hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794888b89fe9a82c25c6f0b309d5fbacd559fb99
44,347
py
Python
resources/lib/frameMyMusic.py
sitronet/script.kodijivelette
7c75e9f5234b0f89cd76f8be826b33aee7ed5e5a
[ "Apache-2.0" ]
null
null
null
resources/lib/frameMyMusic.py
sitronet/script.kodijivelette
7c75e9f5234b0f89cd76f8be826b33aee7ed5e5a
[ "Apache-2.0" ]
null
null
null
resources/lib/frameMyMusic.py
sitronet/script.kodijivelette
7c75e9f5234b0f89cd76f8be826b33aee7ed5e5a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- global savepath global Kodi Kodi = True #sys.path.append(os.path.join(os.path.dirname(__file__), "resources", "lib")) import threading import time import urllib import os from resources.lib import connexionClient, ecoute, outils from resources.lib.ecoute import Souscription from resources.lib import pyxbmctExtended from resources.lib.outils import debug import json if Kodi: import xbmc import xbmcgui import xbmcaddon import pyxbmct SIZE_WIDTH_pyxbmct = 1280 SIZE_HEIGHT_pyxbmct = 720 SEIZE = 16 * 4 #32 16 option in a 16:9 screen here it's 64:36 squares NEUF = 9 * 4 #18 or 9 ADDON = xbmcaddon.Addon() ARTWORK = xbmc.translatePath(os.path.join(ADDON.getAddonInfo('path'), 'resources', 'skins', 'Default', 'media')) savepath = xbmc.translatePath('special://temp') # Kodi key action codes. # More codes available in xbmcgui module ACTION_PREVIOUS_MENU = 10 """ESC action""" ACTION_NAV_BACK = 92 """Backspace action""" ACTION_MOVE_LEFT = 1 """Left arrow key""" ACTION_MOVE_RIGHT = 2 """Right arrow key""" ACTION_MOVE_UP = 3 """Up arrow key""" ACTION_MOVE_DOWN = 4 """Down arrow key""" ACTION_MOUSE_WHEEL_UP = 104 """Mouse wheel up""" ACTION_MOUSE_WHEEL_DOWN = 105 """Mouse wheel down""" ACTION_MOUSE_DRAG = 106 """Mouse drag""" ACTION_MOUSE_MOVE = 107 """Mouse move""" ACTION_MOUSE_LEFT_CLICK = 100 """Mouse click""" TIME_OF_LOOP_SUBSCRIBE = ecoute.TIME_OF_LOOP_SUBSCRIBE from resources.lib.outils import debug DEBUG_LEVEL = xbmc.LOGDEBUG TAGS = 'aCdejJKlstuwxy' class MyMusic(pyxbmctExtended.BackgroundDialogWindow): def __init__(self, *args , **kwargs ): #title = args[0] super(MyMusic, self).__init__() self.recevoirEnAttente = threading.Event() self.recevoirEnAttente.clear() self.Abonnement = threading.Event() self.threadRunning = True self.WindowPlaying = xbmcgui.getCurrentWindowId() debug('fenetre de class MyMusic n° : ' + str(self.WindowPlaying), DEBUG_LEVEL) debug('Create Instance frame MyMusic ' , DEBUG_LEVEL) self.playerid = '' self.geometrie() debug('geometrie set', DEBUG_LEVEL) self.controlMenus() debug('control set', DEBUG_LEVEL) #self.set_navigation() debug('navigation set', DEBUG_LEVEL) self.connexionEvent() self.connect(self.listMenu_principal, lambda : self.f_detailAlbums()) self.connect(self.listMenu_detailAlbums, lambda : self.f_listeTracks(menudeprovenance='listMenu_detailAlbums')) self.connect(self.listMenu_playlist, self.f_detailItemPlaylist) self.connect(pyxbmct.ACTION_NAV_BACK, self.quit_listing) # rather self.close self.connect(pyxbmct.ACTION_PREVIOUS_MENU, self.quit_listing) # rather self.close self.setFocus(self.listMenu_principal) def geometrie(self): SIZESCREEN_HEIGHT = xbmcgui.getScreenHeight() # exemple # 1080 SIZESCREEN_WIDTH = xbmcgui.getScreenWidth() # 1920 # replaced by pyxbmct but need for the size cover until the fix self.GRIDSCREEN_Y, Reste = divmod(SIZESCREEN_HEIGHT, 10) # 108 self.GRIDSCREEN_X, Reste = divmod(SIZESCREEN_WIDTH, 10) # 192 self.screenx = SIZESCREEN_WIDTH self.screeny = SIZESCREEN_HEIGHT debug('Real Size of Screen : ' + str(self.screenx) + ' x ' + str(self.screeny), DEBUG_LEVEL) if self.screenx > SIZE_WIDTH_pyxbmct: self.screenx = SIZE_WIDTH_pyxbmct self.screeny = SIZE_HEIGHT_pyxbmct self.image_dir = ARTWORK # path to pictures used in the program (future development, todo) self.cover_jpg = self.image_dir + '/music.png' # pour le démarrage then updated self.image_background = self.image_dir + '/fond-noir.jpg' # in next release could be change by users self.image_button_pause = self.image_dir + '/pause.png' # get from Xsqueeze self.image_button_stop = self.image_dir + '/stop.png' # get from Xsqueeze self.image_button_play = self.image_dir + '/play.png' # get from Xsqueeze self.textureback_slider_duration = self.image_dir + '/slider_back.png' # get from plugin audio spotify self.texture_slider_duration = self.image_dir + '/slider_button_new.png' self.image_list_focus = self.image_dir + '/MenuItemFO.png' # myself #pyxbmct : self.setGeometry(self.screenx , self.screeny , NEUF, SEIZE) debug('Size of Screen pyxbmct fix to : ' + str(self.screenx) + ' x ' + str(self.screeny), DEBUG_LEVEL) # cover when playing #SIZECOVER_X = int(self.screenx / SEIZE * 28 ) SIZECOVER_X = (SEIZE // 2) - 6 self.sizecover_x = SIZECOVER_X #SIZECOVER_Y = self.GRIDSCREEN_Y * 3 # and reserve a sized frame to covers,attention SIZECOVER_X != SIZECOVER_Y debug('Taille pochette : ' + str(SIZECOVER_X) + ' x ' + str(SIZECOVER_X) , DEBUG_LEVEL) ligneButton = NEUF - 3 SLIDER_INIT_VALUE = 0 # reserve pour afficher cover.jpg self.cover_jpg = self.image_dir + '/vinyl.png' # pour le démarrage then updated # need some adjustment # reserve pour afficher cover.jpg self.pochette = pyxbmct.Image(self.cover_jpg) self.placeControl(control=self.pochette, row=3, column=(SEIZE // 2) , rowspan=28, columnspan=29) # todo to fix #self.pochette.setImage(self.cover_jpg) # Slider de la durée self.slider_duration = pyxbmct.Slider(textureback=self.textureback_slider_duration) self.placeControl(control=self.slider_duration, row=ligneButton - 2, column=(SEIZE // 2), rowspan=1, columnspan=29 - 2, pad_x=1) self.slider_duration.setPercent(SLIDER_INIT_VALUE) # labels des durée self.labelduree_jouee = pyxbmct.Label('',textColor ='0xFF808080') self.placeControl(control=self.labelduree_jouee, row=ligneButton - 2, column=(SEIZE // 2) , rowspan=2, columnspan=5, pad_x=5, pad_y=5) self.labelduree_fin = pyxbmct.Label('',textColor ='0xFF888888') self.placeControl(control=self.labelduree_fin, row=ligneButton - 2, column=(SEIZE // 2) + (29 - 5), rowspan=2, columnspan=4, pad_x=5, pad_y=5) def controlMenus(self): ''' Fix the size of itemlists in menus lists''' self.title_label = pyxbmct.Label('', textColor='0xFF808080') self.placeControl(self.title_label, 0 , 2 , 1 , 10) row_depart = 2 col_depart = 0 espace_row = 35 espace_col = SEIZE / 4 hauteur_menu = 25 self.listMenu_principal = pyxbmct.List(buttonFocusTexture=self.image_list_focus, _imageWidth= 40 , _imageHeight = 40 , _itemHeight=42) self.listMenu_detailAlbums = pyxbmct.List(buttonFocusTexture=self.image_list_focus, _imageWidth= 30 , _imageHeight = 30 , _itemHeight=30) self.listMenu_playlist = pyxbmct.List(buttonFocusTexture=self.image_list_focus, _imageWidth= 40 , _imageHeight = 40 , _itemHeight=42) self.placeControl(self.listMenu_principal , row_depart , col_depart , espace_row, espace_col ) self.placeControl(self.listMenu_detailAlbums , row_depart , col_depart + espace_col, espace_row, espace_col ) self.placeControl(self.listMenu_playlist , row_depart , col_depart , espace_row, (SEIZE / 2) - 2 ) # TRES IMPORTANT POUR AVOIR LE FOCUS # Add items to the list , need to ask the focus before filling the list from Plugin.Plugin self.listMenu_principal.addItem('.') # then be filling by the Plugin self.listMenu_playlist.addItem('.') def connexionEvent(self): # Connect key and mouse events for list navigation feedback. self.connectEventList( [pyxbmct.ACTION_MOVE_DOWN, pyxbmct.ACTION_MOVE_UP, pyxbmct.ACTION_MOUSE_WHEEL_DOWN, pyxbmct.ACTION_MOUSE_WHEEL_UP, pyxbmct.ACTION_MOUSE_MOVE, pyxbmct.ACTION_MOVE_LEFT, pyxbmct.ACTION_MOVE_RIGHT], self.list_Menu_Navigation) def onAction(self, action): """ Catch button actions. ``action`` is an instance of :class:`xbmcgui.Action` class. """ if action == ACTION_PREVIOUS_MENU: debug('Previous_menu' , DEBUG_LEVEL) self.quit_listing() elif action == ACTION_NAV_BACK: debug('nav_back' , DEBUG_LEVEL) self.quit_listing() else: debug('else condition onAction in FrameMyMusic Class MyMusic' , DEBUG_LEVEL) self._executeConnected(action, self.actions_connected) def quit_listing(self):# todo : à tester self.WindowPlayinghere = xbmcgui.getCurrentWindowId() debug('fenetre listing is exiting: ' + str(self.WindowPlayinghere), DEBUG_LEVEL) #debug('fenetre enregistrée dans methode now_is_playing n° : ' + str(self.Window_is_playing), DEBUG_LEVEL) # attribute error here #self.Abonnement.clear() # -> AttributeError: 'SlimIsPlaying' object has no attribute 'Abonnement' # todo : tester appel fonction du prg principal # frameMenu.FenetreMenu.desabonner() -> TypeError: unbound method desabonner() must be called with FenetreMenu # instance as first argument (got nothing instead) # self.subscribe.resiliersouscription() # -> AttributeError: 'SlimIsPlaying' object has no attribute subscribe self.connectInterface() self.get_playerid() self.subscribe = ecoute.Souscription(self.InterfaceCLI, self.playerid) self.subscribe.resiliersouscription() # doit on récupérer la réponse ? self.Abonnement.clear() self.threadRunning = False self.close() def set_navigation(self): # Set navigation between controls (Button, list or slider) # Control has to be added to a window first if not raise RuntimeError self.listMenu_principal.controlRight(self.listMenu_detailAlbums) self.listMenu_detailAlbums.controlRight(self.listMenu_principal) self.listMenu_principal.controlLeft(self.listMenu_detailAlbums) self.listMenu_detailAlbums.controlLeft(self.listMenu_principal) # Set initial focus , don't forget to fill an item before setfocus self.setFocus(self.listMenu_principal) def list_Menu_Navigation(self): # todo écrire quoi faire quanq un item est sélectionné dans le listemenu if self.getFocus() == self.listMenu_principal: self.itemSelection = self.listMenu_principal.getListItem( self.listMenu_principal.getSelectedPosition()).getLabel() self.title_label.setLabel(self.itemSelection) elif self.getFocus() == self.listMenu_detailAlbums: self.itemSelectiondetail = self.listMenu_detailAlbums.getListItem( self.listMenu_detailAlbums.getSelectedPosition()).getLabel() self.title_label.setLabel(self.itemSelectiondetail) def f_detailAlbums(self): self.get_playerid() self.get_ident_server() self.connectInterface() self.listMenu_detailAlbums.reset() labelajouer = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getLabel() artist = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty('artist') self.title_label.setLabel(labelajouer) # retrieve the filename cover.jpg from previous menulist and print it on coverbox file_image = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty('image') if file_image: self.pochette.setImage(file_image) album_id = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty('id') artist_id = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty('artist_id') requete = 'tracks 0 100 artist_id:' + artist_id + ' album_id:' + album_id + ' sort:tracknum ' + 'tags:' + TAGS self.InterfaceCLI.viderLeBuffer() self.InterfaceCLI.sendtoCLISomething(requete) reponse = self.InterfaceCLI.receptionReponseEtDecodage() '''exemple de reponse : tracks|0|100|artist_id:4216|album_id:1683|tags:aCdejJKlstuwxy| id:20179|title:Au pays des Merveilles de Juliet|artist:Yves Simon|compilation:0|duration:144.144| album_id:1683|coverart:1|artwork_track_id:afe480cb|album:Au Pays Des Merveilles De Juliet|artist_id:4216|tracknum:3| url:file:///i-data/e0c90389/music/Musique/Yves%20Simon/03%20Au%20pays%20des%20Merveilles%20de%20Juliet.flac| remote:0|year:2007| [...] id:20178|title:Rue de la Huchette|artist:Yves Simon|compilation:0|duration:139.808|album_id:1683|coverart:1| artwork_track_id:afe480cb|album:Au Pays Des Merveilles De Juliet|artist_id:4216|tracknum:2| url:file:///i-data/e0c90389/music/Musique/Yves%20Simon/02%20Rue%20de%20la%20Huchette.flac| remote:0|year:2007| count:10 ''' # enlever entête et queue texte_en_liste_a_traiter = reponse.split('|count:') debug('texte_a_traiter : ' + str(texte_en_liste_a_traiter) , DEBUG_LEVEL ) if texte_en_liste_a_traiter == ['']: # erreur dans la réponse outils.functionNotYetImplemented() return try: nombreDItemsTracks = texte_en_liste_a_traiter.pop() except IndexError: outils.functionNotYetImplemented() return try: texte_a_traiter_titre = texte_en_liste_a_traiter.pop() texte_en_liste_a_traiter_entete = texte_a_traiter_titre.split('tags:' + TAGS + '|' ) debug('texte_a_traiter titre: ' + str(texte_en_liste_a_traiter_entete) , DEBUG_LEVEL ) except IndexError: item = xbmcgui.ListItem() item.setLabel('Get an Error from Server! ') self.listMenu_detailAlbums.addItem(item) return # exemple : try: lesItemsTracksNormalised = texte_en_liste_a_traiter_entete[1] debug('lesItemsTracksNormalised : ' + lesItemsTracksNormalised, DEBUG_LEVEL ) except IndexError: return try: lachainedesItemsTracks = lesItemsTracksNormalised.split('|') # debug('detail Albums : ' + str(lachainedesItemsTracks) , DEBUG_LEVEL) except IndexError: debug('functionNotYetImplemented detailAlbums 310', DEBUG_LEVEL) outils.functionNotYetImplemented() return ''' exemple detail albums : ['id:23528', 'title:Allende', 'artist:1984 - En public au Theatre des Champs Elysees', 'compilation:0', 'duration:270.367', 'album_id:1967', 'coverart:0', 'album:Cd3', 'artist_id:4425', 'tracknum:23', 'url:file:///i-data/e0c/music/TOUT_Leo_Ferre_ou_Presque...48_CD_et_Extras/nde.mp3', 'remote:0', 'year:0', 'id:23531', 'title:Avec le temps', 'artist:1984 - En public au Theatre des Champs Elysees', 'compilation:0', 'duration:169.795', 'album_id:1967', 'coverart:0', 'album:Cd3', 'artist_id:4425', 'tracknum:26', 'url:file:///i-data/e0c/music/TOUT_Leo_Ferre_ou_Presque...48_CD_et_Extra', 'remote:0', 'year:0', [...] , 'id:23529', 'title:Words Words Words', 'artist:1984 - En public au Theatre des Champs Elysees', 'compilation:0', 'duration:219.689', 'album_id:1967', 'coverart:0', 'album:Cd3', 'artist_id:4425', 'tracknum:24', 'url:file:///i-data/e0c/music/TOUT_Leo_Ferre_ou_Presque...48_CD_et_Extrasrds.mp3', 'remote:0', 'year:0'] ''' secondEtsuivant = False index = 0 indice ='' # fix if tracknum doesn't exist titre='' year='' duree = '' itemsTracks= [] # une liste itemtampon = xbmcgui.ListItem() for chaine in lachainedesItemsTracks: debug('detail album 1 item : ' + str(chaine), DEBUG_LEVEL) try: clef, valeur = chaine.split(':', 1) except ValueError: # probably there are some ':' in the chaine (lyrics or information around the title) # so we go on anyway pass if clef == 'id': if secondEtsuivant: itemtampon.setLabel(indice + ' - ' + titre + ' - ' + year + ' : ' + duree + ' .') itemtampon.setProperty('album_id' , album_id) itemtampon.setProperty('artist_id' , artist_id) itemsTracks.append(itemtampon) itemtampon = xbmcgui.ListItem() index = index + 1 debug( 'Ajout de l item dans listItem tampon' + titre + ' ' + itemtampon.getProperty('track_id'), DEBUG_LEVEL) itemtampon.setProperty('track_id', valeur) secondEtsuivant = True elif clef == 'title': titre = valeur #itemtampon.setLabel(valeur) elif clef == 'duration': duree = outils.getInHMS(valeur) elif clef == 'artwork_track_id': hascode_artwork = valeur completeNameofFile = self.get_artwork(hashcode_artwork=hascode_artwork) #itemtampon.setArt({'thumb': completeNameofFile}) itemtampon.setProperty('image' , completeNameofFile) elif clef == 'tracknum': itemtampon.setProperty(clef, valeur) indice = valeur elif clef == 'year': itemtampon.setProperty(clef, valeur) year = valeur else: # not sure that we have to keep other value # for now we keep them but todo pass them itemtampon.setProperty(clef, valeur) # once exit the loop 'for' , fill the list with the last itemtampon : itemtampon.setProperty('album_id' , album_id) itemtampon.setProperty('artist_id' , artist_id) itemtampon.setLabel(indice + ' - ' + titre + ' - ' + year + ' : ' + duree + ' .') itemsTracks.append(itemtampon) debug( 'Ajout de l item dans listItem tampon ' + titre + ' ' + itemtampon.getProperty('track_id'), DEBUG_LEVEL) #sort the itemsTracks list by tracknum todo test this function or similar #sorted(itemsTracks, key=lambda tracknum: tracknum[1]) # sort by n° track not always true for item in itemsTracks: debug('ajout de item tracks dans menu detailAlbum : ' + item.getLabel() , DEBUG_LEVEL) self.listMenu_detailAlbums.addItem(item) # End of funcion f_detailAlbums def f_listeTracks(self, menudeprovenance): if menudeprovenance == 'listMenu_detailAlbums' : labelajouer = self.listMenu_detailAlbums.getListItem(self.listMenu_detailAlbums.getSelectedPosition()).getLabel() #cmd = self.command #cmd = self.listMenu_ItemRadios.getListItem( self.listMenu_ItemRadios.getSelectedPosition()).getProperty('cmd') #cmd ='picks' , ....Radio, shoutcast ... # cmd comes from listMenu_1 it is not an error tracknum = self.listMenu_detailAlbums.getListItem( self.listMenu_detailAlbums.getSelectedPosition()).getProperty('tracknum') track_id = self.listMenu_detailAlbums.getListItem( self.listMenu_detailAlbums.getSelectedPosition()).getProperty('track_id') album_id = self.listMenu_detailAlbums.getListItem( self.listMenu_detailAlbums.getSelectedPosition()).getProperty('album_id') artist_id = self.listMenu_detailAlbums.getListItem( self.listMenu_detailAlbums.getSelectedPosition()).getProperty('artist_id') debug('launch to play : ' + labelajouer + ' playlistcontrol cmd:load track_id:' + track_id , DEBUG_LEVEL ) choix = xbmcgui.Dialog().select(heading= labelajouer, list= ['Play Song now', \ 'Play Album now ' ,\ 'Play Song after the current song' , \ 'Add Song to Playlist' , \ 'More Info']) if choix == 0: # exemple : playlistcontrol cmd:load album_id:1683 requete = self.playerid + ' playlistcontrol cmd:load track_id:' + str(track_id) elif choix == 1: requete = self.playerid + ' playlistcontrol cmd:load album_id:' + str(album_id) elif choix == 2: requete = self.playerid + ' playlistcontrol cmd:insert track_id:' + str(track_id) elif choix == 3: requete = self.playerid + ' playlistcontrol cmd:add track_id:' + str(track_id) if not choix < 0 and not choix > 3 : debug('requete : ' + requete , DEBUG_LEVEL ) self.InterfaceCLI.sendtoCLISomething(requete) reponse = self.InterfaceCLI.receptionReponseEtDecodage() # now it is going to play requetePlay = self.playerid + ' playlist play' self.InterfaceCLI.sendtoCLISomething(requetePlay) reponse = self.InterfaceCLI.receptionReponseEtDecodage() del reponse # then stay on the screen and update duration and progress listmenu self.update_current_track_playing() elif choix == 4: # need more stuff to dig songinfo requete = self.playerid + ' songinfo 0 100 track_id:' + str(track_id) self.InterfaceCLI.sendtoCLISomething(requete) reponse = self.InterfaceCLI.receptionReponseEtDecodage() try: listesonginfo = reponse.split('|') except ValueError: outils.functionNotYetImplemented() textInfo = '' for field in listesonginfo: textInfo = textInfo + field + '\r\n' dialogSongInfo = xbmcgui.Dialog() dialogSongInfo.textviewer('Song Info : ' + labelajouer , textInfo ) else: # cancel asked pass # End of function f_listeTracks def f_detailItemPlaylist(self): # todo rewrite function to have a nice personnal textbox in a frame # with selected item labelajouer = self.listMenu_playlist.getListItem( self.listMenu_playlist.getSelectedPosition()).getLabel() track_id = self.listMenu_playlist.getListItem( self.listMenu_playlist.getSelectedPosition()).getProperty('tracked_id') self.connectInterface() self.get_playerid() self.subscribe = ecoute.Souscription(self.InterfaceCLI, self.playerid) self.subscribe.resiliersouscription() self.InterfaceCLI.viderLeBuffer() requete = self.playerid + ' songinfo 0 100 track_id:' + str(track_id) self.InterfaceCLI.sendtoCLISomething(requete) reponse = self.InterfaceCLI.receptionReponseEtDecodage() try: listesonginfo = reponse.split('|') except ValueError: outils.functionNotYetImplemented() return textInfo = '' for field in listesonginfo: textInfo = textInfo + field + '\r\n' dialogSongInfo = xbmcgui.Dialog() dialogSongInfo.textviewer('Song Info : ' + labelajouer , textInfo ) # copier/coller de la fonction de frameMenu.py def update_current_track_playing(self): self.subscribe = Souscription(self.InterfaceCLI, self.playerid ) self.subscribe.subscription() # todo Q : comment faire la gestion de l'arret de la boucle de souscription ? # A : fonction resiliersouscription() time.sleep(0.5) timeoutdeRecherchedesPlayers = time.time() + 60 * 20 # todo toutes les 20 minutes nous rechercherons les players timeEntreeDansLaBoucle = time.time() compteur = 1 titreenlecture = '' self.breakBoucle_A = False self.Abonnement.set() while self.Abonnement.is_set(): self.breakBoucle_A = False if xbmc.Monitor().waitForAbort(0.5): self.breakBoucle_A = True self.Abonnement.clear() break timeoutdeTestdelaBoucle = time.time() + 60 * 10 # 10 minutes from now -for testing while (self.breakBoucle_A == False): # Boucle A principale de Subscribe ?same as 'not self.breakBoucle_A'? if time.time() > timeoutdeTestdelaBoucle: debug('Timeout : break A ', DEBUG_LEVEL) self.breakBoucle_A = True if xbmc.Monitor().waitForAbort(0.5): self.breakBoucle_A = True self.Abonnement.clear() # Todo : analyse du bloc recupropre = self.InterfaceCLI.receptionReponseEtDecodage() if 'subscribe:-' in recupropre: # fin souscription the resiliersouscription is send by FramePlaying or # else diplaying # the FramePlaying exits - function quit() self.breakBoucle_A = True # must exit the loop A but doesn't exist here self.Abonnement.clear() # must exit the main loop break listeB = recupropre.split('subscribe:' + TIME_OF_LOOP_SUBSCRIBE + '|') # on élimine le début de la trame # attention doit correpondre à # la même valeur de subscribe dans ecoute.py try: textC = listeB[1] # on conserve la deuximème trame après suscribe... except IndexError: break # mise à jour de la position de l'item dans le menu liste indexdecurrentTitle = textC.find('cur_index:') indexFincurrentTitle = textC.find('|', indexdecurrentTitle) # debug('index debut : ' + str(indexdecurrentTitle) + ' fin : ' + str(indexFincurrentTitle), xbmc.LOGDEBUG) playlist_current_index_title = textC[indexdecurrentTitle + 10: indexFincurrentTitle] debug('current_index_title :' + playlist_current_index_title, DEBUG_LEVEL) self.listMenu_detailAlbums.selectItem(int(playlist_current_index_title)) listeRetour = textC.split('|') # on obtient une liste des items dico = dict() # pour chaque élement de la liste sous la forme <val1>:<val2> for x in listeRetour: # on la place dans un dictionnaire c = x.split(':') # sous la forme key: value et <val1> devient la key if dico.has_key(c[0]): # nous avons déjà une occurence pass else: clef = c[0] dico[clef] = c[1] # ensuite on pourra piocher dans le dico la valeur try: pourcentagedureejouee = 100 * float(dico['time']) / float(dico['duration']) debug('percent duree : ' + str(pourcentagedureejouee) + ' - time: ' + dico['time'], xbmc.LOGDEBUG) except KeyError: pourcentagedureejouee = 0 try: self.slider_duration.setPercent(pourcentagedureejouee) except KeyError: continue try: self.labelduree_jouee.setLabel(label=outils.getInHMS(dico['time'])) except KeyError: continue try: self.labelduree_fin.setLabel(label=outils.getInHMS(dico['duration'])) except KeyError: self.labelduree_fin.setLabel(label=outils.getInHMS(0.0)) if not dico['title'] == titreenlecture: try: self.title_label.setLabel(label='[B]' + dico['current_title'] + '[/B]') except KeyError: self.title_label.setLabel(label='') pass ''' self.InterfaceCLI.sendtoCLISomething('album ?') reponse = self.InterfaceCLI.receptionReponseEtDecodage() album = reponse.split('album|').pop() self.jivelette.labelAlbum.reset() if not '|album' in album: self.jivelette.labelAlbum.addLabel(label='[B]' + album + '[/B]') self.InterfaceCLI.sendtoCLISomething('artist ?') reponse = self.InterfaceCLI.receptionReponseEtDecodage() artist = reponse.split('artist|').pop() self.jivelette.labelArtist.reset() if not '|artist' in artist: self.jivelette.labelArtist.addLabel(label='[B]' + artist + '[/B]') ''' #self.update_coverbox(self.lmsip, self.lmswebport, self.playerid, compteur) # log pour voir compteur += 1 timedutour = time.time() tempsparcouru = timedutour - timeEntreeDansLaBoucle debug(str(compteur) + ' tour de boucle : ' + str(tempsparcouru), xbmc.LOGDEBUG) # fin de la boucle A : sortie de subscribe # fin boucle while debug('End of Boucle in Update_curent_track in FrameMyMusic', DEBUG_LEVEL) self.subscribe.resiliersouscription() reponse = self.InterfaceCLI.receptionReponseEtDecodage() debug('Send resiliersouscription in A update_current_track in FrameMyMusic', DEBUG_LEVEL) self.InterfaceCLI.viderLeBuffer() debug('End of fonction update_current_track_is_playing in FrameMyMusic, Bye', DEBUG_LEVEL) # fin fonction update_current_track_is_playing def connectInterface(self): self.InterfaceCLI = connexionClient.InterfaceCLIduLMS() def get_playerid(self): self.Players = outils.WhatAreThePlayers() self.playerid = self.Players.get_unplayeractif() def get_ident_server(self): self.Server = outils.WhereIsTheLMSServer() self.nomserver = self.Server.LMSnom self.lmsip = self.Server.LMSCLIip self.lmswebport = self.Server.LMSwebport def get_icon(self, index, urlicone): ''' fetch the image or icon from server or somewhere in tne net and store it in a temporay directory . ie /tmp/ on unix or special://tmp doesn't seems work on librelec ''' filename = 'icon.image_' + str(index) + '.tmp' completeNameofFile = os.path.join(savepath, filename) debug('filename icon : ' + str(completeNameofFile), xbmc.LOGDEBUG) if 'http' in urlicone: urltoopen = urlicone else: if urlicone.startswith('/'): debug('url icone avec /: ' + urlicone ,xbmc.LOGDEBUG ) #urltoopen = 'http://' + self.origine.rechercheduserveur.LMSCLIip + ':' + self.origine.rechercheduserveur.LMSwebport + '/' + urlicone urltoopen = 'http://' + self.lmsip + ':' + self.lmswebport + urlicone else: debug('url icone sans /: ' + urlicone ,xbmc.LOGDEBUG ) urltoopen = 'http://' + self.lmsip + ':' + self.lmswebport + '/' + urlicone try: urllib.urlretrieve(urltoopen, completeNameofFile) except IOError: outils.functionNotYetImplemented() debug('nom du fichier image : ' + completeNameofFile , DEBUG_LEVEL) return completeNameofFile # fin fonction fin fonction get_icon, class Plugin_Generique # test def get_artwork(self, hashcode_artwork): #http://<server>:<port>/music/<track_id>/cover.jpg filename = 'icon.image_' + str(hashcode_artwork) + '.tmp' completeNameofFile = os.path.join(savepath, filename) urlimage = 'http://' + self.lmsip + ':' + self.lmswebport + '/music/' + str(hashcode_artwork) + '/cover.jpg' try: urllib.urlretrieve(urlimage, completeNameofFile) except IOError: pass outils.functionNotYetImplemented() debug('nom du fichier image : ' + completeNameofFile , DEBUG_LEVEL) return completeNameofFile def update_coverbox(self, lmsip, lmswebport, playerid, compteur): ''' fonction qui devrait mettre à jour l'affichage de la pochette dans cette version on récupère la pochette du serveur pour le player courant dans une autre version on récupère la pochette du serveur grâce au tag fourni dans l'information sur la chanson en cours Same function in FramePlaying.py (redondance) :param lmsip: :param lmswebport: :param playerid: :return: ''' # on construit l'url de récupération de l'image #http://<server>:<port>/music/current/cover.jpg?player=<playerid> # exemple : http://192.168.1.101:9000/music/current/cover.jpg?player=00:04:20:17:1c:44 # ou bien http://<server>:<port>/music/<track_id>/cover.jpg # exemple : urlcover = 'http://' + lmsip + ':' + lmswebport + \ '/music/current/cover.jpg?player=' + playerid # or self.playerID ? debug(urlcover, DEBUG_LEVEL) filename = 'pochette' + str(compteur) + '.tmp' completeNameofFile = os.path.join(savepath , filename ) debug('filename tmp : ' + str(completeNameofFile), DEBUG_LEVEL) urllib.urlretrieve(urlcover , completeNameofFile) self.pochette.setImage(completeNameofFile) # fonction d'xbmcgui #os.remove(completeNameofFile) # suppression du fichier # fin fonction update_cover def futureFunction(self): pass def promptVolume(self): volumeFrame = outils.VolumeFrameChild() volumeFrame.doModal() del volumeFrame def promptContextMenu(self): contextMenuFrame = outils.ContextMenuFrameChild() contextMenuFrame.doModal() del contextMenuFrame class AllArtists(MyMusic): def __init__(self, *args, **kwargs): super(AllArtists, self).__init__() self.connect(self.listMenu_principal, self.f_detailAlbums) self.setFocus(self.listMenu_principal) def onAction(self, action): """ Catch button actions. ``action`` is an instance of :class:`xbmcgui.Action` class. """ if action == ACTION_PREVIOUS_MENU: debug('Previous_menu' , DEBUG_LEVEL) self.quit_listing() elif action == ACTION_NAV_BACK: debug('nav_back' , DEBUG_LEVEL) self.quit_listing() else: debug('else condition onAction in frameMyMusic class AllArtists' , DEBUG_LEVEL) self._executeConnected(action, self.actions_connected) def f_detailAlbums(self): self.get_playerid() self.get_ident_server() self.connectInterface() self.listMenu_detailAlbums.reset() labelajouer = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getLabel() artist = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty('artist') self.title_label.setLabel(labelajouer) # retrieve the filename cover.jpg from previous menulist and print it on coverbox file_image = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty( 'image') if file_image: self.pochette.setImage(file_image) album_id = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty('id') artist_id = self.listMenu_principal.getListItem(self.listMenu_principal.getSelectedPosition()).getProperty('artist_id') requete = 'tracks 0 100 artist_id:' + artist_id + ' album_id:' + album_id + ' sort:tracknum ' + 'tags:' + TAGS self.InterfaceCLI.viderLeBuffer() self.InterfaceCLI.sendtoCLISomething(requete) reponse = self.InterfaceCLI.receptionReponseEtDecodage() '''exemple de reponse : tracks|0|100|artist_id:4216|album_id:1683|tags:aCdejJKlstuwxy| id:20179|title:Au pays des Merveilles de Juliet|artist:Yves Simon|compilation:0|duration:144.144| album_id:1683|coverart:1|artwork_track_id:afe480cb|album:Au Pays Des Merveilles De Juliet|artist_id:4216|tracknum:3| url:file:///i-data/e0c90389/music/Musique/Yves%20Simon/03%20Au%20pays%20des%20Merveilles%20de%20Juliet.flac| remote:0|year:2007| [...] id:20178|title:Rue de la Huchette|artist:Yves Simon|compilation:0|duration:139.808|album_id:1683|coverart:1| artwork_track_id:afe480cb|album:Au Pays Des Merveilles De Juliet|artist_id:4216|tracknum:2| url:file:///i-data/e0c90389/music/Musique/Yves%20Simon/02%20Rue%20de%20la%20Huchette.flac| remote:0|year:2007| count:10 ''' # enlever entête et queue texte_en_liste_a_traiter = reponse.split('|count:') debug('texte_a_traiter : ' + str(texte_en_liste_a_traiter), DEBUG_LEVEL) if texte_en_liste_a_traiter == ['']: # erreur dans la réponse outils.functionNotYetImplemented() try: nombreDItemsTracks = texte_en_liste_a_traiter.pop() except IndexError: outils.functionNotYetImplemented() try: texte_a_traiter_titre = texte_en_liste_a_traiter.pop() texte_en_liste_a_traiter_entete = texte_a_traiter_titre.split('tags:' + TAGS + '|') debug('texte_a_traiter titre: ' + str(texte_en_liste_a_traiter_entete), DEBUG_LEVEL) except IndexError: item = xbmcgui.ListItem() item.setLabel('Get an Error from Server! ') self.listMenu_detailAlbums.addItem(item) # exemple : try: lesItemsTracksNormalised = texte_en_liste_a_traiter_entete[1] debug('lesItemsTracksNormalised : ' + lesItemsTracksNormalised, DEBUG_LEVEL) except IndexError: return try: lachainedesItemsTracks = lesItemsTracksNormalised.split('|') # debug('detail Albums : ' + str(lachainedesItemsTracks), DEBUG_LEVEL) except IndexError: debug('functionNotYetImplemented detailAlbums 310', DEBUG_LEVEL) outils.functionNotYetImplemented() ''' exemple detail albums : ['id:23528', 'title:Allende', 'artist:1984 - En public au Theatre des Champs Elysees', 'compilation:0', 'duration:270.367', 'album_id:1967', 'coverart:0', 'album:Cd3', 'artist_id:4425', 'tracknum:23', 'url:file:///i-data/e0c/music/TOUT_Leo_Ferre_ou_Presque...48_CD_et_Extras/nde.mp3', 'remote:0', 'year:0', 'id:23531', 'title:Avec le temps', 'artist:1984 - En public au Theatre des Champs Elysees', 'compilation:0', 'duration:169.795', 'album_id:1967', 'coverart:0', 'album:Cd3', 'artist_id:4425', 'tracknum:26', 'url:file:///i-data/e0c/music/TOUT_Leo_Ferre_ou_Presque...48_CD_et_Extra', 'remote:0', 'year:0', [...] , 'id:23529', 'title:Words Words Words', 'artist:1984 - En public au Theatre des Champs Elysees', 'compilation:0', 'duration:219.689', 'album_id:1967', 'coverart:0', 'album:Cd3', 'artist_id:4425', 'tracknum:24', 'url:file:///i-data/e0c/music/TOUT_Leo_Ferre_ou_Presque...48_CD_et_Extrasrds.mp3', 'remote:0', 'year:0'] ''' secondEtsuivant = False index = 0 indice = '' # fix if tracknum doesn't exist titre = '' year = '' duree = '' itemsTracks = [] # une liste itemtampon = xbmcgui.ListItem() for chaine in lachainedesItemsTracks: debug('detail album 1 item : ' + str(chaine), DEBUG_LEVEL) try: clef, valeur = chaine.split(':', 1) except ValueError: # probably there are some ':' in the chaine (lyrics or information around the title) # so we go on anyway pass if clef == 'id': if secondEtsuivant: itemtampon.setLabel(indice + ' - ' + titre + ' - ' + year + ' : ' + duree + ' .') itemtampon.setProperty('album_id', album_id) itemtampon.setProperty('artist_id', artist_id) itemsTracks.append(itemtampon) itemtampon = xbmcgui.ListItem() index = index + 1 debug('Ajout de l item dans listItem tampon' + titre + ' ' + itemtampon.getProperty('track_id'), DEBUG_LEVEL) itemtampon.setProperty('track_id', valeur) secondEtsuivant = True elif clef == 'title': titre = valeur # itemtampon.setLabel(valeur) elif clef == 'duration': duree = outils.getInHMS(valeur) elif clef == 'artwork_track_id': hascode_artwork = valeur completeNameofFile = self.get_artwork(hashcode_artwork=hascode_artwork) # itemtampon.setArt({'thumb': completeNameofFile}) itemtampon.setProperty('image', completeNameofFile) elif clef == 'tracknum': itemtampon.setProperty(clef, valeur) indice = valeur elif clef == 'year': itemtampon.setProperty(clef, valeur) year = valeur else: # not sure that we have to keep other value # for now we keep them but todo pass them itemtampon.setProperty(clef, valeur) # once exit the loop 'for' , fill the list with the last itemtampon : itemtampon.setProperty('album_id', album_id) itemtampon.setProperty('artist_id', artist_id) itemtampon.setLabel(indice + ' - ' + titre + ' - ' + year + ' : ' + duree + ' .') itemsTracks.append(itemtampon) debug('Ajout de l item dans listItem tampon ' + titre + ' ' + itemtampon.getProperty('track_id'), DEBUG_LEVEL) # sort the itemsTracks list by tracknum todo test this function or similar # sorted(itemsTracks, key=lambda tracknum: tracknum[1]) # sort by n° track not always true for item in itemsTracks: debug('ajout de item tracks dans menu detailAlbum : ' + item.getLabel(), DEBUG_LEVEL) self.listMenu_detailAlbums.addItem(item) # End of funcion f_detailAlbums # fin class AllArtists(MyMusic):
44.840243
145
0.608452
794889d899d70d3af987857c8e797aeee883c213
3,746
py
Python
flexget/plugins/sites/rmz.py
fotile96/Flexget
0f7f805a43e25e27fce195b91228f911bf4c6b1e
[ "MIT" ]
1
2021-03-16T18:41:47.000Z
2021-03-16T18:41:47.000Z
flexget/plugins/sites/rmz.py
fotile96/Flexget
0f7f805a43e25e27fce195b91228f911bf4c6b1e
[ "MIT" ]
null
null
null
flexget/plugins/sites/rmz.py
fotile96/Flexget
0f7f805a43e25e27fce195b91228f911bf4c6b1e
[ "MIT" ]
null
null
null
