hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
79480cab31ae5c901c356a851d1112f0428b0fbd
1,492
py
Python
pcg_gazebo/generators/model_group_generator.py
TForce1/pcg_gazebo
9ff88016b7b6903236484958ca7c6ed9f8ffb346
[ "ECL-2.0", "Apache-2.0" ]
40
2020-02-04T18:16:49.000Z
2022-02-22T11:36:34.000Z
pcg_gazebo/generators/model_group_generator.py
awesomebytes/pcg_gazebo
4f335dd460ef7c771f1df78b46a92fad4a62cedc
[ "ECL-2.0", "Apache-2.0" ]
75
2020-01-23T13:40:50.000Z
2022-02-09T07:26:01.000Z
pcg_gazebo/generators/model_group_generator.py
GimpelZhang/gazebo_world_generator
eb7215499d0ddc972d804c988fadab1969579b1b
[ "ECL-2.0", "Apache-2.0" ]
18
2020-09-10T06:35:41.000Z
2022-02-20T19:08:17.000Z
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ._generator import _Generator class ModelGroupGenerator(_Generator): def __init__(self, name='generator', **kwargs): super(ModelGroupGenerator, self).__init__(name=name, **kwargs) def init(self, name=None): from ..simulation import ModelGroup if name is None: name = self._name if self.assets.has_element(name) and \ self.assets.is_model_group(name): self._simulation_entity = self.assets.get(name) else: self._simulation_entity = ModelGroup(name=name) self.engines.reset_engines() def run(self, group_name='default', pose=[0, 0, 0, 0, 0, 0]): self.init(group_name) self.run_engines() self._simulation_entity.pose = pose return self._simulation_entity
38.25641
74
0.699062
79480d7b06302ca8154d770bd146aa25739c22fe
9,741
py
Python
nltk/classify/naivebayes.py
caio1982/nltk
740e5ebece193b7febcffdf8268834f2daee599e
[ "Apache-2.0" ]
1
2015-07-18T03:25:26.000Z
2015-07-18T03:25:26.000Z
nltk/classify/naivebayes.py
caio1982/nltk
740e5ebece193b7febcffdf8268834f2daee599e
[ "Apache-2.0" ]
null
null
null
nltk/classify/naivebayes.py
caio1982/nltk
740e5ebece193b7febcffdf8268834f2daee599e
[ "Apache-2.0" ]
null
null
null
# Natural Language Toolkit: Naive Bayes Classifiers # # Copyright (C) 2001-2012 NLTK Project # Author: Edward Loper <edloper@gradient.cis.upenn.edu> # URL: <http://www.nltk.org/> # For license information, see LICENSE.TXT # # $Id: naivebayes.py 2063 2004-07-17 21:02:24Z edloper $ """ A classifier based on the Naive Bayes algorithm. In order to find the probability for a label, this algorithm first uses the Bayes rule to express P(label|features) in terms of P(label) and P(features|label): | P(label) * P(features|label) | P(label|features) = ------------------------------ | P(features) The algorithm then makes the 'naive' assumption that all features are independent, given the label: | P(label) * P(f1|label) * ... * P(fn|label) | P(label|features) = -------------------------------------------- | P(features) Rather than computing P(featues) explicitly, the algorithm just calculates the denominator for each label, and normalizes them so they sum to one: | P(label) * P(f1|label) * ... * P(fn|label) | P(label|features) = -------------------------------------------- | SUM[l]( P(l) * P(f1|l) * ... * P(fn|l) ) """ from collections import defaultdict from nltk.probability import FreqDist, DictionaryProbDist, ELEProbDist, sum_logs from api import ClassifierI ##////////////////////////////////////////////////////// ## Naive Bayes Classifier ##////////////////////////////////////////////////////// class NaiveBayesClassifier(ClassifierI): """ A Naive Bayes classifier. Naive Bayes classifiers are paramaterized by two probability distributions: - P(label) gives the probability that an input will receive each label, given no information about the input's features. - P(fname=fval|label) gives the probability that a given feature (fname) will receive a given value (fval), given that the label (label). If the classifier encounters an input with a feature that has never been seen with any label, then rather than assigning a probability of 0 to all labels, it will ignore that feature. The feature value 'None' is reserved for unseen feature values; you generally should not use 'None' as a feature value for one of your own features. """ def __init__(self, label_probdist, feature_probdist): """ :param label_probdist: P(label), the probability distribution over labels. It is expressed as a ``ProbDistI`` whose samples are labels. I.e., P(label) = ``label_probdist.prob(label)``. :param feature_probdist: P(fname=fval|label), the probability distribution for feature values, given labels. It is expressed as a dictionary whose keys are ``(label, fname)`` pairs and whose values are ``ProbDistI`` objects over feature values. I.e., P(fname=fval|label) = ``feature_probdist[label,fname].prob(fval)``. If a given ``(label,fname)`` is not a key in ``feature_probdist``, then it is assumed that the corresponding P(fname=fval|label) is 0 for all values of ``fval``. """ self._label_probdist = label_probdist self._feature_probdist = feature_probdist self._labels = label_probdist.samples() def labels(self): return self._labels def classify(self, featureset): return self.prob_classify(featureset).max() def prob_classify(self, featureset): # Discard any feature names that we've never seen before. # Otherwise, we'll just assign a probability of 0 to # everything. featureset = featureset.copy() for fname in featureset.keys(): for label in self._labels: if (label, fname) in self._feature_probdist: break else: #print 'Ignoring unseen feature %s' % fname del featureset[fname] # Find the log probabilty of each label, given the features. # Start with the log probability of the label itself. logprob = {} for label in self._labels: logprob[label] = self._label_probdist.logprob(label) # Then add in the log probability of features given labels. for label in self._labels: for (fname, fval) in featureset.items(): if (label, fname) in self._feature_probdist: feature_probs = self._feature_probdist[label,fname] logprob[label] += feature_probs.logprob(fval) else: # nb: This case will never come up if the # classifier was created by # NaiveBayesClassifier.train(). logprob[label] += sum_logs([]) # = -INF. return DictionaryProbDist(logprob, normalize=True, log=True) def show_most_informative_features(self, n=10): # Determine the most relevant features, and display them. cpdist = self._feature_probdist print 'Most Informative Features' for (fname, fval) in self.most_informative_features(n): def labelprob(l): return cpdist[l,fname].prob(fval) labels = sorted([l for l in self._labels if fval in cpdist[l,fname].samples()], key=labelprob) if len(labels) == 1: continue l0 = labels[0] l1 = labels[-1] if cpdist[l0,fname].prob(fval) == 0: ratio = 'INF' else: ratio = '%8.1f' % (cpdist[l1,fname].prob(fval) / cpdist[l0,fname].prob(fval)) print ('%24s = %-14r %6s : %-6s = %s : 1.0' % (fname, fval, str(l1)[:6], str(l0)[:6], ratio)) def most_informative_features(self, n=100): """ Return a list of the 'most informative' features used by this classifier. For the purpose of this function, the informativeness of a feature ``(fname,fval)`` is equal to the highest value of P(fname=fval|label), for any label, divided by the lowest value of P(fname=fval|label), for any label: | max[ P(fname=fval|label1) / P(fname=fval|label2) ] """ # The set of (fname, fval) pairs used by this classifier. features = set() # The max & min probability associated w/ each (fname, fval) # pair. Maps (fname,fval) -> float. maxprob = defaultdict(lambda: 0.0) minprob = defaultdict(lambda: 1.0) for (label, fname), probdist in self._feature_probdist.items(): for fval in probdist.samples(): feature = (fname, fval) features.add( feature ) p = probdist.prob(fval) maxprob[feature] = max(p, maxprob[feature]) minprob[feature] = min(p, minprob[feature]) if minprob[feature] == 0: features.discard(feature) # Convert features to a list, & sort it by how informative # features are. features = sorted(features, key=lambda feature: minprob[feature]/maxprob[feature]) return features[:n] @staticmethod def train(labeled_featuresets, estimator=ELEProbDist): """ :param labeled_featuresets: A list of classified featuresets, i.e., a list of tuples ``(featureset, label)``. """ label_freqdist = FreqDist() feature_freqdist = defaultdict(FreqDist) feature_values = defaultdict(set) fnames = set() # Count up how many times each feature value occurred, given # the label and featurename. for featureset, label in labeled_featuresets: label_freqdist.inc(label) for fname, fval in featureset.items(): # Increment freq(fval|label, fname) feature_freqdist[label, fname].inc(fval) # Record that fname can take the value fval. feature_values[fname].add(fval) # Keep a list of all feature names. fnames.add(fname) # If a feature didn't have a value given for an instance, then # we assume that it gets the implicit value 'None.' This loop # counts up the number of 'missing' feature values for each # (label,fname) pair, and increments the count of the fval # 'None' by that amount. for label in label_freqdist: num_samples = label_freqdist[label] for fname in fnames: count = feature_freqdist[label, fname].N() feature_freqdist[label, fname].inc(None, num_samples-count) feature_values[fname].add(None) # Create the P(label) distribution label_probdist = estimator(label_freqdist) # Create the P(fval|label, fname) distribution feature_probdist = {} for ((label, fname), freqdist) in feature_freqdist.items(): probdist = estimator(freqdist, bins=len(feature_values[fname])) feature_probdist[label,fname] = probdist return NaiveBayesClassifier(label_probdist, feature_probdist) ##////////////////////////////////////////////////////// ## Demo ##////////////////////////////////////////////////////// def demo(): from nltk.classify.util import names_demo classifier = names_demo(NaiveBayesClassifier.train) classifier.show_most_informative_features() if __name__ == '__main__': demo()
40.757322
80
0.582281
79480fda51630fe5c3af76731fd81e6b211c428e
2,925
py
Python
cds_ils/literature/covers.py
zzacharo/cds-ils
6816c348e209607b97583acc40fb37dea0c62418
[ "MIT" ]
6
2020-09-18T00:13:38.000Z
2021-11-14T17:12:19.000Z
cds_ils/literature/covers.py
zzacharo/cds-ils
6816c348e209607b97583acc40fb37dea0c62418
[ "MIT" ]
321
2020-08-28T15:42:25.000Z
2022-03-14T15:11:50.000Z
cds_ils/literature/covers.py
zzacharo/cds-ils
6816c348e209607b97583acc40fb37dea0c62418
[ "MIT" ]
8
2019-07-10T07:02:08.000Z
2020-08-10T14:07:25.000Z
# -*- coding: utf-8 -*- # # Copyright (C) 2019-2020 CERN. # # CDS-ILS is free software; you can redistribute it and/or modify it under # the terms of the MIT License; see LICENSE file for more details. """Literature covers.""" import urllib from functools import partial from flask import current_app from invenio_app_ils.literature.covers_builder import build_placeholder_urls from invenio_app_ils.proxies import current_app_ils MIN_CONTENT_LENGTH = 128 def should_record_have_cover(record): """Check if this type of record has cover.""" if "$schema" in record: schema = record["$schema"] Document = current_app_ils.document_record_cls is_document = schema.endswith(Document._schema) Series = current_app_ils.series_record_cls is_series = schema.endswith(Series._schema) if is_document or is_series: return True return False def has_already_cover(cover_metadata={}): """Check if record has already valid cover in cover_metadata.""" return cover_metadata.get("ISBN") or cover_metadata.get("ISSN") def is_valid_cover(cover_metadata): """Fetch all sizes of cover from url and evaluate if they are valid.""" syndetics_urls = build_syndetic_cover_urls(cover_metadata) if syndetics_urls is None: return False try: for size in ["small", "medium", "large"]: resp = urllib.request.urlopen(syndetics_urls[size]) has_error = resp.getcode() != 200 less_than_1_pixel = ( int(resp.getheader("Content-Length")) <= MIN_CONTENT_LENGTH ) if has_error or less_than_1_pixel: return False except Exception: return False return True def build_syndetic_cover_urls(cover_metadata): """Decorate literature with cover urls for all sizes.""" client = current_app.config["CDS_ILS_SYNDETIC_CLIENT"] url = "https://secure.syndetics.com/index.aspx" issn = cover_metadata.get("ISSN") if issn: scheme = "ISSN" scheme_value = issn isbn = cover_metadata.get("ISBN") if isbn: scheme = "ISBN" scheme_value = isbn if issn or isbn: _url = "{url}?client={client}&{scheme}={value}/{size}.gif" partial_url = partial( _url.format, url=url, client=client, scheme=scheme, value=scheme_value, ) return { "is_placeholder": False, "small": partial_url(size="SC"), "medium": partial_url(size="MC"), "large": partial_url(size="LC"), } return None def build_cover_urls(metadata): """Try to build the cover urls else build placeholder urls.""" cover_metadata = metadata.get("cover_metadata", {}) syndetics_urls = build_syndetic_cover_urls(cover_metadata) return syndetics_urls or build_placeholder_urls()
30.154639
76
0.65265
79481003c1fe347a44ef0a85f9937c6f7a911724
5,203
py
Python
coinflow/protocol/structs/Varint.py
mariuszlitwin/coinflow
49686e703a6edf90777eff2a154de1d732fc6b5f
[ "Apache-2.0", "MIT" ]
1
2018-06-12T23:04:11.000Z
2018-06-12T23:04:11.000Z
coinflow/protocol/structs/Varint.py
mariuszlitwin/coinflow
49686e703a6edf90777eff2a154de1d732fc6b5f
[ "Apache-2.0", "MIT" ]
null
null
null
coinflow/protocol/structs/Varint.py
mariuszlitwin/coinflow
49686e703a6edf90777eff2a154de1d732fc6b5f
[ "Apache-2.0", "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import struct from typing import NamedTuple from .Struct import Struct Payload = NamedTuple('Payload', (('value', int), ('length', int))) class Varint(int, Struct): """ Variable length integer structure for use in Bitcoin protocol messages TODO: fix reference .. Network address structure in Bitcoin wiki: https://en.bitcoin.it/wiki/Protocol_documentation#Network_address """ def __new__(cls, value: int, *args, **kwargs): return super(Varint, cls).__new__(cls, int(value)) def __len__(self) -> int: n = int(self) # type: int if n < 0xfd: return 1 elif n < 0xffff: return 3 elif n < 0xffffffff: return 5 else: return 7 def __add__(self, other) -> object: i = super().__add__(other) # type: int return self.fromint(i) def __radd__(self, other) -> object: i = super().__radd__(other) # type: int return self.fromint(i) def __sub__(self, other) -> object: i = super().__sub__(other) # type: int return self.fromint(i) def __rsub__(self, other) -> object: i = super().__rsub__(other) # type: int return self.fromint(i) def __mul__(self, other) -> object: i = super().__mul__(other) # type: int return self.fromint(i) def __rmul__(self, other) -> object: i = super().__rmul__(other) # type: int return self.fromint(i) def __floordiv__(self, other) -> object: i = super().__floordiv__(other) # type: int return self.fromint(i) def __rfloordiv__(self, other) -> object: i = super().__rfloordiv__(other) # type: int return self.fromint(i) def __truediv__(self, other) -> object: i = super().__truediv__(other) # type: int return self.fromint(i) def __rtruediv__(self, other) -> object: i = super().__rtruediv__(other) # type: int return self.fromint(i) def __mod__(self, other) -> object: i = super().__mod__(other) # type: int return self.fromint(i) def __rmod__(self, other) -> object: i = super().__rmod__(other) # type: int return self.fromint(i) def __pow__(self, other) -> object: i = super().__pow__(other) # type: int return self.fromint(i) def __rpow__(self, other) -> object: i = super().__rpow__(other) # type: int return self.fromint(i) def __lshift__(self, other) -> object: i = super().__lshift__(other) # type: int return self.fromint(i) def __rshift__(self, other) -> object: i = super().__rshift__(other) # type: int return self.fromint(i) def __and__(self, other) -> object: i = super().__and__(other) # type: int return self.fromint(i) def __rand__(self, other) -> object: i = super().__rand__(other) # type: int return self.fromint(i) def __xor__(self, other) -> object: i = super().__xor__(other) # type: int return self.fromint(i) def __rxor__(self, other) -> object: i = super().__rxor__(other) # type: int return self.fromint(i) def __or__(self, other) -> object: i = super().__or__(other) # type: int return self.fromint(i) def __ror__(self, other) -> object: i = super().__ror__(other) # type: int return self.fromint(i) def __neg__(self) -> object: i = super().__neg__() # type: int return self.fromint(i) def __pos__(self) -> object: i = super().__pos__() # type: int return self.fromint(i) def __abs__(self) -> object: i = super().__abs__() # type: int return self.fromint(i) def __invert__(self) -> object: i = super().__invert__() # type: int return self.fromint(i) @classmethod def fromint(cls, value: int) -> object: return cls(value) def encode(self) -> bytes: """ Encode object ot Bitcoin's varint structure Returns ------- bytes encoded message """ n = int(self) # type: int if n < 0xfd: return struct.pack('<B', n) elif n < 0xffff: return struct.pack('<cH', b'\xfd', n) elif n < 0xffffffff: return struct.pack('<cL', b'\xfe', n) else: return struct.pack('<cQ', b'\xff', n) @classmethod def decode(cls, n: bytes) -> Payload: """ Decode varint from bytes Parameters ---------- n : bytes netaddr structure to decode Returns ------- NamedTuple (Payload) NamedTuple with all parsed fields (n, length) """ n0 = n[0] # type: int if n0 < 0xfd: return Payload(n0, 1) elif n0 == 0xfd: return Payload(struct.unpack('<H', n[1:3])[0], 3) elif n0 == 0xfe: return Payload(struct.unpack('<L', n[1:5])[0], 5) else: return Payload(struct.unpack('<Q', n[1:9])[0], 7)
28.124324
74
0.550067
7948110bd7c39804f99da2f242d4590f243485b5
16,251
py
Python
benchmarks/f3_wrong_hints_permutations/scaling_ltl_timed_transition_system/4-sender_receiver_10.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
3
2021-04-23T23:29:26.000Z
2022-03-23T10:00:30.000Z
benchmarks/f3_wrong_hints_permutations/scaling_ltl_timed_transition_system/4-sender_receiver_10.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
null
null
null
benchmarks/f3_wrong_hints_permutations/scaling_ltl_timed_transition_system/4-sender_receiver_10.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
1
2021-11-17T22:02:56.000Z
2021-11-17T22:02:56.000Z
from typing import FrozenSet from collections import Iterable from math import log, ceil from mathsat import msat_term, msat_env from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_integer_type, msat_get_rational_type, msat_get_bool_type from mathsat import msat_make_and, msat_make_not, msat_make_or, msat_make_iff from mathsat import msat_make_leq, msat_make_equal, msat_make_true from mathsat import msat_make_number, msat_make_plus, msat_make_times from pysmt.environment import Environment as PysmtEnv import pysmt.typing as types from ltl.ltl import TermMap, LTLEncoder from utils import name_next, symb_to_next from hint import Hint, Location delta_name = "delta" def decl_consts(menv: msat_env, name: str, c_type) -> tuple: assert not name.startswith("_"), name s = msat_declare_function(menv, name, c_type) s = msat_make_constant(menv, s) x_s = msat_declare_function(menv, name_next(name), c_type) x_s = msat_make_constant(menv, x_s) return s, x_s def make_enum(menv, v_name: str, enum_size: int): bool_type = msat_get_bool_type(menv) num_bits = ceil(log(enum_size, 2)) b_vars = [] for idx in range(num_bits): c_name = "{}{}".format(v_name, idx) b_vars.append(tuple(decl_consts(menv, c_name, bool_type))) vals = [] x_vals = [] for enum_val in range(enum_size): bit_val = format(enum_val, '0{}b'.format(num_bits)) assert len(bit_val) == num_bits assert all(c in {'0', '1'} for c in bit_val) assign = [b_vars[idx] if c == '1' else (msat_make_not(menv, b_vars[idx][0]), msat_make_not(menv, b_vars[idx][1])) for idx, c in enumerate(reversed(bit_val))] pred = assign[0][0] x_pred = assign[0][1] for it in assign[1:]: pred = msat_make_and(menv, pred, it[0]) x_pred = msat_make_and(menv, x_pred, it[1]) vals.append(pred) x_vals.append(x_pred) assert len(vals) == enum_size assert len(x_vals) == enum_size return b_vars, vals, x_vals def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): m_one = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, m_one) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def diverging_symbs(menv: msat_env) -> frozenset: real_type = msat_get_rational_type(menv) delta = msat_declare_function(menv, delta_name, real_type) delta = msat_make_constant(menv, delta) return frozenset([delta]) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) r2s, x_r2s = decl_consts(menv, "r2s", int_type) s2r, x_s2r = decl_consts(menv, "s2r", int_type) delta, x_delta = decl_consts(menv, delta_name, real_type) sender = Sender("s", menv, enc, r2s, x_r2s, s2r, x_s2r, delta) receiver = Receiver("r", menv, enc, s2r, x_s2r, r2s, x_r2s, delta) curr2next = {r2s: x_r2s, s2r: x_s2r, delta: x_delta} for comp in [sender, receiver]: for s, x_s in comp.symb2next.items(): curr2next[s] = x_s zero = msat_make_number(menv, "0") init = msat_make_and(menv, receiver.init, sender.init) trans = msat_make_and(menv, receiver.trans, sender.trans) # invar delta >= 0 init = msat_make_and(menv, init, msat_make_geq(menv, delta, zero)) trans = msat_make_and(menv, trans, msat_make_geq(menv, x_delta, zero)) # delta > 0 -> (r2s' = r2s & s2r' = s2r) lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_equal(menv, x_r2s, r2s), msat_make_equal(menv, x_s2r, s2r)) trans = msat_make_and(menv, trans, msat_make_impl(menv, lhs, rhs)) # (G F !s.stutter) -> G (s.wait_ack -> F s.send) lhs = enc.make_G(enc.make_F(msat_make_not(menv, sender.stutter))) rhs = enc.make_G(msat_make_impl(menv, sender.wait_ack, enc.make_F(sender.send))) ltl = msat_make_impl(menv, lhs, rhs) return TermMap(curr2next), init, trans, ltl class Module: def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, *args, **kwargs): self.name = name self.menv = menv self.enc = enc self.symb2next = {} true = msat_make_true(menv) self.init = true self.trans = true def _symb(self, v_name, v_type): v_name = "{}_{}".format(self.name, v_name) return decl_consts(self.menv, v_name, v_type) def _enum(self, v_name: str, enum_size: int): c_name = "{}_{}".format(self.name, v_name) return make_enum(self.menv, c_name, enum_size) class Sender(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) loc, x_loc = self._symb("l", bool_type) evt, x_evt = self._symb("evt", bool_type) msg_id, x_msg_id = self._symb("msg_id", int_type) timeout, x_timeout = self._symb("timeout", real_type) c, x_c = self._symb("c", real_type) self.move = evt self.stutter = msat_make_not(menv, evt) self.x_move = x_evt self.x_stutter = msat_make_not(menv, x_evt) self.send = loc self.wait_ack = msat_make_not(menv, loc) self.x_send = x_loc self.x_wait_ack = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc, evt: x_evt, msg_id: x_msg_id, timeout: x_timeout, c: x_c} zero = msat_make_number(menv, "0") one = msat_make_number(menv, "1") base_timeout = one # send & c = 0 & msg_id = 0 self.init = msat_make_and(menv, msat_make_and(menv, self.send, msat_make_equal(menv, c, zero)), msat_make_equal(menv, msg_id, zero)) # invar: wait_ack -> c <= timeout self.init = msat_make_and( menv, self.init, msat_make_impl(menv, self.wait_ack, msat_make_leq(menv, c, timeout))) self.trans = msat_make_impl(menv, self.x_wait_ack, msat_make_leq(menv, x_c, x_timeout)) # delta > 0 | stutter -> l' = l & msg_id' = msg_id & timeout' = timeout & # c' = c + delta & out_c' = out_c lhs = msat_make_or(menv, msat_make_gt(menv, delta, zero), self.stutter) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_msg_id, msg_id)), msat_make_and(menv, msat_make_equal(menv, x_timeout, timeout), msat_make_equal(menv, x_c, msat_make_plus(menv, c, delta)))) rhs = msat_make_and(menv, rhs, msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) disc_t = msat_make_and(menv, self.move, msat_make_equal(menv, delta, zero)) # (send & send') -> # (msg_id' = msg_id & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_send)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msg_id), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (send & wait_ack') -> # (msg_id' = msg_id + 1 & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_wait_ack)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msat_make_plus(menv, msg_id, one)), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (c' = 0 & out_c' = out_c & # (wait_ack' <-> (in_c != msg_id & c > timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs_iff = msat_make_and(menv, msat_make_not(menv, msat_make_equal(menv, in_c, msg_id)), msat_make_geq(menv, c, timeout)) rhs_iff = msat_make_iff(menv, self.x_wait_ack, rhs_iff) rhs = msat_make_and(menv, msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c)), rhs_iff) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & wait_ack') -> (timeout' > timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_wait_ack)) rhs = msat_make_gt(menv, x_timeout, timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (send' <-> (in_c = msg_id & c < timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs = msat_make_iff(menv, self.x_send, msat_make_and(menv, msat_make_equal(menv, in_c, msg_id), msat_make_lt(menv, c, timeout))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & send') -> (timeout' = base_timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_send)) rhs = msat_make_equal(menv, x_timeout, base_timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) class Receiver(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) loc, x_loc = self._symb("l", bool_type) self.wait = loc self.work = msat_make_not(menv, loc) self.x_wait = x_loc self.x_work = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc} zero = msat_make_number(menv, "0") # wait self.init = self.wait # delta > 0 -> loc' = loc & out_c' = out_c lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_impl(menv, lhs, rhs) disc_t = msat_make_equal(menv, delta, zero) # wait -> (wait' <-> in_c = out_c) lhs = msat_make_and(menv, disc_t, self.wait) rhs = msat_make_iff(menv, self.x_wait, msat_make_equal(menv, in_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & wait') -> (out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_wait)) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & work') -> out_c' = in_c lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_work)) rhs = msat_make_equal(menv, x_out_c, in_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # work -> out_c' = out_c lhs = msat_make_and(menv, disc_t, self.work) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager delta = mgr.Symbol(delta_name, types.REAL) r2s = mgr.Symbol("r2s", types.INT) s2r = mgr.Symbol("r2s", types.INT) s_l = mgr.Symbol("s_l", types.BOOL) s_evt = mgr.Symbol("s_evt", types.BOOL) s_msg_id = mgr.Symbol("s_msg_id", types.INT) s_timeout = mgr.Symbol("s_timeout", types.REAL) s_c = mgr.Symbol("s_c", types.REAL) r_l = mgr.Symbol("r_l", types.BOOL) symbs = frozenset([delta, r2s, s2r, s_l, s_evt, s_msg_id, s_timeout, s_c, r_l]) x_delta = symb_to_next(mgr, delta) x_r2s = symb_to_next(mgr, r2s) x_s2r = symb_to_next(mgr, s2r) x_s_l = symb_to_next(mgr, s_l) x_s_evt = symb_to_next(mgr, s_evt) x_s_msg_id = symb_to_next(mgr, s_msg_id) x_s_timeout = symb_to_next(mgr, s_timeout) x_s_c = symb_to_next(mgr, s_c) x_r_l = symb_to_next(mgr, r_l) res = [] r0 = mgr.Real(0) r1 = mgr.Real(1) i0 = mgr.Int(0) i1 = mgr.Int(1) loc0 = Location(env, mgr.GE(delta, r0)) loc0.set_progress(0, mgr.Equals(x_delta, mgr.Plus(delta, r1))) hint = Hint("h_delta2", env, frozenset([delta]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.Equals(s_c, r0)) loc0.set_progress(0, mgr.Equals(x_s_c, r0)) hint = Hint("h_s_c0", env, frozenset([s_c]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, s_l) loc0.set_progress(0, x_s_l) hint = Hint("h_s_l0", env, frozenset([s_l]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s_timeout, r0)) loc0.set_progress(0, mgr.Equals(x_s_timeout, mgr.Plus(s_timeout, r1))) hint = Hint("h_s_timeout1", env, frozenset([s_timeout]), symbs) hint.set_locs([loc0]) res.append(hint) return frozenset(res)
40.325062
89
0.568211
7948114477a85a1825fc212739616e608651dc1c
7,322
py
Python
FC/createFCMatrix.py
chidiugonna/DTI-hippo
3215df591d80c646cd3726e36ea7783dff049ed1
[ "MIT" ]
1
2021-04-08T06:25:35.000Z
2021-04-08T06:25:35.000Z
FC/createFCMatrix.py
chidiugonna/DTI-hippo
3215df591d80c646cd3726e36ea7783dff049ed1
[ "MIT" ]
1
2021-05-05T22:47:02.000Z
2021-05-05T22:47:02.000Z
FC/createFCMatrix.py
chidiugonna/DTI-hippo
3215df591d80c646cd3726e36ea7783dff049ed1
[ "MIT" ]
2
2020-11-20T18:03:40.000Z
2021-04-08T06:25:42.000Z
import os import datetime from nilearn import signal as sgl from nilearn import image as img from nilearn import plotting as plot from nilearn import datasets from nilearn import input_data from nilearn.connectome import ConnectivityMeasure import numpy as np import pandas as pd import matplotlib.pyplot as plt import bids def extract_confounds(confound, fields ): confound_df = pd.read_csv(confound, delimiter='\t') confound_vars=fields confound_df = confound_df[confound_vars] return confound_df def logtext(logfile, textstr): stamp=datetime.datetime.now().strftime("%m-%d-%y %H:%M:%S%p") textstring=stamp + ' ' + str(textstr) print(textstring) logfile.write(textstring+'\n') def get_parser(): from argparse import ArgumentParser from argparse import RawTextHelpFormatter parser = ArgumentParser(description="Create FC connection Matrix using nilearn." "fMRI data should have been processed by fmriprep and should be in same space as parcellation file.",formatter_class=RawTextHelpFormatter) parser.add_argument('func_file', action='store', help='The functional MRI as a NIFTI. Processed by fMRIprep.') parser.add_argument('parcel_file', action='store', help='The parcellation as a NIFTI used to define nodes in matrix. Should be in the same space as functional MRI.') parser.add_argument('label_file', action='store', help='label file for parcellation') parser.add_argument('output_file', action='store', help='output file ') parser.add_argument('--skip_rows', action='store',type=int, help='rows to skip in label file') parser.add_argument('--confound_file', action='store', help='Confound file created by fMRIprep.') parser.add_argument('--confound_cols', action='store',type=str, nargs='*', help='Confound columns to use') parser.add_argument('--workdir', action='store', help='Work directory for output of log file and other temporary files') parser.add_argument('--logname', action='store', help='name for the log file (without extension) which will be created in work directory.') parser.add_argument('--TR', action='store',type=float, help='Repetition Time of functional in seconds.') parser.add_argument('--high_pass', action='store',type=float, help='High pass frequency in Hz.') parser.add_argument('--low_pass', action='store',type=float, help='Low pass frequency in Hz.') parser.add_argument('--batchmode', action='store_true', default=False, help='Omit interactive plot of the functional matrix.') return parser def main(): opts = get_parser().parse_args() # work directory if opts.workdir: WORKDIR=os.path.abspath(opts.workdir) else: WORKDIR=os.getcwd() # log name if opts.logname: BASELOGNAME=opts.logname else: BASELOGNAME='createFCMatrix' # create log file TIMESTAMP=datetime.datetime.now().strftime("%m%d%y%H%M%S%p") LOGFILENAME=BASELOGNAME + '_' + TIMESTAMP + '.log' LOGFILE = open(os.path.join(WORKDIR,LOGFILENAME), 'w') # functional MRI func_file=os.path.abspath(opts.func_file) parcel_file=os.path.abspath(opts.parcel_file) label_file=os.path.abspath(opts.label_file) output_file=os.path.abspath(opts.output_file) parcel = img.load_img(parcel_file) logtext(LOGFILE,"parcellation "+parcel_file + " has dimensions " + str(parcel.shape)) if opts.confound_file: confound_file=os.path.abspath(opts.confound_file) # Repetition Time if opts.TR: TR=opts.TR logtext(LOGFILE,"Repetition Time passed is " + str(TR) + " seconds") else: logtext(LOGFILE,"No repetition time passed. This is necessary for filtering.") # high pass if opts.high_pass: high_pass=opts.high_pass logtext(LOGFILE,"High pass cutoff " + str(high_pass) + " Hz") else: logtext(LOGFILE,"No high pass filter passed. This is necessary for filtering.") # low_pass if opts.low_pass: low_pass=opts.low_pass logtext(LOGFILE,"Low pass cutoff is " + str(low_pass) + " Hz") else: logtext(LOGFILE,"No low pass filter passed. This is necessary for filtering.") # skip rows if opts.skip_rows: skip_rows=opts.skip_rows logtext(LOGFILE,"skip " + str(skip_rows) + " rows in the label file") if opts.confound_cols: confound_cols=opts.confound_cols if len(confound_cols)<2: confoundheader_file=os.path.abspath(confound_cols[0]) with open(confoundheader_file, 'r') as fd: confound_cols=fd.readlines() confound_columns = [] for substr in confound_cols: confound_columns.append(substr.replace("\n","")) else: confound_columns=confound_cols masker = input_data.NiftiLabelsMasker(labels_img=parcel, standardize=True, memory='nilearn_cache', verbose=1, detrend=True, low_pass=low_pass, high_pass=high_pass, t_r=TR) func_img = img.load_img(func_file) logtext(LOGFILE,"func_file "+parcel_file + " has dimensions " + str(func_img.shape)) #Convert confounds file into required format logtext(LOGFILE,"Extract Confounds" ) confounds = extract_confounds(confound_file, confound_columns) logtext(LOGFILE,"Confounds: " + str(confounds.head()) ) logtext(LOGFILE,"Save Confounds" ) confound_out=BASELOGNAME + '_confoundsOut_' + TIMESTAMP + '.csv' confounds.to_csv(confound_out,index=False) #Apply cleaning, parcellation and extraction to functional data logtext(LOGFILE,"clean and extract functional data from parcellation" ) confounds_array=confounds.to_numpy() time_series = masker.fit_transform(func_img,confounds_array) logtext(LOGFILE,"Calculate correlation matrix" ) correlation_measure = ConnectivityMeasure(kind='correlation') correlation_matrix = correlation_measure.fit_transform([time_series])[0] logtext(LOGFILE,"parsing label file " + label_file + " by skipping " + str(skip_rows) +" rows") labelfile_df=pd.read_csv(label_file, header=None, usecols=[1],delim_whitespace=True, skiprows=skip_rows) logtext(LOGFILE,"labels: " + str(labelfile_df.head()) ) labels_array=labelfile_df.to_numpy() logtext(LOGFILE,"saving correlation matrix to " + output_file ) np.fill_diagonal(correlation_matrix, 0) parcel_df=pd.DataFrame(correlation_matrix) parcel_df.to_csv(output_file,index=False, header=False) logtext(LOGFILE,"Displaying correlation matrix") if not (opts.batchmode): plot.plot_matrix(correlation_matrix, figure=(10, 8), labels=labels_array, vmax=0.8, vmin=-0.8, reorder=True) plot.show() LOGFILE.close() # This is the standard boilerplate that calls the main() function. if __name__ == '__main__': main()
38.740741
146
0.660339
794811d5ee943c897db51e5d11dd9843344421c4
6,214
py
Python
python/cugraph/cugraph/tests/test_graph_store.py
wangxiaoyunNV/cugraph
97f75de40362740928b45b61e713ff4dae1cbf55
[ "Apache-2.0" ]
null
null
null
python/cugraph/cugraph/tests/test_graph_store.py
wangxiaoyunNV/cugraph
97f75de40362740928b45b61e713ff4dae1cbf55
[ "Apache-2.0" ]
null
null
null
python/cugraph/cugraph/tests/test_graph_store.py
wangxiaoyunNV/cugraph
97f75de40362740928b45b61e713ff4dae1cbf55
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2022, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import cugraph from cugraph.tests import utils from cugraph.experimental import PropertyGraph import numpy as np import cudf # Test @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_no_graph(graph_file): with pytest.raises(TypeError): gstore = cugraph.gnn.CuGraphStore() gstore.num_edges() @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_using_graph(graph_file): with pytest.raises(ValueError): cu_M = utils.read_csv_file(graph_file) g = cugraph.Graph() g.from_cudf_edgelist(cu_M, source='0', destination='1', edge_attr='2', renumber=True) cugraph.gnn.CuGraphStore(graph=g) @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_using_pgraph(graph_file): cu_M = utils.read_csv_file(graph_file) g = cugraph.Graph(directed=True) g.from_cudf_edgelist(cu_M, source='0', destination='1', edge_attr='2', renumber=True) pG = PropertyGraph() pG.add_edge_data(cu_M, type_name="edge", vertex_col_names=("0", "1"), property_columns=None) gstore = cugraph.gnn.CuGraphStore(graph=pG) assert g.number_of_edges() == pG.num_edges assert g.number_of_edges() == gstore.num_edges assert g.number_of_vertices() == pG.num_vertices assert g.number_of_vertices() == gstore.num_vertices @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_node_data_pg(graph_file): cu_M = utils.read_csv_file(graph_file) pG = PropertyGraph() pG.add_edge_data(cu_M, type_name="edge", vertex_col_names=("0", "1"), property_columns=None) gstore = cugraph.gnn.CuGraphStore(graph=pG) edata = gstore.edata assert edata.shape[0] > 0 @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_egonet(graph_file): from cugraph.community.egonet import batched_ego_graphs cu_M = utils.read_csv_file(graph_file) g = cugraph.Graph(directed=True) g.from_cudf_edgelist(cu_M, source='0', destination='1', renumber=True) pG = PropertyGraph() pG.add_edge_data(cu_M, type_name="edge", vertex_col_names=("0", "1"), property_columns=None) gstore = cugraph.gnn.CuGraphStore(graph=pG) nodes = [1, 2] ego_edge_list1, seeds_offsets1 = gstore.egonet(nodes, k=1) ego_edge_list2, seeds_offsets2 = batched_ego_graphs(g, nodes, radius=1) assert ego_edge_list1 == ego_edge_list2 assert seeds_offsets1 == seeds_offsets2 @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_workflow(graph_file): # from cugraph.community.egonet import batched_ego_graphs cu_M = utils.read_csv_file(graph_file) g = cugraph.Graph(directed=True) g.from_cudf_edgelist(cu_M, source='0', destination='1', renumber=True) pg = PropertyGraph() pg.add_edge_data(cu_M, type_name="edge", vertex_col_names=("0", "1"), property_columns=["2"]) gstore = cugraph.gnn.CuGraphStore(graph=pg) nodes = gstore.get_vertex_ids() num_nodes = len(nodes) assert num_nodes > 0 sampled_nodes = nodes[:5] ego_edge_list, seeds_offsets = gstore.egonet(sampled_nodes, k=1) assert len(ego_edge_list) > 0 @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_sample_neighbors(graph_file): cu_M = utils.read_csv_file(graph_file) g = cugraph.Graph(directed=True) g.from_cudf_edgelist(cu_M, source='0', destination='1', renumber=True) pg = PropertyGraph() pg.add_edge_data(cu_M, type_name="edge", vertex_col_names=("0", "1"), property_columns=["2"]) gstore = cugraph.gnn.CuGraphStore(graph=pg) nodes = gstore.get_vertex_ids() num_nodes = len(nodes) assert num_nodes > 0 sampled_nodes = nodes[:5] parents_list, children_list = gstore.sample_neighbors(sampled_nodes, 2) assert len(parents_list) > 0 @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_n_data(graph_file): cu_M = utils.read_csv_file(graph_file) g = cugraph.Graph(directed=True) g.from_cudf_edgelist(cu_M, source='0', destination='1', renumber=True) pg = PropertyGraph() pg.add_edge_data(cu_M, type_name="edge", vertex_col_names=("0", "1"), property_columns=["2"]) num_nodes = g.number_of_nodes() df_feat = cudf.DataFrame() df_feat['node_id'] = np.arange(num_nodes) df_feat['val0'] = [float(i+1) for i in range(num_nodes)] df_feat['val1'] = [float(i+2) for i in range(num_nodes)] pg.add_vertex_data(df_feat, type_name="test_feat", vertex_col_name="node_id", property_columns=None) gstore = cugraph.gnn.CuGraphStore(graph=pg) ndata = gstore.ndata assert ndata.shape[0] > 0 @pytest.mark.parametrize("graph_file", utils.DATASETS) def test_e_data(graph_file): cu_M = utils.read_csv_file(graph_file) g = cugraph.Graph(directed=True) g.from_cudf_edgelist(cu_M, source='0', destination='1', renumber=True) pg = PropertyGraph() pg.add_edge_data(cu_M, type_name="edge", vertex_col_names=("0", "1"), property_columns=["2"]) gstore = cugraph.gnn.CuGraphStore(graph=pg) edata = gstore.edata assert edata.shape[0] > 0
29.037383
75
0.654007
79481208371d4f2b376f3de7f4744be417114a3b
1,298
py
Python
app/core/tests/test_admin.py
kfahmi/recipe-app-api
fa678005a3615bff92b94d5e852526fcb00793ed
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
kfahmi/recipe-app-api
fa678005a3615bff92b94d5e852526fcb00793ed
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
kfahmi/recipe-app-api
fa678005a3615bff92b94d5e852526fcb00793ed
[ "MIT" ]
null
null
null
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTests(TestCase): def setUp(self): self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email='admin@londonappdev.com', password='password123' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='test@londonappdev.com', password='password123', name='test username' ) def test_user_listed(self): """test listed user on user page""" url = reverse('admin:core_user_changelist') res = self.client.get(url) self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) def test_user_change(self): """Test user edit page works""" url = reverse('admin:core_user_change', args=[self.user.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user_page(self): """Test that the create user page works""" url = reverse('admin:core_user_add') res = self.client.get(url) self.assertEqual(res.status_code, 200)
33.282051
68
0.640216
79481282d8747270c5ca1d77895b21b5e10d5156
2,443
py
Python
PyEEA/taxation/TaxationHelper.py
ThomasJFR/PyEEA
7927ee5ff1de8d3cf9e9654899ea4c2c0284519c
[ "MIT" ]
1
2020-06-15T03:16:06.000Z
2020-06-15T03:16:06.000Z
PyEEA/taxation/TaxationHelper.py
ThomasJFR/PyEEA
7927ee5ff1de8d3cf9e9654899ea4c2c0284519c
[ "MIT" ]
1
2020-06-19T04:56:21.000Z
2020-06-19T04:56:21.000Z
PyEEA/taxation/TaxationHelper.py
ThomasJFR/PyEEA
7927ee5ff1de8d3cf9e9654899ea4c2c0284519c
[ "MIT" ]
null
null
null
from ..cashflow import Cashflow, NullCashflow from ..cashflow import Future, Perpetuity, Dynamic from ..utilities import parse_ns, parse_d, get_final_period from copy import deepcopy class Tax: def __init__(self, tag, rate, title=None): self._tag = tag self._rate = rate self._title = title or ("Tax on %s" % self._tag) def get_title(self): return self._title def generate_cashflow(self, cashflows=[], depreciations=[]): # Remove any irrelevant cashflows taxable_cashflows = [cf for cf in cashflows if self._tag in cf.tags] or [ NullCashflow() ] shielding_depreciations = [ dp for dp in depreciations if self._tag in dp.tags ] or [NullCashflow()] # Create and return the TaxCashflow object return TaxCashflow( self._rate, taxable_cashflows, shielding_depreciations, get_final_period(cashflows, finite=True), title=self.get_title(), tags=self._tag, ) class TaxCashflow(Dynamic): def __init__(self, rate, cashflows, depreciations, d, title=None, tags=None): super().__init__(TaxCashflow.tax_fun, d, title, tags) self._rate = rate self._cashflows = cashflows self._depreciations = depreciations def to_shorthand(self): return "Tax(%s, %.2f%%)" % (self.tags[0], self._rate * 100) def to_pv(self, i): # Handles every cashflow in range d pv = super().to_pv(i) # Check for Perpetuities if perpetuities := [cf for cf in self._cashflows if isinstance(cf, Perpetuity)]: perpetuities = deepcopy(perpetuities) for perpetuity in perpetuities: perpetuity.amount = perpetuity[self.d[1] + 1].amount perpetuity.d0 = self.d[1] pv += sum([perpetuity.to_pv(i) for perpetuity in perpetuities]) * self._rate return pv # Because of the way Dynamic is set up, we want to reference self. At the same time, # we need the function to be static, so that we can manually supply 'self'. @staticmethod def tax_fun(self, n): taxable_sum = sum([cashflow[n] for cashflow in self._cashflows]) shielding_sum = sum([depreciation[n] for depreciation in self._depreciations]) taxed_amount = (taxable_sum - shielding_sum) * self._rate return taxed_amount
33.930556
88
0.631191
7948130a4e92c589a9e06802a3dfa5fa3e3e205a
2,796
py
Python
checkov/terraform/checks/resource/gcp/GoogleCloudSqlDatabasePublicallyAccessible.py
Devocean8-Official/checkov
8ce61421fa838a97981ab3bd0ae2a12e541666b2
[ "Apache-2.0" ]
1
2022-02-15T20:46:07.000Z
2022-02-15T20:46:07.000Z
checkov/terraform/checks/resource/gcp/GoogleCloudSqlDatabasePublicallyAccessible.py
Devocean8-Official/checkov
8ce61421fa838a97981ab3bd0ae2a12e541666b2
[ "Apache-2.0" ]
null
null
null
checkov/terraform/checks/resource/gcp/GoogleCloudSqlDatabasePublicallyAccessible.py
Devocean8-Official/checkov
8ce61421fa838a97981ab3bd0ae2a12e541666b2
[ "Apache-2.0" ]
null
null
null
from checkov.terraform.checks.resource.base_resource_check import BaseResourceCheck from checkov.common.models.enums import CheckResult, CheckCategories class GoogleCloudSqlDatabasePublicallyAccessible(BaseResourceCheck): def __init__(self): name = "Ensure that Cloud SQL database Instances are not open to the world" id = "CKV_GCP_11" supported_resources = ['google_sql_database_instance'] categories = [CheckCategories.NETWORKING] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def scan_resource_conf(self, conf): """ Looks for google_sql_database_instance which is open to the world: :param conf: google_sql_database_instance configuration :return: <CheckResult> """ if 'settings' in conf and 'ip_configuration' in conf['settings'][0]: ip_config = conf['settings'][0]['ip_configuration'][0] self.evaluated_keys = ['settings/[0]/ip_configuration'] if 'authorized_networks' in ip_config: auth_networks = ip_config['authorized_networks'][0] if type(auth_networks) != list: # handle possible legacy case auth_networks = [auth_networks] for network in auth_networks: if 'value' in network: val = network['value'] if type(val) == list: # handle possible parsing discrepancies val = val[0] if val.endswith('/0'): self.evaluated_keys = ['settings/[0]/ip_configuration/authorized_networks/[0]/value', 'settings/[0]/ip_configuration/authorized_networks/[0]/' f'[{auth_networks.index(network)}]/value'] return CheckResult.FAILED if 'dynamic' in ip_config: dynamic = ip_config['dynamic'] for dynamic_block in dynamic: if 'authorized_networks' in dynamic_block and 'content' in dynamic_block['authorized_networks']: content = dynamic_block['authorized_networks']['content'][0] if 'value' in content and content['value'][0].endswith('/0'): self.evaluated_keys = ['settings/[0]/ip_configuration/dynamic/' f'[{dynamic.index(dynamic_block)}]/' 'authorized_networks/content/[0]/value'] return CheckResult.FAILED return CheckResult.PASSED check = GoogleCloudSqlDatabasePublicallyAccessible()
54.823529
116
0.57618
794813819f168f66c060accc9166d5dc9d35a6ef
1,759
py
Python
src/util.py
dmarxn/mwdblib
8249bee222ed72590695b6010d6ee4cd4b6b12ca
[ "MIT" ]
36
2018-12-16T18:59:44.000Z
2022-03-26T21:35:07.000Z
src/util.py
dmarxn/mwdblib
8249bee222ed72590695b6010d6ee4cd4b6b12ca
[ "MIT" ]
26
2019-12-17T20:49:17.000Z
2022-03-31T16:38:49.000Z
src/util.py
dmarxn/mwdblib
8249bee222ed72590695b6010d6ee4cd4b6b12ca
[ "MIT" ]
7
2020-05-23T00:44:46.000Z
2022-01-17T22:43:48.000Z
import hashlib import sys def convert_to_utf8(obj): """Encodes object into utf-8 bytes (or 'str' in Py2)""" obj = str(obj) if sys.version_info[0] == 3: obj = bytes(obj, "utf-8") else: obj = u''.join(map(unichr, map(ord, obj))).encode("utf-8") # noqa: F821 in Py3 context return obj def _eval_config_dhash(obj): """ Compute a data hash from the object. This is the hashing algorithm used internally by MWDB to assign unique ids to configs """ if isinstance(obj, list): # For lists: evaluate hash recursively for all elements and sort them lexicographically return _eval_config_dhash(str(sorted([_eval_config_dhash(o) for o in obj]))) elif isinstance(obj, dict): # For dicts: convert to key-ordered tuples with hashed value return _eval_config_dhash( [[o, _eval_config_dhash(obj[o])] for o in sorted(obj.keys())] ) else: # Other types: evaluate SHA256 after conversion to UTF-8 return hashlib.sha256(convert_to_utf8(obj)).hexdigest() def config_dhash(obj): """ Compute a data hash from the object. This is the hashing algorithm used internally by MWDB to assign unique ids to configs. .. versionchanged:: 3.3.0 Added support for in-blob keys :param obj: Dict with configuration :type obj: dict :return: SHA256 hex digest """ config = dict(obj) for key, value in config.items(): if isinstance(value, dict) and list(value.keys()) == ["in-blob"]: in_blob = value["in-blob"] if isinstance(in_blob, dict): config[key]["in-blob"] = hashlib.sha256(convert_to_utf8(in_blob["content"])).hexdigest() return _eval_config_dhash(config)
34.490196
104
0.645821
7948142a715827c4bdca853567744befef12167b
2,670
py
Python
test/unit/filterer/test_base.py
4degrees/mill
ba8362193fa9cbcb52e9b6d188d3060eed495038
[ "Apache-2.0" ]
null
null
null
test/unit/filterer/test_base.py
4degrees/mill
ba8362193fa9cbcb52e9b6d188d3060eed495038
[ "Apache-2.0" ]
1
2016-05-18T08:56:43.000Z
2016-05-18T09:11:31.000Z
test/unit/filterer/test_base.py
4degrees/mill
ba8362193fa9cbcb52e9b6d188d3060eed495038
[ "Apache-2.0" ]
null
null
null
# :coding: utf-8 # :copyright: Copyright (c) 2013 Martin Pengelly-Phillips # :license: See LICENSE.txt. import pytest from sawmill.log import Log from sawmill.filterer.base import Filterer, Any, All class DenyAll(Filterer): '''Filter all logs.''' def filter(self, logs): '''Filter all *logs*.''' return [] class AllowAll(Filterer): '''Don't filter any log.''' def filter(self, logs): '''Return all *logs* unfiltered.''' return logs def test_filter(): '''Test filter method.''' log = Log() allow = DenyAll() assert allow.filter([log]) == [] deny = AllowAll() assert deny.filter([log]) == [log] def test_and_combine(): '''Test combining filterers with and operator.''' log = Log() filterer = DenyAll() & AllowAll() assert filterer.filter([log]) == [] filterer = DenyAll() filterer &= AllowAll() assert filterer.filter([log]) == [] def test_and_with_non_filterer_errors(): '''Test and operator with non-filterer raises NotImplementedError.''' with pytest.raises(NotImplementedError): DenyAll() & 1 def test_or_combine(): '''Test combining filterers with or operator.''' log = Log() filterer = DenyAll() | AllowAll() assert filterer.filter([log]) == [log] filterer = DenyAll() filterer |= AllowAll() assert filterer.filter([log]) == [log] def test_or_with_non_filterer_errors(): '''Test or operator with non-filterer raises NotImplementedError.''' with pytest.raises(NotImplementedError): DenyAll() | 1 def test_all(): '''Test All filterer.''' log = Log() allow = DenyAll() deny = AllowAll() filterer = All([allow, deny]) assert filterer.filter([log]) == [] filterer = All([AllowAll(), AllowAll()]) assert filterer.filter([log]) == [log] filterer = All([DenyAll(), DenyAll()]) assert filterer.filter([log]) == [] def test_all_when_no_filterers_Set(): '''Test All filterer does not filter when no filterers set.''' log = Log() filterer = All() assert filterer.filter([log]) == [log] def test_any(): '''Test Any filterer.''' log = Log() allow = DenyAll() deny = AllowAll() filterer = Any([allow, deny]) assert filterer.filter([log]) == [log] filterer = Any([AllowAll(), AllowAll()]) assert filterer.filter([log]) == [log] filterer = Any([DenyAll(), DenyAll()]) assert filterer.filter([log]) == [] def test_any_when_no_filterers_Set(): '''Test Any filterer does not filter when no filterers set.''' log = Log() filterer = Any() assert filterer.filter([log]) == [log]
22.627119
73
0.618727
794814c284fa57577221dfc56a1062ced75eee02
2,510
py
Python
tests/components/xbox/test_config_flow.py
nibdev/core
b7e8348c306fb6af9582a04eed6058a28409dc26
[ "Apache-2.0" ]
5
2020-12-15T04:09:01.000Z
2022-03-11T21:34:24.000Z
tests/components/xbox/test_config_flow.py
nibdev/core
b7e8348c306fb6af9582a04eed6058a28409dc26
[ "Apache-2.0" ]
87
2020-07-06T22:22:54.000Z
2022-03-31T06:01:46.000Z
tests/components/xbox/test_config_flow.py
winning1120xx/home-assistant
53d4c0ce2d374b5e97bbdc37742656c27adf8eea
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""Test the xbox config flow.""" from unittest.mock import patch from homeassistant import config_entries, data_entry_flow, setup from homeassistant.components.xbox.const import DOMAIN, OAUTH2_AUTHORIZE, OAUTH2_TOKEN from homeassistant.helpers import config_entry_oauth2_flow from tests.common import MockConfigEntry CLIENT_ID = "1234" CLIENT_SECRET = "5678" async def test_abort_if_existing_entry(hass): """Check flow abort when an entry already exist.""" MockConfigEntry(domain=DOMAIN).add_to_hass(hass) result = await hass.config_entries.flow.async_init( "xbox", context={"source": config_entries.SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "single_instance_allowed" async def test_full_flow( hass, hass_client_no_auth, aioclient_mock, current_request_with_host ): """Check full flow.""" assert await setup.async_setup_component( hass, "xbox", { "xbox": {"client_id": CLIENT_ID, "client_secret": CLIENT_SECRET}, "http": {"base_url": "https://example.com"}, }, ) result = await hass.config_entries.flow.async_init( "xbox", context={"source": config_entries.SOURCE_USER} ) state = config_entry_oauth2_flow._encode_jwt( hass, { "flow_id": result["flow_id"], "redirect_uri": "https://example.com/auth/external/callback", }, ) scope = "+".join(["Xboxlive.signin", "Xboxlive.offline_access"]) assert result["url"] == ( f"{OAUTH2_AUTHORIZE}?response_type=code&client_id={CLIENT_ID}" "&redirect_uri=https://example.com/auth/external/callback" f"&state={state}&scope={scope}" ) client = await hass_client_no_auth() resp = await client.get(f"/auth/external/callback?code=abcd&state={state}") assert resp.status == 200 assert resp.headers["content-type"] == "text/html; charset=utf-8" aioclient_mock.post( OAUTH2_TOKEN, json={ "refresh_token": "mock-refresh-token", "access_token": "mock-access-token", "type": "Bearer", "expires_in": 60, }, ) with patch( "homeassistant.components.xbox.async_setup_entry", return_value=True ) as mock_setup: await hass.config_entries.flow.async_configure(result["flow_id"]) assert len(hass.config_entries.async_entries(DOMAIN)) == 1 assert len(mock_setup.mock_calls) == 1
31.772152
86
0.663347
794815359f7adf6ff62a5081cf302bd847bac339
16,221
py
Python
spacy/tests/pipeline/test_span_ruler.py
stungkit/spaCy
a83a50119520ea8708f0ef0730f65f486556c273
[ "MIT" ]
1
2019-11-27T13:14:04.000Z
2019-11-27T13:14:04.000Z
spacy/tests/pipeline/test_span_ruler.py
stungkit/spaCy
a83a50119520ea8708f0ef0730f65f486556c273
[ "MIT" ]
null
null
null
spacy/tests/pipeline/test_span_ruler.py
stungkit/spaCy
a83a50119520ea8708f0ef0730f65f486556c273
[ "MIT" ]
null
null
null
import pytest import spacy from spacy import registry from spacy.errors import MatchPatternError from spacy.tokens import Span from spacy.training import Example from spacy.tests.util import make_tempdir from thinc.api import NumpyOps, get_current_ops @pytest.fixture @registry.misc("span_ruler_patterns") def patterns(): return [ {"label": "HELLO", "pattern": "hello world", "id": "hello1"}, {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]}, {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}], "id": "hello2"}, {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]}, {"label": "TECH_ORG", "pattern": "Apple"}, {"label": "TECH_ORG", "pattern": "Microsoft"}, ] @pytest.fixture def overlapping_patterns(): return [ {"label": "FOOBAR", "pattern": "foo bar"}, {"label": "BARBAZ", "pattern": "bar baz"}, ] @pytest.fixture def person_org_patterns(): return [ {"label": "PERSON", "pattern": "Dina"}, {"label": "ORG", "pattern": "ACME"}, {"label": "ORG", "pattern": "ACM"}, ] @pytest.fixture def person_org_date_patterns(person_org_patterns): return person_org_patterns + [{"label": "DATE", "pattern": "June 14th"}] def test_span_ruler_add_empty(patterns): """Test that patterns don't get added excessively.""" nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler", config={"validate": True}) ruler.add_patterns(patterns) pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) assert pattern_count > 0 ruler.add_patterns([]) after_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) assert after_count == pattern_count def test_span_ruler_init(patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(patterns) assert len(ruler) == len(patterns) assert len(ruler.labels) == 4 assert "HELLO" in ruler assert "BYE" in ruler doc = nlp("hello world bye bye") assert len(doc.spans["ruler"]) == 2 assert doc.spans["ruler"][0].label_ == "HELLO" assert doc.spans["ruler"][0].id_ == "hello1" assert doc.spans["ruler"][1].label_ == "BYE" assert doc.spans["ruler"][1].id_ == "" def test_span_ruler_no_patterns_warns(): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") assert len(ruler) == 0 assert len(ruler.labels) == 0 assert nlp.pipe_names == ["span_ruler"] with pytest.warns(UserWarning): doc = nlp("hello world bye bye") assert len(doc.spans["ruler"]) == 0 def test_span_ruler_init_patterns(patterns): # initialize with patterns nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") assert len(ruler.labels) == 0 ruler.initialize(lambda: [], patterns=patterns) assert len(ruler.labels) == 4 doc = nlp("hello world bye bye") assert doc.spans["ruler"][0].label_ == "HELLO" assert doc.spans["ruler"][1].label_ == "BYE" nlp.remove_pipe("span_ruler") # initialize with patterns from misc registry nlp.config["initialize"]["components"]["span_ruler"] = { "patterns": {"@misc": "span_ruler_patterns"} } ruler = nlp.add_pipe("span_ruler") assert len(ruler.labels) == 0 nlp.initialize() assert len(ruler.labels) == 4 doc = nlp("hello world bye bye") assert doc.spans["ruler"][0].label_ == "HELLO" assert doc.spans["ruler"][1].label_ == "BYE" def test_span_ruler_init_clear(patterns): """Test that initialization clears patterns.""" nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(patterns) assert len(ruler.labels) == 4 ruler.initialize(lambda: []) assert len(ruler.labels) == 0 def test_span_ruler_clear(patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(patterns) assert len(ruler.labels) == 4 doc = nlp("hello world") assert len(doc.spans["ruler"]) == 1 ruler.clear() assert len(ruler.labels) == 0 with pytest.warns(UserWarning): doc = nlp("hello world") assert len(doc.spans["ruler"]) == 0 def test_span_ruler_existing(patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler", config={"overwrite": False}) ruler.add_patterns(patterns) doc = nlp.make_doc("OH HELLO WORLD bye bye") doc.spans["ruler"] = [doc[0:2]] doc = nlp(doc) assert len(doc.spans["ruler"]) == 3 assert doc.spans["ruler"][0] == doc[0:2] assert doc.spans["ruler"][1].label_ == "HELLO" assert doc.spans["ruler"][1].id_ == "hello2" assert doc.spans["ruler"][2].label_ == "BYE" assert doc.spans["ruler"][2].id_ == "" def test_span_ruler_existing_overwrite(patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler", config={"overwrite": True}) ruler.add_patterns(patterns) doc = nlp.make_doc("OH HELLO WORLD bye bye") doc.spans["ruler"] = [doc[0:2]] doc = nlp(doc) assert len(doc.spans["ruler"]) == 2 assert doc.spans["ruler"][0].label_ == "HELLO" assert doc.spans["ruler"][0].text == "HELLO" assert doc.spans["ruler"][1].label_ == "BYE" def test_span_ruler_serialize_bytes(patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(patterns) assert len(ruler) == len(patterns) assert len(ruler.labels) == 4 ruler_bytes = ruler.to_bytes() new_nlp = spacy.blank("xx") new_ruler = new_nlp.add_pipe("span_ruler") assert len(new_ruler) == 0 assert len(new_ruler.labels) == 0 new_ruler = new_ruler.from_bytes(ruler_bytes) assert len(new_ruler) == len(patterns) assert len(new_ruler.labels) == 4 assert len(new_ruler.patterns) == len(ruler.patterns) for pattern in ruler.patterns: assert pattern in new_ruler.patterns assert sorted(new_ruler.labels) == sorted(ruler.labels) def test_span_ruler_validate(): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") validated_ruler = nlp.add_pipe( "span_ruler", name="validated_span_ruler", config={"validate": True} ) valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]} invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]} # invalid pattern raises error without validate with pytest.raises(ValueError): ruler.add_patterns([invalid_pattern]) # valid pattern is added without errors with validate validated_ruler.add_patterns([valid_pattern]) # invalid pattern raises error with validate with pytest.raises(MatchPatternError): validated_ruler.add_patterns([invalid_pattern]) def test_span_ruler_properties(patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler", config={"overwrite": True}) ruler.add_patterns(patterns) assert sorted(ruler.labels) == sorted(set([p["label"] for p in patterns])) def test_span_ruler_overlapping_spans(overlapping_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(overlapping_patterns) doc = ruler(nlp.make_doc("foo bar baz")) assert len(doc.spans["ruler"]) == 2 assert doc.spans["ruler"][0].label_ == "FOOBAR" assert doc.spans["ruler"][1].label_ == "BARBAZ" def test_span_ruler_scorer(overlapping_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(overlapping_patterns) text = "foo bar baz" pred_doc = ruler(nlp.make_doc(text)) assert len(pred_doc.spans["ruler"]) == 2 assert pred_doc.spans["ruler"][0].label_ == "FOOBAR" assert pred_doc.spans["ruler"][1].label_ == "BARBAZ" ref_doc = nlp.make_doc(text) ref_doc.spans["ruler"] = [Span(ref_doc, 0, 2, label="FOOBAR")] scores = nlp.evaluate([Example(pred_doc, ref_doc)]) assert scores["spans_ruler_p"] == 0.5 assert scores["spans_ruler_r"] == 1.0 @pytest.mark.parametrize("n_process", [1, 2]) def test_span_ruler_multiprocessing(n_process): if isinstance(get_current_ops, NumpyOps) or n_process < 2: texts = ["I enjoy eating Pizza Hut pizza."] patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut"}] nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(patterns) for doc in nlp.pipe(texts, n_process=2): for ent in doc.spans["ruler"]: assert ent.label_ == "FASTFOOD" def test_span_ruler_serialize_dir(patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(patterns) with make_tempdir() as d: ruler.to_disk(d / "test_ruler") ruler.from_disk(d / "test_ruler") # read from an existing directory with pytest.raises(ValueError): ruler.from_disk(d / "non_existing_dir") # read from a bad directory def test_span_ruler_remove_basic(person_org_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(person_org_patterns) doc = ruler(nlp.make_doc("Dina went to school")) assert len(ruler.patterns) == 3 assert len(doc.spans["ruler"]) == 1 assert doc.spans["ruler"][0].label_ == "PERSON" assert doc.spans["ruler"][0].text == "Dina" ruler.remove("PERSON") doc = ruler(nlp.make_doc("Dina went to school")) assert len(doc.spans["ruler"]) == 0 assert len(ruler.patterns) == 2 def test_span_ruler_remove_nonexisting_pattern(person_org_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(person_org_patterns) assert len(ruler.patterns) == 3 with pytest.raises(ValueError): ruler.remove("NE") with pytest.raises(ValueError): ruler.remove_by_id("NE") def test_span_ruler_remove_several_patterns(person_org_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(person_org_patterns) doc = ruler(nlp.make_doc("Dina founded the company ACME.")) assert len(ruler.patterns) == 3 assert len(doc.spans["ruler"]) == 2 assert doc.spans["ruler"][0].label_ == "PERSON" assert doc.spans["ruler"][0].text == "Dina" assert doc.spans["ruler"][1].label_ == "ORG" assert doc.spans["ruler"][1].text == "ACME" ruler.remove("PERSON") doc = ruler(nlp.make_doc("Dina founded the company ACME")) assert len(ruler.patterns) == 2 assert len(doc.spans["ruler"]) == 1 assert doc.spans["ruler"][0].label_ == "ORG" assert doc.spans["ruler"][0].text == "ACME" ruler.remove("ORG") with pytest.warns(UserWarning): doc = ruler(nlp.make_doc("Dina founded the company ACME")) assert len(ruler.patterns) == 0 assert len(doc.spans["ruler"]) == 0 def test_span_ruler_remove_patterns_in_a_row(person_org_date_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(person_org_date_patterns) doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th")) assert len(doc.spans["ruler"]) == 3 assert doc.spans["ruler"][0].label_ == "PERSON" assert doc.spans["ruler"][0].text == "Dina" assert doc.spans["ruler"][1].label_ == "ORG" assert doc.spans["ruler"][1].text == "ACME" assert doc.spans["ruler"][2].label_ == "DATE" assert doc.spans["ruler"][2].text == "June 14th" ruler.remove("ORG") ruler.remove("DATE") doc = ruler(nlp.make_doc("Dina went to school")) assert len(doc.spans["ruler"]) == 1 def test_span_ruler_remove_all_patterns(person_org_date_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") ruler.add_patterns(person_org_date_patterns) assert len(ruler.patterns) == 4 ruler.remove("PERSON") assert len(ruler.patterns) == 3 ruler.remove("ORG") assert len(ruler.patterns) == 1 ruler.remove("DATE") assert len(ruler.patterns) == 0 with pytest.warns(UserWarning): doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th")) assert len(doc.spans["ruler"]) == 0 def test_span_ruler_remove_and_add(): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler") patterns1 = [{"label": "DATE1", "pattern": "last time"}] ruler.add_patterns(patterns1) doc = ruler( nlp.make_doc("I saw him last time we met, this time he brought some flowers") ) assert len(ruler.patterns) == 1 assert len(doc.spans["ruler"]) == 1 assert doc.spans["ruler"][0].label_ == "DATE1" assert doc.spans["ruler"][0].text == "last time" patterns2 = [{"label": "DATE2", "pattern": "this time"}] ruler.add_patterns(patterns2) doc = ruler( nlp.make_doc("I saw him last time we met, this time he brought some flowers") ) assert len(ruler.patterns) == 2 assert len(doc.spans["ruler"]) == 2 assert doc.spans["ruler"][0].label_ == "DATE1" assert doc.spans["ruler"][0].text == "last time" assert doc.spans["ruler"][1].label_ == "DATE2" assert doc.spans["ruler"][1].text == "this time" ruler.remove("DATE1") doc = ruler( nlp.make_doc("I saw him last time we met, this time he brought some flowers") ) assert len(ruler.patterns) == 1 assert len(doc.spans["ruler"]) == 1 assert doc.spans["ruler"][0].label_ == "DATE2" assert doc.spans["ruler"][0].text == "this time" ruler.add_patterns(patterns1) doc = ruler( nlp.make_doc("I saw him last time we met, this time he brought some flowers") ) assert len(ruler.patterns) == 2 assert len(doc.spans["ruler"]) == 2 patterns3 = [{"label": "DATE3", "pattern": "another time"}] ruler.add_patterns(patterns3) doc = ruler( nlp.make_doc( "I saw him last time we met, this time he brought some flowers, another time some chocolate." ) ) assert len(ruler.patterns) == 3 assert len(doc.spans["ruler"]) == 3 ruler.remove("DATE3") doc = ruler( nlp.make_doc( "I saw him last time we met, this time he brought some flowers, another time some chocolate." ) ) assert len(ruler.patterns) == 2 assert len(doc.spans["ruler"]) == 2 def test_span_ruler_spans_filter(overlapping_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe( "span_ruler", config={"spans_filter": {"@misc": "spacy.first_longest_spans_filter.v1"}}, ) ruler.add_patterns(overlapping_patterns) doc = ruler(nlp.make_doc("foo bar baz")) assert len(doc.spans["ruler"]) == 1 assert doc.spans["ruler"][0].label_ == "FOOBAR" def test_span_ruler_ents_default_filter(overlapping_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe("span_ruler", config={"annotate_ents": True}) ruler.add_patterns(overlapping_patterns) doc = ruler(nlp.make_doc("foo bar baz")) assert len(doc.ents) == 1 assert doc.ents[0].label_ == "FOOBAR" def test_span_ruler_ents_overwrite_filter(overlapping_patterns): nlp = spacy.blank("xx") ruler = nlp.add_pipe( "span_ruler", config={ "annotate_ents": True, "overwrite": False, "ents_filter": {"@misc": "spacy.prioritize_new_ents_filter.v1"}, }, ) ruler.add_patterns(overlapping_patterns) # overlapping ents are clobbered, non-overlapping ents are preserved doc = nlp.make_doc("foo bar baz a b c") doc.ents = [Span(doc, 1, 3, label="BARBAZ"), Span(doc, 3, 6, label="ABC")] doc = ruler(doc) assert len(doc.ents) == 2 assert doc.ents[0].label_ == "FOOBAR" assert doc.ents[1].label_ == "ABC" def test_span_ruler_ents_bad_filter(overlapping_patterns): @registry.misc("test_pass_through_filter") def make_pass_through_filter(): def pass_through_filter(spans1, spans2): return spans1 + spans2 return pass_through_filter nlp = spacy.blank("xx") ruler = nlp.add_pipe( "span_ruler", config={ "annotate_ents": True, "ents_filter": {"@misc": "test_pass_through_filter"}, }, ) ruler.add_patterns(overlapping_patterns) with pytest.raises(ValueError): ruler(nlp.make_doc("foo bar baz"))
34.809013
105
0.647864
794815b4706d6f0abb0b1add13fedc138dfe5141
21,756
py
Python
modeling/fit_and_predict.py
kuleafenu/covid19-severity-prediction
ebe2e938bbeb70d3dde53c1943f0cfdc02df5098
[ "MIT" ]
1
2021-04-25T12:36:30.000Z
2021-04-25T12:36:30.000Z
modeling/fit_and_predict.py
kuleafenu/covid19-severity-prediction
ebe2e938bbeb70d3dde53c1943f0cfdc02df5098
[ "MIT" ]
null
null
null
modeling/fit_and_predict.py
kuleafenu/covid19-severity-prediction
ebe2e938bbeb70d3dde53c1943f0cfdc02df5098
[ "MIT" ]
null
null
null
import copy import numpy as np import pandas as pd from os.path import join as oj import os from collections import Counter from models import exponential_modeling import pmdl_weight import datetime from models.shared_models import SharedModel from collections import defaultdict import inspect import sys from tqdm import tqdm currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) very_important_vars = ['PopulationDensityperSqMile2010', # 'MedicareEnrollment,AgedTot2017', 'PopulationEstimate2018', '#ICU_beds', 'MedianAge2010', 'Smokers_Percentage', 'DiabetesPercentage', 'HeartDiseaseMortality', '#Hospitals'] exponential = {'model_type': 'exponential'} shared_exponential = {'model_type': 'shared_exponential'} demographics = {'model_type': 'shared_exponential', 'demographic_vars': very_important_vars} linear = {'model_type': 'linear'} advanced_model = {'model_type': 'advanced_shared_model'} def fit_and_predict(df, outcome: str = 'deaths', method: str = 'exponential', mode: str = 'predict_future', target_day: np.ndarray = np.array([1]), output_key: str = None, demographic_vars=[], verbose: bool = False): """ Trains a method (method) to predict a current number of days ahead (target_day) Predicts the values of the number of deaths for the final day of test_df and writes to the column 'predicted_deaths_'+method+'_'+str(target_day[-1]) of the test_df Params ------ df a df with county level deaths and cases and demographic information outcome key for the outcome to predict (the values in this column should have a list for each row) method what method to use to do forecasting target_day np.array([1,2,..,n]) predicts these number of days ahead (can just be np.array([3])) for example if you just want 3 days ahead) output_key key to save the output as mode: either 'predict_future' or 'eval_mode' predict_future is predicting deaths on FUTURE days, so target_day=np.array([1])) means it predicts tomorrow's deaths eval_mode is for evaluating the performance of the classifier. target_day=np.array([k])) will predict the current days death count using information from k days ago. target_day= np.array([1,2,3,...,k]) will predict todays deaths, yesterdays deaths, deaths k-1 days ago using information from k days ago. Returns ------- test_df returns dataframe with added column """ assert mode == 'predict_future' or mode == 'eval_mode', 'unknown mode' if output_key is None: output_key = f'predicted_{outcome}_{method}_{target_day[-1]}' if len(demographic_vars) > 0: output_key += '_demographics' if method == 'AR': print('currently deprecated') raise NotImplementedError loss, model, best_window = naive_autoreg_baselines.train_and_evaluate_model(train_df, test_df) return naive_autoreg_baselines.make_predictions(test_df, model, best_window) elif method == 'exponential': preds = exponential_modeling.exponential_fit(df[outcome].values, mode=mode, target_day=target_day) df[output_key] = preds # del test_df['predicted_deaths_exponential'] return df elif method == 'linear': preds = exponential_modeling.linear_fit(df[outcome].values, mode=mode, target_day=target_day) df[output_key] = preds # del test_df['predicted_deaths_exponential'] return df elif method == 'shared_exponential': # Fit a poisson GLM with shared parameters across counties. Input to the poisson GLM is demographic_vars and log(previous_days_deaths+1) cur_day_predictions = exponential_modeling.fit_and_predict_shared_exponential(df, mode, outcome=outcome, demographic_vars=demographic_vars, target_day=target_day, verbose=verbose) # if len(demographic_vars) > 0: # output_key += '_demographics' # import IPython # IPython.embed() df[output_key] = cur_day_predictions return df elif method == 'ensemble': print('please use fit_and_predict_ensemble instead') elif method == 'advanced_shared_model': feat_transforms = defaultdict(lambda y: [lambda x: x]) feat_transforms['deaths_per_cap'] = [lambda x: np.log(x + 1)] feat_transforms['deaths'] = [lambda x: np.log(x + 1)] feat_transforms['new_deaths'] = [lambda x: np.log(x + 1)] feat_transforms['cases'] = [lambda x: np.log(x + 1)] feat_transforms['neighbor_deaths'] = [lambda x: np.log(x + 1)] feat_transforms['neighbor_cases'] = [lambda x: np.log(x + 1)] feat_transforms['days_since_order'] = [lambda x: x] feat_transforms['week_since_order'] = [lambda x: x] feat_transforms['two_weeks_since_order'] = [lambda x: x] feat_transforms['is_weekday'] = [lambda x: x] feat_transforms['deaths'] = [lambda x: np.log(x + 1)] feat_transforms['new_deaths'] = [lambda x: np.log(x + 1)] feat_transforms['cases'] = [lambda x: np.log(x + 1)] feat_transforms['neighbor_deaths'] = [lambda x: np.log(x + 1)] feat_transforms['neighbor_cases'] = [lambda x: np.log(x + 1)] feat_transforms['new_deaths_20'] = [lambda x: np.log(max(x + 1, 1))] default_values = defaultdict(lambda: 0) # aux_feats = ['cases','neighbor_deaths','neighbor_cases','new_deaths'] # aux_feats = ['cases','neighbor_deaths','neighbor_cases','is_weekday'] # aux_feats = ['is_weekday'] aux_feats = ['cases', 'neighbor_deaths', 'neighbor_cases'] # ,'is_weekday'] # aux_feats = ['days_since_order','two_weeks_since_order','neighbor_deaths','neighbor_cases','cases'] # aux_feats = ['two_weeks_since_order','neighbor_deaths','neighbor_cases','cases'] shared_model_predictions = [[] for i in range(len(df))] for t in target_day: t = np.array([t]) shared_model = SharedModel(df=df, outcome=outcome, demographic_variables=[], mode=mode, target_days=t, feat_transforms=feat_transforms, auxiliary_time_features=aux_feats, time_series_default_values=default_values, scale=True) shared_model.create_dataset() shared_model.fit_model() shared_model.predict() for i in range(len(shared_model.predictions)): assert len(shared_model.predictions[i]) == 1 # If there is a prediction, make sure the new one is at least as large new_prediction = shared_model.predictions[i][0] if len(shared_model_predictions[i]) > 0: new_prediction = max(shared_model_predictions[i][-1],new_prediction) shared_model_predictions[i].append(new_prediction) df[output_key] = shared_model_predictions # df[output_key] = shared_model_predictions return df else: print('Unknown method') raise ValueError def fit_and_predict_ensemble(df, target_day: np.ndarray = np.array([1]), outcome: str = 'deaths', methods: list = [shared_exponential, linear], mode: str = 'predict_future', output_key: str = None, verbose: bool = False, weight_c0: int = 1, weight_mu: int = 0.5, debug: bool = False, ): """ Function for ensemble prediction Input: df: pd.DataFrame target_day: array outcome: str method: list of dictionary each dictionary specify the type and parameters of the model mode: str output_key: str Output: df with ensemble prediction """ if output_key is None: output_key = f'predicted_{outcome}_ensemble_{target_day[-1]}' predictions = {} for (i, model) in enumerate(methods): if debug: print(f"[DEBUG] fit_and_predict_ensemble:{i}, {model}") if 'demographic_vars' in model: demographic_vars = model['demographic_vars'] else: demographic_vars = [] predictions[i] = fit_and_predict(df, outcome=outcome, method=model['model_type'], mode=mode, target_day=target_day, output_key=f'y_preds_{i}', demographic_vars=demographic_vars, verbose=verbose)[f'y_preds_{i}'].values if mode == 'predict_future': use_df = df else: use_df = exponential_modeling.leave_t_day_out(df, target_day[-1]) if debug: print(f"[DEBUG] fit_and_predict_ensemble: compute weights.") weights = pmdl_weight.compute_pmdl_weight(use_df, methods=methods, outcome=outcome, target_day=target_day, c0=weight_c0, mu=weight_mu) sum_weights = np.zeros(len(use_df)) for model_index in weights: sum_weights = sum_weights + np.array(weights[model_index]) # weighted_preds = np.zeros((len(use_df), len(target_day))) weighted_preds = [np.zeros(len(target_day)) for i in range(len(use_df))] for i in range(len(df)): for model_index in weights: weighted_preds[i] += np.array(predictions[model_index][i]) * weights[model_index][i] / sum_weights[i] # print out the relative contribution of each model if verbose: print('--- Model Contributions ---') model_weight_counter = Counter() for model_index in weights: m_weights = 0 for i in range(len(use_df)): m_weights += weights[model_index][i] / sum_weights[i] m_weights = m_weights / len(use_df) model_weight_counter[model_index] = m_weights for model_index, weight in model_weight_counter.most_common(): print(str(methods[model_index]) + ': ' + str(weight)) # Make sure predictions are non-decreasing if debug: print(f"[DEBUG] fit_and_predict_ensemble: monotonicity constraint.") monotonic_weighted_preds = [] for preds in weighted_preds: new_preds = [] for i in range(len(preds)): if i > 0: new_preds.append(max(preds[i],preds[i-1])) else: new_preds.append(preds[i]) monotonic_weighted_preds.append(new_preds) weighted_preds = monotonic_weighted_preds df[output_key] = weighted_preds return df def previous_prediction_errors(df, target_day: np.ndarray = np.array([1]), outcome: str = 'deaths', methods: list = [advanced_model, linear], look_back_day: int = 5, output_key: str = None): """ Calculating prediction errors of previous days Input: df: pd.DataFrame target_day: np.ndarray outcome: str methods: list look_back_day: int returns the prediction errors for the last {look_back_day} days Output: list of {len(df)} dictionaries, the keys of each dictionary are days in target_day, and the values are a list of (normalized) l1 error, of length {look_back_day} """ # find previous models to run previous_start_days = defaultdict(list) for day in target_day: for back_day in range(look_back_day): previous_start_days[day + back_day].append(day) # previous_model_predictions = {} previous_model_errors = [defaultdict(list) for i in range(len(df))] prediction_uncertainty = [defaultdict(list) for i in range(len(df))] for t in previous_start_days: previous_target_days = previous_start_days[t] df_old = exponential_modeling.leave_t_day_out(df, t) previous_model_predictions = fit_and_predict_ensemble(df_old, target_day=np.array(previous_target_days), outcome=outcome, methods=methods, mode='predict_future', output_key='old_predictions', )[ 'old_predictions'].values # running old prediction models for i in range(len(df)): for (j, td) in enumerate(previous_target_days): pred = previous_model_predictions[i][j] actual_outcome = df[outcome].iloc[i][td - t - 1] error = actual_outcome / max(pred, 1) - 1 previous_model_errors[i][td].append(error) # for i in range(len(df)): # for td in target_day: # prediction_uncertainty[i][td] = max(previous_model_errors[i][td]) df[output_key] = previous_model_errors return df def add_prediction_intervals(df, target_day: np.ndarray = np.array([1]), outcome: str = 'deaths', methods: list = [advanced_model, linear], interval_type: str = 'local', look_back_day: int = 5, output_key: str = None): """ Adding intervals for future prediction Input: df: pd.DataFrame target_day: np.ndarray outcome: str methods: list interval_type: str 'local' or 'combined' Output: list of {len(df)} dictionaries, the keys of each dictionary are days in target_day, and the values are the predicted intervals """ assert interval_type == 'local' or interval_type == 'combined', 'unknown interval type' lower_bound = {'deaths': 10, 'cases': 10} df = previous_prediction_errors(df, target_day, outcome, methods, look_back_day=5, output_key='previous_errors') df = fit_and_predict_ensemble(df, target_day=target_day, outcome=outcome, methods=methods, mode='predict_future', output_key='new_predictions', verbose=False) preds = df['new_predictions'].values latest_cases = np.array([p[-1] for p in df[outcome].values]) intervals = [[] for i in range(len(df))] qts = {} for td in target_day: all_errors = [] for i in range(len(df)): if latest_cases[i] >= lower_bound[outcome]: all_errors += df['previous_errors'].values[i][td] qts[td] = (np.quantile(np.array(all_errors), .05), np.quantile(np.array(all_errors), .95)) for i in range(len(df)): largest_error = [] for (j, td) in enumerate(target_day): largest_error.append(max(np.abs(np.array(df['previous_errors'].values[i][td])))) if interval_type == 'local': intervals[i].append((max(preds[i][j] * (1 - largest_error[-1]), latest_cases[i]), preds[i][j] * (1 + largest_error[-1]))) elif interval_type == 'combined': intervals[i].append((max(preds[i][j] * (1 + (qts[td][0] - largest_error[-1]) / 2), latest_cases[i]), preds[i][j] * (1 + (largest_error[-1] + qts[td][1]) / 2))) df[output_key] = intervals return df def add_preds(df_county, NUM_DAYS_LIST=[1, 2, 3], verbose=False, cached_dir=None, outcomes=['Deaths', 'Cases'], discard=False, d=datetime.datetime.today(), add_predict_interval=True, interval_target_days=[], ): '''Adds predictions for the current best model Adds keys that look like 'Predicted Deaths 1-day', 'Predicted Deaths 2-day', ... ''' # select the best model advanced_model = {'model_type': 'advanced_shared_model'} linear = {'model_type': 'linear'} BEST_MODEL = [advanced_model, linear] # load cached preds if cached_dir is not None: # getting current date and time if not discard: cached_fname = oj(cached_dir, f'preds_{d.month}_{d.day}_cached.pkl') else: cached_fname = oj(cached_dir, f'preds_{d.month}_{d.day}_cached_discard1day.pkl') if os.path.exists(cached_fname): return pd.read_pickle(cached_fname) print('predictions not cached, now calculating (might take a while)') for outcome in outcomes: print(f'predicting {outcome}...') tmp = [0 for _ in range(df_county.shape[0])] for num_days_in_future in tqdm(NUM_DAYS_LIST): # 1 is tomorrow output_key = f'Predicted {outcome} {num_days_in_future}-day' df_county = fit_and_predict_ensemble(df_county, methods=BEST_MODEL, outcome=outcome.lower(), mode='predict_future', target_day=np.array([num_days_in_future]), output_key=output_key, verbose=verbose) vals = df_county[output_key].values out = [] for i in range(vals.shape[0]): if np.isnan(vals[i]): out.append(0) else: out.append(max(vals[i][0], list(df_county[outcome.lower()])[i][-1], tmp[i])) df_county[output_key] = out tmp = out output_key = f'Predicted {outcome} Intervals' if add_predict_interval: if not interval_target_days: interval_target_days = NUM_DAYS_LIST print('prediction intervals...') print(interval_target_days) df_county = add_prediction_intervals(df_county, target_day=np.array(interval_target_days), outcome=outcome.lower(), methods=BEST_MODEL, interval_type='local', output_key=output_key) # add 3-day lagged death preds output_key = f'Predicted Deaths 3-day Lagged' df_county = fit_and_predict_ensemble(df_county, methods=BEST_MODEL, outcome='deaths', mode='eval_mode', target_day=np.array([3]), output_key=output_key, verbose=verbose) df_county[output_key] = [v[0] for v in df_county[output_key].values] if cached_dir is not None: df_county.to_pickle(cached_fname) return df_county def tune_hyperparams(df, target_day, outcome, output_key, method_hyperparam_dict, error_fn, num_iters): def fit_model_with_random_params(df, i): output_key = 'hyperparams_i' methods = [] for method_name in method_hyperparam_dict: method_dict = {} method_dict['model_type'] = method_name method_hyperparam_choices = method_hyperparam_dict[method_name] for param_name in method_hyperparam_choices: method_dict[param_name] = random.choice(method_hyperparam_choices[param_name]) methods.append(method_dict) fit_and_predict_ensemble(df=df, target_day=target_day, outcome=outcome, methods=methods, mode='eval_mode', output_key=output_key) score = error_fn(df[output_key], df['outcome']) return params, score results = Counter() for i in range(num_iters): params, score = fit_model_with_random_params(copy.deepcopy(df), i) results[params] = -1 * score best_param, value = results.most_common() return best_param, -1 * value
44.040486
169
0.557042
7948164552581d320272aa9e2b0a26c53ca219fb
7,809
py
Python
tests/www/test_security.py
Patchus/airflow
4e0d14b70b9edd8ff1c7f228f8e57e82b3e72d1b
[ "Apache-2.0" ]
null
null
null
tests/www/test_security.py
Patchus/airflow
4e0d14b70b9edd8ff1c7f228f8e57e82b3e72d1b
[ "Apache-2.0" ]
1
2020-08-21T07:16:08.000Z
2020-08-21T07:16:08.000Z
tests/www/test_security.py
Patchus/airflow
