03T21:10:52Z Prime.mover 59 359988 wikitext text/x-wiki \end{proof}
23230
\section{Vajda's Identity/Formulation 1} Tags: Vajda's Identity, Fibonacci Numbers \begin{theorem} Let $F_n$ be the $n$th Fibonacci number. Then: :$F_{n + i} F_{n + j} - F_n F_{n + i + j} = \paren {-1}^n F_i F_j$ \end{theorem} \begin{proof} From Fibonacci Number in terms of Smaller Fibonacci Numbers: :$F_{n + i} = F_n F_{i - 1} + F_{n + 1} F_i$ :$F_{n + j} = F_n F_{j - 1} + F_{n + 1} F_j$ :$F_{n + i + j} = F_{i - 1} F_{n + j} + F_i F_{n + j + 1}$ Therefore: {{begin-eqn}} {{eqn | o = | r = F_{n + i} F_{n + j} - F_n F_{n + i + j} }} {{eqn | r = \paren {F_n F_{i - 1} + F_{n + 1} F_i} F_{n + j} - F_n \paren {F_{i - 1} F_{n + j} + F_i F_{n + j + 1} } | c = from above }} {{eqn | r = \paren {F_n F_{i - 1} + F_{n + 1} F_i} F_{n + j} - F_n F_{i - 1} F_{n + j} - F_n F_i F_{n + j + 1} | c = }} {{eqn | r = \paren {F_n F_{i - 1} + F_{n + 1} F_i - F_n F_{i - 1} } F_{n + j} - F_n F_i F_{n + j + 1} | c = }} {{eqn | r = \paren {F_{n + 1} F_i} F_{n + j} - F_n F_i F_{n + j + 1} | c = }} {{eqn | r = F_i \paren {F_{n + 1} F_{n + j} - F_n F_{n + j + 1} } | c = }} {{eqn | r = F_i \paren {-1}^{2 n + 1} \paren {F_n F_{n + j + 1} - F_{n + 1} F_{n + j} } | c = }} {{eqn | r = F_i \paren {-1}^{n - j - 1} \paren {\paren {-1}^{n + j} F_n F_{n + j + 1} - \paren {-1}^{n + j} F_{n + 1} F_{n + j} } | c = }} {{eqn | r = F_i \paren {-1}^{n - j - 1} \paren {\paren {-1}^{n + j} F_n F_{n + j + 1} + \paren {-1}^{n + j + 1} F_{n + 1} F_{n + j} } | c = }} {{eqn | r = F_i \paren {-1}^{n - j - 1} F_{\paren {n + 1} - \paren {n + j + 1} } | c = Fibonacci Number in terms of Larger Fibonacci Numbers }} {{eqn | r = F_i \paren {-1}^{n - j - 1} F_{-j} | c = }} {{eqn | r = F_i \paren {-1}^{n - j - 1} \paren {-1}^{j + 1} F_j | c = Fibonacci Number with Negative Index }} {{eqn | r = \paren {-1}^n F_i F_j | c = }} {{end-eqn}} {{qed}} {{Namedfor|Steven Vajda}} Category:Vajda's Identity \end{proof}
23231
\section{Vajda's Identity/Formulation 2} Tags: Vajda's Identity, Fibonacci Numbers \begin{theorem} Let $F_n$ be the $n$th Fibonacci number. Then: :$F_{n + k} F_{m - k} - F_n F_m = \left({-1}\right)^n F_{m - n - k} F_k$ \end{theorem} \begin{proof} We have: {{begin-eqn}} {{eqn | n = 1 | o = | r = \left({x^{n + k} - y^{n + k} }\right) \left({x^{m - k} - y^{m - k} }\right) - \left({x^n - y^n}\right) \left({x^m - y^m}\right) | c = }} {{eqn | r = x^{n + m} + y^{n + m} - x^{m - k} y^{n + k} - x^{n + k} y^{m - k} - x^{n + m} - y^{n + m} + x^n y^m + x^m y^n | c = }} {{eqn | r = x^n y^m + x^m y^n - x^{m - k} y^{n + k} - x^{n + k} y^{m - k} | c = }} {{eqn | r = x^n y^n \left({y^{m - n} + x^{m - n} - x^{m - n - k} y^k - x^k y^{m - n - k} }\right) | c = }} {{eqn | r = x^n y^n \left({x^{m - n - k} \left({x^k - y^k}\right) - y^{m - n - k} \left({x^k - y^k}\right)}\right) | c = }} {{eqn | n = 2 | r = \left({x y}\right)^n \left({x^{m - n - k} - y^{m - n - k} }\right) \left({x^k - y^k}\right) | c = }} {{end-eqn}} Now substitute: {{begin-eqn}} {{eqn | l = x | r = \phi | c = }} {{eqn | l = y | r = \hat \phi | c = }} {{end-eqn}} where: : $\phi$ denotes the golden mean : $\hat \phi = 1 - \phi$ first into $(2)$: {{begin-eqn}} {{eqn | o = | r = \left({\phi \hat \phi}\right)^n \left({\phi^{m - n - k} - \hat \phi^{m - n - k} }\right) \left({\phi^k - \hat \phi^k}\right) | c = }} {{eqn | r = \left({-1}\right)^n \left({\phi^{m - n - k} - \hat \phi^{m - n - k} }\right) \left({\phi^k - \hat \phi^k}\right) | c = Reciprocal Form of One Minus Golden Mean: $\hat \phi = -\dfrac 1 \phi$ }} {{eqn | r = \left({-1}\right)^n F_{m - n - k} F_k \times \left({\sqrt 5}\right)^2 | c = Euler-Binet Formula }} {{end-eqn}} and then into $(1)$: {{begin-eqn}} {{eqn | o = | r = \left({\phi^{n + k} - \hat \phi^{n + k} }\right) \left({\phi^{m - k} - \hat \phi^{m - k} }\right) - \left({\phi^n - \hat \phi^n}\right) \left({\phi^m - \hat \phi^m}\right) | c = }} {{eqn | r = F_{n + k} F_{m - k} - F_n F_m \times \left({\sqrt 5}\right)^2 | c = Euler-Binet Formula }} {{end-eqn}} $(1) = (2)$ and hence the result. {{qed}} {{Namedfor|Steven Vajda}} \end{proof}
23232
\section{Valid Patterns of Categorical Syllogism} Tags: Categorical Syllogisms, Definitions: Categorical Syllogisms \begin{theorem} The following categorical syllogisms are valid: :$\begin{array}{rl} \text{I} & AAA \\ \text{I} & AII \\ \text{I} & EAE \\ \text{I} & EIO \\ * \text{I} & AAI \\ * \text{I} & EAO \\ \end{array} \qquad \begin{array}{rl} \text{II} & EAE \\ \text{II} & AEE \\ \text{II} & AOO \\ \text{II} & EIO \\ * \text{II} & EAO \\ * \text{II} & AEO \\ \end{array} \qquad \begin{array}{rl} \dagger \text{III} & AAI \\ \text{III} & AII \\ \text{III} & IAI \\ \dagger \text{III} & EAO \\ \text{III} & EIO \\ \text{III} & OAO \\ \end{array} \qquad \begin{array}{rl} \S \text{IV} & AAI \\ \text{IV} & AEE \\ \dagger \text{IV} & EAO \\ \text{IV} & EIO \\ \text{IV} & IAI \\ * \text{IV} & AEO \\ \end{array}$ In the above: :$\text{I}, \text{II}, \text{III}, \text{IV}$ denote the four figures of the categorical syllogisms :$A, E, I, O$ denote the universal affirmative, universal negative, particular affirmative and particular negative respectively: see Shorthand for Categorical Syllogism :Syllogisms marked $*$ require the assumption that $\exists x: \map S x$, that is, that there exists an object fulfilling the secondary predicate :Syllogisms marked $\dagger$ require the assumption that $\exists x: \map M x$, that is, that there exists an object fulfilling the middle predicate :Syllogisms marked $\S$ require the assumption that $\exists x: \map P x$, that is, that there exists an object fulfilling the primary predicate \end{theorem} \begin{proof} From Elimination of all but 24 Categorical Syllogisms as Invalid, all but these $24$ patterns have been shown to be invalid. It remains to be shown that these remaining syllogisms are in fact valid. {{ProofWanted|Considerable work to be done yet.}} \end{proof}
23233
\section{Valid Syllogism in Figure III needs Particular Conclusion and if Negative then Negative Major Premise} Tags: Categorical Syllogisms \begin{theorem} Let $Q$ be a valid categorical syllogism in Figure $\text {III}$. Then it is a necessary condition that: :The conclusion of $Q$ be a particular categorical statement and: :If the conclusion of $Q$ be a negative categorical statement, then so is the major premise of $Q$. \end{theorem} \begin{proof} Consider Figure $\text {III}$: {{:Definition:Figure of Categorical Syllogism/III}} Let the major premise of $Q$ be denoted $\text{Maj}$. Let the minor premise of $Q$ be denoted $\text{Min}$. Let the conclusion of $Q$ be denoted $\text{C}$. $M$ is: : the subject of $\text{Maj}$ : the subject of $\text{Min}$. So, in order for $M$ to be distributed, either: : $(1): \quad$ From Universal Categorical Statement Distributes its Subject: $\text{Maj}$ must be universal or: : $(2): \quad$ From Universal Categorical Statement Distributes its Subject: $\text{Min}$ must be universal. Suppose $\text{Min}$ to be a negative categorical statement. Then by No Valid Categorical Syllogism contains two Negative Premises: : $\text{Maj}$ is an affirmative categorical statement. From Conclusion of Valid Categorical Syllogism is Negative iff one Premise is Negative: : $\text{C}$ is a negative categorical statement. From Negative Categorical Statement Distributes its Predicate: : $P$ is distributed in $\text{C}$. From Negative Categorical Statement Distributes its Predicate: : $P$ is undistributed in $\text{Maj}$. From Distributed Term of Conclusion of Valid Categorical Syllogism is Distributed in Premise: : $P$ is distributed in $\text{Maj}$. That is, $P$ is both distributed and undistributed in $\text{Maj}$. From this Proof by Contradiction it follows that $\text{Min}$ is an affirmative categorical statement. Thus from Conclusion of Valid Categorical Syllogism is Negative iff one Premise is Negative: : if $\text{C}$ is a negative categorical statement, then so is $\text{Maj}$ {{qed|lemma}} We have that $\text{Min}$ is an affirmative categorical statement. Hence from Negative Categorical Statement Distributes its Predicate: : $S$ is undistributed in $\text{Min}$. From Distributed Term of Conclusion of Valid Categorical Syllogism is Distributed in Premise: : $S$ is undistributed in $\text{C}$. So from Universal Categorical Statement Distributes its Subject: : $\text{C}$ is a particular categorical statement. {{qed|lemma}} Hence, in order for $Q$ to be valid: : $\text{C}$ must be a particular categorical statement : if $\text{C}$ is a negative categorical statement, then so is $\text{Maj}$. {{qed}} \end{proof}
23234