from __future__ import unicode_literals, division, absolute_import from builtins import * # noqa pylint: disable=unused-import, redefined-builtin import logging import re from flexget import plugin from flexget.event import event from flexget.plugins.internal.urlrewriting import UrlRewritingError from flexget.utils.soup import get_soup from flexget.utils.search import normalize_unicode from requests.exceptions import RequestException log = logging.getLogger('rmz') class UrlRewriteRmz(object): """ rmz.cr (rapidmoviez.com) urlrewriter Version 0.1 Configuration rmz: filehosters_re: - domain\.com - domain2\.org Only add links that match any of the regular expressions listed under filehosters_re. If more than one valid link is found, the url of the entry is rewritten to the first link found. The complete list of valid links is placed in the 'urls' field of the entry. Therefore, it is recommended, that you configure your output to use the 'urls' field instead of the 'url' field. For example, to use jdownloader 2 as output, you would use the exec plugin: exec: - echo "text={{urls}}" >> "/path/to/jd2/folderwatch/{{title}}.crawljob" """ schema = { 'type': 'object', 'properties': { 'filehosters_re': {'type': 'array', 'items': {'format': 'regexp'}} }, 'additionalProperties': False } # Since the urlrewriter relies on a config, we need to create a default one config = { 'filehosters_re': [] } # grab config def on_task_start(self, task, config): self.config = config # urlrewriter API def url_rewritable(self, task, entry): url = entry['url'] rewritable_regex = '^https?:\/\/(www.)?(rmz\.cr|rapidmoviez\.(com|eu))\/.*' return re.match(rewritable_regex, url) is not None @plugin.internet(log) # urlrewriter API def url_rewrite(self, task, entry): try: page = task.requests.get(entry['url']) except RequestException as e: raise UrlRewritingError(str(e)) try: soup = get_soup(page.text) except Exception as e: raise UrlRewritingError(str(e)) link_elements = soup.find_all('pre', class_='links') if 'urls' in entry: urls = list(entry['urls']) else: urls = [] for element in link_elements: urls.extend(element.text.splitlines()) regexps = self.config.get('filehosters_re', []) filtered_urls = [] for i, url in enumerate(urls): urls[i] = normalize_unicode(url) for regexp in regexps: if re.search(regexp, urls[i]): filtered_urls.append(urls[i]) log.debug('Url: "%s" matched filehoster filter: %s', urls[i], regexp) break else: if regexps: log.debug('Url: "%s" does not match any of the given filehoster filters: %s', urls[i], str(regexps)) if regexps: log.debug('Using filehosters_re filters: %s', str(regexps)) urls = filtered_urls else: log.debug('No filehoster filters configured, using all found links.') num_links = len(urls) log.verbose('Found %d links at %s.', num_links, entry['url']) if num_links: entry['urls'] = urls entry['url'] = urls[0] else: raise UrlRewritingError('No useable links found at %s' % entry['url']) @event('plugin.register') def register_plugin(): plugin.register(UrlRewriteRmz, 'rmz', interfaces=['urlrewriter', 'task'], api_ver=2)
32.859649
120
0.611319
794889f1709482a6ec8cba95a27f06b698941e13
6,485
py
Python
main.py
ewen-lbh/pyfiglet-tester
eb3cd4bb540a00ebb5a59d14b87ef2b19b75f6eb
[ "Unlicense" ]
1
2020-10-30T10:46:04.000Z
2020-10-30T10:46:04.000Z
main.py
ewen-lbh/pyfiglet-tester
eb3cd4bb540a00ebb5a59d14b87ef2b19b75f6eb
[ "Unlicense" ]
null
null
null
main.py
ewen-lbh/pyfiglet-tester
eb3cd4bb540a00ebb5a59d14b87ef2b19b75f6eb
[ "Unlicense" ]
null
null
null
def main(): import random import re import shutil import sys import webbrowser import pyfiglet FONTS_LIST = [ '3-d', '3x5', '5lineoblique', 'acrobatic', 'alligator2', 'alligator', 'alphabet', 'avatar', 'banner3-D', 'banner3', 'banner4', 'banner', 'barbwire', 'basic', 'bell', 'bigchief', 'big', 'binary', 'block', 'broadway', 'bubble', 'bulbhead', 'calgphy2', 'caligraphy', 'catwalk', 'chunky', 'coinstak', 'colossal', 'computer', 'contessa', 'contrast', 'cosmic', 'cosmike', 'crawford', 'cricket', 'cyberlarge', 'cybermedium', 'cybersmall', 'decimal', 'diamond', 'digital', 'doh', 'doom', 'dotmatrix', 'double', 'drpepper', 'eftichess', 'eftifont', 'eftipiti', 'eftirobot', 'eftitalic', 'eftiwall', 'eftiwater', 'epic', 'fender', 'fourtops', 'fuzzy', 'goofy', 'gothic', 'graffiti', 'hex', 'hollywood', 'invita', 'isometric1', 'isometric2', 'isometric3', 'isometric4', 'italic', 'ivrit', 'jazmine', 'katakana', 'kban', 'larry3d', 'lcd', 'lean', 'letters', 'linux', 'lockergnome', 'madrid', 'marquee', 'maxfour', 'mike', 'mini', 'mirror', 'mnemonic', 'nancyj-fancy', 'nancyj', 'nancyj-underlined', 'nipples', 'o8', 'octal', 'ogre', 'os2', 'pawp', 'peaks', 'pebbles', 'pepper', 'poison', 'puffy', 'pyramid', 'rectangles', 'relief2', 'relief', 'rev', 'roman', 'rot13', 'rounded', 'rowancap', 'rozzo', 'sblood', 'script', 'serifcap', 'shadow', 'short', 'slant', 'slide', 'slscript', 'small', 'smisome1', 'smkeyboard', 'smscript', 'smshadow', 'smslant', 'speed', 'stacey', 'stampatello', 'standard', 'starwars', 'stellar', 'stop', 'straight', 'tanja', 'term', 'thick', 'thin', 'threepoint', 'ticks', 'ticksslant', 'tinker-toy', 'tombstone', 'trek', 'twopoint', 'univers', 'usaflag', 'weird', 'whimsy', ] LOGOS_FONT_LIST = [ 'avatar', 'banner', 'bell', 'big', 'chunky', 'cybermedium', 'digital', 'doom', 'double', 'graffiti', 'madrid', 'ogre', 'pepper', 'puffy', 'rectangles', 'rounded', 'script', 'shadow', 'short', 'slant', 'small', 'smkeyboard', 'standard', 'stop', 'straight', 'threepoint', 'tombstone', 'twopoint', 'weird' ] # Function by critiqjo: # https://gist.github.com/critiqjo/2ca84db26daaeb1715e1 def col_print(lines, term_width=None, indent=0, pad=2): if not term_width: size = shutil.get_terminal_size((80, 20)) term_width = size.columns n_lines = len(lines) if n_lines == 0: return col_width = max(len(line) for line in lines) n_cols = int((term_width + pad - indent) / (col_width + pad)) n_cols = min(n_lines, max(1, n_cols)) col_len = int(n_lines / n_cols) + (0 if n_lines % n_cols == 0 else 1) if (n_cols - 1) * col_len >= n_lines: n_cols -= 1 cols = [lines[i * col_len: i * col_len + col_len] for i in range(n_cols)] rows = list(zip(*cols)) rows_missed = zip(*[col[len(rows):] for col in cols[:-1]]) rows.extend(rows_missed) for row in rows: print(" " * indent + (" " * pad).join(line.ljust(col_width) for line in row)) website_url = 'mx3creations.com' repo_url = 'github.com/ewen-lbh/pyfiglet-tester' font = 'big' logo_font = random.choice(LOGOS_FONT_LIST) text = base_text = 'The quick brown fox JUMPS over the lazy dog !' startup_logo = pyfiglet.figlet_format('Pyfiglet\nTester', font=logo_font) + '\n\n\n' tutorial = f""" ===COMMANDS set <text|-r> Set the text displayed -r or -reset to reset it to "{base_text}" ? Shows this /repo Go to the github repo of this script ls List some fonts (not sure if its all of them) random Select a font randomly from the ones shown with ls <anything else> Displays the text using the font specified ===INFO Script by Mx3 - {website_url} Column print function by critiqjo (github) Repo - {repo_url} """ print(startup_logo + tutorial) while font not in ('exit', 'close'): font = str(input('Choose a font...\n>>')) if font[:3] == 'set': req_text = font[4:] if req_text in ('-reset', '-r'): text = base_text else: text = str(req_text) print('Displayed text set to "' + text + '"') elif font[:2] in ('/h', '/?', '?'): print(tutorial) elif font[:2] == '/r': webbrowser.open(repo_url) elif font[:2] == '/w': webbrowser.open(website_url) elif font[:2] in ('/l', 'ls'): print('Fonts list:\n') col_print(FONTS_LIST) print('\n') elif font.strip() == 'exit': sys.exit('Script closed.') else: if font.strip() == 'random': font = random.choice(FONTS_LIST) print(f'\n\nFont:{font}\n\n') try: pyfiglet.print_figlet(text, font=font) except pyfiglet.FontNotFound: print(f'No font named "{font}" !') if __name__ == '__main__': main()
23.496377
89
0.448574
79488bb855abb5880c65a77a41622820a1230166
605
py
Python
lejian/runserver.py
PuZheng/LEJAIN-backend
1647b63cb409842566f3d2cd9771f8b8856c1a03
[ "MIT" ]
null
null
null
lejian/runserver.py
PuZheng/LEJAIN-backend
1647b63cb409842566f3d2cd9771f8b8856c1a03
[ "MIT" ]
13
2015-10-23T04:43:51.000Z
2015-12-19T14:30:33.000Z
lejian/runserver.py
PuZheng/lejian-backend
1647b63cb409842566f3d2cd9771f8b8856c1a03
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ SYNOPSIS python runserver.py [options] OPTIONS -h show this help -p <port> the port of server runs on -s <host> the ip of the server runs on """ from getopt import getopt import sys opts, _ = getopt(sys.argv[1:], "s:p:h") host = '0.0.0.0' port = None for o, v in opts: if o == "-s": host = v elif o == "-p": port = int(v) elif o == "-h": print(__doc__) else: print("unkown option: " + o) print(__doc__) from lejian.basemain import app app.run(host=host, port=port, debug=True)
17.794118
41
0.550413
79488c3b7308486b233e97bf7a0faa547f66dcdc
8,529
py
Python
merge_data.py
MattTheVV/CoronaWatchNL
3e548c589193fe2736c66bf5829a482e5416f58a
[ "CC0-1.0" ]
1
2021-01-19T15:08:01.000Z
2021-01-19T15:08:01.000Z
merge_data.py
MattTheVV/CoronaWatchNL
3e548c589193fe2736c66bf5829a482e5416f58a
[ "CC0-1.0" ]
null
null
null
merge_data.py
MattTheVV/CoronaWatchNL
3e548c589193fe2736c66bf5829a482e5416f58a
[ "CC0-1.0" ]
null
null
null
"""Merge RIVM daily stats""" from pathlib import Path import re import datetime from io import StringIO import pandas DATE_MAP = { "maart": 3, "april": 4, "mei": 5, } def list_files(): return [p for p in Path('raw_data').iterdir() if p.is_file()] def parse_format_v3(file, n_missing=None): date_parts = re.findall(r'(\d{1,2})-(.*?)-(\d{4})', str(file))[0] # find date date = datetime.date( int(date_parts[2]), int(date_parts[1]), int(date_parts[0]) ) df = pandas.read_csv(file, sep=";") # find the number of missing locations missing = re.findall( r'Bij (\d+) personen is de woonplaats niet van bekend', df.iat[0, 1] ) try: n_missing = int(missing[0]) except Exception: pass try: df['id'] = df['Gemnr'].astype(int) del df['Gemnr'] except Exception: pass # remove junk rows df = df[df['id'] >= 0].copy() # append row with missing numbers df = df.append({ "Gemeente": None, "id": -1, "Aantal": n_missing}, ignore_index=True) # print(df.tail()) # add column with date df['Datum'] = date return df def parse_format_v4(file, column_label, n_missing=None): date_parts = re.findall(r'(\d{1,2})-(.*?)-(\d{4})', str(file))[0] # find date date = datetime.date( int(date_parts[2]), int(date_parts[1]), int(date_parts[0]) ) df = pandas.read_csv(file, sep=";") # find the number of missing locations missing = re.findall( r'Bij (\d+) personen is de woonplaats niet van bekend', df.iat[0, 1] ) try: n_missing = int(missing[0]) except Exception: pass try: df['id'] = df['Gemnr'].astype(int) del df['Gemnr'] except Exception: pass # remove junk rows df = df[df['id'] >= 0].copy() df["Aantal"] = df[column_label] # append row with missing numbers df = df.append({ "Gemeente": None, "id": -1, "Aantal": n_missing}, ignore_index=True) # print(df.tail()) # add column with date df['Datum'] = date df = df[["Datum", "Gemeente", "id", "Aantal"]] return df def merge_df_days(df_dict): result = pandas.concat( df_dict.values(), axis=0, sort=False ).dropna(axis=0, subset=["Aantal"]) result['Aantal'] = result['Aantal'].astype(int) return result def merge_hosp(): df_frames = { "raw_data/peildatum-31-03-2020-14-00.csv": None, "raw_data/peildatum-04-04-2020-12-45.csv": parse_format_v3("raw_data/peildatum-04-04-2020-12-45.csv"), "raw_data/peildatum-01-04-2020-13-58.csv": parse_format_v3("raw_data/peildatum-01-04-2020-13-58.csv"), "raw_data/peildatum-02-04-2020-14-00.csv": parse_format_v3("raw_data/peildatum-02-04-2020-14-00.csv"), "raw_data/peildatum-31-03-2020-19-20.csv": parse_format_v3("raw_data/peildatum-31-03-2020-19-20.csv"), "raw_data/peildatum-03-04-2020-14-00.csv": parse_format_v3("raw_data/peildatum-03-04-2020-14-00.csv"), "raw_data/peildatum-07-04-2020-13-55.csv": parse_format_v3("raw_data/peildatum-07-04-2020-13-55.csv"), "raw_data/peildatum-05-04-2020-14-15.csv": parse_format_v3("raw_data/peildatum-05-04-2020-14-15.csv"), "raw_data/peildatum-06-04-2020-13-50.csv": parse_format_v3("raw_data/peildatum-06-04-2020-13-50.csv") } # files not in the list above for file in Path('raw_data').glob('peildatum*.csv'): if str(file) not in df_frames.keys(): print(f"Parse file {file}") df_frames[str(file)] = parse_format_v4(file, "Zkh opname") result = merge_df_days(df_frames) # add municipality to data df_mun = pandas.read_csv( Path("ext", "Gemeenten_alfabetisch_2019.csv"), sep=";" )[["Gemeentecode", "Gemeentenaam", "Provincienaam"]] result = result.\ merge(df_mun, left_on="id", right_on="Gemeentecode", how="left").\ drop(["id"], axis=1) result = result[ ["Datum", "Gemeentenaam", "Gemeentecode", "Provincienaam", "Aantal"] ].sort_values(["Datum", "Gemeentecode"]). \ fillna({"Gemeentecode": -1}) result["Gemeentecode"] = result["Gemeentecode"].astype(int) result = result[result["Aantal"] != 0] print(result.tail()) result.to_csv(Path("data", "rivm_NL_covid19_hosp_municipality.csv"), index=False) def merge_postest(): df_frames = { "raw_data/peildatum-31-03-2020-14-00.csv": None, "raw_data/peildatum-04-04-2020-12-45.csv": None, "raw_data/peildatum-01-04-2020-13-58.csv": None, "raw_data/peildatum-02-04-2020-14-00.csv": None, "raw_data/peildatum-31-03-2020-19-20.csv": None, "raw_data/peildatum-03-04-2020-14-00.csv": None, "raw_data/peildatum-07-04-2020-13-55.csv": None, "raw_data/peildatum-05-04-2020-14-15.csv": None, "raw_data/peildatum-06-04-2020-13-50.csv": None, } # files not in the list above for file in Path('raw_data').glob('peildatum*.csv'): if str(file) not in df_frames.keys(): print(f"Parse file {file}") df_frames[str(file)] = parse_format_v4(file, "Meldingen") result = merge_df_days(df_frames) # add municipality to data df_mun = pandas.read_csv( Path("ext", "Gemeenten_alfabetisch_2019.csv"), sep=";" )[["Gemeentecode", "Gemeentenaam", "Provincienaam"]] result = result.\ merge(df_mun, left_on="id", right_on="Gemeentecode", how="left").\ drop(["id"], axis=1) result = result[ ["Datum", "Gemeentenaam", "Gemeentecode", "Provincienaam", "Aantal"] ] # add old data df_total_old = pandas.read_csv(Path("data", "rivm_corona_in_nl.csv")) result = result.append(df_total_old) # sort values and adjust dtypes result = result.sort_values(["Datum", "Gemeentecode"]). \ fillna({"Gemeentecode": -1}) result["Gemeentecode"] = result["Gemeentecode"].astype(int) result = result[result["Aantal"] != 0] print(result.tail()) result.to_csv(Path("data", "rivm_NL_covid19_total_municipality.csv"), index=False) def merge_dead(): df_frames = { "raw_data/peildatum-31-03-2020-14-00.csv": None, "raw_data/peildatum-31-03-2020-19-20.csv": None, "raw_data/peildatum-01-04-2020-13-58.csv": None, "raw_data/peildatum-02-04-2020-14-00.csv": None, "raw_data/peildatum-03-04-2020-14-00.csv": None, "raw_data/peildatum-04-04-2020-12-45.csv": None, "raw_data/peildatum-05-04-2020-14-15.csv": None, "raw_data/peildatum-06-04-2020-13-50.csv": None, "raw_data/peildatum-07-04-2020-13-55.csv": None, "raw_data/peildatum-08-04-2020-13-55.csv": None, "raw_data/peildatum-09-04-2020-13-50.csv": None, "raw_data/peildatum-10-04-2020-14-20.csv": None, "raw_data/peildatum-11-04-2020-14-00.csv": None, "raw_data/peildatum-12-04-2020-14-00.csv": None, "raw_data/peildatum-13-04-2020-14-00.csv": None, "raw_data/peildatum-14-04-2020-14-00.csv": None, "raw_data/peildatum-15-04-2020-14-00.csv": None, "raw_data/peildatum-16-04-2020-14-00.csv": None, "raw_data/peildatum-17-04-2020-14-00.csv": None, "raw_data/peildatum-17-04-2020-16-00.csv": None, } # files not in the list above for file in Path('raw_data').glob('peildatum*.csv'): if str(file) not in df_frames.keys(): print(f"Parse file {file}") df_frames[str(file)] = parse_format_v4(file, "Overleden") result = merge_df_days(df_frames) # add municipality to data df_mun = pandas.read_csv( Path("ext", "Gemeenten_alfabetisch_2019.csv"), sep=";" )[["Gemeentecode", "Gemeentenaam", "Provincienaam"]] result = result.\ merge(df_mun, left_on="id", right_on="Gemeentecode", how="left").\ drop(["id"], axis=1) result = result[ ["Datum", "Gemeentenaam", "Gemeentecode", "Provincienaam", "Aantal"] ].sort_values(["Datum", "Gemeentecode"]). \ fillna({"Gemeentecode": -1}) result["Gemeentecode"] = result["Gemeentecode"].astype(int) result = result[result["Aantal"] != 0] print(result.tail()) result.to_csv(Path("data", "rivm_NL_covid19_fatalities_municipality.csv"), index=False) if __name__ == '__main__': merge_hosp() merge_postest() merge_dead()
29.512111
110
0.610623
79488c9d3351f105daf599408345c01b60d37577
9,661
py
Python
tests/api/admin/controller/test_sitewide_registration.py
aseefahmed/circulation
17cbc9186ab3cde9606912559f92b393ac18ecaa
[ "Apache-2.0" ]
null
null
null
tests/api/admin/controller/test_sitewide_registration.py
aseefahmed/circulation
17cbc9186ab3cde9606912559f92b393ac18ecaa
[ "Apache-2.0" ]
44
2022-01-20T01:31:32.000Z
2022-03-31T01:50:41.000Z
tests/api/admin/controller/test_sitewide_registration.py
jonathangreen/circulation
118866f8257e2a97431a28ea5ba8e34e5bd393eb
[ "Apache-2.0" ]
null
null
null