4e0d14b70b9edd8ff1c7f228f8e57e82b3e72d1b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import unittest import logging import mock from flask import Flask from flask_appbuilder import AppBuilder, SQLA, Model, has_access, expose from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_appbuilder.views import ModelView, BaseView from sqlalchemy import Column, Integer, String, Date, Float from airflow.www.security import AirflowSecurityManager, dag_perms logging.basicConfig(format='%(asctime)s:%(levelname)s:%(name)s:%(message)s') logging.getLogger().setLevel(logging.DEBUG) log = logging.getLogger(__name__) class SomeModel(Model): id = Column(Integer, primary_key=True) field_string = Column(String(50), unique=True, nullable=False) field_integer = Column(Integer()) field_float = Column(Float()) field_date = Column(Date()) def __repr__(self): return str(self.field_string) class SomeModelView(ModelView): datamodel = SQLAInterface(SomeModel) base_permissions = ['can_list', 'can_show', 'can_add', 'can_edit', 'can_delete'] list_columns = ['field_string', 'field_integer', 'field_float', 'field_date'] class SomeBaseView(BaseView): route_base = '' @expose('/some_action') @has_access def some_action(self): return "action!" class TestSecurity(unittest.TestCase): def setUp(self): self.app = Flask(__name__) self.app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' self.app.config['SECRET_KEY'] = 'secret_key' self.app.config['CSRF_ENABLED'] = False self.app.config['WTF_CSRF_ENABLED'] = False self.db = SQLA(self.app) self.appbuilder = AppBuilder(self.app, self.db.session, security_manager_class=AirflowSecurityManager) self.security_manager = self.appbuilder.sm self.appbuilder.add_view(SomeBaseView, "SomeBaseView", category="BaseViews") self.appbuilder.add_view(SomeModelView, "SomeModelView", category="ModelViews") role_admin = self.security_manager.find_role('Admin') self.user = self.appbuilder.sm.add_user('admin', 'admin', 'user', 'admin@fab.org', role_admin, 'general') log.debug("Complete setup!") def tearDown(self): self.appbuilder = None self.app = None self.db = None log.debug("Complete teardown!") def test_init_role_baseview(self): role_name = 'MyRole1' role_perms = ['can_some_action'] role_vms = ['SomeBaseView'] self.security_manager.init_role(role_name, role_vms, role_perms) role = self.appbuilder.sm.find_role(role_name) self.assertIsNotNone(role) self.assertEqual(len(role_perms), len(role.permissions)) def test_init_role_modelview(self): role_name = 'MyRole2' role_perms = ['can_list', 'can_show', 'can_add', 'can_edit', 'can_delete'] role_vms = ['SomeModelView'] self.security_manager.init_role(role_name, role_vms, role_perms) role = self.appbuilder.sm.find_role(role_name) self.assertIsNotNone(role) self.assertEqual(len(role_perms), len(role.permissions)) def test_update_and_verify_permission_role(self): role_name = 'Test_Role' self.security_manager.init_role(role_name, [], []) role = self.security_manager.find_role(role_name) perm = self.security_manager.\ find_permission_view_menu('can_edit', 'RoleModelView') self.security_manager.add_permission_role(role, perm) role_perms_len = len(role.permissions) self.security_manager.init_role(role_name, [], []) new_role_perms_len = len(role.permissions) self.assertEqual(role_perms_len, new_role_perms_len) def test_get_user_roles(self): user = mock.MagicMock() user.is_anonymous = False roles = self.appbuilder.sm.find_role('Admin') user.roles = roles self.assertEqual(self.security_manager.get_user_roles(user), roles) @mock.patch('airflow.www.security.AirflowSecurityManager.get_user_roles') def test_get_all_permissions_views(self, mock_get_user_roles): role_name = 'MyRole1' role_perms = ['can_some_action'] role_vms = ['SomeBaseView'] self.security_manager.init_role(role_name, role_vms, role_perms) role = self.security_manager.find_role(role_name) mock_get_user_roles.return_value = [role] self.assertEqual(self.security_manager .get_all_permissions_views(), {('can_some_action', 'SomeBaseView')}) mock_get_user_roles.return_value = [] self.assertEqual(len(self.security_manager .get_all_permissions_views()), 0) @mock.patch('airflow.www.security.AirflowSecurityManager' '.get_all_permissions_views') @mock.patch('airflow.www.security.AirflowSecurityManager' '.get_user_roles') def test_get_accessible_dag_ids(self, mock_get_user_roles, mock_get_all_permissions_views): user = mock.MagicMock() role_name = 'MyRole1' role_perms = ['can_dag_read'] role_vms = ['dag_id'] self.security_manager.init_role(role_name, role_vms, role_perms) role = self.security_manager.find_role(role_name) user.roles = [role] user.is_anonymous = False mock_get_all_permissions_views.return_value = {('can_dag_read', 'dag_id')} mock_get_user_roles.return_value = [role] self.assertEqual(self.security_manager .get_accessible_dag_ids(user), set(['dag_id'])) @mock.patch('airflow.www.security.AirflowSecurityManager._has_view_access') def test_has_access(self, mock_has_view_access): user = mock.MagicMock() user.is_anonymous = False mock_has_view_access.return_value = True self.assertTrue(self.security_manager.has_access('perm', 'view', user)) def test_sync_perm_for_dag(self): test_dag_id = 'TEST_DAG' self.security_manager.sync_perm_for_dag(test_dag_id) for dag_perm in dag_perms: self.assertIsNotNone(self.security_manager. find_permission_view_menu(dag_perm, test_dag_id)) @mock.patch('airflow.www.security.AirflowSecurityManager._has_perm') @mock.patch('airflow.www.security.AirflowSecurityManager._has_role') def test_has_all_dag_access(self, mock_has_role, mock_has_perm): mock_has_role.return_value = True self.assertTrue(self.security_manager.has_all_dags_access()) mock_has_role.return_value = False mock_has_perm.return_value = False self.assertFalse(self.security_manager.has_all_dags_access()) mock_has_perm.return_value = True self.assertTrue(self.security_manager.has_all_dags_access())
40.046154
90
0.685235
7948166b1eeb16bc21ba0cd21093e2cda6977806
54,116
py
Python
QAMAS/_build/jupyter_execute/BuildingModel.py
ebenjaminrandall/QAMAS_book
8a6b78fbf3564ce313380619900f2de5fcbe9035
[ "MIT" ]
1
2021-05-18T00:57:56.000Z
2021-05-18T00:57:56.000Z
QAMAS/_build/jupyter_execute/BuildingModel.py
ebenjaminrandall/QAMAS_book
8a6b78fbf3564ce313380619900f2de5fcbe9035
[ "MIT" ]
null
null
null
QAMAS/_build/jupyter_execute/BuildingModel.py
ebenjaminrandall/QAMAS_book
8a6b78fbf3564ce313380619900f2de5fcbe9035
[ "MIT" ]
1
2021-02-05T21:07:49.000Z
2021-02-05T21:07:49.000Z
#!/usr/bin/env python # coding: utf-8 # # Building a model of oxidative ATP synthesis from energetic components # # Simulations in the preceding section illustrate how matrix ATP and ADP concentrations are governed by the contributors to the proton motive force. They also show how the matrix ATP/ADP ratio must typically be less than $1$, in contrast to the cytosolic ATP/ADP ratio, which is on the order of $100$. To understand the dependence of ATP synthesis and transport on the proton motive force, the kinetics of the processes that generate it, and the interplay of these processes, we can assemble models of the $\text{F}_0\text{F}_1$ ATP synthase, adenine nucleotide translocase (ANT), mitochondrial phosphate transport, and complexes I, III, and IV of the electron transport chain (ETC) to generate a core model of mitochondrial oxidative ATP synthesis. # ## Adenine nucleotide translocase # # Following synthesis of ATP from ADP and Pi in the matrix, the final step in delivering ATP to the cytosol at physiological free energy levels is the electrically driven exchange of a matrix $\text{ATP}^{4-}$ for a cytosolic $\text{ADP}^{3-}$. This exchange process, # ```{math} # (\text{ATP}^{4-})_x + (\text{ADP}^{3-})_c \rightleftharpoons (\text{ATP}^{4-})_c + (\text{ADP}^{3-})_x \, , # ``` # is catalyzed by the ANT. Here, we assume rapid transport of species between the cytosol and the IMS, and therefore, equate IMS and cytosol species concentrations. # # To simulate the kinetics of this process, we use the Metelkin et al. model {cite}`Metelkin2006`, which accounts for pH and electrochemical dependencies. (Kinetic parameter value estimates for this model were updated by Wu et al. {cite}`Wu2008`.) The steady-state flux of ANT is expressed # ```{math} # :label: J_ANT # J_{\text{ANT}} = E_{\text{ANT}} \dfrac{ \dfrac{ k_2^{\text{ANT}} q }{ K_o^D } [ \text{ATP}^{4-} ]_x [ \text{ADP}^{3-}]_c - \dfrac{ k_3^{\text{ANT}} }{ K_o^T } [ \text{ADP}^{3-} ]_x [ \text{ATP}^{4-} ]_c }{ \left(1 + \dfrac{ [ \text{ATP}^{4-} ]_c }{ K_o^T } + \dfrac{ [ \text{ADP}^{3-} ]_c }{ K_o^D } \right)( [ \text{ADP}^{3-} ]_x + [ \text{ATP}^{4-} ]_x q) }, # ``` # where $E_{\text{ANT}} \ \text{(mol (L mito)}^{-1})$ is the total ANT content of the mitochondria and # ```{math} # :label: phi # k_2^\text{ANT} &=& k_{2,o}^\text{ANT} e^{( -3A - 4B + C) \phi}, \nonumber \\ # k_3^\text{ANT} &=& k_{3,o}^\text{ANT} e^{(-4A - 3B + C) \phi}, \nonumber \\ # K_o^D &=& K_o^{D,0} e^{3 \delta_D \phi}, \nonumber \\ # K_o^T &=& K_o^{T,0} e^{4 \delta_T \phi}, \nonumber \\ # q &=& \dfrac{ k_3^\text{ANT} K_o^D }{ k_2^\text{ANT} K_o^T } e^\phi, \quad \text{and} \nonumber \\ # \phi &=& F \Delta \Psi / R{\rm T}. # ``` # All parameter values and units can be found in {numref}`table-ANT`, reproduced from {cite}`Bazil2016`. # ```{list-table} Adenine nucleotide translocase (ANT) parameters. # :header-rows: 1 # :name: table-ANT # # * - Parameter # - Units # - Description # - Value # * - $E_\text{ANT}$ # - mol (L mito)$^{-1}$ # - ANT activity # - $0.325$ # * - $\delta_D$ # - # - ADP displacement binding constant # - $0.0167 $ # * - $\delta_T$ # - # - ATP displacement binding constant # - $0.0699 $ # * - $k_{2,o}^\text{ANT}$ # - s$^{-1}$ # - Forward translocation rate # - $0.159 $ # * - $k_{3,o}^\text{ANT}$ # - s$^{-1}$ # - Reverse translocation rate # - $0.501 $ # * - $K_o^{D,0}$ # - $\mu$mol (L cyto water)$^{-1}$ # - ADP binding constant # - $38.89 $ # * - $K_o^{T,0}$ # - $\mu$mol (L cyto water)$^{-1}$ # - ATP binding constant # - $56.05$ # * - $A$ # - # - Translocation displacement constant # - $0.2829 $ # * - $B$ # - # - Translocation displacement constant # - $ -0.2086 $ # * - $C$ # - # - Translocation displacement constant # - $0.2372$ # ``` # To simulate ANT and F$_0$F$_1$ ATP synthase activity simultaneously, we extend the system of Equation {eq}`system-ATPase` by adding states for cytosolic species $[\Sigma \text{ATP} ]_c$ and $[\Sigma \text{ADP}]_c$, yielding # ```{math} # :label: system-ATP_ANT # \left\{ # \renewcommand{\arraystretch}{2} # \begin{array}{rlrl} # \dfrac{ {\rm d} [\Sigma \text{ATP}]_x }{{\rm d} t} &= (J_\text{F} - J_\text{ANT} ) / W_x, & \dfrac{ {\rm d} [\Sigma \text{ATP}]_c }{{\rm d} t} &= (V_{m2c} J_\text{ANT}) / W_c, \\ # \dfrac{ {\rm d} [\Sigma \text{ADP}]_x }{{\rm d} t} &= (-J_\text{F} + J_\text{ANT}) / W_x, & \dfrac{ {\rm d} [\Sigma \text{ADP}]_c }{{\rm d} t} &= (-V_{m2c} J_\text{ANT}) / W_c, \\ # \dfrac{ {\rm d} [\Sigma \text{Pi}]_x }{{\rm d} t} &= 0 & &\\ # \end{array} # \renewcommand{\arraystretch}{1} # \right. # ``` # where $V_{m2c} \ \text{(L mito) (L cyto)}^{-1}$ is the fraction of the volume of mitochondria per volume cytosol and $W_c \ \text{(L cyto water) (L cyto)}^{-1}$ is the fraction of water volume in the cytoplasm to the total volume of the cytoplasm ({numref}`table-biophysicalconstants`). # Here, we clamp the matrix phosphate concentration at a constant value since the system of equations in Equation {eq}`system-ATP_ANT` does not account for phosphate transport between the matrix and the cytosol. # In[1]: import numpy as np import matplotlib.pyplot as plt get_ipython().system('pip install scipy') from scipy.integrate import solve_ivp ###### Constants defining metabolite pools ###### # Volume fractions and water space fractions V_c = 0.6601 # cytosol volume fraction # L cyto (L cell)**(-1) V_m = 0.2882 # mitochondrial volume fraction # L mito (L cell)**(-1) V_m2c = V_m / V_c # mito to cyto volume ratio # L mito (L cuvette)**(-1) W_c = 0.8425 # cytosol water space # L cyto water (L cyto)**(-1) W_m = 0.7238 # mitochondrial water space # L mito water (L mito)**(-1) W_x = 0.9*W_m # matrix water space # L matrix water (L mito)**(-1) # Membrane potential DPsi = 175/1000 ###### Set fixed pH and cation concentrations ###### # pH pH_x = 7.40 pH_c = 7.20 # K+ concentrations K_x = 100e-3 # mol (L matrix water)**(-1) K_c = 140e-3 # mol (L cyto water)**(-1) # Mg2+ concentrations Mg_x = 1.0e-3 # mol (L matrix water)**(-1) Mg_c = 1.0e-3 # mol (L cyto water)**(-1) ###### Parameter vector ###### X_F = 1000 # Synthase activity E_ANT = 0.325 # Nucleotide transporter activity activity_array = np.array([X_F, E_ANT]) # Note: This array will be larger in the future parts ###### Initial Conditions ###### # Matrix species sumATP_x_0 = 0.5e-3 # mol (L matrix water)**(-1) sumADP_x_0 = 9.5e-3 # mol (L matrix water)**(-1) sumPi_x_0 = 1e-3 # mol (L matrix water)**(-1) # Cytoplasmic species sumATP_c_0 = 0 #9.95e-3 # mol (L cyto water)**(-1) sumADP_c_0 = 10e-3 #0.05e-3 # mol (L cyto water)**(-1) X_0 = np.array([sumATP_x_0, sumADP_x_0, sumPi_x_0, sumATP_c_0, sumADP_c_0]) def dXdt(t, X, activity_array): # Unpack variables sumATP_x, sumADP_x, sumPi_x, sumATP_c, sumADP_c = X X_F, E_ANT = activity_array # Hydrogen ion concentration H_x = 10**(-pH_x) # mol (L matrix water)**(-1) H_c = 10**(-pH_c) # mol (L cuvette water)**(-1) # Thermochemical constants R = 8.314 # J (mol K)**(-1) T = 37 + 273.15 # K F = 96485 # C mol**(-1) # Proton motive force parameters (dimensionless) n_F = 8/3 # Dissociation constants K_MgATP = 10**(-3.88) K_HATP = 10**(-6.33) K_KATP = 10**(-1.02) K_MgADP = 10**(-3.00) K_HADP = 10**(-6.26) K_KADP = 10**(-0.89) K_MgPi = 10**(-1.66) K_HPi = 10**(-6.62) K_KPi = 10**(-0.42) ## Binding polynomials # Matrix species # mol (L mito water)**(-1) PATP_x = 1 + H_x/K_HATP + Mg_x/K_MgATP + K_x/K_KATP PADP_x = 1 + H_x/K_HADP + Mg_x/K_MgADP + K_x/K_KADP PPi_x = 1 + H_x/K_HPi + Mg_x/K_MgPi + K_x/K_KPi # Cytosol species # mol (L cuvette water)**(-1) PATP_c = 1 + H_c/K_HATP + Mg_c/K_MgATP + K_c/K_KATP PADP_c = 1 + H_c/K_HADP + Mg_c/K_MgADP + K_c/K_KADP ## Unbound species # Matrix species ATP_x = sumATP_x / PATP_x # [ATP4-]_x ADP_x = sumADP_x / PADP_x # [ADP3-]_x # Cytosol species ATP_c = sumATP_c / PATP_c # [ATP4-]_c ADP_c = sumADP_c / PADP_c # [ADP3-]_c ###### F0F1-ATPase ###### # ADP3-_x + HPO42-_x + H+_x + n_A*H+_i <-> ATP4- + H2O + n_A*H+_x # Gibbs energy (J mol**(-1)) DrGo_F = 4990 DrGapp_F = DrGo_F + R * T * np.log( H_x * PATP_x / (PADP_x * PPi_x)) # Apparent equilibrium constant Kapp_F = np.exp( (DrGapp_F + n_F * F * DPsi ) / (R * T)) * (H_c / H_x)**n_F # Flux (mol (s * L mito)**(-1)) J_F = X_F * (Kapp_F * sumADP_x * sumPi_x - sumATP_x) ###### ANT ###### # ATP4-_x + ADP3-_i <-> ATP4-_i + ADP3-_x #Constants del_D = 0.0167 del_T = 0.0699 k2o_ANT = 9.54/60 # s**(-1) k3o_ANT = 30.05/60 # s**(-1) K0o_D = 38.89e-6 # mol (L cuvette water)**(-1) K0o_T = 56.05e-6 # mol (L cuvette water)**(-1) A = +0.2829 B = -0.2086 C = +0.2372 phi = F * DPsi / (R * T) # Reaction rates (s**(-1)) k2_ANT = k2o_ANT * np.exp((A*(-3) + B*(-4) + C)*phi) k3_ANT = k3o_ANT * np.exp((A*(-4) + B*(-3) + C)*phi) # Dissociation constants (M) K0_D = K0o_D * np.exp(3*del_D*phi) K0_T = K0o_T * np.exp(4*del_T*phi) q = k3_ANT * K0_D * np.exp(phi) / (k2_ANT * K0_T) term1 = k2_ANT * ATP_x * ADP_c * q / K0_D term2 = k3_ANT * ADP_x * ATP_c / K0_T num = term1 - term2 den = (1 + ATP_c/K0_T + ADP_c/K0_D) * (ADP_x + ATP_x * q) # Flux (mol (s * L mito)**(-1)) J_ANT = E_ANT * num / den ###### Differential equations (equation 14) ###### # Matrix species dATP_x = (J_F - J_ANT) / W_x dADP_x = (-J_F + J_ANT) / W_x dPi_x = 0 # Cytosol species dATP_c = ( V_m2c * J_ANT) / W_c dADP_c = (-V_m2c * J_ANT) / W_c dX = [dATP_x, dADP_x, dPi_x, dATP_c, dADP_c] return dX # Solve ODE results = solve_ivp(dXdt, [0, 2], X_0, method = 'Radau', args=(activity_array,)) t = results.t sumATP_x, sumADP_x, sumPi_x, sumATP_c, sumADP_c = results.y # Plot figures fig, ax = plt.subplots(1,2, figsize = (10,5)) ax[0].plot(t, sumATP_x*1000, label = '[$\Sigma$ATP]$_x$') ax[0].plot(t, sumADP_x*1000, label = '[$\Sigma$ADP]$_x$') ax[0].plot(t, sumPi_x*1000, label = '[$\Sigma$Pi]$_x$') ax[0].legend(loc="right") ax[0].set_ylim((-.5,10.5)) ax[0].set_xlabel('Time (s)') ax[0].set_xticks([0,1,2]) ax[0].set_ylabel('Concentration (mM)') ax[1].plot(t, sumATP_c*1000, label = '[$\Sigma$ATP]$_c$') ax[1].plot(t, sumADP_c*1000, label = '[$\Sigma$ADP]$_c$') ax[1].set_ylim((-0.5,10.5)) ax[1].set_xticks([0,1,2]) ax[1].legend(loc="right") ax[1].set_xlabel('Time (s)') plt.show() # **Figure 4:** Steady state solution from Equation {eq}`system-ATP_ANT` for the (a) matrix and (b) cytosol species with $\Delta \Psi = 175$ mV, $\text{pH}_x = 7.4$, and $\text{pH}_c = 7.2$. # The above simulations of the system of Equation {eq}`system-ATP_ANT` show how the electrogenic nature of the ANT transport results in the markedly different ATP/ADP ratios in the cytosol compared to the matrix. As we saw in the previous chapter, the ATP hydrolysis potential in the matrix is approximately $\text{-}45 \ \text{kJ mol}^{-1}$. The roughly $100$:$1$ ratio of ATP to ADP in the cytosol is associated with a hydrolysis potential of approximately $\text{-}65 \ \text{kJ mol}^{-1}$. The difference of $20 \ \text{kJ mol}^{-1}$ between the matrix and the cytosolic space is driven primarily by the membrane potential, which is roughly equivalent to $20 \ \text{kJ mol}^{-1}$. # ## Inorganic phosphate transport # # During active ATP synthesis, mitochondrial Pi is replenished via the activity of the phosphate-proton cotransporter (PiC), catalyzing the electroneutral cotransport of protonated inorganic phosphate, $\text{H}_2\text{PO}_4^{-}$, and $\text{H}^{+}$ across the membrane. Again, we assume rapid transport between the cytoplasm and intermembrane space, and hence, we have # ```{math} # (\text{H}_2\text{PO}_4^{-})_c + (\text{H}^{+})_c \rightleftharpoons (\text{H}_2\text{PO}_4^{-})_x + (\text{H}^{+})_x. # ``` # Adopting the flux equation from Bazil et al. {cite}`Bazil2016`, we have # ```{math} # :label: J_PiC # J_\text{PiC} = E_{\text{PiC}} \dfrac{ [\text{H}^{+} ]_{c} [\text{H}_2\text{PO}_4^{-}]_{c} - [\text{H}^{+}]_{x} [\text{H}_2\text{PO}_4^{-}]_{x} }{ [\text{H}_2\text{PO}_4^{-}]_c + k_{\text{PiC}} }, # ``` # where $E_{\text{PiC}} \ \text{(L matrix water) s}^{-1} \text{ (L mito)}^{-1}$ is the PiC activity rate and $k_{\text{PiC}} = 1.61$ mM is an effective Michaelis-Menten constant. The $\text{H}_2\text{PO}_4^{-}$ concentrations in the matrix and cytosol are computed via the relationship # ```{math} # [\text{H}_2\text{PO}_4^{-}] = [\Sigma{\rm Pi}] \left( [{\rm H}^+]/K_{\rm HPi} \right) / P_{\rm Pi} # ``` # from Equation \eqref{sumPi}. # # # To incorporate PiC into Equation {eq}`system-ATP_ANT`, we add a new state $[\Sigma \text{Pi}]_c$ such that at given membrane potential, matrix and cytosolic pH, and cation concentrations, we obtain # ```{math} # :label: system-ATP_ANT_PiC # \left\{ # \renewcommand{\arraystretch}{2} # \begin{array}{rlrl} # \dfrac{ {\rm d} [\Sigma \text{ATP}]_x }{{\rm d} t} &= (J_\text{F} - J_\text{ANT} ) / W_x, & \dfrac{ {\rm d} [\Sigma \text{ATP}]_c }{{\rm d} t} &= (V_{m2c} J_\text{ANT}) / W_c \\ # \dfrac{ {\rm d} [\Sigma \text{ADP}]_x }{{\rm d} t} &= (-J_\text{F} + J_\text{ANT}) / W_x, & \dfrac{ {\rm d} [\Sigma \text{ADP}]_c }{{\rm d} t} &= (-V_{m2c} J_\text{ANT}) / W_c, \\ # \dfrac{ {\rm d} [\Sigma \text{Pi}]_x }{{\rm d} t} &= (-J_\text{F} + J_\text{PiC}) / W_x, & \dfrac{ {\rm d} [\Sigma \text{Pi}]_c }{{\rm d} t} &= (- V_{m2c} J_\text{PiC}) / W_c, # \end{array} # \renewcommand{\arraystretch}{1} # \right. # ``` # The following code simulates the synthesis of ATP from ADP and Pi and their translocation across the IMM under physiological conditions. # In[2]: import numpy as np import matplotlib.pyplot as plt get_ipython().system('pip install scipy') from scipy.integrate import solve_ivp ###### Constants defining metabolite pools ###### # Volume fractions and water space fractions V_c = 0.6601 # cytosol volume fraction # L cyto (L cell)**(-1) V_m = 0.2882 # mitochondrial volume fraction # L mito (L cell)**(-1) V_m2c = V_m / V_c # mito to cyto volume ratio # L mito (L cuvette)**(-1) W_c = 0.8425 # cytosol water space # L cyto water (L cyto)**(-1) W_m = 0.7238 # mitochondrial water space # L mito water (L mito)**(-1) W_x = 0.9*W_m # matrix water space # L matrix water (L mito)**(-1) # Membrane potential DPsi = 175/1000 ###### Set fixed pH, cation concentrations, and O2 partial pressure ###### # pH pH_x = 7.40 pH_c = 7.20 # K+ concentrations K_x = 100e-3 # mol (L matrix water)**(-1) K_c = 140e-3 # mol (L cyto water)**(-1) # Mg2+ concentrations Mg_x = 1.0e-3 # mol (L matrix water)**(-1) Mg_c = 1.0e-3 # mol (L cyto water)**(-1) ###### Parameter vector ###### X_F = 100 # Synthase activity E_ANT = 0.325 # Nucleotide transporter activity E_PiC = 5.0e6 # Phosphate transporter activity activity_array = np.array([X_F, E_ANT, E_PiC]) ###### Initial Conditions ###### # Matrix species sumATP_x_0 = 0.5e-3 # mol (L matrix water)**(-1) sumADP_x_0 = 9.5e-3 # mol (L matrix water)**(-1) sumPi_x_0 = 1e-3 # mol (L matrix water)**(-1) # Cytosolic species sumATP_c_0 = 0 # mol (L cyto water)**(-1) sumADP_c_0 = 10e-3 # mol (L cyto water)**(-1) sumPi_c_0 = 10e-3 # mol (L cyto water)**(-1) X_0 = np.array([sumATP_x_0, sumADP_x_0, sumPi_x_0, sumATP_c_0, sumADP_c_0, sumPi_c_0]) def dXdt(t, X, activity_array): # Unpack variables sumATP_x, sumADP_x, sumPi_x, sumATP_c, sumADP_c, sumPi_c = X X_F, E_ANT, E_PiC = activity_array # Hydrogen ion concentration H_x = 10**(-pH_x) # mol (L matrix water)**(-1) H_c = 10**(-pH_c) # mol (L cuvette water)**(-1) # Thermochemical constants R = 8.314 # J (mol K)**(-1) T = 37 + 273.15 # K F = 96485 # C mol**(-1) # Proton motive force parameters (dimensionless) n_F = 8/3 # Dissociation constants K_MgATP = 10**(-3.88) K_HATP = 10**(-6.33) K_KATP = 10**(-1.02) K_MgADP = 10**(-3.00) K_HADP = 10**(-6.26) K_KADP = 10**(-0.89) K_MgPi = 10**(-1.66) K_HPi = 10**(-6.62) K_KPi = 10**(-0.42) ## Binding polynomials # Matrix species # mol (L mito water)**(-1) PATP_x = 1 + H_x/K_HATP + Mg_x/K_MgATP + K_x/K_KATP PADP_x = 1 + H_x/K_HADP + Mg_x/K_MgADP + K_x/K_KADP PPi_x = 1 + H_x/K_HPi + Mg_x/K_MgPi + K_x/K_KPi # Cytosol species # mol (L cuvette water)**(-1) PATP_c = 1 + H_c/K_HATP + Mg_c/K_MgATP + K_c/K_KATP PADP_c = 1 + H_c/K_HADP + Mg_c/K_MgADP + K_c/K_KADP PPi_c = 1 + H_c/K_HPi + Mg_c/K_MgPi + K_c/K_KPi ## Unbound species # Matrix species ATP_x = sumATP_x / PATP_x # [ATP4-]_x ADP_x = sumADP_x / PADP_x # [ADP3-]_x Pi_x = sumPi_x / PPi_x # [HPO42-]_x # Cytosol species ATP_c = sumATP_c / PATP_c # [ATP4-]_c ADP_c = sumADP_c / PADP_c # [ADP3-]_c Pi_c = sumPi_c / PPi_c # [HPO42-]_c ###### H+-PI2 cotransporter ###### # H2PO42-_x + H+_x = H2PO42-_c + H+_c # Constant k_PiC = 1.61e-3 # mol (L cuvette)**(-1) # H2P04- species HPi_c = Pi_c * (H_c / K_HPi) HPi_x = Pi_x * (H_x / K_HPi) # Flux (mol (s * L mito)**(-1)) J_PiC = E_PiC * (H_c * HPi_c - H_x * HPi_x) / (k_PiC + HPi_c) ###### F0F1-ATPase ###### # ADP3-_x + HPO42-_x + H+_x + n_A*H+_i <-> ATP4- + H2O + n_A*H+_x # Gibbs energy (J mol**(-1)) DrGo_F = 4990 DrGapp_F = DrGo_F + R * T * np.log( H_x * PATP_x / (PADP_x * PPi_x)) # Apparent equilibrium constant Kapp_F = np.exp( (DrGapp_F + n_F * F * DPsi ) / (R * T)) * (H_c / H_x)**n_F # Flux (mol (s * L mito)**(-1)) J_F = X_F * (Kapp_F * sumADP_x * sumPi_x - sumATP_x) ###### ANT ###### # ATP4-_x + ADP3-_i <-> ATP4-_i + ADP3-_x # Constants del_D = 0.0167 del_T = 0.0699 k2o_ANT = 9.54/60 # s**(-1) k3o_ANT = 30.05/60 # s**(-1) K0o_D = 38.89e-6 # mol (L cuvette water)**(-1) K0o_T = 56.05e-6 # mol (L cuvette water)**(-1) A = +0.2829 B = -0.2086 C = +0.2372 phi = F * DPsi / (R * T) # Reaction rates (s**(-1)) k2_ANT = k2o_ANT * np.exp((A*(-3) + B*(-4) + C)*phi) k3_ANT = k3o_ANT * np.exp((A*(-4) + B*(-3) + C)*phi) # Dissociation constants (M) K0_D = K0o_D * np.exp(3*del_D*phi) K0_T = K0o_T * np.exp(4*del_T*phi) q = k3_ANT * K0_D * np.exp(phi) / (k2_ANT * K0_T) term1 = k2_ANT * ATP_x * ADP_c * q / K0_D term2 = k3_ANT * ADP_x * ATP_c / K0_T num = term1 - term2 den = (1 + ATP_c/K0_T + ADP_c/K0_D) * (ADP_x + ATP_x * q) # Flux (mol (s * L mito)**(-1)) J_ANT = E_ANT * num / den ###### Differential equations (equation 15) ###### # Matrix species dATP_x = (J_F - J_ANT) / W_x dADP_x = (-J_F + J_ANT) / W_x dPi_x = (-J_F + J_PiC) / W_x # Buffer species dATP_c = ( V_m2c * J_ANT) / W_c dADP_c = (-V_m2c * J_ANT) / W_c dPi_c = (-V_m2c * J_PiC) / W_c dX = [dATP_x, dADP_x, dPi_x, dATP_c, dADP_c, dPi_c] return dX # Solve ODE t = np.linspace(0,2,100) results = solve_ivp(dXdt, [0, 2], X_0, method = 'Radau', t_eval = t, args=(activity_array,)) sumATP_x, sumADP_x, sumPi_x, sumATP_c, sumADP_c, sumPi_c = results.y # Plot figures fig, ax = plt.subplots(1,2, figsize = (10,5)) ax[0].plot(t, sumATP_x*1000, label = '[$\Sigma$ATP]$_x$') ax[0].plot(t, sumADP_x*1000, label = '[$\Sigma$ADP]$_x$') ax[0].plot(t, sumPi_x*1000, label = '[$\Sigma$Pi]$_x$') ax[0].legend(loc="right") ax[0].set_ylim((-.5,10.5)) ax[0].set_xlim((0,2)) ax[0].set_xticks([0,1,2]) ax[0].set_xlabel('Time (s)') ax[0].set_ylabel('Concentration (mM)') ax[1].plot(t, sumATP_c*1000, label = '[$\Sigma$ATP]$_c$') ax[1].plot(t, sumADP_c*1000, label = '[$\Sigma$ADP]$_c$') ax[1].plot(t, sumPi_c*1000, label = '[$\Sigma$Pi]$_c$') ax[1].set_ylim((-0.5,10.5)) ax[1].set_xlim((0,2)) ax[1].set_xticks([0,1,2]) ax[1].legend(loc="right") ax[1].set_xlabel('Time (s)') plt.show() # **Figure 5:** Steady state solution from Equation {eq}`system-ATP_ANT_PiC` for the (a) matrix and (b) cytosol species with $\Delta \Psi = 175$ mV, $\text{pH}_x = 7.4$, and $\text{pH}_c = 7.2$. # For the above simulations, cytosolic inorganic phosphate is set to $10 \ \text{mM}$ initially, and all other initial conditions remain unchanged. Driven by $\Delta \text{pH}$, a gradient in phosphate concentration is established, with a steady-state ratio of matrix-to-cytosol concentration of approximately $2.2$. As seen in the previous section, with a constant membrane potential of $175 \ \text{mV}$, the ATP/ADP ratio is maintained at a much higher level in the cytosol than in the matrix. # # The final matrix and cytosol ATP and ADP concentrations depend not only on the membrane potential, but also on the total amount of exchangeable phosphate in the system. Here these simulations start with $[\text{Pi}]_c = 10 \ \text{mM}$ and $[\text{Pi}]_x = 1 \ \text{mM}$. The initial $10 \ \text{mM}$ of ADP in the cytosol becomes almost entirely phosphorylated to ATP, leaving $0.32 \ \text{mM}$ of inorganic phosphate in the cytosol in the final steady state. To explore how these steady states depend on $\Delta\Psi$, the following code simulates the steady-state behavior of this system for a range of $\Delta\Psi$ from $100$ to $200 \ \text{mV}$. These simulations, based on a simple, thermodynamically constrained model, show that it is not possible to synthesize ATP at physiological free energy levels for values of $\Delta\Psi$ of lower than approximately $160 \ \text{mV}$. # In[3]: get_ipython().system('pip install scipy') from scipy.integrate import solve_ivp ### Simulate over a range of Membrane potential from 100 mV to 250 mV ### # Define array to iterate over membrane_potential = np.linspace(100,250) # mV # Define arrays to store steady state results ATP_x_steady = np.zeros(len(membrane_potential)) ADP_x_steady = np.zeros(len(membrane_potential)) Pi_x_steady = np.zeros(len(membrane_potential)) ATP_c_steady = np.zeros(len(membrane_potential)) ADP_c_steady = np.zeros(len(membrane_potential)) Pi_c_steady = np.zeros(len(membrane_potential)) # Iterate through range of membrane potentials for i in range(len(membrane_potential)): DPsi = membrane_potential[i] / 1000 # convert to V temp_results = solve_ivp(dXdt, [0, 200], X_0, method = 'Radau', args=(activity_array,)).y*1000 # Concentration in mM ATP_x_steady[i] = temp_results[0,-1] ADP_x_steady[i] = temp_results[1,-1] Pi_x_steady[i] = temp_results[2,-1] ATP_c_steady[i] = temp_results[3,-1] ADP_c_steady[i] = temp_results[4,-1] Pi_c_steady[i] = temp_results[5,-1] # Plot figures fig, ax = plt.subplots(1,2, figsize = (10,5)) ax[0].plot(membrane_potential, ATP_x_steady, label = '[$\Sigma$ATP]$_x$') ax[0].plot(membrane_potential, ADP_x_steady, label = '[$\Sigma$ADP]$_x$') ax[0].plot(membrane_potential, Pi_x_steady, label = '[$\Sigma$Pi]$_x$') ax[0].legend(loc = "right") ax[0].set_xlabel('Membrane potential (mV)') ax[0].set_ylabel('Concentration (mM)') ax[0].set_xlim([100, 250]) ax[0].set_ylim([-0.5,13]) ax[1].plot(membrane_potential, ATP_c_steady, label = '[$\Sigma$ATP]$_c$') ax[1].plot(membrane_potential, ADP_c_steady, label = '[$\Sigma$ADP]$_c$') ax[1].plot(membrane_potential, Pi_c_steady, label = '[$\Sigma$Pi]$_c$') ax[1].legend(loc = "right") ax[1].set_xlabel('Membrane potential (mV)') ax[1].set_ylabel('Concentration (mM)') ax[1].set_xlim([100, 250]) ax[1].set_ylim([-0.5,13]) plt.show() # **Figure 6:** Simulation of concentration versus $\Delta \Psi$ for Equation {eq}`system-ATP_ANT_PiC` for the (a) matrix and (b) cytosol species with $\Delta \Psi$ from $100$ to $250$ mV. # Simulation of this system reinforces the fact that ATP cannot be synthesized at physiological free energy levels for mitochondrial membrane potential of less than approximately $150 \ \text{mV}$. # ## Respiratory complexes and NADH synthesis # # The previous sections have assumed a constant membrane potential. To account for the processes that generate the membrane potential, we model proton pumping associated with the respiratory complexes I, III, and IV of the ETC ({numref}`mitofig`). # ### ETC complex I # # Coupled with the translocation of $n_\text{C1} = 4$ protons across the IMM against the electrochemical gradient, electrons are transferred from NADH to ubiquinone ($Q$) at complex I of the ETC via the reaction # ```{math} # :label: reaction_C1 # (\text{NADH}^{2-})_x + (\text{H}^{+})_x + (\text{Q})_x + n_\text{C1} (\text{H}^{+})_x \rightleftharpoons (\text{NAD}^{-})_x + (\text{QH}_2)_x + \text{H}_2\text{O} + n_\text{C1}(\text{H}^+)_c. # ``` # Since protons move against the gradient when the reaction proceeds in the left-to-right direction, the overall Gibbs energy for the reaction of Equation {eq}`reaction_C1` is # ```{math} # \Delta G_\text{C1} &= \Delta_r G_\text{C1} - n_\text{C1} \Delta G_{\rm H} \nonumber \\ # &= \Delta_r G_\text{C1}^\circ + R{\rm T} \ln \left( \dfrac{ [\text{NAD}^{-}]_x [\text{QH}_2]_x }{ [\text{NADH}^{2-}]_x [\text{Q}]_x} \cdot \dfrac{1}{[\text{H}^{+}]_x } \right) + n_\text{C1} F \Delta \Psi - R{\rm T} \ln \left( \dfrac{ [\text{H}^{+}]_x }{ [\text{H}^{+}]_c } \right)^{n_{\text{C1}}} \nonumber \\ # &= \Delta_r G'^{\circ}_\text{C1} + R{\rm T} \ln \left( \dfrac{ [\text{NAD}^{-}]_x [\text{QH}_2]_x }{ [\text{NADH}^{2-}]_x [\text{Q}]_x} \right) + n_\text{C1} F \Delta \Psi - R{\rm T} \ln \left( \dfrac{ [\text{H}^{+}]_x }{ [\text{H}^{+}]_c } \right)^{n_{\text{C1}}}, # ``` # where # ```{math} # \Delta_r G'^\circ_\text{C1} = \Delta_r G^\circ_\text{C1} - R \text{T} \ln ( [\text{H}^+]_x ) # ``` # is the apparent Gibbs energy for the reaction in Equation {eq}`reaction_C1`. The apparent equilibrium constant is # ```{math} # :label: Kapp_C1 # K'_{eq,\text{C1}} = \left(\dfrac{ [\text{NAD}^{-}]_x [\text{QH}_2]_x }{ [\text{NADH}^{2-}]_x [\text{Q}]_x} \right)_{eq} = \exp \left\{ \dfrac{ - ( \Delta_r G'^\circ_\text{C1} + n_\text{C1} F \Delta \Psi) }{ R \text{T}} \right\} \left( \dfrac{ [\text{H}^{+}]_x }{ [\text{H}^{+}]_c } \right)^{n_\text{C1}}. # ``` # # To simulate the flux of complex I, $J_{\text{C1}} \ \text{(mol s}^{-1} \text{ (L mito)}^{-1})$, across the IMM by mass-action kinetics, we have # ```{math} # :label: J_C1 # J_{\text{C1}} = X_{\text{C1}} \left( K_{eq,\text{C1}}^\prime [\text{NADH}^{2-}]_x [\text{Q}]_x - [\text{NAD}^{-}]_x [\text{QH}_2]_x \right), # ``` # for $X_\text{C1} \ \text{(mol s}^{-1} \text{ (L mito)}^{-1})$ the a rate constant. {numref}`table-ETC` lists the constants for complex I. # ### ETC complex III # # # The reaction catalyzed by complex III reduces two cytochrome c proteins for every $\text{QH}_2$ oxidized # ```{math} # :label: reaction_C3 # (\text{QH}_2)_x + 2 \ (\text{c}_{ox}^{3+})_i + n_\text{C3} (\text{H}^+)_x \rightleftharpoons (\text{Q})_x + 2 \ (\text{c}_{red}^{2+})_i + 2 \ (\text{H}^{+})_c + n_\text{C3} (\text{H}^+)_c, # ``` # where $\text{c}_{ox}^{3+}$ and $\text{c}_{red}^{2+}$ are the oxidized and reduced cytochrome c species and the subscript $i$ indicates that cytochrome c is confined to the IMS. This reaction is coupled with the transport of $n_{\text{C3}} = 2$ protons from the matrix to the cytosol against the electrochemical gradient. Thus, the Gibbs energy for the overall reaction given in Equation {eq}`reaction_C3` is # ```{math} # \Delta G_{\text{C3}} &= \Delta_r G_\text{C3} - n_\text{C3} \Delta G_\text{H} \nonumber \\ # &= \Delta_r G_{\text{C3}}^\circ + R{\rm T} \ln \left( \dfrac{ [\text{Q}]_x [\text{c}_{red}^{2+}]_i^2 }{ [\text{QH}_2]_x [\text{c}_{ox}^{3+}]_i^2} \cdot [\text{H}^{+}]_c^2 \right) + n_\text{C3} F \Delta \Psi - # R{\rm T} \ln \left( \dfrac{ [\text{H}^{+}]_x }{ [\text{H}^{+}]_c} \right)^{n_\text{C3}} \nonumber \\ # &= \Delta_r G'^\circ_\text{C3} + R{\rm T} \ln \left( \dfrac{ [\text{Q}]_x [\text{c}_{red}^{2+}]_i^2 }{ [\text{QH}_2]_x [\text{c}_{ox}^{3+}]_i^2}\right) + n_\text{C3} F \Delta \Psi - # R{\rm T} \ln \left( \dfrac{ [\text{H}^{+}]_x }{ [\text{H}^{+}]_c} \right)^{n_\text{C3}}, # ``` # where # ```{math} # \Delta_r G'^\circ_\text{C3} = \Delta_r G^\circ_\text{C3} + 2 R \text{T} \ln ([\text{H}^+]_c) # ``` # is the apparent Gibbs energy for complex III. The apparent equilibrium constant is # ```{math} # :label: Kapp_C3 # K_{eq,\text{C3}}^\prime = \left( \dfrac{ [\text{Q}]_x [\text{c}_{red}^{2+}]_i^2 }{ [\text{QH}_2]_x [\text{c}_{ox}^{3+}]_i^2 } \right)_{eq} = \exp \left\{ \dfrac{ -(\Delta_r G'^\circ_\text{C3} + n_\text{C3} F # \Delta \Psi )}{ R \text{T}} \right\} \left( \dfrac{ [\text{H}^{+}]_x}{ [\text{H}^{+}]_c} \right)^{n_\text{C3}}. # ``` # # To simulate the flux of complex III, $J_\text{C3} \ \text{(mol s}^{-1} \text{ (L mito)}^{-1})$, by mass-action kinetics, we have # ```{math} # :label: J_C3 # J_{\text{C3}} = X_{\text{C3}} \left( K_{eq,\text{C3}}^\prime [\text{QH}_2]_x [\text{c}_{ox}^{3+}]_i^2 - [\text{Q}]_x [\text{c}_{red}^{2+}]_i^2 \right), # ``` # where $X_{\text{C3}} \ \text{(mol s}^{-1} \text{ (L mito)}^{-1})$ is the rate constant. # ### ETC complex IV # # In the final step of the ETC catalyzed by complex IV, electrons are transferred from cytochrome c to oxygen, forming water # ```{math} # :label: reaction_C4 # 2 \ (\text{c}_{red}^{2+})_i + \frac{1}{2} (\text{O}_2)_x + 2 \ (\text{H}^{+})_c + n_\text{C4} ([\text{H}^+])_x \rightleftharpoons 2 \ (\text{c}^{3+}_{ox})_i + \text{H}_2\text{O} + n_\text{C4} ([\text{H}^+])_c, # ``` # coupled with the translocation of $n_\text{C4} = 4$ protons across the IMM against against the electrochemical gradient. The Gibbs energy of the reaction in Equation {eq}`reaction_C4` is # ```{math} # \Delta G_\text{C4} &= \Delta_r G_\text{C4} - n_\text{C4} \Delta G_{\rm H} \nonumber \\ # &= \Delta_r G_{\text{C4}}^o + R{\rm T} \ln \left( \dfrac{ [\text{c}^{3+}_{ox}]^2_i }{ [\text{c}^{2+}_{red}]^2_i [\text{O}_2]^{1/2}_x } \cdot \dfrac{1}{[\text{H}^{+}]^2_c}\right) + n_{\text{C4}} F \Delta \Psi - R{\rm T} \ln \left( \dfrac{ [\text{H}^{+}]_x }{ [\text{H}^{+}]_c} \right)^{n_{\text{C4}}} \nonumber \\ # &= \Delta_r G'^\circ_{\text{C4}} + R{\rm T} \ln \left( \dfrac{ [\text{c}^{3+}_{ox}]^2_i }{ [\text{c}^{2+}_{red}]^2_i [\text{O}_2]^{1/2}_x } \right) + n_{\text{C4}} F \Delta \Psi - R{\rm T} \ln \left( \dfrac{ [\text{H}^{+}]_x }{ [\text{H}^{+}]_c} \right)^{n_{\text{C4}}}, # ``` # where # ```{math} # \Delta_r G'^\circ_\text{C4} = \Delta_r G^\circ_\text{C4} - 2 R \text{T} \ln([\text{H}^+]_c) # ``` # is the apparent Gibbs energy for complex IV. The apparent equilibrium constant is # ```{math} # :label: Kapp_C4 # K_{eq,\text{C4}}^\prime = \left( \dfrac{ [\text{c}^{3+}_{ox}]_i^2 }{ [\text{c}^{2+}_{red}]_i^2 [\text{O}_2]_x^{1/2} } \right)_{eq} = \exp \left\{ \dfrac{-(\Delta_r G'^\circ_\text{C4} + n_\text{C4} F \Delta \Psi )}{ R \text{T} } \right\} \left( \dfrac{ [\text{H}^+]_x }{[\text{H}^+]_c} \right)^{n_\text{C4}}. # ``` # # To simulate the flux of complex IV, $J_{\text{C4}} \ \text{(mol s}^{-1} \text{ (L mito)}^{-1})$, we use mass-action kinetics and account for binding of oxygen to complex IV as # ```{math} # :label: J_C4 # J_{\text{C4}} = X_{\text{C4}} \left( \dfrac{1}{1 + \frac{k_{\text{O}_2}}{[\text{O}_2] # }} \right) \left( \left(K_{eq,\text{C4}}^\prime\right)^{1/2} [\text{c}_{red}^{2+}]_i [\text{O}_2]_x^{1/4} - [\text{c}_{ox}^{3+}]_i \right), # ``` # where $X_{\text{C4}} \ \text{(mol s}^{-1} \text{ (L mito)}^{-1})$ is the rate constant and $k_{\text{O}_2}$ is the $\text{O}_2$ binding constant (\ref{table-ETC}). For this study, we assume a partial pressure of $\text{O}_2$ at $25 \ \text{mmHg}$. # The apparent equilibrium constants for the $\text{F}_0\text{F}_1$ ATPase (Equation {eq}`Kapp_F`), complex I (Equation {eq}`Kapp_C1`), complex III (Equation {eq}`Kapp_C3`), and complex IV (Equation {eq}`Kapp_C4`) depend on $\Delta\Psi$. In the model developed in this section, since $\Delta\Psi$ is a variable, these apparent equilibrium constants are also variables. Thus, the flux expressions in Equations {eq}`J_F`, {eq}`J_C1`, {eq}`J_C3`, and {eq}`J_C4` depend on $\Delta \Psi$. These expressions may be compared to a generalized formulation of rate laws for reversible enzyme-catalyzed reactions {cite}`Noor2013`, where in this case the saturating dependence of flux on substrate concentrations is not accounted for. These expressions may also be compared to the more detailed representations of the underlying catalytic mechanisms used by Bazil et al. {cite}`Bazil2016`. The Bazil et al. model also accounts for side reactions generating reactive oxygen species that are not accounted for here. # ### Dehydrogenase activity # # In this model, we do not explicitly simulate the reactions of the TCA cycle or beta oxidation, but rather the combined action of NADH-producing reactions, that is, # ```{math} # (\text{NAD}^{-})_x \rightleftharpoons (\text{NADH}^{2-})_x + (\text{H}^{+})_x # ``` # From Beard {cite}`Beard2005`, we represent a Pi dependence of NADH production using the following phenomenological expression # ```{math} # :label: J_DH # J_{\text{DH}} = X_{\text{DH}} \left( r [\text{NAD}^-] - [\text{NADH}^{2-}] \right) \left( \dfrac{ 1 + [\Sigma \text{Pi}]_x/k_{\text{Pi},1} }{ 1 + [\Sigma \text{Pi}]_x/k_{\text{Pi},2} } \right), # ``` # where $X_\text{DH} \text{ (mol s}^{-1} \text{ (L mito)}^{-1})$ is the dehydrogenase activity and $r$ (dimensionless), $k_{\text{Pi},1} \ \text{(mol (L matrix water)}^{-1})$, and $k_{\text{Pi},2} \ \text{(mol (L matrix water)}^{-1})$ are constants. Parameter values are listed in Table {numref}`table-ETC`. The dependence of NADH production on Pi reflects the Pi-dependence of the substrate-level phosphorylation step of the TCA cycle (the succinyl coenzyme-A synthetase reaction) and the fact that Pi drives substrate oxidation via the dicarboxylate carrier. # ### Proton leak # # To simulate proton leak across the IMM, we adopt the Goldman-Hodgkins-Katz formulation from Wu et al. {cite}`Wu2008`, # ```{math} # :label: J_H # J_{\text{H}} = X_\text{H} \left( [\text{H}^{+}]_c \ e^{\phi/2} - [\text{H}^{+}]_x \ e^{-\phi/2} \right) # ``` # where $X_\text{H} = 1000 \ \text{mol s}^{-1} \text{ (L mito)}^{-1}$ is the proton leak activity and $\phi$ is given in Equation {eq}`phi`. Even though the kinetic constants $X_\text{F}$ and $X_\text{H}$ attain equal values here, under the ATP-producing conditions the proton flux through the $\text{F}_0\text{F}_1$ ATPase ($J_\text{F}$, Equation {eq}`J_F`) is an order of magnitude greater than the proton leak flux ($J_\text{H}$, Equation {eq}`J_H`). # ```{list-table} Respiratory complex and inorganic phosphate transport parameters # :header-rows: 1 # :name: table-ETC # # * - Parameter # - Units # - Description # - Value # - Source # * - $n_{\text{C}1}$ # - # - Protons translocated by complex I # - $4 $ # - {cite}`Nicholls2013` # * - $n_{\text{C}3}$ # - # - Protons translocated by complex III # - $2 $ # - {cite}`Nicholls2013` # * - $n_{\text{C}4}$ # - # - Protons translocated by complex IV # - $4 $ # - {cite}`Nicholls2013` # * - $X_\text{C1}$ # - mol s$^{-1}$ (L mito)$^{-1}$ # - Complex I rate constant # - $1\text{e}4$ # - # * - $X_\text{C3}$ # - mol s$^{-1}$ (L mito)$^{-1}$ # - Complex III rate constant # - $1\text{e}6$ # - # * - $X_\text{C4}$ # - mol s$^{-1}$ (L mito)$^{-1}$ # - Complex IV rate constant # - $0.0125$ # - # * - $X_\text{DH}$ # - mol s$^{-1}$ (L mito)$^{-1}$ # - NADH dehydrogenase rate constant # - $0.1732$ # - # * - $X_\text{H}$ # - mol s$^{-1}$ (L mito)$^{-1}$ # - Proton leak activity # - $1\text{e}3$ # - # * - $r$ # - # - Dehydrogenase parameter # - $6.8385 $ # - # * - $k_{\text{Pi},1}$ # - mmol (L matrix water)$^{-1}$ # - Dehydrogenase parameter # - $0.466 $ # - # * - $k_{\text{Pi},2}$ # - mmol (L matrix water)$^{-1}$ # - Dehydrogenase parameter # - $0.658 $ # - # * - $k_{\text{PiC}}$ # - mmol (L cell)$^{-1}$ # - PiC constant # - $1.61$ # - {cite}`Bazil2016` # * - $k_{\text{O}_2}$ # - $\mu$mol (L matrix water)$^{-1}$ # - O$_2$ binding constant # - $120$ # - {cite}`Wu2007` # * - $\Delta_r G^o_\text{C1}$ # - kJ mol$^{-1}$ # - Gibbs energy of reaction for complex I # - $ -109.7 $ # - {cite}`Li2011` # * - $\Delta_r G^o_\text{C3}$ # - kJ mol$^{-1}$ # - Gibbs energy of reaction for complex III # - $46.7 $ # - {cite}`Li2011` # * - $\Delta_r G^o_\text{C4}$ # - kJ mol$^{-1}$ # - Gibbs energy of reaction for complex IV # - $ -202.2 $ # - {cite}`Li2011` # * - $[\text{NAD}]_{tot}$ # - mmol (L matrix water)$^{-1}$ # - Total NAD pool in the matrix # - $2.97$ # - {cite}`Wu2007` # * - $[\text{Q}]_{tot}$ # - mmol (L matrix water)$^{-1}$ # - Total Q pool in the matrix # - $1.35$ # - {cite}`Wu2007` # * - $[\text{c}]_{tot}$ # - mmol (L IM water)$^{-1}$ # - Total cytochrome c pool in the IMS # - $2.70$ # - {cite}`Wu2007` # ``` # ## Simulating ATP synthesis in vitro # # The flux expressions developed above may be used to simulate mitochondrial ATP synthesis in vitro, governed by the system of equations # ```{math} # :label: system-singlemito # \left\{ # \renewcommand{\arraystretch}{2.5} # \begin{array}{rl} # \dfrac{ {\rm d} \Delta \Psi }{{\rm d} t} & = ( n_\text{C1} J_\text{C1} + n_\text{C3} J_\text{C3} + n_\text{C4} J_\text{C4} - n_\text{F} J_\text{F} - J_\text{ANT} - J_\text{H}) / C_m \\ # \hline # \dfrac{ {\rm d} [\Sigma \text{ATP}]_x }{{\rm d} t} &= (J_\text{F} - J_\text{ANT} ) / W_x \\ # \dfrac{ {\rm d} [\Sigma \text{ADP}]_x }{{\rm d} t} &= (-J_\text{F} + J_\text{ANT}) / W_x \\ # \dfrac{ {\rm d} [\Sigma \text{Pi}]_x }{{\rm d} t} &= (-J_\text{F} + J_\text{PiC}) / W_x \quad \text{matrix species}\\ # \dfrac{ {\rm d} [\text{NADH}^{2-}]_x }{{\rm d} t} &= (J_\text{DH} - J_\text{C1}) / W_x \\ # \dfrac{ {\rm d} [\text{QH}_2]_x }{{\rm d} t} &= (J_\text{C1} - J_\text{C3}) / W_x \\ # \hline # \dfrac{ {\rm d} [\text{c}_{red}^{2+}]_i}{{\rm d} t} &= 2(J_\text{C3} - J_\text{C4}) / W_i \quad \text{intermembrane space species}\\ # \hline # \dfrac{ {\rm d} [\Sigma \text{ATP}]_c }{{\rm d} t} &= (V_{m2c} J_\text{ANT} - J_\text{AtC} )/ W_c \\ # \dfrac{ {\rm d} [\Sigma \text{ADP}]_c }{{\rm d} t} &= (-V_{m2c} J_\text{ANT} + J_\text{AtC} ) / W_c \quad \text{cytosol species}\\ # \dfrac{ {\rm d} [\Sigma \text{Pi}]_c }{{\rm d} t} &= (- V_{m2c} J_\text{PiC} + J_\text{AtC}) / W_c, # \end{array} # \renewcommand{\arraystretch}{1} # \right. # ``` # where the fluxes $J_\text{F}$ (Equation {eq}`J_F`), $J_\text{ANT}$ (Equation {eq}`J_ANT`), $J_\text{PiC}$ (Equation {eq}`J_PiC`), $J_\text{C1}$ (Equation {eq}`J_C1`), $J_\text{C3}$ (Equation {eq}`J_C3`), $J_\text{C4}$ (Equation {eq}`J_C4`), $J_\text{DH}$ (Equation {eq}`J_DH`), and $J_\text{H}$ (Equation {eq}`J_H`) are given above and the constants are listed in Tables {numref}`table-biophysicalconstants` and {numref}`table-ETC`. Here, we incorporate a constant ATP consumption flux, $J_\text{AtC} \ \text{(mol s}^{-1} \text{ (L cyto)}^{-1})$, that is # ```{math} # J_\text{AtC} = X_\text{AtC}/V_c # ``` # where $V_c$ is the ratio of the volume of cytosol per L cell. $X_\text{AtC}$ is the ATP consumption rate expressed in units of mmol s$^{-1}$ (L cell)$^{-1}$. Equation {eq}`system-singlemito` does not explicitly treat matrix or external $\text{pH}$, $\text{K}^+$, $\text{Mg}^{2+}$, or $\text{O}_2$ as variables. Reasonable clamped concentrations for these variables are ${\rm pH}_x = 7.4$, ${\rm pH}_c = 7.2$, $[\text{Mg}^{2+}]_x = 1 \ \text{mmol (L matrix water)}^{-1}$, $[\text{Mg}^{2+}]_c = 1 \ \text{mmol (L cyto water)}^{-1}$, $[\text{K}^{+}]_x = 100 \ \text{mmol (L matrix water)}^{-1}$, and $[K^{+}]_c = 140 \ \text{mmol (L cyto water)}^{-1}$, and $\text{O}_2$ partial pressure of $25 \ \text{mmHg}$. Respiratory chain reactants are determined from a total concentration of metabolites within the mitochondrion, that is, the total pools for NAD, cytochrome c, and Q species are # ```{math} # [\text{NAD}]_{tot} &= [\text{NAD}^-]_x + [\text{NADH}^{2-}]_x \\ # [\text{c}]_{tot} &= [\text{c}^{2+}_{red}]_i + [\text{c}^{3+}_{ox}]_i, \quad \text{and} \\ # [\text{Q}]_{tot} &= [\text{Q}]_x + [\text{QH}_2]_x. # ``` # The pools are $[\text{NAD}]_{tot} = 2.97 \ \text{mmol (L matrix water)}^{-1}$, $[\text{c}]_{tot} = 2.7 \ \text{mmol (L IMS water)}^{-1}$, and $[\text{Q}]_{tot} = 1.35$ $\text{mmol}~\text{(L matrix water)}^{-1}$. The finite nature of these metabolite pools constrains the maximal concentrations of substrates available for complexes I, III, and IV. Thus, although the simple mass-action models for these complexes do not account for saturable enzyme kinetics, the fluxes are limited by the availability of substrates. Initial conditions are set under the assumption that the TAN for both the matrix and cytosol is $10 \ \text{mM}$, but the ATP/ADP ratio is $<$$1$ in the matrix and $\sim$$100$ in the cytosol. The following code simulates in vitro mitochondrial function without ATP consumption in the external (cytosolic space). # # In[4]: import numpy as np import matplotlib.pyplot as plt get_ipython().system('pip install scipy') from scipy.integrate import solve_ivp ###### Constants defining metabolite pools ###### # Volume fractions and water space fractions V_c = 0.6601 # cytosol volume fraction # L cyto (L cell)**(-1) V_m = 0.2882 # mitochondrial volume fraction # L mito (L cell)**(-1) V_m2c = V_m / V_c # mito to cyto volume ratio # L mito (L cuvette)**(-1) W_c = 0.8425 # cytosol water space # L cyto water (L cyto)**(-1) W_m = 0.7238 # mitochondrial water space # L mito water (L mito)**(-1) W_x = 0.9*W_m # matrix water space # L matrix water (L mito)**(-1) W_i = 0.1*W_m # intermembrane water space # L IM water (L mito)**(-1) # Total pool concentrations NAD_tot = 2.97e-3 # NAD+ and NADH conc # mol (L matrix water)**(-1) Q_tot = 1.35e-3 # Q and QH2 conc # mol (L matrix water)**(-1) c_tot = 2.7e-3 # cytochrome c ox and red conc # mol (L IM water)**(-1) # Membrane capacitance () Cm = 3.1e-3 ###### Set fixed pH, cation concentrations, and O2 partial pressure ###### # pH pH_x = 7.40 pH_c = 7.20 # K+ concentrations K_x = 100e-3 # mol (L matrix water)**(-1) K_c = 140e-3 # mol (L cyto water)**(-1) # Mg2+ concentrations Mg_x = 1.0e-3 # mol (L matrix water)**(-1) Mg_c = 1.0e-3 # mol (L cyto water)**(-1) # Oxygen partial pressure PO2 = 25 # mmHg ###### Parameter vector ###### X_DH = 0.1732 X_C1 = 1.0e4 X_C3 = 1.0e6 X_C4 = 0.0125 X_F = 1.0e3 E_ANT = 0.325 E_PiC = 5.0e6 X_H = 1.0e3 X_AtC = 0 activity_array = np.array([X_DH, X_C1, X_C3, X_C4, X_F, E_ANT, E_PiC, X_H, X_AtC]) ###### Initial Conditions ###### # Membrane Potential DPsi_0 = 175/1000 # V # Matrix species sumATP_x_0 = 0.5e-3 # mol (L matrix water)**(-1) sumADP_x_0 = 9.5e-3 # mol (L matrix water)**(-1) sumPi_x_0 = 1.0e-3 # mol (L matrix water)**(-1) NADH_x_0 = 2/3 * NAD_tot # mol (L matrix water)**(-1) QH2_x_0 = 0.1 * Q_tot # mol (L matrix water)**(-1) # IMS species cred_i_0 = 0.1 * c_tot # mol (L IMS water)**(-1) # Cytosolic species sumATP_c_0 = 0 # mol (L cyto water)**(-1) sumADP_c_0 = 10e-3 # mol (L cyto water)**(-1) sumPi_c_0 = 10e-3 # mol (L cyto water)**(-1) X_0 = np.array([DPsi_0, sumATP_x_0, sumADP_x_0, sumPi_x_0, NADH_x_0, QH2_x_0, cred_i_0, sumATP_c_0, sumADP_c_0, sumPi_c_0]) def dXdt(t, X, activity_array, solve_ode): # Unpack variables DPsi, sumATP_x,sumADP_x, sumPi_x, NADH_x, QH2_x, cred_i, sumATP_c, sumADP_c, sumPi_c = X X_DH, X_C1, X_C3, X_C4, X_F, E_ANT, E_PiC, X_H, X_AtC = activity_array # Hydrogen ion concentration H_x = 10**(-pH_x) # mol (L matrix water)**(-1) H_c = 10**(-pH_c) # mol (L cuvette water)**(-1) # Oxygen concentration a_3 = 1.74e-6 # oxygen solubility in cuvette # mol (L matrix water * mmHg)**(-1) O2_x = a_3*PO2 # mol (L matrix water)**(-1) # Thermochemical constants R = 8.314 # J (mol K)**(-1) T = 37 + 273.15 # K F = 96485 # C mol**(-1) # Proton motive force parameters (dimensionless) n_F = 8/3 n_C1 = 4 n_C3 = 2 n_C4 = 4 # Dissociation constants K_MgATP = 10**(-3.88) K_HATP = 10**(-6.33) K_KATP = 10**(-1.02) K_MgADP = 10**(-3.00) K_HADP = 10**(-6.26) K_KADP = 10**(-0.89) K_MgPi = 10**(-1.66) K_HPi = 10**(-6.62) K_KPi = 10**(-0.42) # Other concentrations computed from the state variables: NAD_x = NAD_tot - NADH_x # mol (L matrix water)**(-1) Q_x = Q_tot - QH2_x # mol (L matrix water)**(-1) cox_i = c_tot - cred_i # mol (L matrix water)**(-1) ## Binding polynomials # Matrix species # mol (L mito water)**(-1) PATP_x = 1 + H_x/K_HATP + Mg_x/K_MgATP + K_x/K_KATP PADP_x = 1 + H_x/K_HADP + Mg_x/K_MgADP + K_x/K_KADP PPi_x = 1 + H_x/K_HPi + Mg_x/K_MgPi + K_x/K_KPi # Cytosol species # mol (L cuvette water)**(-1) PATP_c = 1 + H_c/K_HATP + Mg_c/K_MgATP + K_c/K_KATP PADP_c = 1 + H_c/K_HADP + Mg_c/K_MgADP + K_c/K_KADP PPi_c = 1 + H_c/K_HPi + Mg_c/K_MgPi + K_c/K_KPi ## Unbound species # Matrix species ATP_x = sumATP_x / PATP_x # [ATP4-]_x ADP_x = sumADP_x / PADP_x # [ADP3-]_x Pi_x = sumPi_x / PPi_x # [HPO42-]_x # Cytosolic species ATP_c = sumATP_c / PATP_c # [ATP4-]_c ADP_c = sumADP_c / PADP_c # [ADP3-]_c Pi_c = sumPi_c / PPi_c # [HPO42-]_c ###### NADH Dehydrogenase ###### # Constants r = 6.8385 k_Pi1 = 4.659e-4 # mol (L matrix water)**(-1) k_Pi2 = 6.578e-4 # mol (L matrix water)**(-1) # Flux J_DH = X_DH * (r * NAD_x - NADH_x) * ((1 + sumPi_x / k_Pi1) / (1+sumPi_x / k_Pi2)) ###### Complex I ###### # NADH_x + Q_x + 5H+_x <-> NAD+_x + QH2_x + 4H+_i + 4DPsi # Gibbs energy (J mol**(-1)) DrGo_C1 = -109680 DrGapp_C1 = DrGo_C1 - R * T * np.log(H_x) # Apparent equilibrium constant Kapp_C1 = np.exp( -(DrGapp_C1 + n_C1 * F * DPsi) / (R * T)) * ((H_x / H_c)**n_C1) # Flux (mol (s * L mito)**(-1)) J_C1 = X_C1 * (Kapp_C1 * NADH_x * Q_x - NAD_x * QH2_x) ###### Complex III ###### # QH2_x + 2cuvetteC(ox)3+_i + 2H+_x <-> Q_x + 2cuvetteC(red)2+_i + 4H+_i + 2DPsi # Gibbs energy (J mol**(-1)) DrGo_C3 = 46690 DrGapp_C3 = DrGo_C3 + 2 * R * T * np.log(H_c) # Apparent equilibrium constant Kapp_C3 = np.exp(-(DrGapp_C3 + n_C3 * F * DPsi) / (R * T)) * (H_x / H_c)**n_C3 # Flux (mol (s * L mito)**(-1)) J_C3 = X_C3 * (Kapp_C3 * cox_i**2 * QH2_x - cred_i**2 * Q_x) ###### Complex IV ###### # 2 cytoC(red)2+_i + 0.5O2_x + 4H+_x <-> cytoC(ox)3+_x + H2O_x + 2H+_i +2DPsi # Constant k_O2 = 1.2e-4 # mol (L matrix water)**(-1) # Gibbs energy (J mol**(-1)) DrGo_C4 = -202160 # J mol**(-1) DrGapp_C4 = DrGo_C4 - 2 * R * T * np.log(H_c) # Apparent equilibrium constant Kapp_C4 = np.exp(-(DrGapp_C4 + n_C4 * F * DPsi) / (R * T)) * (H_x / H_c)**n_C4 # Flux (mol (s * L mito)**(-1)) J_C4 = X_C4 *(Kapp_C4**0.5 * cred_i * O2_x**0.25 - cox_i) * (1 / (1 + k_O2 / O2_x)) ###### F1F0-ATPase ###### # ADP3-_x + HPO42-_x + H+_x + n_A*H+_i <-> ATP4- + H2O + n_A*H+_x # Gibbs energy (J mol**(-1)) DrGo_F = 4990 DrGapp_F = DrGo_F + R * T * np.log( H_x * PATP_x / (PADP_x * PPi_x)) # Apparent equilibrium constant Kapp_F = np.exp( (DrGapp_F + n_F * F * DPsi ) / (R * T)) * (H_c / H_x)**n_F # Flux (mol (s * L mito)**(-1)) J_F = X_F * (Kapp_F * sumADP_x * sumPi_x - sumATP_x) ###### ANT ###### # ATP4-_x + ADP3-_i <-> ATP4-_i + ADP3-_x # Constants del_D = 0.0167 del_T = 0.0699 k2o_ANT = 9.54/60 # s**(-1) k3o_ANT = 30.05/60 # s**(-1) K0o_D = 38.89e-6 # mol (L cuvette water)**(-1) K0o_T = 56.05e-6 # mol (L cuvette water)**(-1) A = +0.2829 B = -0.2086 C = +0.2372 phi = F * DPsi / (R * T) # Reaction rates k2_ANT = k2o_ANT * np.exp((A*(-3) + B*(-4) + C)*phi) k3_ANT = k3o_ANT * np.exp((A*(-4) + B*(-3) + C)*phi) # Dissociation constants K0_D = K0o_D * np.exp(3*del_D*phi) K0_T = K0o_T * np.exp(4*del_T*phi) q = k3_ANT * K0_D * np.exp(phi) / (k2_ANT * K0_T) term1 = k2_ANT * ATP_x * ADP_c * q / K0_D term2 = k3_ANT * ADP_x * ATP_c / K0_T num = term1 - term2 den = (1 + ATP_c/K0_T + ADP_c/K0_D) * (ADP_x + ATP_x * q) # Flux (mol (s * L mito)**(-1)) J_ANT = E_ANT * num / den ###### H+-PI2 cotransporter ###### # H2PO42-_x + H+_x = H2PO42-_c + H+_c # Constant k_PiC = 1.61e-3 # mol (L cuvette)**(-1) # H2P04- species HPi_c = Pi_c * (H_c / K_HPi) HPi_x = Pi_x * (H_x / K_HPi) # Flux (mol (s * L mito)**(-1)) J_PiC = E_PiC * (H_c * HPi_c - H_x * HPi_x) / (k_PiC + HPi_c) ###### H+ leak ###### # Flux (mol (s * L mito)**(-1)) J_H = X_H * (H_c * np.exp(phi/2) - H_x * np.exp(-phi/2)) ###### ATPase ###### # ATP4- + H2O = ADP3- + PI2- + H+ #Flux (mol (s * L cyto)**(-1)) J_AtC = X_AtC / V_c ###### Differential equations (equation 23) ###### # Membrane potential dDPsi = (n_C1 * J_C1 + n_C3 * J_C3 + n_C4 * J_C4 - n_F * J_F - J_ANT - J_H) / Cm # Matrix species dATP_x = (J_F - J_ANT) / W_x dADP_x = (-J_F + J_ANT) / W_x dPi_x = (-J_F + J_PiC) / W_x dNADH_x = (J_DH - J_C1) / W_x dQH2_x = (J_C1 - J_C3) / W_x # IMS species dcred_i = 2 * (J_C3 - J_C4) / W_i # Buffer species dATP_c = ( V_m2c * J_ANT - J_AtC ) / W_c dADP_c = (-V_m2c * J_ANT + J_AtC ) / W_c dPi_c = (-V_m2c * J_PiC + J_AtC) / W_c dX = [dDPsi, dATP_x, dADP_x, dPi_x, dNADH_x, dQH2_x, dcred_i, dATP_c, dADP_c, dPi_c] # Calculate state-dependent quantities after model is solved if solve_ode == 1: return dX else: J = np.array([PATP_x, PADP_x, PPi_x, PATP_c, PADP_c, PPi_c, J_DH, J_C1, J_C3, J_C4, J_F, J_ANT, J_PiC, DrGapp_F]) return dX, J # Time vector t = np.linspace(0,5,100) # Solve ODE results = solve_ivp(dXdt, [0, 5], X_0, method = 'Radau', t_eval=t, args=(activity_array,1)) DPsi, sumATP_x,sumADP_x, sumPi_x, NADH_x, QH2_x, cred_i, sumATP_c, sumADP_c, sumPi_c = results.y # Plot figures fig, ax = plt.subplots(1,2, figsize = (10,5)) ax[0].plot(t, sumATP_x*1000, label = '[$\Sigma$ATP]$_x$') ax[0].plot(t, sumADP_x*1000, label = '[$\Sigma$ADP]$_x$') ax[0].plot(t, sumPi_x*1000, label = '[$\Sigma$Pi]$_x$') ax[0].legend(loc="right") ax[0].set_xlabel('Time (s)') ax[0].set_ylabel('Concentration (mM)') ax[0].set_ylim((-.5,10.5)) ax[1].plot(t, sumATP_c*1000, label = '[$\Sigma$ATP]$_c$') ax[1].plot(t, sumADP_c*1000, label = '[$\Sigma$ADP]$_c$') ax[1].plot(t, sumPi_c*1000, label = '[$\Sigma$Pi]$_c$') ax[1].legend(loc="right") ax[1].set_xlabel('Time (s)') ax[1].set_ylabel('Concentration (mM)') ax[1].set_ylim((-.5,10.5)) plt.show() # **Figure 7:** Steady state solution from Equation {eq}`system-singlemito` for the (a) matrix and (b) cytosol species with $\text{pH}_x = 7.4$ and $\text{pH}_c = 2$. # The above simulations reach a final steady state where the phosphate metabolite concentrations are $[\text{ATP}]_x = 0.9 \ \text{mM}$, $[\text{ADP}]_x = 9.1 \ \text{mM} $, $[\text{Pi}]_x = 0.4 \ \text{mM}$, $[\text{ATP}]_c = 9.9 \ \text{mM}$, $[\text{ADP}]_c = 0.1 \ \text{mM}$, $[\text{Pi}]_c = 0.2 \ \text{mM}$, and the membrane potential is $186 \ \text{mV}$. This state represents a *resting* energetic state with no ATP hydrolysis in the cytosol. The Gibbs energy of ATP hydrolysis associated with this predicted state is $\Delta G_{\rm ATP} = \text{-}70 \ \text{kJ mol}^{-1}$, as calculated below. # In[5]: sumATP_c_ss = sumATP_c[-1] sumADP_c_ss = sumADP_c[-1] sumPi_c_ss = sumPi_c[-1] H_c = 10**(-pH_c) # mol (L cuvette water)**(-1) # Thermochemical constants R = 8.314 # J (mol K)**(-1) T = 37 + 273.15 # K # Dissociation constants K_MgATP = 10**(-3.88) K_HATP = 10**(-6.33) K_KATP = 10**(-1.02) K_MgADP = 10**(-3.00) K_HADP = 10**(-6.26) K_KADP = 10**(-0.89) K_MgPi = 10**(-1.66) K_HPi = 10**(-6.62) K_KPi = 10**(-0.42) ## Binding polynomials # Cytosol species # mol (L cuvette water)**(-1) PATP_c = 1 + H_c/K_HATP + Mg_c/K_MgATP + K_c/K_KATP PADP_c = 1 + H_c/K_HADP + Mg_c/K_MgADP + K_c/K_KADP PPi_c = 1 + H_c/K_HPi + Mg_c/K_MgPi + K_c/K_KPi DrGo_ATP = 4990 # Use equation 9 to calcuate apparent reference cytosolic Gibbs energy DrGo_ATP_apparent = DrGo_ATP + R * T * np.log(H_c * PATP_c / (PADP_c * PPi_c)) # Use equation 9 to calculate cytosolic Gibbs energy DrG_ATP = DrGo_ATP_apparent + R * T * np.log((sumADP_c_ss * sumPi_c_ss / sumATP_c_ss)) print('Cytosolic Gibbs energy of ATP hydrolysis (kJ mol^(-1))') print(DrG_ATP / 1000) # In[ ]: # In[ ]:
43.961007
1,001
0.592283
7948167d24cc880a73c2ba363dbf18c0796d462c
2,875
py
Python
wsi_process/resize.py
Lornatang/Scripts
ba9bb03dc3bc4b48d6314a6bd16e3ae5e813bb24
[ "Apache-2.0" ]
null
null
null
wsi_process/resize.py
Lornatang/Scripts
ba9bb03dc3bc4b48d6314a6bd16e3ae5e813bb24
[ "Apache-2.0" ]
null
null
null
wsi_process/resize.py
Lornatang/Scripts
ba9bb03dc3bc4b48d6314a6bd16e3ae5e813bb24
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import cv2 def main(): filenames = os.listdir("HR") for filename in sorted(filenames): print(f"Process `{filename}`.") imagex0 = cv2.imread(os.path.join("HR", filename)) # HWC. height, width, _ = imagex0.shape imagex2_nearest = cv2.resize(imagex0, (width // 2, height // 2), interpolation=cv2.INTER_NEAREST) imagex2_linear = cv2.resize(imagex0, (width // 2, height // 2), interpolation=cv2.INTER_LINEAR) imagex2_area = cv2.resize(imagex0, (width // 2, height // 2), interpolation=cv2.INTER_AREA) imagex2_cubic = cv2.resize(imagex0, (width // 2, height // 2), interpolation=cv2.INTER_CUBIC) imagex2_lanczos4 = cv2.resize(imagex0, (width // 2, height // 2), interpolation=cv2.INTER_LANCZOS4) imagex4_nearest = cv2.resize(imagex0, (width // 4, height // 4), interpolation=cv2.INTER_NEAREST) imagex4_linear = cv2.resize(imagex0, (width // 4, height // 4), interpolation=cv2.INTER_LINEAR) imagex4_area = cv2.resize(imagex0, (width // 4, height // 4), interpolation=cv2.INTER_AREA) imagex4_cubic = cv2.resize(imagex0, (width // 4, height // 4), interpolation=cv2.INTER_CUBIC) imagex4_lanczos4 = cv2.resize(imagex0, (width // 4, height // 4), interpolation=cv2.INTER_LANCZOS4) cv2.imwrite(os.path.join("LRnearestx2", filename), imagex2_nearest) cv2.imwrite(os.path.join("LRlinearx2", filename), imagex2_linear) cv2.imwrite(os.path.join("LRareax2", filename), imagex2_area) cv2.imwrite(os.path.join("LRcubicx2", filename), imagex2_cubic) cv2.imwrite(os.path.join("LRlanczos4x2", filename), imagex2_lanczos4) cv2.imwrite(os.path.join("LRnearestx4", filename), imagex4_nearest) cv2.imwrite(os.path.join("LRlinearx4", filename), imagex4_linear) cv2.imwrite(os.path.join("LRareax4", filename), imagex4_area) cv2.imwrite(os.path.join("LRcubicx4", filename), imagex4_cubic) cv2.imwrite(os.path.join("LRlanczos4x4", filename), imagex4_lanczos4) if __name__ == "__main__": main()
55.288462
108
0.653217
794816c3bfbb391fc360fff094bd8a46428f3f47
604
py
Python
database_block/models/ir_http.py
trojikman/access-addons
5b056b4d0928e83f687ea7978de6f96f826c28a6
[ "MIT" ]
null
null
null
database_block/models/ir_http.py
trojikman/access-addons
5b056b4d0928e83f687ea7978de6f96f826c28a6
[ "MIT" ]
null
null
null
database_block/models/ir_http.py
trojikman/access-addons
5b056b4d0928e83f687ea7978de6f96f826c28a6
[ "MIT" ]
null
null
null
# Copyright 2020 Eugene Molotov <https://it-projects.info/team/em230418> # License MIT (https://opensource.org/licenses/MIT). from odoo import SUPERUSER_ID, models class IrHttp(models.AbstractModel): _inherit = "ir.http" def session_info(self): res = super(IrHttp, self).session_info() res["database_block_show_message_in_apps_menu"] = bool( self.env["ir.module.module"] .with_user(SUPERUSER_ID) .search( [("name", "=", "web_responsive"), ("state", "=", "installed")], limit=1, ) ) return res
26.26087
88
0.600993
794816df16e5c3f0b0f03d61888d12de26161c40
14,542
py
Python
bitcoin/ledger.py
vanschelven/python-bitcoin
1b80c284170fd3f547cc45f4700ce169f3f99641
[ "MIT" ]
8
2015-02-04T05:07:50.000Z
2019-01-17T19:52:10.000Z
bitcoin/ledger.py
vanschelven/python-bitcoin
1b80c284170fd3f547cc45f4700ce169f3f99641
[ "MIT" ]
2
2020-05-13T09:50:07.000Z
2021-02-23T09:44:04.000Z
bitcoin/ledger.py
vanschelven/python-bitcoin
1b80c284170fd3f547cc45f4700ce169f3f99641
[ "MIT" ]
9
2015-01-23T11:37:30.000Z
2018-10-06T11:15:07.000Z
# -*- coding: utf-8 -*- # Copyright © 2012-2014 by its contributors. See AUTHORS for details. # Distributed under the MIT/X11 software license, see the accompanying # file LICENSE or http://www.opensource.org/licenses/mit-license.php. # Python 2 and 3 compatibility utilities import six from blist import sorteddict from recordtype import recordtype from .authtree import MemoryPatriciaAuthTree from .core import Output from .hash import hash256 from .mixins import SerializableMixin from .serialize import BigCompactSize, LittleInteger, VarInt from .tools import compress_amount, decompress_amount __all__ = ( 'UnspentTransaction', 'OutPoint', 'Coin', 'BaseValidationIndex', 'MemoryValidationIndex', 'ContractOutPoint', 'ContractCoin', 'BaseContractIndex', 'MemoryContractIndex', ) # ===----------------------------------------------------------------------=== from .script import ScriptPickler class UnspentTransaction(SerializableMixin, sorteddict): """Pruned version of core.Transaction: only retains metadata and unspent transaction outputs. Serialized format: - VARINT(version) - VARINT(code) - unspentness bitvector, for outputs[2] and further; least significant byte first - the non-spent, compressed TransactionOutputs - VARINT(height) - VARINT(reference_height) The code value consists of: - bit 1: outputs[0] is not spent - bit 2: outputs[1] is not spent - bit 3: outputs[2] is not spent - The higher bits encode N, the number of non-zero bytes in the following bitvector. - In case bit 1, bit 2 and bit 4 are all unset, they encode N-1, as there must be at least one non-spent output. Example: 0102835800816115944e077fe7c803cfa57f29b36bf87c1d358bb85e <><><--------------------------------------------><----> | \ | / version code outputs[1] height - version = 1 - code = 2 (outputs[1] is not spent, and 0 non-zero bytes of bitvector follow) - unspentness bitvector: as 0 non-zero bytes follow, it has length 0 - outputs[1]: 835800816115944e077fe7c803cfa57f29b36bf87c1d35 * 8358: compact amount representation for 60000000000 (600 BTC) * 00: special txout type pay-to-pubkey-hash * 816115944e077fe7c803cfa57f29b36bf87c1d35: address uint160 - height = 203998 Example: 0208044086ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4ee... <><><--><--------------------------------------------------> / | \ | version code unspentness outputs[4] ...bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa486af3b8668 <----------------------------------------------><----><--> | / | outputs[16] height reference_height - version = 2 - code = 8: neither outputs[0], outputs[1], nor outputs[2] are unspent, 2 (1, +1 because both bit 2 and bit 4 are unset) non-zero bitvector bytes follow. - unspentness bitvector: bits 1 (0x02) and 13 (0x2000) are set, so outputs[1+3] and outputs[13+3] are unspent z - outputs[4]: 86ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4ee * 86ef97d579: compact amount representation for 234925952 (2.35 BTC) * 00: special txout type pay-to-pubkey-hash * 61b01caab50f1b8e9c50a5057eb43c2d9563a4ee: address uint160 - outputs[16]: bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4 * bbd123: compact amount representation for 110397 (0.001 BTC) * 00: special txout type pay-to-pubkey-hash * 8c988f1a4a4de2161e0f50aac7f17e7f9555caa4: address uint160 - height = 120891 - reference_height = 1000 """ # We only need one script pickler, which every instance of UnspentTransaction # can use (there's no concurrency issues with picklers, and it needs to be # available to the class anyway for deserialize). _pickler = ScriptPickler() def __init__(self, *args, **kwargs): # Since we behave like a dictionary object, we implement the copy # constructor, which requires copying meta information not contained # within the dictionary itself. if args and all(hasattr(args[0], x) for x in ('version', 'height', 'reference_height')): other = args[0] else: other = None # You can either specify the transaction, another UnspentTransaction # object, or the metadata directly. Choose one. a = 'transaction' in kwargs b = other is not None c = any(x in kwargs for x in ('version', 'reference_height')) if a + b + c >= 2: # <-- yes, you can do this raise TypeError(u"instantiate by either specifying the " u"transaction directly, another %s, or its individual " u"metadata; choose one" % self.__class__.__name__) # Extract captured parameters from kwargs, starting with the transaction # because its metadata are used as the default. transaction = kwargs.pop('transaction', None) if other is None: other = transaction version = kwargs.pop('version', getattr(other, 'version', 1)) height = kwargs.pop('height', getattr(other, 'height', 0)) # Reference heights are added with transaction version=2, so we do # not extract that parameter unless version=2. reference_height = getattr(other, 'reference_height', 0) if version in (2,): reference_height = kwargs.pop('reference_height', reference_height) # Perform construction of the dictionary object (our superclass) super(UnspentTransaction, self).__init__(*args, **kwargs) # Store metadata self.version = version self.height = height self.reference_height = reference_height # Add the transaction's outputs only if outputs are not separately # specified (as is typically done if it is known in advance which # outputs are not spent at time of creation). if transaction is not None and not self: for idx,output in enumerate(transaction.outputs): self[idx] = output def serialize(self): # code&0x1: outputs[0] unspent # code&0x2: outputs[1] unspent # code&0x4: outputs[2] unspent # code>>3: N, the minimal length of bitvector in bytes, or N-1 if # outputs[0], outputs[1], and outputs[1] are all spent bitvector = 0 for idx in six.iterkeys(self): bitvector |= 1 << idx if not bitvector: raise TypeError() code = bitvector & 0x7 bitvector >>= 3 bitvector = LittleInteger(bitvector).serialize() bitvector_len = len(bitvector) if not code: bitvector_len -= 1 code |= bitvector_len << 3 result = VarInt(self.version).serialize() result += VarInt(code).serialize() result += bitvector for output in six.itervalues(self): result += VarInt(compress_amount(output.amount)).serialize() result += self._pickler.dumps(output.contract) result += VarInt(self.height).serialize() if self.version in (2,): result += VarInt(self.reference_height).serialize() return result @classmethod def deserialize(cls, file_): output_class = getattr(cls, 'get_output_class', lambda: getattr(cls, 'output_class', Output))() kwargs = {} kwargs['version'] = VarInt.deserialize(file_) # See description of code, bitvector above. code, bitvector = VarInt.deserialize(file_), 0 bitvector |= code & 0x7 code >>= 3 if not bitvector: code += 1 if code: bitvector |= LittleInteger.deserialize(file_, code) << 3 idx, items = 0, [] while bitvector: if bitvector & 0x1: items.append( (idx, output_class( decompress_amount(VarInt.deserialize(file_)), cls._pickler.load(file_)))) idx, bitvector = idx + 1, bitvector >> 1 kwargs['height'] = VarInt.deserialize(file_) if kwargs['version'] in (2,): kwargs['reference_height'] = VarInt.deserialize(file_) return cls(items, **kwargs) def __eq__(self, other): # Compare metadata first, as it's probably less expensive if any((self.height != other.height, self.version != other.version)): return False if self.version in (2,) and self.reference_height != other.reference_height: return False return super(UnspentTransaction, self).__eq__(other) __ne__ = lambda a,b:not a==b def __repr__(self): return '%s%s, version=%d, height=%d, reference_height=%d)' % ( self.__class__.__name__, super(UnspentTransaction, self).__repr__()[10:-1], self.version, self.height, self.reference_height) # ===----------------------------------------------------------------------=== OutPoint = recordtype('OutPoint', ['hash', 'index']) def _serialize_outpoint(self): parts = list() parts.append(hash256.serialize(self.hash)) if self.index == -1: parts.append(b'\xfe\xff\xff\xff\xff') else: parts.append(BigCompactSize(self.index).serialize()) return b''.join(parts) OutPoint.serialize = _serialize_outpoint def _deserialize_outpoint(cls, file_): kwargs = dict() kwargs['hash'] = hash256.deserialize(file_) kwargs['index'] = BigCompactSize.deserialize(file_) return cls(**kwargs) OutPoint.deserialize = classmethod(_deserialize_outpoint) def _repr_outpoint(self): return '%s(hash=%064x, index=%d)' % ( self.__class__.__name__, self.hash, self.index==2**32-1 and -1 or self.index) OutPoint.__repr__ = _repr_outpoint Coin = recordtype('Coin', ['version', 'amount', 'contract', 'height', 'reference_height']) Coin._pickler = ScriptPickler() def _serialize_coin(self): parts = list() parts.append(VarInt(self.version).serialize()) parts.append(VarInt(compress_amount(self.amount)).serialize()) parts.append(self._pickler.dumps(self.contract.serialize())) parts.append(VarInt(self.height).serialize()) if self.version in (2,): parts.append(VarInt(self.reference_height).serialize()) return b''.join(parts) Coin.serialize = _serialize_coin def _deserialize_coin(cls, file_): kwargs = dict() kwargs['version'] = VarInt.deserialize(file_) kwargs['amount'] = decompress_amount(VarInt.deserialize(file_)) kwargs['contract'] = cls._pickler.load(file_) kwargs['height'] = VarInt.deserialize(file_) if kwargs['version'] in (2,): kwargs['reference_height'] = VarInt.deserialize(file_) return cls(**kwargs) Coin.deserialize = classmethod(_deserialize_coin) def _repr_coin(self): parts = list() parts.append('version=%d' % self.version) parts.append('amount=%d' % self.amount) parts.append('contract=%s' % repr(self.contract)) parts.append('height=%d' % self.height) if self.version in (2,): parts.append('reference_height=%d' % self.reference_height) return '%s(%s)' % (self.__class__.__name__, ', '.join(parts)) Coin.__repr__ = _repr_coin class BaseValidationIndex(object): key_class = OutPoint value_class = Coin class MemoryValidationIndex(BaseValidationIndex, MemoryPatriciaAuthTree): pass # ===----------------------------------------------------------------------=== ContractOutPoint = recordtype('ContractOutPoint', ['contract', 'hash', 'index']) ContractOutPoint._pickler = ScriptPickler() def _serialize_contract_outpoint(self): return b''.join([self._pickler.dumps(self.contract.serialize()), hash256.serialize(self.hash), BigCompactSize(self.index).serialize()]) ContractOutPoint.serialize = _serialize_contract_outpoint def _deserialize_contract_outpoint(cls, file_): kwargs = dict() kwargs['contract'] = cls._pickler.load(file_) kwargs['hash'] = hash256.deserialize(file_) kwargs['index'] = BigCompactSize.deserialize(file_) return cls(**kwargs) ContractOutPoint.deserialize = classmethod(_deserialize_contract_outpoint) def _repr_contract_outpoint(self): return '%s(contract=%s, hash=%064x, index=%d)' % ( self.__class__.__name__, repr(self.contract), self.hash, self.index) ContractOutPoint.__repr__ = _repr_contract_outpoint ContractCoin = recordtype('ContractCoin', ['version', 'amount', 'height', 'reference_height']) def _serialize_contract_coin(self): parts = list() parts.append(VarInt(self.version).serialize()) parts.append(VarInt(compress_amount(self.amount)).serialize()) parts.append(VarInt(self.height).serialize()) if self.version in (2,): parts.append(VarInt(self.reference_height).serialize()) return b''.join(parts) ContractCoin.serialize = _serialize_contract_coin def _deserialize_contract_coin(cls, file_): kwargs = dict() kwargs['version'] = VarInt.deserialize(file_) kwargs['height'] = VarInt.deserialize(file_) kwargs['amount'] = decompress_amount(VarInt.deserialize(file_)) if kwargs['version'] in (2,): kwargs['reference_height'] = VarInt.deserialize(file_) return cls(**kwargs) ContractCoin.deserialize = classmethod(_deserialize_contract_coin) def _repr_contract_coin(self): parts = list() parts.append('version=%d' % self.version) parts.append('amount=%d' % self.amount) parts.append('height=%d' % self.height) if self.version in (2,): parts.append('reference_height=%d' % self.reference_height) return '%s(%s)' % (self.__class__.__name__, ', '.join(parts)) ContractCoin.__repr__ = _repr_contract_coin class BaseContractIndex(object): key_class = ContractOutPoint value_class = ContractCoin class MemoryContractIndex(BaseContractIndex, MemoryPatriciaAuthTree): pass # End of File
41.430199
88
0.624948
79481879fa2d2f8394dc5f19bc539efa1ac76706
5,157
py
Python
craid/eddb/util/dataUpdate/MakeSmolFiles.py
HausReport/ClubRaiders
88bd64d2512302ca2b391b48979b6e88b092eb92
[ "BSD-3-Clause" ]
null
null
null
craid/eddb/util/dataUpdate/MakeSmolFiles.py
HausReport/ClubRaiders
88bd64d2512302ca2b391b48979b6e88b092eb92
[ "BSD-3-Clause" ]
2
2020-05-28T13:30:08.000Z
2020-06-02T14:12:04.000Z
craid/eddb/util/dataUpdate/MakeSmolFiles.py
HausReport/ClubRaiders
88bd64d2512302ca2b391b48979b6e88b092eb92
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020 Club Raiders Project # https://github.com/HausReport/ClubRaiders # # SPDX-License-Identifier: BSD-3-Clause import gzip import logging import os import shutil import tempfile import traceback from shutil import copyfile from typing import Dict, List, Set import ujson from craid.eddb.loader.strategy.DataLoader import DataLoader from craid.eddb.loader.strategy.EDDBLoader import LoadDataFromEDDB # # Note: For the Git part, see: https://gitpython.readthedocs.io/en/stable/reference.html#module-git.cmd # # Note: For the sleep part, see https://stackoverflow.com/questions/2031111/in-python-how-can-i-put-a-thread-to-sleep-until-a-specific-time # # Note: Heroku version of cron: https://devcenter.heroku.com/articles/clock-processes-python # def munchFile(keys: Set[int], xinName: str): tmp: List[Dict] = [] myLoader: DataLoader = LoadDataFromEDDB() inFile = myLoader.find_data_file(xinName) with gzip.open(inFile, 'rb') as f: for line in f: facLine = ujson.loads(line) if facLine['id'] in keys: tmp.append(facLine) outName = "smol-" + xinName + ".gz" tmpDir = tempfile.gettempdir() outFile = os.path.join(tmpDir, outName) with gzip.open(outFile, 'wt', encoding='utf-8') as file: foo: Dict for foo in tmp: ujson.dump(foo, file) file.write('\n') #gitFile = os.path.join("..", "..", "..", "..", "data", outName) gitFile = os.path.join("data", outName) copyfile(outFile, gitFile) def deleteOldFiles(): keyFiles = ['keys-club-faction-keys.pkl', 'keys-club-station-keys.pkl', 'keys-club-system-keys.pkl', 'keys-factions_of_interest_keys.pkl', 'keys-factions-of-interest-keys.pkl'] eFiles = ['factions.jsonl', 'stations.jsonl', 'systems_populated.jsonl'] # # Step 0: Clean recovery directory # tmpDir = tempfile.gettempdir() recoverDir = os.path.join(tmpDir, "crec") if not os.path.exists(recoverDir): os.makedirs(recoverDir) else: clearRecoveryFolder() # # Step 1: copy old systems file to new old-systems file # inFile = os.path.join(tmpDir, 'smol-systems_populated.jsonl.gz') outFile = os.path.join(tmpDir, 'smol-sys-old.jsonl.gz') recFile = os.path.join(recoverDir, 'smol-sys-old.jsonl.gz') if os.path.exists(outFile): copyfile(outFile, recFile) if os.path.exists(inFile): copyfile(inFile, outFile) # # Step 2: generate all filename permutations # allFiles = keyFiles for fName in eFiles: allFiles.append(fName) allFiles.append(fName + ".gz") allFiles.append("smol-" + fName + ".gz") allFiles.append("smol-" + fName) # # Step 3: delete the files (move to recovery dir) # for fName in allFiles: tmpDir = tempfile.gettempdir() outFile = os.path.join(tmpDir, fName) recFile = os.path.join(recoverDir, fName) if os.path.exists(outFile): logging.info("removing: " + outFile) try: shutil.copy2(outFile, recFile) # NOTE: copy2 to preserve file modification time os.remove(outFile) except Exception as e: # FIXME: not really sure how missing file problem can happen here # but according to the logs it can happen traceback.print_exc() logging.error(str(e)) def unDeleteOldFiles(): tmpDir = tempfile.gettempdir() recoveryDir = os.path.join(tmpDir, "crec") for filename in os.listdir(recoveryDir): fromFile = os.path.join(recoveryDir, filename) toFile = os.path.join(tmpDir, filename) shutil.copy2(fromFile, toFile) # NOTE: copy2 to preserve file modification time def clearRecoveryFolder(): tmpDir = tempfile.gettempdir() folder = os.path.join(tmpDir, "crec") for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) # if __name__ == '__main__': # # # # Fire up logger # # # logging.getLogger().addHandler(logging.StreamHandler()) # logging.getLogger().level = logging.DEBUG # # # # # Get rid of old files # # # deleteOldFiles() # # # need to add exceptions to DataProducer.getDataArrays and handle here # # # download large files from eddb # DataProducer.getDataArrays(writeKeyFiles=True, useEddb=True) # # # load key files & munch # club_faction_keys = loadKeys("factions-of-interest-keys") # munchFile(club_faction_keys, 'factions.jsonl') # club_system_keys = loadKeys('club-system-keys') # munchFile(club_system_keys, 'systems_populated.jsonl') # club_station_keys = loadKeys("club-station-keys") # munchFile(club_station_keys, 'stations.jsonl') # inName = 'factions.jsonl'
32.433962
139
0.64301
794818a57f7b215a522fb5ce0e020ea2257e2ce6
3,191
py
Python
data/migrate/__init__.py
cnobile2012/inventory
bc09ccdead39a5cd758088dbfe5c56dec43c7e29
[ "MIT" ]
10
2015-02-16T17:12:44.000Z
2021-06-04T18:14:01.000Z
data/migrate/__init__.py
cnobile2012/inventory
bc09ccdead39a5cd758088dbfe5c56dec43c7e29
[ "MIT" ]
1
2021-09-20T01:17:38.000Z
2021-09-20T01:17:50.000Z
data/migrate/__init__.py
cnobile2012/inventory
bc09ccdead39a5cd758088dbfe5c56dec43c7e29
[ "MIT" ]
5
2015-09-09T02:01:33.000Z
2021-05-29T09:09:14.000Z
# -*- coding: utf-8 -*- # # __init__.py # import logging from django.contrib.auth import get_user_model try: from inventory.projects.models import Project, Membership, InventoryType except: pass UserModel = get_user_model() def setup_logger(name='root', fullpath=None, fmt=None, level=logging.INFO): FORMAT = ("%(asctime)s %(levelname)s %(module)s %(funcName)s " "[line:%(lineno)d] %(message)s") if not fmt: fmt = FORMAT # Trun off logging from django db backend. backends = logging.getLogger('django.db.backends') backends.setLevel(logging.WARNING) # Setup logger. logger = logging.getLogger(name) logger.setLevel(level=level) handler = logging.FileHandler(fullpath) formatter = logging.Formatter(fmt) handler.setFormatter(formatter) logger.addHandler(handler) #print(logger.getEffectiveLevel()) return logger class MigrateBase: _DEFAULT_USER = 'cnobile' _INVENTORY_NAME = "Electronics" _PROJECT_NAME = "Carl's Electronics Inventory" _LD_NAME = "Home Inventory Location Formats" _LD_DESC = "My DIY Inventory." PROJECT_OWNER = Membership.ROLE_MAP[Membership.PROJECT_OWNER] def __init__(self, log): self._log = log def get_user(self, username=_DEFAULT_USER): user = UserModel.objects.filter(username=username, is_active=True) if user.count(): user = user[0] else: user = None self._log.info("Found user: %s", user) return user def _create_inventory_type(self): user = self.get_user() name = self._INVENTORY_NAME kwargs = {} kwargs['description'] = ("Inventory for electronic parts and " "related items.") kwargs['creator'] = user kwargs['updater'] = user in_type, created = InventoryType.objects.get_or_create( name=name, defaults=kwargs) return in_type def _create_project(self): if not self._options.noop: user = self.get_user() name = self._PROJECT_NAME kwargs = {} kwargs['inventory_type'] = self._create_inventory_type() kwargs['creator'] = user kwargs['updater'] = user project, created = Project.objects.get_or_create( name=name, defaults=kwargs) members = [ {'user': user, 'role_text': self.PROJECT_OWNER} ] project.process_members(members) return project def _fix_boolean(self, value): value = value.strip() result = value if value.lower() == 'true': result = True elif value.lower() == 'false': result = False return result def _fix_numeric(self, value): value = value.strip() result = '' if value.isdigit(): result = int(value) return result def _yes_no(self, value): value = value.strip().lower() if value == 'false': value = 0 elif value == 'true': value = 1 else: value = 0 return value
27.042373
76
0.590411
7948192666bb8d105d2b1ba0e08f82902f5d04a4
1,485
py
Python
setup.py
timgates42/django-meta
2fd32eab30486daeee27e8a9500045d4233996e5
[ "BSD-4-Clause" ]
null
null
null
setup.py
timgates42/django-meta
2fd32eab30486daeee27e8a9500045d4233996e5
[ "BSD-4-Clause" ]
null
null
null
setup.py
timgates42/django-meta
2fd32eab30486daeee27e8a9500045d4233996e5
[ "BSD-4-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from setuptools import setup import meta setup( name='django-meta', description='Pluggable app for handling webpage meta tags and OpenGraph ' 'properties', long_description=open('README.rst').read(), version=meta.__version__, packages=['meta', 'meta.templatetags', 'meta_mixin'], package_data={ 'meta': ['templates/*.html', 'templates/meta_mixin/*.html', 'templates/meta/*.html'], }, author='Monwara LLC', maintainer='Nephila', author_email='branko@monwara.com', maintainer_email='info@nephila.it', url='https://github.com/nephila/django-meta', license='BSD', install_requires=[ 'six', ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Framework :: Django', 'Framework :: Django :: 1.11', 'Framework :: Django :: 2.0', 'Framework :: Django :: 2.1', 'Framework :: Django :: 2.2', 'Framework :: Django :: 3.0', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], )
33
93
0.580471
794819a5da6a61ff4abf24aec0df8f3da81d3038
79,379
py
Python
pineboolib/fllegacy/systype.py
juanjosepablos/pineboo
f6ce515aec6e0139821bb9c1d62536d9fb50dae4
[ "MIT" ]
null
null
null
pineboolib/fllegacy/systype.py
juanjosepablos/pineboo
f6ce515aec6e0139821bb9c1d62536d9fb50dae4
[ "MIT" ]
1
2017-10-30T22:00:48.000Z
2017-11-11T19:34:32.000Z
pineboolib/fllegacy/systype.py
juanjosepablos/pineboo
f6ce515aec6e0139821bb9c1d62536d9fb50dae4
[ "MIT" ]
1
2017-10-30T20:16:38.000Z
2017-10-30T20:16:38.000Z