\section{Valid Syllogism in Figure II needs Negative Conclusion and Universal Major Premise} Tags: Categorical Syllogisms \begin{theorem} Let $Q$ be a valid categorical syllogism in Figure $\text{II}$. Then it is a necessary condition that: :The major premise of $Q$ be a universal categorical statement and :The conclusion of $Q$ be a negative categorical statement. \end{theorem} \begin{proof} Consider Figure $\text{II}$: {{:Definition:Figure of Categorical Syllogism/II}} Let the major premise of $Q$ be denoted $\text{Maj}$. Let the minor premise of $Q$ be denoted $\text{Min}$. Let the conclusion of $Q$ be denoted $\text{C}$. $M$ is: : the predicate of $\text{Maj}$ : the predicate of $\text{Min}$. So, in order for $M$ to be distributed, either: : $(1): \quad$ From Negative Categorical Statement Distributes its Predicate: $\text{Maj}$ must be negative or: : $(2): \quad$ From Negative Categorical Statement Distributes its Predicate: $\text{Min}$ must be negative. Note that from No Valid Categorical Syllogism contains two Negative Premises, it is not possible for both $\text{Maj}$ and $\text{Min}$ to be negative. From Conclusion of Valid Categorical Syllogism is Negative iff one Premise is Negative: : $\text{C}$ is a negative categorical statement. From Negative Categorical Statement Distributes its Predicate: : $P$ is distributed in $\text{C}$. From Distributed Term of Conclusion of Valid Categorical Syllogism is Distributed in Premise: : $P$ is distributed in $\text{Maj}$. From Universal Categorical Statement Distributes its Subject: : $\text{Maj}$ is a universal categorical statement. Hence, in order for $Q$ to be valid: : $\text{Maj}$ must be a universal categorical statement : Either $\text{Maj}$ or $\text{Min}$, and therefore $\text{C}$, must be a negative categorical statement. {{qed}} \end{proof}
23235
\section{Valid Syllogism in Figure I needs Affirmative Minor Premise and Universal Major Premise} Tags: Categorical Syllogisms \begin{theorem} Let $Q$ be a valid categorical syllogism in Figure $\text I$. Then it is a necessary condition that: :The major premise of $Q$ be a universal categorical statement and :The minor premise of $Q$ be an affirmative categorical statement. \end{theorem} \begin{proof} Consider Figure $\text I$: {{:Definition:Figure of Categorical Syllogism/I}} Let the major premise of $Q$ be denoted $\text{Maj}$. Let the minor premise of $Q$ be denoted $\text{Min}$. Let the conclusion of $Q$ be denoted $\text{C}$. $M$ is: : the subject of $\text{Maj}$ : the predicate of $\text{Min}$. So, in order for $M$ to be distributed, either: : $(1): \quad$ From Universal Categorical Statement Distributes its Subject: $\text{Maj}$ must be universal or: : $(2): \quad$ From Negative Categorical Statement Distributes its Predicate: $\text{Min}$ must be negative. Suppose $\text{Min}$ is a negative categorical statement. Then by Conclusion of Valid Categorical Syllogism is Negative iff one Premise is Negative: : $\text{C}$ is a negative categorical statement. From $(2)$: : $P$ is distributed in $\text{C}$. From Distributed Term of Conclusion of Valid Categorical Syllogism is Distributed in Premise: : $P$ is distributed in $\text{Maj}$. From Negative Categorical Statement Distributes its Predicate: : $\text{Maj}$ is a negative categorical statement. Thus both: : $\text{Min}$ is a negative categorical statement : $\text{Maj}$ is a negative categorical statement. But from No Valid Categorical Syllogism contains two Negative Premises, this means $Q$ is invalid. Thus $\text{Min}$ is not a negative categorical statement in Figure $\text I$. As $\text{Min}$ needs to be an affirmative categorical statement, $M$ is not distributed in $\text{Min}$. From Middle Term of Valid Categorical Syllogism is Distributed at least Once, this means $M$ must be distributed in $\text{Maj}$. As $M$ is the subject of $\text{Maj}$ in Figure $\text I$, it follows from $(1)$ that: : $\text{Maj}$ is a universal categorical statement. Hence, in order for $Q$ to be valid: : $\text{Maj}$ must be a universal categorical statement : $\text{Min}$ must be an affirmative categorical statement. {{qed}} \end{proof}
23236
\section{Valid Syllogisms in Figure IV} Tags: Categorical Syllogisms \begin{theorem} Let $Q$ be a valid categorical syllogism in Figure $\text {IV}$. Then it is a necessary condition that: :$(1): \quad$ Either: :: the major premise of $Q$ be a negative categorical statement :or: :: the minor premise of $Q$ be a universal categorical statement :or both. :$(2): \quad$ If the conclusion of $Q$ be a negative categorical statement, then the major premise of $Q$ be a universal categorical statement. :$(3): \quad$ If the conclusion of $Q$ be a universal categorical statement, then the minor premise of $Q$ be a negative categorical statement. \end{theorem} \begin{proof} Consider Figure $\text {IV}$: {{:Definition:Figure of Categorical Syllogism/IV}} Let the major premise of $Q$ be denoted $\text{Maj}$. Let the minor premise of $Q$ be denoted $\text{Min}$. Let the conclusion of $Q$ be denoted $\text{C}$. $M$ is: :the predicate of $\text{Maj}$ :the subject of $\text{Min}$. We have: :Middle Term of Valid Categorical Syllogism is Distributed at least Once. So, in order for $M$ to be distributed, either: :From Negative Categorical Statement Distributes its Predicate: $\text{Maj}$ must be negative or: :From Universal Categorical Statement Distributes its Subject: $\text{Min}$ must be universal. Both may be the case. Thus $(1)$ is seen to hold. {{qed|lemma}} Let $\text{C}$ be a negative categorical statement. From Negative Categorical Statement Distributes its Predicate: :$P$ is distributed in $\text{C}$. From Distributed Term of Conclusion of Valid Categorical Syllogism is Distributed in Premise: :$P$ is distributed in $\text{Maj}$. So from Universal Categorical Statement Distributes its Subject: :$\text{Maj}$ is a universal categorical statement. Thus $(2)$ is seen to hold. {{qed|lemma}} Let $\text{C}$ be a universal categorical statement. From Universal Categorical Statement Distributes its Subject: :$S$ is distributed in $\text{C}$. From Distributed Term of Conclusion of Valid Categorical Syllogism is Distributed in Premise: :$S$ is distributed in $\text{Min}$. From Negative Categorical Statement Distributes its Predicate: :$S$ is a negative categorical statement. Thus $(3)$ is seen to hold. {{qed}} \end{proof}
23237
\section{Valuation Ideal is Maximal Ideal of Induced Valuation Ring} Tags: Normed Division Rings, Non-Archimedean Norms \begin{theorem} Let $\struct {R, \norm {\,\cdot\,} }$ be a non-Archimedean normed division ring with zero $0_R$ and unity $1_R$. Let $\OO$ be the valuation ring induced by the non-Archimedean norm $\norm {\,\cdot\,}$, that is: :$\OO = \set{x \in R : \norm x \le 1}$ Let $\PP$ be the valuation ideal induced by the non-Archimedean norm $\norm {\,\cdot\,}$, that is: :$\PP = \set{x \in R : \norm x < 1}$ Then $\PP$ is an ideal of $\OO$: :$(a):\quad \PP$ is a maximal left ideal :$(b):\quad \PP$ is a maximal right ideal :$(c):\quad$ the quotient ring $\OO / \PP$ is a division ring. \end{theorem} \begin{proof} First it is shown that $\PP$ is an ideal of $\OO$ by applying Test for Ideal. That is, it is shown that: :$(1): \quad \PP \ne \O$ :$(2): \quad \forall x, y \in \PP: x + \paren {-y} \in \PP$ :$(3): \quad \forall x \in \PP, y \in \OO: x y \in \PP$ By Maximal Left and Right Ideal iff Quotient Ring is Division Ring the statements '''(a)''', '''(b)''' and '''(c)''' above are equivalent. So then it is shown: :$(4): \quad \PP$ is a maximal left ideal \end{proof}
23238
\section{Valuation Ideal is Maximal Ideal of Induced Valuation Ring/Corollary 1} Tags: Normed Division Rings, Non-Archimedean Norms \begin{theorem} Let $\struct {R, \norm {\,\cdot\,} }$ be a non-Archimedean normed division ring with zero $0_R$ and unity $1_R$. Let $\OO$ be the valuation ring induced by the non-Archimedean norm $\norm {\,\cdot\,}$, that is: :$\OO = \set {x \in R : \norm x \le 1}$ Then: :$\OO$ is a local ring. \end{theorem} \begin{proof} Let $\PP$ be the valuation ideal induced by the non-Archimedean norm $\norm {\,\cdot\,}$, that is: :$\PP = \set{x \in R : \norm{x} \lt 1}$ By Valuation Ideal is Maximal Ideal of Induced Valuation Ring then: :$\PP$ is a maximal left ideal of $\OO$. Let $J \subsetneq \OO$ be any maximal left ideal of $\OO$. Let $x \in \OO \setminus \PP$. {{AimForCont}} $x \in J$. By Norm of Inverse then: :$\norm {x^{-1}} = 1 / \norm x = 1 / 1 = 1$ Hence: :$x^{-1} \in \OO$ Since $J$ is a left ideal then: :$x^{-1} x = 1_R \in J$ Thus: :$\forall y \in \OO: y \cdot 1_R = y \in J$ That is: :$J = \OO$ This contradicts the assumption that $J \ne \OO$. So: :$x \notin J$ Hence: :$\paren {\OO \setminus \PP} \cap J = \O$ That is: :$J \subseteq \PP$ Since $J$ and $\PP$ are both maximal left ideals then: :$J = \PP$ The result follows. {{qed}} \end{proof}