import base64 import binascii import json import os import flask import jwt from werkzeug.datastructures import MultiDict from api.admin.problem_details import * from api.config import Configuration from core.model import ExternalIntegration from core.testing import MockRequestsResponse from core.util.problem_detail import ProblemDetail from .test_controller import SettingsControllerTest class TestSitewideRegistration(SettingsControllerTest): def test_sitewide_registration_post_errors(self): def assert_remote_integration_error(response, message=None): assert REMOTE_INTEGRATION_FAILED.uri == response.uri assert REMOTE_INTEGRATION_FAILED.title == response.title if message: assert message in response.detail metadata_wrangler_service = self._external_integration( ExternalIntegration.METADATA_WRANGLER, goal=ExternalIntegration.METADATA_GOAL, url=self._url, ) default_form = None controller = self.manager.admin_metadata_services_controller # If ExternalIntegration is given, a ProblemDetail is returned. with self.request_context_with_admin("/"): response = controller.process_sitewide_registration( None, do_get=self.do_request ) assert MISSING_SERVICE == response # If an error is raised during registration, a ProblemDetail is returned. def error_get(*args, **kwargs): raise RuntimeError("Mock error during request") with self.request_context_with_admin("/"): response = controller.process_sitewide_registration( metadata_wrangler_service, do_get=error_get ) assert_remote_integration_error(response) # # If the response has the wrong media type, a ProblemDetail is returned. self.responses.append( MockRequestsResponse(200, headers={"Content-Type": "text/plain"}) ) with self.request_context_with_admin("/"): response = controller.process_sitewide_registration( metadata_wrangler_service, do_get=self.do_request ) assert_remote_integration_error( response, "The service did not provide a valid catalog." ) # If the response returns a ProblemDetail, its contents are wrapped # in another ProblemDetail. status_code, content, headers = MULTIPLE_BASIC_AUTH_SERVICES.response self.responses.append(MockRequestsResponse(content, headers, status_code)) with self.request_context_with_admin("/"): response = controller.process_sitewide_registration( metadata_wrangler_service, do_get=self.do_request ) assert isinstance(response, ProblemDetail) assert response.detail.startswith( "Remote service returned a problem detail document:" ) assert str(MULTIPLE_BASIC_AUTH_SERVICES.detail) in response.detail # If no registration link is available, a ProblemDetail is returned catalog = dict(id=self._url, links=[]) headers = {"Content-Type": "application/opds+json"} self.responses.append( MockRequestsResponse(200, content=json.dumps(catalog), headers=headers) ) with self.request_context_with_admin("/"): response = controller.process_sitewide_registration( metadata_wrangler_service, do_get=self.do_request ) assert_remote_integration_error( response, "The service did not provide a register link." ) # If no registration details are given, a ProblemDetail is returned link_type = self.manager.admin_settings_controller.METADATA_SERVICE_URI_TYPE catalog["links"] = [dict(rel="register", href=self._url, type=link_type)] registration = dict(id=self._url, metadata={}) self.responses.extend( [ MockRequestsResponse( 200, content=json.dumps(registration), headers=headers ), MockRequestsResponse(200, content=json.dumps(catalog), headers=headers), ] ) with self.request_context_with_admin("/", method="POST"): response = controller.process_sitewide_registration( metadata_wrangler_service, do_get=self.do_request, do_post=self.do_request, ) assert_remote_integration_error( response, "The service did not provide registration information." ) # If we get all the way to the registration POST, but that # request results in a ProblemDetail, that ProblemDetail is # passed along. self.responses.extend( [ MockRequestsResponse( 200, content=json.dumps(registration), headers=headers ), MockRequestsResponse(200, content=json.dumps(catalog), headers=headers), ] ) def bad_do_post(self, *args, **kwargs): return MULTIPLE_BASIC_AUTH_SERVICES with self.request_context_with_admin("/", method="POST"): flask.request.form = MultiDict( [ ("integration_id", metadata_wrangler_service.id), ] ) response = controller.process_sitewide_registration( metadata_wrangler_service, do_get=self.do_request, do_post=bad_do_post ) assert MULTIPLE_BASIC_AUTH_SERVICES == response def test_sitewide_registration_post_success(self): # A service to register with metadata_wrangler_service = self._external_integration( ExternalIntegration.METADATA_WRANGLER, goal=ExternalIntegration.METADATA_GOAL, url=self._url, ) # The service knows this site's public key, and is going # to use it to encrypt a shared secret. public_key, private_key = self.manager.sitewide_key_pair encryptor = Configuration.cipher(public_key) # A catalog with registration url register_link_type = ( self.manager.admin_settings_controller.METADATA_SERVICE_URI_TYPE ) registration_url = self._url catalog = dict( id=metadata_wrangler_service.url, links=[ dict(rel="collection-add", href=self._url, type="collection"), dict(rel="register", href=registration_url, type=register_link_type), dict(rel="collection-remove", href=self._url, type="collection"), ], ) headers = {"Content-Type": "application/opds+json"} self.responses.append( MockRequestsResponse(200, content=json.dumps(catalog), headers=headers) ) # A registration document with an encrypted secret shared_secret = binascii.hexlify(os.urandom(24)) encrypted_secret = base64.b64encode(encryptor.encrypt(shared_secret)) registration = dict( id=metadata_wrangler_service.url, metadata=dict(shared_secret=encrypted_secret.decode("utf-8")), ) self.responses.insert( 0, MockRequestsResponse(200, content=json.dumps(registration)) ) with self.request_context_with_admin("/", method="POST"): flask.request.form = MultiDict( [ ("integration_id", metadata_wrangler_service.id), ] ) response = self.manager.admin_metadata_services_controller.process_sitewide_registration( metadata_wrangler_service, do_get=self.do_request, do_post=self.do_request, ) assert None == response # We made two requests: a GET to get the service document from # the metadata wrangler, and a POST to the registration # service, with the entity-body containing a callback URL and # a JWT. metadata_wrangler_service_request, registration_request = self.requests url, i1, i2 = metadata_wrangler_service_request assert metadata_wrangler_service.url == url url, [document], ignore = registration_request assert url == registration_url for k in "url", "jwt": assert k in document # The end result is that our ExternalIntegration for the metadata # wrangler has been updated with a (decrypted) shared secret. assert shared_secret.decode("utf-8") == metadata_wrangler_service.password def test_sitewide_registration_document(self): """Test the document sent along to sitewide registration.""" controller = self.manager.admin_metadata_services_controller with self.request_context_with_admin("/"): doc = controller.sitewide_registration_document() # The registrar knows where to go to get our public key. assert doc["url"] == controller.url_for("public_key_document") # The JWT proves that we control the public/private key pair. public_key, private_key = self.manager.sitewide_key_pair parsed = jwt.decode(doc["jwt"], public_key, algorithm="RS256") # The JWT must be valid or jwt.decode() would have raised # an exception. This simply verifies that the JWT includes # an expiration date and doesn't last forever. assert "exp" in parsed
41.642241
101
0.642791
79488dbab228338d8a6abff6b83420ae0c637b13
4,895
py
Python
tests/testSupport.py
musca1997/drawbot
d5b990c74289ba437e81933423a09b0e4839494c
[ "BSD-2-Clause" ]
1
2015-07-25T07:39:28.000Z
2015-07-25T07:39:28.000Z
tests/testSupport.py
musca1997/drawbot
d5b990c74289ba437e81933423a09b0e4839494c
[ "BSD-2-Clause" ]
null
null
null
tests/testSupport.py
musca1997/drawbot
d5b990c74289ba437e81933423a09b0e4839494c
[ "BSD-2-Clause" ]
null
null
null
from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import PY3 import sys import os import tempfile import shutil import random import io from PIL import Image, ImageChops from drawBot.misc import warnings from fontTools.misc.py23 import PY2 testRootDir = os.path.dirname(os.path.abspath(__file__)) testDataDir = os.path.join(testRootDir, "data") tempTestDataDir = os.path.join(testRootDir, "tempTestData") if not os.path.exists(tempTestDataDir): os.mkdir(tempTestDataDir) warnings.shouldShowWarnings = True class StdOutCollector(object): def __init__(self, **kwargs): # force captureStdErr to be a keyword argument if kwargs: captureStdErr = kwargs["captureStdErr"] assert len(kwargs) == 1 else: captureStdErr = False self.captureStdErr = captureStdErr self._stream = io.StringIO() def __enter__(self): self.out = sys.stdout self.err = sys.stderr sys.stdout = self if self.captureStdErr: sys.stderr = self return self def __exit__(self, type, value, traceback): sys.stdout = self.out sys.stderr = self.err def write(self, txt): if PY2 and not isinstance(txt, unicode): txt = txt.decode("utf-8") self._stream.write(txt) def flush(self): pass def lines(self): return self._stream.getvalue().splitlines() class TempFile(object): """This context manager will deliver a pathname for a temporary file, and will remove it upon exit, if it indeed exists at that time. Note: it does _not_ _create_ the temporary file. >>> with TempFile() as tmp: ... assert not os.path.exists(tmp.path) ... f = open(tmp.path, "wb") ... b = f.write(b"hello.") ... f.close() ... assert os.path.exists(tmp.path) ... >>> assert not os.path.exists(tmp.path) >>> with TempFile(suffix=".png") as tmp: ... assert tmp.path.endswith(".png") ... """ _create = staticmethod(tempfile.mktemp) _destroy = staticmethod(os.remove) def __init__(self, suffix="", prefix="tmp", dir=None): self.suffix = suffix self.prefix = prefix self.dir = dir self.path = None def __enter__(self): self.path = self._create(suffix=self.suffix, prefix=self.prefix, dir=self.dir) return self def __exit__(self, type, value, traceback): if os.path.exists(self.path): self._destroy(self.path) class TempFolder(TempFile): """This context manager will create a temporary folder, and will remove it upon exit. >>> with TempFolder() as tmp: ... assert os.path.exists(tmp.path) ... assert os.listdir(tmp.path) == [] ... >>> assert not os.path.exists(tmp.path) >>> with TempFolder(suffix=".mystuff") as tmp: ... assert tmp.path.endswith(".mystuff") ... """ _create = staticmethod(tempfile.mkdtemp) _destroy = staticmethod(shutil.rmtree) def randomSeed(a): if PY3: return random.seed(a, version=1) # compatible with Python 2 else: return random.seed(a) def readData(path): """Return the raw data from a path.""" with open(path, "rb") as f: return f.read() def compareImages(path1, path2): """Compare two image files and return a number representing how similar they are. A value of 0 means that the images are identical, a value of 1 means they are maximally different or not comparable (for example, when their dimensions differ). """ im1 = Image.open(path1) im2 = Image.open(path2) if im1.size != im2.size: # Dimensions differ, can't compare further return 1 if im1 == im2: # Image data is identical (I checked PIL's Image.__eq__ method: it's solid) return 0 # Get the difference between the images diff = ImageChops.difference(im1, im2) # We'll calculate the average difference based on the histogram provided by PIL hist = diff.histogram() assert len(hist) == 4 * 256 # Assuming 4x8-bit RGBA for now. TODO: make this work for L and RGB modes # Sum the histograms of each channel summedHist = [sum(hist[pixelValue + ch * 256] for ch in range(4)) for pixelValue in range(256)] assert len(summedHist) == 256 assert sum(hist) == sum(summedHist) # Calculate the average of the difference # First add all pixel values together totalSum = sum(summedHist[pixelValue] * pixelValue for pixelValue in range(256)) # Then divide by the total number of channel values average = totalSum / sum(summedHist) # Scale pixel value range from 0-255 to 0-1 average = average / 255 assert 0.0 <= average <= 1.0 return average
29.666667
106
0.636568
79488f1c5e756d75ae90977f185676bdf7e095a2
6,184
py
Python
chainer/iterators/serial_iterator.py
Evanc123/chainer
929af7189b1271683200aa9b0ba6da2dd3dee110
[ "MIT" ]
null
null
null
chainer/iterators/serial_iterator.py
Evanc123/chainer
929af7189b1271683200aa9b0ba6da2dd3dee110
[ "MIT" ]
11
2020-01-28T22:49:05.000Z
2022-03-11T23:50:27.000Z
chainer/iterators/serial_iterator.py
Evanc123/chainer
929af7189b1271683200aa9b0ba6da2dd3dee110
[ "MIT" ]
null
null
null
from __future__ import division import numpy from chainer.dataset import iterator from chainer.iterators.order_samplers import ShuffleOrderSampler class SerialIterator(iterator.Iterator): """Dataset iterator that serially reads the examples. This is a simple implementation of :class:`~chainer.dataset.Iterator` that just visits each example in either the order of indexes or a shuffled order. To avoid unintentional performance degradation, the ``shuffle`` option is set to ``True`` by default. For validation, it is better to set it to ``False`` when the underlying dataset supports fast slicing. If the order of examples has an important meaning and the updater depends on the original order, this option should be set to ``False``. This iterator saves ``-1`` instead of ``None`` in snapshots since some serializers do not support ``None``. Args: dataset: Dataset to iterate. batch_size (int): Number of examples within each batch. repeat (bool): If ``True``, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch. shuffle (bool): If ``True``, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes. If ``None`` and no ``order_sampler`` is given, the behavior is the same as the case with ``shuffle=True``. order_sampler (callable): A callable that generates the order of the indices to sample in the next epoch when a epoch finishes. This function should take two arguements: the current order and the current position of the iterator. This should return the next order. The size of the order should remain constant. This option cannot be used when ``shuffle`` is not ``None``. """ def __init__(self, dataset, batch_size, repeat=True, shuffle=None, order_sampler=None): self.dataset = dataset self.batch_size = batch_size self._repeat = repeat self._shuffle = shuffle if self._shuffle is not None: if order_sampler is not None: raise ValueError('`shuffle` is not `None` and a custom ' '`order_sampler` is set. Please set ' '`shuffle` to `None` to use the custom ' 'order sampler.') else: if self._shuffle: order_sampler = ShuffleOrderSampler() else: if order_sampler is None: order_sampler = ShuffleOrderSampler() self.order_sampler = order_sampler self.reset() def __next__(self): if not self._repeat and self.epoch > 0: raise StopIteration self._previous_epoch_detail = self.epoch_detail i = self.current_position i_end = i + self.batch_size N = self._epoch_size if self._order is None: batch = self.dataset[i:i_end] else: batch = [self.dataset[index] for index in self._order[i:i_end]] if i_end >= N: if self._repeat: rest = i_end - N if self._order is not None: new_order = self.order_sampler(self._order, i) if len(self._order) != len(new_order): raise ValueError('The size of order does not match ' 'the size of the previous order.') self._order = new_order if rest > 0: if self._order is None: batch.extend(self.dataset[:rest]) else: batch.extend([self.dataset[index] for index in self._order[:rest]]) self.current_position = rest else: self.current_position = 0 self.epoch += 1 self.is_new_epoch = True else: self.is_new_epoch = False self.current_position = i_end return batch next = __next__ @property def epoch_detail(self): return self.epoch + self.current_position / self._epoch_size @property def previous_epoch_detail(self): if self._previous_epoch_detail < 0: return None return self._previous_epoch_detail def serialize(self, serializer): self.current_position = serializer('current_position', self.current_position) self.epoch = serializer('epoch', self.epoch) self.is_new_epoch = serializer('is_new_epoch', self.is_new_epoch) if self._order is not None: try: serializer('order', self._order) except KeyError: serializer('_order', self._order) try: self._previous_epoch_detail = serializer( 'previous_epoch_detail', self._previous_epoch_detail) except KeyError: # guess previous_epoch_detail for older version self._previous_epoch_detail = self.epoch + \ (self.current_position - self.batch_size) / self._epoch_size if self.epoch_detail > 0: self._previous_epoch_detail = max( self._previous_epoch_detail, 0.) else: self._previous_epoch_detail = -1. def reset(self): self.current_position = 0 self.epoch = 0 self.is_new_epoch = False # use -1 instead of None internally. self._previous_epoch_detail = -1. if self.order_sampler: self._order = self.order_sampler( numpy.arange(len(self.dataset)), 0) else: self._order = None @property def _epoch_size(self): if self._order is None: return len(self.dataset) else: return len(self._order) @property def repeat(self): return self._repeat
36.809524
78
0.582309
79489066a377e95b81e8fa02478b8ec08c393d6d
1,932
py
Python
ROS/samana_ws/src/samana/src/mapviz_pub_floats.py
Combinacijus/Samana-Autonomous-Robot
092288df7d7733d8014b98169dd79858d48f5c7f
[ "MIT" ]
4
2021-01-23T18:35:43.000Z
2021-12-26T09:03:53.000Z
ROS/samana_ws/src/samana/src/mapviz_pub_floats.py
Combinacijus/Samana-Autonomous-Robot
092288df7d7733d8014b98169dd79858d48f5c7f
[ "MIT" ]
null
null
null
ROS/samana_ws/src/samana/src/mapviz_pub_floats.py
Combinacijus/Samana-Autonomous-Robot
092288df7d7733d8014b98169dd79858d48f5c7f
[ "MIT" ]
1
2021-04-08T06:13:10.000Z
2021-04-08T06:13:10.000Z
#!/usr/bin/env python # Subscribes to many topics and publishes some of it's data to debug Float topic for mapviz to display import rospy from math import degrees from sensor_msgs.msg import Imu from nav_msgs.msg import Odometry from samana_msgs.msg import ImuSmall from std_msgs.msg import Float32 from tf.transformations import euler_from_quaternion from random import random imu_msg = Imu() class FloatDebugger(): def __init__(self): rospy.init_node("mapviz_pub_floats") rospy.Subscriber("imu_data", ImuSmall, self.imu_callback) rospy.Subscriber("odometry/global", Odometry, self.odom_global_callback) rospy.spin() def pub_float(self, topic, number): pub = rospy.Publisher(topic, Float32, queue_size=1) msg = Float32() msg.data = number pub.publish(msg) def imu_callback(self, data): if random() < 0.6: # To limit publish rate return # Publishes imu yaw corrected for mounting X to East = 0deg rpy = euler_from_quaternion([data.quaternion_x, data.quaternion_y, data.quaternion_z, data.quaternion_w]) self.pub_float("debug/yaw_imu", degrees(rpy[2]) - 88) # NOTE: hardcoded transform self.pub_float("debug/pitch_imu", degrees(rpy[0])) # NOTE: roll axis due to mounting def odom_global_callback(self, data): if random() < 0.75: # To limit publish rate return # Publishes imu yaw corrected for mounting X to East = 0deg orient = data.pose.pose.orientation pos = data.pose.pose.position rpy = euler_from_quaternion([orient.x, orient.y, orient.z, orient.w]) self.pub_float("debug/yaw_odom", degrees(rpy[2])) self.pub_float("debug/x", pos.x) self.pub_float("debug/y", pos.y) if __name__ == '__main__': try: float_debugger = FloatDebugger() except rospy.ROSInterruptException: pass