"""Systype module.""" import traceback import os import os.path import sys import re from PyQt5 import QtCore, QtWidgets, QtGui, QtXml from pineboolib.core.error_manager import error_manager from pineboolib.core.system import System from pineboolib.core.utils import utils_base, logging from pineboolib.core import settings, decorators from pineboolib import application from pineboolib.application import types, process from pineboolib.application.database import pnsqlcursor, pnsqlquery from pineboolib.application.database import utils as utils_db from pineboolib.application.packager import pnunpacker from pineboolib.application.qsatypes import sysbasetype from .aqsobjects.aqs import AQS from .aqsobjects import aqsql from . import flutil from . import flapplication from . import flvar from pineboolib.q3widgets.dialog import Dialog from pineboolib.q3widgets.qbytearray import QByteArray from pineboolib.q3widgets.messagebox import MessageBox from pineboolib.q3widgets.qtextedit import QTextEdit from pineboolib.q3widgets.qlabel import QLabel from pineboolib.q3widgets.qdialog import QDialog from pineboolib.q3widgets.qvboxlayout import QVBoxLayout from pineboolib.q3widgets.qhboxlayout import QHBoxLayout from pineboolib.q3widgets.qpushbutton import QPushButton from pineboolib.q3widgets.filedialog import FileDialog from typing import cast, Optional, List, Any, Dict, Callable, TYPE_CHECKING from pineboolib.fllegacy import flfielddb, fltabledb if TYPE_CHECKING: from pineboolib.interfaces import iconnection, isqlcursor logger = logging.getLogger("fllegacy.systype") class AQTimer(QtCore.QTimer): """AQTimer class.""" pass class AQGlobalFunctions_class(QtCore.QObject): """AQSGlobalFunction class.""" functions_ = types.Array() mappers_: QtCore.QSignalMapper def __init__(self): """Initialize.""" super().__init__() self.mappers_ = QtCore.QSignalMapper() def set(self, function_name: str, global_function: Callable) -> None: """Set a new global function.""" self.functions_[function_name] = global_function def get(self, function_name: str) -> Callable: """Return a global function specified by name.""" return self.functions_[function_name] def exec_(self, function_name: str) -> None: """Execute a function specified by name.""" fn = self.functions_[function_name] if fn is not None: fn() def mapConnect(self, obj: QtWidgets.QWidget, signal: str, function_name: str) -> None: """Add conection to map.""" self.mappers_.mapped[str].connect(self.exec_) # type: ignore sg_name = re.sub(r" *\(.*\)", "", signal) sg = getattr(obj, sg_name, None) if sg is not None: sg.connect(self.mappers_.map) self.mappers_.setMapping(obj, function_name) class SysType(sysbasetype.SysBaseType): """SysType class.""" time_user_ = QtCore.QDateTime.currentDateTime() AQTimer = AQTimer AQGlobalFunctions = AQGlobalFunctions_class() @classmethod def translate(self, *args) -> str: """Translate a text.""" from pineboolib.core import translate group = args[0] if len(args) == 2 else "scripts" text = args[1] if len(args) == 2 else args[0] if text == "MetaData": group, text = text, group text = text.replace(" % ", " %% ") return translate.translate(group, text) def printTextEdit(self, editor: QtWidgets.QTextEdit): """Print text from a textEdit.""" flapplication.aqApp.printTextEdit(editor) def dialogGetFileImage(self) -> Optional[str]: """Show a file dialog and return a file name.""" return flapplication.aqApp.dialogGetFileImage() def toXmlReportData(self, qry: "pnsqlquery.PNSqlQuery") -> "QtXml.QDomDocument": """Return xml from a query.""" return flapplication.aqApp.toXmlReportData(qry) def showDocPage(self, url_: str) -> None: """Show externa file.""" return flapplication.aqApp.showDocPage(url_) def toPixmap(self, value_: str) -> QtGui.QPixmap: """Create a QPixmap from a text.""" return flapplication.aqApp.toPixmap(value_) def setMultiLang(self, enable_: bool, lang_id_: str) -> None: """ Change multilang status. @param enable, Boolean con el nuevo estado @param langid, Identificador del leguaje a activar """ return flapplication.aqApp.setMultiLang(enable_, lang_id_) def fromPixmap(self, pix_: QtGui.QPixmap) -> str: """Return a text from a QPixmap.""" return flapplication.aqApp.fromPixmap(pix_) def popupWarn(self, msg_warn: str, script_calls: List[Any] = []) -> None: """Show a warning popup.""" flapplication.aqApp.popupWarn(msg_warn, script_calls) def openMasterForm(self, action_name_: str, pix_: Optional[QtGui.QPixmap] = None) -> None: """Open default form from a action.""" flapplication.aqApp.openMasterForm(action_name_, pix_) def scalePixmap( self, pix_: QtGui.QPixmap, w_: int, h_: int, mode_: QtCore.Qt.AspectRatioMode ) -> QtGui.QImage: """Return QImage scaled from a QPixmap.""" return flapplication.aqApp.scalePixmap(pix_, w_, h_, mode_) @classmethod def transactionLevel(self) -> int: """Return transaction level.""" return application.PROJECT.conn_manager.useConn("default").transactionLevel() @classmethod def installACL(self, idacl) -> None: """Install a acl.""" from pineboolib.application.acls import pnaccesscontrollists acl_ = pnaccesscontrollists.PNAccessControlLists() if acl_: acl_.install_acl(idacl) @classmethod def updateAreas(self) -> None: """Update areas in mdi.""" mw = flapplication.aqApp.mainWidget() if hasattr(mw, "initToolBox"): mw.initToolBox() @classmethod def reinit(self) -> None: """Call reinit script.""" flapplication.aqApp.reinit() @classmethod def modMainWidget(self, id_module_: str) -> Optional[QtWidgets.QWidget]: """Set module MainWinget.""" return flapplication.aqApp.modMainWidget(id_module_) @classmethod def setCaptionMainWidget(self, title: str) -> None: """Set caption in the main widget.""" flapplication.aqApp.setCaptionMainWidget(title) @staticmethod def execQSA(fileQSA=None, args=None) -> None: """Execute a QS file.""" from pineboolib.application import types try: with open(fileQSA, "r") as file: fn = types.function(file.read()) fn(args) except Exception: e = traceback.format_exc() logger.warning(e) return @staticmethod def dumpDatabase() -> None: """Launch dump database.""" aqDumper = AbanQDbDumper() aqDumper.init() @staticmethod def terminateChecksLocks(sqlCursor: "isqlcursor.ISqlCursor" = None) -> None: """Set check risk locks to False in a cursor.""" if sqlCursor is not None: sqlCursor.checkRisksLocks(True) @classmethod def statusDbLocksDialog(self, locks: Optional[List[str]] = None) -> None: """Show Database locks status.""" diag = Dialog() txtEdit = QTextEdit() diag.caption = self.translate(u"scripts", u"Bloqueos de la base de datos") diag.setWidth(500) html = u'<html><table border="1">' if locks is not None and len(locks): j = 0 item = u"" fields = locks[0].split(u"@") closeInfo = False closeRecord = False headInfo = u'<table border="1"><tr>' i = 0 while_pass = True while i < len(fields): if not while_pass: i += 1 while_pass = True continue while_pass = False headInfo += utils_base.ustr(u"<td><b>", fields[i], u"</b></td>") i += 1 while_pass = True try: i < len(fields) except Exception: break headInfo += u"</tr>" headRecord = utils_base.ustr( u'<table border="1"><tr><td><b>', self.translate(u"scripts", u"Registro bloqueado"), u"</b></td></tr>", ) i = 1 while_pass = True while i < len(locks): if not while_pass: i += 1 while_pass = True continue while_pass = False item = locks[i] if item[0:2] == u"##": if closeInfo: html += u"</table>" if not closeRecord: html += headRecord html += utils_base.ustr( u"<tr><td>", item[(len(item) - (len(item) - 2)) :], u"</td></tr>" ) closeRecord = True closeInfo = False else: if closeRecord: html += u"</table>" if not closeInfo: html += headInfo html += u"<tr>" fields = item.split(u"@") j = 0 while_pass = True while j < len(fields): if not while_pass: j += 1 while_pass = True continue while_pass = False html += utils_base.ustr(u"<td>", fields[j], u"</td>") j += 1 while_pass = True try: j < len(fields) except Exception: break html += u"</tr>" closeRecord = False closeInfo = True i += 1 while_pass = True try: i < len(locks) except Exception: break html += u"</table></table></html>" txtEdit.text = html diag.add(txtEdit) diag.exec_() @classmethod def mvProjectXml(self) -> QtXml.QDomDocument: """Extract a module defition to a QDomDocument.""" doc_ret_ = QtXml.QDomDocument() str_xml_ = utils_db.sql_select(u"flupdates", u"modulesdef", "actual") if not str_xml_: return doc_ret_ doc = QtXml.QDomDocument() if not doc.setContent(str_xml_): return doc_ret_ str_xml_ = u"" nodes = doc.childNodes() i = 0 while_pass = True while i < len(nodes): if not while_pass: i += 1 while_pass = True continue while_pass = False it = nodes.item(i) if it.isComment(): data = it.toComment().data() if not data == "" and data.startswith(u"<mvproject "): str_xml_ = data break i += 1 while_pass = True try: i < len(nodes) except Exception: break if str_xml_ == "": return doc_ret_ doc_ret_.setContent(str_xml_) return doc_ret_ @classmethod def mvProjectModules(self) -> types.Array: """Return modules defitions Dict.""" ret = types.Array() doc = self.mvProjectXml() mods = doc.elementsByTagName(u"module") i = 0 while_pass = True while i < len(mods): if not while_pass: i += 1 while_pass = True continue while_pass = False it = mods.item(i).toElement() mod = {"name": (it.attribute(u"name")), "version": (it.attribute(u"version"))} if len(mod["name"]) == 0: continue ret[mod["name"]] = mod i += 1 while_pass = True try: i < len(mods) except Exception: break return ret @classmethod def mvProjectExtensions(self) -> types.Array: """Return project extensions Dict.""" ret = types.Array() doc = self.mvProjectXml() exts = doc.elementsByTagName(u"extension") i = 0 while_pass = True while i < len(exts): if not while_pass: i += 1 while_pass = True continue while_pass = False it = exts.item(i).toElement() ext = {"name": (it.attribute(u"name")), "version": (it.attribute(u"version"))} if len(ext["name"]) == 0: continue ret[ext["name"]] = ext i += 1 while_pass = True try: i < len(exts) except Exception: break return ret @classmethod def calculateShaGlobal(self) -> str: """Return sha global value.""" v = "" qry = pnsqlquery.PNSqlQuery() qry.setSelect(u"sha") qry.setFrom(u"flfiles") if qry.exec_() and qry.first(): v = utils_base.sha1(str(qry.value(0))) while qry.next(): v = utils_base.sha1(v + str(qry.value(0))) else: v = utils_base.sha1("") return v @classmethod def registerUpdate(self, input_: Any = None) -> None: """Install a package.""" if not input_: return unpacker = pnunpacker.PNUnpacker(input_) errors = unpacker.errorMessages() if len(errors) != 0: msg = self.translate(u"Hubo los siguientes errores al intentar cargar los módulos:") msg += u"\n" i = 0 while_pass = True while i < len(errors): if not while_pass: i += 1 while_pass = True continue while_pass = False msg += utils_base.ustr(errors[i], u"\n") i += 1 while_pass = True try: i < len(errors) except Exception: break self.errorMsgBox(msg) return unpacker.jump() unpacker.jump() unpacker.jump() now = str(types.Date()) file = types.File(input_) fileName = file.name modulesDef = self.toUnicode(unpacker.getText(), u"utf8") filesDef = self.toUnicode(unpacker.getText(), u"utf8") shaGlobal = self.calculateShaGlobal() aqsql.AQSql.update(u"flupdates", [u"actual"], [False], "1=1") aqsql.AQSql.insert( u"flupdates", [u"fecha", u"hora", u"nombre", u"modulesdef", u"filesdef", u"shaglobal"], [ now[: now.find("T")], str(now)[(len(str(now)) - (8)) :], fileName, modulesDef, filesDef, shaGlobal, ], ) @classmethod def warnLocalChanges(self, changes: Optional[Dict[str, Any]] = None) -> bool: """Show local changes warning.""" if changes is None: changes = self.localChanges() if changes["size"] == 0: return True diag = QDialog() diag.caption = self.translate(u"Detectados cambios locales") diag.setModal(True) txt = u"" txt += self.translate(u"¡¡ CUIDADO !! DETECTADOS CAMBIOS LOCALES\n\n") txt += self.translate(u"Se han detectado cambios locales en los módulos desde\n") txt += self.translate(u"la última actualización/instalación de un paquete de módulos.\n") txt += self.translate(u"Si continua es posible que estos cambios sean sobreescritos por\n") txt += self.translate(u"los cambios que incluye el paquete que quiere cargar.\n\n") txt += u"\n\n" txt += self.translate(u"Registro de cambios") lay = QVBoxLayout(diag) # lay.setMargin(6) # lay.setSpacing(6) lbl = QLabel(diag) lbl.setText(txt) lbl.setAlignment(cast(QtCore.Qt.Alignment, QtCore.Qt.AlignTop)) lay.addWidget(lbl) ted = QTextEdit(diag) ted.setTextFormat(QTextEdit.LogText) ted.setAlignment(cast(QtCore.Qt.Alignment, QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter)) ted.append(self.reportChanges(changes)) lay.addWidget(ted) lbl2 = QLabel(diag) lbl2.setText(self.translate("¿Que desea hacer?")) lbl2.setAlignment(cast(QtCore.Qt.Alignment, QtCore.Qt.AlignTop)) lay.addWidget(lbl2) lay2 = QHBoxLayout() # lay2.setMargin(6) # lay2.setSpacing(6) lay.addLayout(lay2) pbCancel = QPushButton(diag) pbCancel.setText(self.translate(u"Cancelar")) pbAccept = QPushButton(diag) pbAccept.setText(self.translate(u"continue")) lay2.addWidget(pbCancel) lay2.addWidget(pbAccept) application.connections.connect(pbAccept, "clicked()", diag, "accept()") application.connections.connect(pbCancel, "clicked()", diag, "reject()") return False if (diag.exec_() == 0) else True @classmethod def xmlFilesDefBd(self) -> QtXml.QDomDocument: """Return a QDomDocument with files definition.""" doc = QtXml.QDomDocument(u"files_def") root = doc.createElement(u"files") doc.appendChild(root) qry = pnsqlquery.PNSqlQuery() qry.setSelect(u"idmodulo,nombre,contenido") qry.setFrom(u"flfiles") if not qry.exec_(): return doc shaSum = u"" shaSumTxt = u"" shaSumBin = u"" while qry.next(): idMod = str(qry.value(0)) if idMod == u"sys": continue fName = str(qry.value(1)) ba = QByteArray() ba.string = self.fromUnicode(str(qry.value(2)), u"iso-8859-15") sha = ba.sha1() nf = doc.createElement(u"file") root.appendChild(nf) ne = doc.createElement(u"module") nf.appendChild(ne) nt = doc.createTextNode(idMod) ne.appendChild(nt) ne = doc.createElement(u"name") nf.appendChild(ne) nt = doc.createTextNode(fName) ne.appendChild(nt) if self.textPacking(fName): ne = doc.createElement(u"text") nf.appendChild(ne) nt = doc.createTextNode(fName) ne.appendChild(nt) ne = doc.createElement(u"shatext") nf.appendChild(ne) nt = doc.createTextNode(sha) ne.appendChild(nt) ba = QByteArray() ba.string = shaSum + sha shaSum = ba.sha1() ba = QByteArray() ba.string = shaSumTxt + sha shaSumTxt = ba.sha1() # try: # if self.binaryPacking(fName): # ne = doc.createElement(u"binary") # nf.appendChild(ne) # nt = doc.createTextNode(utils_base.ustr(fName, u".qso")) # ne.appendChild(nt) # sha = AQS.sha1(qry.value(3)) # ne = doc.createElement(u"shabinary") # nf.appendChild(ne) # nt = doc.createTextNode(sha) # ne.appendChild(nt) # ba = QByteArray() # ba.string = shaSum + sha # shaSum = ba.sha1() # ba = QByteArray() # ba.string = shaSumBin + sha # shaSumBin = ba.sha1() # except Exception: # e = traceback.format_exc() # logger.error(e) qry = pnsqlquery.PNSqlQuery() qry.setSelect(u"idmodulo,icono") qry.setFrom(u"flmodules") if qry.exec_(): while qry.next(): idMod = str(qry.value(0)) if idMod == u"sys": continue fName = utils_base.ustr(idMod, u".xpm") ba = QByteArray() ba.string = str(qry.value(1)) sha = ba.sha1() nf = doc.createElement(u"file") root.appendChild(nf) ne = doc.createElement(u"module") nf.appendChild(ne) nt = doc.createTextNode(idMod) ne.appendChild(nt) ne = doc.createElement(u"name") nf.appendChild(ne) nt = doc.createTextNode(fName) ne.appendChild(nt) if self.textPacking(fName): ne = doc.createElement(u"text") nf.appendChild(ne) nt = doc.createTextNode(fName) ne.appendChild(nt) ne = doc.createElement(u"shatext") nf.appendChild(ne) nt = doc.createTextNode(sha) ne.appendChild(nt) ba = QByteArray() ba.string = shaSum + sha shaSum = ba.sha1() ba = QByteArray() ba.string = shaSumTxt + sha shaSumTxt = ba.sha1() ns = doc.createElement(u"shasum") ns.appendChild(doc.createTextNode(shaSum)) root.appendChild(ns) ns = doc.createElement(u"shasumtxt") ns.appendChild(doc.createTextNode(shaSumTxt)) root.appendChild(ns) ns = doc.createElement(u"shasumbin") ns.appendChild(doc.createTextNode(shaSumBin)) root.appendChild(ns) return doc @classmethod def loadModules(self, input_: Optional[Any] = None, warnBackup: bool = True): """Load modules from a package.""" if input_ is None: dir_ = types.Dir(self.installPrefix()) dir_.setCurrent() path_tuple = QtWidgets.QFileDialog.getOpenFileName( QtWidgets.QApplication.focusWidget(), u"Eneboo/AbanQ Packages", self.translate(u"scripts", u"Seleccionar Fichero"), "*.eneboopkg", ) input_ = path_tuple[0] if input_: self.loadAbanQPackage(input_, warnBackup) @classmethod def loadAbanQPackage(self, input_: str, warnBackup: bool = True): """Load and process a Abanq/Eneboo package.""" if warnBackup and self.interactiveGUI(): txt = u"" txt += self.translate(u"Asegúrese de tener una copia de seguridad de todos los datos\n") txt += self.translate(u"y de que no hay ningun otro usuario conectado a la base de\n") txt += self.translate(u"datos mientras se realiza la carga.\n\n") txt += u"\n\n" txt += self.translate(u"¿Desea continuar?") if MessageBox.Yes != MessageBox.warning(txt, MessageBox.No, MessageBox.Yes): return if input_: ok = True changes = self.localChanges() if changes["size"] != 0: if not self.warnLocalChanges(changes): return if ok: unpacker = pnunpacker.PNUnpacker(input_) errors = unpacker.errorMessages() if len(errors) != 0: msg = self.translate( u"Hubo los siguientes errores al intentar cargar los módulos:" ) msg += u"\n" i = 0 while_pass = True while i < len(errors): if not while_pass: i += 1 while_pass = True continue while_pass = False msg += utils_base.ustr(errors[i], u"\n") i += 1 while_pass = True try: i < len(errors) except Exception: break self.errorMsgBox(msg) ok = False unpacker.jump() unpacker.jump() unpacker.jump() if ok: ok = self.loadModulesDef(unpacker) if ok: ok = self.loadFilesDef(unpacker) if not ok: self.errorMsgBox( self.translate(u"No se ha podido realizar la carga de los módulos.") ) else: self.registerUpdate(input_) self.infoMsgBox(self.translate(u"La carga de módulos se ha realizado con éxito.")) self.reinit() tmpVar = flvar.FLVar() tmpVar.set(u"mrproper", u"dirty") @classmethod def loadFilesDef(self, un: Any) -> bool: """Load files definition from a package to a QDomDocument.""" filesDef = self.toUnicode(un.getText(), u"utf8") doc = QtXml.QDomDocument() if not doc.setContent(filesDef): self.errorMsgBox( self.translate(u"Error XML al intentar cargar la definición de los ficheros.") ) return False ok = True root = doc.firstChild() files = root.childNodes() flutil.FLUtil.createProgressDialog(self.translate(u"Registrando ficheros"), len(files)) i = 0 while_pass = True while i < len(files): if not while_pass: i += 1 while_pass = True continue while_pass = False it = files.item(i) fil = { "id": it.namedItem(u"name").toElement().text(), "skip": it.namedItem(u"skip").toElement().text(), "module": it.namedItem(u"module").toElement().text(), "text": it.namedItem(u"text").toElement().text(), "shatext": it.namedItem(u"shatext").toElement().text(), "binary": it.namedItem(u"binary").toElement().text(), "shabinary": it.namedItem(u"shabinary").toElement().text(), } flutil.FLUtil.setProgress(i) flutil.FLUtil.setLabelText( utils_base.ustr(self.translate(u"Registrando fichero"), u" ", fil["id"]) ) if len(fil["id"]) == 0 or fil["skip"] == u"true": continue if not self.registerFile(fil, un): self.errorMsgBox( utils_base.ustr( self.translate(u"Error registrando el fichero"), u" ", fil["id"] ) ) ok = False break i += 1 while_pass = True try: i < len(files) except Exception: break flutil.FLUtil.destroyProgressDialog() return ok @classmethod def registerFile(self, fil: Dict[str, Any], un: Any) -> bool: """Register a file in the database.""" if fil["id"].endswith(u".xpm"): cur = pnsqlcursor.PNSqlCursor(u"flmodules") if not cur.select(utils_base.ustr(u"idmodulo='", fil["module"], u"'")): return False if not cur.first(): return False cur.setModeAccess(aqsql.AQSql.Edit) cur.refreshBuffer() cur.setValueBuffer(u"icono", un.getText()) return cur.commitBuffer() cur = pnsqlcursor.PNSqlCursor(u"flfiles") if not cur.select(utils_base.ustr(u"nombre='", fil["id"], u"'")): return False cur.setModeAccess((aqsql.AQSql.Edit if cur.first() else aqsql.AQSql.Insert)) cur.refreshBuffer() cur.setValueBuffer(u"nombre", fil["id"]) cur.setValueBuffer(u"idmodulo", fil["module"]) cur.setValueBuffer(u"sha", fil["shatext"]) if len(fil["text"]) > 0: if fil["id"].endswith(u".qs"): cur.setValueBuffer(u"contenido", self.toUnicode(un.getText(), u"iso-8859-15")) else: cur.setValueBuffer(u"contenido", un.getText()) if len(fil["binary"]) > 0: un.getBinary() return cur.commitBuffer() @classmethod def checkProjectName(self, proName: str) -> bool: """Return if te project name is valid.""" if not proName or proName is None: proName = u"" dbProName = flutil.FLUtil.readDBSettingEntry(u"projectname") if not dbProName: dbProName = u"" if proName == dbProName: return True if not proName == "" and dbProName == "": return flutil.FLUtil.writeDBSettingEntry(u"projectname", proName) txt = u"" txt += self.translate(u"¡¡ CUIDADO !! POSIBLE INCOHERENCIA EN LOS MÓDULOS\n\n") txt += self.translate(u"Está intentando cargar un proyecto o rama de módulos cuyo\n") txt += self.translate(u"nombre difiere del instalado actualmente en la base de datos.\n") txt += self.translate(u"Es posible que la estructura de los módulos que quiere cargar\n") txt += self.translate( u"sea completamente distinta a la instalada actualmente, y si continua\n" ) txt += self.translate( u"podría dañar el código, datos y la estructura de tablas de Eneboo.\n\n" ) txt += self.translate(u"- Nombre del proyecto instalado: %s\n") % (str(dbProName)) txt += self.translate(u"- Nombre del proyecto a cargar: %s\n\n") % (str(proName)) txt += u"\n\n" if not self.interactiveGUI(): logger.warning(txt) return False txt += self.translate(u"¿Desea continuar?") return MessageBox.Yes == MessageBox.warning( txt, MessageBox.No, MessageBox.Yes, MessageBox.NoButton, u"AbanQ" ) @classmethod def loadModulesDef(self, un: Any) -> bool: """Return QDomDocument with modules definition.""" modulesDef = self.toUnicode(un.getText(), u"utf8") doc = QtXml.QDomDocument() if not doc.setContent(modulesDef): self.errorMsgBox( self.translate(u"Error XML al intentar cargar la definición de los módulos.") ) return False root = doc.firstChild() if not self.checkProjectName(root.toElement().attribute(u"projectname", u"")): return False ok = True modules = root.childNodes() flutil.FLUtil.createProgressDialog(self.translate(u"Registrando módulos"), len(modules)) i = 0 while_pass = True while i < len(modules): if not while_pass: i += 1 while_pass = True continue while_pass = False it = modules.item(i) mod = { "id": it.namedItem(u"name").toElement().text(), "alias": self.trTagText(it.namedItem(u"alias").toElement().text()), "area": it.namedItem(u"area").toElement().text(), "areaname": self.trTagText(it.namedItem(u"areaname").toElement().text()), "version": it.namedItem(u"version").toElement().text(), } flutil.FLUtil.setProgress(i) flutil.FLUtil.setLabelText( utils_base.ustr(self.translate(u"Registrando módulo"), u" ", mod["id"]) ) if not self.registerArea(mod) or not self.registerModule(mod): self.errorMsgBox( utils_base.ustr(self.translate(u"Error registrando el módulo"), u" ", mod["id"]) ) ok = False break i += 1 while_pass = True try: i < len(modules) except Exception: break flutil.FLUtil.destroyProgressDialog() return ok @classmethod def registerArea(self, mod: Dict[str, Any]) -> bool: """Return True if the area is created or False.""" cur = pnsqlcursor.PNSqlCursor(u"flareas") if not cur.select(utils_base.ustr(u"idarea='", mod["area"], u"'")): return False cur.setModeAccess((aqsql.AQSql.Edit if cur.first() else aqsql.AQSql.Insert)) cur.refreshBuffer() cur.setValueBuffer(u"idarea", mod["area"]) cur.setValueBuffer(u"descripcion", mod["areaname"]) return cur.commitBuffer() @classmethod def registerModule(self, mod: Dict[str, Any]) -> bool: """Return True if the module is created or False.""" cur = pnsqlcursor.PNSqlCursor(u"flmodules") if not cur.select(utils_base.ustr(u"idmodulo='", mod["id"], u"'")): return False cur.setModeAccess((aqsql.AQSql.Edit if cur.first() else aqsql.AQSql.Insert)) cur.refreshBuffer() cur.setValueBuffer(u"idmodulo", mod["id"]) cur.setValueBuffer(u"idarea", mod["area"]) cur.setValueBuffer(u"descripcion", mod["alias"]) cur.setValueBuffer(u"version", mod["version"]) return cur.commitBuffer() @classmethod def questionMsgBox( self, msg: str, keyRemember: str, txtRemember: str, forceShow: bool, txtCaption: str, txtYes: str, txtNo: str, ) -> Any: """Return a messagebox result.""" key = u"QuestionMsgBox/" valRemember = False if keyRemember: valRemember = settings.settings.value(key + keyRemember) if valRemember and not forceShow: return MessageBox.Yes if not self.interactiveGUI(): return True diag = QDialog() diag.caption = txtCaption if txtCaption else u"Eneboo" diag.setModal(True) lay = QVBoxLayout(diag) # lay.setMargin(6) lay.setSpacing(6) lay2 = QHBoxLayout(diag) # lay2.setMargin(6) lay2.setSpacing(6) lblPix = QLabel(diag) pixmap = AQS.pixmap_fromMimeSource(u"help_index.png") if pixmap: lblPix.setPixmap(pixmap) lblPix.setAlignment(AQS.AlignTop) lay2.addWidget(lblPix) lbl = QLabel(diag) lbl.setText(msg) lbl.setAlignment(cast(QtCore.Qt.Alignment, AQS.AlignTop | AQS.WordBreak)) lay2.addWidget(lbl) lay3 = QHBoxLayout(diag) # lay3.setMargin(6) lay3.setSpacing(6) pbYes = QPushButton(diag) pbYes.setText(txtYes if txtYes else self.translate(u"Sí")) pbNo = QPushButton(diag) pbNo.setText(txtNo if txtNo else self.translate(u"No")) lay3.addWidget(pbYes) lay3.addWidget(pbNo) application.connections.connect(pbYes, u"clicked()", diag, u"accept()") application.connections.connect(pbNo, u"clicked()", diag, u"reject()") chkRemember = None if keyRemember and txtRemember: # from pineboolib.q3widgets.qcheckbox import QCheckBox chkRemember = QtWidgets.QCheckBox(txtRemember, diag) chkRemember.setChecked(valRemember) lay.addWidget(chkRemember) ret = MessageBox.No if (diag.exec_() == 0) else MessageBox.Yes if chkRemember is not None: settings.settings.set_value(key + keyRemember, chkRemember.isChecked()) return ret @classmethod def exportModules(self) -> None: """Export modules.""" dirBasePath = FileDialog.getExistingDirectory(types.Dir.home) if not dirBasePath: return dataBaseName = application.PROJECT.conn_manager.mainConn()._db_name dirBasePath = types.Dir.cleanDirPath( utils_base.ustr( dirBasePath, u"/modulos_exportados_", dataBaseName[dataBaseName.rfind(u"/") + 1 :] ) ) dir = types.Dir() if not dir.fileExists(dirBasePath): try: dir.mkdir(dirBasePath) except Exception: e = traceback.format_exc() self.errorMsgBox(utils_base.ustr(u"", e)) return else: self.warnMsgBox( dirBasePath + self.translate(u" ya existe,\ndebe borrarlo antes de continuar") ) return qry = pnsqlquery.PNSqlQuery() qry.setSelect(u"idmodulo") qry.setFrom(u"flmodules") if not qry.exec_() or qry.size() == 0: return p = 0 flutil.FLUtil.createProgressDialog(self.translate(u"Exportando módulos"), qry.size() - 1) while qry.next(): idMod = qry.value(0) if idMod == u"sys": continue flutil.FLUtil.setLabelText(idMod) p += 1 flutil.FLUtil.setProgress(p) try: self.exportModule(idMod, dirBasePath) except Exception: e = traceback.format_exc() flutil.FLUtil.destroyProgressDialog() self.errorMsgBox(utils_base.ustr(u"", e)) return dbProName = flutil.FLUtil.readDBSettingEntry(u"projectname") if not dbProName: dbProName = u"" if not dbProName == "": doc = QtXml.QDomDocument() tag = doc.createElement(u"mvproject") tag.toElement().setAttribute(u"name", dbProName) doc.appendChild(tag) try: types.FileStatic.write( utils_base.ustr(dirBasePath, u"/mvproject.xml"), doc.toString(2) ) except Exception: e = traceback.format_exc() flutil.FLUtil.destroyProgressDialog() self.errorMsgBox(utils_base.ustr(u"", e)) return flutil.FLUtil.destroyProgressDialog() self.infoMsgBox(self.translate(u"Módulos exportados en:\n") + dirBasePath) @classmethod def xmlModule(self, idMod: str) -> QtXml.QDomDocument: """Return xml data from a module.""" qry = pnsqlquery.PNSqlQuery() qry.setSelect(u"descripcion,idarea,version") qry.setFrom(u"flmodules") qry.setWhere(utils_base.ustr(u"idmodulo='", idMod, u"'")) doc = QtXml.QDomDocument(u"MODULE") if not qry.exec_() or not qry.next(): return doc tagMod = doc.createElement(u"MODULE") doc.appendChild(tagMod) tag = doc.createElement(u"name") tag.appendChild(doc.createTextNode(idMod)) tagMod.appendChild(tag) trNoop = u'QT_TRANSLATE_NOOP("Eneboo","%s")' tag = doc.createElement(u"alias") tag.appendChild(doc.createTextNode(trNoop % qry.value(0))) tagMod.appendChild(tag) idArea = qry.value(1) tag = doc.createElement(u"area") tag.appendChild(doc.createTextNode(idArea)) tagMod.appendChild(tag) areaName = utils_db.sql_select( u"flareas", u"descripcion", utils_base.ustr(u"idarea='", idArea, u"'") ) tag = doc.createElement(u"areaname") tag.appendChild(doc.createTextNode(trNoop % areaName)) tagMod.appendChild(tag) tag = doc.createElement(u"entryclass") tag.appendChild(doc.createTextNode(idMod)) tagMod.appendChild(tag) tag = doc.createElement(u"version") tag.appendChild(doc.createTextNode(qry.value(2))) tagMod.appendChild(tag) tag = doc.createElement(u"icon") tag.appendChild(doc.createTextNode(utils_base.ustr(idMod, u".xpm"))) tagMod.appendChild(tag) return doc @classmethod def fileWriteIso(self, file_name: str, content: str) -> None: """Write data into a file with ISO-8859-15 encode.""" # from PyQt5.QtCore import QtCore.QTextStream fileISO = types.File(file_name, "ISO8859-15") fileISO.write(content.encode("ISO8859-15", "ignore")) # if not fileISO.open(types.File.WriteOnly): # logger.warning(utils_base.ustr(u"Error abriendo fichero ", fileName, u" para escritura")) # return False # tsISO = QtCore.QTextStream(fileISO) # tsISO.setCodec(AQS.TextCodec_codecForName(u"ISO8859-15")) # tsISO.opIn(content) fileISO.close() @classmethod def fileWriteUtf8(self, file_name: str, content: str) -> None: """Write data into a file with UTF-8 encode.""" # from PyQt5.QtCore import QtCore.QTextStream fileUTF = types.File(file_name, "UTF-8") fileUTF.write(content) # if not fileUTF.open(types.File.WriteOnly): # logger.warning(utils_base.ustr(u"Error abriendo fichero ", fileName, u" para escritura")) # return False # tsUTF = QtCore.QTextStream(fileUTF.ioDevice) # tsUTF.setCodec(AQS.TextCodec_codecForName(u"utf8")) # tsUTF.opIn(content) fileUTF.close() @classmethod def exportModule(self, idMod: str, dirBasePath: str) -> None: """Export a module to a directory.""" dir = types.Dir() dirPath = types.Dir.cleanDirPath(utils_base.ustr(dirBasePath, u"/", idMod)) if not dir.fileExists(dirPath): dir.mkdir(dirPath) if not dir.fileExists(utils_base.ustr(dirPath, u"/forms")): dir.mkdir(utils_base.ustr(dirPath, u"/forms")) if not dir.fileExists(utils_base.ustr(dirPath, u"/scripts")): dir.mkdir(utils_base.ustr(dirPath, u"/scripts")) if not dir.fileExists(utils_base.ustr(dirPath, u"/queries")): dir.mkdir(utils_base.ustr(dirPath, u"/queries")) if not dir.fileExists(utils_base.ustr(dirPath, u"/tables")): dir.mkdir(utils_base.ustr(dirPath, u"/tables")) if not dir.fileExists(utils_base.ustr(dirPath, u"/reports")): dir.mkdir(utils_base.ustr(dirPath, u"/reports")) if not dir.fileExists(utils_base.ustr(dirPath, u"/translations")): dir.mkdir(utils_base.ustr(dirPath, u"/translations")) xmlMod = self.xmlModule(idMod) self.fileWriteIso(utils_base.ustr(dirPath, u"/", idMod, u".mod"), xmlMod.toString(2)) xpmMod = utils_db.sql_select( u"flmodules", u"icono", utils_base.ustr(u"idmodulo='", idMod, u"'") ) self.fileWriteIso(utils_base.ustr(dirPath, u"/", idMod, u".xpm"), xpmMod) qry = pnsqlquery.PNSqlQuery() qry.setSelect(u"nombre,contenido") qry.setFrom(u"flfiles") qry.setWhere(utils_base.ustr(u"idmodulo='", idMod, u"'")) if not qry.exec_() or qry.size() == 0: return while qry.next(): name = qry.value(0) content = qry.value(1) type = name[(len(name) - (len(name) - name.rfind(u"."))) :] if content == "": continue s02_when = type s02_do_work, s02_work_done = False, False if s02_when == u".xml": s02_do_work, s02_work_done = True, True if s02_do_work: self.fileWriteIso(utils_base.ustr(dirPath, u"/", name), content) s02_do_work = False # BREAK if s02_when == u".ui": s02_do_work, s02_work_done = True, True if s02_do_work: self.fileWriteIso(utils_base.ustr(dirPath, u"/forms/", name), content) s02_do_work = False # BREAK if s02_when == u".qs": s02_do_work, s02_work_done = True, True if s02_do_work: self.fileWriteIso(utils_base.ustr(dirPath, u"/scripts/", name), content) s02_do_work = False # BREAK if s02_when == u".qry": s02_do_work, s02_work_done = True, True if s02_do_work: self.fileWriteIso(utils_base.ustr(dirPath, u"/queries/", name), content) s02_do_work = False # BREAK if s02_when == u".mtd": s02_do_work, s02_work_done = True, True if s02_do_work: self.fileWriteIso(utils_base.ustr(dirPath, u"/tables/", name), content) s02_do_work = False # BREAK if s02_when == u".kut": s02_do_work, s02_work_done = True, True if s02_do_work: pass if s02_when == u".ar": s02_do_work, s02_work_done = True, True if s02_do_work: pass if s02_when == u".jrxml": s02_do_work, s02_work_done = True, True if s02_do_work: pass if s02_when == u".svg": s02_do_work, s02_work_done = True, True if s02_do_work: self.fileWriteIso(utils_base.ustr(dirPath, u"/reports/", name), content) s02_do_work = False # BREAK if s02_when == u".ts": s02_do_work, s02_work_done = True, True # noqa if s02_do_work: self.fileWriteIso(utils_base.ustr(dirPath, u"/translations/", name), content) s02_do_work = False # BREAK @classmethod def importModules(self, warnBackup: bool = True) -> None: """Import modules from a directory.""" if warnBackup and self.interactiveGUI(): txt = u"" txt += self.translate(u"Asegúrese de tener una copia de seguridad de todos los datos\n") txt += self.translate(u"y de que no hay ningun otro usuario conectado a la base de\n") txt += self.translate(u"datos mientras se realiza la importación.\n\n") txt += self.translate(u"Obtenga soporte en") txt += u" http://www.infosial.com\n(c) InfoSiAL S.L." txt += u"\n\n" txt += self.translate(u"¿Desea continuar?") if MessageBox.Yes != MessageBox.warning(txt, MessageBox.No, MessageBox.Yes): return key = utils_base.ustr(u"scripts/sys/modLastDirModules_", self.nameBD()) dirAnt = settings.settings.value(key) dirMods = FileDialog.getExistingDirectory( str(dirAnt) if dirAnt else None, self.translate(u"Directorio de Módulos") ) if not dirMods: return dirMods = types.Dir.cleanDirPath(dirMods) dirMods = types.Dir.convertSeparators(dirMods) QtCore.QDir.setCurrent(dirMods) # change current directory listFilesMod = self.selectModsDialog(flutil.FLUtil.findFiles(dirMods, u"*.mod", False)) flutil.FLUtil.createProgressDialog(self.translate(u"Importando"), len(listFilesMod)) flutil.FLUtil.setProgress(1) i = 0 while_pass = True while i < len(listFilesMod): if not while_pass: i += 1 while_pass = True continue while_pass = False flutil.FLUtil.setLabelText(listFilesMod[i]) flutil.FLUtil.setProgress(i) if not self.importModule(listFilesMod[i]): self.errorMsgBox(self.translate(u"Error al cargar el módulo:\n") + listFilesMod[i]) break i += 1 while_pass = True try: i < len(listFilesMod) except Exception: break flutil.FLUtil.destroyProgressDialog() flutil.FLUtil.writeSettingEntry(key, dirMods) self.infoMsgBox(self.translate(u"Importación de módulos finalizada.")) AQTimer.singleShot(0, self.reinit) @classmethod def selectModsDialog(self, listFilesMod: List = []) -> types.Array: """Select modules dialog.""" dialog = Dialog() dialog.okButtonText = self.translate(u"Aceptar") dialog.cancelButtonText = self.translate(u"Cancelar") bgroup = QtWidgets.QGroupBox() bgroup.setTitle(self.translate(u"Seleccione módulos a importar")) dialog.add(bgroup) res = types.Array() cB = types.Array() i = 0 while_pass = True while i < len(listFilesMod): if not while_pass: i += 1 while_pass = True continue while_pass = False cB[i] = QtWidgets.QCheckBox() # bgroup.add(cB[i]) cB[i].text = listFilesMod[i] cB[i].checked = True i += 1 while_pass = True try: i < len(listFilesMod) except Exception: break idx = 0 if self.interactiveGUI() and dialog.exec_(): i = 0 while_pass = True while i < len(listFilesMod): if not while_pass: i += 1 while_pass = True continue while_pass = False if cB[i].checked: res[idx] = listFilesMod[i] idx += 1 i += 1 while_pass = True try: i < len(listFilesMod) except Exception: break return res @classmethod def importModule(self, modPath: str) -> bool: """Import a module specified by name.""" try: with open(modPath, "r", encoding="ISO8859-15") as fileMod: contentMod = fileMod.read() except Exception: e = traceback.format_exc() self.errorMsgBox(utils_base.ustr(self.translate(u"Error leyendo fichero."), u"\n", e)) return False mod_folder = os.path.dirname(modPath) mod = None xmlMod = QtXml.QDomDocument() if xmlMod.setContent(contentMod): nodeMod = xmlMod.namedItem(u"MODULE") if not nodeMod: self.errorMsgBox(self.translate(u"Error en la carga del fichero xml .mod")) return False mod = { "id": (nodeMod.namedItem(u"name").toElement().text()), "alias": (self.trTagText(nodeMod.namedItem(u"alias").toElement().text())), "area": (nodeMod.namedItem(u"area").toElement().text()), "areaname": (self.trTagText(nodeMod.namedItem(u"areaname").toElement().text())), "version": (nodeMod.namedItem(u"version").toElement().text()), } if not self.registerArea(mod) or not self.registerModule(mod): self.errorMsgBox( utils_base.ustr(self.translate(u"Error registrando el módulo"), u" ", mod["id"]) ) return False if not self.importFiles(mod_folder, u"*.xml", mod["id"]): return False if not self.importFiles(mod_folder, u"*.ui", mod["id"]): return False if not self.importFiles(mod_folder, u"*.qs", mod["id"]): return False if not self.importFiles(mod_folder, u"*.qry", mod["id"]): return False if not self.importFiles(mod_folder, u"*.mtd", mod["id"]): return False if not self.importFiles(mod_folder, u"*.kut", mod["id"]): return False if not self.importFiles(mod_folder, u"*.ar", mod["id"]): return False if not self.importFiles(mod_folder, u"*.jrxml", mod["id"]): return False if not self.importFiles(mod_folder, u"*.svg", mod["id"]): return False if not self.importFiles(mod_folder, u"*.ts", mod["id"]): return False else: self.errorMsgBox(self.translate(u"Error en la carga del fichero xml .mod")) return False return True @classmethod def importFiles(self, dir_path_: str, ext: str, id_module_: str) -> bool: """Import files with a exension from a path.""" ok = True util = flutil.FLUtil() list_files_ = util.findFiles(dir_path_, ext, False) util.createProgressDialog(self.translate(u"Importando"), len(list_files_)) util.setProgress(1) i = 0 while_pass = True while i < len(list_files_): if not while_pass: i += 1 while_pass = True continue while_pass = False util.setLabelText(list_files_[i]) util.setProgress(i) if not self.importFile(list_files_[i], id_module_): self.errorMsgBox(self.translate(u"Error al cargar :\n") + list_files_[i]) ok = False break i += 1 while_pass = True try: i < len(list_files_) except Exception: break util.destroyProgressDialog() return ok @classmethod def importFile(self, file_path_: str, id_module_: str) -> bool: """Import a file from a path.""" file = types.File(file_path_) content = u"" try: file.open(types.File.ReadOnly) content = str(file.read()) except Exception: e = traceback.format_exc() self.errorMsgBox(utils_base.ustr(self.translate(u"Error leyendo fichero."), u"\n", e)) return False ok = True name = file.name if ( not flutil.FLUtil.isFLDefFile(content) and not name.endswith(u".qs") and not name.endswith(u".ar") and not name.endswith(u".svg") ) or name.endswith(u"untranslated.ts"): return ok cur = pnsqlcursor.PNSqlCursor(u"flfiles") cur.select(utils_base.ustr(u"nombre = '", name, u"'")) if not cur.first(): if name.endswith(u".ar"): if not self.importReportAr(file_path_, id_module_, content): return True cur.setModeAccess(aqsql.AQSql.Insert) cur.refreshBuffer() cur.setValueBuffer(u"nombre", name) cur.setValueBuffer(u"idmodulo", id_module_) ba = QByteArray() ba.string = content cur.setValueBuffer(u"sha", ba.sha1()) cur.setValueBuffer(u"contenido", content) ok = cur.commitBuffer() else: cur.setModeAccess(aqsql.AQSql.Edit) cur.refreshBuffer() ba = QByteArray() ba.string = content shaCnt = ba.sha1() if cur.valueBuffer(u"sha") != shaCnt: contenidoCopia = cur.valueBuffer(u"contenido") cur.setModeAccess(aqsql.AQSql.Insert) cur.refreshBuffer() d = types.Date() cur.setValueBuffer(u"nombre", name + str(d)) cur.setValueBuffer(u"idmodulo", id_module_) cur.setValueBuffer(u"contenido", contenidoCopia) cur.commitBuffer() cur.select(utils_base.ustr(u"nombre = '", name, u"'")) cur.first() cur.setModeAccess(aqsql.AQSql.Edit) cur.refreshBuffer() cur.setValueBuffer(u"idmodulo", id_module_) cur.setValueBuffer(u"sha", shaCnt) cur.setValueBuffer(u"contenido", content) ok = cur.commitBuffer() if name.endswith(u".ar"): if not self.importReportAr(file_path_, id_module_, content): return True return ok @classmethod def importReportAr(self, file_path_: str, id_module_: str, content: str) -> bool: """Import a report file, convert and install.""" from pineboolib.application.safeqsa import SafeQSA if not self.isLoadedModule(u"flar2kut"): return False if settings.settings.value(u"scripts/sys/conversionAr") != u"true": return False content = self.toUnicode(content, u"UTF-8") content = SafeQSA.root_module("flar2kut").iface.pub_ar2kut(content) file_path_ = utils_base.ustr(file_path_[0 : len(file_path_) - 3], u".kut") if content: localEnc = settings.settings.value(u"scripts/sys/conversionArENC") if not localEnc: localEnc = u"ISO-8859-15" content = self.fromUnicode(content, localEnc) f = types.FileStatic() try: f.write(file_path_, content) except Exception: e = traceback.format_exc() self.errorMsgBox( utils_base.ustr(self.translate(u"Error escribiendo fichero."), u"\n", e) ) return False return self.importFile(file_path_, id_module_) return False @classmethod def runTransaction(self, f: Callable, oParam: Dict[str, Any]) -> Any: """Run a Transaction.""" roll_back_: bool = False error_msg_: str = "" valor_: Any db_ = application.PROJECT.conn_manager.useConn("default") transaction_level_ = db_.transactionLevel() # Create Transaction. if transaction_level_ == 0: db_.transaction() else: db_.savePoint(transaction_level_) db_._transaction += 1 if self.interactiveGUI(): QtWidgets.QApplication.setOverrideCursor(QtCore.Qt.WaitCursor) try: valor_ = f(oParam) if "errorMsg" in oParam: error_msg_ = oParam["errorMsg"] if not valor_: roll_back_ = True except Exception: e = traceback.format_exc(limit=-6, chain=False) roll_back_ = True valor_ = False if error_msg_ == "": error_msg_ = self.translate("Error al ejecutar la función") error_msg_ = "%s:\n%s" % (error_msg_, error_manager(e)) db_._transaction -= 1 if roll_back_: # do RollBack if error_msg_ != "": self.warnMsgBox(error_msg_) if transaction_level_ == 0: db_.rollbackTransaction() else: db_.rollbackSavePoint(transaction_level_) else: # do Commit if transaction_level_ == 0: db_.commit() else: db_.releaseSavePoint(transaction_level_) if self.interactiveGUI(): AQS.Application_restoreOverrideCursor() return valor_ @classmethod def search_git_updates(self, url: str) -> None: """Search updates of pineboo.""" if not os.path.exists(utils_base.filedir("../.git")): return if not url: url = settings.settings.value( "ebcomportamiento/git_updates_repo", "https://github.com/Aulla/pineboo.git" ) command = "git status %s" % url pro = process.Process() pro.execute(command) if pro.stdout is None: return # print("***", pro.stdout) if pro.stdout.find("git pull") > -1: if MessageBox.Yes != MessageBox.warning( "Hay nuevas actualizaciones disponibles para Pineboo. ¿Desea actualizar?", MessageBox.No, MessageBox.Yes, ): return pro.execute("git pull %s" % url) MessageBox.information( "Pineboo se va a reiniciar ahora", MessageBox.Ok, MessageBox.NoButton, MessageBox.NoButton, u"Eneboo", ) # os.execl(executable, os.path.abspath(__file__)) #FIXME @classmethod def qsaExceptions(self): """Return QSA exceptions found.""" return flapplication.aqApp.db().qsaExceptions() @classmethod @decorators.NotImplementedWarn def serverTime(self) -> str: """Return time from database.""" # FIXME: QSqlSelectCursor is not defined. Was an internal of Qt3.3 return "" # db = aqApp.db().db() # sql = u"select current_time" # ahora = None # q = QSqlSelectCursor(sql, db) # if q.isActive() and q.next(): # ahora = q.value(0) # return ahora @classmethod def localChanges(self) -> Dict[str, Any]: """Return xml with local changes.""" ret = {} ret[u"size"] = 0 strXmlUpt = utils_db.sql_select("flupdates", "filesdef", "actual='true'") if not strXmlUpt: return ret docUpt = QtXml.QDomDocument() if not docUpt.setContent(strXmlUpt): self.errorMsgBox( self.translate(u"Error XML al intentar cargar la definición de los ficheros.") ) return ret docBd = self.xmlFilesDefBd() ret = self.diffXmlFilesDef(docBd, docUpt) return ret @classmethod def interactiveGUI(self): """Return interactiveGUI.""" return flapplication.aqApp.db().mainConn().interactiveGUI() @classmethod def getWidgetList(self, container: str, control_name: str) -> str: """Get widget list from a widget.""" obj_class: Any = None if control_name == "FLFieldDB": obj_class = flfielddb.FLFieldDB elif control_name == "FLTableDB": obj_class = fltabledb.FLTableDB elif control_name == "Button": control_name = "QPushButton" if obj_class is None: obj_class = getattr(QtWidgets, control_name, None) if obj_class is None: raise Exception("obj_class is empty!") w = None a = None conn = application.PROJECT._conn_manager if conn is None: raise Exception("conn is empty!") if container[0:10] == "formRecord": action_ = container[10:] a = conn.manager().action(action_) if a.formRecord(): w = conn.managerModules().createFormRecord(a) elif container[0:10] == "formSearch": action_ = container[10:] a = conn.manager().action(action_) if a.form(): w = conn.managerModules().createForm(a) else: action_ = container[4:] a = conn.manager().action(action_) if a.form(): w = conn.managerModules().createForm(a) if w is None: return "" object_list = w.findChildren(obj_class) retorno_: str = "" for obj in object_list: name_ = obj.objectName() if name_ == "": continue if control_name == "FLFieldDB": field_table_ = cast(flfielddb.FLFieldDB, obj).tableName() if field_table_ and field_table_ != a.table(): continue retorno_ += "%s/%s*" % (name_, cast(flfielddb.FLFieldDB, obj).fieldName()) elif control_name == "FLTableDB": retorno_ += "%s/%s*" % (name_, cast(fltabledb.FLTableDB, obj).tableName()) elif control_name in ["QPushButton", "Button"]: if name_ in ["pushButtonDB", "pbAux", "qt_left_btn", "qt_right_btn"]: continue retorno_ += "%s/%s*" % (name_, obj.objectName()) else: if name_ in [ "textLabelDB", "componentDB", "tab_pages", "editor", "FrameFind", "TextLabelSearch", "TextLabelIn", "lineEditSearch", "in-combo", "voidTable", ]: continue if isinstance(obj, QtWidgets.QGroupBox): retorno_ += "%s/%s*" % (name_, obj.title()) else: retorno_ += "%s/*" % (name_) return retorno_ class AbanQDbDumper(QtCore.QObject): """AbanqDbDumper class.""" SEP_CSV = u"\u00b6" db_: "iconnection.IConnection" showGui_: bool dirBase_: str fileName_: str w_: QDialog lblDirBase_: QLabel pbChangeDir_: QPushButton tedLog_: QTextEdit pbInitDump_: QPushButton state_: types.Array funLog_: Callable proc_: process.Process def __init__( self, db: Optional["iconnection.IConnection"] = None, dirBase: Optional[str] = None, showGui: bool = True, fun_log: Optional[Callable] = None, ): """Inicialize.""" self.funLog_ = self.addLog if fun_log is None else fun_log # type: ignore self.db_ = flapplication.aqApp.db() if db is None else db self.showGui_ = showGui self.dirBase_ = types.Dir.home if dirBase is None else dirBase self.fileName_ = self.genFileName() self.encoding = sys.getdefaultencoding() self.state_ = types.Array() def init(self) -> None: """Inicialize dump dialog.""" if self.showGui_: self.buildGui() self.w_.exec_() def buildGui(self) -> None: """Build a Dialog for database dump.""" self.w_ = QDialog() self.w_.caption = SysType.translate(u"Copias de seguridad") self.w_.setModal(True) self.w_.resize(800, 600) # lay = QVBoxLayout(self.w_, 6, 6) lay = QVBoxLayout(self.w_) frm = QtWidgets.QFrame(self.w_) frm.setFrameShape(QtWidgets.QFrame.Box) frm.setLineWidth(1) frm.setFrameShadow(QtWidgets.QFrame.Plain) # layFrm = QVBoxLayout(frm, 6, 6) layFrm = QVBoxLayout(frm) lbl = QLabel(frm) lbl.setText( SysType.translate(u"Driver: %s") % (str(self.db_.driverNameToDriverAlias(self.db_.driverName()))) ) lbl.setAlignment(QtCore.Qt.AlignTop) layFrm.addWidget(lbl) lbl = QLabel(frm) lbl.setText(SysType.translate(u"Base de datos: %s") % (str(self.db_.database()))) lbl.setAlignment(QtCore.Qt.AlignTop) layFrm.addWidget(lbl) lbl = QLabel(frm) lbl.setText(SysType.translate(u"Host: %s") % (str(self.db_.host()))) lbl.setAlignment(QtCore.Qt.AlignTop) layFrm.addWidget(lbl) lbl = QLabel(frm) lbl.setText(SysType.translate(u"Puerto: %s") % (str(self.db_.port()))) lbl.setAlignment(QtCore.Qt.AlignTop) layFrm.addWidget(lbl) lbl = QLabel(frm) lbl.setText(SysType.translate(u"Usuario: %s") % (str(self.db_.user()))) lbl.setAlignment(QtCore.Qt.AlignTop) layFrm.addWidget(lbl) layAux = QHBoxLayout() layFrm.addLayout(layAux) self.lblDirBase_ = QLabel(frm) self.lblDirBase_.setText( SysType.translate(u"Directorio Destino: %s") % (str(self.dirBase_)) ) self.lblDirBase_.setAlignment(QtCore.Qt.AlignVCenter) layAux.addWidget(self.lblDirBase_) self.pbChangeDir_ = QPushButton(SysType.translate(u"Cambiar"), frm) self.pbChangeDir_.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Preferred ) application.connections.connect(self.pbChangeDir_, u"clicked()", self, u"changeDirBase()") layAux.addWidget(self.pbChangeDir_) lay.addWidget(frm) self.pbInitDump_ = QPushButton(SysType.translate(u"INICIAR COPIA"), self.w_) application.connections.connect(self.pbInitDump_, u"clicked()", self, u"initDump()") lay.addWidget(self.pbInitDump_) lbl = QLabel(self.w_) lbl.setText("Log:") lay.addWidget(lbl) self.tedLog_ = QTextEdit(self.w_) self.tedLog_.setTextFormat(QTextEdit.LogText) self.tedLog_.setAlignment( cast(QtCore.Qt.Alignment, QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) ) lay.addWidget(self.tedLog_) def initDump(self) -> None: """Inicialize dump.""" gui = self.showGui_ and self.w_ is not None if gui: self.w_.enable = False self.dumpDatabase() if gui: self.w_.enable = True if self.state_.ok: if gui: SysType.infoMsgBox(self.state_.msg) self.w_.close() else: if gui: SysType.errorMsgBox(self.state_.msg) def genFileName(self) -> str: """Return a file name.""" now = types.Date() timeStamp = str(now) regExp = ["-", ":"] # regExp.global_ = True for rE in regExp: timeStamp = timeStamp.replace(rE, u"") fileName = "%s/dump_%s_%s" % (self.dirBase_, self.db_.database(), timeStamp) fileName = types.Dir.cleanDirPath(fileName) fileName = types.Dir.convertSeparators(fileName) return fileName def changeDirBase(self, dir_: Optional[str] = None) -> None: """Change base dir.""" dirBasePath = dir_ if not dirBasePath: dirBasePath = FileDialog.getExistingDirectory(self.dirBase_) if not dirBasePath: return self.dirBase_ = dirBasePath if self.showGui_ and self.lblDirBase_ is not None: self.lblDirBase_.setText( SysType.translate(u"Directorio Destino: %s") % (str(self.dirBase_)) ) self.fileName_ = self.genFileName() def addLog(self, msg: str) -> None: """Add a text to log.""" if self.showGui_ and self.tedLog_ is not None: self.tedLog_.append(msg) else: logger.warning(msg) def setState(self, ok: int, msg: str) -> None: """Set state.""" self.state_.ok = ok self.state_.msg = msg def state(self) -> types.Array: """Return state.""" return self.state_ def launchProc(self, command: List[str]) -> str: """Return the result from a Launched command.""" self.proc_ = process.Process() self.proc_.setProgram(command[0]) self.proc_.setArguments(command[1:]) # FIXME: Mejorar lectura linea a linea cast(QtCore.pyqtSignal, self.proc_.readyReadStandardOutput).connect(self.readFromStdout) cast(QtCore.pyqtSignal, self.proc_.readyReadStandardError).connect(self.readFromStderr) self.proc_.start() while self.proc_.running: SysType.processEvents() return self.proc_.exitcode() == self.proc_.normalExit def readFromStdout(self) -> None: """Read data from stdOutput.""" t = ( self.proc_.readLine() # type: ignore[attr-defined] # noqa : F821 .data() .decode(self.encoding) ) if t not in (None, ""): self.funLog_(t) def readFromStderr(self) -> None: """Read data from stdError.""" t = ( self.proc_.readLine() # type: ignore[attr-defined] # noqa : F821 .data() .decode(self.encoding) ) if t not in (None, ""): self.funLog_(t) def dumpDatabase(self) -> bool: """Dump database to target specified by sql driver class.""" driver = self.db_.driverName() typeBd = 0 if driver.find("PSQL") > -1: typeBd = 1 else: if driver.find("MYSQL") > -1: typeBd = 2 if typeBd == 0: self.setState( False, SysType.translate(u"Este tipo de base de datos no soporta el volcado a disco."), ) self.funLog_(self.state_.msg) self.dumpAllTablesToCsv() return False file = types.File(self.fileName_) # noqa try: if not os.path.exists(self.fileName_): dir_ = types.Dir(self.fileName_) # noqa except Exception: e = traceback.format_exc() self.setState(False, utils_base.ustr(u"", e)) self.funLog_(self.state_.msg) return False ok = True if typeBd == 1: ok = self.dumpPostgreSQL() if typeBd == 2: ok = self.dumpMySQL() if not ok: self.dumpAllTablesToCsv() if not ok: self.setState( False, SysType.translate(u"No se ha podido realizar la copia de seguridad.") ) self.funLog_(self.state_.msg) else: self.setState( True, SysType.translate(u"Copia de seguridad realizada con éxito en:\n%s.sql") % (str(self.fileName_)), ) self.funLog_(self.state_.msg) return ok def dumpPostgreSQL(self) -> bool: """Dump database to PostgreSql file.""" pgDump: str = u"pg_dump" command: List[str] fileName = "%s.sql" % self.fileName_ db = self.db_ if SysType.osName() == u"WIN32": pgDump += u".exe" System.setenv(u"PGPASSWORD", db.returnword()) command = [ pgDump, u"-f", fileName, u"-h", db.host() or "", u"-p", str(db.port() or 0), u"-U", db.user() or "", str(db.database()), ] else: System.setenv(u"PGPASSWORD", db.returnword()) command = [ pgDump, u"-v", u"-f", fileName, u"-h", db.host() or "", u"-p", str(db.port() or 0), u"-U", db.user() or "", str(db.database()), ] if not self.launchProc(command): self.setState( False, SysType.translate(u"No se ha podido volcar la base de datos a disco.\n") + SysType.translate(u"Es posible que no tenga instalada la herramienta ") + pgDump, ) self.funLog_(self.state_.msg) return False self.setState(True, u"") return True def dumpMySQL(self) -> bool: """Dump database to MySql file.""" myDump: str = u"mysqldump" command: List[str] fileName = utils_base.ustr(self.fileName_, u".sql") db = self.db_ if SysType.osName() == u"WIN32": myDump += u".exe" command = [ myDump, u"-v", utils_base.ustr(u"--result-file=", fileName), utils_base.ustr(u"--host=", db.host()), utils_base.ustr(u"--port=", db.port()), utils_base.ustr(u"--password=", db.returnword()), utils_base.ustr(u"--user=", db.user()), str(db.database()), ] else: command = [ myDump, u"-v", utils_base.ustr(u"--result-file=", fileName), utils_base.ustr(u"--host=", db.host()), utils_base.ustr(u"--port=", db.port()), utils_base.ustr(u"--password=", db.returnword()), utils_base.ustr(u"--user=", db.user()), str(db.database()), ] if not self.launchProc(command): self.setState( False, SysType.translate(u"No se ha podido volcar la base de datos a disco.\n") + SysType.translate(u"Es posible que no tenga instalada la herramienta ") + myDump, ) self.funLog_(self.state_.msg) return False self.setState(True, u"") return True def dumpTableToCsv(self, table: str, dirBase: str) -> bool: """Dump a table to a CSV.""" fileName = utils_base.ustr(dirBase, table, u".csv") file = types.File(fileName) if not file.open(types.File.WriteOnly): return False ts = QtCore.QTextStream(file.ioDevice()) ts.setCodec(AQS.TextCodec_codecForName(u"utf8")) qry = pnsqlquery.PNSqlQuery() qry.setSelect(utils_base.ustr(table, u".*")) qry.setFrom(table) if not qry.exec_(): return False rec = u"" fieldNames = qry.fieldList() i = 0 while_pass = True while i < len(fieldNames): if not while_pass: i += 1 while_pass = True continue while_pass = False if i > 0: rec += self.SEP_CSV rec += fieldNames[i] i += 1 while_pass = True try: i < len(fieldNames) except Exception: break ts.device().write(utils_base.ustr(rec, u"\n").encode()) # ts.opIn(utils_base.ustr(rec, u"\n")) flutil.FLUtil.createProgressDialog( SysType.translate(u"Haciendo copia en CSV de ") + table, qry.size() ) p = 0 while qry.next(): rec = u"" i = 0 while_pass = True while i < len(fieldNames): if not while_pass: i += 1 while_pass = True continue while_pass = False if i > 0: rec += self.SEP_CSV rec += str(qry.value(i)) i += 1 while_pass = True try: i < len(fieldNames) except Exception: break # ts.opIn(utils_base.ustr(rec, u"\n")) ts.device().write(utils_base.ustr(rec, u"\n").encode()) p += 1 flutil.FLUtil.setProgress(p) file.close() flutil.FLUtil.destroyProgressDialog() return True def dumpAllTablesToCsv(self) -> bool: """Dump all tables to a csv files.""" fileName = self.fileName_ tables = self.db_.tables(aqsql.AQSql.TableType.Tables) dir_ = types.Dir(fileName) dir_.mkdir() dirBase = types.Dir.convertSeparators(utils_base.ustr(fileName, u"/")) # i = 0 # while_pass = True for table_ in tables: self.dumpTableToCsv(table_, dirBase) return True
35.659928
102
0.537523
794819aba2dc129ff9c7fb65919bc100f82aae4c
1,879
py
Python
app.py
ohst19/ohst19.github.io
48af75ca7dbc4002b3222ed1499250da296a6d38
[ "MIT" ]
1
2021-07-08T09:07:34.000Z
2021-07-08T09:07:34.000Z
app.py
ohst19/ohst19.github.io
48af75ca7dbc4002b3222ed1499250da296a6d38
[ "MIT" ]
null
null
null
app.py
ohst19/ohst19.github.io
48af75ca7dbc4002b3222ed1499250da296a6d38
[ "MIT" ]
2
2020-10-25T16:31:48.000Z
2021-02-27T14:17:26.000Z
# MIT License # Copyright (c) 2020 Shrid Pant # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from flask import Flask from flask_session import Session from werkzeug.exceptions import HTTPException, InternalServerError from src.auth import auth, login_required from src.helpers import UserInfo, error from src.profile import profile from src.search import search from src.home import home app = Flask(__name__) app.config.from_object("config") app.register_blueprint(auth, url_prefix="/") app.register_blueprint(profile, url_prefix="/") app.register_blueprint(home, url_prefix="/") app.register_blueprint(search, url_prefix="/") Session(app) @app.errorhandler(Exception) def errorhandler(e): print(str(e)) if not isinstance(e, HTTPException): e = InternalServerError() return error(e.name, e.code) if __name__ == "__main__": app.run()
37.58
80
0.771687
79481caf788ea3b341fd5b36db204b54eb960805
39,754
py
Python
tensorflow_probability/python/distributions/hidden_markov_model.py
fehiepsi/probability
9deb067891a974ec9ee1636167b0b0fce9f44a40
[ "Apache-2.0" ]
1
2020-05-16T13:00:01.000Z
2020-05-16T13:00:01.000Z
tensorflow_probability/python/distributions/hidden_markov_model.py
fehiepsi/probability
9deb067891a974ec9ee1636167b0b0fce9f44a40
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/hidden_markov_model.py
fehiepsi/probability
9deb067891a974ec9ee1636167b0b0fce9f44a40
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The HiddenMarkovModel distribution class.""" from __future__ import absolute_import from __future__ import division import tensorflow as tf from tensorflow_probability.python.distributions import categorical from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import seed_stream from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import distribution_util as util __all__ = [ "HiddenMarkovModel", ] class HiddenMarkovModel(distribution.Distribution): """Hidden Markov model distribution. The `HiddenMarkovModel` distribution implements a (batch of) hidden Markov models where the initial states, transition probabilities and observed states are all given by user-provided distributions. This model assumes that the transition matrices are fixed over time. In this model, there is a sequence of integer-valued hidden states: `z[0], z[1], ..., z[num_steps - 1]` and a sequence of observed states: `x[0], ..., x[num_steps - 1]`. The distribution of `z[0]` is given by `initial_distribution`. The conditional probability of `z[i + 1]` given `z[i]` is described by the batch of distributions in `transition_distribution`. For a batch of hidden Markov models, the coordinates before the rightmost one of the `transition_distribution` batch correspond to indices into the hidden Markov model batch. The rightmost coordinate of the batch is used to select which distribution `z[i + 1]` is drawn from. The distributions corresponding to the probability of `z[i + 1]` conditional on `z[i] == k` is given by the elements of the batch whose rightmost coordinate is `k`. Similarly, the conditional distribution of `z[i]` given `x[i]` is given by the batch of `observation_distribution`. When the rightmost coordinate of `observation_distribution` is `k` it gives the conditional probabilities of `x[i]` given `z[i] == k`. The probability distribution associated with the `HiddenMarkovModel` distribution is the marginal distribution of `x[0],...,x[num_steps - 1]`. #### Examples ```python tfd = tfp.distributions # A simple weather model. # Represent a cold day with 0 and a hot day with 1. # Suppose the first day of a sequence has a 0.8 chance of being cold. # We can model this using the categorical distribution: initial_distribution = tfd.Categorical(probs=[0.8, 0.2]) # Suppose a cold day has a 30% chance of being followed by a hot day # and a hot day has a 20% chance of being followed by a cold day. # We can model this as: transition_distribution = tfd.Categorical(probs=[[0.7, 0.3], [0.2, 0.8]]) # Suppose additionally that on each day the temperature is # normally distributed with mean and standard deviation 0 and 5 on # a cold day and mean and standard deviation 15 and 10 on a hot day. # We can model this with: observation_distribution = tfd.Normal(loc=[0., 15.], scale=[5., 10.]) # We can combine these distributions into a single week long # hidden Markov model with: model = tfd.HiddenMarkovModel( initial_distribution=initial_distribution, transition_distribution=transition_distribution, observation_distribution=observation_distribution, num_steps=7) # The expected temperatures for each day are given by: model.mean() # shape [7], elements approach 9.0 # The log pdf of a week of temperature 0 is: model.log_prob(tfp.zeros(shape=[7])) ``` #### References [1] https://en.wikipedia.org/wiki/Hidden_Markov_model """ def __init__(self, initial_distribution, transition_distribution, observation_distribution, num_steps, validate_args=False, allow_nan_stats=True, name="HiddenMarkovModel"): """Initialize hidden Markov model. Args: initial_distribution: A `Categorical`-like instance. Determines probability of first hidden state in Markov chain. The number of categories must match the number of categories of `transition_distribution` as well as both the rightmost batch dimension of `transition_distribution` and the rightmost batch dimension of `observation_distribution`. transition_distribution: A `Categorical`-like instance. The rightmost batch dimension indexes the probability distribution of each hidden state conditioned on the previous hidden state. observation_distribution: A `tfp.distributions.Distribution`-like instance. The rightmost batch dimension indexes the distribution of each observation conditioned on the corresponding hidden state. num_steps: The number of steps taken in Markov chain. A python `int`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. Default value: `True`. name: Python `str` name prefixed to Ops created by this class. Default value: "HiddenMarkovModel". Raises: ValueError: if `num_steps` is not at least 1. ValueError: if `initial_distribution` does not have scalar `event_shape`. ValueError: if `transition_distribution` does not have scalar `event_shape.` ValueError: if `transition_distribution` and `observation_distribution` are fully defined but don't have matching rightmost dimension. """ parameters = dict(locals()) # pylint: disable=protected-access with tf.compat.v2.name_scope(name) as name: self._runtime_assertions = [] # pylint: enable=protected-access if num_steps < 1: raise ValueError("num_steps ({}) must be at least 1.".format(num_steps)) self._initial_distribution = initial_distribution self._observation_distribution = observation_distribution self._transition_distribution = transition_distribution if (initial_distribution.event_shape is not None and initial_distribution.event_shape.ndims != 0): raise ValueError( "`initial_distribution` must have scalar `event_dim`s") elif validate_args: self._runtime_assertions += [ assert_util.assert_equal( tf.shape(input=initial_distribution.event_shape_tensor())[0], 0, message="`initial_distribution` must have scalar" "`event_dim`s") ] if (transition_distribution.event_shape is not None and transition_distribution.event_shape.ndims != 0): raise ValueError( "`transition_distribution` must have scalar `event_dim`s") elif validate_args: self._runtime_assertions += [ assert_util.assert_equal( tf.shape(input=transition_distribution.event_shape_tensor())[0], 0, message="`transition_distribution` must have scalar" "`event_dim`s") ] if (transition_distribution.batch_shape is not None and transition_distribution.batch_shape.ndims == 0): raise ValueError( "`transition_distribution` can't have scalar batches") elif validate_args: self._runtime_assertions += [ assert_util.assert_greater( tf.size(input=transition_distribution.batch_shape_tensor()), 0, message="`transition_distribution` can't have scalar " "batches") ] if (observation_distribution.batch_shape is not None and observation_distribution.batch_shape.ndims == 0): raise ValueError( "`observation_distribution` can't have scalar batches") elif validate_args: self._runtime_assertions += [ assert_util.assert_greater( tf.size(input=observation_distribution.batch_shape_tensor()), 0, message="`observation_distribution` can't have scalar " "batches") ] # Infer number of hidden states and check consistency # between transitions and observations with tf.control_dependencies(self._runtime_assertions): self._num_states = ((transition_distribution.batch_shape and transition_distribution.batch_shape[-1]) or transition_distribution.batch_shape_tensor()[-1]) observation_states = ((observation_distribution.batch_shape and observation_distribution.batch_shape[-1]) or observation_distribution.batch_shape_tensor()[-1]) if (tf.is_tensor(self._num_states) or tf.is_tensor(observation_states)): if validate_args: self._runtime_assertions += [ assert_util.assert_equal( self._num_states, observation_states, message="`transition_distribution` and " "`observation_distribution` must agree on " "last dimension of batch size") ] elif self._num_states != observation_states: raise ValueError("`transition_distribution` and " "`observation_distribution` must agree on " "last dimension of batch size") self._log_init = _extract_log_probs(self._num_states, initial_distribution) self._log_trans = _extract_log_probs(self._num_states, transition_distribution) self._num_steps = num_steps self._num_states = tf.shape(input=self._log_init)[-1] self._underlying_event_rank = tf.size( input=self._observation_distribution.event_shape_tensor()) self.static_event_shape = tf.TensorShape( [num_steps]).concatenate(self._observation_distribution.event_shape) with tf.control_dependencies(self._runtime_assertions): self.static_batch_shape = tf.broadcast_static_shape( self._initial_distribution.batch_shape, tf.broadcast_static_shape( self._transition_distribution.batch_shape[:-1], self._observation_distribution.batch_shape[:-1])) # pylint: disable=protected-access super(HiddenMarkovModel, self).__init__( dtype=self._observation_distribution.dtype, reparameterization_type=tf.compat.v1.distributions .NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=(self._initial_distribution._graph_parents + self._transition_distribution._graph_parents + self._observation_distribution._graph_parents), name=name) # pylint: enable=protected-access self._parameters = parameters def _batch_shape_tensor(self): with tf.control_dependencies(self._runtime_assertions): return tf.broadcast_dynamic_shape( self._initial_distribution.batch_shape_tensor(), tf.broadcast_dynamic_shape( self._transition_distribution.batch_shape_tensor()[:-1], self._observation_distribution.batch_shape_tensor()[:-1])) def _batch_shape(self): return self.static_batch_shape def _event_shape_tensor(self): with tf.control_dependencies(self._runtime_assertions): return tf.concat([[self._num_steps], self.observation_distribution.event_shape_tensor()], axis=0) def _event_shape(self): return self.static_event_shape @property def initial_distribution(self): return self._initial_distribution @property def transition_distribution(self): return self._transition_distribution @property def observation_distribution(self): return self._observation_distribution @property def num_steps(self): return self._num_steps @property def num_states(self): return self._num_states def _sample_n(self, n, seed=None): with tf.control_dependencies(self._runtime_assertions): seed = seed_stream.SeedStream(seed, salt="HiddenMarkovModel") num_states = self._num_states batch_shape = self.batch_shape_tensor() batch_size = tf.reduce_prod(input_tensor=batch_shape) # The batch sizes of the underlying initial distributions and # transition distributions might not match the batch size of # the HMM distribution. # As a result we need to ask for more samples from the # underlying distributions and then reshape the results into # the correct batch size for the HMM. init_repeat = ( tf.reduce_prod(input_tensor=self.batch_shape_tensor()) // tf.reduce_prod( input_tensor=self._initial_distribution.batch_shape_tensor())) init_state = self._initial_distribution.sample(n * init_repeat, seed=seed()) init_state = tf.reshape(init_state, [n, batch_size]) # init_state :: n batch_size transition_repeat = ( tf.reduce_prod(input_tensor=self.batch_shape_tensor()) // tf.reduce_prod(input_tensor=self._transition_distribution .batch_shape_tensor()[:-1])) def generate_step(state, _): """Take a single step in Markov chain.""" gen = self._transition_distribution.sample(n * transition_repeat, seed=seed()) # gen :: (n * transition_repeat) transition_batch new_states = tf.reshape(gen, [n, batch_size, num_states]) # new_states :: n batch_size num_states old_states_one_hot = tf.one_hot(state, num_states, dtype=tf.int32) # old_states :: n batch_size num_states return tf.reduce_sum( input_tensor=old_states_one_hot * new_states, axis=-1) if self._num_steps > 1: dummy_index = tf.zeros(self._num_steps - 1, dtype=tf.float32) hidden_states = tf.scan(generate_step, dummy_index, initializer=init_state) # TODO(b/115618503): add/use prepend_initializer to tf.scan hidden_states = tf.concat([[init_state], hidden_states], axis=0) else: hidden_states = init_state[tf.newaxis, ...] # hidden_states :: num_steps n batch_size num_states hidden_one_hot = tf.one_hot(hidden_states, num_states, dtype=self._observation_distribution.dtype) # hidden_one_hot :: num_steps n batch_size num_states # The observation distribution batch size might not match # the required batch size so as with the initial and # transition distributions we generate more samples and # reshape. observation_repeat = ( batch_size // tf.reduce_prod(input_tensor=self._observation_distribution .batch_shape_tensor()[:-1])) possible_observations = self._observation_distribution.sample( [self._num_steps, observation_repeat * n]) inner_shape = self._observation_distribution.event_shape # possible_observations :: num_steps (observation_repeat * n) # observation_batch[:-1] num_states inner_shape possible_observations = tf.reshape( possible_observations, tf.concat([[self._num_steps, n], batch_shape, [num_states], inner_shape], axis=0)) # possible_observations :: steps n batch_size num_states inner_shape hidden_one_hot = tf.reshape(hidden_one_hot, tf.concat([[self._num_steps, n], batch_shape, [num_states], tf.ones_like(inner_shape)], axis=0)) # hidden_one_hot :: steps n batch_size num_states "inner_shape" observations = tf.reduce_sum( input_tensor=hidden_one_hot * possible_observations, axis=-1 - tf.size(input=inner_shape)) # observations :: steps n batch_size inner_shape observations = util.move_dimension(observations, 0, 1 + tf.size(input=batch_shape)) # returned :: n batch_shape steps inner_shape return observations def _log_prob(self, value): with tf.control_dependencies(self._runtime_assertions): # The argument `value` is a tensor of sequences of observations. # `observation_batch_shape` is the shape of that tensor with the # sequence part removed. # `observation_batch_shape` is then broadcast to the full batch shape # to give the `batch_shape` that defines the shape of the result. observation_tensor_shape = tf.shape(input=value) observation_batch_shape = observation_tensor_shape[ :-1 - self._underlying_event_rank] # value :: observation_batch_shape num_steps observation_event_shape batch_shape = tf.broadcast_dynamic_shape(observation_batch_shape, self.batch_shape_tensor()) log_init = tf.broadcast_to(self._log_init, tf.concat([batch_shape, [self._num_states]], axis=0)) # log_init :: batch_shape num_states log_transition = self._log_trans # `observation_event_shape` is the shape of each sequence of observations # emitted by the model. observation_event_shape = observation_tensor_shape[ -1 - self._underlying_event_rank:] working_obs = tf.broadcast_to(value, tf.concat([batch_shape, observation_event_shape], axis=0)) # working_obs :: batch_shape observation_event_shape r = self._underlying_event_rank # Move index into sequence of observations to front so we can apply # tf.foldl working_obs = util.move_dimension(working_obs, -1 - r, 0)[..., tf.newaxis] # working_obs :: num_steps batch_shape underlying_event_shape observation_probs = ( self._observation_distribution.log_prob(working_obs)) def forward_step(log_prev_step, log_prob_observation): return _log_vector_matrix(log_prev_step, log_transition) + log_prob_observation fwd_prob = tf.foldl(forward_step, observation_probs, initializer=log_init) # fwd_prob :: batch_shape num_states log_prob = tf.reduce_logsumexp(input_tensor=fwd_prob, axis=-1) # log_prob :: batch_shape return log_prob def _marginal_hidden_probs(self): """Compute marginal pdf for each individual observable.""" initial_log_probs = tf.broadcast_to(self._log_init, tf.concat([self.batch_shape_tensor(), [self._num_states]], axis=0)) # initial_log_probs :: batch_shape num_states if self._num_steps > 1: transition_log_probs = self._log_trans def forward_step(log_probs, _): return _log_vector_matrix(log_probs, transition_log_probs) dummy_index = tf.zeros(self._num_steps - 1, dtype=tf.float32) forward_log_probs = tf.scan(forward_step, dummy_index, initializer=initial_log_probs, name="forward_log_probs") forward_log_probs = tf.concat([[initial_log_probs], forward_log_probs], axis=0) else: forward_log_probs = initial_log_probs[tf.newaxis, ...] # returns :: num_steps batch_shape num_states return tf.exp(forward_log_probs) def _mean(self): with tf.control_dependencies(self._runtime_assertions): probs = self._marginal_hidden_probs() # probs :: num_steps batch_shape num_states means = self._observation_distribution.mean() # means :: observation_batch_shape[:-1] num_states # observation_event_shape means_shape = tf.concat( [self.batch_shape_tensor(), [self._num_states], self._observation_distribution.event_shape_tensor()], axis=0) means = tf.broadcast_to(means, means_shape) # means :: batch_shape num_states observation_event_shape observation_event_shape = ( self._observation_distribution.event_shape_tensor()) batch_size = tf.reduce_prod(input_tensor=self.batch_shape_tensor()) flat_probs_shape = [self._num_steps, batch_size, self._num_states] flat_means_shape = [ batch_size, self._num_states, tf.reduce_prod(input_tensor=observation_event_shape) ] flat_probs = tf.reshape(probs, flat_probs_shape) # flat_probs :: num_steps batch_size num_states flat_means = tf.reshape(means, flat_means_shape) # flat_means :: batch_size num_states observation_event_size flat_mean = tf.einsum("ijk,jkl->jil", flat_probs, flat_means) # flat_mean :: batch_size num_steps observation_event_size unflat_mean_shape = tf.concat( [self.batch_shape_tensor(), [self._num_steps], observation_event_shape], axis=0) # returns :: batch_shape num_steps observation_event_shape return tf.reshape(flat_mean, unflat_mean_shape) def _variance(self): with tf.control_dependencies(self._runtime_assertions): probs = self._marginal_hidden_probs() # probs :: num_steps batch_shape num_states means = self._observation_distribution.mean() # means :: observation_batch_shape[:-1] num_states # observation_event_shape means_shape = tf.concat( [self.batch_shape_tensor(), [self._num_states], self._observation_distribution.event_shape_tensor()], axis=0) means = tf.broadcast_to(means, means_shape) # means :: batch_shape num_states observation_event_shape observation_event_shape = ( self._observation_distribution.event_shape_tensor()) batch_size = tf.reduce_prod(input_tensor=self.batch_shape_tensor()) flat_probs_shape = [self._num_steps, batch_size, self._num_states] flat_means_shape = [ batch_size, 1, self._num_states, tf.reduce_prod(input_tensor=observation_event_shape) ] flat_probs = tf.reshape(probs, flat_probs_shape) # flat_probs :: num_steps batch_size num_states flat_means = tf.reshape(means, flat_means_shape) # flat_means :: batch_size 1 num_states observation_event_size flat_mean = tf.einsum("ijk,jmkl->jiml", flat_probs, flat_means) # flat_mean :: batch_size num_steps 1 observation_event_size variances = self._observation_distribution.variance() variances = tf.broadcast_to(variances, means_shape) # variances :: batch_shape num_states observation_event_shape flat_variances = tf.reshape(variances, flat_means_shape) # flat_variances :: batch_size 1 num_states observation_event_size # For a mixture of n distributions with mixture probabilities # p[i], and where the individual distributions have means and # variances given by mean[i] and var[i], the variance of # the mixture is given by: # # var = sum i=1..n p[i] * ((mean[i] - mean)**2 + var[i]**2) flat_variance = tf.einsum("ijk,jikl->jil", flat_probs, (flat_means - flat_mean)**2 + flat_variances) # flat_variance :: batch_size num_steps observation_event_size unflat_mean_shape = tf.concat( [self.batch_shape_tensor(), [self._num_steps], observation_event_shape], axis=0) # returns :: batch_shape num_steps observation_event_shape return tf.reshape(flat_variance, unflat_mean_shape) def _observation_shape_preconditions(self, observation_tensor_shape): return tf.control_dependencies([assert_util.assert_equal( observation_tensor_shape[-1 - self._underlying_event_rank], self._num_steps, message="The tensor `observations` must consist of sequences" "of observations from `HiddenMarkovModel` of length" "`num_steps`.")]) def posterior_marginals(self, observations, name=None): """Compute marginal posterior distribution for each state. This function computes, for each time step, the marginal conditional probability that the hidden Markov model was in each possible state given the observations that were made at each time step. So if the hidden states are `z[0],...,z[num_steps - 1]` and the observations are `x[0], ..., x[num_steps - 1]`, then this function computes `P(z[i] | x[0], ..., x[num_steps - 1])` for all `i` from `0` to `num_steps - 1`. This operation is sometimes called smoothing. It uses a form of the forward-backward algorithm. Note: the behavior of this function is undefined if the `observations` argument represents impossible observations from the model. Args: observations: A tensor representing a batch of observations made on the hidden Markov model. The rightmost dimension of this tensor gives the steps in a sequence of observations from a single sample from the hidden Markov model. The size of this dimension should match the `num_steps` parameter of the hidden Markov model object. The other dimensions are the dimensions of the batch and these are broadcast with the hidden Markov model's parameters. name: Python `str` name prefixed to Ops created by this class. Default value: "HiddenMarkovModel". Returns: posterior_marginal: A `Categorical` distribution object representing the marginal probability of the hidden Markov model being in each state at each step. The rightmost dimension of the `Categorical` distributions batch will equal the `num_steps` parameter providing one marginal distribution for each step. The other dimensions are the dimensions corresponding to the batch of observations. Raises: ValueError: if rightmost dimension of `observations` does not have size `num_steps`. """ with tf.compat.v2.name_scope(name or "posterior_marginals"): with tf.control_dependencies(self._runtime_assertions): observation_tensor_shape = tf.shape(input=observations) with self._observation_shape_preconditions(observation_tensor_shape): observation_batch_shape = observation_tensor_shape[ :-1 - self._underlying_event_rank] observation_event_shape = observation_tensor_shape[ -1 - self._underlying_event_rank:] batch_shape = tf.broadcast_dynamic_shape(observation_batch_shape, self.batch_shape_tensor()) log_init = tf.broadcast_to(self._log_init, tf.concat([batch_shape, [self._num_states]], axis=0)) log_transition = self._log_trans observations = tf.broadcast_to(observations, tf.concat([batch_shape, observation_event_shape], axis=0)) observation_rank = tf.rank(observations) underlying_event_rank = self._underlying_event_rank observations = util.move_dimension( observations, observation_rank - underlying_event_rank - 1, 0) observations = tf.expand_dims( observations, observation_rank - underlying_event_rank) observation_log_probs = self._observation_distribution.log_prob( observations) log_adjoint_prob = tf.zeros_like(log_init) def forward_step(log_previous_step, log_prob_observation): return _log_vector_matrix(log_previous_step, log_transition) + log_prob_observation log_prob = log_init + observation_log_probs[0] forward_log_probs = tf.scan(forward_step, observation_log_probs[1:], initializer=log_prob, name="forward_log_probs") forward_log_probs = tf.concat([[log_prob], forward_log_probs], axis=0) def backward_step(log_previous_step, log_prob_observation): return _log_matrix_vector(log_transition, log_prob_observation + log_previous_step) backward_log_adjoint_probs = tf.scan( backward_step, observation_log_probs[1:], initializer=log_adjoint_prob, reverse=True, name="backward_log_adjoint_probs") total_log_prob = tf.reduce_logsumexp( input_tensor=forward_log_probs[-1], axis=-1) backward_log_adjoint_probs = tf.concat([backward_log_adjoint_probs, [log_adjoint_prob]], axis=0) log_likelihoods = forward_log_probs + backward_log_adjoint_probs marginal_log_probs = util.move_dimension( log_likelihoods - total_log_prob[..., tf.newaxis], 0, -2) return categorical.Categorical(logits=marginal_log_probs) def posterior_mode(self, observations, name=None): """Compute maximum likelihood sequence of hidden states. When this function is provided with a sequence of observations `x[0], ..., x[num_steps - 1]`, it returns the sequence of hidden states `z[0], ..., z[num_steps - 1]`, drawn from the underlying Markov chain, that is most likely to yield those observations. It uses the [Viterbi algorithm]( https://en.wikipedia.org/wiki/Viterbi_algorithm). Note: the behavior of this function is undefined if the `observations` argument represents impossible observations from the model. Note: if there isn't a unique most likely sequence then one of the equally most likely sequences is chosen. Args: observations: A tensor representing a batch of observations made on the hidden Markov model. The rightmost dimensions of this tensor correspond to the dimensions of the observation distributions of the underlying Markov chain. The next dimension from the right indexes the steps in a sequence of observations from a single sample from the hidden Markov model. The size of this dimension should match the `num_steps` parameter of the hidden Markov model object. The other dimensions are the dimensions of the batch and these are broadcast with the hidden Markov model's parameters. name: Python `str` name prefixed to Ops created by this class. Default value: "HiddenMarkovModel". Returns: posterior_mode: A `Tensor` representing the most likely sequence of hidden states. The rightmost dimension of this tensor will equal the `num_steps` parameter providing one hidden state for each step. The other dimensions are those of the batch. Raises: ValueError: if the `observations` tensor does not consist of sequences of `num_steps` observations. #### Examples ```python tfd = tfp.distributions # A simple weather model. # Represent a cold day with 0 and a hot day with 1. # Suppose the first day of a sequence has a 0.8 chance of being cold. initial_distribution = tfd.Categorical(probs=[0.8, 0.2]) # Suppose a cold day has a 30% chance of being followed by a hot day # and a hot day has a 20% chance of being followed by a cold day. transition_distribution = tfd.Categorical(probs=[[0.7, 0.3], [0.2, 0.8]]) # Suppose additionally that on each day the temperature is # normally distributed with mean and standard deviation 0 and 5 on # a cold day and mean and standard deviation 15 and 10 on a hot day. observation_distribution = tfd.Normal(loc=[0., 15.], scale=[5., 10.]) # This gives the hidden Markov model: model = tfd.HiddenMarkovModel( initial_distribution=initial_distribution, transition_distribution=transition_distribution, observation_distribution=observation_distribution, num_steps=7) # Suppose we observe gradually rising temperatures over a week: temps = [-2., 0., 2., 4., 6., 8., 10.] # We can now compute the most probable sequence of hidden states: model.posterior_mode(temps) # The result is [0 0 0 0 0 1 1] telling us that the transition # from "cold" to "hot" most likely happened between the # 5th and 6th days. ``` """ with tf.compat.v2.name_scope(name or "posterior_mode"): with tf.control_dependencies(self._runtime_assertions): observation_tensor_shape = tf.shape(input=observations) with self._observation_shape_preconditions(observation_tensor_shape): observation_batch_shape = observation_tensor_shape[ :-1 - self._underlying_event_rank] observation_event_shape = observation_tensor_shape[ -1 - self._underlying_event_rank:] batch_shape = tf.broadcast_dynamic_shape(observation_batch_shape, self.batch_shape_tensor()) log_init = tf.broadcast_to(self._log_init, tf.concat([batch_shape, [self._num_states]], axis=0)) observations = tf.broadcast_to(observations, tf.concat([batch_shape, observation_event_shape], axis=0)) observation_rank = tf.rank(observations) underlying_event_rank = self._underlying_event_rank observations = util.move_dimension( observations, observation_rank - underlying_event_rank - 1, 0) # We need to compute the probability of each observation for # each possible state. # This requires inserting an extra index just before the # observation event indices that will be broadcast with the # last batch index in `observation_distribution`. observations = tf.expand_dims( observations, observation_rank - underlying_event_rank) observation_log_probs = self._observation_distribution.log_prob( observations) log_prob = log_init + observation_log_probs[0] if self._num_steps == 1: most_likely_end = tf.argmax(input=log_prob, axis=-1) return most_likely_end[..., tf.newaxis] def forward_step(previous_step_pair, log_prob_observation): log_prob_previous = previous_step_pair[0] log_prob = (log_prob_previous[..., tf.newaxis] + self._log_trans + log_prob_observation[..., tf.newaxis, :]) most_likely_given_successor = tf.argmax(input=log_prob, axis=-2) max_log_p_given_successor = tf.reduce_max(input_tensor=log_prob, axis=-2) return (max_log_p_given_successor, most_likely_given_successor) forward_log_probs, all_most_likely_given_successor = tf.scan( forward_step, observation_log_probs[1:], initializer=(log_prob, tf.zeros(tf.shape(input=log_init), dtype=tf.int64)), name="forward_log_probs") most_likely_end = tf.argmax(input=forward_log_probs[-1], axis=-1) # We require the operation that gives C from A and B where # C[i...j] = A[i...j, B[i...j]] # and A = most_likely_given_successor # B = most_likely_successor. # tf.gather requires indices of known shape so instead we use # reduction with tf.one_hot(B) to pick out elements from B def backward_step(most_likely_successor, most_likely_given_successor): return tf.reduce_sum( input_tensor=(most_likely_given_successor * tf.one_hot(most_likely_successor, self._num_states, dtype=tf.int64)), axis=-1) backward_scan = tf.scan( backward_step, all_most_likely_given_successor, most_likely_end, reverse=True) most_likely_sequences = tf.concat([backward_scan, [most_likely_end]], axis=0) return util.move_dimension(most_likely_sequences, 0, -1) def _log_vector_matrix(vs, ms): """Multiply tensor of vectors by matrices assuming values stored are logs.""" return tf.reduce_logsumexp(input_tensor=vs[..., tf.newaxis] + ms, axis=-2) def _log_matrix_vector(ms, vs): """Multiply tensor of matrices by vectors assuming values stored are logs.""" return tf.reduce_logsumexp(input_tensor=ms + vs[..., tf.newaxis, :], axis=-1) def _vector_matrix(vs, ms): """Multiply tensor of vectors by matrices.""" return tf.reduce_sum(input_tensor=vs[..., tf.newaxis] * ms, axis=-2) def _extract_log_probs(num_states, dist): """Tabulate log probabilities from a batch of distributions.""" states = tf.reshape(tf.range(num_states), tf.concat([[num_states], tf.ones_like(dist.batch_shape_tensor())], axis=0)) return util.move_dimension(dist.log_prob(states), 0, -1)