23239
\section{Valuation Ideal of P-adic Norm on Rationals} Tags: Normed Division Rings, P-adic Number Theory \begin{theorem} Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$. The induced valuation ideal on $\struct {\Q,\norm {\,\cdot\,}_p}$ is the set: :$\PP = p \Z_{\ideal p} = \set {\dfrac a b \in \Q : p \nmid b, p \divides a}$ where $\Z_{\ideal p}$ is the induced valuation ring on $\struct {\Q,\norm {\,\cdot\,}_p}$ \end{theorem} \begin{proof} Let $\nu_p: \Q \to \Z \cup \set {+\infty}$ be the $p$-adic valuation on $\Q$. Then: {{begin-eqn}} {{eqn | l = \PP | r = \set {\dfrac a b \in \Q : \norm{\dfrac a b}_p < 1} | c = {{Defof|Valuation Ideal Induced by Non-Archimedean Norm}} }} {{eqn | o = }} {{eqn | r = \set {\dfrac a b \in \Q : \map {\nu_p} {\dfrac a b} > 0} | c = {{Defof|P-adic Norm|$p$-adic Norm}} }} {{eqn | o = }} {{eqn | r = \set {\dfrac a b \in \Q : \map {\nu_p} a - \map {\nu_p} b > 0} | c = {{Defof|P-adic Valuation|$p$-adic Valuation on Rationals}} }} {{eqn | o = }} {{eqn | r = \set {\dfrac a b \in \Q : \map {\nu_p} a > \map {\nu_p} b} }} {{end-eqn}} Let $\dfrac a b \in \Q$ be in canonical form. Then $a \perp b$ Suppose $p \divides a$. Then $p \nmid b$. Hence: :$\map {\nu_p} a > 0 = \map {\nu_p} b$ Suppose $p \nmid a$. Then: :$\map {\nu_p} b \ge 0 = \map {\nu_p} a$ So: :$\map {\nu_p} a > \map {\nu_p} b$ {{iff}} $p \nmid b$ and $p \divides a$ Hence: :$\PP = \set {\dfrac a b \in \Q : p \nmid b, p \divides a}$ So: {{begin-eqn}} {{eqn | l = \dfrac a b \in \PP | o = \leadstoandfrom | r = p \nmid b, p \divides a }} {{eqn | o = \leadstoandfrom | r = p \nmid b, \exists a' \in \Z: a = p a' }} {{eqn | o = \leadstoandfrom | r = \exists a' \in \Z: a = p a', \dfrac {a'} b \in \Z_{\ideal p} | c = Valuation Ring of P-adic Norm on Rationals }} {{eqn | o = \leadstoandfrom | r = \dfrac a b \in p \Z_{\ideal p} }} {{end-eqn}} Hence: :$\PP = p \Z_{\ideal p}$ {{qed}} \end{proof}
23240
\section{Valuation Ideal of P-adic Numbers} Tags: P-adic Number Theory, P-adic Numbers \begin{theorem} Let $p$ be a prime number. Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers. Then the valuation ideal induced by norm $\norm {\,\cdot\,}_p$ is the principal ideal: :$p \Z_p = \set {x \in \Q_p: \norm x_p < 1}$ where $\Z_p$ denotes the $p$-adic integers. \end{theorem} \begin{proof} From P-adic Integers is Local Ring, $\Z_p$ is a local ring. From Principal Ideal from Element in Center of Ring, $p \Z_p$ is a principal ideal. Now: {{begin-eqn}} {{eqn | l = \norm x_p | o = < | r = 1 }} {{eqn | ll= \leadstoandfrom | l = \norm x_p | o = \le | r = \dfrac 1 p | c = P-adic Norm of p-adic Number is Power of p }} {{eqn | ll= \leadstoandfrom | l = p \norm x_p | o = \le | r = 1 }} {{eqn | ll= \leadstoandfrom | l = \dfrac {\norm x_p} {\norm p_p} | o = \le | r = 1 | c = as ${\norm p_p} = \dfrac 1 p$ }} {{eqn | ll= \leadstoandfrom | l = \norm {\dfrac x p}_p | o = \le | r = 1 | c = Norm of Quotient }} {{eqn | ll= \leadstoandfrom | l = \dfrac x p | o = \in | r = \Z_p | c = {{Defof|P-adic Integer|$p$-adic Integer}} }} {{eqn | ll= \leadstoandfrom | l = x | o = \in | r = p \Z_p }} {{end-eqn}} Hence: :$p \Z_p = \set {x \in \Q_p: \norm x_p < 1}$ {{qed}} \end{proof}
23241
\section{Valuation Ring is Local} Tags: Valuation Rings, Ring Theory, Local Rings \begin{theorem} Let $R$ be a valuation ring. Then $R$ is a local ring. \end{theorem} \begin{proof} {{ProofWanted}} Category:Valuation Rings Category:Local Rings \end{proof}
23242
\section{Valuation Ring of Non-Archimedean Division Ring is Clopen} Tags: Normed Division Rings, Valuation Ring of Non-Archimedean Division Ring is Clopen \begin{theorem} Let $\struct {R, \norm {\,\cdot\,} }$ be a non-Archimedean normed division ring with zero $0_R$. Let $\OO$ be valuation ring induced by $\norm{\,\cdot\,}$. Then $\OO$ is a both open and closed in the metric induced by $\norm{\,\cdot\,}$. \end{theorem} \begin{proof} The valuation ring $\OO$ Is the open ball $\map {B_1^-} {0_R}$ by definition. By Open Balls of Non-Archimedean Division Rings are Clopen then $\OO$ is both open and closed in the metric induced by $\norm {\,\cdot\,}$. {{qed}} Category:Normed Division Rings Category:Valuation Ring of Non-Archimedean Division Ring is Clopen \end{proof}
23243
\section{Valuation Ring of Non-Archimedean Division Ring is Clopen/Corollary 1} Tags: P-adic Number Theory, Valuation Ring of Non-Archimedean Division Ring is Clopen \begin{theorem} Let $p$ be a prime number. Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers. Then the $p$-adic integers $\Z_p$ is both open and closed in the $p$-adic metric. \end{theorem} \begin{proof} The $p$-adic integers $\Z_p$ is the valuation ring induced by $\norm {\,\cdot\,}_p$ by definition. By Valuation Ring of Non-Archimedean Division Ring is Clopen then the $p$-adic integers $\Z_p$ is both open and closed in the $p$-adic metric. {{qed}} Category:Valuation Ring of Non-Archimedean Division Ring is Clopen \end{proof}
23244
\section{Valuation Ring of Non-Archimedean Division Ring is Subring} Tags: Normed Division Rings, Non-Archimedean Norms \begin{theorem} Let $\struct {R, \norm{\,\cdot\,}}$ be a non-Archimedean normed division ring with zero $0_R$ and unity $1_R$. Let $\OO$ be the valuation ring induced by the non-Archimedean norm $\norm {\,\cdot\,}$, that is: :$\OO = \set {x \in R : \norm{x} \le 1}$ Then $\OO$ is a subring of $R$: :with a unity: $1_R$ :in which there are no (proper) zero divisors, that is: :::$\forall x, y \in \OO: x \circ y = 0_R \implies x = 0_R \text{ or } y = 0_R$ \end{theorem} \begin{proof} To show that $\OO$ is a subring the Subring Test is used by showing: :$(1): \quad \OO \ne \O$ :$(2): \quad \forall x, y \in \OO: x + \paren {-y} \in \OO$ :$(3): \quad \forall x, y \in \OO: x y \in \OO$ '''(1)''' By Norm of Unity, :$\norm{1_R} = 1$ Hence: :$1_R \in \OO \ne \O$ {{qed|lemma}} '''(2)''' Let $x, y \in \OO$. Then: {{begin-eqn}} {{eqn | l = \norm {x + \paren{-y} } | o = \le | r = \max \set {\norm x, \norm{-y} } | c = {{NormAxiomNonArch|4}} }} {{eqn | r = \max \set {\norm x, \norm y} | c = Norm of Negative }} {{eqn | o = \le | r = 1 | c = Since $x, y \in \OO$ }} {{end-eqn}} Hence: :$x + \paren {-y} \in \OO$ {{qed|lemma}} '''(3)''' Let $x, y \in \OO$. Then: {{begin-eqn}} {{eqn | l = \norm{x y} | o = \le | r = \norm x \norm y | c = {{NormAxiomNonArch|2}} }} {{eqn | o = \le | r = 1 | c = Since $x, y \in \OO$ }} {{end-eqn}} Hence: :$x y \in \OO$ {{qed|lemma}} By Subring Test it follows that $\OO$ is a subring of $R$. Since $1_R \in S$ and $1_R$ is the unity of $R$ then $1_R$ is the unity of $\OO$. By Division Ring has No Proper Zero Divisors then $R$ has no proper zero divisors. Hence $\OO$ has no proper zero divisors. {{qed}} \end{proof}
23245
\section{Valuation Ring of P-adic Norm is Subring of P-adic Integers} Tags: P-adic Number Theory, Valuation Ring of P-adic Norm is Subring of P-adic Integers \begin{theorem} Let $p$ be a prime number. Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers. Let $\Z_p$ be the $p$-adic integers. Let $\Z_{\ideal p}$ be the induced valuation ring on $\struct {\Q,\norm {\,\cdot\,}_p}$. Then: :$(1): \quad \Z_{\ideal p} = \Q \cap \Z_p$. :$(2): \quad \Z_{\ideal p}$ is a subring of $\Z_p$. \end{theorem} \begin{proof} The $p$-adic integers is defined as: :$\Z_p = \set {x \in \Q_p: \norm x_p \le 1}$ The induced valuation ring on $\struct {\Q,\norm {\,\cdot\,}_p}$ is defined as: :$\Z_{\ideal p} = \set {x \in \Q: \norm x_p \le 1}$ From Rational Numbers are Dense Subfield of P-adic Numbers: :the $p$-adic norm $\norm {\,\cdot\,}_p$ on $\Q_p$ is an extension of the $p$-adic norm $\norm {\,\cdot\,}_p$ on $\Q$. It follows that $\Z_{\ideal p} = \Q \cap \Z_p$. This proves $(1)$ above. By Valuation Ring of Non-Archimedean Division Ring is Subring then $\Z_p$ is a subring of $\Q_p$. By definition of $p$-adic integers then $\Q$ is a subring of $\Q_p$. By Intersection of Subrings is Largest Subring Contained in all Subrings then $\Z_{\paren p}$ is a subring of $\Z_p$. This proves $(2)$ above. {{qed}} \end{proof}
23246
\section{Valuation Ring of P-adic Norm is Subring of P-adic Integers/Corollary 1} Tags: P-adic Number Theory, Valuation Ring of P-adic Norm is Subring of P-adic Integers \begin{theorem} Let $p$ be a prime number. Let $\Z_p$ be the $p$-adic integers. The set of integers $\Z$ is a subring of $\Z_p$. \end{theorem} \begin{proof} Let $\Z_{\paren p}$ be the valuation ring induced by $\norm {\,\cdot\,}_p$ on $\Q$. By Integers form Subring of Valuation Ring of P-adic Norm on Rationals then: :$\Z$ is a subring of $\Z_{\paren p}$ By Valuation Ring of P-adic Norm is Subring of P-adic Integers then: :$\Z_{\paren p}$ is a subring of $\Z_p$ The result follows. {{qed}} \end{proof}