34.5
113
0.675983
7948907c11f0a5c29179b603873e7e6c56da8558
9,876
py
Python
app/views/api/web/Tap.py
RedFalsh/flask-example
561b04d31356cf1a4a0324a89ebc4f3dcd94e16c
[ "MIT" ]
1
2019-02-26T07:40:07.000Z
2019-02-26T07:40:07.000Z
app/views/api/web/Tap.py
RedFalsh/flask-example
561b04d31356cf1a4a0324a89ebc4f3dcd94e16c
[ "MIT" ]
null
null
null
app/views/api/web/Tap.py
RedFalsh/flask-example
561b04d31356cf1a4a0324a89ebc4f3dcd94e16c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 from app.views.api import route_api from flask import request,jsonify,g import requests,json from app import db from app.model import User from app.model import Member from app.model import Device from app.model import DeviceTap from app.model import DeviceOperateLog from app.model import DeviceOnlineLog from app.model import DevicePowerLog from app.model import DeviceTime from app.common.libs.Logging import logger from app.common.libs.UserService import UserService from app.common.libs.DeviceService import DeviceService from app.common.libs.Helper import getCurrentDate, getFormatDate from sqlalchemy import desc # 数据库修改方法 @route_api.route("/tap/sqldatainit",methods = [ "GET","POST" ]) def tapSqlDataInit(): resp = { 'code':20000, 'message':'初始化成功', 'data':{}} device_list = Device.query.all() for device in device_list: tap1 = DeviceTap() tap1.device_id = device.id tap1.alias = device.alias1 tap1.status = device.status1 db.session.add(tap1) tap2 = DeviceTap() tap2.device_id = device.id tap2.alias = device.alias2 tap2.status = device.status2 db.session.add(tap2) db.session.commit() return jsonify( resp ) # 用户界面查询 @route_api.route("/tap/list",methods = [ "GET","POST" ]) def tapList(): resp = { 'code':20000, 'message':'查询成功', 'data':{}} user_info = UserService.getUserInfo(request) req = request.values if user_info.roles == 'editor': resp = DeviceService.filterDeviceByEditor(req) return jsonify( resp ) else: resp = DeviceService.filterDeviceByUser(req, user_info) return jsonify( resp ) return jsonify( resp ) @route_api.route("/tap/edit",methods = [ "GET","POST" ]) def tapEdit(): resp = { 'code':20000, 'message':'修改成功', 'data':{}} req = request.values sn = req['sn'] if 'sn' in req else '' if not sn or len( sn ) < 1: resp['code'] = -1 resp['message'] = "need sn" return jsonify(resp) device_info = Device.query.filter_by( sn = sn ).first() if not device_info: resp['code'] = -1 resp['message'] = '失败,设备不存在~' return jsonify(resp) position = req['position'] if 'position' in req else '' alias1 = req['alias1'] if 'alias1' in req else '' alias2 = req['alias2'] if 'alias2' in req else '' device_info.alias1 = alias1 device_info.alias2 = alias2 device_info.position = position db.session.commit() return jsonify(resp) @route_api.route("/tap/info",methods = [ "GET","POST" ]) def tapInfo(): resp = { 'code':20000, 'message':'查询成功', 'data':{}} req = request.values sn = req['sn'] if 'sn' in req else '' if not sn or len( sn ) < 1: resp['code'] = -1 resp['message'] = "need sn" return jsonify(resp) resp = DeviceService.tapInfo(sn) return jsonify( resp ) @route_api.route("/tap/position/list",methods = [ "GET","POST" ]) def tapPositionList(): resp = { 'code':20000, 'message':'修改成功', 'data':{}} req = request.values user_info = UserService.getUserInfo(request) positions = db.session.query(Device.position)\ .filter(Member.id == Device.member_id )\ .filter(User.mobile == Member.mobile )\ .all() items = [p[0] for p in positions] items = list(set(items)) resp['data']['items'] = items return jsonify(resp) @route_api.route("/tap/operate/log/list",methods = [ "GET","POST" ]) def tapOperateLogList(): resp = { 'code':20000, 'message':'查询成功', 'data':{}} req = request.values sn = req['sn'] if 'sn' in req else '' page = int( req['page'] ) if 'page' in req else 0 limit = int( req['limit'] ) if 'limit' in req else 0 offset = ( page - 1 ) * limit datetimeStart = req['datetimeStart'] if 'datetimeStart' in req else '' datetimeEnd = req['datetimeEnd'] if 'datetimeEnd' in req else '' user_info = UserService.getUserInfo(request) query = db.session.query(DeviceOperateLog, DeviceTap).filter( DeviceOperateLog.device_id == Device.id ).filter( Device.sn == sn )\ .filter( DeviceOperateLog.device_tap_id == DeviceTap.id)\ .filter( DeviceOperateLog.time.between(datetimeStart, datetimeEnd) ) total = query.count() tap_log_list = query.order_by(desc(DeviceOperateLog.time)).offset( offset ).limit( limit ).all() items = [] for log,tap in tap_log_list: items.append({ 'alias': tap.alias, 'msg': log.msg, 'time': getFormatDate(log.time) }) resp['data']['items'] = items resp['data']['total'] = total return jsonify( resp ) # 设备上下线记录 @route_api.route("/tap/online/log/list",methods = [ "GET","POST" ]) def tapOnlineLogList(): resp = { 'code':20000, 'message':'查询成功', 'data':{}} req = request.values sn = req['sn'] if 'sn' in req else '' page = int( req['page'] ) if 'page' in req else 0 limit = int( req['limit'] ) if 'limit' in req else 0 offset = ( page - 1 ) * limit query = DeviceOnlineLog.query.filter( DeviceOnlineLog.device_id == Device.id ).filter( Device.sn == sn ) total = query.count() log_list = query.order_by(desc(DeviceOnlineLog.time)).offset( offset ).limit( limit ).all() items = [] for log in log_list: items.append({ 'online': log.online, 'time': getFormatDate(log.time) }) resp['data']['items'] = items resp['data']['total'] = total return jsonify( resp ) # 设备电量记录 @route_api.route("/tap/power/log/list",methods = [ "GET","POST" ]) def tapPowerLogList(): resp = { 'code':20000, 'message':'查询成功', 'data':{}} req = request.values sn = req['sn'] if 'sn' in req else '' page = int( req['page'] ) if 'page' in req else 0 limit = int( req['limit'] ) if 'limit' in req else 0 offset = ( page - 1 ) * limit query = DevicePowerLog.query.filter( DevicePowerLog.device_id == Device.id ).filter( Device.sn == sn ) total = query.count() log_list = query.order_by(desc(DevicePowerLog.time)).offset( offset ).limit( limit ).all() items = [] for log in log_list: items.append({ 'power': str(log.power), 'time': getFormatDate(log.time) }) resp['data']['items'] = items resp['data']['total'] = total return jsonify( resp ) # 设备定时任务相关api @route_api.route("/tap/clock/list",methods = [ "GET","POST" ]) def tapClockList(): resp = {'code': 20000, 'message': 'ok~', 'data': {}} req = request.values sn = req['sn'] if 'sn' in req else '' if not sn or len( sn ) < 1: resp['code'] = -1 resp['message'] = "need sn" return jsonify(resp) number = req['number'] if 'number' in req else 0 if number == 0: resp['code'] = -1 resp['message'] = "need number" return jsonify(resp) time_list = db.session.query(DeviceTime).\ filter(Device.sn==sn).\ filter(DeviceTime.device_id==Device.id).\ filter(DeviceTime.switch_num==number).\ all() items = [] for d in time_list: items.append({ 'id':d.id, 'type':d.type, 'alive': d.alive, 'period':d.period, 'open_time':d.open_time, 'number':d.switch_num, 'close_time':d.close_time }) resp['data']['items'] = items return jsonify(resp) @route_api.route("/tap/clock/add",methods = [ "GET","POST" ]) def tapClockAdd(): resp = {'code': 20000, 'message': '添加成功~', 'data': {}} req = request.values sn = req['sn'] if 'sn' in req else '' if not sn or len( sn ) < 1: resp['code'] = -1 resp['message'] = "需要sn~" return jsonify(resp) device_info = Device.query.filter_by( sn = sn ).first() if not device_info: resp['code'] = -1 resp['message'] = "当前设备不存在~~" return jsonify(resp) time_model = DeviceTime() _type = int(req['type']) if 'type' in req else 0 open_time = req['open_time'] if 'open_time' in req else '' close_time = req['close_time'] if 'close_time' in req else '' number = int(req['number']) if 'number' in req else 0 time_model.type = _type time_model.alive = 1 time_model.device_id = device_info.id time_model.switch_num = number time_model.open_time = open_time time_model.close_time = close_time time_model.created_time = getCurrentDate() db.session.add(time_model) db.session.commit() return jsonify(resp) @route_api.route("/tap/clock/edit",methods = [ "GET","POST" ]) def tapClockEdit(): resp = {'code': 20000, 'message': '修改成功~', 'data': {}} req = request.values id = int(req['id']) if 'id' in req else 0 if id < 1: resp['code'] = -1 resp['message'] = "need id" return jsonify(resp) time_info = DeviceTime.query.filter_by(id=id).first() _type = int(req['type']) if 'type' in req else 0 open_time = req['open_time'] if 'open_time' in req else '' close_time = req['close_time'] if 'close_time' in req else '' time_info.type = _type time_info.open_time = open_time time_info.close_time = close_time time_info.updated_time = getCurrentDate() db.session.commit() return jsonify(resp) @route_api.route("/tap/clock/delete",methods = [ "GET","POST" ]) def tapClockDelete(): resp = {'code': 20000, 'message': '删除成功~', 'data': {}} req = request.values id = int(req['id']) if 'id' in req else 0 if id < 1: resp['code'] = -1 resp['message'] = "需要id" return jsonify(resp) DeviceTime.query.filter_by(id = id).delete() db.session.commit() return jsonify(resp)
30.670807
134
0.600344
7948916da46e16967ffdfe022c4f4df863b0b3f3
138
py
Python
lambda_proxy_cache/__init__.py
vincentsarago/lambda-proxy-cache
e038ddcca3b683477a7f45231a29744ee896c0c1
[ "BSD-3-Clause" ]
4
2019-06-29T06:56:57.000Z
2021-06-11T14:51:18.000Z
lambda_proxy_cache/__init__.py
vincentsarago/lambda-proxy-cache
e038ddcca3b683477a7f45231a29744ee896c0c1
[ "BSD-3-Clause" ]
4
2019-06-29T19:45:14.000Z
2020-04-16T01:41:07.000Z
lambda_proxy_cache/__init__.py
vincentsarago/lambda-proxy-cache
e038ddcca3b683477a7f45231a29744ee896c0c1
[ "BSD-3-Clause" ]
1
2019-06-29T17:01:39.000Z
2019-06-29T17:01:39.000Z
"""lambda-proxy-cache: lambda-proxy cache plugin.""" import pkg_resources version = pkg_resources.get_distribution(__package__).version
23
61
0.804348
794891a08aa7314e3a2b585a7f01b9a11a3ff7ff
983
py
Python
tests/Python/OWASP_a4/cwe_22/unsafe/cwe_22__I_readline__F_no_filtering__S_file_exists__1-3.5_File1.py
usnistgov/VTSG
f4477a78ec19f7e9757da0321cb5a69428e358cf
[ "MIT" ]
null
null
null
tests/Python/OWASP_a4/cwe_22/unsafe/cwe_22__I_readline__F_no_filtering__S_file_exists__1-3.5_File1.py
usnistgov/VTSG
f4477a78ec19f7e9757da0321cb5a69428e358cf
[ "MIT" ]
1
2022-01-31T22:22:55.000Z
2022-01-31T22:22:55.000Z
tests/Python/OWASP_a4/cwe_22/unsafe/cwe_22__I_readline__F_no_filtering__S_file_exists__1-3.5_File1.py
usnistgov/VTSG
f4477a78ec19f7e9757da0321cb5a69428e358cf
[ "MIT" ]
null
null
null
''' input: direct user input in string no filtering sink: check if a file exists ''' ''' Created by Paul E. Black and William Mentzer 2020 This software was developed at the National Institute of Standards and Technology by employees of the Federal Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States Code the software is not subject to copyright protection and are in the public domain. We would appreciate acknowledgment if the software is used. Paul E. Black paul.black@nist.gov William Mentzer willmentzer20@gmail.com ''' import math import os import sys def main(): tainted_2 = None tainted_3 = None tainted_2 = input() tainted_3 = tainted_2 if((math.pow(4, 2)<=42)): {} else: # No filtering (sanitization) tainted_3 = tainted_2 #flaw os.path.exists(tainted_3) if __name__ == '__main__': main()
21.369565
81
0.670397
794891d3477b16bcfccbb3d35e747f6b5a0c04c2
4,281
py
Python
tests/test_inspector.py
gustavofonseca/Logger
d6b48f98393ebee8e39b04eb44c80a0fccd98ffb
[ "BSD-2-Clause" ]
null
null
null
tests/test_inspector.py
gustavofonseca/Logger
d6b48f98393ebee8e39b04eb44c80a0fccd98ffb
[ "BSD-2-Clause" ]
null
null
null
tests/test_inspector.py
gustavofonseca/Logger
d6b48f98393ebee8e39b04eb44c80a0fccd98ffb
[ "BSD-2-Clause" ]
null
null
null
import unittest from logger.inspector import Inspector from mocker import ANY, MockerTestCase COLLECTIONS = { 'br': { "status": "certified", "original_name": "Brasil", "document_count": 392414, "acron": "scl", "domain": "www.scielo.br", "has_analytics": True, "is_active": True, "journal_count": { "deceased": 42, "suspended": 36, "current": 295 }, "type": "journals", "acron2": "br", "name": { "en": "Brazil", "es": "Brasil", "pt": "Brasil" }, "code": "scl" } } class TestInspectorTests(MockerTestCase): def test_is_valid_filename_node1(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_scielo.br.1.log.gz') self.assertTrue(insp._is_valid_filename()) expected = { 'date': '2015-12-30', 'collection': 'br' } self.assertEqual(expected, insp._parsed_fn.groupdict()) def test_is_valid_filename(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_scielo.br.log.gz') self.assertTrue(insp._is_valid_filename()) expected = { 'date': '2015-12-30', 'collection': 'br' } self.assertEqual(expected, insp._parsed_fn.groupdict()) def test_is_valid_filename_false(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_scilo.br.log.gz') self.assertFalse(insp._is_valid_filename()) def test_is_valid_date_in_filename(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_scielo.br.log.gz') self.assertTrue(insp._is_valid_date()) def test_is_valid_date_in_filename_false(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-31-12_scielo.br.log.gz') self.assertFalse(insp._is_valid_date()) def test_is_valid_collection_in_filename(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_scielo.br.log.gz') self.assertTrue(insp._is_valid_collection()) def test_is_invalid_collection_in_filename(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_scielo.xxx.log.gz') self.assertFalse(insp._is_valid_collection()) def test_is_valid_source_directory(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_scielo.br.log.gz') self.assertTrue(insp._is_valid_source_directory()) def test_is_valid_source_directory_false_1(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.br/2015-12-30_sciel.br.log.gz') self.assertFalse(insp._is_valid_source_directory()) def test_is_valid_source_directory_false_2(self): _insp = self.mocker.patch(Inspector) _insp.get_collections() self.mocker.result(COLLECTIONS) self.mocker.replay() insp = Inspector('/var/www/scielo.pepsic/2015-12-30_scielo.br.log.gz') self.assertFalse(insp._is_valid_source_directory())
30.798561
78
0.627891
7948932f89ca88ec8169a3773f7e712e9c515288
3,048
py
Python
src/dnsrobocert/core/utils.py
foxwoods369/docker-letsencrypt-dns
301939c271c8e299d52971be9402b9f8d120abf4
[ "MIT" ]
null
null
null
src/dnsrobocert/core/utils.py
foxwoods369/docker-letsencrypt-dns
301939c271c8e299d52971be9402b9f8d120abf4
[ "MIT" ]
null
null
null
src/dnsrobocert/core/utils.py
foxwoods369/docker-letsencrypt-dns
301939c271c8e299d52971be9402b9f8d120abf4
[ "MIT" ]
null
null
null
import hashlib import logging import os import re import subprocess import sys from typing import Any, Dict, List import coloredlogs try: POSIX_MODE = True import pwd import grp except ImportError: POSIX_MODE = False LOGGER = logging.getLogger(__name__) coloredlogs.install(logger=LOGGER) def execute(args: List[str], check: bool = True, env: Dict[str, str] = None): if not env: env = os.environ.copy() env = env.copy() env["PYTHONUNBUFFERED "] = "1" call = subprocess.check_call if check else subprocess.call LOGGER.info("Launching command: {0}".format(subprocess.list2cmdline(args))) sys.stdout.write("----------\n") sys.stdout.flush() error = None try: call(args, env=env) except subprocess.CalledProcessError as e: error = e sys.stdout.write("----------\n") sys.stdout.flush() if error: raise error def fix_permissions(certificate_permissions: Dict[str, Any], target_path: str): files_mode = certificate_permissions.get("files_mode", 0o640) dirs_mode = certificate_permissions.get("dirs_mode", 0o750) os.chmod(target_path, dirs_mode) uid = -1 gid = -1 user = certificate_permissions.get("user") group = certificate_permissions.get("group") if (user or group) and not POSIX_MODE: LOGGER.warning( "Setting user and group for certificates/keys is not supported on Windows." ) elif POSIX_MODE: if isinstance(user, int): uid = user elif isinstance(user, str): uid = pwd.getpwnam(user)[2] if isinstance(group, int): gid = group elif isinstance(group, str): gid = grp.getgrnam(group)[2] os.chown(target_path, uid, gid) # type: ignore for root, dirs, files in os.walk(target_path): for path in dirs: os.chmod(os.path.join(root, path), dirs_mode) for path in files: os.chmod(os.path.join(root, path), files_mode) if POSIX_MODE: for path in files + dirs: os.chown(os.path.join(root, path), uid, gid) # type: ignore def configure_certbot_workspace( dnsrobocert_config: Dict[str, Any], directory_path: str ): live_path = os.path.join(directory_path, "archive") archive_path = os.path.join(directory_path, "live") if not os.path.exists(live_path): os.makedirs(live_path) if not os.path.exists(archive_path): os.makedirs(archive_path) certificate_permissions = dnsrobocert_config.get("acme", {}).get( "certs_permissions", {} ) fix_permissions(certificate_permissions, live_path) fix_permissions(certificate_permissions, archive_path) def digest(path: str): if not os.path.exists(path): return None with open(path, "rb") as file_h: config_data = file_h.read() md5 = hashlib.md5() md5.update(config_data) return md5.digest() def normalize_lineage(domain: str): return re.sub(r"^\*\.", "", domain)
25.830508
87
0.641404
794895aae22e2d30d6c20fdd32dda30dd2c8bf2e
4,550
py
Python
tests/integrate_test/test_integrate_global_variable_score.py
bayeshack2016/icon-service
36cab484d2e41548d7f2f74526f127ee3a4423fc
[ "Apache-2.0" ]
52
2018-08-24T02:28:43.000Z
2021-07-06T04:44:22.000Z
tests/integrate_test/test_integrate_global_variable_score.py
bayeshack2016/icon-service
36cab484d2e41548d7f2f74526f127ee3a4423fc
[ "Apache-2.0" ]
62
2018-09-17T06:59:16.000Z
2021-12-15T06:02:51.000Z
tests/integrate_test/test_integrate_global_variable_score.py
bayeshack2016/icon-service
36cab484d2e41548d7f2f74526f127ee3a4423fc
[ "Apache-2.0" ]
35
2018-09-14T02:42:10.000Z
2022-02-05T10:34:46.000Z