42.517647
80
0.645897
79481db37d6c8c5c2f2d451293ddf2b7c849798d
4,716
py
Python
src/yotsugi_cli.py
Nyx0uf/Yotsugi
45ad4a87695bdb5d9d7b98ebc44a4c3161bb7952
[ "MIT" ]
1
2020-11-21T16:40:20.000Z
2020-11-21T16:40:20.000Z
src/yotsugi_cli.py
Nyx0uf/Yotsugi
45ad4a87695bdb5d9d7b98ebc44a4c3161bb7952
[ "MIT" ]
null
null
null
src/yotsugi_cli.py
Nyx0uf/Yotsugi
45ad4a87695bdb5d9d7b98ebc44a4c3161bb7952
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 """ Client """ import argparse import requests import sys from configparser import ConfigParser from pathlib import Path from typing import List, Dict from requests.models import HTTPBasicAuth from model import note def load_cfg() -> ConfigParser: """Load the client config file""" cfg_path = Path.home().joinpath(".yotsugi").joinpath("yotsugi.conf") cfg = ConfigParser() cfg.read(cfg_path) return cfg["SERVER"] def has_auth_infos(cfg: ConfigParser) -> bool: """Check if http basic auth infos are provided""" user = cfg["basic_auth_user"] password = cfg["basic_auth_password"] return user and len(user) > 0 and password and len(password) > 0 def list_notes(cfg: ConfigParser): """List all notes""" auth = HTTPBasicAuth(cfg["basic_auth_user"], cfg["basic_auth_password"]) if has_auth_infos(cfg) is True else None response = requests.get(f"{cfg['url']}:{cfg['port']}/api/notes", auth=auth) if response.status_code == 200: notes: List[Dict] = response.json() print(f"{len(notes)} Note{'' if len(notes) == 1 else 's'} :") for d in notes: n = note.Note(d["id"], d["title"], d["content"], d["creation_date"], d["update_date"]) print(f"\t- {n.title} (id {n.id})") def show_note(cfg: ConfigParser, note_id: int): """Show the note `note_id`""" auth = HTTPBasicAuth(cfg["basic_auth_user"], cfg["basic_auth_password"]) if has_auth_infos(cfg) is True else None response = requests.get(f"{cfg['url']}:{cfg['port']}/api/notes/{note_id}", auth=auth) if response.status_code == 200: tmp = response.json() n = note.Note(tmp["id"], tmp["title"], tmp["content"], tmp["creation_date"], tmp["update_date"]) print(f"{n.title} :\n---") print(f"{n.content}") def create_note(cfg: ConfigParser, title: str, body: str): """Create a new note with a title and body""" auth = HTTPBasicAuth(cfg["basic_auth_user"], cfg["basic_auth_password"]) if has_auth_infos(cfg) is True else None response = requests.post(f"{cfg['url']}:{cfg['port']}/api/notes/add", data={"title": title, "content": body}, auth=auth) if response.status_code == 200: print(f"[+] Note created") else: print(f"[!] Error creating note : {response}") def delete_note(cfg: ConfigParser, note_id: int): """Delete the note `note_id`""" auth = HTTPBasicAuth(cfg["basic_auth_user"], cfg["basic_auth_password"]) if has_auth_infos(cfg) is True else None response = requests.delete(f"{cfg['url']}:{cfg['port']}/api/notes/delete/{note_id}", auth=auth) if response.status_code == 200: print(f"[+] Note {note_id} deleted") else: print(f"[!] Error deleting note {note_id} : {response}") def update_note(cfg: ConfigParser, note_id: int, title: str, body: str): """Update the note `note_id`""" auth = HTTPBasicAuth(cfg["basic_auth_user"], cfg["basic_auth_password"]) if has_auth_infos(cfg) is True else None response = requests.put(f"{cfg['url']}:{cfg['port']}/api/notes/update/{note_id}", data={"title": title, "content": body}, auth=auth) if response.status_code == 200: print(f"[+] Note {note_id} updated") else: print(f"[!] Error updating note {note_id} : {response}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-l", "--list", dest="list", action='store_true', help="List all notes") parser.add_argument("-s", "--show", dest="show", action='store_true', help="Show the given note") parser.add_argument("-c", "--create", dest="create", action='store_true', help="Create a new note") parser.add_argument("-d", "--delete", dest="delete", action='store_true', help="Delete a note") parser.add_argument("-u", "--update", dest="update", action='store_true', help="Update a note") parser.add_argument("-i", "--id", dest="id", type=int, default=0, help="Note id") parser.add_argument("-t", "--title", dest="title", type=str, default=None, help="Note title") parser.add_argument("-b", "--body", dest="body", type=str, default=None, help="Note body") args = parser.parse_args() cfg = load_cfg() if args.list is True: list_notes(cfg) sys.exit(0) if args.show is True and args.id > 0: show_note(cfg, args.id) if args.delete is True and args.id > 0: delete_note(cfg, args.id) list_notes(cfg) if args.create is True and args.title and len(args.title) > 0: create_note(cfg, args.title, args.body) list_notes(cfg) if args.update is True and args.id > 0: update_note(cfg, args.id, args.title, args.body) list_notes(cfg)
42.872727
136
0.646098
79481e83748d7667306466f94746861ce8f9803f
4,888
py
Python
examples/optimal_burst/optimal_burst_by_range.py
spascou/ps2-analysis
00f99b009d15d4c401a3338ddd0408ac7eedcc0b
[ "MIT" ]
2
2020-06-25T17:19:05.000Z
2020-10-13T06:08:39.000Z
examples/optimal_burst/optimal_burst_by_range.py
spascou/ps2-analysis
00f99b009d15d4c401a3338ddd0408ac7eedcc0b
[ "MIT" ]
null
null
null
examples/optimal_burst/optimal_burst_by_range.py
spascou/ps2-analysis
00f99b009d15d4c401a3338ddd0408ac7eedcc0b
[ "MIT" ]
null
null
null
import logging import os from itertools import groupby from typing import List, Optional import altair from ps2_census.enums import PlayerState from ps2_analysis.enums import DamageLocation from ps2_analysis.fire_groups.cone_of_fire import ConeOfFire from ps2_analysis.fire_groups.data_files import ( update_data_files as update_fire_groups_data_files, ) from ps2_analysis.fire_groups.fire_mode import FireMode from ps2_analysis.utils import CodeTimer from ps2_analysis.weapons.infantry.data_files import ( update_data_files as update_infantry_weapons_data_files, ) from ps2_analysis.weapons.infantry.generate import generate_all_infantry_weapons from ps2_analysis.weapons.infantry.infantry_weapon import InfantryWeapon logging.basicConfig(level=logging.INFO) SERVICE_ID: Optional[str] = os.environ.get("CENSUS_SERVICE_ID") DATAFILES_DIRECTORY: str = "../datafiles" if not SERVICE_ID: raise ValueError("CENSUS_SERVICE_ID envvar not found") update_fire_groups_data_files( directory=DATAFILES_DIRECTORY, service_id=SERVICE_ID, ) update_infantry_weapons_data_files( directory=DATAFILES_DIRECTORY, service_id=SERVICE_ID, ) infantry_weapons: List[InfantryWeapon] = list( generate_all_infantry_weapons(data_files_directory=DATAFILES_DIRECTORY) ) print(f"Generated {len(infantry_weapons)} infantry weapons") wp: InfantryWeapon = next(x for x in infantry_weapons if x.item_id == 43) fm: FireMode = wp.fire_groups[0].fire_modes[1] cof: ConeOfFire = fm.player_state_cone_of_fire[PlayerState.STANDING] rttks: List[dict] = [] distance: int for distance in range(0, 100, 2): with CodeTimer(f"determination at {distance}m"): burst_length: int for burst_length in range(0, int(round(fm.max_consecutive_shots / 4)) + 1, 1): control_time: int = cof.recover_time( cof.min_cof_angle() + cof.bloom * burst_length ) ttk: int timed_out_ratio: float ttk, timed_out_ratio = fm.real_time_to_kill( distance=distance, runs=500, control_time=control_time, auto_burst_length=burst_length, aim_location=DamageLocation.HEAD, recoil_compensation=True, # recoil_compensation_accuracy=0.1, ) rttks.append( { "distance": distance, "control_time": control_time + fm.fire_timing.refire_time, "burst_length": burst_length, "ttk": ttk, "timed_out_ratio": timed_out_ratio, } ) dataset = altair.Data(values=rttks) dst_ttk_chart = ( altair.Chart(dataset) .mark_line() .encode( x="distance:Q", y="ttk:Q", color=altair.Color("burst_length:O", scale=altair.Scale(scheme="dark2")), tooltip=[ "distance:Q", "control_time:Q", "burst_length:Q", "ttk:Q", "timed_out_ratio:Q", ], ) .properties(title=f"{wp.name} optimal ttk at distance by burst length", width=900) .interactive() ) dst_tor_chart = ( altair.Chart(dataset) .mark_line() .encode( x="distance:Q", y="timed_out_ratio:Q", color=altair.Color("burst_length:O", scale=altair.Scale(scheme="dark2")), tooltip=[ "distance:Q", "control_time:Q", "burst_length:Q", "ttk:Q", "timed_out_ratio:Q", ], ) .properties( title=f"{wp.name} timed out ratio at distance by burst length", width=900 ) .interactive() ) filtered_rttks: List[dict] = [] for _, distance_rttks_it in groupby( sorted(rttks, key=lambda x: x["distance"]), lambda x: x["distance"] ): distance_rttks: List[dict] = list(distance_rttks_it) min_ttk: int = min( (x["ttk"] for x in filter(lambda x: x["ttk"] > 0, distance_rttks)) ) candidates: List[dict] = list( filter(lambda x: 0 <= x["ttk"] <= round(1.05 * min_ttk), distance_rttks) ) auto_candidates: List[dict] = list( filter(lambda x: x["burst_length"] == 0, candidates) ) if auto_candidates: filtered_rttks.append(min(auto_candidates, key=lambda x: x["ttk"])) else: filtered_rttks.append(min(candidates, key=lambda x: x["ttk"],)) filtered_dataset = altair.Data(values=filtered_rttks) burst_length_chart = ( altair.Chart(filtered_dataset) .mark_line() .encode( x="distance:Q", y="burst_length:Q", tooltip=["ttk:Q", "distance:Q", "burst_length:Q", "control_time:Q"], ) .properties(title=f"{wp.name} optimal burst length at distance", width=900) .interactive() ) (dst_ttk_chart & dst_tor_chart & burst_length_chart).save("optimal_burst_by_range.html")
28.254335
88
0.648936
79481f478f4e07714ee2cd9849b42f2dfe3fb2c1
522
py
Python
homework-12345/homework3/network.py
easilylazy/pattern-recognition
2b95689bb3f34e4821a0211b19b76164aa6e615f
[ "MIT" ]
2
2021-03-07T14:40:23.000Z
2021-03-08T08:51:01.000Z
homework-12345/homework3/network.py
easilylazy/pattern-recognition
2b95689bb3f34e4821a0211b19b76164aa6e615f
[ "MIT" ]
null
null
null
homework-12345/homework3/network.py
easilylazy/pattern-recognition
2b95689bb3f34e4821a0211b19b76164aa6e615f
[ "MIT" ]
null
null
null
""" Network Class """ class Network(): def __init__(self): self.layerList = [] self.numLayer = 0 self.is_training = True def add(self, layer): self.numLayer += 1 self.layerList.append(layer) def forward(self, x): # forward layer by layer for i in range(self.numLayer): x = self.layerList[i].forward(x, is_training=self.is_training) return x def backward(self, delta): # backward layer by layer for i in reversed(range(self.numLayer)): # reversed delta = self.layerList[i].backward(delta)
22.695652
65
0.689655
79482043152df3fe6c094446c1a654e2df15c89d
2,210
py
Python
setup.py
mauriciogtec/ml-logger
b66be0f18097456618eecfb15e425ea9bb51bfbb
[ "MIT" ]
null
null
null
setup.py
mauriciogtec/ml-logger
b66be0f18097456618eecfb15e425ea9bb51bfbb
[ "MIT" ]
null
null
null
setup.py
mauriciogtec/ml-logger
b66be0f18097456618eecfb15e425ea9bb51bfbb
[ "MIT" ]
null
null
null
import codecs import os.path import setuptools def read(rel_path): here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, rel_path), "r") as fp: return fp.read() def get_version(rel_path): # code taken from https://packaging.python.org/guides/single-sourcing-package-version/ for line in read(rel_path).splitlines(): if line.startswith("__version__"): delim = '"' if '"' in line else "'" return line.split(delim)[1] raise RuntimeError("Unable to find version string.") def parse_dependency(filepath): return [ dependency for dependency in open(filepath).read().splitlines() if "==" in dependency ] base_requirements = parse_dependency("requirements/filesystem.txt") all_requirements = base_requirements + parse_dependency("requirements/all.txt") dev_requirements = all_requirements + parse_dependency("requirements/dev.txt") with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="ml_logger", version=get_version("ml_logger/__init__.py"), author="Shagun Sodhani", author_email="sshagunsodhani@gmail.com", description="Logging Utility for ML Experiments", long_description=open("README.md").read(), long_description_content_type="text/markdown", # Install the basic setup (without wandb, tensorboardX and mlflow) with install_requires=base_requirements, url="https://github.com/shagunsodhani/ml-logger", packages=setuptools.find_packages( exclude=["*.tests", "*.tests.*", "tests.*", "tests", "docs", "docsrc"] ), classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.6", extras_require={ # Install development dependencies with # pip install -e .[dev] "dev": dev_requirements, # Install the complete setup (wandb, mlflow and tensorboardX) # pip install .[all] "all": all_requirements, }, )
32.5
90
0.661991
7948205235e3ba42220d72e5638695fd66bc4115
37,074
py
Python
old_projects/eola/chapter4.py
mertyildiran/manim
db7f8320bd84e9ebbf75adfcd6dfc480881e5849
[ "MIT" ]
2
2020-12-26T05:21:23.000Z
2022-02-22T23:00:28.000Z
old_projects/eola/chapter4.py
xiangxun/manim
31478c523c9febb85d673219c6451ce545b5e319
[ "MIT" ]
4
2021-03-19T09:45:18.000Z
2022-01-13T02:00:35.000Z
old_projects/eola/chapter4.py
xiangxun/manim
31478c523c9febb85d673219c6451ce545b5e319
[ "MIT" ]
2
2021-07-21T17:49:09.000Z
2022-01-24T11:56:17.000Z
from big_ol_pile_of_manim_imports import * from old_projects.eola.chapter3 import MatrixVectorMultiplicationAbstract class OpeningQuote(Scene): def construct(self): words = TextMobject([ "It is my experience that proofs involving", "matrices", "can be shortened by 50\\% if one", "throws the matrices out." ]) words.set_width(FRAME_WIDTH - 2) words.to_edge(UP) words.split()[1].set_color(GREEN) words.split()[3].set_color(BLUE) author = TextMobject("-Emil Artin") author.set_color(YELLOW) author.next_to(words, DOWN, buff = 0.5) self.play(FadeIn(words)) self.wait(2) self.play(Write(author, run_time = 3)) self.wait() class MatrixToBlank(Scene): def construct(self): matrix = Matrix([[3, 1], [0, 2]]) arrow = Arrow(LEFT, RIGHT) matrix.to_edge(LEFT) arrow.next_to(matrix, RIGHT) matrix.add(arrow) self.play(Write(matrix)) self.wait() class ExampleTransformation(LinearTransformationScene): def construct(self): self.setup() self.apply_transposed_matrix([[3, 0], [1, 2]]) self.wait(2) class RecapTime(TeacherStudentsScene): def construct(self): self.setup() self.teacher_says("Quick recap time!") self.random_blink() self.wait() student = self.get_students()[0] everyone = self.get_mobjects() everyone.remove(student) everyone = VMobject(*everyone) self.play( ApplyMethod(everyone.fade, 0.7), ApplyMethod(student.change_mode, "confused") ) self.play(Blink(student)) self.wait() self.play(ApplyFunction( lambda m : m.change_mode("pondering").look(LEFT), student )) self.play(Blink(student)) self.wait() class DeterminedByTwoBasisVectors(LinearTransformationScene): CONFIG = { "show_basis_vectors" : False } def construct(self): self.setup() i_hat = self.add_vector([1, 0], color = X_COLOR) self.add_transformable_label( i_hat, "\\hat{\\imath}", "\\hat{\\imath}", color = X_COLOR ) j_hat = self.add_vector([0, 1], color = Y_COLOR) self.add_transformable_label( j_hat, "\\hat{\\jmath}", "\\hat{\\jmath}", color = Y_COLOR ) t_matrix = np.array([[2, 2], [-2, 1]]) matrix = t_matrix.transpose() matrix1 = np.array(matrix) matrix1[:,1] = [0, 1] matrix2 = np.dot(matrix, np.linalg.inv(matrix1)) self.wait() self.apply_transposed_matrix(matrix1.transpose()) self.apply_transposed_matrix(matrix2.transpose()) self.wait() class FollowLinearCombination(LinearTransformationScene): def construct(self): vect_coords = [-1, 2] t_matrix = np.array([[2, 2], [-2, 1]]) #Draw vectors self.setup() i_label = self.add_transformable_label( self.i_hat, "\\hat{\\imath}", animate = False, direction = "right", color = X_COLOR ) j_label = self.add_transformable_label( self.j_hat, "\\hat{\\jmath}", animate = False, direction = "right", color = Y_COLOR ) vect = self.add_vector(vect_coords) vect_array = Matrix(["x", "y"], add_background_rectangles_to_entries = True) v_equals = TexMobject(["\\vec{\\textbf{v}}", "="]) v_equals.split()[0].set_color(YELLOW) v_equals.next_to(vect_array, LEFT) vect_array.add(v_equals) vect_array.to_edge(UP, buff = 0.2) background_rect = BackgroundRectangle(vect_array) vect_array.get_entries().set_color(YELLOW) self.play(ShowCreation(background_rect), Write(vect_array)) self.add_foreground_mobject(background_rect, vect_array) #Show scaled vectors x, y = vect_array.get_entries().split() scaled_i_label = VMobject(x.copy(), i_label) scaled_j_label = VMobject(y.copy(), j_label) scaled_i = self.i_hat.copy().scale(vect_coords[0]) scaled_j = self.j_hat.copy().scale(vect_coords[1]) for mob in scaled_i, scaled_j: mob.fade(0.3) scaled_i_label_target = scaled_i_label.copy() scaled_i_label_target.arrange_submobjects(buff = 0.1) scaled_i_label_target.next_to(scaled_i, DOWN) scaled_j_label_target = scaled_j_label.copy() scaled_j_label_target.arrange_submobjects(buff = 0.1) scaled_j_label_target.next_to(scaled_j, LEFT) self.show_scaled_vectors(vect_array, vect_coords, i_label, j_label) self.apply_transposed_matrix(t_matrix) self.show_scaled_vectors(vect_array, vect_coords, i_label, j_label) self.record_basis_coordinates(vect_array, vect) def show_scaled_vectors(self, vect_array, vect_coords, i_label, j_label): x, y = vect_array.get_entries().split() scaled_i_label = VMobject(x.copy(), i_label.copy()) scaled_j_label = VMobject(y.copy(), j_label.copy()) scaled_i = self.i_hat.copy().scale(vect_coords[0]) scaled_j = self.j_hat.copy().scale(vect_coords[1]) for mob in scaled_i, scaled_j: mob.fade(0.3) scaled_i_label_target = scaled_i_label.copy() scaled_i_label_target.arrange_submobjects(buff = 0.1) scaled_i_label_target.next_to(scaled_i.get_center(), DOWN) scaled_j_label_target = scaled_j_label.copy() scaled_j_label_target.arrange_submobjects(buff = 0.1) scaled_j_label_target.next_to(scaled_j.get_center(), LEFT) self.play( Transform(self.i_hat.copy(), scaled_i), Transform(scaled_i_label, scaled_i_label_target) ) scaled_i = self.get_mobjects_from_last_animation()[0] self.play( Transform(self.j_hat.copy(), scaled_j), Transform(scaled_j_label, scaled_j_label_target) ) scaled_j = self.get_mobjects_from_last_animation()[0] self.play(*[ ApplyMethod(mob.shift, scaled_i.get_end()) for mob in (scaled_j, scaled_j_label) ]) self.wait() self.play(*list(map(FadeOut, [ scaled_i, scaled_j, scaled_i_label, scaled_j_label, ]))) def record_basis_coordinates(self, vect_array, vect): i_label = vector_coordinate_label(self.i_hat) i_label.set_color(X_COLOR) j_label = vector_coordinate_label(self.j_hat) j_label.set_color(Y_COLOR) for mob in i_label, j_label: mob.scale_in_place(0.8) background = BackgroundRectangle(mob) self.play(ShowCreation(background), Write(mob)) self.wait() x, y = vect_array.get_entries().split() pre_formula = VMobject( x, i_label, TexMobject("+"), y, j_label ) post_formula = pre_formula.copy() pre_formula.split()[2].fade(1) post_formula.arrange_submobjects(buff = 0.1) post_formula.next_to(vect, DOWN) background = BackgroundRectangle(post_formula) everything = self.get_mobjects() everything.remove(vect) self.play(*[ ApplyMethod(m.fade) for m in everything ] + [ ShowCreation(background, run_time = 2, rate_func = squish_rate_func(smooth, 0.5, 1)), Transform(pre_formula.copy(), post_formula, run_time = 2), ApplyMethod(vect.set_stroke, width = 7) ]) self.wait() class MatrixVectorMultiplicationCopy(MatrixVectorMultiplicationAbstract): pass ## Here just for stage_animations.py purposes class RecapOver(TeacherStudentsScene): def construct(self): self.setup() self.teacher_says("Recap over!") class TwoSuccessiveTransformations(LinearTransformationScene): CONFIG = { "foreground_plane_kwargs" : { "x_radius" : FRAME_WIDTH, "y_radius" : FRAME_WIDTH, "secondary_line_ratio" : 0 }, } def construct(self): self.setup() self.apply_transposed_matrix([[2, 1],[1, 2]]) self.apply_transposed_matrix([[-1, -0.5],[0, -0.5]]) self.wait() class RotationThenShear(LinearTransformationScene): CONFIG = { "foreground_plane_kwargs" : { "x_radius" : FRAME_X_RADIUS, "y_radius" : FRAME_WIDTH, "secondary_line_ratio" : 0 }, } def construct(self): self.setup() rot_words = TextMobject("$90^\\circ$ rotation counterclockwise") shear_words = TextMobject("followed by a shear") rot_words.set_color(YELLOW) shear_words.set_color(PINK) VMobject(rot_words, shear_words).arrange_submobjects(DOWN).to_edge(UP) for words in rot_words, shear_words: words.add_background_rectangle() self.play(Write(rot_words, run_time = 1)) self.add_foreground_mobject(rot_words) self.apply_transposed_matrix([[0, 1], [-1, 0]]) self.play(Write(shear_words, run_time = 1)) self.add_foreground_mobject(shear_words) self.apply_transposed_matrix([[1, 0], [1, 1]]) self.wait() class IntroduceIdeaOfComposition(RotationThenShear): def construct(self): self.setup() self.show_composition() matrix = self.track_basis_vectors() self.show_overall_effect(matrix) def show_composition(self): words = TextMobject([ "``Composition''", "of a", "rotation", "and a", "shear" ]) words.split()[0].set_submobject_colors_by_gradient(YELLOW, PINK, use_color_range_to = False) words.split()[2].set_color(YELLOW) words.split()[4].set_color(PINK) words.add_background_rectangle() words.to_edge(UP) self.apply_transposed_matrix([[0, 1], [-1, 0]], run_time = 2) self.apply_transposed_matrix([[1, 0], [1, 1]], run_time = 2) self.play( ApplyMethod(self.plane.fade), Write(words), Animation(self.i_hat), Animation(self.j_hat), ) self.wait() def track_basis_vectors(self): last_words = self.get_mobjects_from_last_animation()[1] words = TextMobject([ "Record where", "$\\hat{\\imath}$", "and", "$\\hat{\\jmath}$", "land:" ]) rw, i_hat, a, j_hat, l = words.split() i_hat.set_color(X_COLOR) j_hat.set_color(Y_COLOR) words.add_background_rectangle() words.next_to(last_words, DOWN) i_coords = vector_coordinate_label(self.i_hat) j_coords = vector_coordinate_label(self.j_hat) i_coords.set_color(X_COLOR) j_coords.set_color(Y_COLOR) i_background = BackgroundRectangle(i_coords) j_background = BackgroundRectangle(j_coords) matrix = Matrix(np.append( i_coords.copy().get_mob_matrix(), j_coords.copy().get_mob_matrix(), axis = 1 )) matrix.next_to(words, RIGHT, aligned_edge = UP) col1, col2 = [ VMobject(*matrix.get_mob_matrix()[:,i]) for i in (0, 1) ] matrix_background = BackgroundRectangle(matrix) self.play(Write(words)) self.wait() self.play(ShowCreation(i_background), Write(i_coords), run_time = 2) self.wait() self.play( Transform(i_background.copy(), matrix_background), Transform(i_coords.copy().get_brackets(), matrix.get_brackets()), ApplyMethod(i_coords.copy().get_entries().move_to, col1) ) self.wait() self.play(ShowCreation(j_background), Write(j_coords), run_time = 2) self.wait() self.play( ApplyMethod(j_coords.copy().get_entries().move_to, col2) ) self.wait() matrix = VMobject(matrix_background, matrix) return matrix def show_overall_effect(self, matrix): everything = self.get_mobjects() everything = list_difference_update( everything, matrix.get_family() ) self.play(*list(map(FadeOut, everything)) + [Animation(matrix)]) new_matrix = matrix.copy() new_matrix.center().to_edge(UP) self.play(Transform(matrix, new_matrix)) self.wait() self.remove(matrix) self.setup() everything = self.get_mobjects() self.play(*list(map(FadeIn, everything)) + [Animation(matrix)]) func = self.get_matrix_transformation([[1, 1], [-1, 0]]) bases = VMobject(self.i_hat, self.j_hat) new_bases = VMobject(*[ Vector(func(v.get_end()), color = v.get_color()) for v in bases.split() ]) self.play( ApplyPointwiseFunction(func, self.plane), Transform(bases, new_bases), Animation(matrix), run_time = 3 ) self.wait() class PumpVectorThroughRotationThenShear(RotationThenShear): def construct(self): self.setup() self.add_vector([2, 3]) self.apply_transposed_matrix([[0, 1], [-1, 0]], run_time = 2) self.apply_transposed_matrix([[1, 0], [1, 1]], run_time = 2) self.wait() class ExplainWhyItsMatrixMultiplication(Scene): def construct(self): vect = Matrix(["x", "y"]) vect.get_entries().set_color(YELLOW) rot_matrix = Matrix([[0, -1], [1, 0]]) rot_matrix.set_color(TEAL) shear_matrix = Matrix([[1, 1], [0, 1]]) shear_matrix.set_color(PINK) l_paren, r_paren = list(map(TexMobject, ["\\Big(", "\\Big)"])) for p in l_paren, r_paren: p.set_height(1.4*vect.get_height()) long_way = VMobject( shear_matrix, l_paren, rot_matrix, vect, r_paren ) long_way.arrange_submobjects(buff = 0.1) long_way.to_edge(LEFT).shift(UP) equals = TexMobject("=").next_to(long_way, RIGHT) comp_matrix = Matrix([[1, -1], [1, 0]]) comp_matrix.set_column_colors(X_COLOR, Y_COLOR) vect_copy = vect.copy() short_way = VMobject(comp_matrix, vect_copy) short_way.arrange_submobjects(buff = 0.1) short_way.next_to(equals, RIGHT) pairs = [ (rot_matrix, "Rotation"), (shear_matrix, "Shear"), (comp_matrix, "Composition"), ] for matrix, word in pairs: brace = Brace(matrix) text = TextMobject(word).next_to(brace, DOWN) brace.set_color(matrix.get_color()) text.set_color(matrix.get_color()) matrix.add(brace, text) comp_matrix.split()[-1].set_submobject_colors_by_gradient(TEAL, PINK) self.add(vect) groups = [ [rot_matrix], [l_paren, r_paren, shear_matrix], [equals, comp_matrix, vect_copy], ] for group in groups: self.play(*list(map(Write, group))) self.wait() self.play(*list(map(FadeOut, [l_paren, r_paren, vect, vect_copy]))) comp_matrix.add(equals) matrices = VMobject(shear_matrix, rot_matrix, comp_matrix) self.play(ApplyMethod( matrices.arrange_submobjects, buff = 0.1, aligned_edge = UP )) self.wait() arrow = Arrow(rot_matrix.get_right(), shear_matrix.get_left()) arrow.shift((rot_matrix.get_top()[1]+0.2)*UP) words = TextMobject("Read right to left") words.submobjects.reverse() words.next_to(arrow, UP) functions = TexMobject("f(g(x))") functions.next_to(words, UP) self.play(ShowCreation(arrow)) self.play(Write(words)) self.wait() self.play(Write(functions)) self.wait() class MoreComplicatedExampleVisually(LinearTransformationScene): CONFIG = { "t_matrix1" : [[1, 1], [-2, 0]], "t_matrix2" : [[0, 1], [2, 0]], } def construct(self): self.setup() t_matrix1 = np.array(self.t_matrix1) t_matrix2 = np.array(self.t_matrix2) t_m1_inv = np.linalg.inv(t_matrix1.transpose()).transpose() t_m2_inv = np.linalg.inv(t_matrix2.transpose()).transpose() m1_mob, m2_mob, comp_matrix = self.get_matrices() self.play(Write(m1_mob)) self.add_foreground_mobject(m1_mob) self.wait() self.apply_transposed_matrix(t_matrix1) self.wait() self.play(Write(m1_mob.label)) self.add_foreground_mobject(m1_mob.label) self.wait() self.apply_transposed_matrix(t_m1_inv, run_time = 0) self.wait() self.play(Write(m2_mob)) self.add_foreground_mobject(m2_mob) self.wait() self.apply_transposed_matrix(t_matrix2) self.wait() self.play(Write(m2_mob.label)) self.add_foreground_mobject(m2_mob.label) self.wait() self.apply_transposed_matrix(t_m2_inv, run_time = 0) self.wait() for matrix in t_matrix1, t_matrix2: self.apply_transposed_matrix(matrix, run_time = 1) self.play(Write(comp_matrix)) self.add_foreground_mobject(comp_matrix) self.wait() self.play(*list(map(FadeOut, [ self.background_plane, self.plane, self.i_hat, self.j_hat, ])) + [ Animation(m) for m in self.foreground_mobjects ]) self.remove(self.i_hat, self.j_hat) self.wait() def get_matrices(self): m1_mob = Matrix(np.array(self.t_matrix1).transpose()) m2_mob = Matrix(np.array(self.t_matrix2).transpose()) comp_matrix = Matrix([["?", "?"], ["?", "?"]]) m1_mob.set_color(YELLOW) m2_mob.set_color(PINK) comp_matrix.get_entries().set_submobject_colors_by_gradient(YELLOW, PINK) equals = TexMobject("=") equals.next_to(comp_matrix, LEFT) comp_matrix.add(equals) m1_mob = VMobject(BackgroundRectangle(m1_mob), m1_mob) m2_mob = VMobject(BackgroundRectangle(m2_mob), m2_mob) comp_matrix = VMobject(BackgroundRectangle(comp_matrix), comp_matrix) VMobject( m2_mob, m1_mob, comp_matrix ).arrange_submobjects(buff = 0.1).to_corner(UP+LEFT).shift(DOWN) for i, mob in enumerate([m1_mob, m2_mob]): brace = Brace(mob, UP) text = TexMobject("M_%d"%(i+1)) text.next_to(brace, UP) brace.add_background_rectangle() text.add_background_rectangle() brace.add(text) mob.label = brace return m1_mob, m2_mob, comp_matrix class MoreComplicatedExampleNumerically(MoreComplicatedExampleVisually): def get_result(self): return np.dot(self.t_matrix1, self.t_matrix2).transpose() def construct(self): m1_mob, m2_mob, comp_matrix = self.get_matrices() self.add(m1_mob, m2_mob, m1_mob.label, m2_mob.label, comp_matrix) result = self.get_result() col1, col2 = [ VMobject(*m1_mob.split()[1].get_mob_matrix()[:,i]) for i in (0, 1) ] col1.target_color = X_COLOR col2.target_color = Y_COLOR for col in col1, col2: circle = Circle() circle.stretch_to_fit_height(m1_mob.get_height()) circle.stretch_to_fit_width(m1_mob.get_width()/2.5) circle.set_color(col.target_color) circle.move_to(col) col.circle = circle triplets = [ (col1, "i", X_COLOR), (col2, "j", Y_COLOR), ] for i, (col, char, color) in enumerate(triplets): self.add(col) start_state = self.get_mobjects() question = TextMobject( "Where does $\\hat{\\%smath}$ go?"%char ) question.split()[-4].set_color(color) question.split()[-5].set_color(color) question.scale(1.2) question.shift(DOWN) first = TextMobject("First here") first.set_color(color) first.shift(DOWN+LEFT) first_arrow = Arrow( first, col.circle.get_bottom(), color = color ) second = TextMobject("Then to whatever this is") second.set_color(color) second.to_edge(RIGHT).shift(DOWN) m2_copy = m2_mob.copy() m2_target = m2_mob.copy() m2_target.next_to(m2_mob, DOWN, buff = 1) col_vect = Matrix(col.copy().split()) col_vect.set_color(color) col_vect.next_to(m2_target, RIGHT, buff = 0.1) second_arrow = Arrow(second, col_vect, color = color) new_m2_copy = m2_mob.copy().split()[1] intermediate = VMobject( TexMobject("="), col_vect.copy().get_entries().split()[0], Matrix(new_m2_copy.get_mob_matrix()[:,0]), TexMobject("+"), col_vect.copy().get_entries().split()[1], Matrix(new_m2_copy.get_mob_matrix()[:,1]), TexMobject("=") ) intermediate.arrange_submobjects(buff = 0.1) intermediate.next_to(col_vect, RIGHT) product = Matrix(result[:,i]) product.next_to(intermediate, RIGHT) comp_col = VMobject(*comp_matrix.split()[1].get_mob_matrix()[:,i]) self.play(Write(question, run_time = 1 )) self.wait() self.play( Transform(question, first), ShowCreation(first_arrow), ShowCreation(col.circle), ApplyMethod(col.set_color, col.target_color) ) self.wait() self.play( Transform(m2_copy, m2_target, run_time = 2), ApplyMethod(col.copy().move_to, col_vect, run_time = 2), Write(col_vect.get_brackets()), Transform(first_arrow, second_arrow), Transform(question, second), ) self.wait() self.play(*list(map(FadeOut, [question, first_arrow]))) self.play(Write(intermediate)) self.wait() self.play(Write(product)) self.wait() product_entries = product.get_entries() self.play( ApplyMethod(comp_col.set_color, BLACK), ApplyMethod(product_entries.move_to, comp_col) ) self.wait() start_state.append(product_entries) self.play(*[ FadeOut(mob) for mob in self.get_mobjects() if mob not in start_state ] + [ Animation(product_entries) ]) self.wait() class GeneralMultiplication(MoreComplicatedExampleNumerically): def get_result(self): entries = list(map(TexMobject, [ "ae+bg", "af+bh", "ce+dg", "cf+dh" ])) for mob in entries: mob.split()[0].set_color(PINK) mob.split()[3].set_color(PINK) for mob in entries[0], entries[2]: mob.split()[1].set_color(X_COLOR) mob.split()[4].set_color(X_COLOR) for mob in entries[1], entries[3]: mob.split()[1].set_color(Y_COLOR) mob.split()[4].set_color(Y_COLOR) return np.array(entries).reshape((2, 2)) def get_matrices(self): m1, m2, comp = MoreComplicatedExampleNumerically.get_matrices(self) self.add(m1, m2, m1.label, m2.label, comp) m1_entries = m1.split()[1].get_entries() m2_entries = m2.split()[1].get_entries() m2_entries_target = VMobject(*[ TexMobject(char).move_to(entry).set_color(entry.get_color()) for entry, char in zip(m2_entries.split(), "abcd") ]) m1_entries_target = VMobject(*[ TexMobject(char).move_to(entry).set_color(entry.get_color()) for entry, char in zip(m1_entries.split(), "efgh") ]) words = TextMobject("This method works generally") self.play(Write(words, run_time = 2)) self.play(Transform( m1_entries, m1_entries_target, submobject_mode = "lagged_start" )) self.play(Transform( m2_entries, m2_entries_target, submobject_mode = "lagged_start" )) self.wait() new_comp = Matrix(self.get_result()) new_comp.next_to(comp.split()[1].submobjects[-1], RIGHT) new_comp.get_entries().set_color(BLACK) self.play( Transform(comp.split()[1].get_brackets(), new_comp.get_brackets()), *[ ApplyMethod(q_mark.move_to, entry) for q_mark, entry in zip( comp.split()[1].get_entries().split(), new_comp.get_entries().split() ) ] ) self.wait() self.play(FadeOut(words)) return m1, m2, comp class MoreComplicatedExampleWithJustIHat(MoreComplicatedExampleVisually): CONFIG = { "show_basis_vectors" : False, "v_coords" : [1, 0], "v_color" : X_COLOR, } def construct(self): self.setup() self.add_vector(self.v_coords, self.v_color) self.apply_transposed_matrix(self.t_matrix1) self.wait() self.apply_transposed_matrix(self.t_matrix2) self.wait() class MoreComplicatedExampleWithJustJHat(MoreComplicatedExampleWithJustIHat): CONFIG = { "v_coords" : [0, 1], "v_color" : Y_COLOR, } class RoteMatrixMultiplication(NumericalMatrixMultiplication): CONFIG = { "left_matrix" : [[-3, 1], [2, 5]], "right_matrix" : [[5, 3], [7, -3]] } class NeverForget(TeacherStudentsScene): def construct(self): self.setup() self.teacher_says("Never forget what \\\\ this represents!") self.random_blink() self.student_thinks("", student_index = 0) def warp(point): point += 2*DOWN+RIGHT return 20*point/get_norm(point) self.play(ApplyPointwiseFunction( warp, VMobject(*self.get_mobjects()) )) class AskAboutCommutativity(Scene): def construct(self): l_m1, l_m2, eq, r_m2, r_m1 = TexMobject([ "M_1", "M_2", "=", "M_2", "M_1" ]).scale(1.5).split() VMobject(l_m1, r_m1).set_color(YELLOW) VMobject(l_m2, r_m2).set_color(PINK) q_marks = TextMobject("???") q_marks.set_color(TEAL) q_marks.next_to(eq, UP) neq = TexMobject("\\neq") neq.move_to(eq) self.play(*list(map(Write, [l_m1, l_m2, eq]))) self.play( Transform(l_m1.copy(), r_m1), Transform(l_m2.copy(), r_m2), path_arc = -np.pi, run_time = 2 ) self.play(Write(q_marks)) self.wait() self.play(Transform( VMobject(eq, q_marks), VMobject(neq), submobject_mode = "lagged_start" )) self.wait() class ShowShear(LinearTransformationScene): CONFIG = { "title" : "Shear", "title_color" : PINK, "t_matrix" : [[1, 0], [1, 1]] } def construct(self): self.setup() title = TextMobject(self.title) title.scale(1.5).to_edge(UP) title.set_color(self.title_color) title.add_background_rectangle() self.add_foreground_mobject(title) self.wait() self.apply_transposed_matrix(self.t_matrix) self.wait() class ShowRotation(ShowShear): CONFIG = { "title" : "$90^\\circ$ rotation", "title_color" : YELLOW, "t_matrix" : [[0, 1], [-1, 0]] } class FirstShearThenRotation(LinearTransformationScene): CONFIG = { "title" : "First shear then rotation", "t_matrix1" : [[1, 0], [1, 1]], "t_matrix2" : [[0, 1], [-1, 0]], "foreground_plane_kwargs" : { "x_radius" : FRAME_WIDTH, "y_radius" : FRAME_WIDTH, "secondary_line_ratio" : 0 }, } def construct(self): self.setup() title_parts = self.title.split(" ") title = TextMobject(title_parts) for i, part in enumerate(title_parts): if part == "rotation": title.split()[i].set_color(YELLOW) elif part == "shear": title.split()[i].set_color(PINK) title.scale(1.5) self.add_title(title) self.apply_transposed_matrix(self.t_matrix1) self.apply_transposed_matrix(self.t_matrix2) self.i_hat.rotate(-0.01)##Laziness self.wait() self.write_vector_coordinates(self.i_hat, color = X_COLOR) self.wait() self.write_vector_coordinates(self.j_hat, color = Y_COLOR) self.wait() class RotationThenShear(FirstShearThenRotation): CONFIG = { "title" : "First rotation then shear", "t_matrix1" : [[0, 1], [-1, 0]], "t_matrix2" : [[1, 0], [1, 1]], } class NoticeTheLackOfComputations(TeacherStudentsScene): def construct(self): self.setup() self.teacher_says(""" Notice the lack of computations! """) self.random_blink() students = self.get_students() random.shuffle(students) unit = np.array([-0.5, 0.5]) self.play(*[ ApplyMethod( pi.change_mode, "pondering", rate_func = squish_rate_func(smooth, *np.clip(unit+0.5*i, 0, 1)) ) for i, pi in enumerate(students) ]) self.random_blink() self.wait() class AskAssociativityQuestion(Scene): def construct(self): morty = Mortimer() morty.scale(0.8) morty.to_corner(DOWN+RIGHT) morty.shift(0.5*LEFT) title = TextMobject("Associativity:") title.to_corner(UP+LEFT) lhs = TexMobject(list("(AB)C")) lp, a, b, rp, c = lhs.split() rhs = VMobject(*[m.copy() for m in (a, lp, b, c, rp)]) point = VectorizedPoint() start = VMobject(*[m.copy() for m in (point, a, b, point, c)]) for mob in lhs, rhs, start: mob.arrange_submobjects(buff = 0.1) a, lp, b, c, rp = rhs.split() rhs = VMobject(lp, a, b, rp, c)##Align order to lhs eq = TexMobject("=") q_marks = TextMobject("???") q_marks.set_submobject_colors_by_gradient(TEAL_B, TEAL_D) q_marks.next_to(eq, UP) lhs.next_to(eq, LEFT) rhs.next_to(eq, RIGHT) start.move_to(lhs) self.add(morty, title) self.wait() self.play(Blink(morty)) self.play(Write(start)) self.wait() self.play(Transform(start, lhs)) self.wait() self.play( Transform(lhs, rhs, path_arc = -np.pi), Write(eq) ) self.play(Write(q_marks)) self.play(Blink(morty)) self.play(morty.change_mode, "pondering") lp, a, b, rp, c = start.split() self.show_full_matrices(morty, a, b, c, title) def show_full_matrices(self, morty, a, b, c, title): everything = self.get_mobjects() everything.remove(morty) everything.remove(title) everything = VMobject(*everything) matrices = list(map(matrix_to_mobject, [ np.array(list(m)).reshape((2, 2)) for m in ("abcd", "efgh", "ijkl") ])) VMobject(*matrices).arrange_submobjects() self.play(everything.to_edge, UP) for letter, matrix in zip([a, b, c], matrices): self.play(Transform( letter.copy(), matrix, submobject_mode = "lagged_start" )) self.remove(*self.get_mobjects_from_last_animation()) self.add(matrix) self.wait() self.move_matrix_parentheses(morty, matrices) def move_matrix_parentheses(self, morty, matrices): m1, m2, m3 = matrices parens = TexMobject(["(", ")"]) parens.set_height(1.2*m1.get_height()) lp, rp = parens.split() state1 = VMobject( VectorizedPoint(m1.get_left()), m1, m2, VectorizedPoint(m2.get_right()), m3 ) state2 = VMobject(*[ m.copy() for m in (lp, m1, m2, rp, m3) ]) state3 = VMobject(*[ m.copy() for m in (m1, lp, m2, m3, rp) ]) for state in state2, state3: state.arrange_submobjects(RIGHT, buff = 0.1) m1, lp, m2, m3, rp = state3.split() state3 = VMobject(lp, m1, m2, rp, m3) self.play(morty.change_mode, "angry") for state in state2, state3: self.play(Transform(state1, state)) self.wait() self.play(morty.change_mode, "confused") self.wait() class ThreeSuccessiveTransformations(LinearTransformationScene): CONFIG = { "t_matrices" : [ [[2, 1], [1, 2]], [[np.cos(-np.pi/6), np.sin(-np.pi/6)], [-np.sin(-np.pi/6), np.cos(-np.pi/6)]], [[1, 0], [1, 1]] ], "symbols_str" : "A(BC)", "include_background_plane" : False, } def construct(self): self.setup() symbols = TexMobject(list(self.symbols_str)) symbols.scale(1.5) symbols.to_edge(UP) a, b, c = None, None, None for mob, letter in zip(symbols.split(), self.symbols_str): if letter == "A": a = mob elif letter == "B": b = mob elif letter == "C": c = mob symbols.add_background_rectangle() self.add_foreground_mobject(symbols) brace = Brace(c, DOWN) words = TextMobject("Apply this transformation") words.add_background_rectangle() words.next_to(brace, DOWN) brace.add(words) self.play(Write(brace, run_time = 1)) self.add_foreground_mobject(brace) last = VectorizedPoint() for t_matrix, sym in zip(self.t_matrices, [c, b, a]): self.play( brace.next_to, sym, DOWN, sym.set_color, YELLOW, last.set_color, WHITE ) self.apply_transposed_matrix(t_matrix, run_time = 1) last = sym self.wait() class ThreeSuccessiveTransformationsAltParens(ThreeSuccessiveTransformations): CONFIG = { "symbols_str" : "(AB)C" } class ThreeSuccessiveTransformationsSimple(ThreeSuccessiveTransformations): CONFIG = { "symbols_str" : "ABC" } class ExplanationTrumpsProof(Scene): def construct(self): greater = TexMobject(">") greater.shift(RIGHT) explanation = TextMobject("Good explanation") explanation.set_color(BLUE) proof = TextMobject("Symbolic proof") proof.set_color(LIGHT_BROWN) explanation.next_to(greater, LEFT) proof.next_to(greater, RIGHT) explanation.get_center = lambda : explanation.get_right() proof.get_center = lambda : proof.get_left() self.play( Write(explanation), Write(greater), Write(proof), run_time = 1 ) self.play( explanation.scale_in_place, 1.5, proof.scale_in_place, 0.7 ) self.wait() class GoPlay(TeacherStudentsScene): def construct(self): self.setup() self.teacher_says("Go play!", height = 3, width = 5) self.play(*[ ApplyMethod(student.change_mode, "happy") for student in self.get_students() ]) self.random_blink() student = self.get_students()[-1] bubble = ThoughtBubble(direction = RIGHT, width = 6, height = 5) bubble.pin_to(student, allow_flipping = False) bubble.make_green_screen() self.play( ShowCreation(bubble), student.look, UP+LEFT, ) self.play(student.change_mode, "pondering") for x in range(3): self.random_blink() self.wait(2) class NextVideo(Scene): def construct(self): title = TextMobject(""" Next video: Linear transformations in three dimensions """) title.set_width(FRAME_WIDTH - 2) title.to_edge(UP) rect = Rectangle(width = 16, height = 9, color = BLUE) rect.set_height(6) rect.next_to(title, DOWN) self.add(title) self.play(ShowCreation(rect)) self.wait()
34.232687
100
0.574527
7948206db2fd8ebfbae9d97d49de873dd53f7638
6,288
py
Python
module.py
dtylor/WalkAsString
88841062b2eaa343da0661c3fe31acc4a7d1a0b8
[ "MIT" ]
5
2019-03-10T13:38:57.000Z
2019-11-08T00:12:32.000Z
module.py
dtylor/WalkAsString
88841062b2eaa343da0661c3fe31acc4a7d1a0b8
[ "MIT" ]
10
2019-02-25T01:16:57.000Z
2019-03-04T03:01:16.000Z
module.py
dtylor/WalkAsString
88841062b2eaa343da0661c3fe31acc4a7d1a0b8
[ "MIT" ]
1
2020-05-10T09:19:13.000Z
2020-05-10T09:19:13.000Z
from n2v import node2vec from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import networkx as nx import pandas as pd import numpy as np from graphwave import graphwave from graphwave.utils import utils from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans def _get_components(networkXGraph): return pd.DataFrame([{"node": k, "component": v} for k, v in nx.get_node_attributes( G=networkXGraph, name='component').items()]).groupby('component')['node'].apply(list).to_dict() def divide_chunks(l, n): # looping till length l for i in range(0, len(l), n): yield l[i:i + n] def get_structural_signatures(networkXGraph, vocab_size=1, params={'num_kmeans_clusters': 4, "num_pca_components": 6, "num_batch":500}): """ Get structural embeddings using GraphWave. Learns structural signatures of each node using GraphWave, and adds these learned structures to the node attributes on the NetworkX graph. Example: Attributes: networkXGraph (networkx.classes.graph.Graph): A graph containing nodes, edges, and their attributes. Nodes must include an attribute called 'component'. Returns: a NetworkX graph where structural embeddings are added as `structure` node attributes. """ nb_clust = params['num_kmeans_clusters'] n_components = params['num_pca_components'] batch_size = params['num_batch'] components = list(divide_chunks(list(_get_components(networkXGraph).values()),batch_size)) heat_signatures = [] nodes_list = [] for n in components: #flatten list of lists nodes = [item for sublist in n for item in sublist] subgraph = networkXGraph.subgraph(nodes) chi, heat_print, taus = graphwave.graphwave_alg( subgraph, np.linspace(0, 10, 20), taus='auto', verbose=True) if len(subgraph.nodes) < n_components: print("Omitting graph " + str(subgraph_id) + " with node count: " + str(len(subgraph.nodes)) + " < " + str(n_components)) else: heat_signatures += chi.tolist() nodes_list += nodes print("finished graphwave_alg batches") pca = PCA(n_components = n_components) trans_data_all = pca.fit_transform(StandardScaler().fit_transform(np.array(heat_signatures))) km = KMeans(n_clusters = nb_clust).fit(trans_data_all) labels_pred = km.labels_ out = pd.DataFrame(labels_pred.astype(int), index=nodes_list) out[0] += vocab_size structure_labels = out[0].to_dict() nx.set_node_attributes(G=networkXGraph, values=structure_labels, name='structure') return networkXGraph, pca, km def walk_as_string(networkXGraph, componentLabels, params={'num_walks': 20, 'walk_length': 30}): """ Generate random walks over a graph. Create a language to define nodes/edges and their characteristics, and generate random walks in this language. Example: Attributes: networkXGraph (networkx.classes.graph.Graph): A graph containing nodes, edges, and their attributes. Nodes must include an attribute called 'component'. componentLabels (dict): A dictionary mapping graph components to their y-values. Returns: a DataFrame containing each walk, and the associated graph label. """ # TODO: Allow custom mapping for features e.g. pass a dict for node labels to convert them to chemical names # graphComponentLabels = nx.get_node_attributes(G=networkXGraph, name='component') num_walks = params['num_walks'] walk_length = params['walk_length'] nodeFeatures = list( set([z for x in list(networkXGraph.nodes(data=True)) for z in x[1].keys()])) nodeFeatures.remove('component') edgeFeatures = list( set([z for x in list(networkXGraph.edges(data=True)) for z in x[2].keys()])) # Remove 'cheating' features (e.g. component) if "component" in nodeFeatures: nodeFeatures.remove("component") # Make sure edges have weights if "weight" in edgeFeatures: edgeFeatures.remove("weight") else: nx.set_edge_attributes( G=networkXGraph, values=1, name='weight') n2vG = node2vec.Graph(nx_G=networkXGraph, is_directed=False, p=1, q=.7) n2vG.preprocess_transition_probs() walks = n2vG.simulate_walks(num_walks, walk_length) node_words = {} edge_words = {} def express_node(node_idx): if node_idx not in node_words: node = networkXGraph.nodes[node_idx] # node_words[node_idx] = " ".join([str(attribute)+"_"+str(node[attribute]) # for attribute in nodeFeatures if attribute in node]) node_words[node_idx] = " ".join([str(node[attribute]) for attribute in nodeFeatures if attribute in node]) return node_words[node_idx] def express_edge(src_node, dst_node): if (src_node, dst_node) not in edge_words: edge = networkXGraph.edges[src_node, dst_node] # edge_words[src_node, dst_node] = " ".join([str(attribute)+"_"+str(edge[attribute]) # for attribute in edgeFeatures if attribute in edge]) edge_words[src_node, dst_node] = " ".join( [str(edge[attribute]) for attribute in edgeFeatures if attribute in edge]) return edge_words[src_node, dst_node] sorted_walks = pd.DataFrame(walks).sort_values(0).as_matrix() print(sorted_walks[0]) print(sorted_walks[1]) print(sorted_walks[2]) walks = [list(a) for a in sorted_walks] walks_as_words = [express_node(walk[0]) + " " + " ".join([express_edge(walk[step], walk[step+1]) + " " + express_node(walk[step+1]) for step in range(len(walk) - 1)]) for walk in walks] result = pd.DataFrame({"walk": walks_as_words, "start_node": np.array(walks)[:,0]}) result['component'] = result['start_node'].map(nx.get_node_attributes(networkXGraph, name='component')) result['label'] = result['component'].map(componentLabels) result = result[['walk', 'label', 'start_node', 'component']] return result
39.54717
160
0.675254
794820ed3aa4128aa9e8d1a9a24dc19521fb3ede
2,914
py
Python
insights/parsers/postconf.py
haithcockce/insights-core
b2e197c6bfc25bcbe2926f07c35a80f2cf8232f5
[ "Apache-2.0" ]
121
2017-05-30T20:23:25.000Z
2022-03-23T12:52:15.000Z
insights/parsers/postconf.py
haithcockce/insights-core
b2e197c6bfc25bcbe2926f07c35a80f2cf8232f5
[ "Apache-2.0" ]
1,977
2017-05-26T14:36:03.000Z
2022-03-31T10:38:53.000Z
insights/parsers/postconf.py
haithcockce/insights-core
b2e197c6bfc25bcbe2926f07c35a80f2cf8232f5
[ "Apache-2.0" ]
244
2017-05-30T20:22:57.000Z
2022-03-26T10:09:39.000Z
""" Postconf - command ``postconf`` =============================== PostconfBuiltin - command ``postconf -C builtin`` ================================================= """ from insights.core import CommandParser from insights.core.plugins import parser from insights.specs import Specs from insights.parsers import SkipException class _Postconf(CommandParser, dict): """ Class for parsing the ``postconf`` command. Sample input:: smtpd_tls_loglevel = 0 smtpd_tls_mandatory_ciphers = medium smtpd_tls_mandatory_exclude_ciphers = smtpd_tls_mandatory_protocols = !SSLv2, !SSLv3, !TLSv1 Examples: >>> type(_postconf) <class 'insights.parsers.postconf._Postconf'> >>> _postconf['smtpd_tls_loglevel'] == '0' True >>> _postconf['smtpd_tls_mandatory_ciphers'] == 'medium' True >>> _postconf['smtpd_tls_mandatory_exclude_ciphers'] == '' True >>> _postconf['smtpd_tls_mandatory_protocols'] == '!SSLv2, !SSLv3, !TLSv1' True """ def parse_content(self, content): if not content: raise SkipException data = dict() for line in content: if '=' in line: key, value = [i.strip() for i in line.split('=', 1)] data[key] = value if not data: raise SkipException self.update(data) @parser(Specs.postconf_builtin) class PostconfBuiltin(_Postconf): """ Class for parsing the ``postconf -C builtin`` command. Sample input:: smtpd_tls_loglevel = 0 smtpd_tls_mandatory_ciphers = medium smtpd_tls_mandatory_exclude_ciphers = smtpd_tls_mandatory_protocols = !SSLv2, !SSLv3, !TLSv1 Examples: >>> type(postconfb) <class 'insights.parsers.postconf.PostconfBuiltin'> >>> postconfb['smtpd_tls_loglevel'] == '0' True >>> postconfb['smtpd_tls_mandatory_ciphers'] == 'medium' True >>> postconfb['smtpd_tls_mandatory_exclude_ciphers'] == '' True >>> postconfb['smtpd_tls_mandatory_protocols'] == '!SSLv2, !SSLv3, !TLSv1' True """ @parser(Specs.postconf) class Postconf(_Postconf): """ Class for parsing the ``postconf`` command. Sample input:: smtpd_tls_loglevel = 0 smtpd_tls_mandatory_ciphers = medium smtpd_tls_mandatory_exclude_ciphers = smtpd_tls_mandatory_protocols = !SSLv2, !SSLv3, !TLSv1 Examples: >>> type(postconf) <class 'insights.parsers.postconf.Postconf'> >>> postconf['smtpd_tls_loglevel'] == '0' True >>> postconf['smtpd_tls_mandatory_ciphers'] == 'medium' True >>> postconf['smtpd_tls_mandatory_exclude_ciphers'] == '' True >>> postconf['smtpd_tls_mandatory_protocols'] == '!SSLv2, !SSLv3, !TLSv1' True """
28.568627
82
0.601579
79482145c3765c05fd812b000d67344485fe6f12
2,733
py
Python
train.py
batuhan-baskurt/AICITY2020_DMT_VehicleReID
3f18b61f0dbf1fbac1f2adb0dbb07a8b647e1747
[ "MIT" ]
null
null
null
train.py
batuhan-baskurt/AICITY2020_DMT_VehicleReID
3f18b61f0dbf1fbac1f2adb0dbb07a8b647e1747
[ "MIT" ]
null
null
null
train.py
batuhan-baskurt/AICITY2020_DMT_VehicleReID
3f18b61f0dbf1fbac1f2adb0dbb07a8b647e1747
[ "MIT" ]
null
null
null
import os from torch.backends import cudnn from utils.logger import setup_logger from datasets import make_dataloader from model import make_model from solver import make_optimizer, WarmupMultiStepLR from loss import make_loss from processor import do_train import random import torch import numpy as np import os import argparse from config import cfg if __name__ == '__main__': torch.manual_seed(1234) torch.cuda.manual_seed(1234) torch.cuda.manual_seed_all(1234) np.random.seed(1234) random.seed(1234) torch.backends.cudnn.deterministic = True cudnn.benchmark = True parser = argparse.ArgumentParser(description="ReID Baseline Training") parser.add_argument( "--config_file", default="", help="path to config file", type=str ) parser.add_argument("opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() if args.config_file != "": cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir and not os.path.exists(output_dir): os.makedirs(output_dir) logger = setup_logger("reid_baseline", output_dir, if_train=True) logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR)) logger.info(args) if args.config_file != "": logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, 'r') as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID train_loader, val_loader, num_query, num_classes = make_dataloader(cfg) if cfg.MODEL.PRETRAIN_CHOICE == 'finetune': model = make_model(cfg, num_class=num_classes) model.load_param_finetune(cfg.MODEL.PRETRAIN_PATH) print('Loading pretrained model for finetuning......') else: model = make_model(cfg, num_class=num_classes) loss_func, center_criterion = make_loss(cfg, num_classes=num_classes) optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion) scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_EPOCHS, cfg.SOLVER.WARMUP_METHOD) do_train( cfg, model, center_criterion, train_loader, val_loader, optimizer, optimizer_center, scheduler, # modify for using self trained model loss_func, num_query )
32.927711
98
0.681668
7948218f5ea7d53d79e559d4dacb8274b9d84ae5
1,153
py
Python
var/spack/repos/builtin/packages/r-rcppcctz/package.py
adrianjhpc/spack
0a9e4fcee57911f2db586aa50c8873d9cca8de92
[ "ECL-2.0", "Apache-2.0", "MIT" ]
2
2020-10-15T01:08:42.000Z
2021-10-18T01:28:18.000Z
var/spack/repos/builtin/packages/r-rcppcctz/package.py
adrianjhpc/spack
0a9e4fcee57911f2db586aa50c8873d9cca8de92
[ "ECL-2.0", "Apache-2.0", "MIT" ]
2
2019-07-30T10:12:28.000Z
2019-12-17T09:02:27.000Z
var/spack/repos/builtin/packages/r-rcppcctz/package.py
adrianjhpc/spack
0a9e4fcee57911f2db586aa50c8873d9cca8de92
[ "ECL-2.0", "Apache-2.0", "MIT" ]
5
2019-07-30T09:42:14.000Z
2021-01-25T05:39:20.000Z
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RRcppcctz(RPackage): """'Rcpp' Access to the 'CCTZ' timezone library is provided. 'CCTZ' is a C++ library for translating between absolute and civil times using the rules of a time zone. The 'CCTZ' source code, released under the Apache 2.0 License, is included in this package. See <https://github.com/google/cctz> for more details.""" homepage = "https://github.com/eddelbuettel/rcppcctz" url = "https://cloud.r-project.org/src/contrib/RcppCCTZ_0.2.3.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/RcppCCTZ" version('0.2.6', sha256='0e9a76055d29da24cd4c4069c78c1f44998f3461be60c7a6c3e7a35059fb79ae') version('0.2.4', sha256='98b6867d38abe03957fe803e88b6cc2d122b85a68ef07fa86f7e1009d6c00819') version('0.2.3', sha256='0fefcc98387b2c1a5907e5230babb46e2cc11b603424f458f515e445a3236031') depends_on('r-rcpp@0.11.0:', type=('build', 'run'))
46.12
95
0.733738
794821df6efe801ba51e52d361d5aa4d3c7d5dac
25,267
py
Python
fbcrawl/items.py
pramoth/fbcrawl
dd0ed825364f6960456a9f3a00d12a2e143f733d
[ "Apache-2.0" ]
null
null
null
fbcrawl/items.py
pramoth/fbcrawl
dd0ed825364f6960456a9f3a00d12a2e143f733d
[ "Apache-2.0" ]
null
null
null
fbcrawl/items.py
pramoth/fbcrawl
dd0ed825364f6960456a9f3a00d12a2e143f733d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy from scrapy.loader.processors import TakeFirst, Join, MapCompose from datetime import datetime, timedelta def comments_strip(string,loader_context): lang = loader_context['lang'] if lang == 'it': if string[0].rfind('Commenta') != -1: return else: return string[0].rstrip(' commenti') elif lang == 'en': if(string[0] == 'Share'): return '0' new_string = string[0].rstrip(' Comments') while new_string.rfind(',') != -1: new_string = new_string[0:new_string.rfind(',')] + new_string[new_string.rfind(',')+1:] return new_string else: return string def reactions_strip(string,loader_context): lang = loader_context['lang'] if lang == 'it': newstring = string[0] #19.298.873 if len(newstring.split()) == 1: while newstring.rfind('.') != -1: newstring = newstring[0:newstring.rfind('.')] + newstring[newstring.rfind('.')+1:] return newstring #Pamela, Luigi e altri 4 else: return string friends = newstring.count(' e ') + newstring.count(',') newstring = newstring.split()[::-1][0] while newstring.rfind('.') != -1: newstring = newstring[0:newstring.rfind('.')] + newstring[newstring.rfind('.')+1:] return int(newstring) + friends elif lang == 'en': newstring = string[0] #19,298,873 if len(newstring.split()) == 1: while newstring.rfind(',') != -1: newstring = newstring[0:newstring.rfind(',')] + newstring[newstring.rfind(',')+1:] return newstring #Mark and other 254,134 elif newstring.split()[::-1][1].isdigit(): friends = newstring.count(' and ') + newstring.count(',') newstring = newstring.split()[::-1][1] while newstring.rfind(',') != -1: newstring = newstring[0:newstring.rfind(',')] + newstring[newstring.rfind(',')+1:] return int(newstring) + friends #Philip and 1K others else: return newstring else: return string def url_strip(url): fullurl = url[0] #catchin '&id=' is enough to identify the post i = fullurl.find('&id=') if i != -1: return fullurl[:i+4] + fullurl[i+4:].split('&')[0] else: #catch photos i = fullurl.find('/photos/') if i != -1: return fullurl[:i+8] + fullurl[i+8:].split('/?')[0] else: #catch albums i = fullurl.find('/albums/') if i != -1: return fullurl[:i+8] + fullurl[i+8:].split('/?')[0] else: return fullurl def parse_date(date,loader_context): import json d = json.loads(date[0]) #nested dict of features flat_d = dict() #only retain 'leaves' of d tree def recursive_items(dictionary): ''' Get most nested key:value pair of nested dict ''' for key, value in dictionary.items(): if type(value) is dict: yield from recursive_items(value) else: yield (key, value) for key, value in recursive_items(d): flat_d[key] = value #returns timestamp in localtime conversion from linux timestamp UTC ret = str(datetime.fromtimestamp(flat_d['publish_time'])) if 'publish_time' in flat_d else None return ret def parse_date2(init_date,loader_context): lang = loader_context['lang'] # ============================================================================= # Italian - status:final # ============================================================================= if lang == 'it': months = { 'gennaio':1, 'febbraio':2, 'marzo':3, 'aprile':4, 'maggio':5, 'giugno':6, 'luglio':7, 'agosto':8, 'settembre':9, 'ottobre':10, 'novembre':11, 'dicembre':12 } months_abbr = { 'gen':1, 'feb':2, 'mar':3, 'apr':4, 'mag':5, 'giu':6, 'lug':7, 'ago':8, 'set':9, 'ott':10, 'nov':11, 'dic':12 } giorni = { 'lunedì':0, 'martedì':1, 'mercoledì':2, 'giovedì':3, 'venerdì':4, 'sabato':5, 'domenica':6 } date = init_date[0].split() year, month, day = [int(i) for i in str(datetime.now().date()).split(sep='-')] #default is today l = len(date) #sanity check if l == 0: return 'Error: no data' #adesso, ieri, 4h, 50min elif l == 1: if date[0].isalpha(): if date[0].lower() == 'ieri': day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) #check that yesterday was not in another month month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) elif date[0].lower() == 'adesso': return datetime(year,month,day).date() #return today else: #not recognized, (return date or init_date) return date else: #4h, 50min (exploit future parsing) l = 2 new_date = [x for x in date[0] if x.isdigit()] date[0] = ''.join(new_date) new_date = [x for x in date[0] if not(x.isdigit())] date[1] = ''.join(new_date) # l = 2 elif l == 2: #22 min (oggi) if date[1] == 'min': if int(str(datetime.now().time()).split(sep=':')[1]) - int(date[0]) >= 0: return datetime(year,month,day).date() #22 min (ieri) else: day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #4 h (oggi) elif date[1] == 'h': if int(str(datetime.now().time()).split(sep=':')[0]) - int(date[0]) >= 0: return datetime(year,month,day).date() #4 h (ieri) else: day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #2 gen elif len(date[1]) == 3 and date[1].isalpha(): day = int(date[0]) month = months_abbr[date[1].lower()] return datetime(year,month,day).date() #2 gennaio elif len(date[1]) > 3 and date[1].isalpha(): day = int(date[0]) month = months[date[1]] return datetime(year,month,day).date() #parsing failed else: return date # l = 3 elif l == 3: #21 giu 2017 if len(date[1]) == 3 and date[2].isdigit(): day = int(date[0]) month = months_abbr[date[1]] year = int(date[2]) return datetime(year,month,day).date() #21 giugno 2017 elif len(date[1]) > 3 and date[2].isdigit(): day = int(date[0]) month = months[date[1]] year = int(date[2]) return datetime(year,month,day).date() #9 ore fa elif date[0].isdigit() and date[1][:2] == 'or': if int(str(datetime.now().time()).split(sep=':')[0]) - int(date[0]) >= 0: return datetime(year,month,day).date() #9 ore fa (ieri) else: day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #7 minuti fa elif date[0].isdigit() and date[1][:3] == 'min': return datetime(year,month,day).date() #ieri alle 20:45 elif date[0].lower() == 'ieri' and date[1] == 'alle': day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #oggi alle 11:11 elif date[0].lower() == 'oggi' and date[1] == 'alle': return datetime(year,month,day).date() #lunedì alle 12:34 elif date[0].isalpha() and date[1] == 'alle': today = datetime.now().weekday() #today as a weekday weekday = giorni[date[0].lower()] #day to be match as number weekday #weekday is chronologically always lower than day delta = today - weekday if delta >= 0: day = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[1]) return datetime(year,month,day).date() #lunedì = 0 sabato = 6, mar 1 ven 5 else: delta += 8 day = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[1]) return datetime(year,month,day).date() #parsing failed else: return date # l = 4 elif l == 4: #Ieri alle ore 23:32 if date[0].lower() == 'ieri' and date[1] == 'alle': day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #domenica alle ore 19:29 elif date[0].isalpha() and date[1] == 'alle': today = datetime.now().weekday() #today as a weekday weekday = giorni[date[0].lower()] #day to be match as number weekday #weekday is chronologically always lower than day delta = today - weekday if delta >= 0: day = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[1]) return datetime(year,month,day).date() #lunedì = 0 sabato = 6, mar 1 ven 5 else: delta += 8 day = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[1]) return datetime(year,month,day).date() #parsing failed else: return date # l = 5 elif l == 5: if date[2] == 'alle': #29 feb alle ore 21:49 if len(date[1]) == 3: day = int(date[0]) month = months_abbr[date[1].lower()] return datetime(year,month,day).date() #29 febbraio alle ore 21:49 else: day = int(date[0]) month = months[date[1].lower()] return datetime(year,month,day).date() #parsing failed else: return date # l = 6 elif l == 6: if date[3] == 'alle': #29 feb 2016 alle ore 21:49 if len(date[1]) == 3: day = int(date[0]) month = months_abbr[date[1].lower()] year = int(date[2]) return datetime(year,month,day).date() #29 febbraio 2016 alle ore 21:49 else: day = int(date[0]) month = months[date[1].lower()] year = int(date[2]) return datetime(year,month,day).date() #parsing failed else: return date # ============================================================================= # English - status:beta # ============================================================================= elif lang == 'en': months = { 'january':1, 'february':2, 'march':3, 'april':4, 'may':5, 'june':6, 'july':7, 'august':8, 'september':9, 'october':10, 'november':11, 'december':12 } months_abbr = { 'jan':1, 'feb':2, 'mar':3, 'apr':4, 'may':5, 'jun':6, 'jul':7, 'aug':8, 'sep':9, 'oct':10, 'nov':11, 'dec':12 } days = { 'monday':0, 'tuesday':1, 'wednesday':2, 'thursday':3, 'friday':4, 'saturday':5, 'sunday':6 } date = init_date[0].split() year, month, day = [int(i) for i in str(datetime.now().date()).split(sep='-')] #default is today l = len(date) #sanity check if l == 0: return 'Error: no data' #Yesterday, Now, 4hr, 50mins elif l == 1: if date[0].isalpha(): if date[0].lower() == 'yesterday': day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) #check that yesterday was not in another month month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) elif date[0].lower() == 'now': return datetime(year,month,day).date() #return today else: #not recognized, (return date or init_date) return date else: #4h, 50min (exploit future parsing) l = 2 new_date = [x for x in date[0] if x.isdigit()] date[0] = ''.join(new_date) new_date = [x for x in date[0] if not(x.isdigit())] date[1] = ''.join(new_date) # l = 2 elif l == 2: if date[1] == 'now': return datetime(year,month,day).date() #22 min (ieri) if date[1] == 'min' or date[1] == 'mins': if int(str(datetime.now().time()).split(sep=':')[1]) - int(date[0]) < 0 and int(str(datetime.now().time()).split(sep=':')[0])==0: day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #22 min (oggi) else: return datetime(year,month,day).date() #4 h (ieri) elif date[1] == 'hr' or date[1] == 'hrs': if int(str(datetime.now().time()).split(sep=':')[0]) - int(date[0]) < 0: day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #4 h (oggi) else: return datetime(year,month,day).date() #2 jan elif len(date[1]) == 3 and date[1].isalpha(): day = int(date[0]) month = months_abbr[date[1].lower()] return datetime(year,month,day).date() #2 january elif len(date[1]) > 3 and date[1].isalpha(): day = int(date[0]) month = months[date[1]] return datetime(year,month,day).date() #jan 2 elif len(date[0]) == 3 and date[0].isalpha(): day = int(date[1]) month = months_abbr[date[0].lower()] return datetime(year,month,day).date() #january 2 elif len(date[0]) > 3 and date[0].isalpha(): day = int(date[1]) month = months[date[0]] return datetime(year,month,day).date() #parsing failed else: return date return date # l = 3 elif l == 3: #5 hours ago if date[2] == 'ago': if date[1] == 'hour' or date[1] == 'hours' or date[1] == 'hr' or date[1] == 'hrs': # 5 hours ago (yesterday) if int(str(datetime.now().time()).split(sep=':')[0]) - int(date[0]) < 0: day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() # 5 hours ago (today) else: return datetime(year,month,day).date() #10 minutes ago elif date[1] == 'minute' or date[1] == 'minutes' or date[1] == 'min' or date[1] == 'mins': #22 minutes ago (yesterday) if int(str(datetime.now().time()).split(sep=':')[1]) - int(date[0]) < 0 and int(str(datetime.now().time()).split(sep=':')[0])==0: day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #22 minutes ago (today) else: return datetime(year,month,day).date() else: return date else: #21 Jun 2017 if len(date[1]) == 3 and date[1].isalpha() and date[2].isdigit(): day = int(date[0]) month = months_abbr[date[1].lower()] year = int(date[2]) return datetime(year,month,day).date() #21 June 2017 elif len(date[1]) > 3 and date[1].isalpha() and date[2].isdigit(): day = int(date[0]) month = months[date[1].lower()] year = int(date[2]) return datetime(year,month,day).date() #Jul 11, 2016 elif len(date[0]) == 3 and len(date[1]) == 3 and date[0].isalpha(): day = int(date[1][:-1]) month = months_abbr[date[0].lower()] year = int(date[2]) return datetime(year,month,day).date() #parsing failed else: return date # l = 4 elif l == 4: #yesterday at 23:32 PM if date[0].lower() == 'yesterday' and date[1] == 'at': day = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(1)).split(sep='-')[1]) return datetime(year,month,day).date() #Thursday at 4:27 PM elif date[1] == 'at': today = datetime.now().weekday() #today as a weekday weekday = days[date[0].lower()] #day to be match as number weekday #weekday is chronologically always lower than day delta = today - weekday if delta >= 0: day = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[1]) return datetime(year,month,day).date() #monday = 0 saturday = 6 else: delta += 8 day = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[2]) month = int(str(datetime.now().date()-timedelta(delta)).split(sep='-')[1]) return datetime(year,month,day).date() #parsing failed else: return date # l = 5 elif l == 5: if date[2] == 'at': #Jan 29 at 10:00 PM if len(date[0]) == 3: day = int(date[1]) month = months_abbr[date[0].lower()] return datetime(year,month,day).date() #29 febbraio alle ore 21:49 else: day = int(date[1]) month = months[date[0].lower()] return datetime(year,month,day).date() #parsing failed else: return date # l = 6 elif l == 6: if date[3] == 'at': date[1] #Aug 25, 2016 at 7:00 PM if len(date[0]) == 3: day = int(date[1][:-1]) month = months_abbr[date[0].lower()] year = int(date[2]) return datetime(year,month,day).date() #August 25, 2016 at 7:00 PM else: day = int(date[1][:-1]) month = months[date[0].lower()] year = int(date[2]) return datetime(year,month,day).date() #parsing failed else: return date # l > 6 #parsing failed - l too big else: return date #parsing failed - language not supported else: return init_date def id_strip(post_id): import json d = json.loads(post_id[::-1][0]) #nested dict of features return str(d['top_level_post_id']) class FbcrawlItem(scrapy.Item): source = scrapy.Field() date = scrapy.Field() text = scrapy.Field( output_processor=Join(separator=u'') ) # full text of the post comments = scrapy.Field( output_processor=comments_strip ) reactions = scrapy.Field( output_processor=reactions_strip ) # num of reactions likes = scrapy.Field( output_processor=reactions_strip ) ahah = scrapy.Field( output_processor=reactions_strip ) love = scrapy.Field( output_processor=reactions_strip ) wow = scrapy.Field( output_processor=reactions_strip ) sigh = scrapy.Field( output_processor=reactions_strip ) grrr = scrapy.Field( output_processor=reactions_strip ) share = scrapy.Field() # num of shares url = scrapy.Field( output_processor=url_strip ) post_id = scrapy.Field( output_processor=id_strip ) shared_from = scrapy.Field() class CommentsItem(scrapy.Item): source = scrapy.Field() reply_to=scrapy.Field() date = scrapy.Field( # when was the post published output_processor=parse_date2 ) text = scrapy.Field( output_processor=Join(separator=u'') ) # full text of the post reactions = scrapy.Field( output_processor=reactions_strip ) # num of reactions likes = scrapy.Field( output_processor=reactions_strip ) source_url = scrapy.Field() url = scrapy.Field() ahah = scrapy.Field() love = scrapy.Field() wow = scrapy.Field() sigh = scrapy.Field() grrr = scrapy.Field() share = scrapy.Field() # num of shares class ProfileItem(scrapy.Item): name = scrapy.Field() gender = scrapy.Field() birthday = scrapy.Field() current_city = scrapy.Field() hometown = scrapy.Field() work = scrapy.Field() education = scrapy.Field() interested_in = scrapy.Field() page = scrapy.Field()
39.418097
149
0.450034
794821ea0d096b0d913925265027f21b65835d93
1,390
py
Python
V2.0.0/steneografia/popups.py
ziajek444/Stenography
4faf946065a675b995e83a15d7c2e8c4958a2192
[ "MIT" ]
null
null
null
V2.0.0/steneografia/popups.py
ziajek444/Stenography
4faf946065a675b995e83a15d7c2e8c4958a2192
[ "MIT" ]
null
null
null
V2.0.0/steneografia/popups.py
ziajek444/Stenography
4faf946065a675b995e83a15d7c2e8c4958a2192
[ "MIT" ]
null
null
null
from kivy.uix.button import Button from kivy.uix.popup import Popup # content_ = Button(text='ok') content_image_saved = Button(text='ok') content_image_saved_m = Button(text='ok') content_hided_data = Button(text='ok') content_wrong_format = Button(text='ok') content_drafted_data = Button(text='ok') # popup_ = Popup(title='xxx', content=content_, size_hint=(0.5, 0.2), auto_dismiss=False) popup_image_saved = Popup(title='Image saved', content=content_image_saved, size_hint=(0.5, 0.2), auto_dismiss=False) popup_image_saved_m = Popup(title='Image & mask saved', content=content_image_saved_m, size_hint=(0.5, 0.2), auto_dismiss=False) popup_hided_data = Popup(title='Hided data', content=content_hided_data, size_hint=(0.5, 0.2), auto_dismiss=False) popup_wrong_format = Popup(title='Wrong format', content=content_wrong_format, size_hint=(0.5, 0.2), auto_dismiss=False) popup_drafted_data = Popup(title='Drafted data', content=content_drafted_data, size_hint=(0.5, 0.2), auto_dismiss=False) # content_.bind(on_press=popup_.dismiss) content_image_saved.bind(on_press=popup_image_saved.dismiss) content_image_saved_m.bind(on_press=popup_image_saved_m.dismiss) content_hided_data.bind(on_press=popup_hided_data.dismiss) content_wrong_format.bind(on_press=popup_wrong_format.dismiss) content_drafted_data.bind(on_press=popup_drafted_data.dismiss)
43.4375
129
0.782734
7948221593e915362dcccd9939f1b2bf9546e351
2,763
py
Python
darwin/exporter/formats/dataloop.py
ck37/darwin-py
a231e3844759c44a954b47126bbbf9d6afe658fc
[ "MIT" ]
null
null
null
darwin/exporter/formats/dataloop.py
ck37/darwin-py
a231e3844759c44a954b47126bbbf9d6afe658fc
[ "MIT" ]
null
null
null
darwin/exporter/formats/dataloop.py
ck37/darwin-py
a231e3844759c44a954b47126bbbf9d6afe658fc
[ "MIT" ]
null
null
null
import json from pathlib import Path from typing import Any, Dict, Iterable, Iterator import numpy as np import darwin.datatypes as dt class NumpyEncoder(json.JSONEncoder): def default(self, obj: Any) -> Any: if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NumpyEncoder, self).default(obj) def export(annotation_files: Iterator[dt.AnnotationFile], output_dir: Path) -> None: for id, annotation_file in enumerate(annotation_files): export_file(annotation_file, id, output_dir) def export_file(annotation_file: dt.AnnotationFile, id: int, output_dir: Path) -> None: output: Dict[str, Any] = build_json(annotation_file, id) output_file_path: Path = (output_dir / annotation_file.filename).with_suffix(".json") with open(output_file_path, "w") as f: json.dump(output, f, cls=NumpyEncoder, indent=1) def build_json(annotation_file: dt.AnnotationFile, id: int) -> Dict[str, Any]: return { "_id": id, "filename": annotation_file.filename, "itemMetadata": [], "annotations": build_annotations(annotation_file, id), } def build_annotations(annotation_file: dt.AnnotationFile, id: int) -> Iterable[Dict[str, Any]]: output = [] for annotation_id, annotation in enumerate(annotation_file.annotations): print(annotation) if annotation.annotation_class.annotation_type == "bounding_box": entry = { "id": annotation_id, "datasetId": "darwin", "type": "box", "label": annotation.annotation_class.name, "attributes": [], "coordinates": [ {"x": annotation.data["x"], "y": annotation.data["y"], "z": 0}, { "x": annotation.data["x"] + annotation.data["w"], "y": annotation.data["y"] + annotation.data["h"], "z": 0, }, ], "metadata": {}, } output.append(entry) elif annotation.annotation_class.annotation_type == "polygon": entry = { "id": annotation_id, "datasetId": "darwin", "type": "segment", "label": annotation.annotation_class.name, "attributes": [], "coordinates": [{"x": point["x"], "y": point["y"], "z": 0} for point in annotation.data["path"]], "metadata": {}, } output.append(entry) return output
35.423077
113
0.559899
794822445d9e5cd57d4594cf1db8fca48cbdae12
1,712
py
Python
3DGenZ/genz3d/fkaconv/lightconvpoint/knn/sampling_fps_op.py
valeoai/3DGenZ
3368585e10f127f7a0d71af98994a6cff5235dab
[ "Apache-2.0" ]
8
2021-12-10T03:21:21.000Z
2022-03-11T06:23:30.000Z
3DGenZ/genz3d/fkaconv/lightconvpoint/knn/sampling_fps_op.py
valeoai/3DGenZ
3368585e10f127f7a0d71af98994a6cff5235dab
[ "Apache-2.0" ]
1
2022-03-02T09:33:36.000Z
2022-03-06T16:29:44.000Z
3DGenZ/genz3d/fkaconv/lightconvpoint/knn/sampling_fps_op.py
valeoai/3DGenZ
3368585e10f127f7a0d71af98994a6cff5235dab
[ "Apache-2.0" ]
2
2022-01-12T17:57:13.000Z
2022-02-22T05:22:24.000Z
import torch import math from torch_geometric.nn.pool import fps from lightconvpoint.knn import knn import importlib knn_c_func_spec = importlib.util.find_spec('lightconvpoint.knn_c_func') if knn_c_func_spec is not None: knn_c_func = importlib.util.module_from_spec(knn_c_func_spec) knn_c_func_spec.loader.exec_module(knn_c_func) def sampling_fps(points: torch.Tensor, nqueries: int): if knn_c_func_spec is not None: return knn_c_func.sampling_fps(points, nqueries) bs, dim, nx = points.shape ratio = nqueries / nx batch_x = torch.arange(0, bs, dtype=torch.long, device=points.device).unsqueeze(1).expand(bs,nx) x = points.transpose(1,2).reshape(-1, dim) batch_x = batch_x.view(-1) indices_queries = fps(x, batch_x, ratio) indices_queries = indices_queries.view(bs, -1) assert(indices_queries.shape[1] == nqueries) return indices_queries def sampling_knn_fps(points: torch.Tensor, nqueries: int, K: int): if knn_c_func_spec is not None: return knn_c_func.sampling_knn_fps(points, nqueries, K) bs, dim, nx = points.shape ratio = nqueries / nx batch_x = torch.arange(0, bs, dtype=torch.long, device=points.device).unsqueeze(1).expand(bs,nx) x = points.transpose(1,2).reshape(-1, dim) batch_x = batch_x.view(-1) indices_queries = fps(x, batch_x, ratio) points_queries = x[indices_queries] indices_queries = indices_queries.view(bs, -1) points_queries = points_queries.view(bs,-1,3) points_queries = points_queries.transpose(1,2) assert(indices_queries.shape[1] == nqueries) indices_knn = knn(points, points_queries, K) return indices_queries, indices_knn, points_queries
27.612903
100
0.723715
794822d7b29e0383e49346c81da3197a894e717b
5,938
py
Python
plugins/metrics/Wikipedia/Plugin.py
figshare/Total-Impact
4b4be729a12c1f19bdb69e77614ce577a5553386
[ "MIT" ]
5
2015-11-26T20:42:32.000Z
2018-08-08T18:37:07.000Z
plugins/metrics/Wikipedia/Plugin.py
figshare/Total-Impact
4b4be729a12c1f19bdb69e77614ce577a5553386
[ "MIT" ]
null
null
null
plugins/metrics/Wikipedia/Plugin.py
figshare/Total-Impact
4b4be729a12c1f19bdb69e77614ce577a5553386
[ "MIT" ]
null
null
null
#!/usr/bin/env python import simplejson import json import urllib import urllib2 import BeautifulSoup from BeautifulSoup import BeautifulStoneSoup import time import re import nose from nose.tools import assert_equals import sys import os # This hack is to add current path when running script from command line sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import BasePlugin from BasePlugin.BasePlugin import BasePluginClass from BasePlugin.BasePlugin import TestBasePluginClass # Permissions: RWX for owner, WX for others. Set this here so that .pyc are created with these permissions os.umask(022) # Conforms to API specified here: https://github.com/mhahnel/Total-Impact/wiki/Plugin-requirements # To do automated tests with nosy # nosy CrossrefPlugin.py -A \'not skip\' def skip(f): f.skip = True return f class PluginClass(BasePluginClass): # each plugin needs to customize this stuff SOURCE_NAME = "Wikipedia" SOURCE_DESCRIPTION = "Wikipedia is the free encyclopedia that anyone can edit." SOURCE_URL = "http://www.wikipedia.org/" SOURCE_ICON = "http://wikipedia.org/favicon.ico" SOURCE_METRICS = dict(mentions="The number of articles that mention this artifact") DEBUG = False WIKIPEDIA_API_URL = 'http://en.wikipedia.org/w/api.php?action=query&list=search&srprop=timestamp&format=xml&srsearch="%s"' def get_page(self, url): if not url: return(None) if (self.DEBUG): print url try: page = self.get_cache_timeout_response(url) if (self.DEBUG): print page except: page = None return(page) def extract_stats(self, page, doi): if not page: return(None) (response_header, content) = page soup = BeautifulStoneSoup(content) try: articles = soup.search.findAll(title=True) metrics_dict = dict(mentions=len(articles)) except AttributeError: metrics_dict = None return(metrics_dict) def get_metric_values(self, doi): url = self.WIKIPEDIA_API_URL % doi page = self.get_page(url) if page: response = self.extract_stats(page, doi) else: response = None return(response) def artifact_type_recognized(self, id): response = self.is_doi(id) return(response) def build_artifact_response(self, artifact_id): metrics_response = self.get_metric_values(artifact_id) if metrics_response: show_details_url = 'http://en.wikipedia.org/wiki/Special:Search?search="' + artifact_id + '"&go=Go' metrics_response.update({"type":"unknown", "show_details_url":show_details_url}) return(metrics_response) def get_artifacts_metrics(self, query): response_dict = dict() error = None time_started = time.time() for artifact_id in query: (artifact_id, lookup_id) = self.get_relevant_id(artifact_id, query[artifact_id], ["doi"]) if (artifact_id): artifact_response = self.build_artifact_response(lookup_id) if artifact_response: response_dict[artifact_id] = artifact_response if (time.time() - time_started > self.MAX_ELAPSED_TIME): error = "TIMEOUT" break return(response_dict, error) class TestPluginClass(TestBasePluginClass): def setup(self): self.plugin = PluginClass() self.test_parse_input = self.testinput.TEST_INPUT_DOI ## this changes for every plugin def test_build_artifact_response(self): response = self.plugin.build_artifact_response('10.1371/journal.pcbi.1000361') assert_equals(response, {'doi': '10.1371/journal.pcbi.1000361', 'title': 'Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article', 'url': 'http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000361', 'journal': 'PLoS Comput Biol', 'authors': 'Shotton, Portwin, Klyne, Miles', 'year': '2009', 'pmid': '19381256', 'type': 'article'}) ## this changes for every plugin def test_get_artifacts_metrics(self): response = self.plugin.get_artifacts_metrics(self.test_parse_input) assert_equals(response, ({u'10.1371/journal.pcbi.1000361': {'doi': u'10.1371/journal.pcbi.1000361', 'title': 'Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article', 'url': 'http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000361', 'journal': 'PLoS Comput Biol', 'authors': 'Shotton, Portwin, Klyne, Miles', 'year': '2009', 'pmid': '19381256', 'type': 'article'}}, 'NA')) #each plugin should make sure its range of inputs are covered def test_run_plugin_doi(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_DOI)) assert_equals(len(response), 1077) def test_run_plugin_pmid(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_PMID)) assert_equals(len(response), 961) def test_run_plugin_url(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_URL)) assert_equals(len(response), 685) def test_run_plugin_invalid_id(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_DUD)) assert_equals(len(response), 685) def test_run_plugin_multiple(self): response = self.plugin.run_plugin(simplejson.dumps(self.testinput.TEST_INPUT_ALL)) assert_equals(len(response), 1710)
40.394558
437
0.66066
794823241dd86fc53ef1c920715777c3f4cc023e
5,578
py
Python
fabfile.py
digirea/HIVE
8896b0cc858c1ad0683888b925f71c0f0d71bf9d
[ "MIT" ]
null
null
null
fabfile.py
digirea/HIVE
8896b0cc858c1ad0683888b925f71c0f0d71bf9d
[ "MIT" ]
null
null
null
fabfile.py
digirea/HIVE
8896b0cc858c1ad0683888b925f71c0f0d71bf9d
[ "MIT" ]
null
null
null
# # Edit `config` line to fit in your environemnt. # # To install fabric and cuisne, # # # update setuptools # $ sudo pip install -U setuptools # $ sudo pip install setuptools # # $ sudo pip install fabric # $ sudo pip install cuisine # # You may need to speicfy ARCHFLAGFS on MacOSX environemnt. # (https://langui.sh/2014/03/10/wunused-command-line-argument-hard-error-in-future-is-a-harsh-mistress/) # # $ sudo ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future pip install fabric # # import os, sys import json from fabric.api import (env, sudo, put, get, cd, local) from fabric.utils import puts from fabric.colors import green, magenta from fabric.decorators import task from cuisine import (run, dir_ensure, dir_exists, file_exists) # ----- config -------------------------------------------- config_file = "hostconfig.json" env.use_ssh_config = True # --------------------------------------------------------- config = json.loads(open(config_file).read()) env.hosts = config['hosts'] file_hashes = { 'cmake-2.8.12.2.tar.gz' : '8c6574e9afabcb9fc66f463bb1f2f051958d86c85c37fccf067eb1a44a120e5e' } @task def prepare(): puts(green('Prepare tools')) remote_build_dir = config['config'][env.host_string]['remote_build_dir'] build_cmake = config['config'][env.host_string]['build_cmake'] dir_ensure(remote_build_dir) puts(magenta('remote_build_dir: ' + remote_build_dir)) puts(magenta('build_cmake: %d' % build_cmake)) if build_cmake == True: if not os.path.exists('./deploy/cmake-2.8.12.2.tar.gz'): local('curl http://www.cmake.org/files/v2.8/cmake-2.8.12.2.tar.gz -o deploy/cmake-2.8.12.2.tar.gz') put('deploy/cmake-2.8.12.2.tar.gz', remote_build_dir + '/cmake-2.8.12.2.tar.gz') with cd(remote_build_dir): dest_dir = os.path.join(remote_build_dir, 'tools') run('rm -rf cmake-2.8.12.2') run('tar -zxvf cmake-2.8.12.2.tar.gz') run('cd cmake-2.8.12.2; ./configure --prefix=' + dest_dir + ' && make && make install') @task def build(): remote_build_dir = config['config'][env.host_string]['remote_build_dir'] if not dir_exists(remote_build_dir): dir_ensure(remote_build_dir, recursive=True) dir_ensure(remote_build_dir + '/build') build_hive() # Dependency: (None) @task def build_hive(): puts(green('Configuring HIVE')) remote_build_dir = config['config'][env.host_string]['remote_build_dir'] host_type = config['config'][env.host_string]['type'] build_cmake = config['config'][env.host_string]['build_cmake'] c_compiler = config['config'][env.host_string]['c_compiler'] cxx_compiler = config['config'][env.host_string]['cxx_compiler'] local('./scripts/git-archive-all.sh --prefix HIVE-master/ deploy/HIVE-master.tar') # --format tar.gz doesn't work well. local('gzip -f deploy/HIVE-master.tar') put('deploy/HIVE-master.tar.gz', remote_build_dir + '/HIVE-master.tar.gz') with cd(remote_build_dir): run('rm -rf HIVE-master') run('tar -zxvf HIVE-master.tar.gz') # put deplibs put('third_party/fpzip-1.0.1.tar.gz', remote_build_dir + '/HIVE-master/third_party/fpzip-1.0.1.tar.gz') put('third_party/cgnslib_3.2.1.tar.gz', remote_build_dir + '/HIVE-master/third_party/cgnslib_3.2.1.tar.gz') put('third_party/zoltan_distrib_v3.81.tar.gz', remote_build_dir + '/HIVE-master/third_party/zoltan_distrib_v3.81.tar.gz') # build loader libs. loader_build_script = "" if host_type == 'k_cross': loader_build_script = './scripts/build_loader_libs_k_cross.sh' elif host_type == 'linux64': loader_build_script = './scripts/build_loader_libs_linux-x64.sh' elif host_type == 'darwin64': loader_build_script = './scripts/build_loader_libs_macosx.sh' else: print(host_type) raise # todo if build_cmake == True: cmake_bin_path = os.path.join(config['config'][env.host_string]['remote_build_dir'], "tools/bin/cmake") loader_build_script = "CMAKE_BIN=" + cmake_bin_path + ' ' + loader_build_script if c_compiler is not None: loader_build_script = "CC=" + c_compiler + ' ' + loader_build_script if cxx_compiler is not None: loader_build_script = "CXX=" + cxx_compiler + ' ' + loader_build_script #run('module load PrgEnv-intel') #run('module load impi411') with cd(remote_build_dir + '/HIVE-master'): run(loader_build_script) #run('make -C build') #setup_script = "" #if host_type == 'k_cross': # setup_script = './scripts/cmake_k_cross.sh' #elif host_type == 'linux64': # setup_script = './scripts/cmake_linux_x64.sh' #elif host_type == 'darwin64': # setup_script = './scripts/cmake_macosx.sh' #else: # print(host_type) # raise # todo #if build_cmake == True: # cmake_bin_path = os.path.join(config['config'][env.host_string]['remote_build_dir'], "tools/bin/cmake") # setup_script = "CMAKE_BIN=" + cmake_bin_path + ' ' + setup_script #with cd(remote_build_dir + '/HIVE-master'): # run(setup_script) # run('make -C build') # Dependency: (None) @task def deploy_vsp(): puts(green('Putting HIVE to vsp')) env.hosts = ['vsp'] local('./scripts/git-archive-all.sh --prefix HIVE-master/ deploy/HIVE-master.tar') # --format tar.gz doesn't work well. local('gzip -f deploy/HIVE-master.tar') put('deploy/HIVE-master.tar.gz', '/media/dali/data1/share/HIVE/release/HIVE-master.tar.gz')
35.081761