23247
\section{Valuation Ring of P-adic Norm on Rationals} Tags: Normed Division Rings, P-adic Number Theory, Valuation Ring of P-adic Norm on Rationals \begin{theorem} Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$. The induced valuation ring on $\struct {\Q,\norm {\,\cdot\,}_p}$ is the set: :$\OO = \Z_{\paren p} = \set {\dfrac a b \in \Q : p \nmid b}$ \end{theorem} \begin{proof} Let $\nu_p: \Q \to \Z \cup \set {+\infty}$ be the $p$-adic valuation on $\Q$. Then: {{begin-eqn}} {{eqn | l = \OO | r = \set {\dfrac a b \in \Q : \norm {\dfrac a b}_p \le 1} | c = {{Defof|Valuation Ring Induced by Non-Archimedean Norm}} }} {{eqn | o = }} {{eqn | r = \set{\dfrac a b \in \Q : \map {\nu_p} {\dfrac a b} \ge 0} | c = {{Defof|P-adic Norm}} }} {{eqn | o = }} {{eqn | r = \set {\dfrac a b \in \Q : \map {\nu_p} a - \map {\nu_p} b \ge 0} | c = {{Defof|P-adic Valuation|$p$-adic Valuation on Rationals}} }} {{eqn | o = }} {{eqn | r = \set {\dfrac a b \in \Q : \map {\nu_p} a \ge \map {\nu_p} b} }} {{end-eqn}} Let $\dfrac a b \in \Q$ be in canonical form. Then $a \perp b$ Suppose $p \divides b$. Then $p \nmid a$. Hence: :$\map {\nu_p} b \gt 0 = \map {\nu_p} a$ Suppose $p \nmid b$. Then: :$\map {\nu_p} a \ge 0 = \map {\nu_p} b$ So: :$\map {\nu_p} a \ge \map {\nu_p} b$ {{iff}} $p \nmid b$ Hence: :$\OO = \set {\dfrac a b \in \Q : p \nmid b }$ {{qed}} \end{proof}
23248
\section{Valuation Ring of P-adic Norm on Rationals/Corollary 1} Tags: P-adic Number Theory, Valuation Ring of P-adic Norm on Rationals \begin{theorem} Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$. Let $\OO$ be the induced valuation ring on $\struct {\Q,\norm {\,\cdot\,}_p}$. The set of integers $\Z$ is a subring of $\OO$. \end{theorem} \begin{proof} By Valuation Ring of P-adic Norm on Rationals, the induced valuation ring $\OO$ is the set: :$\OO = \Z_{\paren p} = \set {\dfrac a b \in \Q : p \nmid b}$ Since $p \nmid 1$ then for all $a \in \Z$, $a = \dfrac a 1 \in \OO$. Hence $\Z \subseteq \OO$. By Valuation Ring of Non-Archimedean Division Ring is Subring then $\OO$ is a subring of $\Q$. By Integers form Subdomain of Rationals then $\Z$ is a subring of $\Q$. By Intersection of Subrings is Largest Subring Contained in all Subrings then $\Z \cap \OO = \Z$ is a subring of $\OO$. {{qed}} \end{proof}
23249
\section{Value of Adjugate of Determinant} Tags: Determinants \begin{theorem} Let $D$ be the determinant of order $n$. Let $D^*$ be the adjugate of $D$. Then $D^* = D^{n - 1}$. \end{theorem} \begin{proof} Let $\mathbf A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}\end{bmatrix}$ and $\mathbf A^* = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn}\end{bmatrix}$. Thus: :$\paren {\mathbf A^*}^\intercal = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn}\end{bmatrix}$ is the transpose of $\mathbf A^*$. Let $c_{ij}$ be the typical element of $\mathbf A \paren {\mathbf A^*}^\intercal$. Then by definition of matrix product: :$\ds c_{ij} = \sum_{k \mathop = 1}^n a_{ik} A_{jk}$ Thus by the corollary of the Expansion Theorem for Determinants: :$c_{ij} = \delta_{ij} D$ So by Determinant of Diagonal Matrix: :$\map \det {\mathbf A \paren {\mathbf A^*}^\intercal} = \begin{vmatrix} D & 0 & \cdots & 0 \\ 0 & D & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D\end{vmatrix} = D^n$ From Determinant of Matrix Product: :$\map \det {\mathbf A} \map \det {\paren {\mathbf A^*}^\intercal} = \map \det {\mathbf A \paren {\mathbf A^*}^\intercal}$ From Determinant of Transpose: :$\map \det {\paren {\mathbf A^*}^\intercal} = \map \det {\mathbf A^*}$ Thus as $D = \map \det {\mathbf A}$ and $D^* = \map \det {\mathbf A^*}$ it follows that: :$DD^* = D^n$ Now if $D \ne 0$, the result follows. However, if $D = 0$ we need to show that $D^* = 0$. Let $D^* = \begin{vmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn}\end{vmatrix}$. Suppose that at least one element of $\mathbf A$, say $a_{rs}$, is non-zero (otherwise the result follows immediately). By Expansion Theorem for Determinants and its corollary, we can expand $D$ by row $r$, and get: :$\ds D = 0 = \sum_{j \mathop = 1}^n A_{ij} t_j, \forall i = 1, 2, \ldots, n$ for all $t_1 = a_{r1}, t_2 = a_{r2}, \ldots, t_n = a_{rn}$. But $t_s = a_{rs} \ne 0$. So, by '''(work in progress)''': :$D^* = \begin{vmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn}\end{vmatrix} = 0$ {{WIP|One result to document, I've got to work out how best to formulate it.}} Category:Determinants \end{proof}
23250
\section{Value of Cauchy Determinant} Tags: Cauchy Matrix, Value of Cauchy Determinant, Matrix Examples, Determinants, Cauchy Matrices \begin{theorem} Let $D_n$ be a Cauchy determinant of order $n$: :$\begin{vmatrix} \dfrac 1 {x_1 + y_1} & \dfrac 1 {x_1 + y_2} & \cdots & \dfrac 1 {x_1 + y_n} \\ \dfrac 1 {x_2 + y_1} & \dfrac 1 {x_2 + y_2} & \cdots & \dfrac 1 {x_2 + y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac 1 {x_n + y_1} & \dfrac 1 {x_n + y_2} & \cdots & \dfrac 1 {x_n + y_n} \\ \end{vmatrix}$ Then the value of $D_n$ is given by: :$D_n = \dfrac {\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i} \paren {y_j - y_i} } {\ds \prod_{1 \mathop \le i, \, j \mathop \le n} \paren {x_i + y_j} }$ Let $D_n$ be given by: :$\begin {vmatrix} \dfrac 1 {x_1 - y_1} & \dfrac 1 {x_1 - y_2} & \cdots & \dfrac 1 {x_1 - y_n} \\ \dfrac 1 {x_2 - y_1} & \dfrac 1 {x_2 - y_2} & \cdots & \dfrac 1 {x_2 - y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac 1 {x_n - y_1} & \dfrac 1 {x_n - y_2} & \cdots & \dfrac 1 {x_n - y_n} \\ \end {vmatrix}$ Then its determinant is given by: :$D_n = \dfrac {\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i} \paren {y_i - y_j} } {\ds \prod_{1 \mathop \le i, \, j \mathop \le n} \paren {x_i - y_j} }$ \end{theorem} \begin{proof} Take the version of the Cauchy matrix defined such that $a_{ij} = \dfrac 1 {x_i + y_j}$. Subtract column $1$ from each of columns $2$ to $n$. Thus: {{begin-eqn}} {{eqn | l = a_{ij} | o = \gets | r = \frac 1 {x_i + y_j} - \frac 1 {x_i + y_1} | c = }} {{eqn | r = \frac {\left({x_i + y_1}\right) - \left({x_i + y_j}\right)} {\left({x_i + y_j}\right) \left({x_i + y_1}\right)} | c = }} {{eqn | r = \left({\frac {y_1 - y_j}{x_i + y_1} }\right) \left({\frac 1 {x_i + y_j} }\right) | c = }} {{end-eqn}} From Multiple of Row Added to Row of Determinant this will have no effect on the value of the determinant. Now: :$1$: extract the factor $\dfrac 1 {x_i + y_1}$ from each row $1 \le i \le n$ :$2$: extract the factor $y_1 - y_j$ from each column $2 \le j \le n$. Thus from Determinant with Row Multiplied by Constant we have the following: :$\displaystyle D_n = \left({\prod_{i \mathop = 1}^n \frac 1 {x_i + y_1}}\right) \left({\prod_{j \mathop = 2}^n y_1 - y_j}\right) \begin{vmatrix} 1 & \dfrac 1 {x_1 + y_2} & \dfrac 1 {x_1 + y_3} & \cdots & \dfrac 1 {x_1 + y_n} \\ 1 & \dfrac 1 {x_2 + y_2} & \dfrac 1 {x_2 + y_3} & \cdots & \dfrac 1 {x_2 + y_n} \\ 1 & \dfrac 1 {x_3 + y_2} & \dfrac 1 {x_3 + y_3} & \cdots & \dfrac 1 {x_3 + y_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dfrac 1 {x_n + y_2} & \dfrac 1 {x_n + y_3} & \cdots & \dfrac 1 {x_n + y_n} \\ \end{vmatrix}$ Now subtract row $1$ from each of rows $2$ to $n$. Column $1$ will go to $0$ for all but the first row. Columns $2$ to $n$ will become: {{begin-eqn}} {{eqn | l = a_{ij} | o = \gets | r = \frac 1 {x_i + y_j} - \frac 1 {x_1 + y_j} | c = }} {{eqn | r = \frac {\left({x_1 + y_j}\right) - \left({x_i + y_j}\right)} {\left({x_i + y_j}\right) \left({x_1 + y_j}\right)} | c = }} {{eqn | r = \left({\frac {x_1 - x_i} {x_1 + y_j} }\right) \left({\frac 1 {x_i + y_j} }\right) | c = }} {{end-eqn}} From Multiple of Row Added to Row of Determinant this will have no effect on the value of the determinant. Now: :$1$: extract the factor $x_1 - x_i$ from each row $2 \le i \le n$ :$2$: extract the factor $\dfrac 1 {x_1 + y_j}$ from each column $2 \le j \le n$. Thus from Determinant with Row Multiplied by Constant we have the following: :$\displaystyle D_n = \left({\prod_{i \mathop = 1}^n \frac 1 {x_i + y_1}}\right) \left({\prod_{j \mathop = 1}^n \frac 1 {x_1 + y_j}}\right) \left({\prod_{i \mathop = 2}^n x_1 - x_i}\right) \left({\prod_{j \mathop = 2}^n y_1 - y_j}\right) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & \dfrac 1 {x_2 + y_2} & \dfrac 1 {x_2 + y_3} & \cdots & \dfrac 1 {x_2 + y_n} \\ 0 & \dfrac 1 {x_3 + y_2} & \dfrac 1 {x_3 + y_3} & \cdots & \dfrac 1 {x_3 + y_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dfrac 1 {x_n + y_2} & \dfrac 1 {x_n + y_3} & \cdots & \dfrac 1 {x_n + y_n} \\ \end{vmatrix}$ From Determinant with Unit Element in Otherwise Zero Row, and tidying up the products, we get: :$D_n = \frac {\displaystyle \prod_{i \mathop = 2}^n \left({x_i - x_1}\right) \left({y_i - y_1}\right)} {\displaystyle \prod_{1 \mathop \le i, j \mathop \le n} \left({x_i + y_1}\right) \left({x_1 + y_j}\right)} \begin{vmatrix} \dfrac 1 {x_2 + y_2} & \dfrac 1 {x_2 + y_3} & \cdots & \dfrac 1 {x_2 + y_n} \\ \dfrac 1 {x_3 + y_2} & \dfrac 1 {x_3 + y_3} & \cdots & \dfrac 1 {x_3 + y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac 1 {x_n + y_2} & \dfrac 1 {x_n + y_3} & \cdots & \dfrac 1 {x_n + y_n} \\ \end{vmatrix}$ Repeat the process for the remaining rows and columns $2$ to $n$. The result follows. {{qed}} A similar process obtains the result for the $a_{ij} = \dfrac 1 {x_i - y_j}$ form. \end{proof}