# -*- coding: utf-8 -*- # Copyright 2018 ICON Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """IconScoreEngine testcase """ from typing import TYPE_CHECKING, List from iconservice.icon_inner_service import MakeResponse from tests.integrate_test.test_integrate_base import TestIntegrateBase if TYPE_CHECKING: from iconservice.base.address import Address from iconservice.iconscore.icon_score_result import TransactionResult def _create_query_request(from_: 'Address', to_: 'Address', method: str): return { "version": 3, "from": from_, "to": to_, "dataType": "call", "data": {"method": method} } class TestScoreGlobalVariable(TestIntegrateBase): def setUp(self): super().setUp() sender: 'Address' = self._accounts[0].address tx_results: List['TransactionResult'] = self.deploy_score( score_root="sample_scores", score_name="sample_global_variable_score", from_=sender, expected_status=True) score_address: 'Address' = tx_results[0].score_address request = _create_query_request(sender, score_address, "hello") response = self._query(request) self.assertEqual(response, "hello") self.sender = sender self.score_address = score_address def _create_query_request(self, method: str): return _create_query_request(self.sender, self.score_address, method) def test_global_dict(self): expected_response = {"a": 1, "b": [2, 3], "c": {"d": 4}} expected_converted_response = {"a": "0x1", "b": ["0x2", "0x3"], "c": {"d": "0x4"}} request: dict = self._create_query_request("getGlobalDict") # First score call for query response_0 = self._query(request) assert isinstance(response_0, dict) assert response_0 == expected_response # make_response() does in-place value type conversion in response_0 converted_response = MakeResponse.make_response(response_0) assert converted_response == expected_converted_response assert response_0 != expected_response assert id(converted_response) == id(response_0) # Check if the response is deeply copied on every query call response_1: dict = self._query(request) assert isinstance(response_1, dict) assert id(response_1) != id(response_0) assert response_1 == expected_response def test_global_list(self): expected_response = [1, {"a": 1}, ["c", 2]] expected_converted_response = ["0x1", {"a": "0x1"}, ["c", "0x2"]] request: dict = self._create_query_request("getGlobalList") # First score call for query response_0: list = self._query(request) assert isinstance(response_0, list) assert response_0 == expected_response # Check if the response is deeply copied on every query call converted_response = MakeResponse.make_response(response_0) assert converted_response == expected_converted_response assert id(converted_response) == id(response_0) response_1 = self._query(request) assert isinstance(response_1, list) assert id(response_1) != id(response_0) assert response_1 == expected_response def test_global_tuple(self): expected_response = ({"a": 1}, 2, ["c", 2]) request: dict = self._create_query_request("getGlobalTuple") # First score call for query response_0: tuple = self._query(request) assert isinstance(response_0, tuple) assert response_0 == expected_response converted_response = MakeResponse.make_response(response_0) assert converted_response == expected_response assert response_0 == expected_response assert id(converted_response) == id(response_0) response_1 = self._query(request) assert isinstance(response_1, tuple) assert id(response_1) != id(response_0) assert response_1 == expected_response
36.693548
90
0.680659
794895d089241a36effb6aebadc198255b781561
2,364
py
Python
fastembed/predictor/lookup.py
Saleh-Ibtasham/VulScrape
738d17e9dd7e5edc2341d106361651fd28f99c61
[ "PostgreSQL", "Unlicense", "MIT" ]
1
2021-04-12T12:59:33.000Z
2021-04-12T12:59:33.000Z
fastembed/predictor/lookup.py
Jokers-grin/VulScrape
738d17e9dd7e5edc2341d106361651fd28f99c61
[ "PostgreSQL", "Unlicense", "MIT" ]
null
null
null
fastembed/predictor/lookup.py
Jokers-grin/VulScrape
738d17e9dd7e5edc2341d106361651fd28f99c61
[ "PostgreSQL", "Unlicense", "MIT" ]
null
null
null
import pandas as pd from .classifier import get_result from scipy import spatial from sklearn.metrics.pairwise import cosine_similarity import numpy as np def getCveList(cve_list): df_feature = pd.read_csv("./fastembed/ml_models/CVE_data_with_features.csv") df_classifier = pd.read_csv("./fastembed/ml_models/CVE_classifier_data_with_features.csv") cve_list = cve_list.split(",") result_cve_list = [] for index, value in enumerate(cve_list): result_cve_list.append("CVE-" + value.strip()) result_feature_df = df_feature.loc[df_feature['ID'].isin(result_cve_list)] classifier_df = df_classifier.loc[df_classifier['ID'].isin(result_cve_list)] print(result_cve_list) if classifier_df.shape[0] != 0: result_probability, result_truth = get_result(classifier_df.iloc[:,1:]) print(result_probability,result_truth) result_feature_df["Exploited"] = result_truth print(result_feature_df["Exploited"]) result_feature_df["Exploited_score"] = result_probability print(result_feature_df["Exploited_score"]) result_feature_df["id"] = result_feature_df.index return result_feature_df def getCveSimilarity(df, data): result_feature_df = [] data = np.reshape(data,(1,30)) result_similarities = cosine_similarity(data, df) max_similarity = np.amax(result_similarities[0]) max_similarity_index = np.array(np.argmax(result_similarities[0], axis=0), ndmin=1) # print(max_similarity, max_similarity_index[0]) result_feature_df.append(max_similarity) result_feature_df.append(max_similarity_index[0]) return result_feature_df def getSimilarCveList(cve_list): df_feature = pd.read_csv("./fastembed/ml_models/CVE_data_with_features.csv") result_cve_list = [cve[3] for cve in cve_list] result_feature_df = df_feature.loc[df_feature['ID'].isin(result_cve_list)] if result_feature_df.shape[0] == 0: return print(result_cve_list) result_df = None id = 0 for cve in cve_list: temp_df = result_feature_df.loc[result_feature_df["ID"] == cve[3]] temp_df["VULNERABILITY_KIND"] = cve[2] temp_df["VULNERABILITY_RISK"] = cve[1] temp_df["Source_code"] = cve[0] temp_df["id"] = id result_df = pd.concat([result_df,temp_df]) id += 1 return result_df
32.833333
94
0.715313
794895dbb411f5362117854a417dbd901cedf73c
1,128
py
Python
modoboa/dnstools/migrations/0001_initial.py
HarshCasper/modoboa
a00baa0593107992f545ee3e89cd4346b9615a96
[ "0BSD" ]
1,602
2016-12-15T14:25:34.000Z
2022-03-31T16:49:25.000Z
modoboa/dnstools/migrations/0001_initial.py
sebageek/modoboa
57f5d57ea60a57e8dcac970085dfc07082481fc6
[ "0BSD" ]
1,290
2016-12-14T15:39:05.000Z
2022-03-31T13:49:09.000Z
modoboa/dnstools/migrations/0001_initial.py
sebageek/modoboa
57f5d57ea60a57e8dcac970085dfc07082481fc6
[ "0BSD" ]
272
2016-12-22T11:58:18.000Z
2022-03-17T15:57:24.000Z
# Generated by Django 1.11.16 on 2018-11-19 10:07 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('admin', '0014_auto_20181017_1628'), ] operations = [ migrations.CreateModel( name='DNSRecord', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[('spf', 'SPF'), ('dkim', 'DKIM'), ('dmarc', 'DMARC'), ('autoconfig', 'Autoconfig'), ('autodiscover', 'Autodiscover')], max_length=15)), ('value', models.TextField(blank=True)), ('is_valid', models.BooleanField(default=False)), ('error', models.CharField(blank=True, max_length=50, null=True)), ('updated', models.DateTimeField(default=django.utils.timezone.now)), ('domain', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='admin.Domain')), ], ), ]
38.896552
186
0.605496
79489633a191977e031af7ca493e62f7cb704d94
7,536
py
Python
workshops/tfx-caip-tf21/lab-03-tfx-cicd/pipeline/pipeline.py
DeshuaiWang/mlops-on-gcp
dfc12bb774476c029e3fb884e1b4d501d674f178
[ "Apache-2.0" ]
null
null
null
workshops/tfx-caip-tf21/lab-03-tfx-cicd/pipeline/pipeline.py
DeshuaiWang/mlops-on-gcp
dfc12bb774476c029e3fb884e1b4d501d674f178
[ "Apache-2.0" ]
null
null
null
workshops/tfx-caip-tf21/lab-03-tfx-cicd/pipeline/pipeline.py
DeshuaiWang/mlops-on-gcp
dfc12bb774476c029e3fb884e1b4d501d674f178
[ "Apache-2.0" ]
1
2020-05-09T05:16:33.000Z
2020-05-09T05:16:33.000Z
# Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Covertype training pipeline DSL.""" import os import kfp import tensorflow_model_analysis as tfma from typing import Optional, Dict, List, Text from tfx.components.base import executor_spec from tfx.components import Evaluator from tfx.components import CsvExampleGen from tfx.components import ExampleValidator from tfx.components import ImporterNode from tfx.components import Pusher from tfx.components import ResolverNode from tfx.components import SchemaGen from tfx.components import StatisticsGen from tfx.components import Trainer from tfx.components import Transform from tfx.components.trainer import executor as trainer_executor from tfx.dsl.experimental import latest_blessed_model_resolver from tfx.extensions.google_cloud_ai_platform.pusher import executor as ai_platform_pusher_executor from tfx.extensions.google_cloud_ai_platform.trainer import executor as ai_platform_trainer_executor from tfx.orchestration import data_types from tfx.orchestration import pipeline from tfx.orchestration.kubeflow import kubeflow_dag_runner from tfx.orchestration.kubeflow.proto import kubeflow_pb2 from tfx.proto import example_gen_pb2 from tfx.proto import evaluator_pb2 from tfx.proto import pusher_pb2 from tfx.proto import trainer_pb2 from tfx.utils.dsl_utils import external_input from tfx.types import Channel from tfx.types.standard_artifacts import Model from tfx.types.standard_artifacts import ModelBlessing from tfx.types.standard_artifacts import Schema import features SCHEMA_FOLDER='schema' TRANSFORM_MODULE_FILE='preprocessing.py' TRAIN_MODULE_FILE='model.py' def create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root_uri: data_types.RuntimeParameter, train_steps: data_types.RuntimeParameter, eval_steps: data_types.RuntimeParameter, ai_platform_training_args: Dict[Text, Text], ai_platform_serving_args: Dict[Text, Text], beam_pipeline_args: List[Text], enable_cache: Optional[bool] = False) -> pipeline.Pipeline: """Trains and deploys the Covertype classifier.""" # Brings data into the pipeline and splits the data into training and eval splits examples = external_input(data_root_uri) output_config = example_gen_pb2.Output( split_config=example_gen_pb2.SplitConfig(splits=[ example_gen_pb2.SplitConfig.Split(name='train', hash_buckets=4), example_gen_pb2.SplitConfig.Split(name='eval', hash_buckets=1) ])) generate_examples = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. generate_statistics = StatisticsGen(examples=generate_examples.outputs.examples) # Import a user-provided schema import_schema = ImporterNode( instance_name='import_user_schema', source_uri=SCHEMA_FOLDER, artifact_type=Schema) # Generates schema based on statistics files.Even though, we use user-provided schema # we still want to generate the schema of the newest data for tracking and comparison infer_schema = SchemaGen(statistics=generate_statistics.outputs.statistics) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( statistics=generate_statistics.outputs.statistics, schema=import_schema.outputs.result) # Performs transformations and feature engineering in training and serving. transform = Transform( examples=generate_examples.outputs.examples, schema=import_schema.outputs.result, module_file=TRANSFORM_MODULE_FILE) # Trains the model using a user provided trainer function. train = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.GenericExecutor), # custom_executor_spec=executor_spec.ExecutorClassSpec(trainer_executor.GenericExecutor), module_file=TRAIN_MODULE_FILE, transformed_examples=transform.outputs.transformed_examples, schema=import_schema.outputs.result, transform_graph=transform.outputs.transform_graph, train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, custom_config={'ai_platform_training_args': ai_platform_training_args}) # Get the latest blessed model for model validation. resolve = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute a evaluation statistics over features of a model. accuracy_threshold = tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.5}, upper_bound={'value': 0.99}), change_threshold=tfma.GenericChangeThreshold( absolute={'value': 0.0001}, direction=tfma.MetricDirection.HIGHER_IS_BETTER), ) metrics_specs = tfma.MetricsSpec( metrics = [ tfma.MetricConfig(class_name='SparseCategoricalAccuracy', threshold=accuracy_threshold), tfma.MetricConfig(class_name='ExampleCount')]) eval_config = tfma.EvalConfig( model_specs=[ tfma.ModelSpec(label_key='Cover_Type') ], metrics_specs=[metrics_specs], slicing_specs=[ tfma.SlicingSpec(), tfma.SlicingSpec(feature_keys=['Wilderness_Area']) ] ) analyze = Evaluator( examples=generate_examples.outputs.examples, model=train.outputs.model, baseline_model=resolve.outputs.model, eval_config=eval_config ) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. deploy = Pusher( model=train.outputs['model'], model_blessing=analyze.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=os.path.join( str(pipeline.ROOT_PARAMETER), 'model_serving')))) #deploy = Pusher( # custom_executor_spec=executor_spec.ExecutorClassSpec( # ai_platform_pusher_executor.Executor), # model=train.outputs.model, # model_blessing=validate.outputs.blessing, # custom_config={'ai_platform_serving_args': ai_platform_serving_args}) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ generate_examples, generate_statistics, import_schema, infer_schema, validate_stats, transform, train, resolve, analyze , deploy ], enable_cache=enable_cache, beam_pipeline_args=beam_pipeline_args )
39.663158
105
0.738588
794896df86b21a286f6e447f5444425ff0945e28
1,039
py
Python
fmcapi/api_objects/device_services/__init__.py
aegiacometti/fmcapi
1cce480bed69ec199180f3fe3981570570fd107d
[ "BSD-3-Clause" ]
2
2019-07-22T15:15:38.000Z
2021-02-22T14:44:41.000Z
fmcapi/api_objects/device_services/__init__.py
aegiacometti/fmcapi
1cce480bed69ec199180f3fe3981570570fd107d
[ "BSD-3-Clause" ]
1
2020-06-14T17:50:41.000Z
2020-06-14T17:50:41.000Z
fmcapi/api_objects/device_services/__init__.py
aegiacometti/fmcapi
1cce480bed69ec199180f3fe3981570570fd107d
[ "BSD-3-Clause" ]
null
null
null
"""Device Services Classes.""" import logging from .bridgegroupinterfaces import BridgeGroupInterfaces from .devicerecords import Device from .devicerecords import DeviceRecords from .etherchannelinterfaces import EtherchannelInterfaces from .ipv4staticroutes import IPv4StaticRoutes from .ipv4staticroutes import IPv4StaticRoute from .ipv6staticroutes import IPv6StaticRoutes from .ipv6staticroutes import IPv6StaticRoute from .physicalinterfaces import PhysicalInterfaces from .physicalinterfaces import PhysicalInterface from .redundantinterfaces import RedundantInterfaces from .staticroutes import StaticRoutes from .subinterfaces import SubInterfaces logging.debug("In the device_services __init__.py file.") __all__ = [ "Device", "DeviceRecords", "StaticRoutes", "IPv4StaticRoutes", "IPv4StaticRoute", "IPv6StaticRoutes", "IPv6StaticRoute", "PhysicalInterfaces", "PhysicalInterface", "BridgeGroupInterfaces", "RedundantInterfaces", "EtherchannelInterfaces", "SubInterfaces", ]
29.685714
58
0.80462
794897add74eac731c2c12ddf745f580668ee9e8
2,653
py
Python
tests/env/packages/env_test_ld_impl_linux-64_linux.py
swaldhoer/foxbms-2
ee57761ba6c2817e5335b68dfda3513b436e3abd
[ "CC-BY-4.0", "BSD-3-Clause" ]
47
2021-04-01T21:14:55.000Z
2022-03-30T12:19:18.000Z
tests/env/packages/env_test_ld_impl_linux-64_linux.py
jagatheesh31/foxbms-2
ee57761ba6c2817e5335b68dfda3513b436e3abd
[ "CC-BY-4.0", "BSD-3-Clause" ]
6
2021-06-01T08:25:54.000Z
2021-11-17T07:55:05.000Z
tests/env/packages/env_test_ld_impl_linux-64_linux.py
jagatheesh31/foxbms-2
ee57761ba6c2817e5335b68dfda3513b436e3abd
[ "CC-BY-4.0", "BSD-3-Clause" ]
24
2021-04-01T21:15:04.000Z
2022-03-29T06:18:10.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (c) 2010 - 2021, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # We kindly request you to use one or more of the following phrases to refer to # foxBMS in your hardware, software, documentation or advertising materials: # # - "This product uses parts of foxBMS®" # - "This product includes parts of foxBMS®" # - "This product is derived from foxBMS®" # pylint:disable=invalid-name """Testing 'ld_impl_linux-64' package""" import logging import argparse def main(): """Testing 'ld_impl_linux-64' package""" parser = argparse.ArgumentParser() parser.add_argument( "-v", "--verbosity", dest="verbosity", action="count", default=0, help="set verbosity level", ) args = parser.parse_args() if args.verbosity == 1: logging.basicConfig(level=logging.INFO) elif args.verbosity > 1: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.ERROR) if __name__ == "__main__": main()
36.847222
98
0.733509
7948984747f94d5d5b1ac8c60375e734b2b23dcf
36
py
Python
__init__.py
KennethBlaney/rivescript-python
87db472847ab526060afd9a5b8548e9689501a85
[ "MIT" ]
null
null
null
__init__.py
KennethBlaney/rivescript-python
87db472847ab526060afd9a5b8548e9689501a85
[ "MIT" ]
null
null
null
__init__.py
KennethBlaney/rivescript-python
87db472847ab526060afd9a5b8548e9689501a85
[ "MIT" ]
null
null
null
from converscript import RiveScript
18
35
0.888889
794898ef6350e441d7a8ba0ec37671df43872f0f
381
py
Python
microproject/RX/temp3.py
jithinsankar/projectLI-FI
965ca33eddec6e026e26fd3451905ded1f5dc0aa
[ "MIT" ]
null
null
null
microproject/RX/temp3.py
jithinsankar/projectLI-FI
965ca33eddec6e026e26fd3451905ded1f5dc0aa
[ "MIT" ]
null
null
null
microproject/RX/temp3.py
jithinsankar/projectLI-FI
965ca33eddec6e026e26fd3451905ded1f5dc0aa
[ "MIT" ]
null
null
null
import numpy as np import base64 a=[] a.append('a') a.append('G') a.append('U') a.append('K') image_64_decode=list(a) image_64_decode=''.join(image_64_decode) image_64_decode = base64.b64decode(image_64_decode) print image_64_decode image_result = open('t.txt', 'wb') # create a writable image and write the decoding result image_result.write(image_64_decode) image_result.close()
25.4
90
0.774278
79489a1bd6868dcbe826a12f7647823d34faa774
35,700
py
Python