125
0.659376
794823c9d01e14edf1641fe97b90f577d30dfe8c
185
py
Python
src/db/redis.py
arthasyou/py_frame
35303cc1970e4a83a60c3e3d1a341a107d6b94aa
[ "MIT" ]
null
null
null
src/db/redis.py
arthasyou/py_frame
35303cc1970e4a83a60c3e3d1a341a107d6b94aa
[ "MIT" ]
null
null
null
src/db/redis.py
arthasyou/py_frame
35303cc1970e4a83a60c3e3d1a341a107d6b94aa
[ "MIT" ]
null
null
null
import redis from config.database import redis as cfg __all__:['r'] r = redis.Redis( host=cfg['host'], port=cfg['port'], password=cfg['password'], db=cfg['database'] )
16.818182
40
0.637838
794824317af503e165503b8bf360a6d13cc892ec
441
py
Python
examples/stations/id.py
clampr/meteostat-python
d4d828ad81d60482ec50276deba7413e2ff042f5
[ "MIT" ]
null
null
null
examples/stations/id.py
clampr/meteostat-python
d4d828ad81d60482ec50276deba7413e2ff042f5
[ "MIT" ]
null
null
null
examples/stations/id.py
clampr/meteostat-python
d4d828ad81d60482ec50276deba7413e2ff042f5
[ "MIT" ]
null
null
null
""" Example: Get weather stations by identifier Meteorological data provided by Meteostat (https://dev.meteostat.net) under the terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License. The code is licensed under the MIT license. """ from meteostat import Stations # Get weather station with ICAO ID EDDF stations = Stations() station = stations.id('icao', 'EDDF').fetch() # Print station print(station)
23.210526
69
0.77551
794824765f2e494dd32c203a0360acd587eed748
12,189
py
Python
EnlightenGAN/data/unaligned_dataset.py
chenwydj/dynamic_light_unfolding
607371b9176e10ebfcc1f350511dae4ead260aa2
[ "MIT" ]
null
null
null
EnlightenGAN/data/unaligned_dataset.py
chenwydj/dynamic_light_unfolding
607371b9176e10ebfcc1f350511dae4ead260aa2
[ "MIT" ]
null
null
null
EnlightenGAN/data/unaligned_dataset.py
chenwydj/dynamic_light_unfolding
607371b9176e10ebfcc1f350511dae4ead260aa2
[ "MIT" ]
null
null
null
import torch from torch import nn import os.path import torchvision.transforms as transforms from EnlightenGAN.data.base_dataset import BaseDataset, get_transform from EnlightenGAN.data.image_folder import make_dataset import random from PIL import Image import PIL from pdb import set_trace as st import numpy as np from skimage import color, feature from skimage.filters import gaussian def pad_tensor(input): height_org, width_org = input.shape[2], input.shape[3] divide = 16 if width_org % divide != 0 or height_org % divide != 0: width_res = width_org % divide height_res = height_org % divide if width_res != 0: width_div = divide - width_res pad_left = int(width_div / 2) pad_right = int(width_div - pad_left) else: pad_left = 0 pad_right = 0 if height_res != 0: height_div = divide - height_res pad_top = int(height_div / 2) pad_bottom = int(height_div - pad_top) else: pad_top = 0 pad_bottom = 0 padding = nn.ReflectionPad2d((pad_left, pad_right, pad_top, pad_bottom)) input = padding(input).data else: pad_left = 0 pad_right = 0 pad_top = 0 pad_bottom = 0 height, width = input.shape[2], input.shape[3] assert width % divide == 0, 'width cant divided by stride' assert height % divide == 0, 'height cant divided by stride' return input, pad_left, pad_right, pad_top, pad_bottom def pad_tensor_back(input, pad_left, pad_right, pad_top, pad_bottom): height, width = input.shape[2], input.shape[3] return input[:,:, pad_top: height - pad_bottom, pad_left: width - pad_right] class UnalignedDataset(BaseDataset): def _reinit_A_paths(self): self.A_paths = self.pos_names# + np.random.choice(self.neg_names_all, int(948/(10/1)), replace=False).tolist() random.shuffle(self.A_paths) self.B_paths = list(self.A_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) def initialize(self, opt): self.opt = opt self.root = opt.dataroot ############################## # self.dir_A = os.path.join(opt.dataroot)#, opt.phase + 'A') # self.dir_B = os.path.join(opt.dataroot)#, opt.phase + 'B') if not 'images' in self.opt.name: self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/0_100/", opt.phase) self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/100_255/", opt.phase) # self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/0_75/", opt.phase) # self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/seg_luminance/100_105/", opt.phase) else: self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/0_100/", opt.phase) self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/100_255/", opt.phase) # self.dir_A = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/0_75/", opt.phase) # self.dir_B = os.path.join("/ssd1/chenwy/bdd100k/images_luminance/100k/100_105/", opt.phase) ############################## self.A_paths = make_dataset(self.dir_A) self.B_paths = make_dataset(self.dir_B) self.A_paths = sorted(self.A_paths) self.B_paths = sorted(self.B_paths) self.A_size = len(self.A_paths) self.B_size = len(self.B_paths) self.transform = get_transform(opt) ##### load image2reward to resample dataset ############################ # image2reward = np.load("/home/chenwy/DynamicLightEnlighten/image2reward.npy").item() # self.pos = []; self.pos_names = []; self.neg_names_all = [] # for k, v in image2reward.items(): # if v > 0: # self.pos.append(v) # self.pos_names.append(k) # elif v < 0: # self.neg_names_all.append(k) # self.pos_names = [k for v,k in sorted(zip(self.pos, self.pos_names), reverse=True)] # self._reinit_A_paths() ################################# self.low_range = range(55, 70) self.high_range = range(110, 125) self.N_TRY = 20 def __getitem__(self, index_A): A_path = self.A_paths[index_A % self.A_size] index_B = random.randint(0, self.B_size - 1) B_path = self.B_paths[index_B % self.B_size] A_image = Image.open(A_path).convert('RGB') B_image = Image.open(B_path).convert('RGB') # A_size = A_img.size # B_size = B_img.size # A_size = A_size = (A_size[0]//16*16, A_size[1]//16*16) # B_size = B_size = (B_size[0]//16*16, B_size[1]//16*16) # A_img = A_img.resize(A_size, Image.BICUBIC) # B_img = B_img.resize(B_size, Image.BICUBIC) # A_gray = A_img.convert('LA') # A_gray = 255.0-A_gray w, h = A_image.size # without luminance selection ##################### # x1 = random.randint(0, w - self.opt.fineSize) # y1 = random.randint(0, h - self.opt.fineSize) # A_img = A_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) # B_img = B_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) # A_npy = np.array(A_img) # B_npy = np.array(B_img) # r,g,b = A_npy[:, :, 0], A_npy[:, :, 1], A_npy[:, :, 2] # value_A = (0.299*r+0.587*g+0.114*b) / 255. # value_A = np.sort(value_A.flatten()) # length = value_A.shape[0] # value_A = value_A[int(np.round(length * 0.1)) : int(np.round(length * 0.9))].mean() # if not 'images' in self.opt.name: # # mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", "train", os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) # mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", self.opt.phase, os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) # mask = np.array(mask.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize))).astype('int32') # cropped mask for light_enhance_AB/seg # mask = self._mask_transform(mask) # else: # mask = torch.zeros(1) ################################################### # patch luminance & mask class diversity selection ########################### n_try = 0 while n_try < self.N_TRY: x1 = random.randint(0, w - self.opt.fineSize) y1 = random.randint(0, h - self.opt.fineSize) A_img = A_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) B_img = B_image.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize)) A_npy = np.array(A_img) B_npy = np.array(B_img) r,g,b = A_npy[:, :, 0], A_npy[:, :, 1], A_npy[:, :, 2] value_A = (0.299*r+0.587*g+0.114*b) / 255. value_A = np.sort(value_A.flatten()) length = value_A.shape[0] value_A = value_A[int(np.round(length * 0.1)) : int(np.round(length * 0.9))].mean() if int(np.round(value_A*255)) not in self.low_range: n_try += 1; continue r,g,b = B_npy[:, :, 0], B_npy[:, :, 1], B_npy[:, :, 2] value_B = (0.299*r+0.587*g+0.114*b) / 255. value_B = np.sort(value_B.flatten()) length = value_B.shape[0] value_B = value_B[int(np.round(length * 0.1)) : int(np.round(length * 0.9))].mean() if int(np.round(value_B*255)) not in self.high_range: n_try += 1; continue if not 'images' in self.opt.name: # mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", "train", os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) mask = Image.open(os.path.join("/ssd1/chenwy/bdd100k/seg/labels/", self.opt.phase, os.path.splitext(A_path.split("/")[-1])[0] + '_train_id.png')) mask = np.array(mask.crop((x1, y1, x1+self.opt.fineSize, y1+self.opt.fineSize))).astype('int32') # cropped mask for light_enhance_AB/seg unique, counts = np.unique(mask, return_counts=True) if len(unique) < 2 or (counts / counts.sum()).max() > 0.7: n_try += 1; continue mask = self._mask_transform(mask) else: mask = torch.zeros(1) break if n_try == self.N_TRY: # if int(np.round(value_A)) not in self.low_range: # self.A_paths.pop(index_A % self.A_size) # self.A_size -= 1 # if int(np.round(value_B)) not in self.high_range: # self.B_paths.pop(index_B % self.B_size) # self.B_size -= 1 index_A = random.randint(0, self.__len__()) return self.__getitem__(index_A) ########################################################################## gray_mask = torch.ones(1, self.opt.fineSize, self.opt.fineSize) * value_A A_img_border = A_image.crop((x1-self.opt.fineSize//2, y1-self.opt.fineSize//2, x1+2*self.opt.fineSize, y1+2*self.opt.fineSize)) A_Lab = torch.Tensor(color.rgb2lab(A_npy) / 100).permute([2, 0, 1]) A_npy = gaussian(A_npy, sigma=2, multichannel=True) r,g,b = A_npy[:, :, 0], A_npy[:, :, 1], A_npy[:, :, 2] A_npy = 0.299*r+0.587*g+0.114*b edges_A = torch.unsqueeze(torch.from_numpy(feature.canny(A_npy, sigma=2).astype("float32")), 0) A_img = self.transform(A_img) A_img_border = self.transform(A_img_border) B_img = self.transform(B_img) if self.opt.resize_or_crop == 'no': r,g,b = A_img[0]+1, A_img[1]+1, A_img[2]+1 A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray = torch.unsqueeze(A_gray, 0) input_img = A_img # A_gray = (1./A_gray)/255. r,g,b = A_img_border[0]+1, A_img_border[1]+1, A_img_border[2]+1 A_gray_border = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray_border = torch.unsqueeze(A_gray_border, 0) else: w = A_img.size(2) h = A_img.size(1) # A_gray = (1./A_gray)/255. if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(2) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(2, idx) B_img = B_img.index_select(2, idx) if (not self.opt.no_flip) and random.random() < 0.5: idx = [i for i in range(A_img.size(1) - 1, -1, -1)] idx = torch.LongTensor(idx) A_img = A_img.index_select(1, idx) B_img = B_img.index_select(1, idx) if self.opt.vary == 1 and (not self.opt.no_flip) and random.random() < 0.5: times = random.randint(self.opt.low_times,self.opt.high_times)/100. input_img = (A_img+1)/2./times input_img = input_img*2-1 else: input_img = A_img if self.opt.lighten: B_img = (B_img + 1)/2. B_img = (B_img - torch.min(B_img))/(torch.max(B_img) - torch.min(B_img)) B_img = B_img*2. -1 r,g,b = input_img[0]+1, input_img[1]+1, input_img[2]+1 A_gray = 1. - (0.299*r+0.587*g+0.114*b)/2. A_gray = torch.unsqueeze(A_gray, 0) return {'A': A_img, 'B': B_img, 'A_gray': A_gray, 'input_img': input_img, 'A_paths': A_path, 'B_paths': B_path, 'mask': mask, 'A_border': A_img_border, 'A_gray_border': A_gray_border, 'A_Lab': A_Lab, 'gray_mask': gray_mask, 'edges_A': edges_A } def __len__(self): return max(self.A_size, self.B_size) def name(self): return 'UnalignedDataset' def _mask_transform(self, mask): target = np.array(mask).astype('int32') target[target == 255] = -1 return torch.from_numpy(target).long()
46.170455
161
0.559111
794824894042580e73abe3503e9fab353aff6d02
2,898
py
Python
Project3/dqn_model.py
radhasaraf/ds595-rl
3360d01da8a292358d000da2df3f2e65875fbae9
[ "MIT" ]
null
null
null
Project3/dqn_model.py
radhasaraf/ds595-rl
3360d01da8a292358d000da2df3f2e65875fbae9
[ "MIT" ]
null
null
null
Project3/dqn_model.py
radhasaraf/ds595-rl
3360d01da8a292358d000da2df3f2e65875fbae9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import torch from torch import nn, Tensor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class DQN(nn.Module): """ Initialize a deep Q-learning network Architecture reference: Original paper for DQN (https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf) """ def __init__(self, in_channels=4, num_actions=4): super(DQN, self).__init__() self.num_actions = num_actions self.conv_relu_stack = nn.Sequential( nn.Conv2d(in_channels, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), ) # Expected (sample) dummy input = zeros(batch_size, in_channels, 84, 84) h_out = w_out = self._conv2d_size_out( self._conv2d_size_out(self._conv2d_size_out(84, 8, 4), 4, 2), 3, 1 ) no_filters_last_conv_layer = 64 self.in_features = int(h_out * w_out * no_filters_last_conv_layer) self.fc_stack = nn.Sequential( nn.Linear(self.in_features, 512), nn.ReLU(), nn.Linear(512, self.num_actions), ) self.value_stream = nn.Sequential( nn.Linear(self.in_features, 512), nn.ReLU(), nn.Linear(512, 1) ) self.advantage_stream = nn.Sequential( nn.Linear(self.in_features, 512), nn.ReLU(), nn.Linear(512, self.num_actions) ) # Get the no. of features in the output of the conv-relu-layers-stack which # is required to be known for the Linear layer 'in_features' arg. # Following is simplified version. Checkout link below for the detailed one # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html @staticmethod def _conv2d_size_out(size, kernel_size, stride): return (size - (kernel_size - 1) - 1) / stride + 1 # def forward(self, obs: Tensor) -> Tensor: # """ # Passes an observation(state) through the network and generates action # probabilities # """ # obs = obs.to(device) # intermediate_output = self.conv_relu_stack(obs) # intermediate_output = intermediate_output.view(obs.size()[0], -1) # return self.fc_stack(intermediate_output) def forward(self, obs: Tensor) -> Tensor: obs = obs.to(device) intermediate_output = self.conv_relu_stack(obs) intermediate_output = intermediate_output.view(obs.size(0), -1) values = self.value_stream(intermediate_output) advantages = self.advantage_stream(intermediate_output) qvals = values + (advantages - advantages.mean()) return qvals
34.915663
93
0.616287
79482490bbac752ce74aa7a6746b894b32edfe12
2,277
py
Python
software/openvisualizer/openvisualizer/JRC/cojpDefines.py
pedrohenriquegomes/openwsn-sw
24761e01dc1e8dbc351e61bd927c57facc64c155
[ "BSD-3-Clause" ]
26
2015-01-31T23:56:36.000Z
2021-04-10T20:26:11.000Z
software/openvisualizer/openvisualizer/JRC/cojpDefines.py
pedrohenriquegomes/openwsn-sw
24761e01dc1e8dbc351e61bd927c57facc64c155
[ "BSD-3-Clause" ]
33
2015-03-18T15:54:01.000Z
2018-03-08T14:28:50.000Z
software/openvisualizer/openvisualizer/JRC/cojpDefines.py
pedrohenriquegomes/openwsn-sw
24761e01dc1e8dbc351e61bd927c57facc64c155
[ "BSD-3-Clause" ]
80
2015-01-07T08:54:58.000Z
2020-05-06T21:33:41.000Z
# constants from draft-ietf-6tisch-minimal-security-06 COJP_PARAMETERS_LABELS_ROLE = 1 # Identifies the role parameter COJP_PARAMETERS_LABELS_LLKEYSET = 2 # Identifies the array carrying one or more link-layer cryptographic keys COJP_PARAMETERS_LABELS_LLSHORTADDRESS = 3 # Identifies the assigned link-layer short address COJP_PARAMETERS_LABELS_JRCADDRESS = 4 # Identifies the IPv6 address of the JRC COJP_PARAMETERS_LABELS_NETID = 5 # Identifies the network identifier (PAN ID) COJP_PARAMETERS_LABELS_NETPREFIX = 6 # Identifies the IPv6 prefix of the network COJP_PARAMETERS_LABELS_ALL = [ COJP_PARAMETERS_LABELS_ROLE, COJP_PARAMETERS_LABELS_LLKEYSET, COJP_PARAMETERS_LABELS_LLSHORTADDRESS, COJP_PARAMETERS_LABELS_JRCADDRESS, COJP_PARAMETERS_LABELS_NETID, COJP_PARAMETERS_LABELS_NETPREFIX ] COJP_ROLE_VALUE_6N = 0 # 6TiSCH Node COJP_ROLE_VALUE_6LBR = 1 # 6LBR Node COJP_ROLE_ALL = [ COJP_ROLE_VALUE_6N, COJP_ROLE_VALUE_6LBR, ] COJP_KEY_USAGE_6TiSCH_K1K2_ENC_MIC32 = 0 COJP_KEY_USAGE_6TiSCH_K1K2_ENC_MIC64 = 1 COJP_KEY_USAGE_6TiSCH_K1K2_ENC_MIC128 = 2 COJP_KEY_USAGE_6TiSCH_K1K2_MIC32 = 3 COJP_KEY_USAGE_6TiSCH_K1K2_MIC64 = 4 COJP_KEY_USAGE_6TiSCH_K1K2_MIC128 = 5 COJP_KEY_USAGE_6TiSCH_K1_MIC32 = 6 COJP_KEY_USAGE_6TiSCH_K1_MIC64 = 7 COJP_KEY_USAGE_6TiSCH_K1_MIC128 = 8 COJP_KEY_USAGE_6TiSCH_K2_MIC32 = 9 COJP_KEY_USAGE_6TiSCH_K2_MIC64 = 10 COJP_KEY_USAGE_6TiSCH_K2_MIC128 = 11 COJP_KEY_USAGE_6TiSCH_K2_ENC_MIC32 = 12 COJP_KEY_USAGE_6TiSCH_K2_ENC_MIC64 = 13 COJP_KEY_USAGE_6TiSCH_K2_ENC_MIC128 = 14 COJP_KEY_USAGE_ALL = [ COJP_KEY_USAGE_6TiSCH_K1K2_ENC_MIC32, COJP_KEY_USAGE_6TiSCH_K1K2_ENC_MIC64, COJP_KEY_USAGE_6TiSCH_K1K2_ENC_MIC128, COJP_KEY_USAGE_6TiSCH_K1K2_MIC32, COJP_KEY_USAGE_6TiSCH_K1K2_MIC64, COJP_KEY_USAGE_6TiSCH_K1K2_MIC128, COJP_KEY_USAGE_6TiSCH_K1_MIC32, COJP_KEY_USAGE_6TiSCH_K1_MIC64, COJP_KEY_USAGE_6TiSCH_K1_MIC128, COJP_KEY_USAGE_6TiSCH_K2_MIC32, COJP_KEY_USAGE_6TiSCH_K2_MIC64, COJP_KEY_USAGE_6TiSCH_K2_MIC128, COJP_KEY_USAGE_6TiSCH_K2_ENC_MIC32, COJP_KEY_USAGE_6TiSCH_K2_ENC_MIC64, COJP_KEY_USAGE_6TiSCH_K2_ENC_MIC128, ]
37.95
115
0.796223
794825347534fb0320706508b85dd8428d90b498
1,053
py
Python
openacs/inserts/opt/ConnectionRequest/XMPP/xmpp-con-req.py
devolo/tr069
f1a35b35e36b92ac37a33fea41d1671768b30620
[ "MIT" ]
18
2019-12-05T10:04:19.000Z
2022-03-09T02:23:12.000Z
openacs/inserts/opt/ConnectionRequest/XMPP/xmpp-con-req.py
devolo/tr069
f1a35b35e36b92ac37a33fea41d1671768b30620
[ "MIT" ]
null
null
null
openacs/inserts/opt/ConnectionRequest/XMPP/xmpp-con-req.py
devolo/tr069
f1a35b35e36b92ac37a33fea41d1671768b30620
[ "MIT" ]
12
2019-12-05T13:21:39.000Z
2021-11-22T01:10:43.000Z
#!/usr/bin/python import sys import xmpp #ACS user beim prosody username="acs" password="devolo" #XMPP server is 'xmpp' in our internal network, telco0 to externals server = ('xmpp.public', 5222) domain="xmpp.public" resource="" agent="cpe@xmpp.public/my_fixed_xmpp_resource" crs_username="Admin" crs_password="devolo" iq_id="2342" def send_notify(conn): iq = xmpp.Iq(to = agent, frm=username + "@" + domain + resource, typ="get") iq.setID(iq_id) cr = iq.addChild(name = "connectionRequest", namespace="urn:broadband-forum-org:cwmp:xmppConnReq-1-0") cr.addChild(name = "username").setData(crs_username) cr.addChild(name = "password").setData(crs_password) conn.send(iq) def iq_handler(conn, iq): if iq.getID() == iq_id: sys.exit(0) jid = xmpp.JID(username + "@" + domain) connection = xmpp.Client(domain) connection.connect(server = server) result = connection.auth(jid.getNode(), password, resource) connection.RegisterHandler("iq", iq_handler) send_notify(connection) while connection.Process(1): pass
25.071429
106
0.7151
794826cbd0996a8f8763039eaed5929077074d58
11,630
py
Python
sdk/python/pulumi_azure_native/storage/v20210401/blob_inventory_policy.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/storage/v20210401/blob_inventory_policy.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/storage/v20210401/blob_inventory_policy.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['BlobInventoryPolicyArgs', 'BlobInventoryPolicy'] @pulumi.input_type class BlobInventoryPolicyArgs: def __init__(__self__, *, account_name: pulumi.Input[str], policy: pulumi.Input['BlobInventoryPolicySchemaArgs'], resource_group_name: pulumi.Input[str], blob_inventory_policy_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a BlobInventoryPolicy resource. :param pulumi.Input[str] account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param pulumi.Input['BlobInventoryPolicySchemaArgs'] policy: The storage account blob inventory policy object. It is composed of policy rules. :param pulumi.Input[str] resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :param pulumi.Input[str] blob_inventory_policy_name: The name of the storage account blob inventory policy. It should always be 'default' """ pulumi.set(__self__, "account_name", account_name) pulumi.set(__self__, "policy", policy) pulumi.set(__self__, "resource_group_name", resource_group_name) if blob_inventory_policy_name is not None: pulumi.set(__self__, "blob_inventory_policy_name", blob_inventory_policy_name) @property @pulumi.getter(name="accountName") def account_name(self) -> pulumi.Input[str]: """ The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. """ return pulumi.get(self, "account_name") @account_name.setter def account_name(self, value: pulumi.Input[str]): pulumi.set(self, "account_name", value) @property @pulumi.getter def policy(self) -> pulumi.Input['BlobInventoryPolicySchemaArgs']: """ The storage account blob inventory policy object. It is composed of policy rules. """ return pulumi.get(self, "policy") @policy.setter def policy(self, value: pulumi.Input['BlobInventoryPolicySchemaArgs']): pulumi.set(self, "policy", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group within the user's subscription. The name is case insensitive. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="blobInventoryPolicyName") def blob_inventory_policy_name(self) -> Optional[pulumi.Input[str]]: """ The name of the storage account blob inventory policy. It should always be 'default' """ return pulumi.get(self, "blob_inventory_policy_name") @blob_inventory_policy_name.setter def blob_inventory_policy_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "blob_inventory_policy_name", value) class BlobInventoryPolicy(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, blob_inventory_policy_name: Optional[pulumi.Input[str]] = None, policy: Optional[pulumi.Input[pulumi.InputType['BlobInventoryPolicySchemaArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): """ The storage account blob inventory policy. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. :param pulumi.Input[str] blob_inventory_policy_name: The name of the storage account blob inventory policy. It should always be 'default' :param pulumi.Input[pulumi.InputType['BlobInventoryPolicySchemaArgs']] policy: The storage account blob inventory policy object. It is composed of policy rules. :param pulumi.Input[str] resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. """ ... @overload def __init__(__self__, resource_name: str, args: BlobInventoryPolicyArgs, opts: Optional[pulumi.ResourceOptions] = None): """ The storage account blob inventory policy. :param str resource_name: The name of the resource. :param BlobInventoryPolicyArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(BlobInventoryPolicyArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, blob_inventory_policy_name: Optional[pulumi.Input[str]] = None, policy: Optional[pulumi.Input[pulumi.InputType['BlobInventoryPolicySchemaArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = BlobInventoryPolicyArgs.__new__(BlobInventoryPolicyArgs) if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__.__dict__["account_name"] = account_name __props__.__dict__["blob_inventory_policy_name"] = blob_inventory_policy_name if policy is None and not opts.urn: raise TypeError("Missing required property 'policy'") __props__.__dict__["policy"] = policy if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["last_modified_time"] = None __props__.__dict__["name"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:storage/v20210401:BlobInventoryPolicy"), pulumi.Alias(type_="azure-native:storage:BlobInventoryPolicy"), pulumi.Alias(type_="azure-nextgen:storage:BlobInventoryPolicy"), pulumi.Alias(type_="azure-native:storage/v20190601:BlobInventoryPolicy"), pulumi.Alias(type_="azure-nextgen:storage/v20190601:BlobInventoryPolicy"), pulumi.Alias(type_="azure-native:storage/v20200801preview:BlobInventoryPolicy"), pulumi.Alias(type_="azure-nextgen:storage/v20200801preview:BlobInventoryPolicy"), pulumi.Alias(type_="azure-native:storage/v20210101:BlobInventoryPolicy"), pulumi.Alias(type_="azure-nextgen:storage/v20210101:BlobInventoryPolicy"), pulumi.Alias(type_="azure-native:storage/v20210201:BlobInventoryPolicy"), pulumi.Alias(type_="azure-nextgen:storage/v20210201:BlobInventoryPolicy"), pulumi.Alias(type_="azure-native:storage/v20210601:BlobInventoryPolicy"), pulumi.Alias(type_="azure-nextgen:storage/v20210601:BlobInventoryPolicy")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(BlobInventoryPolicy, __self__).__init__( 'azure-native:storage/v20210401:BlobInventoryPolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'BlobInventoryPolicy': """ Get an existing BlobInventoryPolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = BlobInventoryPolicyArgs.__new__(BlobInventoryPolicyArgs) __props__.__dict__["last_modified_time"] = None __props__.__dict__["name"] = None __props__.__dict__["policy"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None return BlobInventoryPolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="lastModifiedTime") def last_modified_time(self) -> pulumi.Output[str]: """ Returns the last modified date and time of the blob inventory policy. """ return pulumi.get(self, "last_modified_time") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter def policy(self) -> pulumi.Output['outputs.BlobInventoryPolicySchemaResponse']: """ The storage account blob inventory policy object. It is composed of policy rules. """ return pulumi.get(self, "policy") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
50.565217
1,016
0.685039
794827cc54f07165e51acf11a43d4f3674ad00de
46
py
Python
src/constants.py
egorsimchuk/binance_bot
af1caac32f8d4804aea3af83250fd4530d9787df
[ "Unlicense" ]
1
2022-03-13T01:07:08.000Z
2022-03-13T01:07:08.000Z
src/constants.py
egorsimchuk/binance_bot
af1caac32f8d4804aea3af83250fd4530d9787df
[ "Unlicense" ]
4
2022-02-20T10:33:45.000Z
2022-03-03T22:59:24.000Z
src/constants.py
egorsimchuk/binance_bot
af1caac32f8d4804aea3af83250fd4530d9787df
[ "Unlicense" ]
null
null
null
remove_from_plots = ['USDT'] time_col = 'date'
23
28
0.717391
794829866746b7481686b83814320a3920971ae1
6,068
py
Python
evaluation/viapoint_environment.py
rock-learning/approxik
877d50d4d045457593a2fafefd267339a11de20f
[ "BSD-3-Clause" ]
1
2020-03-27T01:53:57.000Z
2020-03-27T01:53:57.000Z
evaluation/viapoint_environment.py
rock-learning/approxik
877d50d4d045457593a2fafefd267339a11de20f
[ "BSD-3-Clause" ]
null
null
null
evaluation/viapoint_environment.py
rock-learning/approxik
877d50d4d045457593a2fafefd267339a11de20f
[ "BSD-3-Clause" ]
1
2020-12-18T02:09:21.000Z
2020-12-18T02:09:21.000Z
# Authors: Alexander Fabisch <afabisch@informatik.uni-bremen.de> import numpy as np from scipy.spatial.distance import cdist from bolero.environment import Environment from bolero.utils.log import get_logger import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d from pytransform.rotations import matrix_from_quaternion class ViaPointEnvironment(Environment): """Optimize a trajectory that passes several viapoints. Parameters ---------- ik : object Inverse kinematics solver x0 : array-like, shape = (7,) Initial position. via_points : array-like, shape = (n_via_points, 4) Via points: (t, x, y, z) execution_time : float Execution time in seconds dt : float Time between successive steps in seconds. qlo : array-like, shape (n_joints,) Lower joint limits qhi : array-like, shape (n_joints,) Upper joint limits penalty_vel : float, optional (default: 0) Penalty weight for velocities penalty_acc : float, optional (default: 0) Penalty weight for accelerations penalty_via_point : float, optional (default: 0) Penalty weight for distance to via points log_to_file: optional, boolean or string (default: False) Log results to given file, it will be located in the $BL_LOG_PATH log_to_stdout: optional, boolean (default: False) Log to standard output """ def __init__(self, ik, x0, via_points, execution_time, dt, qlo, qhi, penalty_vel=0.0, penalty_acc=0.0, penalty_via_point=0.0, log_to_file=False, log_to_stdout=False): self.ik = ik self.x0 = x0 self.via_points = via_points self.execution_time = execution_time self.dt = dt self.qlo = qlo self.qhi = qhi self.penalty_vel = penalty_vel self.penalty_acc = penalty_acc self.penalty_via_point = penalty_via_point self.log_to_file = log_to_file self.log_to_stdout = log_to_stdout def init(self): self.x0 = np.asarray(self.x0) self.logger = get_logger(self, self.log_to_file, self.log_to_stdout) self.n_steps = 1 + int(self.execution_time / self.dt) self.n_joints = self.ik.get_n_joints() self.P = np.empty((self.n_steps, 7)) self.Q = np.empty((self.n_steps, self.n_joints)) self.p = np.empty(7) self.q = np.empty(self.n_joints) def reset(self): self.p[:] = self.x0.copy() self.q[:] = 0.0 self.ik.cart_to_jnt(self.p, self.q) self.t = 0 def get_num_inputs(self): return self.n_joints def get_num_outputs(self): return self.n_joints def get_outputs(self, values): values[:] = self.q[:] def set_inputs(self, values): if np.isfinite(values).all(): self.q[:] = np.clip(values[:], self.qlo, self.qhi) def step_action(self): self.ik.jnt_to_cart(self.q, self.p) self.P[self.t, :] = self.p[:] self.Q[self.t, :] = self.q[:] self.t += 1 def is_evaluation_done(self): return self.t >= self.n_steps def get_speed(self): Qd = np.vstack((np.zeros(self.n_joints), np.diff(self.Q, axis=0) / self.dt)) speed = np.sqrt(np.sum(Qd ** 2, axis=1)) self.logger.info("Speed: %g" % speed.sum()) return speed def get_acceleration(self): Qd = np.vstack((np.zeros(self.n_joints), np.diff(self.Q, axis=0) / self.dt)) Qdd = np.vstack((np.zeros(self.n_joints), np.diff(Qd, axis=0) / self.dt)) acceleration = np.sqrt(np.sum(Qdd ** 2, axis=1)) self.logger.info("Accelerations: %g" % acceleration.sum()) return acceleration def get_via_point_dist(self): """Get list of collisions with obstacles during the performed movement. Returns ------- min_dist : array-like, shape (n_via_points,) Minimum distances to all via points """ dists = np.empty(len(self.via_points)) for i, via_point in enumerate(self.via_points): t = int(via_point[0] / self.dt) p = via_point[1:] dists[i] = np.linalg.norm(p - self.P[t, :3]) self.logger.info("Distances: %r" % dists) return dists def get_feedback(self): rewards = np.zeros(self.t) if self.penalty_vel > 0.0: rewards -= self.get_speed() * self.penalty_vel if self.penalty_acc > 0.0: rewards -= self.get_acceleration() * self.penalty_acc if self.penalty_via_point > 0.0: rewards[-1] -= self.penalty_via_point * self.get_via_point_dist().sum() return rewards def is_behavior_learning_done(self): return False def get_maximum_feedback(self): return 0.0 def plot(self): plt.figure() ax = plt.subplot(111, projection="3d", aspect="equal") #ax.scatter(self.x0[0], self.x0[1], self.x0[2], c="r", s=100) for viapoint in self.via_points: ax.scatter(viapoint[1], viapoint[2], viapoint[3], c="k", s=100) # TODO sort by time ax.plot(self.via_points[:, 1], self.via_points[:, 2], self.via_points[:, 3], c="k", alpha=0.5) #plot_trajectory(ax=ax, P=self.P, s=0.05, lw=2, c="k", # show_direction=False) ax.plot(self.P[:, 0], self.P[:, 1], self.P[:, 2], c="k") key_frames = np.linspace(0, self.P.shape[0] - 1, 10).astype(np.int) s = 0.1 for p in self.P[key_frames]: R = matrix_from_quaternion(p[3:]) for d in range(3): ax.plot([p[0], p[0] + s * R[0, d]], [p[1], p[1] + s * R[1, d]], [p[2], p[2] + s * R[2, d]], color="k") ax.set_xlim((-0.4, 0.4)) ax.set_ylim((-0.9, 0.1)) ax.set_zlim((0.2, 1.0)) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") return ax
32.623656
84
0.585531
794829f0d3fa2323b3466c2ea6b5d090adf10914
4,159
py
Python
base/dependency/interface/interface_dependency_extraction.py
btc-ag/revengtools
d58680ef7d6bdc8ef518860d5d13a5acc0d01758
[ "Apache-2.0" ]
2
2019-07-15T14:59:59.000Z
2022-01-18T14:23:54.000Z
base/dependency/interface/interface_dependency_extraction.py
btc-ag/revengtools
d58680ef7d6bdc8ef518860d5d13a5acc0d01758
[ "Apache-2.0" ]
10
2018-05-03T13:25:07.000Z
2021-06-25T15:14:55.000Z
base/dependency/interface/interface_dependency_extraction.py
btc-ag/revengtools
d58680ef7d6bdc8ef518860d5d13a5acc0d01758
[ "Apache-2.0" ]
1
2018-05-02T13:59:27.000Z
2018-05-02T13:59:27.000Z
# -*- coding: utf-8 -*- import collections import json import logging import subprocess TypeInformation = collections.namedtuple('TypeInformation', ['TypeName','Assembly']) # TODO rename the module according to the naming convention to interface_dependency_extractor class ExternalAnalyzerFailedError(Exception): pass class WrongFileTypeError(ExternalAnalyzerFailedError): """Thrown when the analysed file has the wrong format (e.g. not a .NET assembly)""" pass class ExternalAnalyserAdapter(object): def __init__(self, analyserExe): self.logger = logging.getLogger(self.__class__.__module__) self.pathToAnalyserExe = analyserExe def analyse_dll(self, dllFile): print dllFile prog = subprocess.Popen([self.pathToAnalyserExe, dllFile],stdout=subprocess.PIPE) xmlResult = prog.communicate()[0] if prog.returncode != 0: if prog.returncode == -2: raise WrongFileTypeError(xmlResult) else: raise ExternalAnalyzerFailedError(xmlResult) return xmlResult class InterfaceDependencyExtractor(object): # TODO (low prio) according to the design guidelines, it should be preferred to return generators etc. instead of lists. never return mutable lists # TODO change logging.* to self.__logger.* def __init__(self, analyserAdapter): self.__analyserAdapter = analyserAdapter def __convert_to_type_info(self, jsonData): return TypeInformation(jsonData['TypeName'], jsonData['DefinedInAssembly']) def left_right_compare(self, rightSideDlls, leftSideDlls=None): # TODO rename "left_right_compare", "rightSideDlls" and "leftSideDlls" to more meaningful names and # add a documentation comment types = {} if leftSideDlls is None: #Analyse all interface deps to all targets types = collections.defaultdict(lambda: set()) else: #Initialize every class with 0 for dll in leftSideDlls: result = self.analyse_exported_classes(dll) for cls in result: types[cls] = set() for dll in rightSideDlls: try: result = self.analyse_interface_dependencies(dll) except WrongFileTypeError: logging.warn("Skipped DLL %s" % dll) continue for (cls,deps) in result: for dep in deps: if dep in types or leftSideDlls is None: types[dep].add(cls) return types.items() def analyse_exported_classes(self, filename): """ Returns a list of all types that are exported by a assembly """ logging.info("Analyzing dll '{0}'".format(filename)) output = self.__analyserAdapter.analyse_dll(filename) jsonData = json.loads(output) assemblyName = jsonData['Name'] classList = jsonData['Classes'] classList = filter(lambda x: x['IsExported'], classList) classList = [TypeInformation(x['Name'], assemblyName) for x in classList] return classList def analyse_interface_dependencies(self, filename): """ Returns a list of tuples with the format (name of class, [list of interface dependencies]) """ output = self.__analyserAdapter.analyse_dll(filename) jsonData = json.loads(output) classList = jsonData['Classes'] classList = filter(lambda x: x['IsExported'], classList) result = [] for cls in classList: interfaceTypes = set() for m in cls['Methods']: if m['IsVisible']: interfaceTypes.add(self.__convert_to_type_info(m['ReturnType'])) interfaceTypes.update([self.__convert_to_type_info(t['Type']) for t in m['Parameters']]) for f in cls['Fields']: if f['IsVisible']: interfaceTypes.add(self.__convert_to_type_info(f['Type'])) result.append((cls['Name'],interfaceTypes)) return result
40.77451
152
0.629478
79482ad0fa59ba562528e45d90ddc8a13bc998f1
2,099
py
Python
web/web_lianxiang.py
jerryluosuper/Lensi
3f5c8d6f3c57d58523f4fe5f5f6bcc9657b82c24
[ "MIT" ]
1
2022-03-23T00:53:56.000Z
2022-03-23T00:53:56.000Z
web/web_lianxiang.py
jerryluosuper/Lensi
3f5c8d6f3c57d58523f4fe5f5f6bcc9657b82c24
[ "MIT" ]
null
null
null
web/web_lianxiang.py
jerryluosuper/Lensi
3f5c8d6f3c57d58523f4fe5f5f6bcc9657b82c24
[ "MIT" ]
null
null
null
''' Author: your name Date: 2022-02-20 21:28:15 LastEditTime: 2022-03-01 20:45:06 LastEditors: Please set LastEditors Description: 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE FilePath: \Work\Lensi\web_lianxiang.py ''' import requests #导入requests包 import json ''' TODO 未使用完成post失败 待优化 ''' url = 'https://lestore.lenovo.com/api/webstorecontents/download/getDownloadUrl' headers = {'content-encoding': 'gzip', 'content-type':'application/json;charset=UTF-8', 'date': 'Tue, 01 Mar 2022 11:56:37 GMT', 'strict-transport-security': 'max-age=15724800;includeSubDomains', 'vary': 'Accept-Encoding', 'x-powered-by': 'Express'} From_data={ 'authority': 'lestore.lenovo.com', 'method': 'POST', 'path': '/api/webstorecontents/download/getDownloadUrl', 'scheme': 'https', 'accept': 'application/json,text/plain, */*', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6', 'content-length': '99', 'content-type': 'application/json;charset=UTF-8', 'cookie': 'avatar_name=41209ab9-acf3-400c-bcb9-cd0814b3ad5c; avt_v=vid%3D%3E17edec244ac605b%7C%7C%7Cfsts%3D%3E1644414780586%7C%7C%7Cdsfs%3D%3E19919%7C%7C%7Cnps%3D%3E11; avt_s=lsts%3D%3E1646135804140%7C%7C%7Csid%3D%3E7999688612%7C%7C%7Cvs%3D%3E3%7C%7C%7Csource%3D%3Edirect%7C%7C%7Cpref%3D%3Ehttps%3A//lestore.lenovo.com/%7C%7C%7Cref%3D%3Ehttps%3A//lestore.lenovo.com/search%3Fk%3Dgeek', 'dnt': '1', 'origin': 'https://lestore.lenovo.com', 'referer': 'https://lestore.lenovo.com/detail/23258', 'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="98", "Microsoft Edge";v="98"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'sec-fetch-dest': 'empty', 'sec-fetch-mode': 'cors', 'sec-fetch-site': 'same-origin', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36 Edg/98.0.1108.56'} response = requests.post(url,data=From_data,headers=headers) content = json.loads(response.text) print(response.text) print(content)
43.729167
386
0.707003
79482af939570211a1e7f30ed84dd08b9c6fa2ff
416
py
Python
hubspot/crm/objects/feedback_submissions/api/__init__.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
null
null
null
hubspot/crm/objects/feedback_submissions/api/__init__.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
null
null
null
hubspot/crm/objects/feedback_submissions/api/__init__.py
fakepop/hubspot-api-python
f04103a09f93f5c26c99991b25fa76801074f3d3
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import # flake8: noqa # import apis into api package from hubspot.crm.objects.feedback_submissions.api.associations_api import ( AssociationsApi, ) from hubspot.crm.objects.feedback_submissions.api.basic_api import BasicApi from hubspot.crm.objects.feedback_submissions.api.batch_api import BatchApi from hubspot.crm.objects.feedback_submissions.api.search_api import SearchApi
34.666667
77
0.848558
79482b1d8a4e500eb665725e004cf8e3a0791e4b
889
py
Python
conf/settings_development.py
tom523/bkapp_test
d7569219e316811c4257684598c52a1b13e67d87
[ "Apache-2.0" ]
null
null
null
conf/settings_development.py
tom523/bkapp_test
d7569219e316811c4257684598c52a1b13e67d87
[ "Apache-2.0" ]
null
null
null
conf/settings_development.py
tom523/bkapp_test
d7569219e316811c4257684598c52a1b13e67d87
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. 用于本地开发环境的全局配置 """ import os from settings import BASE_DIR DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3') } }
42.333333
115
0.750281
79482b22685431677db04d2292ef0357ebea4625
2,134
py
Python
libwinmedia/media.py
libwinmedia/libwinmedia-py
28de70680ccef5f76381c8c8c77d30600495c6f5
[ "MIT" ]
1
2022-01-30T11:05:12.000Z
2022-01-30T11:05:12.000Z
libwinmedia/media.py
mytja/libwinmedia-py
28de70680ccef5f76381c8c8c77d30600495c6f5
[ "MIT" ]
null
null
null
libwinmedia/media.py
mytja/libwinmedia-py
28de70680ccef5f76381c8c8c77d30600495c6f5
[ "MIT" ]
null
null
null
import os import platform from .library import lib from ctypes import POINTER, c_char_p from .tags import MusicTags, VideoTags media_id = 0 class Media(object): """A class representing a media file.""" def __init__(self, uri: str, parse: bool = True): """Create a new Media instance. The URI can be either a local file (e.g. "file://C:/music/track.mp3") or an HTTP URL (e.g. "https://www.kozco.com/tech/piano2.wav"). Args: uri (str): A URI of the media. parse (bool, optional): Whether to parse the media. Defaults to True. True is required for duration parsing """ global media_id self.id = media_id if not os.path.isabs(uri) and not ("https" in uri or "http" in uri): uri = os.path.join(os.path.dirname(os.path.abspath(uri)), uri) self.uri = uri if platform.system() != "Linux": lib.MediaCreate(self.id, uri.encode("utf-8"), parse) media_id += 1 def dispose(self) -> None: """Release system resources and kill the media instance.""" lib.MediaDispose(self.id) @property def duration(self) -> int: return lib.MediaGetDuration(self.id) def tags_from_music(self) -> dict: # TODO: add docstring lib.TagsFromMusic.args = [c_char_p] lib.TagsFromMusic.restype = POINTER(c_char_p) meta = lib.TagsFromMusic(self.uri.encode("utf-8")) return MusicTags.get(meta) def tags_from_video(self) -> dict: lib.TagsFromVideo.args = [c_char_p] lib.TagsFromVideo.restype = POINTER(c_char_p) meta = lib.TagsFromVideo(self.uri.encode("utf-8")) return VideoTags.get(meta) def extract_thumbnail(self, output_folder: str, output_file: str) -> None: """Extract the thumbnail and save it to a file. Args: output_folder (str): A folder for saving the thumbnail. output_file (str): A name of the thumbnail file. """ lib.TagsExtractThumbnail(self.uri.encode(), ("file://" + output_folder).encode(), output_file.encode(), 2, 400)
32.333333
119
0.621837
79482bde896dbb5a879ad7eb2b569ca9dd6cf311
550
py
Python
forms.py
Dev-Elie/Threaded-Nested-Replies-using-Flask-SQLAlchemy
141c096899c190825690292e9c8f78412b5422a9
[ "MIT" ]
3
2021-10-06T07:27:25.000Z
2022-01-31T12:22:35.000Z
forms.py
Dev-Elie/Threaded-Nested-Replies-using-Flask-SQLAlchemy
141c096899c190825690292e9c8f78412b5422a9
[ "MIT" ]
null
null
null
forms.py
Dev-Elie/Threaded-Nested-Replies-using-Flask-SQLAlchemy
141c096899c190825690292e9c8f78412b5422a9
[ "MIT" ]
null
null
null
from wtforms import ( StringField, TextAreaField, ) from flask_wtf import FlaskForm from wtforms.validators import InputRequired, Length, EqualTo, Email, Regexp from wtforms import ValidationError from wtforms import validators # No forms here class CommentForm(FlaskForm): author = StringField(validators = [InputRequired()]) comment = TextAreaField(validators = [InputRequired()]) class ReplyForm(FlaskForm): author = StringField(validators = [InputRequired()]) reply = TextAreaField(validators = [InputRequired()])
27.5
76
0.754545
79482bf5dd460ccb1b6c184d11912d3613eab28e
6,821
py
Python
loldib/getratings/models/NA/na_nocturne/na_nocturne_top.py
koliupy/loldib
c9ab94deb07213cdc42b5a7c26467cdafaf81b7f
[ "Apache-2.0" ]
null
null
null
loldib/getratings/models/NA/na_nocturne/na_nocturne_top.py
koliupy/loldib
c9ab94deb07213cdc42b5a7c26467cdafaf81b7f
[ "Apache-2.0" ]
null
null
null
loldib/getratings/models/NA/na_nocturne/na_nocturne_top.py
koliupy/loldib
c9ab94deb07213cdc42b5a7c26467cdafaf81b7f
[ "Apache-2.0" ]
null
null
null
from getratings.models.ratings import Ratings class NA_Nocturne_Top_Aatrox(Ratings): pass class NA_Nocturne_Top_Ahri(Ratings): pass class NA_Nocturne_Top_Akali(Ratings): pass class NA_Nocturne_Top_Alistar(Ratings): pass class NA_Nocturne_Top_Amumu(Ratings): pass class NA_Nocturne_Top_Anivia(Ratings): pass class NA_Nocturne_Top_Annie(Ratings): pass class NA_Nocturne_Top_Ashe(Ratings): pass class NA_Nocturne_Top_AurelionSol(Ratings): pass class NA_Nocturne_Top_Azir(Ratings): pass class NA_Nocturne_Top_Bard(Ratings): pass class NA_Nocturne_Top_Blitzcrank(Ratings): pass class NA_Nocturne_Top_Brand(Ratings): pass class NA_Nocturne_Top_Braum(Ratings): pass class NA_Nocturne_Top_Caitlyn(Ratings): pass class NA_Nocturne_Top_Camille(Ratings): pass class NA_Nocturne_Top_Cassiopeia(Ratings): pass class NA_Nocturne_Top_Chogath(Ratings): pass class NA_Nocturne_Top_Corki(Ratings): pass class NA_Nocturne_Top_Darius(Ratings): pass class NA_Nocturne_Top_Diana(Ratings): pass class NA_Nocturne_Top_Draven(Ratings): pass class NA_Nocturne_Top_DrMundo(Ratings): pass class NA_Nocturne_Top_Ekko(Ratings): pass class NA_Nocturne_Top_Elise(Ratings): pass class NA_Nocturne_Top_Evelynn(Ratings): pass class NA_Nocturne_Top_Ezreal(Ratings): pass class NA_Nocturne_Top_Fiddlesticks(Ratings): pass class NA_Nocturne_Top_Fiora(Ratings): pass class NA_Nocturne_Top_Fizz(Ratings): pass class NA_Nocturne_Top_Galio(Ratings): pass class NA_Nocturne_Top_Gangplank(Ratings): pass class NA_Nocturne_Top_Garen(Ratings): pass class NA_Nocturne_Top_Gnar(Ratings): pass class NA_Nocturne_Top_Gragas(Ratings): pass class NA_Nocturne_Top_Graves(Ratings): pass class NA_Nocturne_Top_Hecarim(Ratings): pass class NA_Nocturne_Top_Heimerdinger(Ratings): pass class NA_Nocturne_Top_Illaoi(Ratings): pass class NA_Nocturne_Top_Irelia(Ratings): pass class NA_Nocturne_Top_Ivern(Ratings): pass class NA_Nocturne_Top_Janna(Ratings): pass class NA_Nocturne_Top_JarvanIV(Ratings): pass class NA_Nocturne_Top_Jax(Ratings): pass class NA_Nocturne_Top_Jayce(Ratings): pass class NA_Nocturne_Top_Jhin(Ratings): pass class NA_Nocturne_Top_Jinx(Ratings): pass class NA_Nocturne_Top_Kalista(Ratings): pass class NA_Nocturne_Top_Karma(Ratings): pass class NA_Nocturne_Top_Karthus(Ratings): pass class NA_Nocturne_Top_Kassadin(Ratings): pass class NA_Nocturne_Top_Katarina(Ratings): pass class NA_Nocturne_Top_Kayle(Ratings): pass class NA_Nocturne_Top_Kayn(Ratings): pass class NA_Nocturne_Top_Kennen(Ratings): pass class NA_Nocturne_Top_Khazix(Ratings): pass class NA_Nocturne_Top_Kindred(Ratings): pass class NA_Nocturne_Top_Kled(Ratings): pass class NA_Nocturne_Top_KogMaw(Ratings): pass class NA_Nocturne_Top_Leblanc(Ratings): pass class NA_Nocturne_Top_LeeSin(Ratings): pass class NA_Nocturne_Top_Leona(Ratings): pass class NA_Nocturne_Top_Lissandra(Ratings): pass class NA_Nocturne_Top_Lucian(Ratings): pass class NA_Nocturne_Top_Lulu(Ratings): pass class NA_Nocturne_Top_Lux(Ratings): pass class NA_Nocturne_Top_Malphite(Ratings): pass class NA_Nocturne_Top_Malzahar(Ratings): pass class NA_Nocturne_Top_Maokai(Ratings): pass class NA_Nocturne_Top_MasterYi(Ratings): pass class NA_Nocturne_Top_MissFortune(Ratings): pass class NA_Nocturne_Top_MonkeyKing(Ratings): pass class NA_Nocturne_Top_Mordekaiser(Ratings): pass class NA_Nocturne_Top_Morgana(Ratings): pass class NA_Nocturne_Top_Nami(Ratings): pass class NA_Nocturne_Top_Nasus(Ratings): pass class NA_Nocturne_Top_Nautilus(Ratings): pass class NA_Nocturne_Top_Nidalee(Ratings): pass class NA_Nocturne_Top_Nocturne(Ratings): pass class NA_Nocturne_Top_Nunu(Ratings): pass class NA_Nocturne_Top_Olaf(Ratings): pass class NA_Nocturne_Top_Orianna(Ratings): pass class NA_Nocturne_Top_Ornn(Ratings): pass class NA_Nocturne_Top_Pantheon(Ratings): pass class NA_Nocturne_Top_Poppy(Ratings): pass class NA_Nocturne_Top_Quinn(Ratings): pass class NA_Nocturne_Top_Rakan(Ratings): pass class NA_Nocturne_Top_Rammus(Ratings): pass class NA_Nocturne_Top_RekSai(Ratings): pass class NA_Nocturne_Top_Renekton(Ratings): pass class NA_Nocturne_Top_Rengar(Ratings): pass class NA_Nocturne_Top_Riven(Ratings): pass class NA_Nocturne_Top_Rumble(Ratings): pass class NA_Nocturne_Top_Ryze(Ratings): pass class NA_Nocturne_Top_Sejuani(Ratings): pass class NA_Nocturne_Top_Shaco(Ratings): pass class NA_Nocturne_Top_Shen(Ratings): pass class NA_Nocturne_Top_Shyvana(Ratings): pass class NA_Nocturne_Top_Singed(Ratings): pass class NA_Nocturne_Top_Sion(Ratings): pass class NA_Nocturne_Top_Sivir(Ratings): pass class NA_Nocturne_Top_Skarner(Ratings): pass class NA_Nocturne_Top_Sona(Ratings): pass class NA_Nocturne_Top_Soraka(Ratings): pass class NA_Nocturne_Top_Swain(Ratings): pass class NA_Nocturne_Top_Syndra(Ratings): pass class NA_Nocturne_Top_TahmKench(Ratings): pass class NA_Nocturne_Top_Taliyah(Ratings): pass class NA_Nocturne_Top_Talon(Ratings): pass class NA_Nocturne_Top_Taric(Ratings): pass class NA_Nocturne_Top_Teemo(Ratings): pass class NA_Nocturne_Top_Thresh(Ratings): pass class NA_Nocturne_Top_Tristana(Ratings): pass class NA_Nocturne_Top_Trundle(Ratings): pass class NA_Nocturne_Top_Tryndamere(Ratings): pass class NA_Nocturne_Top_TwistedFate(Ratings): pass class NA_Nocturne_Top_Twitch(Ratings): pass class NA_Nocturne_Top_Udyr(Ratings): pass class NA_Nocturne_Top_Urgot(Ratings): pass class NA_Nocturne_Top_Varus(Ratings): pass class NA_Nocturne_Top_Vayne(Ratings): pass class NA_Nocturne_Top_Veigar(Ratings): pass class NA_Nocturne_Top_Velkoz(Ratings): pass class NA_Nocturne_Top_Vi(Ratings): pass class NA_Nocturne_Top_Viktor(Ratings): pass class NA_Nocturne_Top_Vladimir(Ratings): pass class NA_Nocturne_Top_Volibear(Ratings): pass class NA_Nocturne_Top_Warwick(Ratings): pass class NA_Nocturne_Top_Xayah(Ratings): pass class NA_Nocturne_Top_Xerath(Ratings): pass class NA_Nocturne_Top_XinZhao(Ratings): pass class NA_Nocturne_Top_Yasuo(Ratings): pass class NA_Nocturne_Top_Yorick(Ratings): pass class NA_Nocturne_Top_Zac(Ratings): pass class NA_Nocturne_Top_Zed(Ratings): pass class NA_Nocturne_Top_Ziggs(Ratings): pass class NA_Nocturne_Top_Zilean(Ratings): pass class NA_Nocturne_Top_Zyra(Ratings): pass
16.357314
46
0.776133
79482c8bfa4476f757229a7a8465c7b8e0972669
1,836
py
Python
sokoapp/gallery/parser.py
Mercy-Nekesa/sokoapp
6c7bc4c1278b7223226124a49fc33c5b8b6b617a
[ "MIT" ]
1
2019-04-01T05:52:37.000Z
2019-04-01T05:52:37.000Z
sokoapp/gallery/parser.py
Mercy-Nekesa/sokoapp
6c7bc4c1278b7223226124a49fc33c5b8b6b617a
[ "MIT" ]
1
2015-03-11T16:18:12.000Z
2015-03-11T16:18:12.000Z
sokoapp/gallery/parser.py
Mercy-Nekesa/sokoapp
6c7bc4c1278b7223226124a49fc33c5b8b6b617a
[ "MIT" ]
null
null
null
from django.template import TemplateSyntaxError from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.http import Http404 from django.utils.encoding import smart_unicode from django.template.loader import render_to_string from django.utils.safestring import mark_safe from models import Album def inlines(value, return_list=False): try: from BeautifulSoup import BeautifulStoneSoup, BeautifulSoup except ImportError: from beautifulsoup import BeautifulStoneSoup, BeautifulSoup content = BeautifulSoup(value, selfClosingTags=['gallery','img','br','input','meta','link','hr']) inline_list = [] if return_list: for inline in content.findAll('gallery'): rendered_inline = render_inline(inline) inline_list.append(rendered_inline['context']) return inline_list else: for inline in content.findAll('gallery'): rendered_inline = render_inline(inline) if rendered_inline: inline.replaceWith(render_to_string(rendered_inline['template'], rendered_inline['context'])) else: inline.replaceWith('') return mark_safe(content) def render_inline(inline): """ Replace inline markup with template markup that matches the appropriate app and model. """ # Look for inline type, 'app.model' try: id = inline['id'] except: if settings.DEBUG: raise TemplateSyntaxError, "Couldn't find the attribute 'id' in the <gallery> tag." else: return '' album = Album.objects.get(pk=id) context = { 'album': album, } template = ["fancy/gallery/inline_album.html"] rendered_inline = {'template':template, 'context':context} return rendered_inline
32.785714
109
0.680828
79482cf9cacbfdc7c07dd4400e4e615edab946d3
11,288
py
Python
Lib/site-packages/notebook/services/contents/fileio.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/notebook/services/contents/fileio.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/notebook/services/contents/fileio.py
edupyter/EDUPYTER38
396183cea72987506f1ef647c0272a2577c56218
[ "bzip2-1.0.6" ]
null
null
null
""" Utilities for file-based Contents/Checkpoints managers. """ # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. from contextlib import contextmanager import errno import os import shutil from tornado.web import HTTPError from notebook.utils import ( to_api_path, to_os_path, ) import nbformat from ipython_genutils.py3compat import str_to_unicode from traitlets.config import Configurable from traitlets import Bool from base64 import encodebytes, decodebytes def replace_file(src, dst): """ replace dst with src switches between os.replace or os.rename based on python 2.7 or python 3 """ if hasattr(os, 'replace'): # PY3 os.replace(src, dst) else: if os.name == 'nt' and os.path.exists(dst): # Rename over existing file doesn't work on Windows os.remove(dst) os.rename(src, dst) def copy2_safe(src, dst, log=None): """copy src to dst like shutil.copy2, but log errors in copystat instead of raising """ shutil.copyfile(src, dst) try: shutil.copystat(src, dst) except OSError: if log: log.debug("copystat on %s failed", dst, exc_info=True) def path_to_intermediate(path): '''Name of the intermediate file used in atomic writes. The .~ prefix will make Dropbox ignore the temporary file.''' dirname, basename = os.path.split(path) return os.path.join(dirname, '.~'+basename) def path_to_invalid(path): '''Name of invalid file after a failed atomic write and subsequent read.''' dirname, basename = os.path.split(path) return os.path.join(dirname, basename+'.invalid') @contextmanager def atomic_writing(path, text=True, encoding='utf-8', log=None, **kwargs): """Context manager to write to a file only if the entire write is successful. This works by copying the previous file contents to a temporary file in the same directory, and renaming that file back to the target if the context exits with an error. If the context is successful, the new data is synced to disk and the temporary file is removed. Parameters ---------- path : str The target file to write to. text : bool, optional Whether to open the file in text mode (i.e. to write unicode). Default is True. encoding : str, optional The encoding to use for files opened in text mode. Default is UTF-8. **kwargs Passed to :func:`io.open`. """ # realpath doesn't work on Windows: https://bugs.python.org/issue9949 # Luckily, we only need to resolve the file itself being a symlink, not # any of its directories, so this will suffice: if os.path.islink(path): path = os.path.join(os.path.dirname(path), os.readlink(path)) tmp_path = path_to_intermediate(path) if os.path.isfile(path): copy2_safe(path, tmp_path, log=log) if text: # Make sure that text files have Unix linefeeds by default kwargs.setdefault('newline', '\n') fileobj = open(path, 'w', encoding=encoding, **kwargs) else: fileobj = open(path, 'wb', **kwargs) try: yield fileobj except: # Failed! Move the backup file back to the real path to avoid corruption fileobj.close() replace_file(tmp_path, path) raise # Flush to disk fileobj.flush() os.fsync(fileobj.fileno()) fileobj.close() # Written successfully, now remove the backup copy if os.path.isfile(tmp_path): os.remove(tmp_path) @contextmanager def _simple_writing(path, text=True, encoding='utf-8', log=None, **kwargs): """Context manager to write file without doing atomic writing ( for weird filesystem eg: nfs). Parameters ---------- path : str The target file to write to. text : bool, optional Whether to open the file in text mode (i.e. to write unicode). Default is True. encoding : str, optional The encoding to use for files opened in text mode. Default is UTF-8. **kwargs Passed to :func:`io.open`. """ # realpath doesn't work on Windows: https://bugs.python.org/issue9949 # Luckily, we only need to resolve the file itself being a symlink, not # any of its directories, so this will suffice: if os.path.islink(path): path = os.path.join(os.path.dirname(path), os.readlink(path)) if text: # Make sure that text files have Unix linefeeds by default kwargs.setdefault('newline', '\n') fileobj = open(path, 'w', encoding=encoding, **kwargs) else: fileobj = open(path, 'wb', **kwargs) try: yield fileobj except: fileobj.close() raise fileobj.close() class FileManagerMixin(Configurable): """ Mixin for ContentsAPI classes that interact with the filesystem. Provides facilities for reading, writing, and copying both notebooks and generic files. Shared by FileContentsManager and FileCheckpoints. Note ---- Classes using this mixin must provide the following attributes: root_dir : unicode A directory against which API-style paths are to be resolved. log : logging.Logger """ use_atomic_writing = Bool(True, config=True, help= """By default notebooks are saved on disk on a temporary file and then if successfully written, it replaces the old ones. This procedure, namely 'atomic_writing', causes some bugs on file system without operation order enforcement (like some networked fs). If set to False, the new notebook is written directly on the old one which could fail (eg: full filesystem or quota )""") @contextmanager def open(self, os_path, *args, **kwargs): """wrapper around io.open that turns permission errors into 403""" with self.perm_to_403(os_path): with open(os_path, *args, **kwargs) as f: yield f @contextmanager def atomic_writing(self, os_path, *args, **kwargs): """wrapper around atomic_writing that turns permission errors to 403. Depending on flag 'use_atomic_writing', the wrapper perform an actual atomic writing or simply writes the file (whatever an old exists or not)""" with self.perm_to_403(os_path): if self.use_atomic_writing: with atomic_writing(os_path, *args, log=self.log, **kwargs) as f: yield f else: with _simple_writing(os_path, *args, log=self.log, **kwargs) as f: yield f @contextmanager def perm_to_403(self, os_path=''): """context manager for turning permission errors into 403.""" try: yield except OSError as e: if e.errno in {errno.EPERM, errno.EACCES}: # make 403 error message without root prefix # this may not work perfectly on unicode paths on Python 2, # but nobody should be doing that anyway. if not os_path: os_path = str_to_unicode(e.filename or 'unknown file') path = to_api_path(os_path, root=self.root_dir) raise HTTPError(403, f'Permission denied: {path}') from e else: raise def _copy(self, src, dest): """copy src to dest like shutil.copy2, but log errors in copystat """ copy2_safe(src, dest, log=self.log) def _get_os_path(self, path): """Given an API path, return its file system path. Parameters ---------- path : string The relative API path to the named file. Returns ------- path : string Native, absolute OS path to for a file. Raises ------ 404: if path is outside root """ root = os.path.abspath(self.root_dir) os_path = to_os_path(path, root) if not (os.path.abspath(os_path) + os.path.sep).startswith(root): raise HTTPError(404, f"{path} is outside root contents directory") return os_path def _read_notebook(self, os_path, as_version=4): """Read a notebook from an os path.""" with self.open(os_path, 'r', encoding='utf-8') as f: try: return nbformat.read(f, as_version=as_version) except Exception as e: e_orig = e # If use_atomic_writing is enabled, we'll guess that it was also # enabled when this notebook was written and look for a valid # atomic intermediate. tmp_path = path_to_intermediate(os_path) if not self.use_atomic_writing or not os.path.exists(tmp_path): raise HTTPError( 400, f"Unreadable Notebook: {os_path} {e_orig!r}", ) # Move the bad file aside, restore the intermediate, and try again. invalid_file = path_to_invalid(os_path) replace_file(os_path, invalid_file) replace_file(tmp_path, os_path) return self._read_notebook(os_path, as_version) def _save_notebook(self, os_path, nb): """Save a notebook to an os_path.""" with self.atomic_writing(os_path, encoding='utf-8') as f: nbformat.write(nb, f, version=nbformat.NO_CONVERT) def _read_file(self, os_path, format): """Read a non-notebook file. os_path: The path to be read. format: If 'text', the contents will be decoded as UTF-8. If 'base64', the raw bytes contents will be encoded as base64. If not specified, try to decode as UTF-8, and fall back to base64 """ if not os.path.isfile(os_path): raise HTTPError(400, f"Cannot read non-file {os_path}") with self.open(os_path, 'rb') as f: bcontent = f.read() if format is None or format == 'text': # Try to interpret as unicode if format is unknown or if unicode # was explicitly requested. try: return bcontent.decode('utf8'), 'text' except UnicodeError as e: if format == 'text': raise HTTPError( 400, f"{os_path} is not UTF-8 encoded", reason='bad format', ) from e return encodebytes(bcontent).decode('ascii'), 'base64' def _save_file(self, os_path, content, format): """Save content of a generic file.""" if format not in {'text', 'base64'}: raise HTTPError( 400, "Must specify format of file contents as 'text' or 'base64'", ) try: if format == 'text': bcontent = content.encode('utf8') else: b64_bytes = content.encode('ascii') bcontent = decodebytes(b64_bytes) except Exception as e: raise HTTPError( 400, f'Encoding error saving {os_path}: {e}' ) from e with self.atomic_writing(os_path, text=False) as f: f.write(bcontent)
33.102639
140
0.613395
79482d0c84f18091ae358d2870efb2ccdfcf1ec8
1,267
py
Python
hummingbot/strategy/dev_1_get_order_book/dev_1_get_order_book_config_map.py
TritumDigitalAssets/hummingbot
13fde61a41a0b13651117c06fc87d02a9cd55a44
[ "Apache-2.0" ]
2
2019-09-14T12:55:03.000Z
2019-11-11T12:17:42.000Z
hummingbot/strategy/dev_1_get_order_book/dev_1_get_order_book_config_map.py
TritumDigitalAssets/hummingbot
13fde61a41a0b13651117c06fc87d02a9cd55a44
[ "Apache-2.0" ]
1
2021-01-22T13:19:11.000Z
2021-01-22T13:19:11.000Z
hummingbot/strategy/dev_1_get_order_book/dev_1_get_order_book_config_map.py
TritumDigitalAssets/hummingbot
13fde61a41a0b13651117c06fc87d02a9cd55a44
[ "Apache-2.0" ]
2
2020-03-25T00:47:45.000Z
2020-04-09T20:16:37.000Z
from hummingbot.client.config.config_var import ConfigVar from hummingbot.client.config.config_validators import ( is_exchange, is_valid_market_trading_pair, ) from hummingbot.client.settings import ( required_exchanges, EXAMPLE_PAIRS, ) def trading_pair_prompt(): market = dev_1_get_order_book_config_map.get("market").value example = EXAMPLE_PAIRS.get(market) return "Enter the token trading pair to fetch its order book on %s%s >>> " \ % (market, f" (e.g. {example})" if example else "") def str2bool(value: str): return str(value).lower() in ("yes", "true", "t", "1") # checks if the trading pair is valid def is_valid_trading_pair(value: str) -> bool: market = dev_1_get_order_book_config_map.get("market").value return is_valid_market_trading_pair(market, value) dev_1_get_order_book_config_map = { "market": ConfigVar(key="market", prompt="Enter the name of the exchange >>> ", validator=is_exchange, on_validated=lambda value: required_exchanges.append(value)), "market_trading_pair": ConfigVar(key="market_trading_pair", prompt=trading_pair_prompt, validator=is_valid_trading_pair), }
31.675
80
0.679558
79482d321b71728a27694d9bdfc27142c54a9432
191
py
Python
create_python_app/config.py
xuchaoqian/create-python-app
70745432b972b96a3faf95a378d54d922b77f2be
[ "MIT" ]
null
null
null
create_python_app/config.py
xuchaoqian/create-python-app
70745432b972b96a3faf95a378d54d922b77f2be
[ "MIT" ]
null
null
null
create_python_app/config.py
xuchaoqian/create-python-app
70745432b972b96a3faf95a378d54d922b77f2be
[ "MIT" ]
null
null
null
import json import os path = os.path.join(os.path.dirname(__file__), '..', 'config', 'sys.json') with open(path) as file: options = json.load(file) def get_options(): return options
21.222222
74
0.680628
79482d74e2c538af850f937997d06bb4e473b9d9
1,194
py
Python
fisher_py/data/business/tune_data_values.py
abdelq/fisher_py
befb98732ba7c4e57858d158c68cda09ed829d66
[ "MIT" ]
3
2021-11-03T20:55:45.000Z
2022-02-01T10:11:47.000Z
fisher_py/data/business/tune_data_values.py
abdelq/fisher_py
befb98732ba7c4e57858d158c68cda09ed829d66
[ "MIT" ]
2
2022-01-28T02:04:21.000Z
2022-01-29T01:29:14.000Z
fisher_py/data/business/tune_data_values.py
abdelq/fisher_py
befb98732ba7c4e57858d158c68cda09ed829d66
[ "MIT" ]
1
2022-01-26T23:30:37.000Z
2022-01-26T23:30:37.000Z
from fisher_py.net_wrapping import NetWrapperBase, ThermoFisher from fisher_py.utils import to_net_list from typing import List class TuneDataValues(NetWrapperBase): _wrapped_type = ThermoFisher.CommonCore.Data.Business.TuneDataValues def __init__(self): super().__init__() self._wrapped_object = self._wrapped_type() @property def id(self) -> int: """ Gets or sets the index number of the tune record """ return self._get_wrapped_object_().ID @id.setter def id(self, value: int): """ Gets or sets the index number of the tune record """ assert type(value) is int self._get_wrapped_object_().ID = value @property def values(self) -> List[str]: """ Gets or sets the array of tune data values for an instrument """ return self._get_wrapped_object_().Values @values.setter def values(self, value: List[str]): """ Gets or sets the array of tune data values for an instrument """ assert type(value) is list value = to_net_list(value, str) self._get_wrapped_object_().Values = value
26.533333
72
0.632328
79482da9422bb9430757d06ef988e94bac22d774
372
py
Python
detector/YOLOX/tools/__init__.py
collector-m/UniTrack
e8e56e164f2dd40ba590a19ed7a4a75d8da7e2eb
[ "MIT" ]
240
2021-06-20T13:50:42.000Z
2022-03-31T05:08:29.000Z
detector/YOLOX/tools/__init__.py
collector-m/UniTrack
e8e56e164f2dd40ba590a19ed7a4a75d8da7e2eb
[ "MIT" ]
27
2021-07-12T01:19:39.000Z
2021-12-27T08:05:08.000Z
detector/YOLOX/tools/__init__.py
collector-m/UniTrack
e8e56e164f2dd40ba590a19ed7a4a75d8da7e2eb
[ "MIT" ]
24
2021-07-01T09:48:24.000Z
2022-03-14T06:39:46.000Z
################################################################### # File Name: __init__.py # Author: Zhongdao Wang # mail: wcd17@mails.tsinghua.edu.cn # Created Time: Sun Jul 25 17:14:12 2021 ################################################################### from __future__ import print_function from __future__ import division from __future__ import absolute_import
33.818182
67
0.508065
79482da99e23ce36ad25c3058513f74a4e0a6483
11,054
py
Python
resolwe_bio/kb/tests/test_feature.py
MiaZganjar/resolwe-bio
1559435796cb40905d81c8fd14872f7ac66e66e8
[ "Apache-2.0" ]
null
null
null
resolwe_bio/kb/tests/test_feature.py
MiaZganjar/resolwe-bio
1559435796cb40905d81c8fd14872f7ac66e66e8
[ "Apache-2.0" ]
null
null
null
resolwe_bio/kb/tests/test_feature.py
MiaZganjar/resolwe-bio
1559435796cb40905d81c8fd14872f7ac66e66e8
[ "Apache-2.0" ]
null
null
null
from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from resolwe.test import TestCase from ..models import Feature class FeatureTestCase(TestCase, APITestCase): @staticmethod def create_feature(index, source, species, feature_type): return Feature.objects.create( source=source, feature_id="FT-{}".format(index), species=species, type=feature_type, sub_type=Feature.SUBTYPE_PROTEIN_CODING, name="FOO{}".format(index), full_name="Foobarius machinus", aliases=["BAR{}".format(index), "BTMK{}".format(index), "SHARED"], ) @classmethod def setUpTestData(cls): cls.features = [ FeatureTestCase.create_feature( 0, "NCBI", "Homo sapiens", Feature.TYPE_GENE ), FeatureTestCase.create_feature( 1, "NCBI", "Mus musculus", Feature.TYPE_GENE ), FeatureTestCase.create_feature(2, "NCBI", "Rat rattus", Feature.TYPE_GENE), FeatureTestCase.create_feature( 3, "NCBI", "Homo sapiens", Feature.TYPE_TRANSCRIPT ), FeatureTestCase.create_feature( 4, "ENSEMBL", "Homo sapiens", Feature.TYPE_GENE ), FeatureTestCase.create_feature( 5, "ENSEMBL", "Mus musculus", Feature.TYPE_GENE ), FeatureTestCase.create_feature( 6, "ENSEMBL", "Rat rattus", Feature.TYPE_GENE ), FeatureTestCase.create_feature( 7, "XSRC", "Homo sapiens", Feature.TYPE_GENE ), FeatureTestCase.create_feature( 8, "XSRC", "Mus musculus", Feature.TYPE_GENE ), FeatureTestCase.create_feature(9, "XSRC", "Rat rattus", Feature.TYPE_GENE), ] def assertFeatureEqual(self, data, feature): self.assertEqual(data["source"], feature.source) self.assertEqual(data["species"], feature.species) self.assertEqual(data["type"], feature.type) self.assertEqual(data["sub_type"], feature.sub_type) self.assertEqual(data["name"], feature.name) self.assertEqual(data["full_name"], feature.full_name) self.assertEqual(data["aliases"], feature.aliases) def test_feature_search(self): FEATURE_SEARCH_URL = reverse("resolwebio-api:kb_feature_search") # Test without any query. response = self.client.get(FEATURE_SEARCH_URL, format="json") self.assertEqual(len(response.data), len(self.features)) # Test with empty query. response = self.client.get(FEATURE_SEARCH_URL, {"query": ""}, format="json") self.assertEqual(len(response.data), 10) # Test with non-matching query. response = self.client.get(FEATURE_SEARCH_URL, {"query": "F1"}, format="json") self.assertEqual(len(response.data), 0) # Test query by feature name. response = self.client.get( FEATURE_SEARCH_URL, {"query": self.features[0].name}, format="json" ) self.assertEqual(len(response.data), 1) self.assertFeatureEqual(response.data[0], self.features[0]) # Test query by alias. response = self.client.get( FEATURE_SEARCH_URL, {"query": self.features[0].aliases[0]}, format="json" ) self.assertEqual(len(response.data), 1) self.assertFeatureEqual(response.data[0], self.features[0]) # Test query by shared alias. response = self.client.get( FEATURE_SEARCH_URL, {"query": "SHARED"}, format="json" ) self.assertEqual(len(response.data), len(self.features)) # Test query by multiple gene IDs. response = self.client.get( FEATURE_SEARCH_URL, {"query": "FOO1,FOO2,FT-7"}, format="json" ) self.assertEqual(len(response.data), 3) response = self.client.get( FEATURE_SEARCH_URL, {"query": "FOO1,SHARED,FT-7"}, format="json" ) self.assertEqual(len(response.data), len(self.features)) # Test query by source. response = self.client.get( FEATURE_SEARCH_URL, {"source": "NCBI"}, format="json" ) self.assertEqual(len(response.data), 4) # Test query by source. response = self.client.get( FEATURE_SEARCH_URL, {"source": "NCBI,ENSEMBL"}, format="json" ) self.assertEqual(len(response.data), 7) # Test query by species. response = self.client.get( FEATURE_SEARCH_URL, {"species": "Homo sapiens"}, format="json" ) self.assertEqual(len(response.data), 4) # Test query by species. response = self.client.get( FEATURE_SEARCH_URL, {"species": "Homo sapiens,Rat rattus"}, format="json" ) self.assertEqual(len(response.data), 7) # Test query by type. response = self.client.get(FEATURE_SEARCH_URL, {"type": "gene"}, format="json") self.assertEqual(len(response.data), 9) # Mixed queries. response = self.client.get( FEATURE_SEARCH_URL, {"query": "FOO1,FOO2,FT-3", "source": "NCBI", "species": "Homo sapiens"}, format="json", ) self.assertEqual(len(response.data), 1) response = self.client.get( FEATURE_SEARCH_URL, {"query": "FOO1,FOO2,FT-7", "source": "FOO"}, format="json", ) self.assertEqual(len(response.data), 0) # Test query with a lot of features. response = self.client.get( FEATURE_SEARCH_URL, {"query": ",".join([str(x) for x in range(1024)])}, format="json", ) self.assertEqual(response.status_code, status.HTTP_200_OK) # Test search by feature_id. response = self.client.get( FEATURE_SEARCH_URL, {"feature_id": "FOO", "source": "XSRC", "species": "Homo sapiens"}, format="json", ) self.assertEqual(len(response.data), 0) response = self.client.get( FEATURE_SEARCH_URL, {"feature_id": "FT-9", "source": "XSRC", "species": "Rat rattus"}, format="json", ) self.assertEqual(len(response.data), 1) response = self.client.get( FEATURE_SEARCH_URL, {"feature_id": "FT-0,FT-3", "source": "NCBI", "species": "Homo sapiens"}, format="json", ) self.assertEqual(len(response.data), 2) response = self.client.get( FEATURE_SEARCH_URL, { "feature_id": "FT-0,FT-3", "source": "NCBI", "species": "Homo sapiens", "type": "gene", }, format="json", ) self.assertEqual(len(response.data), 1) def test_serialization(self): FEATURE_SEARCH_URL = reverse("resolwebio-api:kb_feature_search") kwargs = {"feature_id": "FT-0"} feature = Feature.objects.get(**kwargs) response = self.client.get(FEATURE_SEARCH_URL, kwargs, format="json") self.assertEqual(len(response.data), 1) serialized_feature = response.data[0] self.assertEqual(serialized_feature["aliases"], feature.aliases) self.assertEqual(serialized_feature["description"], feature.description) self.assertEqual(serialized_feature["feature_id"], feature.feature_id) self.assertEqual(serialized_feature["full_name"], feature.full_name) self.assertEqual(serialized_feature["id"], feature.id) self.assertEqual(serialized_feature["name"], feature.name) self.assertEqual(serialized_feature["source"], feature.source) self.assertEqual(serialized_feature["species"], feature.species) self.assertEqual(serialized_feature["sub_type"], feature.sub_type) self.assertEqual(serialized_feature["type"], feature.type) def test_feature_autocomplete(self): FEATURE_AUTOCOMPLETE_URL = reverse("resolwebio-api:kb_feature_autocomplete") # Test empty query. response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": ""}, format="json" ) self.assertEqual(len(response.data), 0) response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": "", "source": "NCBI", "species": "Homo sapiens"}, format="json", ) self.assertEqual(len(response.data), 0) response = self.client.get(FEATURE_AUTOCOMPLETE_URL, format="json") self.assertEqual(len(response.data), 0) # Test non-matching query. response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": "FOU"}, format="json" ) self.assertEqual(len(response.data), 0) # Test partial name query. response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": "FO"}, format="json" ) self.assertEqual(len(response.data), len(self.features)) # Test partial name query with source and species. response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": "FO", "source": "NCBI", "species": "Homo sapiens"}, format="json", ) self.assertEqual(len(response.data), 2) # Test partial name query with source, species and type. response = self.client.get( FEATURE_AUTOCOMPLETE_URL, { "query": "FO", "source": "NCBI", "species": "Homo sapiens", "type": "gene", }, format="json", ) self.assertEqual(len(response.data), 1) # Test partial alias query. response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": "SHAR"}, format="json" ) self.assertEqual(len(response.data), len(self.features)) # Test partial alias query with source and species. response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": "SHAR", "source": "XSRC", "species": "Rat rattus"}, format="json", ) self.assertEqual(len(response.data), 1) # Test query by full feature name. feature = self.features[0] response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": feature.name, "source": feature.source}, format="json", ) self.assertEqual(len(response.data), 1) self.assertFeatureEqual(response.data[0], feature) # Test query by alias. feature = self.features[0] response = self.client.get( FEATURE_AUTOCOMPLETE_URL, {"query": feature.aliases[0]}, format="json" ) self.assertEqual(len(response.data), 1) self.assertFeatureEqual(response.data[0], feature)
37.09396
87
0.585308
79482e27fabe2ba7ecf44d0568dd4d7fbfa2414e
17,955
py
Python
lib/tool_shed/utility_containers/__init__.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
null
null
null
lib/tool_shed/utility_containers/__init__.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
6
2021-11-11T20:57:49.000Z
2021-12-10T15:30:33.000Z
lib/tool_shed/utility_containers/__init__.py
beatrizserrano/galaxy
e149d9d32e1bca6c07c38b1a9cdabfee60323610
[ "CC-BY-3.0" ]
null
null
null
import logging import threading from galaxy import util from tool_shed.util import ( common_util, container_util, readme_util, ) from . import utility_container_manager log = logging.getLogger(__name__) class FailedTest: """Failed tool tests object""" def __init__(self, id=None, stderr=None, test_id=None, tool_id=None, tool_version=None, traceback=None): self.id = id self.stderr = stderr self.test_id = test_id self.tool_id = tool_id self.tool_version = tool_version self.traceback = traceback class InvalidRepositoryDependency: """Invalid repository dependency definition object""" def __init__( self, id=None, toolshed=None, repository_name=None, repository_owner=None, changeset_revision=None, prior_installation_required=False, only_if_compiling_contained_td=False, error=None, ): self.id = id self.toolshed = toolshed self.repository_name = repository_name self.repository_owner = repository_owner self.changeset_revision = changeset_revision self.prior_installation_required = prior_installation_required self.only_if_compiling_contained_td = only_if_compiling_contained_td self.error = error class InvalidToolDependency: """Invalid tool dependency definition object""" def __init__(self, id=None, name=None, version=None, type=None, error=None): self.id = id self.name = name self.version = version self.type = type self.error = error class MissingTestComponent: """Missing tool test components object""" def __init__(self, id=None, missing_components=None, tool_guid=None, tool_id=None, tool_version=None): self.id = id self.missing_components = missing_components self.tool_guid = tool_guid self.tool_id = tool_id self.tool_version = tool_version class NotTested: """NotTested object""" def __init__(self, id=None, reason=None): self.id = id self.reason = reason class PassedTest: """Passed tool tests object""" def __init__(self, id=None, test_id=None, tool_id=None, tool_version=None): self.id = id self.test_id = test_id self.tool_id = tool_id self.tool_version = tool_version class RepositoryInstallationError: """Repository installation error object""" def __init__(self, id=None, tool_shed=None, name=None, owner=None, changeset_revision=None, error_message=None): self.id = id self.tool_shed = tool_shed self.name = name self.owner = owner self.changeset_revision = changeset_revision self.error_message = error_message class RepositorySuccessfulInstallation: """Repository installation object""" def __init__(self, id=None, tool_shed=None, name=None, owner=None, changeset_revision=None): self.id = id self.tool_shed = tool_shed self.name = name self.owner = owner self.changeset_revision = changeset_revision class ToolDependencyInstallationError: """Tool dependency installation error object""" def __init__(self, id=None, type=None, name=None, version=None, error_message=None): self.id = id self.type = type self.name = name self.version = version self.error_message = error_message class ToolDependencySuccessfulInstallation: """Tool dependency installation object""" def __init__(self, id=None, type=None, name=None, version=None, installation_directory=None): self.id = id self.type = type self.name = name self.version = version self.installation_directory = installation_directory class ToolShedUtilityContainerManager(utility_container_manager.UtilityContainerManager): def __init__(self, app): self.app = app def build_invalid_repository_dependencies_root_folder(self, folder_id, invalid_repository_dependencies_dict): """Return a folder hierarchy containing invalid repository dependencies.""" label = "Invalid repository dependencies" if invalid_repository_dependencies_dict: invalid_repository_dependency_id = 0 folder_id += 1 invalid_repository_dependencies_root_folder = utility_container_manager.Folder( id=folder_id, key="root", label="root", parent=None ) folder_id += 1 invalid_repository_dependencies_folder = utility_container_manager.Folder( id=folder_id, key="invalid_repository_dependencies", label=label, parent=invalid_repository_dependencies_root_folder, ) invalid_repository_dependencies_root_folder.folders.append(invalid_repository_dependencies_folder) invalid_repository_dependencies = invalid_repository_dependencies_dict["repository_dependencies"] for invalid_repository_dependency in invalid_repository_dependencies: folder_id += 1 invalid_repository_dependency_id += 1 ( toolshed, name, owner, changeset_revision, prior_installation_required, only_if_compiling_contained_td, error, ) = common_util.parse_repository_dependency_tuple(invalid_repository_dependency, contains_error=True) key = container_util.generate_repository_dependencies_key_for_repository( toolshed, name, owner, changeset_revision, prior_installation_required, only_if_compiling_contained_td, ) label = f"Repository <b>{name}</b> revision <b>{changeset_revision}</b> owned by <b>{owner}</b>" folder = utility_container_manager.Folder( id=folder_id, key=key, label=label, parent=invalid_repository_dependencies_folder ) ird = InvalidRepositoryDependency( id=invalid_repository_dependency_id, toolshed=toolshed, repository_name=name, repository_owner=owner, changeset_revision=changeset_revision, prior_installation_required=util.asbool(prior_installation_required), only_if_compiling_contained_td=util.asbool(only_if_compiling_contained_td), error=error, ) folder.invalid_repository_dependencies.append(ird) invalid_repository_dependencies_folder.folders.append(folder) else: invalid_repository_dependencies_root_folder = None return folder_id, invalid_repository_dependencies_root_folder def build_invalid_tool_dependencies_root_folder(self, folder_id, invalid_tool_dependencies_dict): """Return a folder hierarchy containing invalid tool dependencies.""" # # INvalid tool dependencies are always packages like: # {"R/2.15.1": {"name": "R", "readme": "some string", "type": "package", "version": "2.15.1" "error" : "some sting" } label = "Invalid tool dependencies" if invalid_tool_dependencies_dict: invalid_tool_dependency_id = 0 folder_id += 1 invalid_tool_dependencies_root_folder = utility_container_manager.Folder( id=folder_id, key="root", label="root", parent=None ) folder_id += 1 invalid_tool_dependencies_folder = utility_container_manager.Folder( id=folder_id, key="invalid_tool_dependencies", label=label, parent=invalid_tool_dependencies_root_folder ) invalid_tool_dependencies_root_folder.folders.append(invalid_tool_dependencies_folder) for requirements_dict in invalid_tool_dependencies_dict.values(): folder_id += 1 invalid_tool_dependency_id += 1 try: name = requirements_dict["name"] type = requirements_dict["type"] version = requirements_dict["version"] error = requirements_dict["error"] except Exception as e: name = "unknown" type = "unknown" version = "unknown" error = str(e) key = self.generate_tool_dependencies_key(name, version, type) label = f"Version <b>{version}</b> of the <b>{name}</b> <b>{type}</b>" folder = utility_container_manager.Folder( id=folder_id, key=key, label=label, parent=invalid_tool_dependencies_folder ) itd = InvalidToolDependency( id=invalid_tool_dependency_id, name=name, version=version, type=type, error=error ) folder.invalid_tool_dependencies.append(itd) invalid_tool_dependencies_folder.folders.append(folder) else: invalid_tool_dependencies_root_folder = None return folder_id, invalid_tool_dependencies_root_folder def build_repository_containers( self, repository, changeset_revision, repository_dependencies, repository_metadata, exclude=None ): """ Return a dictionary of containers for the received repository's dependencies and contents for display in the Tool Shed. """ if exclude is None: exclude = [] containers_dict = dict( datatypes=None, invalid_tools=None, readme_files=None, repository_dependencies=None, tool_dependencies=None, valid_tools=None, workflows=None, valid_data_managers=None, ) if repository_metadata: metadata = repository_metadata.metadata lock = threading.Lock() lock.acquire(True) try: folder_id = 0 # Datatypes container. if metadata: if "datatypes" not in exclude and "datatypes" in metadata: datatypes = metadata["datatypes"] folder_id, datatypes_root_folder = self.build_datatypes_folder(folder_id, datatypes) containers_dict["datatypes"] = datatypes_root_folder # Invalid repository dependencies container. if metadata: if ( "invalid_repository_dependencies" not in exclude and "invalid_repository_dependencies" in metadata ): invalid_repository_dependencies = metadata["invalid_repository_dependencies"] ( folder_id, invalid_repository_dependencies_root_folder, ) = self.build_invalid_repository_dependencies_root_folder( folder_id, invalid_repository_dependencies ) containers_dict["invalid_repository_dependencies"] = invalid_repository_dependencies_root_folder # Invalid tool dependencies container. if metadata: if "invalid_tool_dependencies" not in exclude and "invalid_tool_dependencies" in metadata: invalid_tool_dependencies = metadata["invalid_tool_dependencies"] ( folder_id, invalid_tool_dependencies_root_folder, ) = self.build_invalid_tool_dependencies_root_folder(folder_id, invalid_tool_dependencies) containers_dict["invalid_tool_dependencies"] = invalid_tool_dependencies_root_folder # Invalid tools container. if metadata: if "invalid_tools" not in exclude and "invalid_tools" in metadata: invalid_tool_configs = metadata["invalid_tools"] folder_id, invalid_tools_root_folder = self.build_invalid_tools_folder( folder_id, invalid_tool_configs, changeset_revision, repository=repository, label="Invalid tools", ) containers_dict["invalid_tools"] = invalid_tools_root_folder # Readme files container. if metadata: if "readme_files" not in exclude and "readme_files" in metadata: readme_files_dict = readme_util.build_readme_files_dict( self.app, repository, changeset_revision, metadata ) folder_id, readme_files_root_folder = self.build_readme_files_folder( folder_id, readme_files_dict ) containers_dict["readme_files"] = readme_files_root_folder if "repository_dependencies" not in exclude: # Repository dependencies container. folder_id, repository_dependencies_root_folder = self.build_repository_dependencies_folder( folder_id=folder_id, repository_dependencies=repository_dependencies, label="Repository dependencies", installed=False, ) if repository_dependencies_root_folder: containers_dict["repository_dependencies"] = repository_dependencies_root_folder # Tool dependencies container. if metadata: if "tool_dependencies" not in exclude and "tool_dependencies" in metadata: tool_dependencies = metadata["tool_dependencies"] if "orphan_tool_dependencies" in metadata: # The use of the orphan_tool_dependencies category in metadata has been deprecated, # but we still need to check in case the metadata is out of date. orphan_tool_dependencies = metadata["orphan_tool_dependencies"] tool_dependencies.update(orphan_tool_dependencies) # Tool dependencies can be categorized as orphans only if the repository contains tools. if "tools" not in exclude: tools = metadata.get("tools", []) tools.extend(metadata.get("invalid_tools", [])) folder_id, tool_dependencies_root_folder = self.build_tool_dependencies_folder( folder_id, tool_dependencies, missing=False, new_install=False ) containers_dict["tool_dependencies"] = tool_dependencies_root_folder # Valid tools container. if metadata: if "tools" not in exclude and "tools" in metadata: valid_tools = metadata["tools"] folder_id, valid_tools_root_folder = self.build_tools_folder( folder_id, valid_tools, repository, changeset_revision, label="Valid tools" ) containers_dict["valid_tools"] = valid_tools_root_folder # Workflows container. if metadata: if "workflows" not in exclude and "workflows" in metadata: workflows = metadata["workflows"] folder_id, workflows_root_folder = self.build_workflows_folder( folder_id=folder_id, workflows=workflows, repository_metadata_id=repository_metadata.id, repository_id=None, label="Workflows", ) containers_dict["workflows"] = workflows_root_folder # Valid Data Managers container if metadata: if "data_manager" not in exclude and "data_manager" in metadata: data_managers = metadata["data_manager"].get("data_managers", None) folder_id, data_managers_root_folder = self.build_data_managers_folder( folder_id, data_managers, label="Data Managers" ) containers_dict["valid_data_managers"] = data_managers_root_folder error_messages = metadata["data_manager"].get("error_messages", None) data_managers = metadata["data_manager"].get("invalid_data_managers", None) folder_id, data_managers_root_folder = self.build_invalid_data_managers_folder( folder_id, data_managers, error_messages, label="Invalid Data Managers" ) containers_dict["invalid_data_managers"] = data_managers_root_folder except Exception: log.exception("Exception in build_repository_containers") finally: lock.release() return containers_dict def generate_tool_dependencies_key(self, name, version, type): return f"{str(name)}{container_util.STRSEP}{str(version)}{container_util.STRSEP}{str(type)}"