23251
\section{Value of Compactly Supported Function outside its Support} Tags: Real Analysis \begin{theorem} Let $f : \R \to \R$ be a continuous real function. Let $K \subseteq \R$ be a compact subset. Let $K$ be the support of $f$: :$\map \supp f = K$. Then: :$\forall x \notin K : \map f x = 0$ \end{theorem} \begin{proof} We have that: :$\R = K \cup \paren {\R \setminus K}$. By definition of the support: :$x \in \map \supp f \iff \map f x \ne 0$ By Biconditional Equivalent to Biconditional of Negations: :$\neg \paren {x \in \map \supp f} \iff \neg \paren {\map f x \ne 0}$ That is: :$x \notin K \iff \map f x = 0$ or :$x \in \R \setminus K \iff \map f x = 0$ Hence: :$\forall x \notin K : \map f x = 0$ {{qed}} Category:Real Analysis \end{proof}
23252
\section{Value of Degree in Radians} Tags: Units of Measurement, Definitions: Geometry, Trigonometry, Angles, Definitions: Units of Measurement, Definitions: Angles \begin{theorem} The value of a degree in radians is given by: :$1 \degrees = \dfrac {\pi} {180} \radians \approx 0.01745 \ 32925 \ 19943 \ 29576 \ 92 \ldots \radians$ {{OEIS|A019685}} \end{theorem} \begin{proof} By Full Angle measures 2 Pi Radians, a full angle measures $2 \pi$ radians. By definition of degree of arc, a full angle measures $360$ degrees. Thus $1$ degree of arc is given by: :$1 \degrees = \dfrac {2 \pi} {360} = \dfrac {\pi} {180}$ {{qed}} \end{proof}
23253
\section{Value of Field Norm on 5th Cyclotomic Ring is Integer} Tags: Cyclotomic Rings \begin{theorem} Let $\struct {\Z \sqbrk {i \sqrt 5}, +, \times}$ denote the $5$th cyclotomic ring. Let $\alpha = a + i b \sqrt 5$ be an arbitrary element of $\Z \sqbrk {i \sqrt 5}$. Let $\map N \alpha$ denoted the field norm of $\alpha$. Then $\map N \alpha$ is an integer. \end{theorem} \begin{proof} From Field Norm on 5th Cyclotomic Ring: :$\map N \alpha = a^2 + 5 b^2$ From the definition of the $5$th cyclotomic ring: :$\Z \sqbrk {i \sqrt 5} = \set {a + i \sqrt 5 b: a, b \in \Z}$ That is, both $a$ and $b$ are integers. Hence $a^2 + 5 b^2$ is also an integer. {{Qed}} \end{proof}
23254
\section{Value of Finite Continued Fraction equals Numerator Divided by Denominator} Tags: Continued Fractions, Proofs by Induction \begin{theorem} Let $F$ be a field. Let $\tuple {a_0, a_1, \ldots, a_n}$ be a finite continued fraction of length $n \ge 0$. Let $p_n$ and $q_n$ be its $n$th numerator and denominator. Then the value $\sqbrk {a_0, a_1, \ldots, a_n}$ equals $\dfrac {p_n} {q_n}$. \end{theorem} \begin{proof} We will use a proof by induction on the length $n$. For all $n \in \Z_{>0}$, let $\map P n$ be the proposition: :$\sqbrk {a_0, a_1, \ldots, a_n} = \dfrac {p_n} {q_n}$ \end{proof}
23255
\section{Value of Finite Continued Fraction of Real Numbers is at Least First Term} Tags: Continued Fractions \begin{theorem} Let $(a_0, \ldots, a_n)$ be a finite continued fraction in $\R$ of length $n \geq 0$. Let the partial quotients $a_k>0$ be strictly positive for $k>0$. Let $x = [a_0, a_1, \ldots, a_n]$ be its value. Then $x \geq a_0$, and $x>a_0$ if the length $n\geq 1$. \end{theorem} \begin{proof} If $n=0$, we have $x = [a_0] = a_0$ by definition of value. Let $n>0$. By definition of value: :$[a_0, a_1, \ldots, a_n] = a_0 + \dfrac 1 {[a_1, a_2, \ldots, a_n]}$ By Value of Finite Continued Fraction of Strictly Positive Real Numbers is Strictly Positive: :$[a_1, a_2, \ldots, a_n] > 0$. Thus :$[a_0, a_1, \ldots, a_n] = a_0 + \dfrac 1 {[a_1, a_2, \ldots, a_n]} > a_0$ {{qed}} \end{proof}
23256
\section{Value of Formula under Assignment Determined by Free Variables} Tags: Predicate Logic \begin{theorem} Let $\mathbf A$ be a WFF of predicate logic. Let $\AA$ be a structure for predicate logic. Let $\sigma, \sigma'$ be assignments for $\mathbf A$ in $\AA$ such that: :For each free variable $x$ of $\mathbf A$, $\map \sigma x = \map {\sigma'} x$ Then: :$\map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma = \map {\operatorname{val}_\AA} {\mathbf A} \sqbrk {\sigma'}$ where $\map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma$ is the value of $\mathbf A$ under $\sigma$. \end{theorem} \begin{proof} Proceed by the Principle of Structural Induction applied to the bottom-up specification of predicate logic. If $\mathbf A = \map p {\tau_1, \ldots, \tau_n}$, then: :$\map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma = \map {p_\AA} {\map {\operatorname{val}_\AA} {\tau_1} \sqbrk \sigma, \ldots, \map {\operatorname{val}_\AA} {\tau_n} \sqbrk \sigma}$ Because $\mathbf A$ contains no quantifiers, all its variables are free, and hence are in the domain of $\sigma, \sigma'$ as assignments. Thus $\sigma, \sigma'$ are assignments for each $\tau_i$, and by Value of Term under Assignment Determined by Variables: :$\map {\operatorname{val}_\AA} {\tau_i} \sqbrk \sigma = \map {\operatorname{val}_\AA} {\tau_i} \sqbrk {\sigma'}$ for each $\tau_i$. It is immediate that: :$\map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma = \map {\operatorname{val}_\AA} {\mathbf A} \sqbrk {\sigma'}$ If $\mathbf A = \neg \mathbf B$ and the induction hypothesis applies to $\mathbf B$, then: {{begin-eqn}} {{eqn|l = \map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma |r = \map {f^\neg} {\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk \sigma} |c = {{Defof|Value of Formula under Assignment|Value under $\sigma$}} }} {{eqn|r = \map {f^\neg} {\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk {\sigma'} } |c = Induction Hypothesis }} {{eqn|r = \map {\operatorname{val}_\AA} {\mathbf A} \sqbrk {\sigma'} |c = {{Defof|Value of Formula under Assignment|Value under $\sigma'$}} }} {{end-eqn}} If $\mathbf A = \mathbf B \circ \mathbf B'$ for $\circ$ one of $\land, \lor, \implies, \iff$ and the induction hypothesis applies to $\mathbf B, \mathbf B'$: {{begin-eqn}} {{eqn|l = \map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma |r = \map {f^\circ} {\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk \sigma, \map {\operatorname{val}_\AA} {\mathbf B'} \sqbrk \sigma} |c = {{Defof|Value of Formula under Assignment|Value under $\sigma$}} }} {{eqn|r = \map {f^\circ} {\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk {\sigma'}, \map {\operatorname{val}_\AA} {\mathbf B'} \sqbrk {\sigma'} } |c = Induction Hypothesis }} {{eqn|r = \map {\operatorname{val}_\AA} {\mathbf A} \sqbrk {\sigma'} |c = {{Defof|Value of Formula under Assignment|Value under $\sigma'$}} }} {{end-eqn}} If $\mathbf A = \exists x: \mathbf B$ or $\mathbf A = \forall x : \mathbf B$, and the induction hypothesis applies to $\mathbf B$, then from the definition of value under $\sigma$: :$\map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma$ is determined by the values: :$\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk {\sigma + \paren {x / a} }$ where $a$ ranges over $\AA$, and $\sigma + \paren {x / a}$ is the extension of $\sigma$ mapping $x$ to $a$. Now, for a free variable $y$ of $\mathbf B$: {{begin-eqn}} {{eqn|l = \map {\paren {\sigma + \paren {x / a} } } y |r = \begin{cases} a &: \text{if } y = x \\ \map \sigma y &: \text{otherwise} \end{cases} |c = {{Defof|Extension of Assignment}} }} {{eqn|r = \begin{cases} a &: \text{if } y = x \\ \map {\sigma'} y &: \text{otherwise} \end{cases} |c = Assumption on $\sigma, \sigma'$ }} {{eqn|r = \map {\paren {\sigma' + \paren {x / a} } } y |c = {{Defof|Extension of Assignment}} }} {{end-eqn}} Hence, by the induction hypothesis: :$\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk {\sigma + \paren {x / a} } = \map {\operatorname{val}_\AA} {\mathbf B} \sqbrk {\sigma' + \paren {x / a} }$ It follows that: :$\map {\operatorname{val}_\AA} {\mathbf A} \sqbrk \sigma = \map {\operatorname{val}_\AA} {\mathbf A} \sqbrk {\sigma'}$ The result follows from the Principle of Structural Induction. {{qed}} Category:Predicate Logic \end{proof}
23257