salt/cloud/clouds/profitbricks.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
1
2020-03-31T22:51:16.000Z
2020-03-31T22:51:16.000Z
salt/cloud/clouds/profitbricks.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
null
null
null
salt/cloud/clouds/profitbricks.py
yuriks/salt
d2a5bd8adddb98ec1718d79384aa13b4f37e8028
[ "Apache-2.0", "MIT" ]
1
2021-09-30T07:00:01.000Z
2021-09-30T07:00:01.000Z
# -*- coding: utf-8 -*- ''' ProfitBricks Cloud Module ========================= The ProfitBricks SaltStack cloud module allows a ProfitBricks server to be automatically deployed and bootstraped with Salt. :depends: profitbrick >= 3.1.0 The module requires ProfitBricks credentials to be supplied along with an existing virtual datacenter UUID where the server resources will reside. The server should also be assigned a public LAN, a private LAN, or both along with SSH key pairs. ... Set up the cloud configuration at ``/etc/salt/cloud.providers`` or ``/etc/salt/cloud.providers.d/profitbricks.conf``: .. code-block:: yaml my-profitbricks-config: driver: profitbricks # The ProfitBricks login username username: user@example.com # The ProfitBricks login password password: secretpassword # The ProfitBricks virtual datacenter UUID datacenter_id: <UUID> # SSH private key filename ssh_private_key: /path/to/private.key # SSH public key filename ssh_public_key: /path/to/public.key .. code-block:: yaml my-profitbricks-profile: provider: my-profitbricks-config # Name of a predefined server size. size: Micro Instance # Assign CPU family to server. cpu_family: INTEL_XEON # Number of CPU cores to allocate to node (overrides server size). cores: 4 # Amount of RAM in multiples of 256 MB (overrides server size). ram: 4096 # The server availability zone. availability_zone: ZONE_1 # Name or UUID of the HDD image to use. image: <UUID> # Image alias could be provided instead of image. # Example 'ubuntu:latest' #image_alias: <IMAGE_ALIAS> # Size of the node disk in GB (overrides server size). disk_size: 40 # Type of disk (HDD or SSD). disk_type: SSD # Storage availability zone to use. disk_availability_zone: ZONE_2 # Assign the server to the specified public LAN. public_lan: <ID> # Assign firewall rules to the network interface. public_firewall_rules: SSH: protocol: TCP port_range_start: 22 port_range_end: 22 # Assign the server to the specified private LAN. private_lan: <ID> # Enable NAT on the private NIC. nat: true # Assign additional volumes to the server. volumes: data-volume: disk_size: 500 disk_availability_zone: ZONE_3 log-volume: disk_size: 50 disk_type: SSD To use a private IP for connecting and bootstrapping node: .. code-block:: yaml my-profitbricks-profile: ssh_interface: private_lan Set ``deploy`` to False if Salt should not be installed on the node. .. code-block:: yaml my-profitbricks-profile: deploy: False ''' # Import python libs from __future__ import absolute_import, print_function, unicode_literals import logging import os import pprint import time from salt.utils.versions import LooseVersion # Import salt libs import salt.utils.cloud import salt.utils.files import salt.utils.stringutils import salt.config as config from salt.exceptions import ( SaltCloudConfigError, SaltCloudNotFound, SaltCloudExecutionFailure, SaltCloudExecutionTimeout, SaltCloudSystemExit ) # Import 3rd-party libs from salt.ext import six try: # pylint: disable=no-name-in-module import profitbricks from profitbricks.client import ( ProfitBricksService, Server, NIC, Volume, FirewallRule, IPBlock, Datacenter, LoadBalancer, LAN, PBNotFoundError, PBError ) # pylint: enable=no-name-in-module HAS_PROFITBRICKS = True except ImportError: HAS_PROFITBRICKS = False # Get logging started log = logging.getLogger(__name__) __virtualname__ = 'profitbricks' # Only load in this module if the ProfitBricks configurations are in place def __virtual__(): ''' Check for ProfitBricks configurations. ''' if get_configured_provider() is False: return False if get_dependencies() is False: return False return __virtualname__ def get_configured_provider(): ''' Return the first configured instance. ''' return config.is_provider_configured( __opts__, __active_provider_name__ or __virtualname__, ('username', 'password', 'datacenter_id') ) def version_compatible(version): ''' Checks profitbricks version ''' return LooseVersion(profitbricks.API_VERSION) >= LooseVersion(version) def get_dependencies(): ''' Warn if dependencies are not met. ''' return config.check_driver_dependencies( __virtualname__, {'profitbricks': HAS_PROFITBRICKS} ) def get_conn(): ''' Return a conn object for the passed VM data ''' return ProfitBricksService( username=config.get_cloud_config_value( 'username', get_configured_provider(), __opts__, search_global=False ), password=config.get_cloud_config_value( 'password', get_configured_provider(), __opts__, search_global=False ) ) def avail_locations(call=None): ''' Return a dict of all available VM locations on the cloud provider with relevant data ''' if call == 'action': raise SaltCloudSystemExit( 'The avail_images function must be called with ' '-f or --function, or with the --list-locations option' ) ret = {} conn = get_conn() for item in conn.list_locations()['items']: reg, loc = item['id'].split('/') location = {'id': item['id']} if reg not in ret: ret[reg] = {} ret[reg][loc] = location return ret def avail_images(call=None): ''' Return a list of the images that are on the provider ''' if call == 'action': raise SaltCloudSystemExit( 'The avail_images function must be called with ' '-f or --function, or with the --list-images option' ) ret = {} conn = get_conn() for item in conn.list_images()['items']: image = {'id': item['id']} image.update(item['properties']) ret[image['name']] = image return ret def list_images(call=None, kwargs=None): ''' List all the images with alias by location CLI Example: .. code-block:: bash salt-cloud -f list_images my-profitbricks-config location=us/las ''' if call != 'function': raise SaltCloudSystemExit( 'The list_images function must be called with ' '-f or --function.' ) if not version_compatible('4.0'): raise SaltCloudNotFound( "The 'image_alias' feature requires the profitbricks " "SDK v4.0.0 or greater." ) ret = {} conn = get_conn() if kwargs.get('location') is not None: item = conn.get_location(kwargs.get('location'), 3) ret[item['id']] = {'image_alias': item['properties']['imageAliases']} return ret for item in conn.list_locations(3)['items']: ret[item['id']] = {'image_alias': item['properties']['imageAliases']} return ret def avail_sizes(call=None): ''' Return a dict of all available VM sizes on the cloud provider with relevant data. Latest version can be found at: ''' if call == 'action': raise SaltCloudSystemExit( 'The avail_sizes function must be called with ' '-f or --function, or with the --list-sizes option' ) sizes = { 'Micro Instance': { 'id': '1', 'ram': 1024, 'disk': 50, 'cores': 1 }, 'Small Instance': { 'id': '2', 'ram': 2048, 'disk': 50, 'cores': 1 }, 'Medium Instance': { 'id': '3', 'ram': 4096, 'disk': 50, 'cores': 2 }, 'Large Instance': { 'id': '4', 'ram': 7168, 'disk': 50, 'cores': 4 }, 'Extra Large Instance': { 'id': '5', 'ram': 14336, 'disk': 50, 'cores': 8 }, 'Memory Intensive Instance Medium': { 'id': '6', 'ram': 28672, 'disk': 50, 'cores': 4 }, 'Memory Intensive Instance Large': { 'id': '7', 'ram': 57344, 'disk': 50, 'cores': 8 } } return sizes def get_size(vm_): ''' Return the VM's size object ''' vm_size = config.get_cloud_config_value('size', vm_, __opts__) sizes = avail_sizes() if not vm_size: return sizes['Small Instance'] for size in sizes: combinations = (six.text_type(sizes[size]['id']), six.text_type(size)) if vm_size and six.text_type(vm_size) in combinations: return sizes[size] raise SaltCloudNotFound( 'The specified size, \'{0}\', could not be found.'.format(vm_size) ) def get_datacenter_id(): ''' Return datacenter ID from provider configuration ''' datacenter_id = config.get_cloud_config_value( 'datacenter_id', get_configured_provider(), __opts__, search_global=False ) conn = get_conn() try: conn.get_datacenter(datacenter_id=datacenter_id) except PBNotFoundError: log.error('Failed to get datacenter: %s', datacenter_id) raise return datacenter_id def list_loadbalancers(call=None): ''' Return a list of the loadbalancers that are on the provider ''' if call == 'action': raise SaltCloudSystemExit( 'The avail_images function must be called with ' '-f or --function, or with the --list-loadbalancers option' ) ret = {} conn = get_conn() datacenter = get_datacenter(conn) for item in conn.list_loadbalancers(datacenter['id'])['items']: lb = {'id': item['id']} lb.update(item['properties']) ret[lb['name']] = lb return ret def create_loadbalancer(call=None, kwargs=None): ''' Creates a loadbalancer within the datacenter from the provider config. CLI Example: .. code-block:: bash salt-cloud -f create_loadbalancer profitbricks name=mylb ''' if call != 'function': raise SaltCloudSystemExit( 'The create_address function must be called with -f or --function.' ) if kwargs is None: kwargs = {} conn = get_conn() datacenter_id = get_datacenter_id() loadbalancer = LoadBalancer(name=kwargs.get('name'), ip=kwargs.get('ip'), dhcp=kwargs.get('dhcp')) response = conn.create_loadbalancer(datacenter_id, loadbalancer) _wait_for_completion(conn, response, 60, 'loadbalancer') return response def get_datacenter(conn): ''' Return the datacenter from the config provider datacenter ID ''' datacenter_id = get_datacenter_id() for item in conn.list_datacenters()['items']: if item['id'] == datacenter_id: return item raise SaltCloudNotFound( 'The specified datacenter \'{0}\' could not be found.'.format( datacenter_id ) ) def create_datacenter(call=None, kwargs=None): ''' Creates a virtual datacenter based on supplied parameters. CLI Example: .. code-block:: bash salt-cloud -f create_datacenter profitbricks name=mydatacenter location=us/las description="my description" ''' if call != 'function': raise SaltCloudSystemExit( 'The create_address function must be called with -f or --function.' ) if kwargs is None: kwargs = {} if kwargs.get('name') is None: raise SaltCloudExecutionFailure('The "name" parameter is required') if kwargs.get('location') is None: raise SaltCloudExecutionFailure('The "location" parameter is required') conn = get_conn() datacenter = Datacenter(name=kwargs['name'], location=kwargs['location'], description=kwargs.get('description')) response = conn.create_datacenter(datacenter) _wait_for_completion(conn, response, 60, 'create_datacenter') return response def get_disk_type(vm_): ''' Return the type of disk to use. Either 'HDD' (default) or 'SSD'. ''' return config.get_cloud_config_value( 'disk_type', vm_, __opts__, default='HDD', search_global=False ) def get_wait_timeout(vm_): ''' Return the wait_for_timeout for resource provisioning. ''' return config.get_cloud_config_value( 'wait_for_timeout', vm_, __opts__, default=15 * 60, search_global=False ) def get_image(vm_): ''' Return the image object to use ''' vm_image = config.get_cloud_config_value('image', vm_, __opts__).encode( 'ascii', 'salt-cloud-force-ascii' ) images = avail_images() for key in six.iterkeys(images): if vm_image and vm_image in (images[key]['id'], images[key]['name']): return images[key] raise SaltCloudNotFound( 'The specified image, \'{0}\', could not be found.'.format(vm_image) ) def list_datacenters(conn=None, call=None): ''' List all the data centers CLI Example: .. code-block:: bash salt-cloud -f list_datacenters my-profitbricks-config ''' if call != 'function': raise SaltCloudSystemExit( 'The list_datacenters function must be called with ' '-f or --function.' ) datacenters = [] if not conn: conn = get_conn() for item in conn.list_datacenters()['items']: datacenter = {'id': item['id']} datacenter.update(item['properties']) datacenters.append({item['properties']['name']: datacenter}) return {'Datacenters': datacenters} def list_nodes(conn=None, call=None): ''' Return a list of VMs that are on the provider ''' if call == 'action': raise SaltCloudSystemExit( 'The list_nodes function must be called with -f or --function.' ) if not conn: conn = get_conn() ret = {} datacenter_id = get_datacenter_id() try: nodes = conn.list_servers(datacenter_id=datacenter_id) except PBNotFoundError: log.error('Failed to get nodes list ' 'from datacenter: %s', datacenter_id) raise for item in nodes['items']: node = {'id': item['id']} node.update(item['properties']) node['state'] = node.pop('vmState') ret[node['name']] = node return ret def list_nodes_full(conn=None, call=None): ''' Return a list of the VMs that are on the provider, with all fields ''' if call == 'action': raise SaltCloudSystemExit( 'The list_nodes_full function must be called with -f or ' '--function.' ) if not conn: conn = get_conn() # pylint: disable=E0602 ret = {} datacenter_id = get_datacenter_id() nodes = conn.list_servers(datacenter_id=datacenter_id, depth=3) for item in nodes['items']: node = {'id': item['id']} node.update(item['properties']) node['state'] = node.pop('vmState') node['public_ips'] = [] node['private_ips'] = [] if item['entities']['nics']['items'] > 0: for nic in item['entities']['nics']['items']: if nic['properties']['ips']: pass ip_address = nic['properties']['ips'][0] if salt.utils.cloud.is_public_ip(ip_address): node['public_ips'].append(ip_address) else: node['private_ips'].append(ip_address) ret[node['name']] = node __utils__['cloud.cache_node_list']( ret, __active_provider_name__.split(':')[0], __opts__ ) return ret def reserve_ipblock(call=None, kwargs=None): ''' Reserve the IP Block ''' if call == 'action': raise SaltCloudSystemExit( 'The reserve_ipblock function must be called with -f or ' '--function.' ) conn = get_conn() if kwargs is None: kwargs = {} ret = {} ret['ips'] = [] if kwargs.get('location') is None: raise SaltCloudExecutionFailure('The "location" parameter is required') location = kwargs.get('location') size = 1 if kwargs.get('size') is not None: size = kwargs.get('size') block = conn.reserve_ipblock(IPBlock(size=size, location=location)) for item in block['properties']['ips']: ret['ips'].append(item) return ret def show_instance(name, call=None): ''' Show the details from the provider concerning an instance ''' if call != 'action': raise SaltCloudSystemExit( 'The show_instance action must be called with -a or --action.' ) nodes = list_nodes_full() __utils__['cloud.cache_node']( nodes[name], __active_provider_name__, __opts__ ) return nodes[name] def get_node(conn, name): ''' Return a node for the named VM ''' datacenter_id = get_datacenter_id() for item in conn.list_servers(datacenter_id)['items']: if item['properties']['name'] == name: node = {'id': item['id']} node.update(item['properties']) return node def ssh_interface(vm_): ''' Return the ssh_interface type to connect to. Either 'public_ips' (default) or 'private_ips'. ''' return config.get_cloud_config_value( 'ssh_interface', vm_, __opts__, default='public_ips', search_global=False ) def _get_nics(vm_): ''' Create network interfaces on appropriate LANs as defined in cloud profile. ''' nics = [] if 'public_lan' in vm_: firewall_rules = [] # Set LAN to public if it already exists, otherwise create a new # public LAN. if 'public_firewall_rules' in vm_: firewall_rules = _get_firewall_rules(vm_['public_firewall_rules']) nic = NIC(lan=set_public_lan(int(vm_['public_lan'])), name='public', firewall_rules=firewall_rules) if 'public_ips' in vm_: nic.ips = _get_ip_addresses(vm_['public_ips']) nics.append(nic) if 'private_lan' in vm_: firewall_rules = [] if 'private_firewall_rules' in vm_: firewall_rules = _get_firewall_rules(vm_['private_firewall_rules']) nic = NIC(lan=int(vm_['private_lan']), name='private', firewall_rules=firewall_rules) if 'private_ips' in vm_: nic.ips = _get_ip_addresses(vm_['private_ips']) if 'nat' in vm_ and 'private_ips' not in vm_: nic.nat = vm_['nat'] nics.append(nic) return nics def set_public_lan(lan_id): ''' Enables public Internet access for the specified public_lan. If no public LAN is available, then a new public LAN is created. ''' conn = get_conn() datacenter_id = get_datacenter_id() try: lan = conn.get_lan(datacenter_id=datacenter_id, lan_id=lan_id) if not lan['properties']['public']: conn.update_lan(datacenter_id=datacenter_id, lan_id=lan_id, public=True) return lan['id'] except Exception: # pylint: disable=broad-except lan = conn.create_lan(datacenter_id, LAN(public=True, name='Public LAN')) return lan['id'] def get_public_keys(vm_): ''' Retrieve list of SSH public keys. ''' key_filename = config.get_cloud_config_value( 'ssh_public_key', vm_, __opts__, search_global=False, default=None ) if key_filename is not None: key_filename = os.path.expanduser(key_filename) if not os.path.isfile(key_filename): raise SaltCloudConfigError( 'The defined ssh_public_key \'{0}\' does not exist'.format( key_filename ) ) ssh_keys = [] with salt.utils.files.fopen(key_filename) as rfh: for key in rfh.readlines(): ssh_keys.append(salt.utils.stringutils.to_unicode(key)) return ssh_keys def get_key_filename(vm_): ''' Check SSH private key file and return absolute path if exists. ''' key_filename = config.get_cloud_config_value( 'ssh_private_key', vm_, __opts__, search_global=False, default=None ) if key_filename is not None: key_filename = os.path.expanduser(key_filename) if not os.path.isfile(key_filename): raise SaltCloudConfigError( 'The defined ssh_private_key \'{0}\' does not exist'.format( key_filename ) ) return key_filename def signal_event(vm_, event, description): args = __utils__['cloud.filter_event']( event, vm_, ['name', 'profile', 'provider', 'driver'] ) __utils__['cloud.fire_event']( 'event', description, 'salt/cloud/{0}/creating'.format(vm_['name']), args=args, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) def create(vm_): ''' Create a single VM from a data dict ''' try: # Check for required profile parameters before sending any API calls. if (vm_['profile'] and