46.515544
125
0.596825
79482e80a92ef3d4b4eb8511e7801ab2ac27d2a8
47,503
py
Python
tests/test_repository_lib.py
Ajedi32/tuf
5733e6138a9fdb3e822ad90e920abd5520115a68
[ "Apache-2.0", "MIT" ]
null
null
null
tests/test_repository_lib.py
Ajedi32/tuf
5733e6138a9fdb3e822ad90e920abd5520115a68
[ "Apache-2.0", "MIT" ]
null
null
null
tests/test_repository_lib.py
Ajedi32/tuf
5733e6138a9fdb3e822ad90e920abd5520115a68
[ "Apache-2.0", "MIT" ]
null
null
null
#!/usr/bin/env python """ <Program Name> test_repository_lib.py <Author> Vladimir Diaz <vladimir.v.diaz@gmail.com> <Started> June 1, 2014. <Copyright> See LICENSE for licensing information. <Purpose> Unit test for 'repository_lib.py'. """ # Help with Python 3 compatibility, where the print statement is a function, an # implicit relative import is invalid, and the '/' operator performs true # division. Example: print 'hello world' raises a 'SyntaxError' exception. from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import os import time import datetime import logging import tempfile import json import shutil import stat import sys # 'unittest2' required for testing under Python < 2.7. if sys.version_info >= (2, 7): import unittest else: import unittest2 as unittest import tuf import tuf.formats import tuf.log import tuf.formats import tuf.roledb import tuf.keydb import tuf.settings import tuf.repository_lib as repo_lib import tuf.repository_tool as repo_tool import securesystemslib import six logger = logging.getLogger('tuf.test_repository_lib') repo_lib.disable_console_log_messages() class TestRepositoryToolFunctions(unittest.TestCase): @classmethod def setUpClass(cls): # setUpClass() is called before tests in an individual class are executed. # Create a temporary directory to store the repository, metadata, and target # files. 'temporary_directory' must be deleted in TearDownClass() so that # temporary files are always removed, even when exceptions occur. tuf.roledb.clear_roledb(clear_all=True) tuf.keydb.clear_keydb(clear_all=True) cls.temporary_directory = tempfile.mkdtemp(dir=os.getcwd()) @classmethod def tearDownClass(cls): # tearDownModule() is called after all the tests have run. # http://docs.python.org/2/library/unittest.html#class-and-module-fixtures # Remove the temporary repository directory, which should contain all the # metadata, targets, and key files generated for the test cases. tuf.roledb.clear_roledb(clear_all=True) tuf.keydb.clear_keydb(clear_all=True) shutil.rmtree(cls.temporary_directory) def setUp(self): tuf.roledb.create_roledb('test_repository') tuf.keydb.create_keydb('test_repository') def tearDown(self): tuf.roledb.clear_roledb(clear_all=True) tuf.keydb.clear_keydb(clear_all=True) def test_generate_and_write_rsa_keypair(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) test_keypath = os.path.join(temporary_directory, 'rsa_key') repo_lib.generate_and_write_rsa_keypair(test_keypath, password='pw') self.assertTrue(os.path.exists(test_keypath)) self.assertTrue(os.path.exists(test_keypath + '.pub')) # Ensure the generated key files are importable. imported_pubkey = \ repo_lib.import_rsa_publickey_from_file(test_keypath + '.pub') self.assertTrue(securesystemslib.formats.RSAKEY_SCHEMA.matches(imported_pubkey)) imported_privkey = \ repo_lib.import_rsa_privatekey_from_file(test_keypath, 'pw') self.assertTrue(securesystemslib.formats.RSAKEY_SCHEMA.matches(imported_privkey)) # Custom 'bits' argument. os.remove(test_keypath) os.remove(test_keypath + '.pub') repo_lib.generate_and_write_rsa_keypair(test_keypath, bits=2048, password='pw') self.assertTrue(os.path.exists(test_keypath)) self.assertTrue(os.path.exists(test_keypath + '.pub')) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_and_write_rsa_keypair, 3, bits=2048, password='pw') self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_and_write_rsa_keypair, test_keypath, bits='bad', password='pw') self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_and_write_rsa_keypair, test_keypath, bits=2048, password=3) # Test invalid 'bits' argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_and_write_rsa_keypair, test_keypath, bits=1024, password='pw') def test_import_rsa_privatekey_from_file(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) # Load one of the pre-generated key files from 'tuf/tests/repository_data'. # 'password' unlocks the pre-generated key files. key_filepath = os.path.join('repository_data', 'keystore', 'root_key') self.assertTrue(os.path.exists(key_filepath)) imported_rsa_key = repo_lib.import_rsa_privatekey_from_file(key_filepath, 'password') self.assertTrue(securesystemslib.formats.RSAKEY_SCHEMA.matches(imported_rsa_key)) # Test improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.import_rsa_privatekey_from_file, 3, 'pw') # Test invalid argument. # Non-existent key file. nonexistent_keypath = os.path.join(temporary_directory, 'nonexistent_keypath') self.assertRaises(IOError, repo_lib.import_rsa_privatekey_from_file, nonexistent_keypath, 'pw') # Invalid key file argument. invalid_keyfile = os.path.join(temporary_directory, 'invalid_keyfile') with open(invalid_keyfile, 'wb') as file_object: file_object.write(b'bad keyfile') self.assertRaises(securesystemslib.exceptions.CryptoError, repo_lib.import_rsa_privatekey_from_file, invalid_keyfile, 'pw') def test_import_rsa_publickey_from_file(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) # Load one of the pre-generated key files from 'tuf/tests/repository_data'. key_filepath = os.path.join('repository_data', 'keystore', 'root_key.pub') self.assertTrue(os.path.exists(key_filepath)) imported_rsa_key = repo_lib.import_rsa_publickey_from_file(key_filepath) self.assertTrue(securesystemslib.formats.RSAKEY_SCHEMA.matches(imported_rsa_key)) # Test improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.import_rsa_privatekey_from_file, 3) # Test invalid argument. # Non-existent key file. nonexistent_keypath = os.path.join(temporary_directory, 'nonexistent_keypath') self.assertRaises(IOError, repo_lib.import_rsa_publickey_from_file, nonexistent_keypath) # Invalid key file argument. invalid_keyfile = os.path.join(temporary_directory, 'invalid_keyfile') with open(invalid_keyfile, 'wb') as file_object: file_object.write(b'bad keyfile') self.assertRaises(securesystemslib.exceptions.Error, repo_lib.import_rsa_publickey_from_file, invalid_keyfile) def test_generate_and_write_ed25519_keypair(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) test_keypath = os.path.join(temporary_directory, 'ed25519_key') repo_lib.generate_and_write_ed25519_keypair(test_keypath, password='pw') self.assertTrue(os.path.exists(test_keypath)) self.assertTrue(os.path.exists(test_keypath + '.pub')) # Ensure the generated key files are importable. imported_pubkey = \ repo_lib.import_ed25519_publickey_from_file(test_keypath + '.pub') self.assertTrue(securesystemslib.formats.ED25519KEY_SCHEMA.matches(imported_pubkey)) imported_privkey = \ repo_lib.import_ed25519_privatekey_from_file(test_keypath, 'pw') self.assertTrue(securesystemslib.formats.ED25519KEY_SCHEMA.matches(imported_privkey)) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_and_write_ed25519_keypair, 3, password='pw') self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_and_write_rsa_keypair, test_keypath, password=3) def test_import_ed25519_publickey_from_file(self): # Test normal case. # Generate ed25519 keys that can be imported. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) ed25519_keypath = os.path.join(temporary_directory, 'ed25519_key') repo_lib.generate_and_write_ed25519_keypair(ed25519_keypath, password='pw') imported_ed25519_key = \ repo_lib.import_ed25519_publickey_from_file(ed25519_keypath + '.pub') self.assertTrue(securesystemslib.formats.ED25519KEY_SCHEMA.matches(imported_ed25519_key)) # Test improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.import_ed25519_publickey_from_file, 3) # Test invalid argument. # Non-existent key file. nonexistent_keypath = os.path.join(temporary_directory, 'nonexistent_keypath') self.assertRaises(IOError, repo_lib.import_ed25519_publickey_from_file, nonexistent_keypath) # Invalid key file argument. invalid_keyfile = os.path.join(temporary_directory, 'invalid_keyfile') with open(invalid_keyfile, 'wb') as file_object: file_object.write(b'bad keyfile') self.assertRaises(securesystemslib.exceptions.Error, repo_lib.import_ed25519_publickey_from_file, invalid_keyfile) # Invalid public key imported (contains unexpected keytype.) keytype = imported_ed25519_key['keytype'] keyval = imported_ed25519_key['keyval'] scheme = imported_ed25519_key['scheme'] ed25519key_metadata_format = \ securesystemslib.keys.format_keyval_to_metadata(keytype, scheme, keyval, private=False) ed25519key_metadata_format['keytype'] = 'invalid_keytype' with open(ed25519_keypath + '.pub', 'wb') as file_object: file_object.write(json.dumps(ed25519key_metadata_format).encode('utf-8')) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.import_ed25519_publickey_from_file, ed25519_keypath + '.pub') def test_import_ed25519_privatekey_from_file(self): # Test normal case. # Generate ed25519 keys that can be imported. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) ed25519_keypath = os.path.join(temporary_directory, 'ed25519_key') repo_lib.generate_and_write_ed25519_keypair(ed25519_keypath, password='pw') imported_ed25519_key = \ repo_lib.import_ed25519_privatekey_from_file(ed25519_keypath, 'pw') self.assertTrue(securesystemslib.formats.ED25519KEY_SCHEMA.matches(imported_ed25519_key)) # Test improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.import_ed25519_privatekey_from_file, 3, 'pw') # Test invalid argument. # Non-existent key file. nonexistent_keypath = os.path.join(temporary_directory, 'nonexistent_keypath') self.assertRaises(IOError, repo_lib.import_ed25519_privatekey_from_file, nonexistent_keypath, 'pw') # Invalid key file argument. invalid_keyfile = os.path.join(temporary_directory, 'invalid_keyfile') with open(invalid_keyfile, 'wb') as file_object: file_object.write(b'bad keyfile') self.assertRaises(securesystemslib.exceptions.Error, repo_lib.import_ed25519_privatekey_from_file, invalid_keyfile, 'pw') # Invalid private key imported (contains unexpected keytype.) imported_ed25519_key['keytype'] = 'invalid_keytype' # Use 'pycrypto_keys.py' to bypass the key format validation performed by # 'keys.py'. salt, iterations, derived_key = \ securesystemslib.pycrypto_keys._generate_derived_key('pw') # Store the derived key info in a dictionary, the object expected # by the non-public _encrypt() routine. derived_key_information = {'salt': salt, 'iterations': iterations, 'derived_key': derived_key} # Convert the key object to json string format and encrypt it with the # derived key. encrypted_key = \ securesystemslib.pycrypto_keys._encrypt(json.dumps(imported_ed25519_key), derived_key_information) with open(ed25519_keypath, 'wb') as file_object: file_object.write(encrypted_key.encode('utf-8')) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.import_ed25519_privatekey_from_file, ed25519_keypath, 'pw') def test_get_metadata_filenames(self): # Test normal case. metadata_directory = os.path.join('metadata/') filenames = {'root.json': metadata_directory + 'root.json', 'targets.json': metadata_directory + 'targets.json', 'snapshot.json': metadata_directory + 'snapshot.json', 'timestamp.json': metadata_directory + 'timestamp.json'} self.assertEqual(filenames, repo_lib.get_metadata_filenames('metadata/')) # If a directory argument is not specified, the current working directory # is used. metadata_directory = os.getcwd() filenames = {'root.json': os.path.join(metadata_directory, 'root.json'), 'targets.json': os.path.join(metadata_directory, 'targets.json'), 'snapshot.json': os.path.join(metadata_directory, 'snapshot.json'), 'timestamp.json': os.path.join(metadata_directory, 'timestamp.json')} self.assertEqual(filenames, repo_lib.get_metadata_filenames()) # Test improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.get_metadata_filenames, 3) def test_get_metadata_fileinfo(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) test_filepath = os.path.join(temporary_directory, 'file.txt') with open(test_filepath, 'wt') as file_object: file_object.write('test file') # Generate test fileinfo object. It is assumed SHA256 and SHA512 hashes # are computed by get_metadata_fileinfo(). file_length = os.path.getsize(test_filepath) sha256_digest_object = securesystemslib.hash.digest_filename(test_filepath) sha512_digest_object = securesystemslib.hash.digest_filename(test_filepath, algorithm='sha512') file_hashes = {'sha256': sha256_digest_object.hexdigest(), 'sha512': sha512_digest_object.hexdigest()} fileinfo = {'length': file_length, 'hashes': file_hashes} self.assertTrue(tuf.formats.FILEINFO_SCHEMA.matches(fileinfo)) self.assertEqual(fileinfo, repo_lib.get_metadata_fileinfo(test_filepath)) # Test improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.get_metadata_fileinfo, 3) # Test non-existent file. nonexistent_filepath = os.path.join(temporary_directory, 'oops.txt') self.assertRaises(securesystemslib.exceptions.Error, repo_lib.get_metadata_fileinfo, nonexistent_filepath) def test_get_target_hash(self): # Test normal case. expected_target_hashes = { '/file1.txt': 'e3a3d89eb3b70ce3fbce6017d7b8c12d4abd5635427a0e8a238f53157df85b3d', '/README.txt': '8faee106f1bb69f34aaf1df1e3c2e87d763c4d878cb96b91db13495e32ceb0b0', '/packages/file2.txt': 'c9c4a5cdd84858dd6a23d98d7e6e6b2aec45034946c16b2200bc317c75415e92' } for filepath, target_hash in six.iteritems(expected_target_hashes): self.assertTrue(securesystemslib.formats.RELPATH_SCHEMA.matches(filepath)) self.assertTrue(securesystemslib.formats.HASH_SCHEMA.matches(target_hash)) self.assertEqual(repo_lib.get_target_hash(filepath), target_hash) # Test for improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.get_target_hash, 8) def test_generate_root_metadata(self): # Test normal case. # Load the root metadata provided in 'tuf/tests/repository_data/'. root_filepath = os.path.join('repository_data', 'repository', 'metadata', 'root.json') root_signable = securesystemslib.util.load_json_file(root_filepath) # generate_root_metadata() expects the top-level roles and keys to be # available in 'tuf.keydb' and 'tuf.roledb'. tuf.roledb.create_roledb_from_root_metadata(root_signable['signed']) tuf.keydb.create_keydb_from_root_metadata(root_signable['signed']) expires = '1985-10-21T01:22:00Z' root_metadata = repo_lib.generate_root_metadata(1, expires, consistent_snapshot=False) self.assertTrue(tuf.formats.ROOT_SCHEMA.matches(root_metadata)) root_keyids = tuf.roledb.get_role_keyids('root') tuf.keydb._keydb_dict['default'][root_keyids[0]]['keytype'] = 'bad_keytype' self.assertRaises(securesystemslib.exceptions.Error, repo_lib.generate_root_metadata, 1, expires, consistent_snapshot=False) # Reset the root key's keytype, so that we can next verify that a different # securesystemslib.exceptions.Error exception is raised for duplicate keyids. tuf.keydb._keydb_dict['default'][root_keyids[0]]['keytype'] = 'rsa' # Add duplicate keyid to root's roleinfo. tuf.roledb._roledb_dict['default']['root']['keyids'].append(root_keyids[0]) self.assertRaises(securesystemslib.exceptions.Error, repo_lib.generate_root_metadata, 1, expires, consistent_snapshot=False) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_root_metadata, '3', expires, False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_root_metadata, 1, '3', False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_root_metadata, 1, expires, 3) # Test for missing required roles and keys. tuf.roledb.clear_roledb() tuf.keydb.clear_keydb() self.assertRaises(securesystemslib.exceptions.Error, repo_lib.generate_root_metadata, 1, expires, False) def test_generate_targets_metadata(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) targets_directory = os.path.join(temporary_directory, 'targets') file1_path = os.path.join(targets_directory, 'file.txt') securesystemslib.util.ensure_parent_dir(file1_path) with open(file1_path, 'wt') as file_object: file_object.write('test file.') # Set valid generate_targets_metadata() arguments. Add a custom field for # the 'target_files' target set below. version = 1 datetime_object = datetime.datetime(2030, 1, 1, 12, 0) expiration_date = datetime_object.isoformat() + 'Z' file_permissions = oct(os.stat(file1_path).st_mode)[4:] target_files = {'file.txt': {'file_permission': file_permissions}} delegations = {"keys": { "a394c28384648328b16731f81440d72243c77bb44c07c040be99347f0df7d7bf": { "keytype": "ed25519", "keyval": { "public": "3eb81026ded5af2c61fb3d4b272ac53cd1049a810ee88f4df1fc35cdaf918157" } } }, "roles": [ { "keyids": [ "a394c28384648328b16731f81440d72243c77bb44c07c040be99347f0df7d7bf" ], "name": "targets/warehouse", "paths": [ "/file1.txt", "/README.txt", '/warehouse/' ], "threshold": 1 } ] } targets_metadata = \ repo_lib.generate_targets_metadata(targets_directory, target_files, version, expiration_date, delegations, False) self.assertTrue(tuf.formats.TARGETS_SCHEMA.matches(targets_metadata)) # Valid arguments with 'delegations' set to None. targets_metadata = \ repo_lib.generate_targets_metadata(targets_directory, target_files, version, expiration_date, None, False) self.assertTrue(tuf.formats.TARGETS_SCHEMA.matches(targets_metadata)) # Verify that 'digest.filename' file is saved to 'targets_directory' if # the 'write_consistent_targets' argument is True. list_targets_directory = os.listdir(targets_directory) targets_metadata = \ repo_lib.generate_targets_metadata(targets_directory, target_files, version, expiration_date, delegations, write_consistent_targets=True) new_list_targets_directory = os.listdir(targets_directory) # Verify that 'targets_directory' contains only one extra item. self.assertTrue(len(list_targets_directory) + 1, len(new_list_targets_directory)) # Verify that an exception is not raised if the target files already exist. repo_lib.generate_targets_metadata(targets_directory, target_files, version, expiration_date, delegations, write_consistent_targets=True) # Verify that 'targets_metadata' contains a 'custom' entry (optional) # for 'file.txt'. self.assertTrue('custom' in targets_metadata['targets']['file.txt']) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_targets_metadata, 3, target_files, version, expiration_date) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_targets_metadata, targets_directory, 3, version, expiration_date) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_targets_metadata, targets_directory, target_files, '3', expiration_date) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_targets_metadata, targets_directory, target_files, version, '3') # Improperly formatted 'delegations' and 'write_consistent_targets' self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_targets_metadata, targets_directory, target_files, version, expiration_date, 3, False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_targets_metadata, targets_directory, target_files, version, expiration_date, delegations, 3) # Test non-existent target file. bad_target_file = \ {'non-existent.txt': {'file_permission': file_permissions}} self.assertRaises(securesystemslib.exceptions.Error, repo_lib.generate_targets_metadata, targets_directory, bad_target_file, version, expiration_date) def test_generate_snapshot_metadata(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) original_repository_path = os.path.join('repository_data', 'repository') repository_directory = os.path.join(temporary_directory, 'repository') shutil.copytree(original_repository_path, repository_directory) metadata_directory = os.path.join(repository_directory, repo_lib.METADATA_STAGED_DIRECTORY_NAME) targets_directory = os.path.join(repository_directory, repo_lib.TARGETS_DIRECTORY_NAME) root_filename = os.path.join(metadata_directory, repo_lib.ROOT_FILENAME) targets_filename = os.path.join(metadata_directory, repo_lib.TARGETS_FILENAME) version = 1 expiration_date = '1985-10-21T13:20:00Z' # Load a valid repository so that top-level roles exist in roledb and # generate_snapshot_metadata() has roles to specify in snapshot metadata. repository = repo_tool.Repository(repository_directory, metadata_directory, targets_directory) repository_junk = repo_tool.load_repository(repository_directory) root_filename = 'root' targets_filename = 'targets' snapshot_metadata = \ repo_lib.generate_snapshot_metadata(metadata_directory, version, expiration_date, root_filename, targets_filename, consistent_snapshot=False) self.assertTrue(tuf.formats.SNAPSHOT_SCHEMA.matches(snapshot_metadata)) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_snapshot_metadata, 3, version, expiration_date, root_filename, targets_filename, consistent_snapshot=False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_snapshot_metadata, metadata_directory, '3', expiration_date, root_filename, targets_filename, consistent_snapshot=False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_snapshot_metadata, metadata_directory, version, '3', root_filename, targets_filename, consistent_snapshot=False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_snapshot_metadata, metadata_directory, version, expiration_date, 3, targets_filename, consistent_snapshot=False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_snapshot_metadata, metadata_directory, version, expiration_date, root_filename, 3, consistent_snapshot=False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_snapshot_metadata, metadata_directory, version, expiration_date, root_filename, targets_filename, 3) def test_generate_timestamp_metadata(self): # Test normal case. repository_name = 'test_repository' temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) original_repository_path = os.path.join('repository_data', 'repository') repository_directory = os.path.join(temporary_directory, 'repository') shutil.copytree(original_repository_path, repository_directory) metadata_directory = os.path.join(repository_directory, repo_lib.METADATA_STAGED_DIRECTORY_NAME) targets_directory = os.path.join(repository_directory, repo_lib.TARGETS_DIRECTORY_NAME) snapshot_filename = os.path.join(metadata_directory, repo_lib.SNAPSHOT_FILENAME) # Set valid generate_timestamp_metadata() arguments. version = 1 expiration_date = '1985-10-21T13:20:00Z' # Load a valid repository so that top-level roles exist in roledb and # generate_snapshot_metadata() has roles to specify in snapshot metadata. repository = repo_tool.Repository(repository_directory, metadata_directory, targets_directory, repository_name) repository_junk = repo_tool.load_repository(repository_directory, repository_name) timestamp_metadata = repo_lib.generate_timestamp_metadata(snapshot_filename, version, expiration_date, repository_name) self.assertTrue(tuf.formats.TIMESTAMP_SCHEMA.matches(timestamp_metadata)) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_timestamp_metadata, 3, version, expiration_date, repository_name) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_timestamp_metadata, snapshot_filename, '3', expiration_date, repository_name) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.generate_timestamp_metadata, snapshot_filename, version, '3', repository_name) def test_sign_metadata(self): # Test normal case. repository_name = 'test_repository' temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) metadata_path = os.path.join('repository_data', 'repository', 'metadata') keystore_path = os.path.join('repository_data', 'keystore') root_filename = os.path.join(metadata_path, 'root.json') root_metadata = securesystemslib.util.load_json_file(root_filename)['signed'] targets_filename = os.path.join(metadata_path, 'targets.json') targets_metadata = securesystemslib.util.load_json_file(targets_filename)['signed'] tuf.keydb.create_keydb_from_root_metadata(root_metadata, repository_name) tuf.roledb.create_roledb_from_root_metadata(root_metadata, repository_name) root_keyids = tuf.roledb.get_role_keyids('root', repository_name) targets_keyids = tuf.roledb.get_role_keyids('targets', repository_name) root_private_keypath = os.path.join(keystore_path, 'root_key') root_private_key = repo_lib.import_rsa_privatekey_from_file(root_private_keypath, 'password') # Sign with a valid, but not a threshold, key. targets_public_keypath = os.path.join(keystore_path, 'targets_key.pub') targets_public_key = \ repo_lib.import_ed25519_publickey_from_file(targets_public_keypath) # sign_metadata() expects the private key 'root_metadata' to be in # 'tuf.keydb'. Remove any public keys that may be loaded before # adding private key, otherwise a 'tuf.KeyAlreadyExists' exception is # raised. tuf.keydb.remove_key(root_private_key['keyid'], repository_name=repository_name) tuf.keydb.add_key(root_private_key, repository_name=repository_name) tuf.keydb.remove_key(targets_public_key['keyid'], repository_name=repository_name) tuf.keydb.add_key(targets_public_key, repository_name=repository_name) # Verify that a valid root signable is generated. root_signable = repo_lib.sign_metadata(root_metadata, root_keyids, root_filename, repository_name) self.assertTrue(tuf.formats.SIGNABLE_SCHEMA.matches(root_signable)) # Test for an unset private key (in this case, target's). repo_lib.sign_metadata(targets_metadata, targets_keyids, targets_filename, repository_name) # Add an invalid keytype to one of the root keys. root_keyid = root_keyids[0] tuf.keydb._keydb_dict[repository_name][root_keyid]['keytype'] = 'bad_keytype' self.assertRaises(securesystemslib.exceptions.Error, repo_lib.sign_metadata, root_metadata, root_keyids, root_filename, repository_name) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.sign_metadata, 3, root_keyids, 'root.json', repository_name) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.sign_metadata, root_metadata, 3, 'root.json', repository_name) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.sign_metadata, root_metadata, root_keyids, 3, repository_name) def test_write_metadata_file(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) metadata_directory = os.path.join('repository_data', 'repository', 'metadata') root_filename = os.path.join(metadata_directory, 'root.json') root_signable = securesystemslib.util.load_json_file(root_filename) output_filename = os.path.join(temporary_directory, 'root.json') version_number = root_signable['signed']['version'] + 1 self.assertFalse(os.path.exists(output_filename)) repo_lib.write_metadata_file(root_signable, output_filename, version_number, consistent_snapshot=False) self.assertTrue(os.path.exists(output_filename)) # Attempt to over-write the previously written metadata file. An exception # is not raised in this case, only a debug message is logged. repo_lib.write_metadata_file(root_signable, output_filename, version_number, consistent_snapshot=False) # Try to write a consistent metadate file. An exception is not raised in # this case. For testing purposes, root.json should be a hard link to the # consistent metadata file. We should verify that root.json points to # the latest consistent files. tuf.settings.CONSISTENT_METHOD = 'hard_link' repo_lib.write_metadata_file(root_signable, output_filename, version_number, consistent_snapshot=True) # Test if the consistent files are properly named # Filename format of a consistent file: <version number>.rolename.json version_and_filename = str(version_number) + '.' + 'root.json' first_version_output_file = os.path.join(temporary_directory, version_and_filename) self.assertTrue(os.path.exists(first_version_output_file)) # Try to add more consistent metadata files. version_number += 1 repo_lib.write_metadata_file(root_signable, output_filename, version_number, consistent_snapshot=True) # Test if the the latest root.json points to the expected consistent file # and consistent metadata do not all point to the same root.json version_and_filename = str(version_number) + '.' + 'root.json' second_version_output_file = os.path.join(temporary_directory, version_and_filename) self.assertTrue(os.path.exists(second_version_output_file)) self.assertNotEqual(os.stat(output_filename).st_ino, os.stat(first_version_output_file).st_ino) self.assertEqual(os.stat(output_filename).st_ino, os.stat(second_version_output_file).st_ino) # Test for an improper settings.CONSISTENT_METHOD string value. tuf.settings.CONSISTENT_METHOD = 'somebadidea' self.assertRaises(securesystemslib.exceptions.InvalidConfigurationError, repo_lib.write_metadata_file, root_signable, output_filename, version_number, consistent_snapshot=True) # Try to create a link to root.json when root.json doesn't exist locally. # repository_lib should log a message if this is the case. tuf.settings.CONSISTENT_METHOD = 'hard_link' os.remove(output_filename) repo_lib.write_metadata_file(root_signable, output_filename, version_number, consistent_snapshot=True) # Reset CONSISTENT_METHOD so that subsequent tests work as expected. tuf.settings.CONSISTENT_METHOD = 'copy' # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.write_metadata_file, 3, output_filename, version_number, False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.write_metadata_file, root_signable, 3, version_number, False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.write_metadata_file, root_signable, output_filename, '3', False) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.write_metadata_file, root_signable, output_filename, version_number, 3) def test_create_tuf_client_directory(self): # Test normal case. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) repository_directory = os.path.join('repository_data', 'repository') client_directory = os.path.join(temporary_directory, 'client') repo_lib.create_tuf_client_directory(repository_directory, client_directory) self.assertTrue(os.path.exists(client_directory)) metadata_directory = os.path.join(client_directory, 'metadata') current_directory = os.path.join(metadata_directory, 'current') previous_directory = os.path.join(metadata_directory, 'previous') self.assertTrue(os.path.exists(client_directory)) self.assertTrue(os.path.exists(metadata_directory)) self.assertTrue(os.path.exists(current_directory)) self.assertTrue(os.path.exists(previous_directory)) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.create_tuf_client_directory, 3, client_directory) self.assertRaises(securesystemslib.exceptions.FormatError, repo_lib.create_tuf_client_directory, repository_directory, 3) # Test invalid argument (i.e., client directory already exists.) self.assertRaises(securesystemslib.exceptions.RepositoryError, repo_lib.create_tuf_client_directory, repository_directory, client_directory) # Test invalid client metadata directory (i.e., non-errno.EEXIST exceptions # should be re-raised.) shutil.rmtree(metadata_directory) current_client_directory_mode = os.stat(client_directory)[stat.ST_MODE] # Remove write access for the client directory so that the 'metadata' # directory cannot be created. create_tuf_client_directory() should # re-raise the 'OSError' (i.e., errno.EACCES) exception and only handle # errno.EEXIST. os.chmod(client_directory, current_client_directory_mode & ~stat.S_IWUSR) self.assertRaises(OSError, repo_lib.create_tuf_client_directory, repository_directory, client_directory) # Reset the client directory's mode. os.chmod(client_directory, current_client_directory_mode) def test__check_directory(self): # Test for non-existent directory. self.assertRaises(securesystemslib.exceptions.Error, repo_lib._check_directory, 'non-existent') def test__generate_and_write_metadata(self): # Test for invalid, or unsupported, rolename. # Load the root metadata provided in 'tuf/tests/repository_data/'. repository_name = 'repository_name' root_filepath = os.path.join('repository_data', 'repository', 'metadata', 'root.json') root_signable = securesystemslib.util.load_json_file(root_filepath) # _generate_and_write_metadata() expects the top-level roles # (specifically 'snapshot') and keys to be available in 'tuf.roledb'. tuf.roledb.create_roledb_from_root_metadata(root_signable['signed'], repository_name) temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) targets_directory = os.path.join(temporary_directory, 'targets') os.mkdir(targets_directory) repository_directory = os.path.join(temporary_directory, 'repository') metadata_directory = os.path.join(repository_directory, repo_lib.METADATA_STAGED_DIRECTORY_NAME) targets_metadata = os.path.join('repository_data', 'repository', 'metadata', 'targets.json') obsolete_metadata = os.path.join(metadata_directory, 'obsolete_role.json') securesystemslib.util.ensure_parent_dir(obsolete_metadata) shutil.copyfile(targets_metadata, obsolete_metadata) # Verify that obsolete metadata (a metadata file exists on disk, but the # role is unavailable in 'tuf.roledb'). First add the obsolete # role to 'tuf.roledb' so that its metadata file can be written to disk. targets_roleinfo = tuf.roledb.get_roleinfo('targets', repository_name) targets_roleinfo['version'] = 1 expiration = \ tuf.formats.unix_timestamp_to_datetime(int(time.time() + 86400)) expiration = expiration.isoformat() + 'Z' targets_roleinfo['expires'] = expiration tuf.roledb.add_role('obsolete_role', targets_roleinfo, repository_name=repository_name) repo_lib._generate_and_write_metadata('obsolete_role', obsolete_metadata, targets_directory, metadata_directory, consistent_snapshot=False, filenames=None, repository_name=repository_name) snapshot_filepath = os.path.join('repository_data', 'repository', 'metadata', 'snapshot.json') snapshot_signable = securesystemslib.util.load_json_file(snapshot_filepath) tuf.roledb.remove_role('obsolete_role', repository_name) self.assertTrue(os.path.exists(os.path.join(metadata_directory, 'obsolete_role.json'))) tuf.repository_lib._delete_obsolete_metadata(metadata_directory, snapshot_signable['signed'], False, repository_name) self.assertFalse(os.path.exists(metadata_directory + 'obsolete_role.json')) shutil.copyfile(targets_metadata, obsolete_metadata) def test__delete_obsolete_metadata(self): repository_name = 'test_repository' temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) repository_directory = os.path.join(temporary_directory, 'repository') metadata_directory = os.path.join(repository_directory, repo_lib.METADATA_STAGED_DIRECTORY_NAME) os.makedirs(metadata_directory) snapshot_filepath = os.path.join('repository_data', 'repository', 'metadata', 'snapshot.json') snapshot_signable = securesystemslib.util.load_json_file(snapshot_filepath) # Create role metadata that should not exist in snapshot.json. role1_filepath = os.path.join('repository_data', 'repository', 'metadata', 'role1.json') shutil.copyfile(role1_filepath, os.path.join(metadata_directory, 'role2.json')) repo_lib._delete_obsolete_metadata(metadata_directory, snapshot_signable['signed'], True, repository_name) # _delete_obsolete_metadata should never delete root.json. root_filepath = os.path.join('repository_data', 'repository', 'metadata', 'root.json') shutil.copyfile(root_filepath, os.path.join(metadata_directory, 'root.json')) repo_lib._delete_obsolete_metadata(metadata_directory, snapshot_signable['signed'], True, repository_name) self.assertTrue(os.path.exists(os.path.join(metadata_directory, 'root.json'))) # Verify what happens for a non-existent metadata directory (a debug # message is logged). repo_lib._delete_obsolete_metadata('non-existent', snapshot_signable['signed'], True, repository_name) def test__load_top_level_metadata(self): repository_name = 'test_repository' temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) repository_directory = os.path.join(temporary_directory, 'repository') metadata_directory = os.path.join(repository_directory, repo_lib.METADATA_STAGED_DIRECTORY_NAME) targets_directory = os.path.join(repository_directory, repo_lib.TARGETS_DIRECTORY_NAME) shutil.copytree(os.path.join('repository_data', 'repository', 'metadata'), metadata_directory) shutil.copytree(os.path.join('repository_data', 'repository', 'targets'), targets_directory) # Add a duplicate signature to the Root file for testing purposes). root_file = os.path.join(metadata_directory, 'root.json') signable = securesystemslib.util.load_json_file(os.path.join(metadata_directory, 'root.json')) signable['signatures'].append(signable['signatures'][0]) repo_lib.write_metadata_file(signable, root_file, 8, False) # Attempt to load a repository that contains a compressed Root file. repository = repo_tool.create_new_repository(repository_directory, repository_name) filenames = repo_lib.get_metadata_filenames(metadata_directory) repo_lib._load_top_level_metadata(repository, filenames, repository_name) filenames = repo_lib.get_metadata_filenames(metadata_directory) repository = repo_tool.create_new_repository(repository_directory, repository_name) repo_lib._load_top_level_metadata(repository, filenames, repository_name) # Partially write all top-level roles (we increase the threshold of each # top-level role so that they are flagged as partially written. repository.root.threshold = repository.root.threshold + 1 repository.snapshot.threshold = repository.snapshot.threshold + 1 repository.targets.threshold = repository.targets.threshold + 1 repository.timestamp.threshold = repository.timestamp.threshold + 1 repository.write('root', ) repository.write('snapshot') repository.write('targets') repository.write('timestamp') repo_lib._load_top_level_metadata(repository, filenames, repository_name) # Attempt to load a repository with missing top-level metadata. for role_file in os.listdir(metadata_directory): if role_file.endswith('.json') and not role_file.startswith('root'): role_filename = os.path.join(metadata_directory, role_file) os.remove(role_filename) repo_lib._load_top_level_metadata(repository, filenames, repository_name) # Remove the required Root file and verify that an exception is raised. os.remove(os.path.join(metadata_directory, 'root.json')) self.assertRaises(securesystemslib.exceptions.RepositoryError, repo_lib._load_top_level_metadata, repository, filenames, repository_name) def test__remove_invalid_and_duplicate_signatures(self): # Remove duplicate PSS signatures (same key generates valid, but different # signatures). First load a valid signable (in this case, the root role). repository_name = 'test_repository' root_filepath = os.path.join('repository_data', 'repository', 'metadata', 'root.json') root_signable = securesystemslib.util.load_json_file(root_filepath) key_filepath = os.path.join('repository_data', 'keystore', 'root_key') root_rsa_key = repo_lib.import_rsa_privatekey_from_file(key_filepath, 'password') # Add 'root_rsa_key' to tuf.keydb, since # _remove_invalid_and_duplicate_signatures() checks for unknown keys in # tuf.keydb. tuf.keydb.add_key(root_rsa_key, repository_name=repository_name) # Append the new valid, but duplicate PSS signature, and test that # duplicates are removed. create_signature() generates a key for the # key type of the first argument (i.e., root_rsa_key). new_pss_signature = securesystemslib.keys.create_signature(root_rsa_key, root_signable['signed']) root_signable['signatures'].append(new_pss_signature) expected_number_of_signatures = len(root_signable['signatures']) tuf.repository_lib._remove_invalid_and_duplicate_signatures(root_signable, repository_name) self.assertEqual(len(root_signable), expected_number_of_signatures) # Test for an invalid keyid. root_signable['signatures'][0]['keyid'] = '404' tuf.repository_lib._remove_invalid_and_duplicate_signatures(root_signable, repository_name) # Re-add a valid signature for the following test condition. root_signable['signatures'].append(new_pss_signature) # Test that an exception is not raised if an invalid sig is present, # and that the duplicate key is removed 'root_signable'. root_signable['signatures'][0]['sig'] = '4040' invalid_keyid = root_signable['signatures'][0]['keyid'] tuf.repository_lib._remove_invalid_and_duplicate_signatures(root_signable, repository_name) for signature in root_signable['signatures']: self.assertFalse(invalid_keyid == signature['keyid']) # Run the test cases. if __name__ == '__main__': unittest.main()
44.395327
104
0.728607
79482eb2779663d4f1f0576e3b12ffe0204dcbe0
3,875
py
Python
yggdrasil/serialize/AsciiMapSerialize.py
cropsinsilico/yggdrasil
466a4f77605a6f461d57ef7b165a6db7eec4d1fd
[ "BSD-3-Clause" ]
22
2019-02-05T15:20:07.000Z
2022-02-25T09:00:40.000Z
yggdrasil/serialize/AsciiMapSerialize.py
cropsinsilico/yggdrasil
466a4f77605a6f461d57ef7b165a6db7eec4d1fd
[ "BSD-3-Clause" ]
48
2019-02-15T20:41:24.000Z
2022-03-16T20:52:02.000Z
yggdrasil/serialize/AsciiMapSerialize.py
cropsinsilico/yggdrasil
466a4f77605a6f461d57ef7b165a6db7eec4d1fd
[ "BSD-3-Clause" ]
16
2019-04-27T03:36:40.000Z
2021-12-02T09:47:06.000Z
import json from yggdrasil import tools, constants from yggdrasil.serialize.SerializeBase import SerializeBase from yggdrasil.metaschema.encoder import JSONReadableEncoder class AsciiMapSerialize(SerializeBase): r"""Class for serializing/deserializing name/value mapping. Args: delimiter (str, optional): Delimiter that should be used to separate name/value pairs in the map. Defaults to \t. """ _seritype = 'map' _schema_subtype_description = ('Serialzation of mapping between key/value ' 'pairs with one pair per line and using a ' 'character delimiter to separate keys and ' 'values.') _schema_properties = { 'delimiter': {'type': 'string', 'default': constants.DEFAULT_DELIMITER_STR}} _attr_conv = SerializeBase._attr_conv # + ['delimiter'] default_datatype = {'type': 'object'} concats_as_str = False def func_serialize(self, args): r"""Serialize a message. Args: args (dict): Python dictionary to be serialized. Returns: bytes, str: Serialized message. """ out = '' order = sorted([k for k in args.keys()]) newline_str = tools.bytes2str(self.newline) for k in order: v = args[k] if not isinstance(k, (str, bytes)): raise ValueError("Serialization of non-string keys not supported.") out += tools.bytes2str(k) out += self.delimiter out += json.dumps(v, cls=JSONReadableEncoder) out += newline_str return tools.str2bytes(out) def func_deserialize(self, msg): r"""Deserialize a message. Args: msg (bytes): Message to be deserialized. Returns: dict: Deserialized Python dictionary. """ out = dict() lines = tools.bytes2str(msg.split(self.newline), recurse=True) for line in lines: kv = [x for x in line.split(self.delimiter) if x] if len(kv) <= 1: # TODO: Allow empty? continue elif len(kv) == 2: if kv[1].startswith("'") and kv[1].endswith("'"): out[kv[0]] = kv[1].strip("'") else: try: out[kv[0]] = json.loads(kv[1]) except BaseException: out[kv[0]] = kv[1] else: raise ValueError("Line has more than one delimiter: " + str(line)) return out @classmethod def concatenate(cls, objects, **kwargs): r"""Concatenate objects to get object that would be recieved if the concatenated serialization were deserialized. Args: objects (list): Objects to be concatenated. **kwargs: Additional keyword arguments are ignored. Returns: list: Set of objects that results from concatenating those provided. """ total = dict() for x in objects: total.update(x) return [total] @classmethod def get_testing_options(cls): r"""Method to return a dictionary of testing options for this class. Returns: dict: Dictionary of variables to use for testing. """ out = super(AsciiMapSerialize, cls).get_testing_options() out['objects'] = [{'args1': int(1), 'args2': 'this'}, {'args3': float(1), 'args4': [int(1), int(2)]}] out['empty'] = dict() out['contents'] = (b'args1\t1\n' + b'args2\t"this"\n' + b'args3\t1.0\n' + b'args4\t[1, 2]\n') return out
33.695652
83
0.536
79482ebbdb91eaa0dfc76e032666b290623e173a
351
py
Python
elcheapoais_tui/screen_syslog.py
innovationgarage/ElCheapoAIS-TUI
c54990cfd2c1f7527e55371fcf166f708f21fc14
[ "MIT" ]
null
null
null
elcheapoais_tui/screen_syslog.py
innovationgarage/ElCheapoAIS-TUI
c54990cfd2c1f7527e55371fcf166f708f21fc14
[ "MIT" ]
null
null
null
elcheapoais_tui/screen_syslog.py
innovationgarage/ElCheapoAIS-TUI
c54990cfd2c1f7527e55371fcf166f708f21fc14
[ "MIT" ]
null
null
null
from . import screen class SyslogScreen(screen.TextScroll): def __init__(self, tui): self.tui = tui with open("/var/log/syslog") as f: content = f.read() content = content.replace(": ", ":\n") screen.TextScroll.__init__(self, content) def action(self, value): return self.tui.debug_screen
27
49
0.603989
79482ee1c81d6aea934ea410a4fe8da9c8dc0315
862
py
Python
adapters/uploader.py
atnartur/backuper
0d1831720896f82ad67234efcbd4e680382895bc
[ "MIT" ]
2
2018-06-08T20:02:06.000Z
2018-06-08T20:02:07.000Z
adapters/uploader.py
atnartur/backuper
0d1831720896f82ad67234efcbd4e680382895bc
[ "MIT" ]
1
2018-01-14T10:25:37.000Z
2018-01-23T14:58:20.000Z
adapters/uploader.py
atnartur/backuper
0d1831720896f82ad67234efcbd4e680382895bc
[ "MIT" ]
null
null
null
import logging import os import subprocess import datetime from app import yadisk_dir, yadisk_token def upload(local_path, project_name): for file in os.listdir(local_path): logging.info(u'Uploading ' + file) src = os.path.join(local_path, file) today = '{:%Y-%m-%d}'.format(datetime.date.today()) dest = os.path.join(yadisk_dir, project_name + '/', today, file).replace(os.path.sep, "/") try: my_env = os.environ.copy() my_env["YDCMD_TOKEN"] = yadisk_token proc = subprocess.Popen('ydcmd put %s %s --verbose' % (src, dest), shell=True, env=my_env) outs, errs = proc.communicate() if errs: raise ConnectionError(errs) except subprocess.CalledProcessError as e: logging.error('ydcmd error %s %s' % (e.stdout, e.stderr))
35.916667
102
0.613689
79482f1d276702aaccedef2048e73a23eb6792d4
10,704
py
Python
src/pyexam/exam-assistant.py
monkeychen/python-tutorial
a24785da6b4d857200b819ad4d960885b1ef7a20
[ "Apache-2.0" ]
null
null
null
src/pyexam/exam-assistant.py
monkeychen/python-tutorial
a24785da6b4d857200b819ad4d960885b1ef7a20
[ "Apache-2.0" ]
null
null
null
src/pyexam/exam-assistant.py
monkeychen/python-tutorial
a24785da6b4d857200b819ad4d960885b1ef7a20
[ "Apache-2.0" ]
null
null
null
import os import argparse import shutil from datetime import datetime from openpyxl import load_workbook from unrar import rarfile import tkinter as tk FMT_DEFAULT = "%Y-%m-%d %H:%M:%S" class Answer(object): score_conf = [ {"title": "single_choice", "unit": 2}, {"title": "multi_choice", "unit": 3}, {"title": "judgment", "unit": 2}, {"title": "programme_fill", "unit": 5}, {"title": "complex", "unit": 10}, ] def __init__(self, single_choice=None, multi_choice=None, judgment=None): self.single_choice = single_choice self.multi_choice = multi_choice self.judgment = judgment self.programme_fill = [] self.complex = [] class Student(object): def __init__(self, name, answer: Answer = None, std_answer: Answer = None, valid=True): self.name = name self.answer = answer self.score = 0 self.std_answer = std_answer self.valid = valid self.answer_dir_path = None def calc_score(self): if self.answer is None: self.valid = False return for conf in Answer.score_conf: unit = conf.get("unit") q_type = conf.get("title") tmp_std_ans_values = getattr(self.std_answer, q_type) tmp_ans_values = getattr(self.answer, q_type) if len(tmp_ans_values) != len(tmp_std_ans_values): self.valid = False return for i in range(0, len(tmp_std_ans_values)): self.score = self.score + (unit if tmp_std_ans_values[i] == tmp_ans_values[i] else 0) self.valid = self.score < 20 return self.score class ExamAssistant(object): root_dir = os.getcwd() question_conf = [ {"begin": "程序填空题01", "end": "txt"}, {"begin": "程序填空题02", "end": "txt"}, {"begin": "程序填空题03", "end": "txt"}, {"begin": "综合题01", "end": "txt"}, {"begin": "综合题02", "end": "txt"} ] def __init__(self, tk_inst: tk.Tk): self.tk_inst = tk_inst self.args = self.parse_cli_args() self.root_dir = self.args.root_dir self.answer_file_num = self.args.answer_file_num self.answer_dir = f"{self.root_dir}/answer" self.upload_dir = f"{self.root_dir}/upload" self.temp_dir = f"{self.upload_dir}/temp" self.action = self.args.action self.std_answer = self.load_answer_file(f"{self.answer_dir}/答题卡.xlsx") self.student_list = [] self.init_win_layout() def init_win_layout(self): self.tk_inst.title("压缩包检测工具V1.0") self.tk_inst.geometry('900x600') self.btn = tk.Button(self.tk_inst, text="压缩包内容检测", bg="lightblue", width=30, height=1, command=self.execute) self.btn.pack(pady=15) self.label3 = tk.Label(self.tk_inst, text="本产品只获取当前文件夹中rar压缩包的总数,\n以及检测rar中是否包含Acopr与prog、答题卡xlsx文件。\n如需更详细的检测,请进行人工判定") self.label3.pack(pady=1) self.text2 = tk.StringVar() self.label2 = tk.Label(self.tk_inst, textvariable=self.text2, fg="red", width=90, relief="sunken", bg="white", font=16) self.label2.pack(pady=1) self.text1 = tk.StringVar() self.label1 = tk.Label(self.tk_inst, textvariable=self.text1, fg="red", width=90, height=30, relief="sunken", bg="white", font=16) self.label1.pack() def load_answer_file(self, answer_file_path): answer_card_wb = load_workbook(answer_file_path) sheet = answer_card_wb["Sheet1"] parse_conf = { "single_choice": {'row': 3, 'max_col': 16}, "multi_choice": {'row': 6, 'max_col': 6}, "judgment": {'row': 9, 'max_col': 16} } answer = Answer([], [], []) for k in parse_conf.keys(): conf = parse_conf.get(k) if conf is None: continue tmp_arr = [] for col_idx in range(2, conf.get('max_col') + 1): tmp_arr.append(sheet.cell(conf.get('row'), col_idx).value) setattr(answer, k, tmp_arr) return answer def submit_check(self): self._remove_dir_tree(dir_path=self.temp_dir, include_self=False) dir_list = os.listdir(self.upload_dir) check_report = [] student_list = [] for stu_main_dir_name in dir_list: stu_main_dir_path = f"{self.upload_dir}/{stu_main_dir_name}" if "temp" == stu_main_dir_name or "py-code" == stu_main_dir_name or os.path.isfile(stu_main_dir_path) or len(os.listdir(stu_main_dir_path)) == 0: print(f"{stu_main_dir_path} is file or is an empty directory or a temp dir!") continue student = Student(name=stu_main_dir_name, std_answer=self.std_answer) student_list.append(student) rar_cnt = 0 rar_file_path = None for stu_file_name in os.listdir(stu_main_dir_path): if not stu_file_name.endswith("rar"): continue rar_cnt += 1 if rar_cnt > 1: check_report.append(f"目录【{stu_main_dir_name}]下发现多份RAR文件,请人工确认是否异常!") student.valid = False break rar_file_path = f"{stu_main_dir_path}/{stu_file_name}" if student.valid: unrar_tmp_dir_path = f"{self.temp_dir}/{stu_main_dir_name}" try: self._remove_dir_tree(dir_path=unrar_tmp_dir_path, include_self=False) rar_file = rarfile.RarFile(rar_file_path) matched_name_list = [] card_name = None for name_in_rar in rar_file.namelist(): base_name = os.path.basename(name_in_rar) if self._is_matched_file(base_name): matched_name_list.append(name_in_rar) elif base_name == "答题卡.xlsx": card_name = name_in_rar if len(matched_name_list) < self.answer_file_num or card_name is None: check_report.append(f"压缩文件【{rar_file_path}]下的文件数量不满意要求,请人工确认!") student.valid = False continue if student.valid: rar_file.extractall(path=unrar_tmp_dir_path) card_path = f"{unrar_tmp_dir_path}/{card_name}" student.answer_dir_path = os.path.dirname(card_path) if os.path.exists(card_path): student.answer = self.load_answer_file(card_path) student.calc_score() else: check_report.append(f"无法加载答题卡文件【{card_path}】,请人工确认!") student.valid = False except Exception as e: print(f"Fail to parse student[{stu_main_dir_name}]'s answer rar file!") invalid_student_list = [stu for stu in student_list if not stu.valid] for stu in invalid_student_list: if stu.score < 20: check_report.append(f"学生【{stu.name}】的成绩为【{stu.score}】,低于20分,请人工确认答卷是否异常!") return check_report def evaluate(self): pass def _remove_dir_tree(self, dir_path, include_self=True): if os.path.exists(dir_path): shutil.rmtree(dir_path) if not include_self: os.makedirs(dir_path) def _list_dir(self, dir_path, ext=None): name_list = [] for dir_name in os.listdir(dir_path): if ext is None: name_list.append(dir_name) else: if dir_name.endswith(ext): name_list.append(dir_name) return name_list def _is_matched_file(self, file_name: str): matched = False for conf in self.question_conf: matched = file_name.startswith(conf.get("begin")) and file_name.endswith(conf.get("end")) if matched: break return matched def datetime_to_str(self, dt, fmt=FMT_DEFAULT): return dt.strftime(fmt) def parse_cli_args(self): cli_parser = argparse.ArgumentParser(description="这是一个Python考试辅助工具。", add_help=False) cli_parser.add_argument('-a', '--action', nargs='?', choices=['submit', 'evaluate'], default='submit', help='设置运行环境(submit:交卷检测,evaluate:评卷),默认为:交卷检测') cli_parser.add_argument('-e', '--env_mode', nargs='?', choices=['dev', 'prod'], default='prod', help='设置运行环境(dev:开发环境,prod:生产环境),默认为:开发环境') cli_parser.add_argument('-n', '--answer_file_num', nargs='?', type=int, default=5, help='学生提交的python文件数,默认为5。') cli_parser.add_argument('-r', '--root_dir', nargs='?', default=f"{os.getcwd()}", help='程序工作根目录路径。') cli_parser.add_argument('-x', '--ext_name', nargs='?', default="py", help='学生提交作业中程序文件扩展名,默认为:py') cli_parser.add_argument('-h', '--help', action='help', help='显示本帮助信息并退出') cli_parser.add_argument('-v', '--version', action='version', version='%(prog)s V0.0.1', help='显示当前版本信息并退出') args = cli_parser.parse_args() scheduled_time = self.datetime_to_str(datetime.now(), fmt=FMT_DEFAULT) print(f"The programme[{cli_parser.prog}] was scheduled at {scheduled_time}, cwd = {os.getcwd()}, env_mode = {args.env_mode}, " f"root_dir = {args.root_dir}, answer_file_num = {args.answer_file_num}") return args def execute(self): if self.action == 'submit': check_result = self.submit_check() infos = "\n".join(check_result) self.text1.set(infos) for info in check_result: print(info) else: self.evaluate() class PythonQuestionEval(object): question_conf = ExamAssistant.question_conf def __init__(self, answer_dir_path=None): if answer_dir_path is None: answer_dir_path = f"{os.getcwd()}/upload/temp" self.answer_dir_path = answer_dir_path def eval_question_1(self, question_file_path): pass def eval_question_2(self, question_file_path): pass def eval_question_3(self, question_file_path): pass def eval_question_4(self, question_file_path): pass def eval_question_5(self, question_file_path): pass def evaluate(self): for stu_main_dir_name in os.listdir(self.answer_dir_path): stu_main_dir_path = f"{self.answer_dir_path}/{stu_main_dir_name}" if __name__ == "__main__": win = tk.Tk() GUI = ExamAssistant(win) win.mainloop()
39.940299
159
0.588378
7948311ff3a48d660faebd0cf932166d07f7a0a1
4,846
py
Python
setup.py
gcurtis79/OctoPrint-DiscordRemote
1af667648a5161633f5484f656783cd03858e798
[ "MIT" ]
null
null
null
setup.py
gcurtis79/OctoPrint-DiscordRemote
1af667648a5161633f5484f656783cd03858e798
[ "MIT" ]
null
null
null
setup.py
gcurtis79/OctoPrint-DiscordRemote
1af667648a5161633f5484f656783cd03858e798
[ "MIT" ]
null
null
null
# coding=utf-8 import os from distutils.cmd import Command class CoverageCommand(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): os.system("python -m coverage run --source octoprint_discordremote/ setup.py test") os.system("python -m coverage html") ######################################################################################################################## ### Do not forget to adjust the following variables to your own plugin. # The plugin's identifier, has to be unique plugin_identifier = "discordremote" # The plugin's python package, should be "octoprint_<plugin identifier>", has to be unique plugin_package = "octoprint_discordremote" # The plugin's human readable name. Can be overwritten within OctoPrint's internal data via __plugin_name__ in the # plugin module plugin_name = "OctoPrint-DiscordRemote" # The plugin's version. Can be overwritten within OctoPrint's internal data via __plugin_version__ in the plugin module plugin_version = "2.37.0" # The plugin's description. Can be overwritten within OctoPrint's internal data via __plugin_description__ in the plugin # module plugin_description = """Discord plugin for OctoPrint""" # The plugin's author. Can be overwritten within OctoPrint's internal data via __plugin_author__ in the plugin module plugin_author = "Cameron Cross" # The plugin's author's mail address. plugin_author_email = "cameroncros@hotmail.com" # The plugin's homepage URL. Can be overwritten within OctoPrint's internal data via __plugin_url__ in the plugin module plugin_url = "https://github.com/cameroncros/Octoprint-DiscordRemote" # The plugin's license. Can be overwritten within OctoPrint's internal data via __plugin_license__ in the plugin module plugin_license = "MIT" # Any additional requirements besides OctoPrint should be listed here plugin_requires = ["Pillow==5.0.0", "websocket-client", "requests", "humanfriendly"] ### -------------------------------------------------------------------------------------------------------------------- ### More advanced options that you usually shouldn't have to touch follow after this point ### -------------------------------------------------------------------------------------------------------------------- # Additional package data to install for this plugin. The subfolders "templates", "static" and "translations" will # already be installed automatically if they exist. Note that if you add something here you'll also need to update # MANIFEST.in to match to ensure that python setup.py sdist produces a source distribution that contains all your # files. This is sadly due to how python's setup.py works, see also http://stackoverflow.com/a/14159430/2028598 plugin_additional_data = [] # Any additional python packages you need to install with your plugin that are not contained in <plugin_package>.* plugin_additional_packages = [] # Any python packages within <plugin_package>.* you do NOT want to install with your plugin plugin_ignored_packages = [] # Additional parameters for the call to setuptools.setup. If your plugin wants to register additional entry points, # define dependency links or other things like that, this is the place to go. Will be merged recursively with the # default setup parameters as provided by octoprint_setuptools.create_plugin_setup_parameters using # octoprint.util.dict_merge. # # Example: # plugin_requires = ["someDependency==dev"] # additional_setup_parameters = {"dependency_links": ["https://github.com/someUser/someRepo/archive/master.zip#egg=someDependency-dev"]} additional_setup_parameters = { 'cmdclass': { 'coverage': CoverageCommand } } ######################################################################################################################## from setuptools import setup try: import octoprint_setuptools except: print("Could not import OctoPrint's setuptools, are you sure you are running that under " "the same python installation that OctoPrint is installed under?") import sys sys.exit(-1) setup_parameters = octoprint_setuptools.create_plugin_setup_parameters( identifier=plugin_identifier, package=plugin_package, name=plugin_name, version=plugin_version, description=plugin_description, author=plugin_author, mail=plugin_author_email, url=plugin_url, license=plugin_license, requires=plugin_requires, additional_packages=plugin_additional_packages, ignored_packages=plugin_ignored_packages, additional_data=plugin_additional_data ) if len(additional_setup_parameters): from octoprint.util import dict_merge setup_parameters = dict_merge(setup_parameters, additional_setup_parameters) setup(**setup_parameters)
40.722689
140
0.698308
7948331fbb0765637ab6421132612652e4ed63b1
20,709
py
Python
setup.py
sallysyw/vision
bf073e785528970e6a1605e411e4fc382d686dc7
[ "BSD-3-Clause" ]
null
null
null
setup.py
sallysyw/vision
bf073e785528970e6a1605e411e4fc382d686dc7
[ "BSD-3-Clause" ]
null
null
null
setup.py
sallysyw/vision
bf073e785528970e6a1605e411e4fc382d686dc7
[ "BSD-3-Clause" ]
null
null
null
import distutils.command.clean import distutils.spawn import glob import os import shutil import subprocess import sys import torch from pkg_resources import parse_version, get_distribution, DistributionNotFound from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME def read(*names, **kwargs): with open(os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8")) as fp: return fp.read() def get_dist(pkgname): try: return get_distribution(pkgname) except DistributionNotFound: return None cwd = os.path.dirname(os.path.abspath(__file__)) version_txt = os.path.join(cwd, "version.txt") with open(version_txt) as f: version = f.readline().strip() sha = "Unknown" package_name = "torchvision" try: sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip() except Exception: pass if os.getenv("BUILD_VERSION"): version = os.getenv("BUILD_VERSION") elif sha != "Unknown": version += "+" + sha[:7] def write_version_file(): version_path = os.path.join(cwd, "torchvision", "version.py") with open(version_path, "w") as f: f.write(f"__version__ = '{version}'\n") f.write(f"git_version = {repr(sha)}\n") f.write("from torchvision.extension import _check_cuda_version\n") f.write("if _check_cuda_version() > 0:\n") f.write(" cuda = _check_cuda_version()\n") pytorch_dep = "torch" if os.getenv("PYTORCH_VERSION"): pytorch_dep += "==" + os.getenv("PYTORCH_VERSION") requirements = [ "numpy", "requests", pytorch_dep, ] # Excluding 8.3.* because of https://github.com/pytorch/vision/issues/4934 pillow_ver = " >= 5.3.0, !=8.3.*" pillow_req = "pillow-simd" if get_dist("pillow-simd") is not None else "pillow" requirements.append(pillow_req + pillow_ver) def find_library(name, vision_include): this_dir = os.path.dirname(os.path.abspath(__file__)) build_prefix = os.environ.get("BUILD_PREFIX", None) is_conda_build = build_prefix is not None library_found = False conda_installed = False lib_folder = None include_folder = None library_header = f"{name}.h" # Lookup in TORCHVISION_INCLUDE or in the package file package_path = [os.path.join(this_dir, "torchvision")] for folder in vision_include + package_path: candidate_path = os.path.join(folder, library_header) library_found = os.path.exists(candidate_path) if library_found: break if not library_found: print(f"Running build on conda-build: {is_conda_build}") if is_conda_build: # Add conda headers/libraries if os.name == "nt": build_prefix = os.path.join(build_prefix, "Library") include_folder = os.path.join(build_prefix, "include") lib_folder = os.path.join(build_prefix, "lib") library_header_path = os.path.join(include_folder, library_header) library_found = os.path.isfile(library_header_path) conda_installed = library_found else: # Check if using Anaconda to produce wheels conda = distutils.spawn.find_executable("conda") is_conda = conda is not None print(f"Running build on conda: {is_conda}") if is_conda: python_executable = sys.executable py_folder = os.path.dirname(python_executable) if os.name == "nt": env_path = os.path.join(py_folder, "Library") else: env_path = os.path.dirname(py_folder) lib_folder = os.path.join(env_path, "lib") include_folder = os.path.join(env_path, "include") library_header_path = os.path.join(include_folder, library_header) library_found = os.path.isfile(library_header_path) conda_installed = library_found if not library_found: if sys.platform == "linux": library_found = os.path.exists(f"/usr/include/{library_header}") library_found = library_found or os.path.exists(f"/usr/local/include/{library_header}") return library_found, conda_installed, include_folder, lib_folder def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "torchvision", "csrc") main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) + glob.glob( os.path.join(extensions_dir, "ops", "*.cpp") ) source_cpu = ( glob.glob(os.path.join(extensions_dir, "ops", "autograd", "*.cpp")) + glob.glob(os.path.join(extensions_dir, "ops", "cpu", "*.cpp")) + glob.glob(os.path.join(extensions_dir, "ops", "quantized", "cpu", "*.cpp")) ) is_rocm_pytorch = False if torch.__version__ >= "1.5": from torch.utils.cpp_extension import ROCM_HOME is_rocm_pytorch = (torch.version.hip is not None) and (ROCM_HOME is not None) if is_rocm_pytorch: from torch.utils.hipify import hipify_python hipify_python.hipify( project_directory=this_dir, output_directory=this_dir, includes="torchvision/csrc/ops/cuda/*", show_detailed=True, is_pytorch_extension=True, ) source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "hip", "*.hip")) # Copy over additional files for file in glob.glob(r"torchvision/csrc/ops/cuda/*.h"): shutil.copy(file, "torchvision/csrc/ops/hip") else: source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "cuda", "*.cu")) source_cuda += glob.glob(os.path.join(extensions_dir, "ops", "autocast", "*.cpp")) sources = main_file + source_cpu extension = CppExtension compile_cpp_tests = os.getenv("WITH_CPP_MODELS_TEST", "0") == "1" if compile_cpp_tests: test_dir = os.path.join(this_dir, "test") models_dir = os.path.join(this_dir, "torchvision", "csrc", "models") test_file = glob.glob(os.path.join(test_dir, "*.cpp")) source_models = glob.glob(os.path.join(models_dir, "*.cpp")) test_file = [os.path.join(test_dir, s) for s in test_file] source_models = [os.path.join(models_dir, s) for s in source_models] tests = test_file + source_models tests_include_dirs = [test_dir, models_dir] define_macros = [] extra_compile_args = {"cxx": []} if (torch.cuda.is_available() and ((CUDA_HOME is not None) or is_rocm_pytorch)) or os.getenv( "FORCE_CUDA", "0" ) == "1": extension = CUDAExtension sources += source_cuda if not is_rocm_pytorch: define_macros += [("WITH_CUDA", None)] nvcc_flags = os.getenv("NVCC_FLAGS", "") if nvcc_flags == "": nvcc_flags = [] else: nvcc_flags = nvcc_flags.split(" ") else: define_macros += [("WITH_HIP", None)] nvcc_flags = [] extra_compile_args["nvcc"] = nvcc_flags if sys.platform == "win32": define_macros += [("torchvision_EXPORTS", None)] define_macros += [("USE_PYTHON", None)] extra_compile_args["cxx"].append("/MP") debug_mode = os.getenv("DEBUG", "0") == "1" if debug_mode: print("Compile in debug mode") extra_compile_args["cxx"].append("-g") extra_compile_args["cxx"].append("-O0") if "nvcc" in extra_compile_args: # we have to remove "-OX" and "-g" flag if exists and append nvcc_flags = extra_compile_args["nvcc"] extra_compile_args["nvcc"] = [f for f in nvcc_flags if not ("-O" in f or "-g" in f)] extra_compile_args["nvcc"].append("-O0") extra_compile_args["nvcc"].append("-g") sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "torchvision._C", sorted(sources), include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] if compile_cpp_tests: ext_modules.append( extension( "torchvision._C_tests", tests, include_dirs=tests_include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ) # ------------------- Torchvision extra extensions ------------------------ vision_include = os.environ.get("TORCHVISION_INCLUDE", None) vision_library = os.environ.get("TORCHVISION_LIBRARY", None) vision_include = vision_include.split(os.pathsep) if vision_include is not None else [] vision_library = vision_library.split(os.pathsep) if vision_library is not None else [] include_dirs += vision_include library_dirs = vision_library # Image reading extension image_macros = [] image_include = [extensions_dir] image_library = [] image_link_flags = [] if sys.platform == "win32": image_macros += [("USE_PYTHON", None)] # Locating libPNG libpng = distutils.spawn.find_executable("libpng-config") pngfix = distutils.spawn.find_executable("pngfix") png_found = libpng is not None or pngfix is not None print(f"PNG found: {png_found}") if png_found: if libpng is not None: # Linux / Mac png_version = subprocess.run([libpng, "--version"], stdout=subprocess.PIPE) png_version = png_version.stdout.strip().decode("utf-8") print(f"libpng version: {png_version}") png_version = parse_version(png_version) if png_version >= parse_version("1.6.0"): print("Building torchvision with PNG image support") png_lib = subprocess.run([libpng, "--libdir"], stdout=subprocess.PIPE) png_lib = png_lib.stdout.strip().decode("utf-8") if "disabled" not in png_lib: image_library += [png_lib] png_include = subprocess.run([libpng, "--I_opts"], stdout=subprocess.PIPE) png_include = png_include.stdout.strip().decode("utf-8") _, png_include = png_include.split("-I") print(f"libpng include path: {png_include}") image_include += [png_include] image_link_flags.append("png") else: print("libpng installed version is less than 1.6.0, disabling PNG support") png_found = False else: # Windows png_lib = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "lib") png_include = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "include", "libpng16") image_library += [png_lib] image_include += [png_include] image_link_flags.append("libpng") # Locating libjpeg (jpeg_found, jpeg_conda, jpeg_include, jpeg_lib) = find_library("jpeglib", vision_include) print(f"JPEG found: {jpeg_found}") image_macros += [("PNG_FOUND", str(int(png_found)))] image_macros += [("JPEG_FOUND", str(int(jpeg_found)))] if jpeg_found: print("Building torchvision with JPEG image support") image_link_flags.append("jpeg") if jpeg_conda: image_library += [jpeg_lib] image_include += [jpeg_include] # Locating nvjpeg # Should be included in CUDA_HOME for CUDA >= 10.1, which is the minimum version we have in the CI nvjpeg_found = ( extension is CUDAExtension and CUDA_HOME is not None and os.path.exists(os.path.join(CUDA_HOME, "include", "nvjpeg.h")) ) print(f"NVJPEG found: {nvjpeg_found}") image_macros += [("NVJPEG_FOUND", str(int(nvjpeg_found)))] if nvjpeg_found: print("Building torchvision with NVJPEG image support") image_link_flags.append("nvjpeg") image_path = os.path.join(extensions_dir, "io", "image") image_src = ( glob.glob(os.path.join(image_path, "*.cpp")) + glob.glob(os.path.join(image_path, "cpu", "*.cpp")) + glob.glob(os.path.join(image_path, "cuda", "*.cpp")) ) if png_found or jpeg_found: ext_modules.append( extension( "torchvision.image", image_src, include_dirs=image_include + include_dirs + [image_path], library_dirs=image_library + library_dirs, define_macros=image_macros, libraries=image_link_flags, extra_compile_args=extra_compile_args, ) ) ffmpeg_exe = distutils.spawn.find_executable("ffmpeg") has_ffmpeg = ffmpeg_exe is not None # FIXME: Building torchvision with ffmpeg on MacOS or with Python 3.9 # FIXME: causes crash. See the following GitHub issues for more details. # FIXME: https://github.com/pytorch/pytorch/issues/65000 # FIXME: https://github.com/pytorch/vision/issues/3367 if sys.platform != "linux" or (sys.version_info.major == 3 and sys.version_info.minor == 9): has_ffmpeg = False if has_ffmpeg: try: # This is to check if ffmpeg is installed properly. subprocess.check_output(["ffmpeg", "-version"]) except subprocess.CalledProcessError: print("Error fetching ffmpeg version, ignoring ffmpeg.") has_ffmpeg = False print(f"FFmpeg found: {has_ffmpeg}") if has_ffmpeg: ffmpeg_libraries = {"libavcodec", "libavformat", "libavutil", "libswresample", "libswscale"} ffmpeg_bin = os.path.dirname(ffmpeg_exe) ffmpeg_root = os.path.dirname(ffmpeg_bin) ffmpeg_include_dir = os.path.join(ffmpeg_root, "include") ffmpeg_library_dir = os.path.join(ffmpeg_root, "lib") gcc = distutils.spawn.find_executable("gcc") platform_tag = subprocess.run([gcc, "-print-multiarch"], stdout=subprocess.PIPE) platform_tag = platform_tag.stdout.strip().decode("utf-8") if platform_tag: # Most probably a Debian-based distribution ffmpeg_include_dir = [ffmpeg_include_dir, os.path.join(ffmpeg_include_dir, platform_tag)] ffmpeg_library_dir = [ffmpeg_library_dir, os.path.join(ffmpeg_library_dir, platform_tag)] else: ffmpeg_include_dir = [ffmpeg_include_dir] ffmpeg_library_dir = [ffmpeg_library_dir] has_ffmpeg = True for library in ffmpeg_libraries: library_found = False for search_path in ffmpeg_include_dir + include_dirs: full_path = os.path.join(search_path, library, "*.h") library_found |= len(glob.glob(full_path)) > 0 if not library_found: print(f"{library} header files were not found, disabling ffmpeg support") has_ffmpeg = False if has_ffmpeg: print(f"ffmpeg include path: {ffmpeg_include_dir}") print(f"ffmpeg library_dir: {ffmpeg_library_dir}") # TorchVision base decoder + video reader video_reader_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video_reader") video_reader_src = glob.glob(os.path.join(video_reader_src_dir, "*.cpp")) base_decoder_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "decoder") base_decoder_src = glob.glob(os.path.join(base_decoder_src_dir, "*.cpp")) # Torchvision video API videoapi_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video") videoapi_src = glob.glob(os.path.join(videoapi_src_dir, "*.cpp")) # exclude tests base_decoder_src = [x for x in base_decoder_src if "_test.cpp" not in x] combined_src = video_reader_src + base_decoder_src + videoapi_src ext_modules.append( CppExtension( "torchvision.video_reader", combined_src, include_dirs=[ base_decoder_src_dir, video_reader_src_dir, videoapi_src_dir, extensions_dir, *ffmpeg_include_dir, *include_dirs, ], library_dirs=ffmpeg_library_dir + library_dirs, libraries=[ "avcodec", "avformat", "avutil", "swresample", "swscale", ], extra_compile_args=["-std=c++14"] if os.name != "nt" else ["/std:c++14", "/MP"], extra_link_args=["-std=c++14" if os.name != "nt" else "/std:c++14"], ) ) # Locating video codec # CUDA_HOME should be set to the cuda root directory. # TORCHVISION_INCLUDE and TORCHVISION_LIBRARY should include the location to # video codec header files and libraries respectively. video_codec_found = ( extension is CUDAExtension and CUDA_HOME is not None and any([os.path.exists(os.path.join(folder, "cuviddec.h")) for folder in vision_include]) and any([os.path.exists(os.path.join(folder, "nvcuvid.h")) for folder in vision_include]) and any([os.path.exists(os.path.join(folder, "libnvcuvid.so")) for folder in library_dirs]) ) print(f"video codec found: {video_codec_found}") if ( video_codec_found and has_ffmpeg and any([os.path.exists(os.path.join(folder, "libavcodec", "bsf.h")) for folder in ffmpeg_include_dir]) ): gpu_decoder_path = os.path.join(extensions_dir, "io", "decoder", "gpu") gpu_decoder_src = glob.glob(os.path.join(gpu_decoder_path, "*.cpp")) cuda_libs = os.path.join(CUDA_HOME, "lib64") cuda_inc = os.path.join(CUDA_HOME, "include") ext_modules.append( extension( "torchvision.Decoder", gpu_decoder_src, include_dirs=include_dirs + [gpu_decoder_path] + [cuda_inc] + ffmpeg_include_dir, library_dirs=ffmpeg_library_dir + library_dirs + [cuda_libs], libraries=[ "avcodec", "avformat", "avutil", "swresample", "swscale", "nvcuvid", "cuda", "cudart", "z", "pthread", "dl", ], extra_compile_args=extra_compile_args, ) ) else: print( "The installed version of ffmpeg is missing the header file 'bsf.h' which is " "required for GPU video decoding. Please install the latest ffmpeg from conda-forge channel:" " `conda install -c conda-forge ffmpeg`." ) return ext_modules class clean(distutils.command.clean.clean): def run(self): with open(".gitignore") as f: ignores = f.read() for wildcard in filter(None, ignores.split("\n")): for filename in glob.glob(wildcard): try: os.remove(filename) except OSError: shutil.rmtree(filename, ignore_errors=True) # It's an old-style class in Python 2.7... distutils.command.clean.clean.run(self) if __name__ == "__main__": print(f"Building wheel {package_name}-{version}") write_version_file() with open("README.rst") as f: readme = f.read() setup( # Metadata name=package_name, version=version, author="PyTorch Core Team", author_email="soumith@pytorch.org", url="https://github.com/pytorch/vision", description="image and video datasets and models for torch deep learning", long_description=readme, license="BSD", # Package info packages=find_packages(exclude=("test",)), package_data={package_name: ["*.dll", "*.dylib", "*.so", "prototype/datasets/_builtin/*.categories"]}, zip_safe=False, install_requires=requirements, extras_require={ "scipy": ["scipy"], }, ext_modules=get_extensions(), python_requires=">=3.7", cmdclass={ "build_ext": BuildExtension.with_options(no_python_abi_suffix=True), "clean": clean, }, )
38.564246
111
0.606403
794834b3ba1d5bda491c78920ee09c0b2c2c6101
2,155
py
Python
tests/features/cache/test_file_cache.py
cercos/masonite
f7f220efa7fae833683e9f07ce13c3795a87d3b8
[ "MIT" ]
1,816
2018-02-14T01:59:51.000Z
2022-03-31T17:09:20.000Z
tests/features/cache/test_file_cache.py
cercos/masonite
f7f220efa7fae833683e9f07ce13c3795a87d3b8
[ "MIT" ]
340
2018-02-11T00:27:26.000Z
2022-03-21T12:00:24.000Z
tests/features/cache/test_file_cache.py
cercos/masonite
f7f220efa7fae833683e9f07ce13c3795a87d3b8
[ "MIT" ]
144
2018-03-18T00:08:16.000Z
2022-02-26T01:51:58.000Z
from tests import TestCase import os import time class TestFileCache(TestCase): def setUp(self): super().setUp() self.application.make("cache") self.driver = self.application.make("cache").store() def test_can_get_file_driver(self): self.driver.put("key", "value") self.assertEqual(self.driver.get("key"), "value") self.assertTrue(self.driver.has("key"), "value") def test_can_add_file_driver(self): self.assertEqual(self.driver.add("add_key", "value"), "value") def test_can_increment(self): self.driver.put("count", "1") self.assertEqual(self.driver.get("count"), "1") self.driver.increment("count") self.assertEqual(self.driver.get("count"), "2") self.driver.decrement("count") self.assertEqual(self.driver.get("count"), "1") def test_will_not_get_expired(self): self.driver.put("expire", "1", 1) time.sleep(2) self.assertEqual(self.driver.get("expire"), None) def test_will_get_not_expired(self): self.driver.put("expire", "1", 20) self.assertEqual(self.driver.get("expire"), "1") def test_forget(self): self.driver.put("forget", "1") self.assertEqual(self.driver.get("forget"), "1") self.driver.forget("forget") self.assertEqual(self.driver.get("forget"), None) def test_remember(self): self.driver.remember("remember", lambda cache: (cache.put("remember", "1", 10))) self.assertEqual(self.driver.get("remember"), "1") def test_remember_datatypes(self): self.driver.remember( "dic", lambda cache: (cache.put("dic", {"id": 1, "name": "Joe"}, 10)) ) self.assertIsInstance(self.driver.get("dic"), dict) self.driver.remember("list", lambda cache: (cache.put("list", [1, 2, 3], 10))) self.assertIsInstance(self.driver.get("list"), list) def test_flush(self): self.driver.remember( "dic", lambda cache: (cache.put("dic", {"id": 1, "name": "Joe"}, 10)) ) self.driver.flush() self.assertIsNone(self.driver.get("dic"))
34.758065
88
0.610673
79483625adcecea4c164599a0991c727dbdc532f
21,289
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_06_01/aio/operations/_virtual_network_peerings_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_06_01/aio/operations/_virtual_network_peerings_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_06_01/aio/operations/_virtual_network_peerings_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualNetworkPeeringsOperations: """VirtualNetworkPeeringsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2017_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'virtualNetworkPeeringName': self._serialize.url("virtual_network_peering_name", virtual_network_peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def begin_delete( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified virtual network peering. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param virtual_network_peering_name: The name of the virtual network peering. :type virtual_network_peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, virtual_network_name=virtual_network_name, virtual_network_peering_name=virtual_network_peering_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def get( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, **kwargs ) -> "models.VirtualNetworkPeering": """Gets the specified virtual network peering. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param virtual_network_peering_name: The name of the virtual network peering. :type virtual_network_peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualNetworkPeering, or the result of cls(response) :rtype: ~azure.mgmt.network.v2017_06_01.models.VirtualNetworkPeering :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'virtualNetworkPeeringName': self._serialize.url("virtual_network_peering_name", virtual_network_peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, virtual_network_peering_parameters: "models.VirtualNetworkPeering", **kwargs ) -> "models.VirtualNetworkPeering": cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'virtualNetworkPeeringName': self._serialize.url("virtual_network_peering_name", virtual_network_peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(virtual_network_peering_parameters, 'VirtualNetworkPeering') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, virtual_network_peering_parameters: "models.VirtualNetworkPeering", **kwargs ) -> AsyncLROPoller["models.VirtualNetworkPeering"]: """Creates or updates a peering in the specified virtual network. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param virtual_network_peering_name: The name of the peering. :type virtual_network_peering_name: str :param virtual_network_peering_parameters: Parameters supplied to the create or update virtual network peering operation. :type virtual_network_peering_parameters: ~azure.mgmt.network.v2017_06_01.models.VirtualNetworkPeering :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualNetworkPeering or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2017_06_01.models.VirtualNetworkPeering] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeering"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, virtual_network_name=virtual_network_name, virtual_network_peering_name=virtual_network_peering_name, virtual_network_peering_parameters=virtual_network_peering_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore def list( self, resource_group_name: str, virtual_network_name: str, **kwargs ) -> AsyncIterable["models.VirtualNetworkPeeringListResult"]: """Gets all virtual network peerings in a virtual network. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualNetworkPeeringListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2017_06_01.models.VirtualNetworkPeeringListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeeringListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-06-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualNetworkPeeringListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings'} # type: ignore