\section{Value of Multiplicative Function at One} Tags: Multiplicative Functions \begin{theorem} Let $f: \N \to \C$ be a multiplicative function. If $f$ is not identically zero, then $\map f 1 = 1$. \end{theorem} \begin{proof} If $f$ is not identically zero, then: :$\exists m \in \Z: \map f m \ne 0$ Then: :$\map f m = \map f {1 \times m} = \map f 1 \, \map f m$ Hence $\map f 1 = 1$. {{qed}} Category:Multiplicative Functions \end{proof}
23258
\section{Value of Multiplicative Function is Product of Values of Prime Power Factors} Tags: Multiplicative Functions \begin{theorem} Let $f: \N \to \C$ be a multiplicative function. Let $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ be the prime decomposition of $n$. Then: :$\map f n = \map f {p_1^{k_1} } \, \map f {p_2^{k_2} } \dotsm \map f {p_r^{k_r} }$ \end{theorem} \begin{proof} We have: :$n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}$ We also have: :$\forall i, j \in \closedint 1 n: i \ne j \implies p_i^{k_i} \perp p_j^{k_j}$ So: :$\map f {p_i^{k_i} p_j^{k_j} } = \map f {p_i^{k_i} } \, \map f {p_j^{k_j} }$ It is a simple inductive process to show that $\map f n = \map f {p_1^{k_1} } \, \map f {p_2^{k_2} } \dotsm \map f {p_r^{k_r} }$. {{handwaving}} {{qed}} Category:Multiplicative Functions \end{proof}
23259
\section{Value of Odd Bernoulli Polynomial at One Half} Tags: Bernoulli Polynomials, Bernoulli Polynomials \begin{theorem} Let $\map {B_n} x$ denote the $n$th Bernoulli polynomial. Then: :$\map {B_{2 n + 1} } {\dfrac 1 2} = 0$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \map {B_{2 n + 1} } {1 - x} | r = \paren {-1}^{2 n + 1} \map {B_{2 n + 1} } x | c = Symmetry of Bernoulli Polynomial }} {{eqn | r = \paren {-1} \map {B_{2 n + 1} } x }} {{eqn | ll= \leadsto | l = \map {B_{2 n + 1} } {\frac 1 2} | r = \paren {-1} \map {B_{2 n + 1} } {\frac 1 2} }} {{eqn | ll= \leadsto | l = 2 \map {B_{2 n + 1} } {\frac 1 2} | r = 0 }} {{eqn | l = \map {B_{2 n + 1} } {\frac 1 2} | r = 0 }} {{end-eqn}} {{qed}} Category:Bernoulli Polynomials \end{proof}
23260
\section{Value of Plastic Constant} Tags: Pisot-Vijayaraghavan Numbers \begin{theorem} The plastic constant $P$ is evaluated as: {{begin-eqn}} {{eqn | l = P | r = \sqrt [3] {\frac {9 + \sqrt {69} } {18} } + \sqrt [3] {\frac {9 - \sqrt {69} } {18} } | c = }} {{eqn | r = 1 \cdotp 32471 \, 79572 \, 44746 \, 02596 \, 09088 \, 54 \ldots | c = }} {{end-eqn}} \end{theorem} \begin{proof} By definition, the plastic constant $P$ is the real root of the cubic: :$x^3 - x - 1 = 0$ Recall Cardano's Formula: {{:Cardano's Formula}} Here we have: {{begin-eqn}} {{eqn | l = a | r = 1 }} {{eqn | l = b | r = 0 }} {{eqn | l = c | r = -1 }} {{eqn | l = d | r = -1 }} {{end-eqn}} Hence: {{begin-eqn}} {{eqn | l = Q | r = \dfrac {3 \times 1 \times \paren {-1} - 0^2} {9 \times 1^2} | c = }} {{eqn | r = \dfrac {-3} 9 | c = }} {{eqn | r = -\dfrac 1 3 | c = }} {{eqn | l = R | r = \dfrac {9 \times 1 \times 0 \times \paren {-1} - 27 \times 1^2 \times \paren {-1} - 2 \times 0^3} {54 \times 1^3} | c = }} {{eqn | r = \dfrac {27} {54} | c = }} {{eqn | r = \dfrac 1 2 | c = }} {{end-eqn}} and so: {{begin-eqn}} {{eqn | l = \sqrt {Q^3 + R^2} | r = \sqrt {\paren {-\dfrac 1 3}^3 + \paren {\dfrac 1 2}^2} | c = }} {{eqn | r = \sqrt {\dfrac 1 4 - \dfrac 1 {27} } | c = }} {{eqn | r = \sqrt {\dfrac {27 - 4} {108} } | c = }} {{eqn | r = \sqrt {\dfrac {3 \times 23} {3 \times 2^2 \times 3^3} } | c = }} {{eqn | r = \sqrt {\dfrac {69} {18^2} } | c = }} {{eqn | r = \dfrac {\sqrt {69} } {18} | c = }} {{eqn | ll= \leadsto | l = S = \sqrt [3] {R + \sqrt {Q^3 + R^2} } | r = \sqrt [3] {\dfrac 1 2 + \dfrac {\sqrt {69} } {18} } | c = }} {{eqn | r = \sqrt [3] {\dfrac {9 + \sqrt {69} } {18} } | c = }} {{eqn | l = T = \sqrt [3] {R - \sqrt {Q^3 + R^2} } | r = \sqrt [3] {\dfrac 1 2 - \dfrac {\sqrt {69} } {18} } | c = }} {{eqn | r = \sqrt [3] {\dfrac {9 - \sqrt {69} } {18} } | c = }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = S + T - \dfrac b {3 a} | r = \sqrt [3] {\dfrac {9 + \sqrt {69} } {18} } + \sqrt [3] {\dfrac {9 - \sqrt {69} } {18} } - \dfrac 0 {3 \times 1} | c = }} {{eqn | r = \sqrt [3] {\dfrac {9 + \sqrt {69} } {18} } + \sqrt [3] {\dfrac {9 - \sqrt {69} } {18} } | c = }} {{end-eqn}} The number can then be calculated. Since $S \ne T$, the other two roots $x_2, x_3$ has non-zero imaginary parts $\pm \dfrac {i \sqrt 3} 2 \paren {S - T}$. Hence the root above is the only real root. {{qed}} \end{proof}
23261
\section{Value of Radian in Degrees} Tags: Units of Measurement, Definitions: Geometry, Trigonometry, Definitions: Trigonometry, Angles, Definitions: Units of Measurement, Definitions: Angles \begin{theorem} The value of a radian in degrees is given by: :$1 \radians = \dfrac {180 \degrees} {\pi} \approx 57.29577 \ 95130 \ 8232 \ldots \degrees$ {{OEIS|A072097}} \end{theorem} \begin{proof} By Full Angle measures 2 Pi Radians, a full angle measures $2 \pi$ radians. By definition of degree of arc, a full angle measures $360$ degrees. Thus $1$ radian is given by: :$1 \radians = \dfrac {360 \degrees} {2 \pi} = \dfrac {180 \degrees} {\pi}$ {{qed}} \end{proof}
23262
\section{Value of Relation is Small} Tags: Zermelo-Fraenkel Class Theory \begin{theorem} The value of a relation is always a small class. \end{theorem} \begin{proof} Let $\RR$ be an arbitrary relation. Let $s$ be any set. The value of a relation is either equal to some set $y$ or $\O$ by Uniqueness Condition for Relation Value. If it is equal to some set $y$, then the value of $s$ under $\RR$ is a small class by the definition of small class. If it is equal to $\O$, then the result follows from Empty Set is Small. \end{proof}
23263
\section{Value of Term under Assignment Determined by Variables} Tags: Predicate Logic \begin{theorem} Let $\tau$ be a term of predicate logic. Let $\AA$ be a structure for predicate logic. Let $\sigma, \sigma'$ be assignments for $\tau$ in $\AA$ such that: :For each variable $x$ occurring in $\tau$, $\map \sigma x = \map {\sigma'} x$ Then: :$\map {\operatorname{val}_\AA} \tau \sqbrk \sigma = \map {\operatorname{val}_\AA} \tau \sqbrk {\sigma'}$ where $\map {\operatorname{val}_\AA} \tau \sqbrk \sigma$ is the value of $\tau$ under $\sigma$. \end{theorem} \begin{proof} Proceed by the Principle of Structural Induction applied to the definition of a term. If $\tau = x$, then: {{begin-eqn}} {{eqn|l = \map {\operatorname{val}_\AA} \tau \sqbrk \sigma |r = \map \sigma x |c = {{Defof|Value of Term under Assignment|value under $\sigma$}} }} {{eqn|r = \map {\sigma'} x |c = Assumption on $\sigma, \sigma'$ }} {{eqn|r = \map {\operatorname{val}_\AA} \tau \sqbrk {\sigma'} |c = {{Defof|Value of Term under Assignment|value under $\sigma$}} }} {{end-eqn}} as desired. If $\tau = \map f {\tau_1, \ldots, \tau_n}$ and the induction hypothesis applies to each $\tau_i$, then: {{begin-eqn}} {{eqn|l = \map {\operatorname{val}_\AA} \tau \sqbrk \sigma |r = \map {f_\AA} {\map {\operatorname{val}_\AA} {\tau_1} \sqbrk \sigma, \ldots, \map {\operatorname{val}_\AA} {\tau_n} \sqbrk \sigma} |c = {{Defof|Value of Term under Assignment|value under $\sigma$}} }} {{eqn|r = \map {f_\AA} {\map {\operatorname{val}_\AA} {\tau_1} \sqbrk {\sigma'}, \ldots, \map {\operatorname{val}_\AA} {\tau_n} \sqbrk {\sigma'} } |c = Induction Hypothesis }} {{eqn|r = \map {\operatorname{val}_\AA} \tau \sqbrk {\sigma'} |c = {{Defof|Value of Term under Assignment|value under $\sigma'$}} }} {{end-eqn}} The result follows from the Principle of Structural Induction. {{qed}} Category:Predicate Logic \end{proof}
23264
\section{Value of Vacuum Permittivity} Tags: Vacuum Permittivity \begin{theorem} The value of the '''vacuum permittivity''' is calculated as: :$\varepsilon_0 = 8 \cdotp 85418 \, 78128 (13) \times 10^{-12} \, \mathrm F \, \mathrm m^{-1}$ (farads per metre) with a relative uncertainty of $1 \cdotp 5 \times 10^{-10}$. \end{theorem} \begin{proof} The '''vacuum permittivity''' is the physical constant denoted $\varepsilon_0$ defined as: :$\varepsilon_0 := \dfrac 1 {\mu_0 c^2}$ where: :$\mu_0$ is the vacuum permeability defined in $\mathrm H \, \mathrm m^{-1}$ (henries per metre) :$c$ is the speed of light defined in $\mathrm m \, \mathrm s^{-1}$ $\mu_0$ has the value determined experimentally as: :$\mu_0 \approx 1 \cdotp 25663 \, 70621 \, 2 (19) \times 10^{-6} \mathrm H \, \mathrm m^{-1}$ $c$ is defined precisely as: :$c = 299 \, 792 \, 458 \mathrm m \, \mathrm s^{-1}$ Hence $\varepsilon_0$ can be calculated as: {{begin-eqn}} {{eqn | l = \varepsilon_0 | r = \dfrac 1 {\mu_0 c^2} | rr= \dfrac 1 {\mathrm H \, \mathrm m^{-1} \times \paren {\mathrm m \, \mathrm s^{-1} }^2} | c = }} {{eqn | r = \dfrac 1 {1 \cdotp 25663 \, 70621 \, 2 (19) \times 10^{-6} \times \paren {299 \, 792 \, 458}^2} | rr= \dfrac 1 {\frac {\mathrm {kg} \times \mathrm m^2} {\mathrm s^2 \times \mathrm A^2} \, \mathrm m^{-1} \times \paren {\mathrm m \, \mathrm s^{-1} }^2} | c = Fundamental Dimensions of Henry }} {{eqn | r = 8 \cdotp 85418 \, 78128 (13) \times 10^{-12} | rr= \dfrac {\mathrm A^2 \times \mathrm s^4} {\mathrm {kg} \times \mathrm m^3} | c = }} {{eqn | r = 8 \cdotp 85418 \, 78128 (13) \times 10^{-12} | rr= \dfrac {\mathrm F} {\mathrm m} | c = Fundamental Dimensions of Farad }} {{end-eqn}} {{qed}} Category:Vacuum Permittivity 462492 462483 2020-04-17T08:25:41Z Prime.mover 59 462492 wikitext text/x-wiki \end{proof}