51.175481
250
0.684344
7948362f72676268b4dd45826089cf36b18b3b67
8,020
py
Python
src/pdftableextract/extracttab.py
ahlusar1989/pdf-table-extractor_saran_version1
521e39eda459c0321a4f05a5c44e60dcbd865ec2
[ "MIT" ]
null
null
null
src/pdftableextract/extracttab.py
ahlusar1989/pdf-table-extractor_saran_version1
521e39eda459c0321a4f05a5c44e60dcbd865ec2
[ "MIT" ]
null
null
null
src/pdftableextract/extracttab.py
ahlusar1989/pdf-table-extractor_saran_version1
521e39eda459c0321a4f05a5c44e60dcbd865ec2
[ "MIT" ]
null
null
null
# Description : PDF Table Extraction Utility # Original Author : Ian McEwan, Ashima Research. # Maintainer : ijm # Lastmod : 20130402 (ijm) # License : Copyright (C) 2011 Ashima Research. All rights reserved. # Distributed under the MIT Expat License. See LICENSE file. # https://github.com/ashima/pdf-table-extract import sys, argparse, subprocess, re, csv, json from numpy import * from pipes import quote from xml.dom.minidom import getDOMImplementation # Proccessing function. def process_page(pgs) : (pg,frow,lrow) = (map(int,(pgs.split(":")))+[None,None])[0:3] p = subprocess.Popen( ("pdftoppm -gray -r %d -f %d -l %d %s " % (args.r,pg,pg,quote(args.infile))), stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True ) #----------------------------------------------------------------------- # image load secion. (maxval, width, height, data) = readPNM(p.stdout) pad = int(args.pad) height+=pad*2 width+=pad*2 # reimbed image with a white padd. bmp = ones( (height,width) , dtype=bool ) bmp[pad:height-pad,pad:width-pad] = ( data[:,:] > int(255.0*args.g/100.0) ) # Set up Debuging image. img = zeros( (height,width,3) , dtype=uint8 ) img[:,:,0] = bmp*255 img[:,:,1] = bmp*255 img[:,:,2] = bmp*255 #----------------------------------------------------------------------- # Find bounding box. t=0 while t < height and sum(bmp[t,:]==0) == 0 : t=t+1 if t > 0 : t=t-1 b=height-1 while b > t and sum(bmp[b,:]==0) == 0 : b=b-1 if b < height-1: b = b+1 l=0 while l < width and sum(bmp[:,l]==0) == 0 : l=l+1 if l > 0 : l=l-1 r=width-1 while r > l and sum(bmp[:,r]==0) == 0 : r=r-1 if r < width-1 : r=r+1 # Mark bounding box. bmp[t,:] = 0 bmp[b,:] = 0 bmp[:,l] = 0 bmp[:,r] = 0 def boxOfString(x,p) : s = x.split(":") if len(s) < 4 : raise Exception("boxes have format left:top:right:bottom[:page]") return ([args.r * float(x) + args.pad for x in s[0:4] ] + [ p if len(s)<5 else int(s[4]) ] ) # translate crop to paint white. whites = [] if args.crop : (l,t,r,b,p) = boxOfString(args.crop,pg) whites.extend( [ (0,0,l,height,p), (0,0,width,t,p), (r,0,width,height,p), (0,b,width,height,p) ] ) # paint white ... if args.white : whites.extend( [ boxOfString(b, pg) for b in args.white ] ) for (l,t,r,b,p) in whites : if p == pg : bmp[ t:b+1,l:r+1 ] = 1 img[ t:b+1,l:r+1 ] = [255,255,255] # paint black ... if args.black : for b in args.black : (l,t,r,b) = [args.r * float(x) + args.pad for x in b.split(":") ] bmp[ t:b+1,l:r+1 ] = 0 img[ t:b+1,l:r+1 ] = [0,0,0] if args.checkcrop : dumpImage(args,bmp,img) sys.exit(0) #----------------------------------------------------------------------- # Line finding section. # # Find all verticle or horizontal lines that are more than rlthresh # long, these are considered lines on the table grid. lthresh = int(args.l * args.r) vs = zeros(width, dtype=int) for i in range(width) : dd = diff( where(bmp[:,i])[0] ) if len(dd)>0: v = max ( dd ) if v > lthresh : vs[i] = 1 else: # it was a solid black line. if bmp[0,i] == 0 : vs[i] = 1 vd= ( where(diff(vs[:]))[0] +1 ) hs = zeros(height, dtype=int) for j in range(height) : dd = diff( where(bmp[j,:]==1)[0] ) if len(dd) > 0 : h = max ( dd ) if h > lthresh : hs[j] = 1 else: # it was a solid black line. if bmp[j,0] == 0 : hs[j] = 1 hd=( where(diff(hs[:]==1))[0] +1 ) #----------------------------------------------------------------------- # Look for dividors that are too large. maxdiv=10 i=0 while i < len(vd) : if vd[i+1]-vd[i] > maxdiv : vd = delete(vd,i) vd = delete(vd,i) else: i=i+2 j = 0 while j < len(hd): if hd[j+1]-hd[j] > maxdiv : hd = delete(hd,j) hd = delete(hd,j) else: j=j+2 if args.checklines : for i in vd : img[:,i] = [255,0,0] # red for j in hd : img[j,:] = [0,0,255] # blue dumpImage(args,bmp,img) sys.exit(0) #----------------------------------------------------------------------- # divider checking. # # at this point vd holds the x coordinate of vertical and # hd holds the y coordinate of horizontal divider tansitions for each # vertical and horizontal lines in the table grid. def isDiv(a, l,r,t,b) : # if any col or row (in axis) is all zeros ... return sum( sum(bmp[t:b, l:r], axis=a)==0 ) >0 if args.checkdivs : img = img / 2 for j in range(0,len(hd),2): for i in range(0,len(vd),2): if i>0 : (l,r,t,b) = (vd[i-1], vd[i], hd[j], hd[j+1]) img[ t:b, l:r, 1 ] = 192 if isDiv(1, l,r,t,b) : img[ t:b, l:r, 0 ] = 0 img[ t:b, l:r, 2 ] = 255 if j>0 : (l,r,t,b) = (vd[i], vd[i+1], hd[j-1], hd[j] ) img[ t:b, l:r, 1 ] = 128 if isDiv(0, l,r,t,b) : img[ t:b, l:r, 0 ] = 255 img[ t:b, l:r, 2 ] = 0 dumpImage(args,bmp,img) sys.exit(0) #----------------------------------------------------------------------- # Cell finding section. # This algorithum is width hungry, and always generates rectangular # boxes. cells =[] touched = zeros( (len(hd), len(vd)),dtype=bool ) j = 0 while j*2+2 < len (hd) : i = 0 while i*2+2 < len(vd) : u = 1 v = 1 if not touched[j,i] : while 2+(i+u)*2 < len(vd) and \ not isDiv( 0, vd[ 2*(i+u) ], vd[ 2*(i+u)+1], hd[ 2*(j+v)-1 ], hd[ 2*(j+v) ] ): u=u+1 bot = False while 2+(j+v)*2 < len(hd) and not bot : bot = False for k in range(1,u+1) : bot |= isDiv( 1, vd[ 2*(i+k)-1 ], vd[ 2*(i+k)], hd[ 2*(j+v) ], hd[ 2*(j+v)+1 ] ) if not bot : v=v+1 cells.append( (i,j,u,v) ) touched[ j:j+v, i:i+u] = True i = i+1 j=j+1 if args.checkcells : nc = len(cells)+0. img = img / 2 for k in range(len(cells)): (i,j,u,v) = cells[k] (l,r,t,b) = ( vd[2*i+1] , vd[ 2*(i+u) ], hd[2*j+1], hd[2*(j+v)] ) img[ t:b, l:r ] += col( k/nc ) dumpImage(args,bmp,img) sys.exit(0) #----------------------------------------------------------------------- # fork out to extract text for each cell. whitespace = re.compile( r'\s+') def getCell( (i,j,u,v) ): (l,r,t,b) = ( vd[2*i+1] , vd[ 2*(i+u) ], hd[2*j+1], hd[2*(j+v)] ) p = subprocess.Popen( ("pdftotext -r %d -x %d -y %d -W %d -H %d -layout -nopgbrk -f %d -l %d %s -" % (args.r, l-pad, t-pad, r-l, b-t, pg, pg, quote(args.infile) ) ), stdout=subprocess.PIPE, shell=True ) ret = p.communicate()[0] if args.w != 'raw' : ret = whitespace.sub( "" if args.w == "none" else " ", ret ) if len(ret) > 0 : ret = ret[ (1 if ret[0]==' ' else 0) : len(ret) - (1 if ret[-1]==' ' else 0) ] return (i,j,u,v,pg,ret) #if args.boxes : # cells = [ x + (pg,"",) for x in cells ] #else : # cells = map(getCell, cells) if args.boxes : cells = [ x + (pg,"",) for x in cells if ( frow == None or (x[1] >= frow and x[1] <= lrow)) ] else : cells = [ getCell(x) for x in cells if ( frow == None or (x[1] >= frow and x[1] <= lrow)) ] return cells #----------------------------------------------------------------------- # main def main_script(): args = procargs() cells = [] for pgs in args.page : cells.extend(process_page(pgs)) { "cells_csv" : o_cells_csv, "cells_json" : o_cells_json, "cells_xml" : o_cells_xml, "table_csv" : o_table_csv, "table_html": o_table_html, "table_chtml": o_table_html, } [ args.t ](cells,args.page)
26.912752
80
0.470574
79483647122868ef53c432320aa50f4b82954a18
1,419
py
Python
validator.py
Zafiyetsiz/tc-kimlilk-no-dogrulama
4cfb2ba3656660439240cbb776dca33be37dde44
[ "MIT" ]
1
2022-02-01T19:50:00.000Z
2022-02-01T19:50:00.000Z
validator.py
Zafiyetsiz/tc-kimlilk-no-dogrulama
4cfb2ba3656660439240cbb776dca33be37dde44
[ "MIT" ]
null
null
null
validator.py
Zafiyetsiz/tc-kimlilk-no-dogrulama
4cfb2ba3656660439240cbb776dca33be37dde44
[ "MIT" ]
null
null
null
################################################# #PROJECT 2 : VALIDATOR #Language :Turkish #Turkey ID(identification) number validator #The simplest and the easiest way for validator #Contact me on ; #Telegram : Zafiyetsiz0 #Instagram : Zafiyetsiz ################################################# print("tc nin 1. rakamını yazın") a= input(" 1.rakam: ") a= int(a) print("tc nin 2. rakamını yazın") b = input("2.rakam: ") b= int(b) print("tc nin 3. rakamını yazın") c = input("3.rakam: ") c= int(c) print("tc nin 4. rakamını yazın") d = input("4.rakam: ") d= int(d) print("tc nin 5. rakamını yazın") e = input("5.rakam: ") e= int(e) print("tc nin 6. rakamını yazın") f = input("6.rakam: ") f= int(f) print("tc nin 7. rakamını yazın") g = input("7.rakam: ") g= int(g) print("tc nin 8. rakamını yazın") h = input("8.rakam: ") h= int(h) print("tc nin 9. rakamını yazın") i = input("9.rakam: ") i= int(i) print("tc nin 10. rakamını yazın") j = input("10.rakam: ") j = int(j) print("tc nin 11. rakamını yazın") k = input("11.rakam: ") k= int(k) tekler=(a + c + e + g + i) tekler = int(tekler) Çiftler=(b + d + f + h) Çiftler = int(Çiftler) x =(tekler * 7) x = int(x) y =(Çiftler * 9) y = int(y) w=(a + b +c + d + e + f + g + h + i + j) o=(w % 10) #11.rakam if o == k: print("bu tc kimkil no DOĞRU.") else: print("bu tc kimlik no YANLIŞ")
15.766667
49
0.541226
794836c7e8b2eecd099044b360b17efea81f0123
2,367
py
Python
ae/modeling_stack.py
snnall/temp
7742d2efc6bd3a23377c4b865e968019891fd94a
[ "MIT" ]
1
2021-08-11T17:32:54.000Z
2021-08-11T17:32:54.000Z
ae/modeling_stack.py
snnall/temp
7742d2efc6bd3a23377c4b865e968019891fd94a
[ "MIT" ]
null
null
null
ae/modeling_stack.py
snnall/temp
7742d2efc6bd3a23377c4b865e968019891fd94a
[ "MIT" ]
1
2021-12-08T23:20:32.000Z
2021-12-08T23:20:32.000Z
from aws_cdk import ( aws_sagemaker as sagemaker, aws_iam as iam, core ) class AeModelStack(core.Construct): def __init__(self, scope: core.Construct, construct_id: str, bucket_name: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) self._PREFIX = construct_id # Create Role for the SageMaker Backend self._service_role = iam.Role( self, f'{self._PREFIX}-ServiceRole', role_name=f'{self._PREFIX}-ServiceRole', assumed_by=iam.CompositePrincipal( iam.ServicePrincipal("sagemaker.amazonaws.com"), iam.ServicePrincipal("lambda.amazonaws.com"), iam.ServicePrincipal("s3.amazonaws.com") ) ) self._service_role.add_managed_policy(iam.ManagedPolicy.from_aws_managed_policy_name('AWSCodeCommitPowerUser')) self._service_role.add_managed_policy(iam.ManagedPolicy.from_aws_managed_policy_name('AmazonSageMakerFullAccess')) self._service_role.add_managed_policy(iam.ManagedPolicy.from_aws_managed_policy_name('AmazonS3FullAccess')) # Create SageMaker instance self._notebook_lifecycle = sagemaker.CfnNotebookInstanceLifecycleConfig( self, f'{self._PREFIX}-LifeCycleConfig', notebook_instance_lifecycle_config_name='ae-config', on_create=[sagemaker.CfnNotebookInstanceLifecycleConfig.NotebookInstanceLifecycleHookProperty( content=core.Fn.base64(f""" #!/bin/bash set -ex BUCKET="{bucket_name}" PREFIX="sagemaker" DIRECTORY="ae_detection" cd home/ec2-user/SageMaker && mkdir -p $DIRECTORY aws s3 cp s3://$BUCKET/$PREFIX /home/ec2-user/SageMaker/$DIRECTORY --recursive sudo chown "ec2-user":"ec2-user" /home/ec2-user/SageMaker/$DIRECTORY --recursive """) )] ) self.notebook = sagemaker.CfnNotebookInstance( self, f'{self._PREFIX}-notebook', role_arn=self._service_role.role_arn, instance_type='ml.t2.medium', root_access="Enabled", notebook_instance_name='AdverseEventDetectionModeling', lifecycle_config_name ='ae-config' )
43.036364
122
0.630334
794836daf7220e39e24f7f05864a9d7b63985306
740
py
Python
HW1/linperceptron.py
miguel-mzbi/MachineLearning-DataMining
d589e89c85ccc7cba129c9a489c49f61a4298c5d
[ "MIT" ]
null
null
null
HW1/linperceptron.py
miguel-mzbi/MachineLearning-DataMining
d589e89c85ccc7cba129c9a489c49f61a4298c5d
[ "MIT" ]
null
null
null
HW1/linperceptron.py
miguel-mzbi/MachineLearning-DataMining
d589e89c85ccc7cba129c9a489c49f61a4298c5d
[ "MIT" ]
null
null
null
# Input: number of iterations L # numpy matrix X of features, with n rows (samples), d columns (features) # X[i,j] is the j-th feature of the i-th sample # numpy vector y of labels, with n rows (samples), 1 column # y[i] is the label (+1 or -1) of the i-th sample # Output: numpy vector theta of d rows, 1 column import numpy as np def run(L,X,y): n, d = X.shape theta = np.zeros((d,1)) for it in range(1, L +1): for t in range(n): if (y[t]*(np.dot(X[t], theta))) <= 0: temp = y[t]*X[t] temp = np.reshape(temp, (d, 1)) #theta = np.transpose(np.transpose(theta) + temp) theta = theta + temp return theta
37
80
0.536486
79483708853e90ac2b92fb95e35dee01fa88aa88
2,830
py
Python
jobs/transforms/topic_validation_test.py
WebFlakyTest/oppia
520e35490eae8171beb035fbafc2948983abec75
[ "Apache-2.0" ]
1
2021-08-17T20:33:12.000Z
2021-08-17T20:33:12.000Z
jobs/transforms/topic_validation_test.py
WebFlakyTest/oppia
520e35490eae8171beb035fbafc2948983abec75
[ "Apache-2.0" ]
null
null
null
jobs/transforms/topic_validation_test.py
WebFlakyTest/oppia
520e35490eae8171beb035fbafc2948983abec75
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2021 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for jobs.transforms.topic_validation.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import datetime from core.platform import models from jobs import job_test_utils from jobs.transforms import topic_validation from jobs.types import topic_validation_errors import apache_beam as beam (topic_models,) = models.Registry.import_models([models.NAMES.topic]) class ValidateCanonicalNameMatchesNameInLowercaseTests( job_test_utils.PipelinedTestBase): NOW = datetime.datetime.utcnow() def test_process_for_not_matching_canonical_name(self): model_with_different_name = topic_models.TopicModel( id='123', name='name', created_on=self.NOW, last_updated=self.NOW, url_fragment='name-two', canonical_name='canonical_name', next_subtopic_id=1, language_code='en', subtopic_schema_version=0, story_reference_schema_version=0 ) output = ( self.pipeline | beam.Create([model_with_different_name]) | beam.ParDo( topic_validation.ValidateCanonicalNameMatchesNameInLowercase()) ) self.assert_pcoll_equal(output, [ topic_validation_errors.ModelCanonicalNameMismatchError( model_with_different_name) ]) def test_process_for_matching_canonical_name(self): model_with_same_name = topic_models.TopicModel( id='123', name='SOMEthing', created_on=self.NOW, last_updated=self.NOW, url_fragment='name-two', canonical_name='something', next_subtopic_id=1, language_code='en', subtopic_schema_version=0, story_reference_schema_version=0 ) output = ( self.pipeline | beam.Create([model_with_same_name]) | beam.ParDo( topic_validation.ValidateCanonicalNameMatchesNameInLowercase()) ) self.assert_pcoll_equal(output, [])
34.096386
79
0.674205
7948376a29750c05e1d2620cd396330a877447cd
15,891
py
Python
tensorflow/sample_rnn.py
reachlin/machinelearning
eb8ba02aa0da86ccf9991fa609afa84d8c180a21
[ "MIT" ]
11
2017-12-05T17:37:18.000Z
2020-07-01T21:47:31.000Z
tensorflow/sample_rnn.py
reachlin/machinelearning
eb8ba02aa0da86ccf9991fa609afa84d8c180a21
[ "MIT" ]
null
null
null
tensorflow/sample_rnn.py
reachlin/machinelearning
eb8ba02aa0da86ccf9991fa609afa84d8c180a21
[ "MIT" ]
6
2017-09-11T12:31:19.000Z
2020-12-13T16:28:48.000Z
""" Modified from: https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py RNN with LSTM cells """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np import tensorflow as tf import reader import util from tensorflow.python.client import device_lib flags = tf.flags logging = tf.logging flags.DEFINE_string( "model", "small", "A type of model. Possible options are: small, medium, large.") flags.DEFINE_string("data_path", None, "Where the training/test data is stored.") flags.DEFINE_string("save_path", None, "Model output directory.") flags.DEFINE_bool("use_fp16", False, "Train using 16-bit floats instead of 32bit floats") flags.DEFINE_integer("num_gpus", 1, "If larger than 1, Grappler AutoParallel optimizer " "will create multiple training replicas with each GPU " "running one replica.") flags.DEFINE_string("rnn_mode", None, "The low level implementation of lstm cell: one of CUDNN, " "BASIC, and BLOCK, representing cudnn_lstm, basic_lstm, " "and lstm_block_cell classes.") FLAGS = flags.FLAGS BASIC = "basic" CUDNN = "cudnn" BLOCK = "block" def data_type(): return tf.float16 if FLAGS.use_fp16 else tf.float32 class PTBInput(object): """The input data.""" def __init__(self, config, data, name=None): self.batch_size = batch_size = config.batch_size self.num_steps = num_steps = config.num_steps self.epoch_size = ((len(data) // batch_size) - 1) // num_steps self.input_data, self.targets = reader.ptb_producer( data, batch_size, num_steps, name=name) class PTBModel(object): """The PTB model.""" def __init__(self, is_training, config, input_): self._is_training = is_training self._input = input_ self._rnn_params = None self._cell = None self.batch_size = input_.batch_size self.num_steps = input_.num_steps size = config.hidden_size vocab_size = config.vocab_size with tf.device("/cpu:0"): embedding = tf.get_variable( "embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(embedding, input_.input_data) if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) output, state = self._build_rnn_graph(inputs, config, is_training) softmax_w = tf.get_variable( "softmax_w", [size, vocab_size], dtype=data_type()) softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type()) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) # Reshape logits to be a 3-D tensor for sequence loss logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size]) # Use the contrib sequence loss and average over the batches loss = tf.contrib.seq2seq.sequence_loss( logits, input_.targets, tf.ones([self.batch_size, self.num_steps], dtype=data_type()), average_across_timesteps=False, average_across_batch=True) # Update the cost self._cost = tf.reduce_sum(loss) self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder( tf.float32, shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) def _build_rnn_graph(self, inputs, config, is_training): if config.rnn_mode == CUDNN: return self._build_rnn_graph_cudnn(inputs, config, is_training) else: return self._build_rnn_graph_lstm(inputs, config, is_training) def _build_rnn_graph_cudnn(self, inputs, config, is_training): """Build the inference graph using CUDNN cell.""" inputs = tf.transpose(inputs, [1, 0, 2]) self._cell = tf.contrib.cudnn_rnn.CudnnLSTM( num_layers=config.num_layers, num_units=config.hidden_size, input_size=config.hidden_size, dropout=1 - config.keep_prob if is_training else 0) params_size_t = self._cell.params_size() self._rnn_params = tf.get_variable( "lstm_params", initializer=tf.random_uniform( [params_size_t], -config.init_scale, config.init_scale), validate_shape=False) c = tf.zeros([config.num_layers, self.batch_size, config.hidden_size], tf.float32) h = tf.zeros([config.num_layers, self.batch_size, config.hidden_size], tf.float32) self._initial_state = (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),) outputs, h, c = self._cell(inputs, h, c, self._rnn_params, is_training) outputs = tf.transpose(outputs, [1, 0, 2]) outputs = tf.reshape(outputs, [-1, config.hidden_size]) return outputs, (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),) def _get_lstm_cell(self, config, is_training): if config.rnn_mode == BASIC: return tf.contrib.rnn.BasicLSTMCell( config.hidden_size, forget_bias=0.0, state_is_tuple=True, reuse=not is_training) if config.rnn_mode == BLOCK: return tf.contrib.rnn.LSTMBlockCell( config.hidden_size, forget_bias=0.0) raise ValueError("rnn_mode %s not supported" % config.rnn_mode) def _build_rnn_graph_lstm(self, inputs, config, is_training): """Build the inference graph using canonical LSTM cells.""" # Slightly better results can be obtained with forget gate biases # initialized to 1 but the hyperparameters of the model would need to be # different than reported in the paper. cell = self._get_lstm_cell(config, is_training) if is_training and config.keep_prob < 1: cell = tf.contrib.rnn.DropoutWrapper( cell, output_keep_prob=config.keep_prob) cell = tf.contrib.rnn.MultiRNNCell( [cell for _ in range(config.num_layers)], state_is_tuple=True) self._initial_state = cell.zero_state(config.batch_size, data_type()) state = self._initial_state # Simplified version of tensorflow_models/tutorials/rnn/rnn.py's rnn(). # This builds an unrolled LSTM for tutorial purposes only. # In general, use the rnn() or state_saving_rnn() from rnn.py. # # The alternative version of the code below is: # # inputs = tf.unstack(inputs, num=num_steps, axis=1) # outputs, state = tf.contrib.rnn.static_rnn(cell, inputs, # initial_state=self._initial_state) outputs = [] with tf.variable_scope("RNN"): for time_step in range(self.num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size]) return output, state def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) def export_ops(self, name): """Exports ops to collections.""" self._name = name ops = {util.with_prefix(self._name, "cost"): self._cost} if self._is_training: ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update) if self._rnn_params: ops.update(rnn_params=self._rnn_params) for name, op in ops.iteritems(): tf.add_to_collection(name, op) self._initial_state_name = util.with_prefix(self._name, "initial") self._final_state_name = util.with_prefix(self._name, "final") util.export_state_tuples(self._initial_state, self._initial_state_name) util.export_state_tuples(self._final_state, self._final_state_name) def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope="Model/RNN") tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples( self._final_state, self._final_state_name, num_replicas) @property def input(self): return self._input @property def initial_state(self): return self._initial_state @property def cost(self): return self._cost @property def final_state(self): return self._final_state @property def lr(self): return self._lr @property def train_op(self): return self._train_op @property def initial_state_name(self): return self._initial_state_name @property def final_state_name(self): return self._final_state_name class SmallConfig(object): """Small config.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 13 keep_prob = 1.0 lr_decay = 0.5 batch_size = 20 vocab_size = 10000 rnn_mode = CUDNN class MediumConfig(object): """Medium config.""" init_scale = 0.05 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 35 hidden_size = 650 max_epoch = 6 max_max_epoch = 39 keep_prob = 0.5 lr_decay = 0.8 batch_size = 20 vocab_size = 10000 rnn_mode = BLOCK class LargeConfig(object): """Large config.""" init_scale = 0.04 learning_rate = 1.0 max_grad_norm = 10 num_layers = 2 num_steps = 35 hidden_size = 1500 max_epoch = 14 max_max_epoch = 55 keep_prob = 0.35 lr_decay = 1 / 1.15 batch_size = 20 vocab_size = 10000 rnn_mode = BLOCK class TestConfig(object): """Tiny config, for testing.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 1 num_layers = 1 num_steps = 2 hidden_size = 2 max_epoch = 1 max_max_epoch = 1 keep_prob = 1.0 lr_decay = 0.5 batch_size = 20 vocab_size = 10000 rnn_mode = BLOCK def run_epoch(session, model, eval_op=None, verbose=False): """Runs the model on the given data.""" start_time = time.time() costs = 0.0 iters = 0 state = session.run(model.initial_state) fetches = { "cost": model.cost, "final_state": model.final_state, } if eval_op is not None: fetches["eval_op"] = eval_op for step in range(model.input.epoch_size): feed_dict = {} for i, (c, h) in enumerate(model.initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h vals = session.run(fetches, feed_dict) cost = vals["cost"] state = vals["final_state"] costs += cost iters += model.input.num_steps if verbose and step % (model.input.epoch_size // 10) == 10: print("%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / model.input.epoch_size, np.exp(costs / iters), iters * model.input.batch_size * max(1, FLAGS.num_gpus) / (time.time() - start_time))) return np.exp(costs / iters) def get_config(): """Get model config.""" config = None if FLAGS.model == "small": config = SmallConfig() elif FLAGS.model == "medium": config = MediumConfig() elif FLAGS.model == "large": config = LargeConfig() elif FLAGS.model == "test": config = TestConfig() else: raise ValueError("Invalid model: %s", FLAGS.model) if FLAGS.rnn_mode: config.rnn_mode = FLAGS.rnn_mode if FLAGS.num_gpus != 1 or tf.__version__ < "1.3.0" : config.rnn_mode = BASIC return config def main(_): if not FLAGS.data_path: raise ValueError("Must set --data_path to PTB data directory") gpus = [ x.name for x in device_lib.list_local_devices() if x.device_type == "GPU" ] if FLAGS.num_gpus > len(gpus): raise ValueError( "Your machine has only %d gpus " "which is less than the requested --num_gpus=%d." % (len(gpus), FLAGS.num_gpus)) raw_data = reader.ptb_raw_data(FLAGS.data_path) train_data, valid_data, test_data, _ = raw_data config = get_config() eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = PTBInput(config=config, data=train_data, name="TrainInput") with tf.variable_scope("Model", reuse=None, initializer=initializer): m = PTBModel(is_training=True, config=config, input_=train_input) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"): valid_input = PTBInput(config=config, data=valid_data, name="ValidInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mvalid = PTBModel(is_training=False, config=config, input_=valid_input) tf.summary.scalar("Validation Loss", mvalid.cost) with tf.name_scope("Test"): test_input = PTBInput( config=eval_config, data=test_data, name="TestInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mtest = PTBModel(is_training=False, config=eval_config, input_=test_input) models = {"Train": m, "Valid": mvalid, "Test": mtest} for name, model in models.iteritems(): model.export_ops(name) metagraph = tf.train.export_meta_graph() if tf.__version__ < "1.1.0" and FLAGS.num_gpus > 1: raise ValueError("num_gpus > 1 is not supported for TensorFlow versions " "below 1.1.0") soft_placement = False if FLAGS.num_gpus > 1: soft_placement = True util.auto_parallel(metagraph, m) with tf.Graph().as_default(): tf.train.import_meta_graph(metagraph) for model in models.values(): model.import_ops() sv = tf.train.Supervisor(logdir=FLAGS.save_path) config_proto = tf.ConfigProto(allow_soft_placement=soft_placement) with sv.managed_session(config=config_proto) as session: for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) train_perplexity = run_epoch(session, m, eval_op=m.train_op, verbose=True) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity = run_epoch(session, mvalid) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) test_perplexity = run_epoch(session, mtest) print("Test Perplexity: %.3f" % test_perplexity) if FLAGS.save_path: print("Saving model to %s." % FLAGS.save_path) sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step) if __name__ == "__main__": tf.app.run()
33.667373
96
0.672771
7948383eecc62f71e8f02cfc433f9d7bb88e7d71
26,950
py
Python
test/functional/test_framework/test_framework.py
adgeese/gbcr
51145945d78c588f3ec3dc8595e14b1faea1a4e7
[ "MIT" ]
null
null
null
test/functional/test_framework/test_framework.py
adgeese/gbcr
51145945d78c588f3ec3dc8595e14b1faea1a4e7
[ "MIT" ]
null
null
null
test/functional/test_framework/test_framework.py
adgeese/gbcr
51145945d78c588f3ec3dc8595e14b1faea1a4e7
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Gold BCR Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Base class for RPC testing.""" import configparser from enum import Enum import logging import argparse import os import pdb import random import shutil import subprocess import sys import tempfile import time from .authproxy import JSONRPCException from . import coverage from .test_node import TestNode from .mininode import NetworkThread from .util import ( MAX_NODES, PortSeed, assert_equal, check_json_precision, connect_nodes, disconnect_nodes, get_datadir_path, initialize_datadir, sync_blocks, sync_mempools, ) class TestStatus(Enum): PASSED = 1 FAILED = 2 SKIPPED = 3 TEST_EXIT_PASSED = 0 TEST_EXIT_FAILED = 1 TEST_EXIT_SKIPPED = 77 TMPDIR_PREFIX = "goldbcr_func_test_" class SkipTest(Exception): """This exception is raised to skip a test""" def __init__(self, message): self.message = message class Gold BCRTestMetaClass(type): """Metaclass for Gold BCRTestFramework. Ensures that any attempt to register a subclass of `Gold BCRTestFramework` adheres to a standard whereby the subclass overrides `set_test_params` and `run_test` but DOES NOT override either `__init__` or `main`. If any of those standards are violated, a ``TypeError`` is raised.""" def __new__(cls, clsname, bases, dct): if not clsname == 'Gold BCRTestFramework': if not ('run_test' in dct and 'set_test_params' in dct): raise TypeError("Gold BCRTestFramework subclasses must override " "'run_test' and 'set_test_params'") if '__init__' in dct or 'main' in dct: raise TypeError("Gold BCRTestFramework subclasses may not override " "'__init__' or 'main'") return super().__new__(cls, clsname, bases, dct) class Gold BCRTestFramework(metaclass=Gold BCRTestMetaClass): """Base class for a goldbcr test script. Individual goldbcr test scripts should subclass this class and override the set_test_params() and run_test() methods. Individual tests can also override the following methods to customize the test setup: - add_options() - setup_chain() - setup_network() - setup_nodes() The __init__() and main() methods should not be overridden. This class also contains various public and private helper methods.""" def __init__(self): """Sets test framework defaults. Do not override this method. Instead, override the set_test_params() method""" self.chain = 'regtest' self.setup_clean_chain = False self.nodes = [] self.network_thread = None self.rpc_timeout = 60 # Wait for up to 60 seconds for the RPC server to respond self.supports_cli = True self.bind_to_localhost_only = True self.set_test_params() self.parse_args() def main(self): """Main function. This should not be overridden by the subclass test scripts.""" assert hasattr(self, "num_nodes"), "Test must set self.num_nodes in set_test_params()" try: self.setup() self.run_test() except JSONRPCException: self.log.exception("JSONRPC error") self.success = TestStatus.FAILED except SkipTest as e: self.log.warning("Test Skipped: %s" % e.message) self.success = TestStatus.SKIPPED except AssertionError: self.log.exception("Assertion failed") self.success = TestStatus.FAILED except KeyError: self.log.exception("Key error") self.success = TestStatus.FAILED except subprocess.CalledProcessError as e: self.log.exception("Called Process failed with '{}'".format(e.output)) self.success = TestStatus.FAILED except Exception: self.log.exception("Unexpected exception caught during testing") self.success = TestStatus.FAILED except KeyboardInterrupt: self.log.warning("Exiting after keyboard interrupt") self.success = TestStatus.FAILED finally: exit_code = self.shutdown() sys.exit(exit_code) def parse_args(self): parser = argparse.ArgumentParser(usage="%(prog)s [options]") parser.add_argument("--nocleanup", dest="nocleanup", default=False, action="store_true", help="Leave goldbcrds and test.* datadir on exit or error") parser.add_argument("--noshutdown", dest="noshutdown", default=False, action="store_true", help="Don't stop goldbcrds after the test execution") parser.add_argument("--cachedir", dest="cachedir", default=os.path.abspath(os.path.dirname(os.path.realpath(__file__)) + "/../../cache"), help="Directory for caching pregenerated datadirs (default: %(default)s)") parser.add_argument("--tmpdir", dest="tmpdir", help="Root directory for datadirs") parser.add_argument("-l", "--loglevel", dest="loglevel", default="INFO", help="log events at this level and higher to the console. Can be set to DEBUG, INFO, WARNING, ERROR or CRITICAL. Passing --loglevel DEBUG will output all logs to console. Note that logs at all levels are always written to the test_framework.log file in the temporary test directory.") parser.add_argument("--tracerpc", dest="trace_rpc", default=False, action="store_true", help="Print out all RPC calls as they are made") parser.add_argument("--portseed", dest="port_seed", default=os.getpid(), type=int, help="The seed to use for assigning port numbers (default: current process id)") parser.add_argument("--coveragedir", dest="coveragedir", help="Write tested RPC commands into this directory") parser.add_argument("--configfile", dest="configfile", default=os.path.abspath(os.path.dirname(os.path.realpath(__file__)) + "/../../config.ini"), help="Location of the test framework config file (default: %(default)s)") parser.add_argument("--pdbonfailure", dest="pdbonfailure", default=False, action="store_true", help="Attach a python debugger if test fails") parser.add_argument("--usecli", dest="usecli", default=False, action="store_true", help="use goldbcr-cli instead of RPC for all commands") parser.add_argument("--perf", dest="perf", default=False, action="store_true", help="profile running nodes with perf for the duration of the test") parser.add_argument("--valgrind", dest="valgrind", default=False, action="store_true", help="run nodes under the valgrind memory error detector: expect at least a ~10x slowdown, valgrind 3.14 or later required") parser.add_argument("--randomseed", type=int, help="set a random seed for deterministically reproducing a previous test run") self.add_options(parser) self.options = parser.parse_args() def setup(self): """Call this method to start up the test framework object with options set.""" PortSeed.n = self.options.port_seed check_json_precision() self.options.cachedir = os.path.abspath(self.options.cachedir) config = configparser.ConfigParser() config.read_file(open(self.options.configfile)) self.config = config self.options.goldbcrd = os.getenv("BITCOIND", default=config["environment"]["BUILDDIR"] + '/src/goldbcrd' + config["environment"]["EXEEXT"]) self.options.goldbcrcli = os.getenv("BITCOINCLI", default=config["environment"]["BUILDDIR"] + '/src/goldbcr-cli' + config["environment"]["EXEEXT"]) os.environ['PATH'] = os.pathsep.join([ os.path.join(config['environment']['BUILDDIR'], 'src'), os.path.join(config['environment']['BUILDDIR'], 'src', 'qt'), os.environ['PATH'] ]) # Set up temp directory and start logging if self.options.tmpdir: self.options.tmpdir = os.path.abspath(self.options.tmpdir) os.makedirs(self.options.tmpdir, exist_ok=False) else: self.options.tmpdir = tempfile.mkdtemp(prefix=TMPDIR_PREFIX) self._start_logging() # Seed the PRNG. Note that test runs are reproducible if and only if # a single thread accesses the PRNG. For more information, see # https://docs.python.org/3/library/random.html#notes-on-reproducibility. # The network thread shouldn't access random. If we need to change the # network thread to access randomness, it should instantiate its own # random.Random object. seed = self.options.randomseed if seed is None: seed = random.randrange(sys.maxsize) else: self.log.debug("User supplied random seed {}".format(seed)) random.seed(seed) self.log.debug("PRNG seed is: {}".format(seed)) self.log.debug('Setting up network thread') self.network_thread = NetworkThread() self.network_thread.start() if self.options.usecli: if not self.supports_cli: raise SkipTest("--usecli specified but test does not support using CLI") self.skip_if_no_cli() self.skip_test_if_missing_module() self.setup_chain() self.setup_network() self.success = TestStatus.PASSED def shutdown(self): """Call this method to shut down the test framework object.""" if self.success == TestStatus.FAILED and self.options.pdbonfailure: print("Testcase failed. Attaching python debugger. Enter ? for help") pdb.set_trace() self.log.debug('Closing down network thread') self.network_thread.close() if not self.options.noshutdown: self.log.info("Stopping nodes") if self.nodes: self.stop_nodes() else: for node in self.nodes: node.cleanup_on_exit = False self.log.info("Note: goldbcrds were not stopped and may still be running") should_clean_up = ( not self.options.nocleanup and not self.options.noshutdown and self.success != TestStatus.FAILED and not self.options.perf ) if should_clean_up: self.log.info("Cleaning up {} on exit".format(self.options.tmpdir)) cleanup_tree_on_exit = True elif self.options.perf: self.log.warning("Not cleaning up dir {} due to perf data".format(self.options.tmpdir)) cleanup_tree_on_exit = False else: self.log.warning("Not cleaning up dir {}".format(self.options.tmpdir)) cleanup_tree_on_exit = False if self.success == TestStatus.PASSED: self.log.info("Tests successful") exit_code = TEST_EXIT_PASSED elif self.success == TestStatus.SKIPPED: self.log.info("Test skipped") exit_code = TEST_EXIT_SKIPPED else: self.log.error("Test failed. Test logging available at %s/test_framework.log", self.options.tmpdir) self.log.error("Hint: Call {} '{}' to consolidate all logs".format(os.path.normpath(os.path.dirname(os.path.realpath(__file__)) + "/../combine_logs.py"), self.options.tmpdir)) exit_code = TEST_EXIT_FAILED # Logging.shutdown will not remove stream- and filehandlers, so we must # do it explicitly. Handlers are removed so the next test run can apply # different log handler settings. # See: https://docs.python.org/3/library/logging.html#logging.shutdown for h in list(self.log.handlers): h.flush() h.close() self.log.removeHandler(h) rpc_logger = logging.getLogger("Gold BCRRPC") for h in list(rpc_logger.handlers): h.flush() rpc_logger.removeHandler(h) if cleanup_tree_on_exit: shutil.rmtree(self.options.tmpdir) self.nodes.clear() return exit_code # Methods to override in subclass test scripts. def set_test_params(self): """Tests must this method to change default values for number of nodes, topology, etc""" raise NotImplementedError def add_options(self, parser): """Override this method to add command-line options to the test""" pass def skip_test_if_missing_module(self): """Override this method to skip a test if a module is not compiled""" pass def setup_chain(self): """Override this method to customize blockchain setup""" self.log.info("Initializing test directory " + self.options.tmpdir) if self.setup_clean_chain: self._initialize_chain_clean() else: self._initialize_chain() def setup_network(self): """Override this method to customize test network topology""" self.setup_nodes() # Connect the nodes as a "chain". This allows us # to split the network between nodes 1 and 2 to get # two halves that can work on competing chains. # # Topology looks like this: # node0 <-- node1 <-- node2 <-- node3 # # If all nodes are in IBD (clean chain from genesis), node0 is assumed to be the source of blocks (miner). To # ensure block propagation, all nodes will establish outgoing connections toward node0. # See fPreferredDownload in net_processing. # # If further outbound connections are needed, they can be added at the beginning of the test with e.g. # connect_nodes(self.nodes[1], 2) for i in range(self.num_nodes - 1): connect_nodes(self.nodes[i + 1], i) self.sync_all() def setup_nodes(self): """Override this method to customize test node setup""" extra_args = None if hasattr(self, "extra_args"): extra_args = self.extra_args self.add_nodes(self.num_nodes, extra_args) self.start_nodes() self.import_deterministic_coinbase_privkeys() if not self.setup_clean_chain: for n in self.nodes: assert_equal(n.getblockchaininfo()["blocks"], 199) # To ensure that all nodes are out of IBD, the most recent block # must have a timestamp not too old (see IsInitialBlockDownload()). self.log.debug('Generate a block with current time') block_hash = self.nodes[0].generate(1)[0] block = self.nodes[0].getblock(blockhash=block_hash, verbosity=0) for n in self.nodes: n.submitblock(block) chain_info = n.getblockchaininfo() assert_equal(chain_info["blocks"], 200) assert_equal(chain_info["initialblockdownload"], False) def import_deterministic_coinbase_privkeys(self): for n in self.nodes: try: n.getwalletinfo() except JSONRPCException as e: assert str(e).startswith('Method not found') continue n.importprivkey(privkey=n.get_deterministic_priv_key().key, label='coinbase') def run_test(self): """Tests must override this method to define test logic""" raise NotImplementedError # Public helper methods. These can be accessed by the subclass test scripts. def add_nodes(self, num_nodes, extra_args=None, *, rpchost=None, binary=None, binary_cli=None, versions=None): """Instantiate TestNode objects. Should only be called once after the nodes have been specified in set_test_params().""" if self.bind_to_localhost_only: extra_confs = [["bind=127.0.0.1"]] * num_nodes else: extra_confs = [[]] * num_nodes if extra_args is None: extra_args = [[]] * num_nodes if versions is None: versions = [None] * num_nodes if binary is None: binary = [self.options.goldbcrd] * num_nodes if binary_cli is None: binary_cli = [self.options.goldbcrcli] * num_nodes assert_equal(len(extra_confs), num_nodes) assert_equal(len(extra_args), num_nodes) assert_equal(len(versions), num_nodes) assert_equal(len(binary), num_nodes) assert_equal(len(binary_cli), num_nodes) for i in range(num_nodes): self.nodes.append(TestNode( i, get_datadir_path(self.options.tmpdir, i), chain=self.chain, rpchost=rpchost, timewait=self.rpc_timeout, goldbcrd=binary[i], goldbcr_cli=binary_cli[i], version=versions[i], coverage_dir=self.options.coveragedir, cwd=self.options.tmpdir, extra_conf=extra_confs[i], extra_args=extra_args[i], use_cli=self.options.usecli, start_perf=self.options.perf, use_valgrind=self.options.valgrind, )) def start_node(self, i, *args, **kwargs): """Start a goldbcrd""" node = self.nodes[i] node.start(*args, **kwargs) node.wait_for_rpc_connection() if self.options.coveragedir is not None: coverage.write_all_rpc_commands(self.options.coveragedir, node.rpc) def start_nodes(self, extra_args=None, *args, **kwargs): """Start multiple goldbcrds""" if extra_args is None: extra_args = [None] * self.num_nodes assert_equal(len(extra_args), self.num_nodes) try: for i, node in enumerate(self.nodes): node.start(extra_args[i], *args, **kwargs) for node in self.nodes: node.wait_for_rpc_connection() except: # If one node failed to start, stop the others self.stop_nodes() raise if self.options.coveragedir is not None: for node in self.nodes: coverage.write_all_rpc_commands(self.options.coveragedir, node.rpc) def stop_node(self, i, expected_stderr='', wait=0): """Stop a goldbcrd test node""" self.nodes[i].stop_node(expected_stderr, wait=wait) self.nodes[i].wait_until_stopped() def stop_nodes(self, wait=0): """Stop multiple goldbcrd test nodes""" for node in self.nodes: # Issue RPC to stop nodes node.stop_node(wait=wait) for node in self.nodes: # Wait for nodes to stop node.wait_until_stopped() def restart_node(self, i, extra_args=None): """Stop and start a test node""" self.stop_node(i) self.start_node(i, extra_args) def wait_for_node_exit(self, i, timeout): self.nodes[i].process.wait(timeout) def split_network(self): """ Split the network of four nodes into nodes 0/1 and 2/3. """ disconnect_nodes(self.nodes[1], 2) disconnect_nodes(self.nodes[2], 1) self.sync_all(self.nodes[:2]) self.sync_all(self.nodes[2:]) def join_network(self): """ Join the (previously split) network halves together. """ connect_nodes(self.nodes[1], 2) self.sync_all() def sync_blocks(self, nodes=None, **kwargs): sync_blocks(nodes or self.nodes, **kwargs) def sync_mempools(self, nodes=None, **kwargs): sync_mempools(nodes or self.nodes, **kwargs) def sync_all(self, nodes=None, **kwargs): self.sync_blocks(nodes, **kwargs) self.sync_mempools(nodes, **kwargs) # Private helper methods. These should not be accessed by the subclass test scripts. def _start_logging(self): # Add logger and logging handlers self.log = logging.getLogger('TestFramework') self.log.setLevel(logging.DEBUG) # Create file handler to log all messages fh = logging.FileHandler(self.options.tmpdir + '/test_framework.log', encoding='utf-8') fh.setLevel(logging.DEBUG) # Create console handler to log messages to stderr. By default this logs only error messages, but can be configured with --loglevel. ch = logging.StreamHandler(sys.stdout) # User can provide log level as a number or string (eg DEBUG). loglevel was caught as a string, so try to convert it to an int ll = int(self.options.loglevel) if self.options.loglevel.isdigit() else self.options.loglevel.upper() ch.setLevel(ll) # Format logs the same as goldbcrd's debug.log with microprecision (so log files can be concatenated and sorted) formatter = logging.Formatter(fmt='%(asctime)s.%(msecs)03d000Z %(name)s (%(levelname)s): %(message)s', datefmt='%Y-%m-%dT%H:%M:%S') formatter.converter = time.gmtime fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger self.log.addHandler(fh) self.log.addHandler(ch) if self.options.trace_rpc: rpc_logger = logging.getLogger("Gold BCRRPC") rpc_logger.setLevel(logging.DEBUG) rpc_handler = logging.StreamHandler(sys.stdout) rpc_handler.setLevel(logging.DEBUG) rpc_logger.addHandler(rpc_handler) def _initialize_chain(self): """Initialize a pre-mined blockchain for use by the test. Create a cache of a 199-block-long chain Afterward, create num_nodes copies from the cache.""" CACHE_NODE_ID = 0 # Use node 0 to create the cache for all other nodes cache_node_dir = get_datadir_path(self.options.cachedir, CACHE_NODE_ID) assert self.num_nodes <= MAX_NODES if not os.path.isdir(cache_node_dir): self.log.debug("Creating cache directory {}".format(cache_node_dir)) initialize_datadir(self.options.cachedir, CACHE_NODE_ID, self.chain) self.nodes.append( TestNode( CACHE_NODE_ID, cache_node_dir, chain=self.chain, extra_conf=["bind=127.0.0.1"], extra_args=['-disablewallet'], rpchost=None, timewait=self.rpc_timeout, goldbcrd=self.options.goldbcrd, goldbcr_cli=self.options.goldbcrcli, coverage_dir=None, cwd=self.options.tmpdir, )) self.start_node(CACHE_NODE_ID) # Wait for RPC connections to be ready self.nodes[CACHE_NODE_ID].wait_for_rpc_connection() # Create a 199-block-long chain; each of the 4 first nodes # gets 25 mature blocks and 25 immature. # The 4th node gets only 24 immature blocks so that the very last # block in the cache does not age too much (have an old tip age). # This is needed so that we are out of IBD when the test starts, # see the tip age check in IsInitialBlockDownload(). for i in range(8): self.nodes[CACHE_NODE_ID].generatetoaddress( nblocks=25 if i != 7 else 24, address=TestNode.PRIV_KEYS[i % 4].address, ) assert_equal(self.nodes[CACHE_NODE_ID].getblockchaininfo()["blocks"], 199) # Shut it down, and clean up cache directories: self.stop_nodes() self.nodes = [] def cache_path(*paths): return os.path.join(cache_node_dir, self.chain, *paths) os.rmdir(cache_path('wallets')) # Remove empty wallets dir for entry in os.listdir(cache_path()): if entry not in ['chainstate', 'blocks']: # Only keep chainstate and blocks folder os.remove(cache_path(entry)) for i in range(self.num_nodes): self.log.debug("Copy cache directory {} to node {}".format(cache_node_dir, i)) to_dir = get_datadir_path(self.options.tmpdir, i) shutil.copytree(cache_node_dir, to_dir) initialize_datadir(self.options.tmpdir, i, self.chain) # Overwrite port/rpcport in goldbcr.conf def _initialize_chain_clean(self): """Initialize empty blockchain for use by the test. Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization.""" for i in range(self.num_nodes): initialize_datadir(self.options.tmpdir, i, self.chain) def skip_if_no_py3_zmq(self): """Attempt to import the zmq package and skip the test if the import fails.""" try: import zmq # noqa except ImportError: raise SkipTest("python3-zmq module not available.") def skip_if_no_goldbcrd_zmq(self): """Skip the running test if goldbcrd has not been compiled with zmq support.""" if not self.is_zmq_compiled(): raise SkipTest("goldbcrd has not been built with zmq enabled.") def skip_if_no_wallet(self): """Skip the running test if wallet has not been compiled.""" if not self.is_wallet_compiled(): raise SkipTest("wallet has not been compiled.") def skip_if_no_wallet_tool(self): """Skip the running test if goldbcr-wallet has not been compiled.""" if not self.is_wallet_tool_compiled(): raise SkipTest("goldbcr-wallet has not been compiled") def skip_if_no_cli(self): """Skip the running test if goldbcr-cli has not been compiled.""" if not self.is_cli_compiled(): raise SkipTest("goldbcr-cli has not been compiled.") def is_cli_compiled(self): """Checks whether goldbcr-cli was compiled.""" return self.config["components"].getboolean("ENABLE_CLI") def is_wallet_compiled(self): """Checks whether the wallet module was compiled.""" return self.config["components"].getboolean("ENABLE_WALLET") def is_wallet_tool_compiled(self): """Checks whether goldbcr-wallet was compiled.""" return self.config["components"].getboolean("ENABLE_WALLET_TOOL") def is_zmq_compiled(self): """Checks whether the zmq module was compiled.""" return self.config["components"].getboolean("ENABLE_ZMQ")
42.241379
312
0.626716
794838e32a0b850ea0c89cbf88d989889fc0932a
18,344
py
Python
macOS/bee1.app/Contents/Resources/python/lib/python3.6/test/test_sysconfig.py
leewonmoh/macrepo1
d8f15145fac127c1c7294f01ad39187f76b76ac2
[ "BSD-3-Clause" ]
null
null
null
macOS/bee1.app/Contents/Resources/python/lib/python3.6/test/test_sysconfig.py
leewonmoh/macrepo1
d8f15145fac127c1c7294f01ad39187f76b76ac2
[ "BSD-3-Clause" ]
null
null
null
macOS/bee1.app/Contents/Resources/python/lib/python3.6/test/test_sysconfig.py
leewonmoh/macrepo1
d8f15145fac127c1c7294f01ad39187f76b76ac2
[ "BSD-3-Clause" ]
null
null
null
import unittest import sys import os import subprocess import shutil from copy import copy from test.support import (run_unittest, import_module, TESTFN, unlink, check_warnings, captured_stdout, skip_unless_symlink, change_cwd) import sysconfig from sysconfig import (get_paths, get_platform, get_config_vars, get_path, get_path_names, _INSTALL_SCHEMES, _get_default_scheme, _expand_vars, get_scheme_names, get_config_var, _main) import _osx_support class TestSysConfig(unittest.TestCase): def setUp(self): super(TestSysConfig, self).setUp() self.sys_path = sys.path[:] # patching os.uname if hasattr(os, 'uname'): self.uname = os.uname self._uname = os.uname() else: self.uname = None self._set_uname(('',)*5) os.uname = self._get_uname # saving the environment self.name = os.name self.platform = sys.platform self.version = sys.version self.sep = os.sep self.join = os.path.join self.isabs = os.path.isabs self.splitdrive = os.path.splitdrive self._config_vars = sysconfig._CONFIG_VARS, copy(sysconfig._CONFIG_VARS) self._added_envvars = [] self._changed_envvars = [] for var in ('MACOSX_DEPLOYMENT_TARGET', 'PATH'): if var in os.environ: self._changed_envvars.append((var, os.environ[var])) else: self._added_envvars.append(var) def tearDown(self): sys.path[:] = self.sys_path self._cleanup_testfn() if self.uname is not None: os.uname = self.uname else: del os.uname os.name = self.name sys.platform = self.platform sys.version = self.version os.sep = self.sep os.path.join = self.join os.path.isabs = self.isabs os.path.splitdrive = self.splitdrive sysconfig._CONFIG_VARS = self._config_vars[0] sysconfig._CONFIG_VARS.clear() sysconfig._CONFIG_VARS.update(self._config_vars[1]) for var, value in self._changed_envvars: os.environ[var] = value for var in self._added_envvars: os.environ.pop(var, None) super(TestSysConfig, self).tearDown() def _set_uname(self, uname): self._uname = os.uname_result(uname) def _get_uname(self): return self._uname def _cleanup_testfn(self): path = TESTFN if os.path.isfile(path): os.remove(path) elif os.path.isdir(path): shutil.rmtree(path) def test_get_path_names(self): self.assertEqual(get_path_names(), sysconfig._SCHEME_KEYS) def test_get_paths(self): scheme = get_paths() default_scheme = _get_default_scheme() wanted = _expand_vars(default_scheme, None) wanted = sorted(wanted.items()) scheme = sorted(scheme.items()) self.assertEqual(scheme, wanted) def test_get_path(self): # XXX make real tests here for scheme in _INSTALL_SCHEMES: for name in _INSTALL_SCHEMES[scheme]: res = get_path(name, scheme) def test_get_config_vars(self): cvars = get_config_vars() self.assertIsInstance(cvars, dict) self.assertTrue(cvars) def test_get_platform(self): # windows XP, 32bits os.name = 'nt' sys.version = ('2.4.4 (#71, Oct 18 2006, 08:34:43) ' '[MSC v.1310 32 bit (Intel)]') sys.platform = 'win32' self.assertEqual(get_platform(), 'win32') # windows XP, amd64 os.name = 'nt' sys.version = ('2.4.4 (#71, Oct 18 2006, 08:34:43) ' '[MSC v.1310 32 bit (Amd64)]') sys.platform = 'win32' self.assertEqual(get_platform(), 'win-amd64') # windows XP, itanium os.name = 'nt' sys.version = ('2.4.4 (#71, Oct 18 2006, 08:34:43) ' '[MSC v.1310 32 bit (Itanium)]') sys.platform = 'win32' self.assertEqual(get_platform(), 'win-ia64') # macbook os.name = 'posix' sys.version = ('2.5 (r25:51918, Sep 19 2006, 08:49:13) ' '\n[GCC 4.0.1 (Apple Computer, Inc. build 5341)]') sys.platform = 'darwin' self._set_uname(('Darwin', 'macziade', '8.11.1', ('Darwin Kernel Version 8.11.1: ' 'Wed Oct 10 18:23:28 PDT 2007; ' 'root:xnu-792.25.20~1/RELEASE_I386'), 'PowerPC')) _osx_support._remove_original_values(get_config_vars()) get_config_vars()['MACOSX_DEPLOYMENT_TARGET'] = '10.3' get_config_vars()['CFLAGS'] = ('-fno-strict-aliasing -DNDEBUG -g ' '-fwrapv -O3 -Wall -Wstrict-prototypes') maxint = sys.maxsize try: sys.maxsize = 2147483647 self.assertEqual(get_platform(), 'macosx-10.3-ppc') sys.maxsize = 9223372036854775807 self.assertEqual(get_platform(), 'macosx-10.3-ppc64') finally: sys.maxsize = maxint self._set_uname(('Darwin', 'macziade', '8.11.1', ('Darwin Kernel Version 8.11.1: ' 'Wed Oct 10 18:23:28 PDT 2007; ' 'root:xnu-792.25.20~1/RELEASE_I386'), 'i386')) _osx_support._remove_original_values(get_config_vars()) get_config_vars()['MACOSX_DEPLOYMENT_TARGET'] = '10.3' get_config_vars()['CFLAGS'] = ('-fno-strict-aliasing -DNDEBUG -g ' '-fwrapv -O3 -Wall -Wstrict-prototypes') maxint = sys.maxsize try: sys.maxsize = 2147483647 self.assertEqual(get_platform(), 'macosx-10.3-i386') sys.maxsize = 9223372036854775807 self.assertEqual(get_platform(), 'macosx-10.3-x86_64') finally: sys.maxsize = maxint # macbook with fat binaries (fat, universal or fat64) _osx_support._remove_original_values(get_config_vars()) get_config_vars()['MACOSX_DEPLOYMENT_TARGET'] = '10.4' get_config_vars()['CFLAGS'] = ('-arch ppc -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEqual(get_platform(), 'macosx-10.4-fat') _osx_support._remove_original_values(get_config_vars()) get_config_vars()['CFLAGS'] = ('-arch x86_64 -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEqual(get_platform(), 'macosx-10.4-intel') _osx_support._remove_original_values(get_config_vars()) get_config_vars()['CFLAGS'] = ('-arch x86_64 -arch ppc -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEqual(get_platform(), 'macosx-10.4-fat3') _osx_support._remove_original_values(get_config_vars()) get_config_vars()['CFLAGS'] = ('-arch ppc64 -arch x86_64 -arch ppc -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEqual(get_platform(), 'macosx-10.4-universal') _osx_support._remove_original_values(get_config_vars()) get_config_vars()['CFLAGS'] = ('-arch x86_64 -arch ppc64 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEqual(get_platform(), 'macosx-10.4-fat64') for arch in ('ppc', 'i386', 'x86_64', 'ppc64'): _osx_support._remove_original_values(get_config_vars()) get_config_vars()['CFLAGS'] = ('-arch %s -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3' % arch) self.assertEqual(get_platform(), 'macosx-10.4-%s' % arch) # linux debian sarge os.name = 'posix' sys.version = ('2.3.5 (#1, Jul 4 2007, 17:28:59) ' '\n[GCC 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)]') sys.platform = 'linux2' self._set_uname(('Linux', 'aglae', '2.6.21.1dedibox-r7', '#1 Mon Apr 30 17:25:38 CEST 2007', 'i686')) self.assertEqual(get_platform(), 'linux-i686') # XXX more platforms to tests here def test_get_config_h_filename(self): config_h = sysconfig.get_config_h_filename() self.assertTrue(os.path.isfile(config_h), config_h) def test_get_scheme_names(self): wanted = ('ios', 'nt', 'nt_user', 'osx_framework_user', 'posix_home', 'posix_prefix', 'posix_user', 'tvos', 'watchos') self.assertEqual(get_scheme_names(), wanted) @skip_unless_symlink @unittest.skipUnless(os.allows_subprocesses, 'Test requires support for subprocesses.') def test_symlink(self): # On Windows, the EXE needs to know where pythonXY.dll is at so we have # to add the directory to the path. if sys.platform == "win32": os.environ["PATH"] = "{};{}".format( os.path.dirname(sys.executable), os.environ["PATH"]) # Issue 7880 def get(python): cmd = [python, '-c', 'import sysconfig; print(sysconfig.get_platform())'] p = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=os.environ) return p.communicate() real = os.path.realpath(sys.executable) link = os.path.abspath(TESTFN) os.symlink(real, link) try: self.assertEqual(get(real), get(link)) finally: unlink(link) def test_user_similar(self): # Issue #8759: make sure the posix scheme for the users # is similar to the global posix_prefix one base = get_config_var('base') user = get_config_var('userbase') # the global scheme mirrors the distinction between prefix and # exec-prefix but not the user scheme, so we have to adapt the paths # before comparing (issue #9100) adapt = sys.base_prefix != sys.base_exec_prefix for name in ('stdlib', 'platstdlib', 'purelib', 'platlib'): global_path = get_path(name, 'posix_prefix') if adapt: global_path = global_path.replace(sys.exec_prefix, sys.base_prefix) base = base.replace(sys.exec_prefix, sys.base_prefix) elif sys.base_prefix != sys.prefix: # virtual environment? Likewise, we have to adapt the paths # before comparing global_path = global_path.replace(sys.base_prefix, sys.prefix) base = base.replace(sys.base_prefix, sys.prefix) user_path = get_path(name, 'posix_user') self.assertEqual(user_path, global_path.replace(base, user, 1)) def test_main(self): # just making sure _main() runs and returns things in the stdout with captured_stdout() as output: _main() self.assertTrue(len(output.getvalue().split('\n')) > 0) @unittest.skipIf(sys.platform == "win32", "Does not apply to Windows") def test_ldshared_value(self): ldflags = sysconfig.get_config_var('LDFLAGS') ldshared = sysconfig.get_config_var('LDSHARED') self.assertIn(ldflags, ldshared) @unittest.skipUnless(sys.platform == "darwin", "test only relevant on MacOSX") def test_platform_in_subprocess(self): my_platform = sysconfig.get_platform() # Test without MACOSX_DEPLOYMENT_TARGET in the environment env = os.environ.copy() if 'MACOSX_DEPLOYMENT_TARGET' in env: del env['MACOSX_DEPLOYMENT_TARGET'] p = subprocess.Popen([ sys.executable, '-c', 'import sysconfig; print(sysconfig.get_platform())', ], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, env=env) test_platform = p.communicate()[0].strip() test_platform = test_platform.decode('utf-8') status = p.wait() self.assertEqual(status, 0) self.assertEqual(my_platform, test_platform) # Test with MACOSX_DEPLOYMENT_TARGET in the environment, and # using a value that is unlikely to be the default one. env = os.environ.copy() env['MACOSX_DEPLOYMENT_TARGET'] = '10.1' p = subprocess.Popen([ sys.executable, '-c', 'import sysconfig; print(sysconfig.get_platform())', ], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, env=env) test_platform = p.communicate()[0].strip() test_platform = test_platform.decode('utf-8') status = p.wait() self.assertEqual(status, 0) self.assertEqual(my_platform, test_platform) def test_srcdir(self): # See Issues #15322, #15364. srcdir = sysconfig.get_config_var('srcdir') self.assertTrue(os.path.isabs(srcdir), srcdir) self.assertTrue(os.path.isdir(srcdir), srcdir) if sysconfig._PYTHON_BUILD: # The python executable has not been installed so srcdir # should be a full source checkout. Python_h = os.path.join(srcdir, 'Include', 'Python.h') self.assertTrue(os.path.exists(Python_h), Python_h) self.assertTrue(sysconfig._is_python_source_dir(srcdir)) elif os.name == 'posix': makefile_dir = os.path.dirname(sysconfig.get_makefile_filename()) # Issue #19340: srcdir has been realpath'ed already makefile_dir = os.path.realpath(makefile_dir) self.assertEqual(makefile_dir, srcdir) def test_srcdir_independent_of_cwd(self): # srcdir should be independent of the current working directory # See Issues #15322, #15364. srcdir = sysconfig.get_config_var('srcdir') with change_cwd(os.pardir): srcdir2 = sysconfig.get_config_var('srcdir') self.assertEqual(srcdir, srcdir2) @unittest.skipIf(sysconfig.get_config_var('EXT_SUFFIX') is None, 'EXT_SUFFIX required for this test') def test_SO_deprecation(self): self.assertWarns(DeprecationWarning, sysconfig.get_config_var, 'SO') @unittest.skipIf(sysconfig.get_config_var('EXT_SUFFIX') is None, 'EXT_SUFFIX required for this test') def test_SO_value(self): with check_warnings(('', DeprecationWarning)): self.assertEqual(sysconfig.get_config_var('SO'), sysconfig.get_config_var('EXT_SUFFIX')) @unittest.skipIf(sysconfig.get_config_var('EXT_SUFFIX') is None, 'EXT_SUFFIX required for this test') def test_SO_in_vars(self): vars = sysconfig.get_config_vars() self.assertIsNotNone(vars['SO']) self.assertEqual(vars['SO'], vars['EXT_SUFFIX']) @unittest.skipUnless(sys.platform == 'linux' and hasattr(sys.implementation, '_multiarch'), 'multiarch-specific test') def test_triplet_in_ext_suffix(self): ctypes = import_module('ctypes') import platform, re machine = platform.machine() suffix = sysconfig.get_config_var('EXT_SUFFIX') if re.match('(aarch64|arm|mips|ppc|powerpc|s390|sparc)', machine): self.assertTrue('linux' in suffix, suffix) if re.match('(i[3-6]86|x86_64)$', machine): if ctypes.sizeof(ctypes.c_char_p()) == 4: self.assertTrue(suffix.endswith('i386-linux-gnu.so') or suffix.endswith('x86_64-linux-gnux32.so'), suffix) else: # 8 byte pointer size self.assertTrue(suffix.endswith('x86_64-linux-gnu.so'), suffix) @unittest.skipUnless(sys.platform == 'darwin', 'OS X-specific test') def test_osx_ext_suffix(self): suffix = sysconfig.get_config_var('EXT_SUFFIX') self.assertTrue(suffix.endswith('-darwin.so'), suffix) class MakefileTests(unittest.TestCase): @unittest.skipIf(sys.platform.startswith('win'), 'Test is not Windows compatible') def test_get_makefile_filename(self): makefile = sysconfig.get_makefile_filename() self.assertTrue(os.path.isfile(makefile), makefile) def test_parse_makefile(self): self.addCleanup(unlink, TESTFN) with open(TESTFN, "w") as makefile: print("var1=a$(VAR2)", file=makefile) print("VAR2=b$(var3)", file=makefile) print("var3=42", file=makefile) print("var4=$/invalid", file=makefile) print("var5=dollar$$5", file=makefile) print("var6=${var3}/lib/python3.5/config-$(VAR2)$(var5)" "-x86_64-linux-gnu", file=makefile) vars = sysconfig._parse_makefile(TESTFN) self.assertEqual(vars, { 'var1': 'ab42', 'VAR2': 'b42', 'var3': 42, 'var4': '$/invalid', 'var5': 'dollar$5', 'var6': '42/lib/python3.5/config-b42dollar$5-x86_64-linux-gnu', }) def test_main(): run_unittest(TestSysConfig, MakefileTests) if __name__ == "__main__": test_main()
40.855234
97
0.576973
7948391e65caca57a0a7cbd6aad771064574cfd2
1,259
py
Python
2018/12-35C3/rev-boxofblink/extract_change.py
wani-hackase/wani-writeup
dd4ad0607d2f2193ad94c1ce65359294aa591681
[ "MIT" ]
25
2019-03-06T11:55:56.000Z
2021-05-21T22:07:14.000Z
2018/12-35C3/rev-boxofblink/extract_change.py
wani-hackase/wani-writeup
dd4ad0607d2f2193ad94c1ce65359294aa591681
[ "MIT" ]
1
2020-06-25T07:27:15.000Z
2020-06-25T07:27:15.000Z
2018/12-35C3/rev-boxofblink/extract_change.py
wani-hackase/wani-writeup
dd4ad0607d2f2193ad94c1ce65359294aa591681
[ "MIT" ]
1
2019-02-14T00:42:28.000Z
2019-02-14T00:42:28.000Z
import sys ignores = [0] if len(sys.argv) != 2: print("usage: %s [filename]" % (sys.argv[0])) sys.exit(0) fp = open(sys.argv[1]) line = fp.readline() if line == "": sys.exit() items = line.split(',') pre_values = [] for i in range(len(items)): if i == 0: pre_values.append(float(items[i])) else: pre_values.append(int(items[i])) index = 0 while line: items = line.split(',') current_values = [] for i in range(len(items)): if i == 0: current_values.append(float(items[i])) else: current_values.append(int(items[i])) if current_values[1:-1] != pre_values[1:-1]: for i in range(len(pre_values)): if i == 0: print("%.10f" % (pre_values[i]), end="") else: print(",%d" % (pre_values[i]), end="") print("") for i in range(len(current_values)): if i == 0: print("%.10f" % (current_values[i]), end="") else: print(",%d" % (current_values[i]), end="") print("") pre_values = current_values line = fp.readline() index = index + 1 # if index == 100000: # break
19.984127
60
0.481334
79483a18ade49b9e3a6aee2e2162b3123a115e42
536
py
Python
python/en/_numpy/1.Quickstart_tutorial-1.The_Basics-1.An_eample.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_numpy/1.Quickstart_tutorial-1.The_Basics-1.An_eample.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_numpy/1.Quickstart_tutorial-1.The_Basics-1.An_eample.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
# 1.Quickstart_tutorial-1.The_Basics-1.An_eample.py # # https://docs.scipy.org/doc/numpy/user/quickstart.html # The Basics - An example import numpy as np a = np.arange(15).reshape(3,5) #>>> a #array([[ 0, 1, 2, 3, 4], # [ 5, 6, 7, 8, 9], # [10, 11, 12, 13, 14]]) print( a.shape ) #(3, 5) print( a.ndim ) #2 print( a.dtype.name ) #int64 print( a.itemsize ) #8 print( a.size ) #15 print( type(a) ) #<class 'numpy.ndarray'> b = np.array( [6,7,8] ) #array([6, 7, 8]) print( type(b) ) #<class 'numpy.ndarray'>
14.486486
55
0.576493
79483a35bdc84873fcf5a12328b21093cd96f7de
2,818
py
Python
modules/dense_correspondence_manipulation/scripts/render_depth_images.py
masato-ka/pytorch-dense-correspondence
89a5f87fd773b210e93ebcfeb945c95e7417d0e9
[ "BSD-3-Clause" ]
null
null
null
modules/dense_correspondence_manipulation/scripts/render_depth_images.py
masato-ka/pytorch-dense-correspondence
89a5f87fd773b210e93ebcfeb945c95e7417d0e9
[ "BSD-3-Clause" ]
null
null
null
modules/dense_correspondence_manipulation/scripts/render_depth_images.py
masato-ka/pytorch-dense-correspondence
89a5f87fd773b210e93ebcfeb945c95e7417d0e9
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env directorPython import os import argparse import dense_correspondence_manipulation.change_detection.change_detection as change_detection import dense_correspondence_manipulation.utils.utils as utils from dense_correspondence_manipulation.utils.constants import * from director.timercallback import TimerCallback """ Renders depth images against the entire scene """ CONFIG_FILE = CHANGE_DETECTION_CONFIG_FILE def run(data_folder, config_file=CONFIG_FILE, debug=False, globalsDict=None): """ Runs the change detection pipeline :param data_dir: :param config_file: :return: """ if globalsDict is None: globalsDict = globals() config_file = CONFIG_FILE config = utils.getDictFromYamlFilename(config_file) # make dimensions large so no cropping for key in config['crop_box']['dimensions']: config['crop_box']['dimensions'][key] = 10.0# set it to 10 meteres changeDetection, obj_dict = change_detection.ChangeDetection.from_data_folder(data_folder, config=config, globalsDict=globalsDict, background_data_folder=data_folder) # set foreground mesh to actually be background mesh changeDetection.foreground_reconstruction = changeDetection.background_reconstruction app = obj_dict['app'] globalsDict['cd'] = changeDetection view = obj_dict['view'] # if debug: # changeDetection.background_reconstruction.visualize_reconstruction(view, name='background') def single_shot_function(): changeDetection.render_depth_images() app.app.quit() if not debug: TimerCallback(callback=single_shot_function).singleShot(0) app.app.start(restoreWindow=True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default='/home/manuelli/code/data_volume/sandbox/drill_scenes/04_drill_long_downsampled') default_config_file = os.path.join(utils.getDenseCorrespondenceSourceDir(), 'config', 'stations', 'RLG_iiwa_1', 'change_detection.yaml') parser.add_argument("--config_file", type=str, default=default_config_file) parser.add_argument('--current_dir', action='store_true', default=False, help="run the script with --data_dir set to the current directory") parser.add_argument('--debug', action='store_true', default=False, help="launch the app in debug mode") globalsDict = globals() args = parser.parse_args() data_folder = args.data_dir if args.current_dir: print("running with data_dir set to current working directory . . . ") data_folder = os.getcwd() run(data_folder, config_file=args.config_file, debug=args.debug, globalsDict=globalsDict)
32.767442
144
0.71895
79483a4f66726810a694c4724567c8f5afb59f81
801
py
Python
setup.py
cosmodesi/cosmoprimo
a0d466418f6f5af80d446627109ce11bfb46f8b5
[ "BSD-3-Clause" ]
2
2022-01-07T12:20:01.000Z
2022-01-22T20:34:03.000Z
setup.py
cosmodesi/cosmoprimo
a0d466418f6f5af80d446627109ce11bfb46f8b5
[ "BSD-3-Clause" ]
null
null
null
setup.py
cosmodesi/cosmoprimo
a0d466418f6f5af80d446627109ce11bfb46f8b5
[ "BSD-3-Clause" ]
null
null
null
import os import sys from setuptools import setup package_basename = 'cosmoprimo' sys.path.insert(0, os.path.join(os.path.dirname(__file__), package_basename)) import _version version = _version.__version__ setup(name=package_basename, version=version, author='cosmodesi', author_email='', description='Lightweight primordial cosmology package, including wrappers to CLASS, CAMB, Eisenstein and Hu...', license='BSD3', url='http://github.com/cosmodesi/cosmoprimo', install_requires=['numpy', 'scipy'], extras_require={'class': ['cython', 'pyclass @ git+https://github.com/adematti/pyclass@1.0.0'], 'camb': ['camb'], 'astropy': ['astropy'], 'extras': ['pyfftw']}, package_data={'cosmoprimo': ['data/*.dat']}, packages=[package_basename])
34.826087
166
0.689139
79483b8d34fe4614b51e1546b30fce56c91fb036
469
py
Python
newsletters/migrations/0007_addemail_email.py
Juanvulcano/gci15_email
85f7133d3b539f14a56fedf7f2fc1987844d60e5
[ "MIT" ]
null
null
null
newsletters/migrations/0007_addemail_email.py
Juanvulcano/gci15_email
85f7133d3b539f14a56fedf7f2fc1987844d60e5
[ "MIT" ]
null
null
null
newsletters/migrations/0007_addemail_email.py
Juanvulcano/gci15_email
85f7133d3b539f14a56fedf7f2fc1987844d60e5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('newsletters', '0006_auto_20151218_2026'), ] operations = [ migrations.AddField( model_name='addemail', name='email', field=models.EmailField(default=' ', unique=True, max_length=254), preserve_default=False, ), ]
22.333333
78
0.609808
79483bd4abdf264f0227f9a8098f52cb79513113
862
py
Python
find-peak-element/Solution.17532630.py
rahul-ramadas/leetcode
6c84c2333a613729361c5cdb63dc3fc80203b340
[ "MIT" ]
null
null
null
find-peak-element/Solution.17532630.py
rahul-ramadas/leetcode
6c84c2333a613729361c5cdb63dc3fc80203b340
[ "MIT" ]
1
2016-09-11T22:26:17.000Z
2016-09-13T01:49:48.000Z
find-peak-element/Solution.17532630.py
rahul-ramadas/leetcode
6c84c2333a613729361c5cdb63dc3fc80203b340
[ "MIT" ]
null
null
null
class Solution: def getElement(self, num, index): if index < 0 or index >= len(num): return float('-inf') return num[index] def findPeakElement(self, num): lower_bound = 0 upper_bound = len(num) while True: middle_index = (upper_bound + lower_bound) // 2 middle = self.getElement(num, middle_index) left = self.getElement(num, middle_index - 1) right = self.getElement(num, middle_index + 1) if left < middle > right: return middle_index elif left < middle < right: lower_bound = middle_index + 1 elif left > middle > right: upper_bound = middle_index elif left > middle < right: upper_bound = middle_index
29.724138
60
0.523202
79483cc458b21dc3623f764d8f423f9991e16bc0
10,789
py
Python
projects/faster_rcnn_swin_transformer/train_net_swint_full_reso.py
cenchaojun/detectron2
03ca41a6873bb641764c4762d40d355f215e7ad9
[ "Apache-2.0" ]
null
null
null
projects/faster_rcnn_swin_transformer/train_net_swint_full_reso.py
cenchaojun/detectron2
03ca41a6873bb641764c4762d40d355f215e7ad9
[ "Apache-2.0" ]
null
null
null
projects/faster_rcnn_swin_transformer/train_net_swint_full_reso.py
cenchaojun/detectron2
03ca41a6873bb641764c4762d40d355f215e7ad9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. """ Detection Training Script. This scripts reads a given config file and runs the training or evaluation. It is an entry point that is made to train standard models in detectron2. In order to let one script support training of many models, this script contains logic that are specific to these built-in models and therefore may not be suitable for your own project. For example, your research project perhaps only needs a single "evaluator". Therefore, we recommend you to use detectron2 as an library and take this file as an example of how to use the library. You may want to write your own script with your datasets and other customizations. """ import itertools import logging import os from collections import OrderedDict import torch import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch from detectron2.evaluation import ( CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, LVISEvaluator, PascalVOCDetectionEvaluator, SemSegEvaluator, verify_results, ) from detectron2.modeling import GeneralizedRCNNWithTTA from detectron2.solver.build import maybe_add_gradient_clipping, get_default_optimizer_params from swint import add_swint_config os.environ['CUDA_VISIBLE_DEVICES'] = '2,3' from detectron2.modeling import GeneralizedRCNNWithTTA ##===============注册自定义数据集================## from detectron2.data.datasets import register_coco_instances register_coco_instances("SSLAD-2D_train", {}, json_file=r"/data/cenzhaojun/dataset/SODA10M/SSLAD-2D/labeled/annotations/instance_train.json", image_root = r"/data/cenzhaojun/dataset/SODA10M/SSLAD-2D/labeled/train") register_coco_instances("SSLAD-2D_test", {}, r"/data/cenzhaojun/dataset/SODA10M/SSLAD-2D/labeled/annotations/instance_val.json", r"/data/cenzhaojun/dataset/SODA10M/SSLAD-2D/labeled/val") # 设置类别 from detectron2.data import MetadataCatalog MetadataCatalog.get("SSLAD-2D_train").thing_classes = ['Pedestrian','Cyclist','Car','Truck','Tram','Tricycle'] MetadataCatalog.get("SSLAD-2D_test").thing_classes = ['Pedestrian','Cyclist','Car','Truck','Tram','Tricycle'] # python tools/train_augmentationv2.py --config-file configs/Misc/cascade_rcnn_R_50_FPN_1x.yaml --num-gpus 2 OUTPUT_DIR training_dir/cascade_rcnn_R_50_FPN_1x_augmentation class Trainer(DefaultTrainer): """ We use the "DefaultTrainer" which contains pre-defined default logic for standard training workflow. They may not work for you, especially if you are working on a new research project. In that case you can write your own training loop. You can use "tools/plain_train_net.py" as an example. """ # def build_train_loader(cls, cfg): # return build_detection_train_loader(cfg, mapper=DatasetMapper(cfg, is_train=True, augmentations=[ # T.RandomBrightness(0.3, 2.0), # T.RandomContrast(0.3, 2.5), # # T.ColorTransform # # RandomGaussianNoise(), # # RandomPepperNoise(), # # T.RandomRotation([-90,90]), # # RandomResize(0.5,1.5), # # T.RandomCrop('relative_range',(0.3,0.3)), # # T.RandomExtent(scale_range=(0.3, 1), shift_range=(1, 1)) # ])) @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, output_dir=output_folder, ) ) if evaluator_type in ["coco", "coco_panoptic_seg"]: evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder)) if evaluator_type == "coco_panoptic_seg": evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) if evaluator_type == "cityscapes_instance": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesInstanceEvaluator(dataset_name) if evaluator_type == "cityscapes_sem_seg": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesSemSegEvaluator(dataset_name) elif evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type == "lvis": return LVISEvaluator(dataset_name, cfg, True, output_folder) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) @classmethod def test_with_TTA(cls, cfg, model): logger = logging.getLogger("detectron2.trainer") # In the end of training, run an evaluation with TTA # Only support some R-CNN models. logger.info("Running inference with test-time augmentation ...") model = GeneralizedRCNNWithTTA(cfg, model) evaluators = [ cls.build_evaluator( cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") ) for name in cfg.DATASETS.TEST ] res = cls.test(cfg, model, evaluators) res = OrderedDict({k + "_TTA": v for k, v in res.items()}) return res @classmethod def build_optimizer(cls, cfg, model): params = get_default_optimizer_params( model, base_lr=cfg.SOLVER.BASE_LR, weight_decay=cfg.SOLVER.WEIGHT_DECAY, weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM, bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR, weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS, ) def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class # detectron2 doesn't have full model gradient clipping now clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE enable = ( cfg.SOLVER.CLIP_GRADIENTS.ENABLED and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" and clip_norm_val > 0.0 ) class FullModelGradientClippingOptimizer(optim): def step(self, closure=None): all_params = itertools.chain(*[x["params"] for x in self.param_groups]) torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) super().step(closure=closure) return FullModelGradientClippingOptimizer if enable else optim optimizer_type = cfg.SOLVER.OPTIMIZER if optimizer_type == "SGD": optimizer = maybe_add_gradient_clipping(torch.optim.SGD)( params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, nesterov=cfg.SOLVER.NESTEROV, weight_decay=cfg.SOLVER.WEIGHT_DECAY, ) elif optimizer_type == "AdamW": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( params, cfg.SOLVER.BASE_LR, betas=(0.9, 0.999), weight_decay=cfg.SOLVER.WEIGHT_DECAY, ) else: raise NotImplementedError(f"no optimizer type {optimizer_type}") return optimizer def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() args.config_file = '../../configs/SwinT/faster_rcnn_swint_T_FPN_3x.yaml' add_swint_config(cfg) cfg.merge_from_file(args.config_file) cfg.MODEL.WEIGHTS = "/data/cenzhaojun/detectron2/weights/faster_rcnn_swint_T.pth" cfg.DATASETS.TRAIN = ("SSLAD-2D_train",) # 训练数据集名称 cfg.DATASETS.TEST = ("SSLAD-2D_test",) cfg.OUTPUT_DIR = '/data/cenzhaojun/detectron2/training_dir/faster_rcnn_swint_T_FPN_3x_full_reso' ITERS_IN_ONE_EPOCH = int(cfg.SOLVER.MAX_ITER / cfg.SOLVER.IMS_PER_BATCH) cfg.TEST.EVAL_PERIOD = ITERS_IN_ONE_EPOCH cfg.INPUT.MAX_SIZE_TRAIN = 1920 cfg.INPUT.MAX_SIZE_TEST = 1920 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 6 cfg.SOLVER.IMS_PER_BATCH = 22 cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) if cfg.TEST.AUG.ENABLED: res.update(Trainer.test_with_TTA(cfg, model)) if comm.is_main_process(): verify_results(cfg, res) return res """ If you'd like to do anything fancier than the standard training logic, consider writing your own training loop (see plain_train_net.py) or subclassing the trainer. """ trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) if cfg.TEST.AUG.ENABLED: trainer.register_hooks( [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] ) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() args.num_gpus = 2 args.resume = True print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
41.817829
171
0.668644
79483d18d26a548c0be9d4b3b9470efd1cad068a
28,287
py
Python
pysnmp/DELL-NETWORKING-OPENFLOW-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/DELL-NETWORKING-OPENFLOW-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/DELL-NETWORKING-OPENFLOW-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module DELL-NETWORKING-OPENFLOW-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DELL-NETWORKING-OPENFLOW-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:22:42 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ValueSizeConstraint") dellNetMgmt, = mibBuilder.importSymbols("DELL-NETWORKING-SMI", "dellNetMgmt") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") InetPortNumber, InetAddressType, InetAddress = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetPortNumber", "InetAddressType", "InetAddress") VlanId, = mibBuilder.importSymbols("Q-BRIDGE-MIB", "VlanId") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") TimeTicks, Integer32, Counter32, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity, ModuleIdentity, Unsigned32, Bits, Gauge32, iso, NotificationType, Counter64, IpAddress = mibBuilder.importSymbols("SNMPv2-SMI", "TimeTicks", "Integer32", "Counter32", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity", "ModuleIdentity", "Unsigned32", "Bits", "Gauge32", "iso", "NotificationType", "Counter64", "IpAddress") TextualConvention, TruthValue, DisplayString, MacAddress, TimeStamp = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "TruthValue", "DisplayString", "MacAddress", "TimeStamp") dellNetOpenFlow = ModuleIdentity((1, 3, 6, 1, 4, 1, 6027, 3, 20)) if mibBuilder.loadTexts: dellNetOpenFlow.setLastUpdated('201203271200Z') if mibBuilder.loadTexts: dellNetOpenFlow.setOrganization('Dell Inc') ofSwitchObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1)) ofSwitchNotification = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 20, 2)) class DataPathIdentifier(TextualConvention, OctetString): status = 'current' displayHint = '1x:' subtypeSpec = OctetString.subtypeSpec + ValueSizeConstraint(8, 8) fixedLength = 8 ofSwitchId = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofSwitchId.setStatus('current') ofManufacturerDesc = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofManufacturerDesc.setStatus('current') ofHardwareDesc = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofHardwareDesc.setStatus('current') ofSoftwareDesc = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofSoftwareDesc.setStatus('current') ofSwitchSerialNo = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 5), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofSwitchSerialNo.setStatus('current') ofSwitchVersion = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofSwitchVersion.setStatus('current') ofInstTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7), ) if mibBuilder.loadTexts: ofInstTable.setStatus('current') ofInstEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1), ).setIndexNames((0, "DELL-NETWORKING-OPENFLOW-MIB", "ofInstId")) if mibBuilder.loadTexts: ofInstEntry.setStatus('current') ofInstId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))) if mibBuilder.loadTexts: ofInstId.setStatus('current') ofInstAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("up", 1), ("down", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstAdminState.setStatus('current') ofInstIntfType = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("port", 1), ("vlan", 2), ("any", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstIntfType.setStatus('current') ofInstDataPathId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 4), DataPathIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstDataPathId.setStatus('current') ofInstConnectTimeout = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 5), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstConnectTimeout.setStatus('current') ofInstEchoReplyTimeout = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 6), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstEchoReplyTimeout.setStatus('current') ofInstEchoReqInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstEchoReqInterval.setStatus('current') ofInstNumFlows = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 8), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstNumFlows.setStatus('current') ofInstSuppCapabilities = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 9), Bits().clone(namedValues=NamedValues(("port", 0), ("table", 1), ("flow", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstSuppCapabilities.setStatus('current') ofInstSuppActions = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 7, 1, 10), Bits().clone(namedValues=NamedValues(("output", 0), ("set-vlan", 1), ("set-pcp", 2), ("set-smac", 3), ("set-dmac", 4), ("set-tos", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofInstSuppActions.setStatus('current') ofCntlrTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8), ) if mibBuilder.loadTexts: ofCntlrTable.setStatus('current') ofCntlrEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8, 1), ).setIndexNames((0, "DELL-NETWORKING-OPENFLOW-MIB", "ofInstId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofCntlrId")) if mibBuilder.loadTexts: ofCntlrEntry.setStatus('current') ofCntlrId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))) if mibBuilder.loadTexts: ofCntlrId.setStatus('current') ofCntlrAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8, 1, 2), InetAddressType()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofCntlrAddrType.setStatus('current') ofCntlrAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8, 1, 3), InetAddress().subtype(subtypeSpec=ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(4, 4), ValueSizeConstraint(8, 8), ValueSizeConstraint(16, 16), ValueSizeConstraint(20, 20), ))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofCntlrAddr.setStatus('current') ofCntlrPortNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8, 1, 4), InetPortNumber()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofCntlrPortNumber.setStatus('current') ofCntlrProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("tls", 1), ("tcp", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofCntlrProtocol.setStatus('current') ofCntlrConState = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 8, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("down", 1), ("up", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofCntlrConState.setStatus('current') ofPortTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 9), ) if mibBuilder.loadTexts: ofPortTable.setStatus('current') ofPortEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 9, 1), ).setIndexNames((0, "DELL-NETWORKING-OPENFLOW-MIB", "ofInstId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofPortIfIndex")) if mibBuilder.loadTexts: ofPortEntry.setStatus('current') ofPortIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 9, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: ofPortIfIndex.setStatus('current') ofPortAssociationType = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 9, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("instancePort", 1), ("instVlanPort", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofPortAssociationType.setStatus('current') ofVlanTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 10), ) if mibBuilder.loadTexts: ofVlanTable.setStatus('current') ofVlanEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 10, 1), ).setIndexNames((0, "DELL-NETWORKING-OPENFLOW-MIB", "ofInstId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofVlanIfIndex")) if mibBuilder.loadTexts: ofVlanEntry.setStatus('current') ofVlanIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 10, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: ofVlanIfIndex.setStatus('current') ofVlanId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 10, 1, 2), VlanId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofVlanId.setStatus('current') ofFlowTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11), ) if mibBuilder.loadTexts: ofFlowTable.setStatus('current') ofFlowEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1), ).setIndexNames((0, "DELL-NETWORKING-OPENFLOW-MIB", "ofInstId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofFlowId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofFlowTblId")) if mibBuilder.loadTexts: ofFlowEntry.setStatus('current') ofFlowId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 1), Unsigned32()) if mibBuilder.loadTexts: ofFlowId.setStatus('current') ofFlowTblId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 2), Unsigned32()) if mibBuilder.loadTexts: ofFlowTblId.setStatus('current') ofFlowPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowPriority.setStatus('current') ofFlowIdleTime = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowIdleTime.setStatus('current') ofFlowHardTime = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 5), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setUnits('seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowHardTime.setStatus('current') ofFlowUpTime = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 6), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowUpTime.setStatus('current') ofFlowCookie = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 64))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowCookie.setStatus('current') ofFlowPacketCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowPacketCount.setStatus('current') ofFlowByteCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 11, 1, 9), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowByteCount.setStatus('current') ofFlowMatchParamsTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12), ) if mibBuilder.loadTexts: ofFlowMatchParamsTable.setStatus('current') ofFlowMatchParamsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1), ) ofFlowEntry.registerAugmentions(("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchParamsEntry")) ofFlowMatchParamsEntry.setIndexNames(*ofFlowEntry.getIndexNames()) if mibBuilder.loadTexts: ofFlowMatchParamsEntry.setStatus('current') ofFlowMatchInPort = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 1), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchInPort.setStatus('current') ofFlowMatchEtherSrcAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 2), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 6))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchEtherSrcAddr.setStatus('current') ofFlowMatchEtherDstAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 3), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 6))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchEtherDstAddr.setStatus('current') ofFlowMatchVlanId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchVlanId.setStatus('current') ofFlowMatchEthType = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 5), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchEthType.setStatus('current') ofFlowMatchVlanPri = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 1))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchVlanPri.setStatus('current') ofFlowMatchIpTos = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 1))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchIpTos.setStatus('current') ofFlowMatchIpProto = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 8), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 1))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchIpProto.setStatus('current') ofFlowMatchIpSrcAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 9), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 4))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchIpSrcAddr.setStatus('current') ofFlowMatchIpDestAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 10), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 4))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchIpDestAddr.setStatus('current') ofFlowMatchTpSrcPort = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 11), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchTpSrcPort.setStatus('current') ofFlowMatchTpDstPort = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 12, 1, 12), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowMatchTpDstPort.setStatus('current') ofFlowActionTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13), ) if mibBuilder.loadTexts: ofFlowActionTable.setStatus('current') ofFlowActionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1), ).setIndexNames((0, "DELL-NETWORKING-OPENFLOW-MIB", "ofInstId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofFlowId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofFlowTblId"), (0, "DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionId")) if mibBuilder.loadTexts: ofFlowActionEntry.setStatus('current') ofFlowActionId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 1), Unsigned32()) if mibBuilder.loadTexts: ofFlowActionId.setStatus('current') ofFlowActionType = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 65535))).clone(namedValues=NamedValues(("outToSwitchPort", 1), ("setVlanVid", 2), ("setVlanPcp", 3), ("stripVlan", 4), ("setDlSrc", 5), ("setDlDst", 6), ("setNetworkSrc", 7), ("setNetworkDst", 8), ("setNetworkTos", 9), ("setTpSrc", 10), ("setTpDest", 11), ("outToQueue", 12), ("vendor", 65535)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionType.setStatus('current') ofFlowActionSrcMac = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 3), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionSrcMac.setStatus('current') ofFlowActionDstMac = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 4), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionDstMac.setStatus('current') ofFlowActionPortIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 5), InterfaceIndex()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionPortIndex.setStatus('current') ofFlowActionVlanId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 6), VlanId()).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionVlanId.setStatus('current') ofFlowActionMaxLen = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionMaxLen.setStatus('current') ofFlowActionVlanPcp = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 8), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionVlanPcp.setStatus('current') ofFlowActionNWTos = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 13, 1, 9), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: ofFlowActionNWTos.setStatus('current') ofSwitchNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 20, 2, 0)) ofSwitchNotifyVariable = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 20, 2, 1)) ofSwitchFlowTableSrc = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 20, 2, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("ifp", 1), ("vlan", 2), ("dmac", 3), ("route", 4), ("lb", 5)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ofSwitchFlowTableSrc.setStatus('current') ofSwitchCntlrSessionStatusChanged = NotificationType((1, 3, 6, 1, 4, 1, 6027, 3, 20, 2, 0, 1)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofCntlrConState")) if mibBuilder.loadTexts: ofSwitchCntlrSessionStatusChanged.setStatus('current') ofSwitchFlowTableFull = NotificationType((1, 3, 6, 1, 4, 1, 6027, 3, 20, 2, 0, 2)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchFlowTableSrc")) if mibBuilder.loadTexts: ofSwitchFlowTableFull.setStatus('current') ofSwitchMibConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14)) ofSwitchMibCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 1)) ofSwitchMibGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2)) ofSwitchMibCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 1, 1)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchScalarGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstanceGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofControllerGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofPortGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofVlanGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchParamsGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionGroup"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchMibNotificationsGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofSwitchMibCompliance = ofSwitchMibCompliance.setStatus('current') ofSwitchScalarGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 1)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchId"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofManufacturerDesc"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofHardwareDesc"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofSoftwareDesc"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchSerialNo"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchVersion")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofSwitchScalarGroup = ofSwitchScalarGroup.setStatus('current') ofInstanceGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 2)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofInstAdminState"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstIntfType"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstDataPathId"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstConnectTimeout"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstEchoReplyTimeout"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstEchoReqInterval"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstNumFlows"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstSuppCapabilities"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofInstSuppActions")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofInstanceGroup = ofInstanceGroup.setStatus('current') ofControllerGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 3)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofCntlrAddrType"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofCntlrAddr"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofCntlrPortNumber"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofCntlrProtocol"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofCntlrConState")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofControllerGroup = ofControllerGroup.setStatus('current') ofPortGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 4)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofPortAssociationType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofPortGroup = ofPortGroup.setStatus('current') ofVlanGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 5)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofVlanId")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofVlanGroup = ofVlanGroup.setStatus('current') ofFlowGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 6)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowPriority"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowIdleTime"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowHardTime"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowUpTime"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowCookie"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowPacketCount"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowByteCount")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofFlowGroup = ofFlowGroup.setStatus('current') ofFlowMatchParamsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 7)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchInPort"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchEtherSrcAddr"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchEtherDstAddr"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchVlanId"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchEthType"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchVlanPri"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchIpTos"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchIpProto"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchIpSrcAddr"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchIpDestAddr"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchTpSrcPort"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowMatchTpDstPort")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofFlowMatchParamsGroup = ofFlowMatchParamsGroup.setStatus('current') ofFlowActionGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 8)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionType"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionSrcMac"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionDstMac"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionPortIndex"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionVlanId"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionMaxLen"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionVlanPcp"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofFlowActionNWTos")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofFlowActionGroup = ofFlowActionGroup.setStatus('current') ofSwitchMibNotificationsGroup = NotificationGroup((1, 3, 6, 1, 4, 1, 6027, 3, 20, 1, 14, 2, 9)).setObjects(("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchCntlrSessionStatusChanged"), ("DELL-NETWORKING-OPENFLOW-MIB", "ofSwitchFlowTableFull")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ofSwitchMibNotificationsGroup = ofSwitchMibNotificationsGroup.setStatus('current') mibBuilder.exportSymbols("DELL-NETWORKING-OPENFLOW-MIB", ofVlanId=ofVlanId, ofSwitchVersion=ofSwitchVersion, ofFlowGroup=ofFlowGroup, ofInstEntry=ofInstEntry, ofInstConnectTimeout=ofInstConnectTimeout, ofVlanEntry=ofVlanEntry, ofSwitchObjects=ofSwitchObjects, ofSwitchFlowTableSrc=ofSwitchFlowTableSrc, ofFlowPacketCount=ofFlowPacketCount, ofSwitchMibNotificationsGroup=ofSwitchMibNotificationsGroup, ofInstIntfType=ofInstIntfType, ofFlowMatchIpTos=ofFlowMatchIpTos, ofSwitchNotifyVariable=ofSwitchNotifyVariable, ofFlowMatchParamsEntry=ofFlowMatchParamsEntry, ofCntlrId=ofCntlrId, ofFlowUpTime=ofFlowUpTime, ofSwitchMibConformance=ofSwitchMibConformance, ofInstAdminState=ofInstAdminState, ofSwitchFlowTableFull=ofSwitchFlowTableFull, ofCntlrEntry=ofCntlrEntry, dellNetOpenFlow=dellNetOpenFlow, ofPortIfIndex=ofPortIfIndex, ofSwitchMibCompliances=ofSwitchMibCompliances, ofFlowId=ofFlowId, ofInstSuppCapabilities=ofInstSuppCapabilities, ofFlowMatchParamsTable=ofFlowMatchParamsTable, ofSwitchNotification=ofSwitchNotification, ofFlowActionSrcMac=ofFlowActionSrcMac, ofFlowMatchVlanId=ofFlowMatchVlanId, ofHardwareDesc=ofHardwareDesc, ofFlowActionGroup=ofFlowActionGroup, ofInstDataPathId=ofInstDataPathId, ofSwitchMibCompliance=ofSwitchMibCompliance, ofInstEchoReqInterval=ofInstEchoReqInterval, ofFlowMatchIpSrcAddr=ofFlowMatchIpSrcAddr, ofCntlrAddrType=ofCntlrAddrType, ofSwitchSerialNo=ofSwitchSerialNo, ofFlowMatchIpDestAddr=ofFlowMatchIpDestAddr, ofFlowTblId=ofFlowTblId, ofControllerGroup=ofControllerGroup, ofSwitchScalarGroup=ofSwitchScalarGroup, ofFlowActionId=ofFlowActionId, ofVlanIfIndex=ofVlanIfIndex, ofCntlrPortNumber=ofCntlrPortNumber, ofFlowMatchParamsGroup=ofFlowMatchParamsGroup, ofFlowMatchEtherDstAddr=ofFlowMatchEtherDstAddr, ofFlowMatchTpSrcPort=ofFlowMatchTpSrcPort, ofFlowCookie=ofFlowCookie, ofFlowActionPortIndex=ofFlowActionPortIndex, ofFlowEntry=ofFlowEntry, ofFlowByteCount=ofFlowByteCount, ofSwitchCntlrSessionStatusChanged=ofSwitchCntlrSessionStatusChanged, ofPortAssociationType=ofPortAssociationType, ofInstanceGroup=ofInstanceGroup, ofCntlrConState=ofCntlrConState, ofFlowActionTable=ofFlowActionTable, ofVlanGroup=ofVlanGroup, ofFlowMatchEtherSrcAddr=ofFlowMatchEtherSrcAddr, ofFlowMatchInPort=ofFlowMatchInPort, ofFlowActionType=ofFlowActionType, ofInstEchoReplyTimeout=ofInstEchoReplyTimeout, ofCntlrProtocol=ofCntlrProtocol, ofFlowActionVlanId=ofFlowActionVlanId, ofManufacturerDesc=ofManufacturerDesc, ofPortTable=ofPortTable, ofFlowMatchEthType=ofFlowMatchEthType, ofInstId=ofInstId, ofCntlrAddr=ofCntlrAddr, ofFlowIdleTime=ofFlowIdleTime, ofCntlrTable=ofCntlrTable, ofPortEntry=ofPortEntry, ofSoftwareDesc=ofSoftwareDesc, ofFlowPriority=ofFlowPriority, PYSNMP_MODULE_ID=dellNetOpenFlow, ofFlowTable=ofFlowTable, ofFlowMatchVlanPri=ofFlowMatchVlanPri, ofFlowMatchIpProto=ofFlowMatchIpProto, ofFlowMatchTpDstPort=ofFlowMatchTpDstPort, ofFlowHardTime=ofFlowHardTime, ofSwitchId=ofSwitchId, ofFlowActionNWTos=ofFlowActionNWTos, ofInstSuppActions=ofInstSuppActions, ofFlowActionVlanPcp=ofFlowActionVlanPcp, ofSwitchMibGroups=ofSwitchMibGroups, ofInstTable=ofInstTable, ofInstNumFlows=ofInstNumFlows, ofSwitchNotifications=ofSwitchNotifications, ofFlowActionMaxLen=ofFlowActionMaxLen, ofVlanTable=ofVlanTable, ofFlowActionEntry=ofFlowActionEntry, ofPortGroup=ofPortGroup, ofFlowActionDstMac=ofFlowActionDstMac, DataPathIdentifier=DataPathIdentifier)
132.182243
3,386
0.752183
79483da989ae5d26cd8be4940125ef867182c156
831
py
Python
rpcservices.py
The-Yak-Collective/iamz1
52d8397abcf109cda1bb87955e1179bc6db60e56
[ "MIT" ]
null
null
null
rpcservices.py
The-Yak-Collective/iamz1
52d8397abcf109cda1bb87955e1179bc6db60e56
[ "MIT" ]
8
2021-02-16T19:25:19.000Z
2021-05-07T10:59:59.000Z
rpcservices.py
The-Yak-Collective/iamz1
52d8397abcf109cda1bb87955e1179bc6db60e56
[ "MIT" ]
1
2021-12-06T14:22:35.000Z
2021-12-06T14:22:35.000Z
import servo_util import xmlrpc.client import json PORTFORLOGGING=9501 # later we will make this an env variable. for now, use 9500-9550 PORTFORLEGS=9502 #position of each servo PORTFORRAG=9503 #send rag commands here logging = xmlrpc.client.ServerProxy('http://localhost:'+str(PORTFORLOGGING)) def log_start(command): logging.logstart(command) def log_stop(): logging.logstop() def log_get(): g=logging.logget() #print(g) return json.loads(g) legs = xmlrpc.client.ServerProxy('http://localhost:'+str(PORTFORLEGS)) def leg_pos(): return legs.legpos() ragserver = xmlrpc.client.ServerProxy('http://localhost:'+str(PORTFORRAG)) def rag(name, reps=1,speedratio=1.0,modu=False,toldtowait=True):#dropping "savedata", as we have logger now return ragserver.rag(name,reps,speedratio,modu,toldtowait)
29.678571
107
0.747292
79483ebc1b92e758fe1437f325b3ab927cdcd0c2
6,267
py
Python
netket/hilbert/homogeneous.py
pesvut/netket
7f19574ddc567748344bb75a4ddd507578d94b0d
[ "Apache-2.0" ]
352
2018-04-24T16:45:10.000Z
2022-03-31T01:15:34.000Z
netket/hilbert/homogeneous.py
pesvut/netket
7f19574ddc567748344bb75a4ddd507578d94b0d
[ "Apache-2.0" ]
947
2018-04-24T20:16:17.000Z
2022-03-31T17:33:52.000Z
netket/hilbert/homogeneous.py
pesvut/netket
7f19574ddc567748344bb75a4ddd507578d94b0d
[ "Apache-2.0" ]
148
2018-04-25T02:44:20.000Z
2022-03-11T11:42:34.000Z
# Copyright 2021 The NetKet Authors - All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, List, Callable from numbers import Real import numpy as np from numba import jit from .discrete_hilbert import DiscreteHilbert from .hilbert_index import HilbertIndex @jit(nopython=True) def _gen_to_bare_numbers(conditions): return np.nonzero(conditions)[0] @jit(nopython=True) def _to_constrained_numbers_kernel(bare_numbers, numbers): found = np.searchsorted(bare_numbers, numbers) if np.max(found) >= bare_numbers.shape[0]: raise RuntimeError("The required state does not satisfy the given constraints.") return found class HomogeneousHilbert(DiscreteHilbert): r"""The Abstract base class for homogeneous hilbert spaces. This class should only be subclassed and should not be instantiated directly. """ def __init__( self, local_states: Optional[List[Real]], N: int = 1, constraint_fn: Optional[Callable] = None, ): r""" Constructs a new ``HomogeneousHilbert`` given a list of eigenvalues of the states and a number of sites, or modes, within this hilbert space. This method should only be called from the subclasses `__init__` method. Args: local_states (list or None): Eigenvalues of the states. If the allowed states are an infinite number, None should be passed as an argument. N: Number of modes in this hilbert space (default 1). constraint_fn: A function specifying constraints on the quantum numbers. Given a batch of quantum numbers it should return a vector of bools specifying whether those states are valid or not. """ assert isinstance(N, int) self._size = N self._is_finite = local_states is not None if self._is_finite: self._local_states = np.asarray(local_states) assert self._local_states.ndim == 1 self._local_size = self._local_states.shape[0] self._local_states = self._local_states.tolist() self._local_states_frozen = frozenset(self._local_states) else: self._local_states = None self._local_states_frozen = None self._local_size = np.iinfo(np.intp).max self._has_constraint = constraint_fn is not None self._constraint_fn = constraint_fn self._hilbert_index = None shape = tuple(self._local_size for _ in range(self.size)) super().__init__(shape=shape) @property def size(self) -> int: r"""The total number number of degrees of freedom.""" return self._size @property def local_size(self) -> int: r"""Size of the local degrees of freedom that make the total hilbert space.""" return self._local_size def size_at_index(self, i: int) -> int: return self.local_size @property def local_states(self) -> Optional[List[float]]: r"""A list of discreet local quantum numbers. If the local states are infinitely many, None is returned.""" return self._local_states def states_at_index(self, i: int): return self.local_states @property def n_states(self) -> int: r"""The total dimension of the many-body Hilbert space. Throws an exception iff the space is not indexable.""" hind = self._get_hilbert_index() if not self._has_constraint: return hind.n_states else: return self._bare_numbers.shape[0] @property def is_finite(self) -> bool: r"""Whether the local hilbert space is finite.""" return self._is_finite @property def constrained(self) -> bool: r"""Returns True if the hilbert space is constrained.""" return self._has_constraint def _numbers_to_states(self, numbers: np.ndarray, out: np.ndarray) -> np.ndarray: hind = self._get_hilbert_index() return hind.numbers_to_states(self._to_bare_numbers(numbers), out) def _states_to_numbers(self, states, out): hind = self._get_hilbert_index() hind.states_to_numbers(states, out) if self._has_constraint: out[:] = _to_constrained_numbers_kernel( self._bare_numbers, out, ) return out def _get_hilbert_index(self): if self._hilbert_index is None: if not self.is_indexable: raise RuntimeError("The hilbert space is too large to be indexed.") self._hilbert_index = HilbertIndex( np.asarray(self.local_states, dtype=np.float64), self.size ) if self._has_constraint: self._bare_numbers = _gen_to_bare_numbers( self._constraint_fn(self._hilbert_index.all_states()) ) else: self._bare_numbers = np.empty(0, dtype=np.intp) return self._hilbert_index def _to_bare_numbers(self, numbers): if self._constraint_fn is None: return numbers else: return self._bare_numbers[numbers] def __repr__(self): constr = ( ", has_constraint={}".format(self._has_constraint) if self._has_constraint else "" ) clsname = type(self).__name__ return f"{clsname}(local_size={self._local_size}, N={self.size}{constr})" @property def _attrs(self): return ( self.size, self.local_size, self._local_states_frozen, self._has_constraint, self._constraint_fn, )
32.304124
88
0.643849
79483efb5e8bdc54697b393be04055b339e883ec
2,500
py
Python
machine_learning/logistic_regression.py
devanshpratapsingh/Python
5327f54512a35fa8c55a83499d56875abbde633c
[ "MIT" ]
null
null
null
machine_learning/logistic_regression.py
devanshpratapsingh/Python
5327f54512a35fa8c55a83499d56875abbde633c
[ "MIT" ]
null
null
null
machine_learning/logistic_regression.py
devanshpratapsingh/Python
5327f54512a35fa8c55a83499d56875abbde633c
[ "MIT" ]
null
null
null
#!/usr/bin/python ## Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries """ Implementing logistic regression for classification problem Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac""" import numpy as np import matplotlib.pyplot as plt # get_ipython().run_line_magic('matplotlib', 'inline') from sklearn import datasets # In[67]: # sigmoid function or logistic function is used as a hypothesis function in classification problems def sigmoid_function(z): return 1 / (1 + np.exp(-z)) def cost_function(h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def log_likelihood(X, Y, weights): scores = np.dot(X, weights) return np.sum(Y * scores - np.log(1 + np.exp(scores))) # here alpha is the learning rate, X is the feature matrix,y is the target matrix def logistic_reg(alpha, X, y, max_iterations=70000): theta = np.zeros(X.shape[1]) for iterations in range(max_iterations): z = np.dot(X, theta) h = sigmoid_function(z) gradient = np.dot(X.T, h - y) / y.size theta = theta - alpha * gradient # updating the weights z = np.dot(X, theta) h = sigmoid_function(z) J = cost_function(h, y) if iterations % 100 == 0: print(f"loss: {J} \t") # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": iris = datasets.load_iris() X = iris.data[:, :2] y = (iris.target != 0) * 1 alpha = 0.1 theta = logistic_reg(alpha, X, y, max_iterations=70000) print("theta: ", theta) # printing the theta i.e our weights vector def predict_prob(X): return sigmoid_function( np.dot(X, theta) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color="b", label="0") plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color="r", label="1") (x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max()) (x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max()) (xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) grid = np.c_[xx1.ravel(), xx2.ravel()] probs = predict_prob(grid).reshape(xx1.shape) plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
28.735632
99
0.6212
79483ff64bb972c4ad5eec4c110a901d23a421b6
1,338
py
Python
graph4nlp/pytorch/modules/config/graph_embedding/__init__.py
stjordanis/graph4nlp
c6ebde32bc77d3a7b78f86a93f19b1c057963ffa
[ "Apache-2.0" ]
1
2021-06-06T15:23:11.000Z
2021-06-06T15:23:11.000Z
graph4nlp/pytorch/modules/config/graph_embedding/__init__.py
stjordanis/graph4nlp
c6ebde32bc77d3a7b78f86a93f19b1c057963ffa
[ "Apache-2.0" ]
null
null
null
graph4nlp/pytorch/modules/config/graph_embedding/__init__.py
stjordanis/graph4nlp
c6ebde32bc77d3a7b78f86a93f19b1c057963ffa
[ "Apache-2.0" ]
1
2021-11-01T08:41:26.000Z
2021-11-01T08:41:26.000Z
from ....modules.utils.config_utils import get_yaml_config import os str2yaml = {"gat": "gat.yaml", "gcn": "gcn.yaml", "ggnn": "ggnn.yaml", "graphsage": "graphsage.yaml"} dir_path = os.path.dirname(os.path.realpath(__file__)) def get_graph_embedding_args(graph_embedding_name): """ It will build the template for ``GNNBase`` model. Parameters ---------- graph_embedding_name: str The graph embedding name. Expected in ["gcn", "gat", "graphsage", "ggnn"]. If it can't find the ``graph_embedding_name``, it will return ``{}``. Returns ------- template_dict: dict The template dict. The structure is shown as follows: { graph_embedding_share: {num_layers: 1, input_size: 300, ...}, graph_embedding_private: {heads: [1], attn_drop: 0.0} } The ``graph_embedding_share`` contains the parameters shared by all ``GNNBase`` models. The ``graph_embedding_private`` contains the parameters specifically in each graph_embedding methods. """ if graph_embedding_name in str2yaml.keys(): yaml_name = str2yaml[graph_embedding_name] path = os.path.join(dir_path, yaml_name) config = get_yaml_config(path) return config else: return {} __all__ = ["get_graph_embedding_args"]
35.210526
109
0.647235
7948411da0222f4375779780f0f63f498d8c6e8e
32,242
py
Python
739. Daily Temperatures.py
Nriver/leetcode
e0b30fae8a31513172fcbd13d67eded8922ba785
[ "MIT" ]
null
null
null
739. Daily Temperatures.py
Nriver/leetcode
e0b30fae8a31513172fcbd13d67eded8922ba785
[ "MIT" ]
null
null
null
739. Daily Temperatures.py
Nriver/leetcode
e0b30fae8a31513172fcbd13d67eded8922ba785
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Author: zengjq # @Date: 2020-03-04 14:04:58 # @Last Modified by: zengjq # @Last Modified time: 2020-03-04 15:04:19 class Solution: # 超时 # 应该是那个pop操作的问题 # 该怎么优化? # def dailyTemperatures(self, T: List[int]) -> List[int]: def dailyTemperatures1(self, T): stack_p = [] # modified做标记是否修改了 modified = [0] * len(T) for i in range(len(T)): pop_list = [] for index, x in enumerate(stack_p): if T[x] < T[i]: T[x] = i - x pop_list.append(index) modified[x] = 1 # print(pop_list) for index in pop_list[::-1]: stack_p.pop(index) stack_p.append(i) for x in range(len(T)): if modified[x] == 0: T[x] = 0 return T # 超时 # 一点小优化 把标记的modified列表直接当作结果列表 def dailyTemperatures2(self, T): stack_p = [] res = [0] * len(T) for i in range(len(T)): pop_list = [] for index, x in enumerate(stack_p): if T[x] < T[i]: pop_list.append(index) res[x] = i - x # print(pop_list) for index in pop_list[::-1]: stack_p.pop(index) stack_p.append(i) return res # 优化stack_p.pop(index)操作 # stack_p中只保留比当前指针所指的位置大的数据 # 遍历stack_p从尾巴开始遍历, 让pop操作每次都是pop最后一个元素 # Runtime: 476 ms, faster than 94.64% of Python3 online submissions for Daily Temperatures. # Memory Usage: 16.9 MB, less than 34.21% of Python3 online submissions for Daily Temperatures. def dailyTemperatures(self, T): stack_p = [] res = [0] * len(T) for i in range(len(T)): while stack_p and T[stack_p[-1]] < T[i]: res[stack_p[-1]] = i - stack_p[-1] stack_p.pop() stack_p.append(i) return res if __name__ == '__main__': s = Solution() print(s.dailyTemperatures([73, 74, 75, 71, 69, 72, 76, 73])) # [1, 1, 4, 2, 1, 1, 0, 0] # print(s.dailyTemperatures([55,38,53,81,61,93,97,32,43,78])) T = [47,34,47,34,47,47,34,34,47,47,34,47,47,47,47,34,47,34,34,47,34,34,34,47,34,47,34,47,34,47,34,34,34,34,34,47,34,34,47,47,47,47,34,34,47,47,34,47,47,34,47,47,47,34,47,34,34,34,34,47,47,34,34,34,47,47,34,34,34,47,34,34,34,34,47,34,34,34,34,47,47,47,34,47,34,34,47,47,34,47,34,34,47,34,34,34,47,34,34,47,34,47,34,47,47,47,34,47,34,47,47,34,47,47,47,47,47,47,47,34,47,47,47,47,34,34,34,34,47,34,34,34,34,34,47,34,47,47,47,47,34,34,47,47,34,47,34,47,47,47,34,47,34,34,34,47,47,47,34,34,34,34,34,47,47,47,47,34,47,47,34,47,34,34,47,34,47,34,34,34,47,34,34,34,47,47,47,47,47,47,47,47,34,47,47,47,47,34,34,34,47,34,34,34,34,47,47,47,34,34,34,34,47,34,47,34,34,47,47,47,34,34,47,34,47,34,34,47,47,34,34,47,34,47,47,47,47,34,47,34,47,34,47,34,34,34,47,47,47,34,34,47,34,47,34,47,47,34,34,47,34,34,47,34,34,47,47,34,34,47,47,47,34,34,47,47,47,34,47,47,47,47,47,34,34,34,34,34,34,34,47,47,34,47,34,47,47,47,47,47,47,47,47,47,47,34,47,47,47,34,47,34,34,34,47,47,47,47,34,47,34,47,34,47,47,34,34,34,47,34,34,47,34,47,34,47,34,34,34,34,47,47,34,47,47,47,34,47,34,34,47,34,47,34,47,34,47,34,47,34,47,47,34,34,47,34,47,47,47,47,47,34,34,34,47,34,47,34,34,47,47,47,34,47,47,47,47,34,34,47,47,34,34,34,47,47,47,34,47,47,47,34,47,34,34,47,47,34,47,34,34,47,34,34,34,34,47,47,47,34,47,47,34,47,47,34,34,34,34,47,34,34,47,34,47,47,47,34,47,34,34,47,34,47,34,34,34,34,34,34,47,47,47,47,47,47,47,34,34,34,47,34,34,47,47,47,34,47,34,47,34,47,34,47,47,47,34,34,34,34,34,34,34,34,47,47,47,34,47,34,34,34,47,34,47,47,34,47,47,47,34,34,34,34,34,47,34,47,34,34,47,34,47,47,34,34,34,34,47,47,34,34,47,47,34,34,34,34,34,34,34,47,34,34,47,34,34,47,34,34,47,34,34,34,47,47,34,34,47,47,47,34,34,47,47,47,34,47,47,47,47,47,47,47,34,47,47,47,34,47,47,34,47,34,34,47,34,34,34,34,34,34,47,47,47,34,47,47,34,47,34,34,47,34,34,34,47,47,34,47,47,34,34,34,47,47,47,47,34,47,34,34,47,47,47,47,47,34,47,34,34,34,47,47,47,34,34,47,47,34,34,34,34,34,47,34,47,34,47,34,47,47,47,47,47,34,47,34,34,34,34,34,47,34,47,47,34,34,47,34,47,34,47,34,47,34,47,34,47,47,34,47,47,47,47,34,34,47,34,34,34,34,47,34,34,47,34,34,34,34,34,47,34,47,34,47,34,47,47,47,34,47,34,34,47,47,34,34,34,34,34,34,47,47,47,47,47,47,34,34,34,34,34,47,47,34,47,47,34,47,34,34,47,34,34,47,47,47,34,47,34,47,47,47,47,34,47,47,34,34,34,34,34,34,47,47,47,47,47,47,47,47,47,34,34,34,47,34,34,47,34,47,34,47,34,47,34,47,47,47,34,34,34,34,47,34,47,47,47,34,34,34,47,47,34,34,47,47,47,34,47,34,47,47,47,47,34,34,34,34,47,34,47,47,47,34,47,47,34,47,34,47,47,47,34,47,34,47,34,47,47,47,47,47,34,34,34,47,47,47,34,47,34,34,34,34,34,34,34,47,47,47,47,47,47,34,47,47,47,34,34,34,47,47,47,47,47,34,34,47,47,34,34,34,34,47,34,34,34,47,34,47,34,47,47,47,47,47,47,34,47,34,47,34,47,34,34,34,34,34,34,47,47,47,34,34,34,34,34,47,34,34,34,47,47,47,34,47,34,47,34,34,47,47,34,34,47,34,47,47,34,47,34,47,34,47,47,34,34,47,47,34,34,34,47,34,34,47,47,34,47,47,34,34,34,47,34,34,34,47,34,34,34,47,47,34,47,34,47,34,47,34,34,34,47,34,34,47,34,47,34,47,47,47,47,47,47,47,34,47,34,34,47,47,34,34,47,34,34,47,47,47,34,47,34,34,47,47,34,34,34,34,34,47,47,34,47,47,34,47,34,34,34,47,34,34,34,47,47,34,34,34,34,34,47,47,47,34,47,47,47,47,34,47,47,47,47,47,34,34,47,47,47,47,34,34,34,47,34,47,47,34,47,47,34,34,47,47,47,47,47,47,34,47,47,34,34,34,47,47,47,47,34,47,47,47,34,47,47,34,34,34,47,34,34,34,47,34,47,34,47,34,47,47,47,47,34,47,34,47,34,47,34,34,47,34,34,47,34,47,47,47,47,34,47,34,47,34,34,34,34,47,34,34,34,47,34,47,47,34,47,34,47,34,47,47,47,47,47,47,34,34,47,47,34,34,47,47,47,47,47,34,47,34,34,47,47,34,34,47,47,47,34,47,34,47,34,47,47,34,47,34,34,47,34,34,47,47,47,34,34,47,47,34,47,47,47,34,47,34,34,47,34,34,47,47,34,34,47,47,34,34,47,47,34,47,34,34,47,34,34,47,47,47,47,47,34,47,47,34,34,34,34,34,47,47,34,47,47,34,47,47,34,47,47,47,47,34,34,34,34,34,34,34,47,34,47,47,34,34,34,47,34,34,47,34,47,47,34,34,47,47,34,47,47,47,47,47,47,47,47,34,34,47,47,47,34,34,34,47,47,47,47,47,47,34,47,47,47,34,34,34,34,34,34,47,47,34,47,34,47,47,47,34,34,47,34,34,34,34,47,34,34,47,34,47,47,34,34,47,34,34,34,47,34,47,47,34,47,47,34,47,47,34,34,47,47,34,34,34,47,47,47,47,47,34,34,34,34,34,34,47,47,34,34,34,34,34,47,34,47,34,47,47,34,47,47,47,47,34,47,34,47,47,34,34,47,47,34,34,47,47,47,47,34,47,47,47,34,47,47,34,34,47,47,34,34,34,47,47,34,34,47,34,34,34,47,47,34,34,34,47,47,34,47,47,47,47,47,47,34,47,47,47,47,34,34,47,47,47,34,34,47,47,47,34,34,47,47,47,47,34,34,47,47,34,47,47,34,47,47,47,47,47,47,47,47,47,47,47,47,34,34,47,34,47,47,34,34,47,34,34,34,34,34,47,34,47,47,47,34,47,47,34,34,34,47,47,47,47,47,34,47,47,47,34,47,34,34,34,47,34,34,34,47,47,47,47,34,34,34,34,34,47,47,34,47,47,34,47,47,47,34,34,34,34,47,34,47,47,47,47,47,47,47,34,34,47,47,47,34,34,34,34,34,34,34,47,34,47,34,34,47,34,34,34,47,34,34,47,47,34,47,34,47,47,34,34,34,34,47,47,34,34,34,47,47,34,47,47,34,34,47,34,47,34,34,34,47,34,34,34,34,47,47,34,47,47,34,34,47,34,34,34,47,34,34,34,34,34,47,34,47,34,34,34,34,34,34,47,34,34,47,34,47,34,34,34,47,47,47,34,34,47,47,47,34,47,34,47,34,34,34,34,34,34,47,34,34,34,47,34,34,47,34,47,34,47,47,47,34,34,47,34,47,47,47,47,34,47,47,34,34,47,34,34,34,34,34,34,34,47,34,47,47,47,34,34,47,34,34,34,34,34,34,34,34,47,34,47,34,34,47,34,47,47,34,34,47,47,47,47,34,34,34,34,34,47,34,47,34,47,34,47,47,34,34,47,47,47,34,47,34,34,47,34,47,47,47,34,47,34,34,34,34,47,34,34,34,34,47,34,34,47,47,47,34,34,47,47,47,47,47,34,34,34,47,47,47,34,47,47,34,47,34,34,34,34,47,47,47,47,34,47,47,34,34,47,34,47,47,34,47,47,34,34,47,47,47,47,34,47,47,34,34,34,34,47,34,47,47,34,34,47,47,34,47,34,34,47,34,47,34,47,47,47,34,47,34,47,47,47,34,34,47,34,47,34,34,34,47,47,34,47,47,34,34,47,47,47,47,47,34,47,47,47,47,47,47,47,34,47,34,34,34,34,34,34,47,47,34,47,34,47,47,47,34,47,47,34,47,47,47,47,47,34,47,47,47,34,34,34,34,47,47,34,47,47,34,47,34,34,47,34,47,47,34,47,34,34,34,47,47,47,47,34,34,34,34,34,34,34,34,34,34,47,34,47,47,47,34,34,47,47,47,47,47,47,47,34,47,34,47,34,34,34,34,34,47,47,47,47,47,47,34,47,47,34,47,47,34,34,34,47,47,34,34,47,34,34,34,47,47,34,34,47,47,34,34,34,47,34,47,34,47,34,34,47,47,47,47,47,47,34,47,47,47,47,47,47,34,47,34,34,47,34,34,34,34,47,47,47,34,47,34,34,47,47,47,47,34,47,34,34,47,47,34,47,47,34,47,34,47,34,47,47,34,34,34,34,34,47,47,34,47,34,47,34,34,47,34,34,47,34,34,47,47,47,47,34,47,34,47,47,47,34,34,47,34,47,34,34,34,47,47,34,34,34,34,34,34,47,47,47,47,47,47,47,34,47,47,47,34,34,47,34,34,47,47,34,47,47,34,47,47,34,34,34,47,34,47,34,34,47,47,34,47,47,47,34,34,47,34,34,34,47,47,34,34,34,34,34,47,34,47,47,34,34,47,34,47,47,34,47,47,34,47,47,34,47,47,47,34,34,47,47,34,34,34,34,47,47,47,34,34,47,47,34,34,47,47,34,47,34,47,34,34,34,34,34,34,34,34,34,47,47,47,47,34,34,34,47,47,47,47,47,34,47,47,34,47,34,47,47,34,47,34,34,47,34,34,47,47,47,47,47,34,34,34,47,34,47,47,47,47,47,47,34,34,47,34,47,47,34,47,47,34,34,34,47,47,47,34,47,47,47,47,47,34,47,34,47,34,47,34,34,34,47,47,47,34,47,47,47,34,47,47,47,47,47,47,34,47,47,47,47,34,47,34,34,47,47,34,47,34,47,47,34,47,34,34,34,47,47,34,47,34,47,34,47,34,34,47,34,47,47,47,34,47,34,47,47,34,34,47,34,47,34,34,34,34,34,34,47,34,34,34,34,34,34,34,47,47,47,47,47,47,34,47,47,47,34,47,34,47,47,34,34,34,34,34,47,47,47,47,47,47,34,47,47,47,47,34,47,47,47,47,34,34,47,47,47,47,34,47,34,47,47,47,34,47,34,47,34,47,34,47,47,34,47,47,34,34,47,47,34,47,47,47,47,47,34,47,47,47,34,47,47,47,47,47,47,47,47,47,34,34,47,34,34,34,47,47,34,47,47,47,34,34,47,34,47,47,34,34,34,47,47,34,47,47,47,47,47,34,34,34,34,47,47,34,47,34,34,34,34,34,47,47,34,47,47,34,47,34,34,47,34,34,34,47,47,34,34,34,47,34,34,34,47,34,47,34,34,47,47,34,34,34,47,34,34,47,34,47,34,34,47,47,47,47,34,47,34,34,47,34,34,34,47,47,34,47,34,47,47,34,47,47,47,47,47,34,34,47,34,34,47,47,47,47,47,47,47,47,34,47,34,47,47,34,34,34,34,34,47,47,47,47,34,47,34,47,47,34,47,34,47,34,47,34,47,34,34,47,34,47,47,34,47,34,47,47,34,34,47,34,34,47,34,47,47,47,47,34,34,47,34,34,47,34,47,47,47,47,34,47,47,34,34,47,47,47,47,34,47,34,47,34,47,47,34,47,34,47,34,47,47,34,34,47,47,47,47,34,34,34,47,47,47,47,34,34,47,34,47,47,47,34,47,47,34,47,34,47,47,34,34,34,47,34,47,47,34,47,47,34,47,34,34,34,47,47,34,34,47,47,47,34,47,47,34,47,47,47,34,34,47,34,47,47,47,47,34,47,34,34,34,47,47,47,47,34,47,47,47,34,34,47,34,47,34,47,34,47,47,34,34,34,34,34,34,47,47,34,34,34,47,34,47,34,34,34,47,34,47,34,34,34,47,34,34,47,47,47,34,34,34,34,34,34,34,47,34,47,34,34,47,34,47,47,34,47,47,34,47,47,34,47,34,34,34,47,47,34,47,34,47,34,47,47,34,34,47,47,34,34,47,47,34,34,34,47,34,47,47,34,47,34,34,34,47,47,47,34,34,34,34,34,34,47,34,47,34,34,34,47,47,47,34,34,47,34,34,47,47,47,47,34,34,47,47,47,47,47,34,34,34,34,47,34,34,47,47,47,34,47,34,34,34,34,47,34,34,34,47,47,34,34,47,47,47,34,34,47,34,34,47,47,47,47,47,34,34,34,47,47,47,34,47,34,34,34,47,34,34,34,34,47,47,47,34,34,47,47,47,47,34,47,34,47,34,34,34,47,47,47,47,47,47,34,34,47,47,34,34,34,47,34,47,34,34,34,34,34,47,34,47,47,34,47,47,34,34,34,47,34,47,47,47,47,47,34,47,47,34,34,47,34,47,47,34,47,34,34,47,34,47,34,47,34,34,47,47,47,47,47,47,34,34,34,34,47,34,34,47,34,34,47,34,47,47,34,34,47,47,47,34,47,34,34,34,47,47,34,34,47,47,34,47,47,34,34,34,34,34,34,34,47,34,34,47,47,47,34,34,47,47,47,34,34,47,34,34,34,34,34,34,34,34,47,34,34,34,47,47,34,47,34,34,47,34,34,34,47,34,34,47,34,34,34,47,34,34,47,34,47,34,47,34,34,47,34,47,47,34,47,34,34,47,34,47,47,47,34,34,47,47,47,47,34,34,34,34,34,47,47,47,34,47,34,34,34,47,47,34,34,47,34,47,47,47,47,47,47,47,34,34,34,47,34,47,34,47,34,34,47,47,34,47,47,47,47,47,47,47,47,34,34,34,34,47,47,47,47,47,34,34,47,34,34,34,47,34,47,47,34,34,34,34,34,34,34,34,34,47,34,34,47,47,47,34,34,34,47,47,47,47,47,47,47,47,47,47,34,47,47,47,47,34,47,34,34,34,47,47,34,47,47,47,47,34,47,34,34,34,47,47,47,47,34,47,34,47,34,34,47,47,34,34,34,34,47,47,47,47,47,34,47,34,34,34,34,47,47,34,47,34,34,34,47,47,34,34,47,47,47,47,47,34,47,47,47,34,47,47,47,47,47,34,34,47,34,34,34,34,47,47,47,34,47,47,34,47,47,47,34,47,47,47,47,47,34,47,47,47,47,34,47,47,47,47,47,34,47,34,47,47,34,47,34,34,47,47,34,47,47,47,47,47,34,34,47,34,47,47,34,34,47,34,47,47,47,34,34,34,34,34,34,47,34,34,47,34,47,47,47,47,34,34,34,34,47,34,47,34,47,34,34,34,34,34,47,34,34,34,47,47,34,34,47,34,34,47,34,34,47,47,47,34,47,47,47,34,47,34,34,47,47,47,34,47,34,47,34,34,47,47,34,47,34,47,47,34,34,34,47,34,47,47,47,34,47,34,34,34,47,34,47,47,34,47,47,47,34,47,34,47,47,34,34,47,34,34,34,34,47,47,34,34,34,34,34,34,47,34,34,47,34,47,47,47,47,34,34,47,34,47,34,34,34,34,34,47,34,47,47,34,47,47,34,47,34,47,34,34,47,34,47,47,34,34,34,34,34,34,34,47,47,47,34,34,34,34,34,47,34,34,47,47,34,34,34,47,47,34,34,47,47,34,34,47,47,34,47,47,47,47,47,47,47,34,47,34,34,47,34,34,34,34,47,34,47,34,47,34,34,34,34,47,34,47,47,34,34,47,47,34,34,34,34,47,47,47,47,47,47,34,34,47,34,47,47,34,47,34,34,34,47,47,47,47,47,34,34,34,47,47,47,47,34,34,34,34,47,47,47,34,34,34,34,34,47,34,34,47,47,47,47,34,47,34,47,47,47,34,34,47,34,47,47,34,47,47,34,34,47,47,47,47,47,34,34,34,34,47,34,47,47,47,47,47,34,34,47,47,34,47,47,34,34,34,34,47,47,34,47,34,47,34,47,34,34,47,34,47,34,47,47,47,47,47,34,34,34,47,47,34,34,34,47,34,47,34,34,34,34,34,34,34,34,47,34,34,34,47,34,47,47,34,47,34,47,34,47,47,47,34,34,47,34,47,47,34,47,47,34,47,34,47,34,34,47,34,47,34,47,47,47,34,34,47,47,47,47,47,47,47,34,34,34,47,47,34,47,34,47,34,34,34,47,34,47,34,47,34,47,47,47,34,47,47,47,34,47,47,47,47,34,47,47,34,34,47,47,47,34,47,47,47,34,47,47,34,34,47,47,47,47,34,47,34,47,34,47,34,34,34,47,47,34,47,34,34,34,34,34,47,34,34,34,47,47,47,47,47,34,47,34,47,34,47,34,47,34,47,34,47,34,47,34,47,34,47,34,34,34,34,47,34,34,47,47,47,47,47,47,34,34,47,47,34,34,34,34,34,34,47,47,47,47,34,47,34,47,47,47,34,34,47,47,34,34,34,34,34,34,47,34,34,47,34,47,34,47,34,34,47,34,34,34,47,34,47,34,34,47,47,34,47,47,47,34,47,34,34,34,47,34,34,34,34,47,47,34,34,34,34,34,47,34,47,34,47,34,47,34,47,34,34,47,34,47,47,34,47,47,47,34,47,34,47,47,47,34,47,47,47,47,34,47,47,47,47,34,47,47,47,34,47,47,47,34,47,34,34,47,47,47,47,47,34,34,34,47,34,34,47,47,34,34,34,47,47,47,34,34,34,34,34,47,34,47,34,34,47,34,47,47,47,34,34,47,34,34,34,34,34,34,47,47,47,34,34,47,34,47,47,47,47,34,47,34,34,34,47,34,47,34,34,47,47,47,47,47,47,47,34,34,47,47,47,47,47,47,47,34,34,34,47,47,47,47,47,34,34,34,34,34,34,47,34,34,47,34,34,47,47,34,47,34,47,34,47,47,47,34,34,34,34,34,34,34,47,34,47,34,47,47,34,34,34,34,47,34,47,47,34,34,47,34,47,34,34,47,47,47,34,47,47,47,34,34,47,34,47,34,47,34,34,47,34,47,47,47,47,47,34,34,47,47,47,47,47,47,34,34,47,47,34,34,34,34,47,47,47,34,34,34,47,34,34,47,47,47,47,47,34,47,34,47,47,34,47,47,34,47,47,34,34,47,47,34,47,34,47,47,34,34,34,47,34,47,34,34,47,47,34,34,34,34,34,34,34,47,34,47,47,47,34,34,47,34,47,47,47,34,34,47,34,47,47,34,34,34,34,47,47,47,34,34,47,34,34,47,47,47,47,47,47,34,47,34,47,47,34,47,34,34,34,34,47,34,47,34,34,34,47,34,47,47,47,47,34,34,47,34,47,34,47,47,47,34,34,34,47,47,34,34,34,34,47,34,47,47,47,34,47,34,34,47,34,47,47,47,47,47,47,47,47,47,34,47,47,34,47,34,47,47,47,47,47,47,47,34,34,47,47,34,34,34,34,34,47,34,34,34,47,47,47,34,34,47,34,47,47,34,34,47,34,34,47,47,47,47,47,34,34,47,47,34,47,34,47,34,34,47,47,34,34,47,47,34,34,47,47,34,47,47,47,47,34,34,34,34,34,34,34,34,47,47,34,34,47,47,47,47,47,34,47,47,34,47,34,47,34,34,34,47,34,34,47,34,34,34,34,34,47,47,47,34,47,34,47,34,34,34,34,47,47,34,47,34,34,47,34,34,34,34,34,34,34,47,47,34,34,47,34,47,34,47,47,34,47,34,47,47,47,34,47,34,47,34,34,47,47,47,47,47,34,34,34,34,47,34,34,47,34,47,34,34,34,34,34,47,47,34,47,47,47,47,47,34,34,34,47,47,34,47,47,47,34,47,47,34,47,34,47,34,34,34,34,34,47,47,34,34,47,34,47,34,34,34,34,34,47,47,47,47,47,47,47,34,47,47,47,47,34,34,34,47,47,34,34,34,47,47,47,34,34,34,47,47,34,34,47,34,34,47,34,47,34,34,34,34,34,34,47,34,47,34,34,34,34,47,47,34,47,34,47,34,47,34,47,47,34,47,47,47,47,34,47,34,34,34,47,47,47,47,47,34,47,34,34,34,34,34,47,34,34,34,47,34,47,47,34,47,34,47,47,47,47,34,34,47,34,34,34,47,34,34,34,34,34,34,47,34,47,47,47,47,47,47,34,47,47,34,34,47,47,34,47,47,47,34,34,34,34,34,47,47,34,47,34,34,34,47,34,34,34,34,47,47,34,47,47,47,34,47,47,47,47,34,34,34,47,34,47,47,47,34,47,47,34,47,34,47,34,34,47,47,47,34,34,47,47,47,34,47,47,34,34,47,47,47,34,34,34,34,47,47,47,34,47,47,34,34,47,47,47,47,34,34,34,47,47,34,34,34,47,47,34,47,34,34,47,47,47,34,34,34,34,34,34,34,34,34,34,34,34,34,34,47,34,47,34,47,34,47,34,47,47,47,34,47,34,47,34,47,34,34,34,47,47,34,47,34,34,47,47,47,34,47,34,47,47,47,34,34,47,34,34,34,34,47,47,47,47,34,47,34,47,47,47,47,34,34,47,47,34,47,34,47,47,34,47,34,34,34,47,34,34,47,47,47,47,47,47,34,34,34,34,47,34,47,47,47,47,47,34,34,34,47,34,47,34,47,47,34,34,47,47,34,47,34,47,34,34,34,34,47,34,34,34,47,34,34,34,47,34,34,34,47,47,47,47,47,34,34,34,34,47,34,34,47,47,47,34,34,47,34,34,47,47,34,34,47,47,47,47,47,34,47,47,34,47,34,47,34,47,47,47,34,34,34,34,47,34,34,47,34,47,47,47,47,34,47,34,47,34,34,34,47,47,34,34,47,47,47,34,34,47,34,47,34,47,34,47,34,47,47,47,34,34,47,47,47,47,34,47,47,47,47,34,47,47,47,34,34,34,47,47,34,47,47,34,34,47,34,34,47,47,47,47,47,47,47,47,47,34,34,34,47,47,34,34,47,47,47,47,47,47,47,47,47,34,34,34,47,34,34,34,47,34,47,47,47,47,47,34,34,34,34,34,34,34,34,47,47,47,47,34,47,34,47,47,47,34,47,34,34,34,47,47,47,47,34,47,47,34,47,47,34,34,34,47,34,34,34,47,34,34,34,34,47,47,47,47,34,34,47,47,47,47,34,47,47,34,34,34,47,47,34,34,34,47,47,47,34,47,47,34,47,34,47,47,47,34,34,47,34,34,34,34,47,47,47,47,34,34,47,34,47,47,47,47,34,47,34,34,47,47,47,34,47,34,34,47,34,34,47,34,34,47,34,47,34,47,34,34,47,47,47,34,47,47,34,47,34,47,34,47,34,34,34,47,47,47,47,47,47,47,34,47,34,34,34,47,34,47,47,34,47,34,47,34,34,47,34,47,34,47,34,47,34,47,47,34,34,34,47,47,34,47,47,47,47,34,34,47,47,34,34,34,34,34,47,34,47,34,34,47,47,34,47,47,34,34,47,34,34,34,34,47,47,34,34,47,34,47,34,47,34,34,34,34,34,47,34,47,47,47,47,47,47,47,34,47,34,47,47,47,34,34,34,34,47,34,47,47,34,47,34,34,34,47,34,34,47,34,47,47,47,47,34,34,34,47,34,34,34,47,47,34,47,34,34,47,34,47,34,34,47,34,34,34,47,34,47,34,47,34,47,47,34,47,47,34,47,47,34,47,34,47,34,34,34,34,47,47,47,34,34,34,47,47,47,47,34,34,34,47,47,34,34,34,34,34,34,34,34,47,34,47,47,47,47,47,34,34,34,34,47,47,47,34,47,47,47,47,47,47,47,34,34,47,34,47,34,47,47,34,47,34,47,47,47,47,34,34,34,34,47,34,34,34,34,34,47,47,34,47,34,47,34,34,34,47,34,34,47,47,34,47,47,34,47,47,34,34,34,47,34,34,47,47,47,34,34,34,47,34,34,47,47,47,34,34,34,34,47,34,47,34,47,34,47,47,34,47,34,34,34,34,47,47,47,47,47,34,47,47,47,47,34,34,34,47,47,47,34,47,47,34,47,47,34,47,47,47,34,34,47,34,47,34,47,34,47,47,34,47,34,47,47,34,34,34,34,34,47,47,47,47,47,34,47,47,34,34,47,47,34,34,34,47,47,47,34,47,34,34,47,34,47,47,47,47,47,34,47,34,47,34,47,34,47,34,34,34,47,34,47,34,47,34,34,47,47,47,34,34,34,47,34,34,34,47,47,47,47,34,47,47,34,34,47,34,34,34,47,34,34,47,34,34,47,47,47,47,34,34,34,34,47,47,34,47,34,47,34,34,34,47,47,34,34,47,34,47,47,34,34,47,34,34,34,34,34,47,34,47,47,47,34,47,47,47,34,47,47,47,47,34,47,34,47,47,47,34,34,34,47,47,34,34,34,47,47,34,47,34,34,34,47,34,34,47,34,47,47,47,47,34,47,34,34,47,34,34,47,47,34,47,34,34,47,47,47,34,34,47,47,34,47,34,34,34,34,34,34,47,47,47,47,34,34,47,47,47,47,34,34,34,34,34,47,47,47,47,47,34,47,34,47,47,34,34,47,34,34,47,47,47,34,47,34,47,34,34,47,47,34,47,34,47,47,47,47,47,47,34,34,47,47,47,34,47,34,34,34,34,47,47,34,34,47,34,34,34,34,47,34,34,47,34,47,34,34,47,34,34,47,47,34,34,47,47,47,47,47,34,34,34,34,47,34,47,34,34,47,34,34,34,34,47,47,47,47,47,47,34,34,34,47,34,34,47,34,47,47,34,47,34,47,47,47,47,34,47,34,47,47,34,47,34,34,47,34,34,34,47,34,47,34,47,47,34,34,47,34,47,47,47,47,34,34,34,47,47,34,47,34,34,47,47,47,47,34,34,47,34,34,34,47,47,47,34,47,47,47,34,34,34,34,34,34,47,47,47,34,47,47,47,34,34,34,47,34,34,34,47,47,34,34,47,47,47,47,47,47,47,34,34,47,34,34,47,34,34,47,47,34,47,47,47,47,34,34,47,34,47,47,34,34,47,34,47,34,34,34,34,47,34,47,34,47,47,47,34,47,34,34,34,47,47,34,47,47,47,34,34,47,47,34,47,34,47,47,34,47,34,47,34,34,34,47,47,34,47,47,34,34,47,34,47,47,47,47,34,34,47,47,34,47,47,34,47,34,34,34,47,47,34,47,34,34,34,47,47,34,34,34,34,34,34,34,34,47,47,47,34,34,34,34,47,47,47,34,47,47,34,34,47,34,34,34,47,34,47,34,47,47,47,34,34,47,47,47,34,47,47,47,34,34,47,34,47,47,47,47,34,34,34,47,34,34,47,47,34,34,47,34,47,34,34,34,34,47,47,34,34,34,34,34,34,47,34,47,47,47,34,47,34,47,47,34,34,34,34,47,34,34,47,47,34,34,47,34,47,34,47,47,34,47,47,47,34,47,34,47,34,47,34,34,47,47,34,34,34,34,47,34,47,47,34,47,34,47,34,34,34,47,47,47,34,47,34,34,47,47,34,47,47,47,47,47,47,47,47,34,47,34,47,34,34,34,34,47,47,34,47,47,47,47,47,47,47,47,34,34,34,34,34,47,47,34,47,47,47,47,34,34,47,47,34,34,34,34,47,34,34,34,47,47,34,34,34,47,34,34,47,47,34,34,47,34,47,47,47,47,47,34,34,47,47,47,47,47,47,34,47,47,47,34,47,47,34,34,47,47,34,34,34,34,47,47,34,47,47,34,34,34,47,47,47,34,47,47,34,34,47,34,47,47,34,34,47,47,47,47,47,47,47,34,34,34,34,34,34,34,34,47,34,47,47,34,47,34,47,47,47,34,34,34,47,34,47,34,34,47,34,47,34,47,34,47,34,34,47,47,34,47,47,47,34,47,47,47,47,47,47,34,47,34,34,47,34,34,34,34,47,47,34,47,34,34,34,34,47,34,34,47,34,34,34,47,34,47,47,34,34,34,47,47,47,34,34,34,34,34,47,47,34,47,47,34,47,47,34,34,34,34,34,34,34,34,47,34,47,47,47,34,34,34,47,47,47,34,47,47,47,47,47,47,47,34,34,47,47,34,34,34,34,34,34,47,47,34,34,34,47,34,47,34,34,34,47,47,47,47,47,47,34,34,47,34,47,34,47,34,34,47,34,47,34,34,47,47,47,47,34,34,47,34,47,47,47,47,34,34,47,34,34,34,34,47,47,34,34,47,47,47,47,34,47,34,47,47,34,34,34,34,47,34,34,34,47,34,34,47,47,34,34,47,34,34,34,47,47,34,47,34,47,47,34,47,34,34,34,34,47,47,47,34,47,47,34,47,34,34,34,47,34,34,34,34,34,47,47,47,47,47,34,47,34,47,47,47,47,34,34,34,47,47,34,34,34,47,47,47,34,34,34,47,34,34,47,47,47,47,34,34,47,47,34,47,47,47,47,34,47,34,34,34,47,47,47,34,47,47,47,47,34,47,47,47,34,34,34,47,34,34,34,47,34,34,47,34,47,47,34,47,47,34,34,34,47,34,47,47,34,34,34,47,34,47,47,34,34,47,47,34,47,34,47,47,47,47,47,34,47,34,34,47,47,34,34,47,47,47,47,34,47,34,34,34,47,34,47,34,47,34,47,47,47,34,34,34,47,47,34,47,34,34,47,47,47,47,34,47,47,47,34,47,47,47,47,47,34,34,47,34,34,47,34,47,34,34,47,47,34,34,47,47,34,34,34,47,47,47,34,34,34,34,34,47,34,47,34,47,47,47,34,47,47,47,34,47,34,34,47,34,34,47,34,47,47,34,47,47,47,47,34,34,47,34,34,47,34,34,34,34,47,47,47,34,47,34,47,47,47,34,34,34,47,34,47,47,47,47,47,47,47,47,34,47,47,47,34,34,47,47,47,34,34,47,34,34,47,47,34,47,34,34,47,47,47,34,47,47,47,47,34,34,47,34,34,34,34,47,34,47,34,47,34,34,34,34,47,34,34,47,34,34,34,47,34,47,47,34,47,34,34,34,34,47,47,47,47,47,47,47,47,47,47,34,34,47,47,47,34,47,47,34,34,34,47,34,34,47,34,34,34,34,34,47,47,47,34,47,47,34,34,34,34,34,47,34,47,47,34,34,34,47,34,34,47,47,47,47,34,34,34,34,47,47,47,34,47,34,34,34,47,47,34,34,47,34,47,47,34,47,47,34,34,34,34,47,34,34,34,34,47,47,34,34,34,34,34,34,34,34,34,34,34,34,34,47,34,47,34,34,34,47,47,47,34,47,34,47,47,47,47,34,34,47,47,47,34,47,34,34,34,47,34,47,47,47,34,47,47,34,47,47,34,47,34,34,47,34,34,47,47,47,34,34,47,34,47,34,47,47,47,34,47,47,34,47,47,34,47,47,47,34,34,47,47,34,34,47,47,34,47,34,47,34,34,34,34,47,34,47,47,47,47,47,34,47,47,34,34,47,34,34,47,47,47,47,47,47,34,47,34,34,47,34,34,34,47,47,34,47,47,47,47,47,34,47,34,47,47,34,34,34,47,34,34,47,34,34,47,34,34,34,47,34,34,34,34,47,34,47,34,47,47,47,47,47,34,34,34,47,47,34,34,34,47,34,34,34,47,34,34,34,34,34,47,34,34,34,47,47,47,34,47,34,47,34,34,47,47,34,34,34,47,34,47,47,47,47,47,34,47,47,34,47,47,34,47,47,47,34,47,47,47,47,47,34,47,34,34,34,47,34,34,47,34,47,34,47,34,47,47,34,47,47,47,34,34,34,34,34,34,34,47,34,34,34,34,34,47,47,47,34,34,47,34,34,47,34,34,47,47,47,34,34,47,47,47,47,34,47,47,47,34,34,47,47,34,34,47,47,34,34,47,47,47,47,47,34,34,47,47,34,47,47,47,34,34,34,47,34,47,34,47,34,34,34,47,34,47,47,47,34,34,34,47,34,47,47,34,34,34,47,34,34,47,47,34,47,47,47,47,34,47,47,34,34,34,47,34,47,34,47,47,47,34,34,47,34,47,47,47,47,34,47,47,47,47,34,34,34,34,47,47,47,47,34,47,34,47,34,34,34,47,47,34,47,34,34,34,34,34,34,34,47,47,47,47,47,34,34,34,47,34,34,34,34,34,34,34,34,34,47,34,34,34,47,34,34,47,47,34,34,47,34,47,34,47,47,47,34,47,47,47,34,47,34,47,47,47,34,34,34,34,47,34,34,34,34,34,34,47,47,34,34,47,34,47,47,34,34,34,47,47,47,47,34,34,47,47,34,34,34,34,34,34,34,34,47,34,47,47,34,47,34,47,47,47,47,34,47,47,47,34,47,34,34,47,47,34,34,47,47,34,34,34,34,47,47,34,47,34,47,47,47,34,34,34,47,47,34,34,34,47,47,47,47,47,47,47,47,34,47,34,47,47,47,34,34,47,34,34,47,34,34,34,47,47,47,34,34,34,47,34,47,34,47,47,34,47,47,47,34,34,34,47,34,34,47,34,47,34,34,34,34,34,34,47,47,34,34,34,34,34,34,47,47,47,47,34,47,47,34,47,47,47,47,34,34,34,34,34,34,47,34,34,47,47,34,47,47,34,47,47,47,34,34,34,34,47,47,34,34,47,47,47,34,34,47,47,34,34,47,47,34,47,34,47,47,47,47,34,47,47,34,47,34,34,47,47,47,47,47,34,34,47,47,47,34,34,47,34,47,47,47,34,34,47,47,47,34,47,47,47,34,34,47,47,47,47,47,34,47,47,34,47,34,34,34,47,34,34,47,34,47,47,47,34,34,47,47,47,34,47,34,47,34,47,47,47,34,47,34,47,47,34,47,47,34,47,47,47,34,47,34,47,47,47,47,47,47,47,34,47,47,47,47,47,34,34,34,47,34,47,34,47,34,34,34,47,47,34,47,47,47,47,34,34,34,34,34,34,47,34,34,34,47,47,34,34,34,34,47,47,47,47,34,34,47,47,34,47,47,34,34,47,47,34,47,34,47,47,47,47,47,34,34,34,34,34,47,47,34,34,34,34,47,34,47,34,34,47,47,47,34,34,34,34,47,47,34,47,34,34,34,34,34,47,47,34,47,34,47,47,47,34,47,34,47,47,34,47,47,34,34,47,47,34,34,47,34,34,34,34,34,34,47,47,34,34,34,34,34,47,47,34,47,47,47,47,47,34,34,34,47,47,34,47,34,47,47,34,34,47,34,34,34,47,34,47,34,47,34,34,47,34,47,47,34,47,34,47,34,34,34,47,34,47,47,34,47,34,34,34,34,34,47,34,34,47,34,34,34,47,47,34,47,34,34,47,47,47,47,47,47,34,34,47,47,47,34,47,47,47,34,47,47,47,34,34,47,34,47,34,47,34,47,47,34,34,47,47,47,47,47,34,47,34,47,34,47,47,47,47,47,34,47,47,47,34,47,47,47,34,34,47,34,34,47,47,34,34,47,34,34,34,34,34,34,34,34,47,47,47,47,47,34,34,47,47,34,34,47,34,47,34,47,34,34,34,34,34,34,34,47,47,47,34,47,34,47,34,34,34,34,47,47,34,34,34,47,34,47,34,34,47,34,34,47,47,34,34,47,34,34,34,34,34,34,47,47,47,34,47,47,34,47,47,34,47,47,47,47,34,47,47,34,34,47,34,34,34,47,47,34,34,34,34,34,34,47,34,47,47,47,34,47,47,34,47,47,47,47,34,47,47,34,47,47,47,47,34,47,34,34,34,34,47,47,34,47,34,47,34,34,47,47,47,34,47,47,34,34,47,47,34,34,47,47,34,47,47,47,34,34,34,34,34,47,34,47,47,34,47,34,47,47,34,34,47,34,47,34,47,47,47,34,34,47,47,47,47,34,47,47,47,34,34,47,34,34,34,34,47,34,34,34,47,34,34,47,34,34,34,47,47,34,34,34,34,34,34,34,34,34,34,47,47,47,34,47,34,47,47,34,47,34,47,34,34,47,47,34,47,34,47,34,34,47,34,47,34,34,34,34,34,34,47,47,47,47,47,47,47,34,47,34,34,34,47,34,34,34,34,34,47,34,47,34,34,47,34,34,47,47,47,34,34,47,34,47,34,34,34,34,34,47,47,34,47,47,34,34,34,47,47,47,47,47,34,34,34,34,47,47,47,34,47,34,47,34,34,34,34,34,34,47,47,47,34,34,34,34,47,47,47,34,47,34,34,34,47,47,47,47,34,34,34,34,47,34,47,47,34,47,34,47,34,47,34,34,47,47,34,47,34,47,47,47,47,34,34,34,47,34,47,34,47,34,47,47,47,34,47,47,34,47,47,34,34,47,34,47,34,47,47,47,34,47,47,47,47,34,47,34,34,47,47,34,47,34,47,47,47,47,34,34,47,34,34,47,47,47,34,34,47,34,34,34,34,34,34,47,47,34,34,47,47,47,47,47,34,34,34,34,34,34,47,34,47,47,47,47,47,34,34,34,34,34,34,34,34,47,34,34,34,47,47,34,34,47,34,34,34,47,34,47,47,34,34,47,34,34,47,34,47,47,47,34,47,47,47,47,34,34,34,47,34,47,34,47,34,47,34,34,34,47,34,34,47,34,47,47,34,34,47,47,47,34,47,47,34,34,47,34,34,47,34,47,47,34,34,47,34,47,34,47,34,34,34,34,47,34,34,34,34,34,34,34,47,34,34,47,47,47,47,47,47,34,47,47,34,47,47,47,47,34,34,47,47,47,34,34,47,34,47,47,34,34,34,47,47,34,47,34,47,34,34,34,34,34,34,34,47,47,47,47,34,47,47,34,34,47,47,47,34,34,47,34,47,47,47,47,34,47,34,34,34,47,47,34,34,34,47,34,34,34,34,47,47,34,34,47,47,47,34,47,34,34,34,47,34,34,34,34,34,34,34,34,34,34,34,47,47,47,47,34,47,47,34,47,34,47,47,34,47,34,47,34,47,34,34,34,34,34,34,34,47,34,34,34,47,34,34,34,47,47,47,47,34,34,34,34,47,34,34,47,34,34,47,34,34,47,47,47,34,34,34,47,47,34,34,34,47,34,34,47,34,34,47,34,47,47,47,34,34,34,47,34,47,34,47,47,47,47,34,47,34,34,34,47,47,34,47,34,47,34,34,47,47,47,47,34,47,34,47,34,47,47,34,47,34,47,34,47,47,47,47,34,47,47,47,34,47,34,34,47,34,47,47,47,47,34,34,34,47,34,34,47,47,47,47,34,47,34,47,34,34,47,34,34,47,34,34,47,34,34,47,47,47,47,47,47,34,47,47,47,47,47,47,34,34,34,34,47,34,34,34,34,34,34,34,34,47,34,34,47,34,34,47,47,47,34,47,34,47,47,47,34,34,34,34,47,47,47,47,34,47,47,47,47,34,47,47,34,47,34,34,47,47,47,34,47,34,47,47,47,34,47,47,34,34,34,34,47,47,47,34,34,47,47,47,34,47,34,47,47,47,47,47,34,34,47,34,34,34,34,47,34,34,34,34,34,47,47,47,34,34,34,34,47,47,34,34,47,47,47,34,34,34,47,47,47,34,47,47,34,34,34,47,47,47,47,47,47,34,34,47,47,47,47,34,47,34,34,34,47,47,47,47,34,34,34,34,47,34,47,47,47,47,34,47,47,34,34,47,34,34,47,47,34,34,47,34,47,34,34,34,34,34,34,47,47,47,47,47,34,47,47,34,34,34,34,34,47,47,34,47,47,34,47,47,34,47,34,47,47,47,47,47,47,34,47,34,34,34,34,47,47,34,47,34,34,47,34,34,47,47,47,34,34,34,47,34,34,47,47,34,34,34,47,34,34,34,34,34,34,34,34,34,47,47,34,47,34,34,34,34,34,34,47,47,47,47,47,47,47,34,34,34,47,47,34,34,47,34,47,34,34,47,47,47,47,47,34,47,34,34,34,34,34,34,47,47,47,47,47,34,47,34,34,34,47,34,47,34,47,34,34,47,47,34,34,47,34,47,34,34,47,34,47,47,47,34,34,47,47,34,34,34,34,34,34,47,34,34,47,47,47,47,34,34,34,47,34,34,47,34,34,34,47,34,34,34,47,34,34,34,47,34,47,47,34,47,34,47,47,47,34,47,47,34,47,47,34,34,47,47,34,47,34,47,34,34,34,34,47,47,34,34,34,47,34,34,47,47,34,34,34,34,34,47,47,47,34,47,47,34,34,47,34,34,47,34,34,34,34,34,47,47,34,34,47,34,34,47,34,34,34,47,34,34,47,34,34,47,34,47,47,34,47,34,47,34,47,47,34,34,47,47,47,47,47,34,47,47,34,47,34,47,47,34,34,34,34,47,47,34,47,47,34,47,34,47,47,47,47,47,34,34,34,34,34,47,34,47,34,34,47,34,34,34,47,47,47,47,34,47,47,34,47,47,47,34,47,47,47,34,34,47,34,47,34,34,34,34,34,47,34,47,47,47,34,47,47,47,34,47,47,34,47,47,47,47,34,34,34,47,47,47,34,47,47,34,47,34,34,34,47,47,47,34,34,34,47,47,34,34,34,47,34,34,34,47,47,34,47,34,34,47,47,34,47,47,47,34,47,34,34,47,34,34,34,47,34,34,34,34,34,34,47,34,34,34,47,47,47,34,47,47,34,47,47,34,47,34,47,47,47,34,34,34,34,47,34,34,47,47,34,34,47,47,47,47,47,34,47,34,47,47,34,34,47,34,47,47,34,34,34,47,34,47,34,34,47,34,47,47,34,34,34,47,47,47,47,34,47,47,47,34,34,47,34,34,47,47,47,47,47,34,34,34,34,34,47,34,47,34,34,34,34,34,47,34,47,34,47,47,47,34,47,47,34,34,47,34,47,34,34,34,34,34,47,34,47,47,47,34,47,34,34,34,34,34,34,47,47,34,34,34,47,47,34,34,34,47,47,47,47,34,34,34,47,47,34,47,34,34,47,47,34,47,34,47,34,47,47,47,34,47,47,47,47,34,47,47,47,34,47,47,34,34,47,34,34,47,47,47,47,47,47,47,34,34,34,47,34,47,34,47,47,47,47,34,34,47,34,34,47,47,47,34,34,47,47,47,47,47,34,47,47,47,47,47,47,34,34,47,34,34,34,47,47,47,34,34,47,34,47,47,47,47,34,47,34,47,34,34,34,47,47,47,47,34,34,34,34,47,47,47,47,47,47,47,34,34,47,34,34,34,47,47,34,47,47,47,34,47,34,34,47,47,34,47,34,34,34,47,47,47,47,34,34,34,47,47,47,47,34,34,47,34,47,47,34,34,47,47,34,34,34,34,47,34,34,34,34,47,47,34,34,47,47,47,34,34,47,47,34,34,47,47,34,34,34,47,34,34,47,47,47,47,34,47,34,34,34,34,47,34,47,34,34,47,47,47,34,47,47,34,47,34,47,34,47,47,47,34,47,47,47,47,34,34,34,34,34,34,47,34,47,47,47,47,47,34,47,47,47,34,47,34,47,47,47,34,47,34,47,47,34,47,47,34,34,47,34,47,47,34,34,34,47,47,34,34,34,34,47,34,47,47,47,34,47,34,34,34,34,47,47,34,47,47,47,34,34,47,47,47,34,47,34,47,34,47,34,34,34,47,34,47,34,34,47,34,34,34,47,34,34,47,34,47,47,34,47,34,34,47,34,34,47,47,34,47,34,47,47,47,47,47,47,34,47,34,47,34,47,34,34,34,34,47,34,34,47,34,34,47,34,34,47,47,34,47,34,34,47,47,34,34,34,34,47,47,47,47,34,47,34,34,47,34,34,47,47,34,47,34,34,47,34,47,47,34,47,47,34,47,47,34,34,47,47,34,34,47,47,34,47,34,47,34,34,34,34,47,47,47,34,47,47,34,34,47,34,47,47,47,47,34,47,34,34,34,47,47,47,34,47,34,34,47,34,47,34,34,47,34,47,47,34,47,34,34,47,34,34,34,47,47,34,34,47,47,34,34,47,34,47,34,34,47,34,34,47,47,47,34,34,34,34,34,47,34,34,34,34,47,47,34,34,34,34,34,47,47,47,34,47,34,47,34,47,34,34,47,34,47,47,34,34,47,34,34,34,34,34,34,34,34,34,34,47,47,34,47,34,34,34,34,34,47,34,34,47,34,34,47,34,34,47,47,34,47,47,34,34,34,34,34,34,34,34,34,34,34,34,47,34,47,47,47,34,47,34,34,47,34,34,34,34,34,34,47,47,47,34,47,47,34,34,34,47,34,34,34,47,47,47,34,47,47,34,34,34,47,34,34,34,34,47,34,47,47,34,47,34,34,47,47,47,47,47,34,34,34,34,34,47,47,47,34,47,34,34,47,34,47,47,34,34,34,47,47,34,47,47,34,47,47,47,47,47,47,47,34,34,47,34,34,34,47,47,34,47,47] print(s.dailyTemperatures(T))
418.727273
30,009
0.655449
79484234e7a1e3ea0121b4917ce180993792d5e6
844
py
Python
codewars/7 kyu/disemvowel-trolls.py
sirken/coding-practice
9c5e23b2c24f525a89a5e1d15ce3aec3ad1a01ab
[ "MIT" ]
null
null
null
codewars/7 kyu/disemvowel-trolls.py
sirken/coding-practice
9c5e23b2c24f525a89a5e1d15ce3aec3ad1a01ab
[ "MIT" ]
null
null
null
codewars/7 kyu/disemvowel-trolls.py
sirken/coding-practice
9c5e23b2c24f525a89a5e1d15ce3aec3ad1a01ab
[ "MIT" ]
null
null
null
from Test import Test, Test as test ''' Trolls are attacking your comment section! A common way to deal with this situation is to remove all of the vowels from the trolls' comments, neutralizing the threat. Your task is to write a function that takes a string and return a new string with all vowels removed. For example, the string "This website is for losers LOL!" would become "Ths wbst s fr lsrs LL!". Note: for this kata y isn't considered a vowel. ''' def disemvowel(string): return ''.join(x for x in string if x.lower() not in ('a','e','i','o','u')) def disemvowel(string): return ''.join(x for x in string if x.lower() not in ('aeiou')) def disemvowel(string): return string.translate(string.maketrans('','','aeiouAEIOU')) test.assert_equals(disemvowel("This website is for losers LOL!"), "Ths wbst s fr lsrs LL!")
35.166667
123
0.71564
794842602178d2661146025f3f1ec6da1f1c1dba
12,738
py
Python
neurokit2/bio/bio_analyze.py
BelleJohn/neuropsychology-NeuroKit
d01111b9b82364d28da01c002e6cbfc45d9493d9
[ "MIT" ]
1
2022-03-05T06:15:02.000Z
2022-03-05T06:15:02.000Z
neurokit2/bio/bio_analyze.py
BelleJohn/neuropsychology-NeuroKit
d01111b9b82364d28da01c002e6cbfc45d9493d9
[ "MIT" ]
null
null
null
neurokit2/bio/bio_analyze.py
BelleJohn/neuropsychology-NeuroKit
d01111b9b82364d28da01c002e6cbfc45d9493d9
[ "MIT" ]
2
2021-12-25T15:39:49.000Z
2021-12-25T15:44:16.000Z
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from ..ecg import ecg_analyze from ..eda import eda_analyze from ..emg import emg_analyze from ..eog import eog_analyze from ..hrv import hrv_rsa from ..ppg import ppg_analyze from ..rsp import rsp_analyze def bio_analyze(data, sampling_rate=1000, method="auto", window_lengths='constant', subepoch_rate=[None, None]): """Automated analysis of bio signals. Wrapper for other bio analyze functions of electrocardiography signals (ECG), respiration signals (RSP), electrodermal activity (EDA), electromyography signals (EMG) and electrooculography signals (EOG). Parameters ---------- data : DataFrame The DataFrame containing all the processed signals, typically produced by `bio_process()`, `ecg_process()`, `rsp_process()`, `eda_process()`, `emg_process()` or `eog_process()`. sampling_rate : int The sampling frequency of the signals (in Hz, i.e., samples/second). Defaults to 1000. method : str Can be one of 'event-related' for event-related analysis on epochs, or 'interval-related' for analysis on longer periods of data. Defaults to 'auto' where the right method will be chosen based on the mean duration of the data ('event-related' for duration under 10s). window_lengths : dict Defaults to 'constant'. Add a dictionary of epoch start and end times for different types of signals e.g., window_lengths = {'ECG': [0.5, 1.5], 'EDA': [0.5, 3.5]} subepoch_rate : list, dict For event-related analysis,, a smaller "sub-epoch" within the epoch of an event can be specified. The ECG and RSP rate-related features of this "sub-epoch" (e.g., ECG_Rate, ECG_Rate_Max), relative to the baseline (where applicable), will be computed, e.g., subepoch_rate = [1, 3] or subepoch_rate = {'ECG_Rate' = [1, 2], 'RSP_Rate' = [1.5, None]} if different sub-epoch length for different signal is desired. Defaults to [None, None]. The first value of the list specifies the start of the sub-epoch and the second specifies the end of the sub-epoch (in seconds), Returns ---------- DataFrame DataFrame of the analyzed bio features. See docstrings of `ecg_analyze()`, `rsp_analyze()`, `eda_analyze()`, `emg_analyze()` and `eog_analyze()` for more details. Also returns Respiratory Sinus Arrhythmia features produced by `hrv_rsa()` if interval-related analysis is carried out. See Also ---------- ecg_analyze, rsp_analyze, eda_analyze, emg_analyze, eog_analyze Examples ---------- >>> import neurokit2 as nk >>> >>> # Example 1: Event-related analysis >>> # Download data >>> data = nk.data("bio_eventrelated_100hz") >>> >>> # Process the data >>> df, info = nk.bio_process(ecg=data["ECG"], rsp=data["RSP"], eda=data["EDA"], ... keep=data["Photosensor"], sampling_rate=100) >>> >>> # Build epochs >>> events = nk.events_find(data["Photosensor"], threshold_keep='below', ... event_conditions=["Negative", "Neutral", ... "Neutral", "Negative"]) >>> epochs = nk.epochs_create(df, events, sampling_rate=100, epochs_start=-0.1, ... epochs_end=1.9) >>> >>> # Analyze >>> nk.bio_analyze(epochs, sampling_rate=100) #doctest: +ELLIPSIS Label Condition Event_Onset ... RSA_Gates 1 1 Negative ... ... ... 2 2 Neutral ... ... ... 3 3 Neutral ... ... ... 4 4 Negative ... ... ... ... >>> >>> # Example 2: Interval-related analysis >>> # Download data >>> data = nk.data("bio_resting_5min_100hz") >>> >>> # Process the data >>> df, info = nk.bio_process(ecg=data["ECG"], rsp=data["RSP"], ppg=data["PPG"], sampling_rate=100) >>> >>> # Analyze >>> nk.bio_analyze(df, sampling_rate=100) #doctest: +ELLIPSIS ECG_Rate_Mean HRV_MeanNN ... RSA_Gates_Mean_log RSA_Gates_SD 0 ... ... ... ... ... [1 rows x 184 columns] """ features = pd.DataFrame() method = method.lower() # Sanitize input if isinstance(data, pd.DataFrame): ecg_cols = [col for col in data.columns if "ECG" in col] rsp_cols = [col for col in data.columns if "RSP" in col] eda_cols = [col for col in data.columns if "EDA" in col] emg_cols = [col for col in data.columns if "EMG" in col] ppg_cols = [col for col in data.columns if "PPG" in col] eog_cols = [col for col in data.columns if "EOG" in col] ecg_rate_col = [col for col in data.columns if "ECG_Rate" in col] rsp_phase_col = [col for col in data.columns if "RSP_Phase" in col] elif isinstance(data, dict): for i in data: ecg_cols = [col for col in data[i].columns if "ECG" in col] rsp_cols = [col for col in data[i].columns if "RSP" in col] eda_cols = [col for col in data[i].columns if "EDA" in col] emg_cols = [col for col in data[i].columns if "EMG" in col] ppg_cols = [col for col in data[i].columns if "PPG" in col] eog_cols = [col for col in data[i].columns if "EOG" in col] ecg_rate_col = [col for col in data[i].columns if "ECG_Rate" in col] rsp_phase_col = [col for col in data[i].columns if "RSP_Phase" in col] else: raise ValueError( "NeuroKit error: bio_analyze(): Wrong input, please make sure you enter a DataFrame or a dictionary. " ) # ECG if len(ecg_cols) != 0: ecg_data = data.copy() if window_lengths != 'constant': if 'ECG' in window_lengths.keys(): # only for epochs ecg_data = _bio_analyze_slicewindow(ecg_data, window_lengths, signal='ECG') ecg_analyzed = ecg_analyze(ecg_data, sampling_rate=sampling_rate, method=method, subepoch_rate=subepoch_rate) features = pd.concat([features, ecg_analyzed], axis=1, sort=False) # RSP if len(rsp_cols) != 0: rsp_data = data.copy() if window_lengths != 'constant': if 'RSP' in window_lengths.keys(): # only for epochs rsp_data = _bio_analyze_slicewindow(rsp_data, window_lengths, signal='RSP') rsp_analyzed = rsp_analyze(rsp_data, sampling_rate=sampling_rate, method=method, subepoch_rate=subepoch_rate) features = pd.concat([features, rsp_analyzed], axis=1, sort=False) # EDA if len(eda_cols) != 0: eda_data = data.copy() if window_lengths != 'constant': if 'EDA' in window_lengths.keys(): # only for epochs eda_data = _bio_analyze_slicewindow(eda_data, window_lengths, signal='EDA') eda_analyzed = eda_analyze(eda_data, sampling_rate=sampling_rate, method=method) features = pd.concat([features, eda_analyzed], axis=1, sort=False) # EMG if len(emg_cols) != 0: emg_data = data.copy() if window_lengths != 'constant': if 'EMG' in window_lengths.keys(): # only for epochs emg_data = _bio_analyze_slicewindow(emg_data, window_lengths, signal='EMG') emg_analyzed = emg_analyze(emg_data, sampling_rate=sampling_rate, method=method) features = pd.concat([features, emg_analyzed], axis=1, sort=False) # EMG if len(ppg_cols) != 0: ppg_data = data.copy() if window_lengths != 'constant': if 'PPG' in window_lengths.keys(): # only for epochs ppg_data = _bio_analyze_slicewindow(ppg_data, window_lengths, signal='PPG') ppg_analyzed = ppg_analyze(ppg_data, sampling_rate=sampling_rate, method=method) features = pd.concat([features, ppg_analyzed], axis=1, sort=False) # EOG if len(eog_cols) != 0: eog_data = data.copy() if window_lengths != 'constant': if 'EOG' in window_lengths.keys(): # only for epochs eog_data = _bio_analyze_slicewindow(eog_data, window_lengths, signal='EOG') eog_analyzed = eog_analyze(eog_data, sampling_rate=sampling_rate, method=method) features = pd.concat([features, eog_analyzed], axis=1, sort=False) # RSA if len(ecg_rate_col + rsp_phase_col) >= 3: # Event-related if method in ["event-related", "event", "epoch"]: rsa = _bio_analyze_rsa_event(data) # Interval-related elif method in ["interval-related", "interval", "resting-state"]: rsa = _bio_analyze_rsa_interval(data, sampling_rate=sampling_rate) # Auto else: duration = _bio_analyze_findduration(data, sampling_rate=sampling_rate) if duration >= 10: rsa = _bio_analyze_rsa_interval(data, sampling_rate=sampling_rate) else: rsa = _bio_analyze_rsa_event(data) features = pd.concat([features, rsa], axis=1, sort=False) # Remove duplicate columns of Label and Condition if "Label" in features.columns.values: features = features.loc[:, ~features.columns.duplicated()] return features # ============================================================================= # Internals # ============================================================================= def _bio_analyze_slicewindow(data, window_lengths, signal='ECG'): if signal in window_lengths.keys(): start = window_lengths[signal][0] end = window_lengths[signal][1] epochs = {} for i, label in enumerate(data): # Slice window epoch = data[label].loc[(data[label].index > start) & (data[label].index < end)] epochs[label] = epoch epochs return epochs def _bio_analyze_findduration(data, sampling_rate=1000): # If DataFrame if isinstance(data, pd.DataFrame): if "Label" in data.columns: labels = data["Label"].unique() durations = [len(data[data["Label"] == label]) / sampling_rate for label in labels] else: durations = [len(data) / sampling_rate] # If dictionary if isinstance(data, dict): durations = [len(data[i]) / sampling_rate for i in data] return np.nanmean(durations) def _bio_analyze_rsa_interval(data, sampling_rate=1000): # RSA features for interval-related analysis if isinstance(data, pd.DataFrame): rsa = hrv_rsa(data, sampling_rate=sampling_rate, continuous=False) rsa = pd.DataFrame.from_dict(rsa, orient="index").T elif isinstance(data, dict): for index in data: rsa[index] = {} # Initialize empty container data[index] = data[index].set_index("Index").drop(["Label"], axis=1) rsa[index] = hrv_rsa(data[index], sampling_rate=sampling_rate, continuous=False) rsa = pd.DataFrame.from_dict(rsa, orient="index") return rsa def _bio_analyze_rsa_event(data, rsa={}): # RSA features for event-related analysis if isinstance(data, dict): for i in data: rsa[i] = {} rsa[i] = _bio_analyze_rsa_epoch(data[i], rsa[i]) rsa = pd.DataFrame.from_dict(rsa, orient="index") elif isinstance(data, pd.DataFrame): # Convert back to dict for label, df in data.groupby('Label'): rsa[label] = {} epoch = df.set_index('Time') rsa[label] = _bio_analyze_rsa_epoch(epoch, rsa[label]) rsa = pd.DataFrame.from_dict(rsa, orient="index") # Fix index sorting to combine later with features dataframe rsa.index = rsa.index.astype(int) rsa = rsa.sort_index().rename_axis(None) rsa.index = rsa.index.astype(str) return rsa def _bio_analyze_rsa_epoch(epoch, output={}): # RSA features for event-related analysis: epoching # To remove baseline if np.min(epoch.index.values) <= 0: baseline = epoch["RSA_P2T"][epoch.index <= 0].values signal = epoch["RSA_P2T"][epoch.index > 0].values output["RSA_P2T"] = np.mean(signal) - np.mean(baseline) baseline = epoch["RSA_Gates"][epoch.index <= 0].values signal = epoch["RSA_Gates"][epoch.index > 0].values output["RSA_Gates"] = np.nanmean(signal) - np.nanmean(baseline) else: signal = epoch["RSA_P2T"].values output["RSA_P2T"] = np.mean(signal) signal = epoch["RSA_Gates"].values output["RSA_Gates"] = np.nanmean(signal) return output
40.310127
117
0.608808
794843c51557f5c5d149976c1af4105afdb96f53
1,682
py
Python
typings/bpy/ops/brush.py
Argmaster/PyR3
6786bcb6a101fe4bd4cc50fe43767b8178504b15
[ "MIT" ]
2
2021-12-12T18:51:52.000Z
2022-02-23T09:49:16.000Z
typings/bpy/ops/brush.py
Argmaster/PyR3
6786bcb6a101fe4bd4cc50fe43767b8178504b15
[ "MIT" ]
2
2021-11-08T12:09:02.000Z
2021-12-12T23:01:12.000Z
typings/bpy/ops/brush.py
Argmaster/PyR3
6786bcb6a101fe4bd4cc50fe43767b8178504b15
[ "MIT" ]
null
null
null
import sys import typing def add(): ''' Add brush by mode type ''' pass def add_gpencil(): ''' Add brush for Grease Pencil ''' pass def curve_preset(shape: typing.Union[str, int] = 'SMOOTH'): ''' Set brush shape :param shape: Mode :type shape: typing.Union[str, int] ''' pass def reset(): ''' Return brush to defaults based on current tool ''' pass def scale_size(scalar: float = 1.0): ''' Change brush size by a scalar :param scalar: Scalar, Factor to scale brush size by :type scalar: float ''' pass def stencil_control(mode: typing.Union[str, int] = 'TRANSLATION', texmode: typing.Union[str, int] = 'PRIMARY'): ''' Control the stencil brush :param mode: Tool :type mode: typing.Union[str, int] :param texmode: Tool :type texmode: typing.Union[str, int] ''' pass def stencil_fit_image_aspect(use_repeat: bool = True, use_scale: bool = True, mask: bool = False): ''' When using an image texture, adjust the stencil size to fit the image aspect ratio :param use_repeat: Use Repeat, Use repeat mapping values :type use_repeat: bool :param use_scale: Use Scale, Use texture scale values :type use_scale: bool :param mask: Modify Mask Stencil, Modify either the primary or mask stencil :type mask: bool ''' pass def stencil_reset_transform(mask: bool = False): ''' Reset the stencil transformation to the default :param mask: Modify Mask Stencil, Modify either the primary or mask stencil :type mask: bool ''' pass
19.55814
90
0.618312
79484555fd9df5b1c0a7cbcd38f1c440d8ee1daa
9,997
py
Python
src/index.py
Aquila-Network/AquilaX-CE
9aa6b076e83892ececaa23970609ae7045aa6699
[ "MIT" ]
null
null
null
src/index.py
Aquila-Network/AquilaX-CE
9aa6b076e83892ececaa23970609ae7045aa6699
[ "MIT" ]
1
2021-05-13T09:28:09.000Z
2021-05-13T09:28:09.000Z
src/index.py
Aquila-Network/AquilaX-CE
9aa6b076e83892ececaa23970609ae7045aa6699
[ "MIT" ]
null
null
null
import logging from flask import Flask, request from flask_cors import CORS from functools import wraps import html_cleanup as chtml from services import logging as slog slogging_session = slog.create_session() from aquilapy import Wallet, DB, Hub app = Flask(__name__, instance_relative_config=True) # Create a wallet instance from private key wallet = Wallet("/ossl/private_unencrypted.pem") # Connect to Aquila DB instance db = DB("http://aquiladb", "5001", wallet) # Connect to Aquila Hub instance hub = Hub("http://aquilahub", "5002", wallet) # default database name default_database_name = None def create_database (user_id): # Schema definition to be used schema_def = { "description": "AquilaX-CE default user index", "unique": user_id, "encoder": "strn:msmarco-distilbert-base-tas-b", "codelen": 768, "metadata": { "url": "string", "text": "string" } } # Craete a database with the schema definition provided db_name = db.create_database(schema_def) # Craete a database with the schema definition provided db_name_ = hub.create_database(schema_def) return db_name, True # Compress data def compress_strings (db_name, strings_in): return hub.compress_documents(db_name, strings_in) # Insert docs def index_website (db_name, paragraphs, title, url): # add title as well to the index if title != "": paragraphs.append(title) compressed = compress_strings(db_name, paragraphs) docs = [] for idx_, para in enumerate(paragraphs): v = compressed[idx_] docs.append({ "metadata": { "url": url, "text": para }, "code": v }) try: dids = db.insert_documents(db_name, docs) return True except Exception as e: logging.debug(e) return False # Search docs def search_docs(db_name, query): compressed = compress_strings(db_name, [query]) docs, dists = db.search_k_documents(db_name, compressed, 100) index = {} score = {} for idx_, doc in enumerate(docs[0]): metadata = doc["metadata"] # -------------------------- exponential dampening ------------------------------ if index.get(metadata["url"]): pass else: index[metadata["url"]] = 1 score[metadata["url"]] = dists[0][idx_] results_d = {} for key in index: results_d[key] = score[key] results_d = {k: v for k, v in sorted(results_d.items(), key=lambda item: item[1], reverse=True)} return results_d # Add authentication def authenticate (): def decorator (f): @wraps(f) def wrapper (*args, **kwargs): # skip return f(*args, **kwargs) return wrapper return decorator def extract_request_params (request): if not request.is_json: logging.error("Cannot parse request parameters") # request is invalid return {} # Extract JSON data data_ = request.get_json() return data_ @app.route("/", methods=['GET']) def info (): """ Check server status """ # Build response return { "success": True, "message": "Aquila X is running healthy" }, 200 @app.route("/create", methods=['POST']) @authenticate() def create_db (): """ Create a database on demand given a random unique seed """ # get parameters user_id = None if extract_request_params(request).get("seed"): user_id = extract_request_params(request)["seed"] if not user_id: # Build error response return { "success": False, "message": "Invalid parameters" }, 400 db_name, status = create_database(user_id) # Build response if status: return { "success": True, "databaseName": db_name }, 200 else: return { "success": False, "message": "Invalid schema definition" }, 400 @app.route("/index", methods=['POST']) @authenticate() def index_page (): """ Index html page """ # get parameters html_data = None url = None db_name = default_database_name if extract_request_params(request).get("database"): db_name = extract_request_params(request)["database"] if extract_request_params(request).get("html") and extract_request_params(request).get("url"): html_data = extract_request_params(request)["html"] url = extract_request_params(request)["url"] if not html_data or not url or not db_name: # Build error response return { "success": False, "message": "Invalid parameters" }, 400 # cleanup html chtml_data = chtml.process_html(html_data, url) thtml_data = chtml.trim_content(chtml_data["data"]["content"])["result"] # index html status = index_website(db_name, thtml_data, chtml_data["data"]["title"], url) # Build response if status: # logging if slogging_session != None: # index activity logging slog.put_log_index(slogging_session, db_name, url, html_data, 0) # metadata logging slog.put_url_summary(slogging_session, db_name, url, chtml_data["data"]["title"], chtml_data["data"]["author"], chtml_data["data"]["lead_image_url"], chtml_data["data"]["next_page_url"], "...".join(thtml_data)) return { "success": True, "databaseName": db_name }, 200 else: return { "success": False, "message": "Invalid schema definition" }, 400 @app.route("/search", methods=['POST']) def search (): """ Search database for matches """ # get parameters query = None db_name = default_database_name if extract_request_params(request).get("database"): db_name = extract_request_params(request)["database"] if extract_request_params(request).get("query"): query = extract_request_params(request)["query"] if not query or not db_name: # Build error response return { "success": False, "message": "Invalid parameters" }, 400 urls = search_docs(db_name, query) # logging if slogging_session != None: if len(urls) > 0: slog.put_log_search(slogging_session, db_name, query, list(urls.keys())[0]) else: slog.put_log_search(slogging_session, db_name, query, "") # Build response return { "success": True, "result": urls }, 200 @app.route("/correct", methods=['POST']) def correct (): """ Correct matches """ # get parameters query = None db_name = default_database_name url = None if extract_request_params(request).get("database"): db_name = extract_request_params(request)["database"] if extract_request_params(request).get("query") and extract_request_params(request).get("url"): query = extract_request_params(request)["query"] url = extract_request_params(request)["url"] if not query and not db_name and not url: # Build error response return { "success": False, "message": "Invalid parameters" }, 400 # logging if slogging_session != None: slog.put_log_correct(slogging_session, db_name, query, url) # index correction status = index_website(db_name, [], query, url) # Build response return { "success": True }, 200 @app.route("/list", methods=['POST']) def listall (): """ List indexed urls """ # get parameters page = None db_name = default_database_name limit = None if extract_request_params(request).get("database"): db_name = extract_request_params(request)["database"] if extract_request_params(request).get("page") and extract_request_params(request).get("limit"): page = extract_request_params(request)["page"] limit = extract_request_params(request)["limit"] if not page and not db_name and not limit: # Build error response return { "success": False, "message": "Invalid parameters" }, 400 # get links if slogging_session != None: links = slog.get_all_url(slogging_session, db_name, page, limit) # Build response return { "success": True, "result": { "links": links } }, 200 @app.route("/urlsummary", methods=['POST']) def summary (): """ URL summary """ # get parameters urls = None db_name = default_database_name if extract_request_params(request).get("database"): db_name = extract_request_params(request)["database"] if extract_request_params(request).get("urls"): urls = extract_request_params(request)["urls"] if not urls: # Build error response return { "success": False, "message": "Invalid parameters" }, 400 summary_r = slog.get_url_summary(slogging_session, db_name, urls) # Build response return { "success": True, "result": { "summary": summary_r } }, 200 # Server starter def flaskserver (): """ start server """ app.run(host='0.0.0.0', port=5003, debug=False) # Enable CORS CORS(app) if __name__ == "__main__": # create default database db_name, status = create_database("default") if status: default_database_name = db_name logging.debug("Default DB name: " + default_database_name) # start server flaskserver()
26.101828
222
0.591778
7948467f6893a503dcefd354cc6ca4e0f9e7dbef
1,475
py
Python
python/example_code/cloudwatch/delete_alarms.py
gabehollombe-aws/aws-doc-sdk-examples
dfc0e06ebe1762ab127f3ef5f425507644c6a99c
[ "Apache-2.0" ]
12
2020-07-28T01:20:15.000Z
2021-12-10T10:52:49.000Z
python/example_code/cloudwatch/delete_alarms.py
gabehollombe-aws/aws-doc-sdk-examples
dfc0e06ebe1762ab127f3ef5f425507644c6a99c
[ "Apache-2.0" ]
5
2021-12-10T01:52:47.000Z
2022-01-04T16:47:45.000Z
python/example_code/cloudwatch/delete_alarms.py
gabehollombe-aws/aws-doc-sdk-examples
dfc0e06ebe1762ab127f3ef5f425507644c6a99c
[ "Apache-2.0" ]
5
2020-08-29T14:01:38.000Z
2021-11-18T07:11:49.000Z
# Copyright 2010-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. # snippet-start:[cloudwatch.python.delete_alarms.complete] import boto3 # Create CloudWatch client cloudwatch = boto3.client('cloudwatch') # Delete alarm cloudwatch.delete_alarms( AlarmNames=['Web_Server_CPU_Utilization'], ) # snippet-end:[cloudwatch.python.delete_alarms.complete] # snippet-comment:[These are tags for the AWS doc team's sample catalog. Do not remove.] # snippet-sourcedescription:[delete_alarm.py demonstrates how to delete an array of Amazon CloudWatch alarms given the alarm names.] # snippet-keyword:[Python] # snippet-sourcesyntax:[python] # snippet-sourcesyntax:[python] # snippet-keyword:[AWS SDK for Python (Boto3)] # snippet-keyword:[Code Sample] # snippet-keyword:[Amazon Cloudwatch] # snippet-service:[cloudwatch] # snippet-sourcetype:[full-example] # snippet-sourcedate:[2018-12-26] # snippet-sourceauthor:[jschwarzwalder (AWS)]
35.97561
133
0.750508