23265
\section{Value of Vandermonde Determinant/Formulation 2} Tags: Value of Vandermonde Determinant \begin{theorem} Let $V_n$ be the '''Vandermonde determinant of order $n$''' defined as the following formulation: {{:Definition:Vandermonde Determinant/Formulation 2}} Its value is given by: :$\ds V_n = \prod_{1 \mathop \le j \mathop \le n} x_j \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}$ \end{theorem} \begin{proof} The proof follows directly from that for Value of Vandermonde Determinant/Formulation 1 and the result Determinant with Row Multiplied by Constant. {{finish}} {{Namedfor|Alexandre-Théophile Vandermonde}} \end{proof}
23266
\section{Value of b for b by Logarithm Base b of x to be Minimum} Tags: Logarithms \begin{theorem} Let $x \in \R_{> 0}$ be a (strictly) positive real number. Consider the real function $f: \R_{> 0} \to \R$ defined as: :$\map f b := b \log_b x$ $f$ attains a minimum when :$b = e$ where $e$ is Euler's number. \end{theorem} \begin{proof} From Derivative at Maximum or Minimum, when $f$ is at a minimum, its derivative $\dfrac \d {\d b} f$ will be zero. Let $y = \map f b$. We have: {{begin-eqn}} {{eqn | l = y | r = b \log_b x | c = }} {{eqn | r = \frac {b \ln x} {\ln b} | c = Change of Base of Logarithm }} {{eqn | ll= \leadsto | l = \frac {\d y} {\d b} | r = \frac {\ln b \frac \d {\d b} \paren {b \ln x} - b \ln x \frac \d {\d b} \ln b} {\paren {\ln b}^2} | c = Quotient Rule for Derivatives }} {{eqn | r = \frac {\ln b \ln x - b \ln x \frac 1 b} {\paren {\ln b}^2} | c = Derivative of Natural Logarithm, Derivative of Identity Function }} {{eqn | r = \frac {\ln x} {\ln b} \paren {1 - \frac 1 {\ln b} } | c = simplifying }} {{eqn | r = \frac {\ln x} {\ln b^2} \paren {\ln b - 1} | c = simplifying }} {{end-eqn}} Thus: {{begin-eqn}} {{eqn | l = \dfrac {\d y} {\d b} | r = 0 | c = }} {{eqn | ll= \leadsto | l = \frac {\ln x} {\ln b} | r = \frac {\ln x} {\paren {\ln b}^2} | c = }} {{eqn | ll= \leadsto | l = \ln b | r = 1 | c = simplifying }} {{eqn | ll= \leadsto | l = b | r = e | c = {{Defof|Natural Logarithm}} }} {{end-eqn}} To determine that $f$ is a minimum at this point, we differentiate again {{WRT|Differentiation}} $b$: {{begin-eqn}} {{eqn | l = \frac {\d^2 y} {\d b^2} | r = \frac \d {\d b} \paren {\frac {\ln x} {\ln b^2} \paren {\ln b - 1} } | c = }} {{eqn | r = \frac {\ln x} b \paren {\frac {\ln b - 2 \paren {\ln b - 1} } {\paren {\ln b}^3} } | c = }} {{end-eqn}} Setting $b = e$ gives: :$\valueat {\dfrac {\d^2 y} {\d b^2} } {b \mathop = e} = \dfrac {\ln x} e \dfrac {\paren {1 - 2 \paren 0} } 1$ which works out to be (strictly) positive. From Twice Differentiable Real Function with Positive Second Derivative is Strictly Convex, $f$ is strictly convex at this point. Thus $f$ is a minimum. {{qed}} \end{proof}
23267
\section{Values of Dirac Delta Function over Reals} Tags: Definitions: Dirac Delta Function \begin{theorem} Let $\map \delta x$ denote the Dirac delta function. Then: :$\map \delta x := \begin {cases} \infty & : x = 0 \\ 0 & : x \ne 0 \end {cases}$ \end{theorem} \begin{proof} We have that: :$\map \delta x = \ds \lim_{\epsilon \mathop \to 0} \map {F_\epsilon} x$ where: :$\map {F_\epsilon} x = \begin {cases} 0 & : x < -\epsilon \\ \dfrac 1 {2 \epsilon} & : -\epsilon \le x \le \epsilon \\ 0 & : x > \epsilon \end {cases}$ Therefore: {{begin-eqn}} {{eqn | l = \map \delta 0 | r = \ds \lim_{\epsilon \mathop \to 0} \map {F_\epsilon} 0 | c = }} {{eqn | r = \dfrac 1 {2 \times 0 } | c = }} {{eqn | r = \infty | c = }} {{end-eqn}} and {{begin-eqn}} {{eqn | l = \map \delta {x \ne 0} | r = \ds \lim_{\epsilon \mathop \to 0} \map {F_\epsilon} {x \ne 0} | c = }} {{eqn | r = 0 | c = }} {{end-eqn}} Therefore: :$\map \delta x := \begin {cases} \infty & : x = 0 \\ 0 & : x \ne 0 \end {cases}$ \end{proof}
23268
\section{Vandermonde Matrix Identity for Cauchy Matrix} Tags: Hilbert Matrix, Vandermonde Matrix Identity, Vandermonde Matrices, Cauchy Matrix \begin{theorem} Assume values $\set {x_1, \ldots, x_n, y_1, \ldots, y_n}$ are distinct in matrix {{begin-eqn}} {{eqn | l = C | r = \begin {pmatrix} \dfrac 1 {x_1 - y_1} & \dfrac 1 {x_1 - y_2} & \cdots & \dfrac 1 {x_1 - y_n} \\ \dfrac 1 {x_2 - y_1} & \dfrac 1 {x_2 - y_2} & \cdots & \dfrac 1 {x_2 - y_n} \\ \vdots & \vdots & \cdots & \vdots \\ \dfrac 1 {x_n - y_1} & \dfrac 1 {x_n - y_2} & \cdots & \dfrac 1 {x_n - y_n} \\ \end {pmatrix} | c = Cauchy matrix of order $n$ }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = C | r = -P V_x^{-1} V_y Q^{-1} | c = Vandermonde matrix identity for a Cauchy matrix }} {{end-eqn}} Definitions of Vandermonde matrices $V_x$, $V_y$ and diagonal matrices $P$, $Q$: :$V_x = \begin {pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ {x_1}^{n - 1} & {x_2}^{n - 1} & \cdots & {x_n}^{n - 1} \\ \end {pmatrix}, \quad V_y = \begin {pmatrix} 1 & 1 & \cdots & 1 \\ y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ {y_1}^{n - 1} & {y_2}^{n - 1} & \cdots & {y_n}^{n - 1} \\ \end {pmatrix}$ Vandermonde matrices :$P = \begin {pmatrix} \map {p_1} {x_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \map {p_n} {x_n} \\ \end {pmatrix}, \quad Q = \begin {pmatrix} \map p {y_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \map p {y_n} \\ \end {pmatrix}$ Diagonal matrices Definitions of polynomials $p, p_1, \ldots, p_n$: :$\ds \map p x = \prod_{i \mathop = 1}^n \paren {x - x_i}$ :$\ds \map {p_k} x = \dfrac {\map p x} {x - x_k} = \prod_{i \mathop = 1, i \mathop \ne k}^n \paren {x - x_i}$, $1 \mathop \le k \mathop \le n$ \end{theorem} \begin{proof} Matrices $P$ and $Q$ are invertible because all diagonal elements are nonzero. For $1 \le i \le n$ express polynomial $p_i$ as: :$\ds \map {p_i} x = \sum_{k \mathop = 1}^n a_{i k} x^{k - 1}$ Then: {{begin-eqn}} {{eqn | l = \paren {\map {p_i} {x_j} } | r = \paren {a_{i j} } V_x | c = {{Defof|Matrix Product (Conventional)}} }} {{eqn | l = P | r = \paren {a_{i j} } V_x | c = as $\map {p_i} {x_j} = 0$ for $i \ne j$. }} {{eqn | l = \paren {a_{i j} } | r = P V_x^{-1} | c = solving for matrix $paren {a_{i j} }$ }} {{eqn | l = \paren {\map {p_i} {y_j} } | r = \paren {a_{i j} } V_y | c = {{Defof|Matrix Product (Conventional)}} }} {{eqn | l = \paren {\map {p_i} {y_j} } | r = P V_x^{-1} V_y | c = substituting $paren {a_{i j} } = P V_x^{-1}$ }} {{end-eqn}} Use second equation $\map {p_i} {y_j} = \dfrac {\map p {y_j} } {y_j - x_i}$: {{begin-eqn}} {{eqn | l = \paren {\map {p_i} {y_j} } | r = -C Q | c = {{Defof|Matrix Product (Conventional)}} }} {{eqn | l = -C Q | r = P V_x^{-1} V_y | c = equating competing equations for $\paren {\map {p_i} {y_j} }$ }} {{eqn | l = C | r = -P V_x^{-1} V_y Q^{-1} | c = solving for $C$ }} {{end-eqn}} {{qed}} \end{proof}
23269
\section{Vandermonde Matrix Identity for Hilbert Matrix} Tags: Hilbert Matrix, Vandermonde Matrix Identity, Vandermonde Matrices \begin{theorem} Define polynomial root sets $\set {1, 2, \ldots, n}$ and $\set {0, -1, \ldots, -n + 1}$ for Definition:Cauchy Matrix. Let $H$ be the Hilbert matrix of order $n$: :$H = \begin {pmatrix} 1 & \dfrac 1 2 & \cdots & \dfrac 1 n \\ \dfrac 1 2 & \dfrac 1 3 & \cdots & \dfrac 1 {n + 1} \\ \vdots & \vdots & \cdots & \vdots \\ \dfrac 1 n & \dfrac 1 {n + 1} & \cdots & \dfrac 1 {2 n - 1} \end {pmatrix}$ Then from Vandermonde Matrix Identity for Cauchy Matrix and Hilbert Matrix is Cauchy Matrix: :$H = -P V_x^{-1} V_y Q^{-1}$ where $V_x$, $V_y$ are Vandermonde matrices: :$V_x = \begin {pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 2^{n - 1} & \cdots & n^{n -1 } \\ \end {pmatrix}, \quad V_y = \begin {pmatrix} 1 & 1 & \cdots & 1 \\ 0 & -1 & \cdots & -n + 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \paren {-1}^{n - 1} & \cdots & \paren {-n + 1}^{n - 1} \\ \end {pmatrix}$ and $P$, $Q$ are diagonal matrices: :$P = \begin {pmatrix} \map {p_1} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \map {p_n} n \\ \end {pmatrix}, \quad Q = \begin {pmatrix} \map p 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \map p {-n + 1} \\ \end {pmatrix}$ Definitions of polynomials $p$, $p_1$, $\ldots$, $p_n$: :$\ds \map p x = \prod_{i \mathop = 1}^n \paren {x - i}$ :$\ds \map {p_k} x = \dfrac {\map p x} {x - k} = \prod_{i \mathop = 1, i \mathop \ne k}^n \, \paren {x - i}$, $1 \mathop \le k \mathop \le n$ \end{theorem} \begin{proof} Apply Vandermonde Matrix Identity for Cauchy Matrix and Hilbert Matrix is Cauchy Matrix. Matrices $V_x$ and $V_y$ are invertible by Inverse of Vandermonde Matrix. Matrices $P$ and $Q$ are invertible because all diagonal elements are nonzero. {{qed}} \end{proof}
23270
\section{Vanishing Distributional Derivative of Distribution implies Distribution is Constant} Tags: Examples of Distributional Derivatives \begin{theorem} Let $T \in \map {\DD'} \R$ be a distribution. Let $\mathbf 0$ be the zero distribution. Suppose the distributional derivative of $T$ vanishes: :$\ds \dfrac \d {\d x} T = \mathbf 0$ Then $T$ is a constant distribution. \end{theorem} \begin{proof} Let $\phi \in \map \DD \R$ be a test function. Then: {{begin-eqn}} {{eqn | l = 0 | r = \map {\mathbf 0} \phi }} {{eqn | r = \map {T'} \phi | c = Assumption of the Theorem }} {{eqn | r = - \map T {\phi'} | c = {{Defof|Distributional Derivative}} }} {{end-eqn}} Hence: :$\set {\phi' : \phi \in \map \DD \R} \subseteq \ker T$ where $\ker$ denotes the kernel. Let $\mathbf 1$ be a constant mapping such that $\mathbf 1 : \R \to 1$. Then the associated distribution reads: :$\ds \map {T_{\mathbf 1}} \phi = \int_{-\infty}^\infty \map \phi x \rd x$ Furthermore: {{begin-eqn}} {{eqn | l = \ker T_{\mathbf 1} | r = \set {\psi \in \map \DD \R : \int_{-\infty}^\infty \map \psi x \rd x = 0} }} {{eqn | r = \set {\phi' : \phi \in \map \DD \R} | c = Characterization of Derivative of Test Function }} {{eqn | o = \subseteq | r = \ker T }} {{end-eqn}} We have that Test Function Space with Pointwise Addition and Pointwise Scalar Multiplication forms Vector Space. Let $V = \map \DD \R$, $L = T$ and $\ell = T_{\mathbf 1}$. By Kernel of Linear Transformation contained in Kernel of different Linear Transformation implies Transformations are Proportional: :$\exists c \in \C : T = c T_{\mathbf 1}$ By definition of multiplication of a distribution by a smooth function: :$c T_{\mathbf 1} = T_c$ {{qed}} \end{proof}
23271
\section{Vanishing First Variational Derivative implies Euler's Equation for Vanishing Variation} Tags: Calculus of Variations \begin{theorem} Let $\map y x$ be a real function such that $\map y a = A$ and $\map y b = B$. Let $J \sqbrk y$ be a functional of the form: :$\ds J \sqbrk y = \int_a^b \map F {x, y, y'} \rd x$ Then: :$\dfrac {\delta J} {\delta y} = 0 \implies F_y - \dfrac \d {\d x} F_{y'} = 0$ \end{theorem} \begin{proof} The method of finite differences will be used here. Consider a closed real interval $\closedint a b$, which is divided in $n + 1$ equal parts. Choose its subdivision to be normal: :$a = x_0 < x_1 < \cdots < x_n < x_{n + 1} = b$ such that for $i \in set {0, 1, \ldots, n - 1, n}$ we have $x_{i + 1} - x_i = \Delta x$. Approximate the desired function $y$ by a polygonal line with vertices $\tuple {x_i, y_i}$ where $i \in \set {0, 1, \ldots, n, n + 1}$, where $y_i = \map y {x_i}$. Hence, the functional $J \sqbrk y$ can be approximated by the following sum: :$\ds \map {\mathscr J} {y_1, y_2, \ldots, y_{n - 1}, y_n} = \sum_{i \mathop = 0}^n \map F {x_i, y_i, \frac {y_{i + 1} - y_i} {\Delta x} } \Delta x$ Note that the values $\map y {x_0} = A$ and $\map y {x_1} = B$ are fixed, and therefore not varied. Now, consider a partial derivative of $J$ with respect to $y_k$, where $k \in \set {1, 2, \ldots, n - 1, n}$. {{begin-eqn}} {{eqn | l = \frac {\partial \mathscr J} {\partial y_k} | r = \frac \partial {\partial y_k} \sum_{i \mathop = 0}^n \map F {x_i, y_i, \frac {y_{i + 1} - y_i} {\Delta x} } \Delta x | c = }} {{eqn | r = \sum_{i \mathop = 0}^n \frac \partial {\partial y_k} \map F {x_i, y_i, \frac {y_{i + 1} - y_i} {\Delta x} } \Delta x | c = }} {{eqn | r = \sum_{i \mathop = 0}^n \paren {\frac {\partial F} {\partial y_i} \paren {x_i, y_i, \frac {y_{i + 1} - y_i} {\Delta x} } \frac {\partial y_i} {\partial y_k} + \frac {\partial F} {\partial {\frac {y_{i + 1} - y_i} {\Delta x} } } \paren {x_i, y_i, \frac {y_{i + 1} - y_i} {\Delta x} } \frac {\partial {\frac {y_{i + 1} - y_i} {\Delta x} } } {\partial y_k} } \Delta x | c = }} {{end-eqn}} As all the functions $y_i$ are independent {{WRT}} each other, we have $\dfrac {\partial y_m} {\partial y_k} = \delta_{m k}$, where $\delta_{m k}$ is the Kronecker Delta. Then the aforementioned sum simplifies to: {{explain|"aforementioned" -- reference it directly, using a label}} :$\dfrac {\partial \mathscr J} {\partial y_k} = \paren {\dfrac {\partial F} {\partial y_k} \paren {x_k, y_k, \dfrac {y_{k + 1} - y_k} {\Delta x} } + \dfrac {\partial F} {\partial {\frac {y_k - y_{k - 1} } {\Delta x} } } \paren {x_{k - 1}, y_{k - 1}, \dfrac {y_k - y_{k - 1} } {\Delta x} } \dfrac 1 {\Delta x} - \dfrac {\partial F} {\partial {\frac {y_{k + 1} - y_k} {\Delta x} } } \paren {x_k, y_k, \dfrac {y_{k + 1} - y_k} {\Delta x} } \dfrac 1 {\Delta x} } \Delta x$ In order to get a variational derivative, the denominator of the {{LHS}} has to represent an area. For this reason, divide everything by $\Delta x$, and take the limit $\Delta \to 0$. Then for all $k \in \set {1, 2, \dotsc, n - 1, n}$: {{begin-eqn}} {{eqn | l = \lim_{\Delta x \mathop \to 0} \frac {y_{k + 1} - y_k} {\Delta x} | r = \lim_{\Delta x \mathop \to 0} \frac {\map y {x_{k + 1} } - \map y {x_k} } {\Delta x} | c = }} {{eqn | r = \lim_{\Delta x \mathop \to 0} \frac {\map y {x_k + \Delta x} - \map y {x_k} } {\Delta x} | c = }} {{eqn | r = \map {y'} {x_k} | c = {{Defof|Derivative of Real Function at Point}} }} {{end-eqn}} Similarly, for $\map F {x, y, y'}$ we have {{begin-eqn}} {{eqn | o = | r = \lim_{\Delta x \mathop \to 0} \frac {\map {F_{\map {y'} {x_k} } } {x_k, y_k, \map {y'} {x_k} } - \map {F_{\map {y'} {x_{k - 1} } } } {x_{k - 1}, y_{k - 1}, \map {y'} {x_{k - 1} } } } {\Delta x} | c = }} {{eqn | r = \lim_{\Delta x \mathop \to 0} \frac {\map {F_{\map {y'} {x_{k-1} + \Delta x} } } {x_{k - 1} + \Delta x, \map y {x_{k - 1} + \Delta x}, \map {y'} {x_{k - 1} + \Delta x} } - \map {F_{\map {y'} {x_{k - 1} } } } {x_{k-1}, \map y {x_{k - 1} }, \map {y'} {x_{k - 1} } } } {\Delta x} | c = }} {{eqn | r = \frac \d {\d x} \map {F_{\map {y'} {x_{k - 1} } } } {x_{k - 1}, \map y {x_{k - 1} }, \map {y'} {x_{k - 1} } } }} {{end-eqn}} Thus: :$\ds \lim_{\Delta x \mathop \to 0} \frac {\partial \mathscr J} {\partial y_k \Delta x} = \map {F_{\map y {x_k} } } {x_k, \map y {x_k}, \map {y'} {x_k} } - \frac \d {\d x} \map {F_{\map {y'} {x_{k - 1} } } } {x_{k - 1}, \map y {x_{k - 1} }, \map {y'} {x_{k - 1} } }$ Note that the denominator on the left is an area covered by a rectangle with sides $\Delta x$ and $\partial y$, and vanishes as $\Delta x \to 0$. Finally, since the distance between any two neighbouring points approaches 0 as $\Delta x \to 0$, the set of all $x_k \in \closedint a b$ can be treated as continuous, and the index $k$ dropped: :$\ds \lim_{\Delta x \mathop \to 0} \frac {\partial J} {\partial y \Delta x} = \map {F_{\map y x} } {x, \map y x, \map {y'} x} - \frac \d {\d x} \map {F_{\map {y'} x} } {x, \map y x, \map {y'} x}$ The {{LHS}} by definition is a variational derivative. Suppose the {{LHS}} vanishes. Then the {{RHS}} vanishes as well. {{finish|Refine vanishing area with $\partial y$-probably introduce grid for $y$ as well; make the proof of set of $x_k$ becoming a real line more rigorous}} \end{proof}
23272
\section{Variance as Expectation of Square minus Square of Expectation/Continuous} Tags: Variance as Expectation of Square minus Square of Expectation, Expectation, Variance \begin{theorem} Let $X$ be a continuous random variable. Then the variance of $X$ can be expressed as: :$\var X = \expect {X^2} - \paren {\expect X}^2$ That is, it is the expectation of the square of $X$ minus the square of the expectation of $X$. \end{theorem} \begin{proof} Let $\mu = \expect X$. Let $X$ have probability density function $f_X$. As $f_X$ is a probability density function: :$\ds \int_{-\infty}^\infty \map {f_X} x \rd x = \Pr \paren {-\infty < X < \infty} = 1$ Then: {{begin-eqn}} {{eqn | l = \var X | r = \expect {\paren {X - \mu}^2} | c = {{Defof|Variance of Continuous Random Variable}} }} {{eqn | r = \int_{-\infty}^\infty \paren {X - \mu}^2 \map {f_X} x \rd x | c = {{Defof|Expectation of Continuous Random Variable}} }} {{eqn | r = \int_{-\infty}^\infty \paren {x^2 - 2 \mu x + \mu^2} \map {f_X} x \rd x }} {{eqn | r = \int_{-\infty}^\infty x^2 \map {f_X} x \rd x - 2 \mu \int_{-\infty}^\infty x f_X \paren x \rd x + \mu^2 \int_{-\infty}^\infty \map {f_X} x \rd x }} {{eqn | r = \expect {X^2} - 2 \mu^2 + \mu^2 | c = {{Defof|Expectation of Continuous Random Variable}} }} {{eqn | r = \expect {X^2} - \mu^2 }} {{eqn | r = \expect {X^2} - \paren {\expect X}^2 }} {{end-eqn}} {{qed}} Category:Variance as Expectation of Square minus Square of Expectation \end{proof}