config.is_profile_configured(__opts__, (__active_provider_name__ or 'profitbricks'), vm_['profile']) is False): return False except AttributeError: pass if 'image_alias' in vm_ and not version_compatible('4.0'): raise SaltCloudNotFound( "The 'image_alias' parameter requires the profitbricks " "SDK v4.0.0 or greater." ) if 'image' not in vm_ and 'image_alias' not in vm_: log.error('The image or image_alias parameter is required.') signal_event(vm_, 'creating', 'starting create') data = None datacenter_id = get_datacenter_id() conn = get_conn() # Assemble list of network interfaces from the cloud profile config. nics = _get_nics(vm_) # Assemble list of volumes from the cloud profile config. volumes = [_get_system_volume(vm_)] if 'volumes' in vm_: volumes.extend(_get_data_volumes(vm_)) # Assembla the composite server object. server = _get_server(vm_, volumes, nics) signal_event(vm_, 'requesting', 'requesting instance') try: data = conn.create_server(datacenter_id=datacenter_id, server=server) log.info( 'Create server request ID: %s', data['requestId'], exc_info_on_loglevel=logging.DEBUG ) _wait_for_completion(conn, data, get_wait_timeout(vm_), 'create_server') except PBError as exc: log.error( 'Error creating %s on ProfitBricks\n\n' 'The following exception was thrown by the profitbricks library ' 'when trying to run the initial deployment: \n%s', vm_['name'], exc, exc_info_on_loglevel=logging.DEBUG ) return False except Exception as exc: # pylint: disable=W0703 log.error( 'Error creating %s \n\nError: \n%s', vm_['name'], exc, exc_info_on_loglevel=logging.DEBUG ) return False vm_['server_id'] = data['id'] def __query_node_data(vm_, data): ''' Query node data until node becomes available. ''' running = False try: data = show_instance(vm_['name'], 'action') if not data: return False log.debug( 'Loaded node data for %s:\nname: %s\nstate: %s', vm_['name'], pprint.pformat(data['name']), data['state'] ) except Exception as err: # pylint: disable=broad-except log.error( 'Failed to get nodes list: %s', err, # Show the trackback if the debug logging level is enabled exc_info_on_loglevel=logging.DEBUG ) # Trigger a failure in the wait for IP function return False running = data['state'] == 'RUNNING' if not running: # Still not running, trigger another iteration return if ssh_interface(vm_) == 'private_lan' and data['private_ips']: vm_['ssh_host'] = data['private_ips'][0] if ssh_interface(vm_) != 'private_lan' and data['public_ips']: vm_['ssh_host'] = data['public_ips'][0] return data try: data = salt.utils.cloud.wait_for_ip( __query_node_data, update_args=(vm_, data), timeout=config.get_cloud_config_value( 'wait_for_ip_timeout', vm_, __opts__, default=10 * 60), interval=config.get_cloud_config_value( 'wait_for_ip_interval', vm_, __opts__, default=10), ) except (SaltCloudExecutionTimeout, SaltCloudExecutionFailure) as exc: try: # It might be already up, let's destroy it! destroy(vm_['name']) except SaltCloudSystemExit: pass finally: raise SaltCloudSystemExit(six.text_type(exc.message)) log.debug('VM is now running') log.info('Created Cloud VM %s', vm_) log.debug('%s VM creation details:\n%s', vm_, pprint.pformat(data)) signal_event(vm_, 'created', 'created instance') if 'ssh_host' in vm_: vm_['key_filename'] = get_key_filename(vm_) ret = __utils__['cloud.bootstrap'](vm_, __opts__) ret.update(data) return ret else: raise SaltCloudSystemExit('A valid IP address was not found.') def destroy(name, call=None): ''' destroy a machine by name :param name: name given to the machine :param call: call value in this case is 'action' :return: array of booleans , true if successfully stopped and true if successfully removed CLI Example: .. code-block:: bash salt-cloud -d vm_name ''' if call == 'function': raise SaltCloudSystemExit( 'The destroy action must be called with -d, --destroy, ' '-a or --action.' ) __utils__['cloud.fire_event']( 'event', 'destroying instance', 'salt/cloud/{0}/destroying'.format(name), args={'name': name}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) datacenter_id = get_datacenter_id() conn = get_conn() node = get_node(conn, name) attached_volumes = None delete_volumes = config.get_cloud_config_value( 'delete_volumes', get_configured_provider(), __opts__, search_global=False ) # Get volumes before the server is deleted attached_volumes = conn.get_attached_volumes( datacenter_id=datacenter_id, server_id=node['id'] ) conn.delete_server(datacenter_id=datacenter_id, server_id=node['id']) # The server is deleted and now is safe to delete the volumes if delete_volumes: for vol in attached_volumes['items']: log.debug('Deleting volume %s', vol['id']) conn.delete_volume( datacenter_id=datacenter_id, volume_id=vol['id'] ) log.debug('Deleted volume %s', vol['id']) __utils__['cloud.fire_event']( 'event', 'destroyed instance', 'salt/cloud/{0}/destroyed'.format(name), args={'name': name}, sock_dir=__opts__['sock_dir'], transport=__opts__['transport'] ) if __opts__.get('update_cachedir', False) is True: __utils__['cloud.delete_minion_cachedir']( name, __active_provider_name__.split(':')[0], __opts__ ) return True def reboot(name, call=None): ''' reboot a machine by name :param name: name given to the machine :param call: call value in this case is 'action' :return: true if successful CLI Example: .. code-block:: bash salt-cloud -a reboot vm_name ''' datacenter_id = get_datacenter_id() conn = get_conn() node = get_node(conn, name) conn.reboot_server(datacenter_id=datacenter_id, server_id=node['id']) return True def stop(name, call=None): ''' stop a machine by name :param name: name given to the machine :param call: call value in this case is 'action' :return: true if successful CLI Example: .. code-block:: bash salt-cloud -a stop vm_name ''' datacenter_id = get_datacenter_id() conn = get_conn() node = get_node(conn, name) conn.stop_server(datacenter_id=datacenter_id, server_id=node['id']) return True def start(name, call=None): ''' start a machine by name :param name: name given to the machine :param call: call value in this case is 'action' :return: true if successful CLI Example: .. code-block:: bash salt-cloud -a start vm_name ''' datacenter_id = get_datacenter_id() conn = get_conn() node = get_node(conn, name) conn.start_server(datacenter_id=datacenter_id, server_id=node['id']) return True def _override_size(vm_): ''' Apply any extra component overrides to VM from the cloud profile. ''' vm_size = get_size(vm_) if 'cores' in vm_: vm_size['cores'] = vm_['cores'] if 'ram' in vm_: vm_size['ram'] = vm_['ram'] return vm_size def _get_server(vm_, volumes, nics): ''' Construct server instance from cloud profile config ''' # Apply component overrides to the size from the cloud profile config vm_size = _override_size(vm_) # Set the server availability zone from the cloud profile config availability_zone = config.get_cloud_config_value( 'availability_zone', vm_, __opts__, default=None, search_global=False ) # Assign CPU family from the cloud profile config cpu_family = config.get_cloud_config_value( 'cpu_family', vm_, __opts__, default=None, search_global=False ) # Contruct server object return Server( name=vm_['name'], ram=vm_size['ram'], availability_zone=availability_zone, cores=vm_size['cores'], cpu_family=cpu_family, create_volumes=volumes, nics=nics ) def _get_system_volume(vm_): ''' Construct VM system volume list from cloud profile config ''' # Override system volume size if 'disk_size' is defined in cloud profile disk_size = get_size(vm_)['disk'] if 'disk_size' in vm_: disk_size = vm_['disk_size'] # Construct the system volume volume = Volume( name='{0} Storage'.format(vm_['name']), size=disk_size, disk_type=get_disk_type(vm_) ) if 'image_password' in vm_: image_password = vm_['image_password'] volume.image_password = image_password # Retrieve list of SSH public keys ssh_keys = get_public_keys(vm_) volume.ssh_keys = ssh_keys if 'image_alias' in vm_.keys(): volume.image_alias = vm_['image_alias'] else: volume.image = get_image(vm_)['id'] # Set volume availability zone if defined in the cloud profile if 'disk_availability_zone' in vm_: volume.availability_zone = vm_['disk_availability_zone'] return volume def _get_data_volumes(vm_): ''' Construct a list of optional data volumes from the cloud profile ''' ret = [] volumes = vm_['volumes'] for key, value in six.iteritems(volumes): # Verify the required 'disk_size' property is present in the cloud # profile config if 'disk_size' not in volumes[key].keys(): raise SaltCloudConfigError( 'The volume \'{0}\' is missing \'disk_size\''.format(key) ) # Use 'HDD' if no 'disk_type' property is present in cloud profile if 'disk_type' not in volumes[key].keys(): volumes[key]['disk_type'] = 'HDD' # Construct volume object and assign to a list. volume = Volume( name=key, size=volumes[key]['disk_size'], disk_type=volumes[key]['disk_type'], licence_type='OTHER' ) # Set volume availability zone if defined in the cloud profile if 'disk_availability_zone' in volumes[key].keys(): volume.availability_zone = volumes[key]['disk_availability_zone'] ret.append(volume) return ret def _get_ip_addresses(ip_addresses): ''' Construct a list of ip address ''' ret = [] for item in ip_addresses: ret.append(item) return ret def _get_firewall_rules(firewall_rules): ''' Construct a list of optional firewall rules from the cloud profile. ''' ret = [] for key, value in six.iteritems(firewall_rules): # Verify the required 'protocol' property is present in the cloud # profile config if 'protocol' not in firewall_rules[key].keys(): raise SaltCloudConfigError( 'The firewall rule \'{0}\' is missing \'protocol\''.format(key) ) ret.append(FirewallRule( name=key, protocol=firewall_rules[key].get('protocol', None), source_mac=firewall_rules[key].get('source_mac', None), source_ip=firewall_rules[key].get('source_ip', None), target_ip=firewall_rules[key].get('target_ip', None), port_range_start=firewall_rules[key].get('port_range_start', None), port_range_end=firewall_rules[key].get('port_range_end', None), icmp_type=firewall_rules[key].get('icmp_type', None), icmp_code=firewall_rules[key].get('icmp_code', None) )) return ret def _wait_for_completion(conn, promise, wait_timeout, msg): ''' Poll request status until resource is provisioned. ''' if not promise: return wait_timeout = time.time() + wait_timeout while wait_timeout > time.time(): time.sleep(5) operation_result = conn.get_request( request_id=promise['requestId'], status=True) if operation_result['metadata']['status'] == "DONE": return elif operation_result['metadata']['status'] == "FAILED": raise Exception( "Request: {0}, requestId: {1} failed to complete:\n{2}".format( msg, six.text_type(promise['requestId']), operation_result['metadata']['message'] ) ) raise Exception( 'Timed out waiting for asynchronous operation {0} "{1}" to complete.'.format( msg, six.text_type(promise['requestId']) ) )
27.803738
85
0.599412
79489adb5cae22eddb65ddd02db53d56c314c1ea
14,190
py
Python
plugins/ledger/auth2fa.py
namuyan/electrum-fjc
1a5c4a582f0fcdbaeca2b721ee729f43cd7915a2
[ "MIT" ]
1
2017-07-06T03:03:25.000Z
2017-07-06T03:03:25.000Z
plugins/ledger/auth2fa.py
namuyan/electrum-fjc
1a5c4a582f0fcdbaeca2b721ee729f43cd7915a2
[ "MIT" ]
null
null
null
plugins/ledger/auth2fa.py
namuyan/electrum-fjc
1a5c4a582f0fcdbaeca2b721ee729f43cd7915a2
[ "MIT" ]
null
null
null
import threading from PyQt4.Qt import (QDialog, QInputDialog, QLineEdit, QTextEdit, QVBoxLayout, QLabel, SIGNAL) import PyQt4.QtCore as QtCore from electrum_ltc.i18n import _ from electrum_ltc.qt.util import * from electrum_ltc.util import print_msg import os, hashlib, websocket, threading, logging, json, copy from electrum_ltc_gui.qt.qrcodewidget import QRCodeWidget, QRDialog from btchip.btchip import * DEBUG = False helpTxt = [_("Your Ledger Wallet wants tell you a one-time PIN code.<br><br>" \ "For best security you should unplug your device, open a text editor on another computer, " \ "put your cursor into it, and plug your device into that computer. " \ "It will output a summary of the transaction being signed and a one-time PIN.<br><br>" \ "Verify the transaction summary and type the PIN code here.<br><br>" \ "Before pressing enter, plug the device back into this computer.<br>" ), _("Verify the address below.<br>Type the character from your security card corresponding to the <u><b>BOLD</b></u> character."), _("Waiting for authentication on your mobile phone"), _("Transaction accepted by mobile phone. Waiting for confirmation."), _("Click Pair button to begin pairing a mobile phone."), _("Scan this QR code with your LedgerWallet phone app to pair it with this Ledger device.<br>" "To complete pairing you will need your security card to answer a challenge." ) ] class LedgerAuthDialog(QDialog): def __init__(self, handler, data): '''Ask user for 2nd factor authentication. Support text, security card and paired mobile methods. Use last method from settings, but support new pairing and downgrade. ''' QDialog.__init__(self, handler.top_level_window()) self.handler = handler self.txdata = data self.idxs = self.txdata['keycardData'] if self.txdata['confirmationType'] > 1 else '' self.setMinimumWidth(600) self.setWindowTitle(_("Ledger Wallet Authentication")) self.cfg = copy.deepcopy(self.handler.win.wallet.get_keystore().cfg) self.dongle = self.handler.win.wallet.get_keystore().get_client().dongle self.ws = None self.pin = '' self.devmode = self.getDevice2FAMode() if self.devmode == 0x11 or self.txdata['confirmationType'] == 1: self.cfg['mode'] = 0 vbox = QVBoxLayout() self.setLayout(vbox) def on_change_mode(idx): if idx < 2 and self.ws: self.ws.stop() self.ws = None self.cfg['mode'] = 0 if self.devmode == 0x11 else idx if idx > 0 else 1 if self.cfg['mode'] > 1 and self.cfg['pair'] and not self.ws: self.req_validation() if self.cfg['mode'] > 0: self.handler.win.wallet.get_keystore().cfg = self.cfg self.handler.win.wallet.save_keystore() self.update_dlg() def add_pairing(): self.do_pairing() def return_pin(): self.pin = self.pintxt.text() if self.txdata['confirmationType'] == 1 else self.cardtxt.text() if self.cfg['mode'] == 1: self.pin = ''.join(chr(int(str(i),16)) for i in self.pin) self.accept() self.modebox = QWidget() modelayout = QHBoxLayout() self.modebox.setLayout(modelayout) modelayout.addWidget(QLabel(_("Method:"))) self.modes = QComboBox() modelayout.addWidget(self.modes, 2) self.addPair = QPushButton(_("Pair")) self.addPair.setMaximumWidth(60) modelayout.addWidget(self.addPair) modelayout.addStretch(1) self.modebox.setMaximumHeight(50) vbox.addWidget(self.modebox) self.populate_modes() self.modes.currentIndexChanged.connect(on_change_mode) self.addPair.clicked.connect(add_pairing) self.helpmsg = QTextEdit() self.helpmsg.setStyleSheet("QTextEdit { background-color: lightgray; }") self.helpmsg.setReadOnly(True) vbox.addWidget(self.helpmsg) self.pinbox = QWidget() pinlayout = QHBoxLayout() self.pinbox.setLayout(pinlayout) self.pintxt = QLineEdit() self.pintxt.setEchoMode(2) self.pintxt.setMaxLength(4) self.pintxt.returnPressed.connect(return_pin) pinlayout.addWidget(QLabel(_("Enter PIN:"))) pinlayout.addWidget(self.pintxt) pinlayout.addWidget(QLabel(_("NOT DEVICE PIN - see above"))) pinlayout.addStretch(1) self.pinbox.setVisible(self.cfg['mode'] == 0) vbox.addWidget(self.pinbox) self.cardbox = QWidget() card = QVBoxLayout() self.cardbox.setLayout(card) self.addrtext = QTextEdit() self.addrtext.setStyleSheet("QTextEdit { color:blue; background-color:lightgray; padding:15px 10px; border:none; font-size:20pt; }") self.addrtext.setReadOnly(True) self.addrtext.setMaximumHeight(120) card.addWidget(self.addrtext) def pin_changed(s): if len(s) < len(self.idxs): i = self.idxs[len(s)] addr = self.txdata['address'] addr = addr[:i] + '<u><b>' + addr[i:i+1] + '</u></b>' + addr[i+1:] self.addrtext.setHtml(str(addr)) else: self.addrtext.setHtml(_("Press Enter")) pin_changed('') cardpin = QHBoxLayout() cardpin.addWidget(QLabel(_("Enter PIN:"))) self.cardtxt = QLineEdit() self.cardtxt.setEchoMode(2) self.cardtxt.setMaxLength(len(self.idxs)) self.cardtxt.textChanged.connect(pin_changed) self.cardtxt.returnPressed.connect(return_pin) cardpin.addWidget(self.cardtxt) cardpin.addWidget(QLabel(_("NOT DEVICE PIN - see above"))) cardpin.addStretch(1) card.addLayout(cardpin) self.cardbox.setVisible(self.cfg['mode'] == 1) vbox.addWidget(self.cardbox) self.pairbox = QWidget() pairlayout = QVBoxLayout() self.pairbox.setLayout(pairlayout) pairhelp = QTextEdit(helpTxt[5]) pairhelp.setStyleSheet("QTextEdit { background-color: lightgray; }") pairhelp.setReadOnly(True) pairlayout.addWidget(pairhelp, 1) self.pairqr = QRCodeWidget() pairlayout.addWidget(self.pairqr, 4) self.pairbox.setVisible(False) vbox.addWidget(self.pairbox) self.update_dlg() if self.cfg['mode'] > 1 and not self.ws: self.req_validation() def populate_modes(self): self.modes.blockSignals(True) self.modes.clear() self.modes.addItem(_("Summary Text PIN (requires dongle replugging)") if self.txdata['confirmationType'] == 1 else _("Summary Text PIN is Disabled")) if self.txdata['confirmationType'] > 1: self.modes.addItem(_("Security Card Challenge")) if not self.cfg['pair']: self.modes.addItem(_("Mobile - Not paired")) else: self.modes.addItem(_("Mobile - %s") % self.cfg['pair'][1]) self.modes.blockSignals(False) def update_dlg(self): self.modes.setCurrentIndex(self.cfg['mode']) self.modebox.setVisible(True) self.addPair.setText(_("Pair") if not self.cfg['pair'] else _("Re-Pair")) self.addPair.setVisible(self.txdata['confirmationType'] > 2) self.helpmsg.setText(helpTxt[self.cfg['mode'] if self.cfg['mode'] < 2 else 2 if self.cfg['pair'] else 4]) self.helpmsg.setMinimumHeight(180 if self.txdata['confirmationType'] == 1 else 100) self.pairbox.setVisible(False) self.helpmsg.setVisible(True) self.pinbox.setVisible(self.cfg['mode'] == 0) self.cardbox.setVisible(self.cfg['mode'] == 1) self.pintxt.setFocus(True) if self.cfg['mode'] == 0 else self.cardtxt.setFocus(True) self.setMaximumHeight(200) def do_pairing(self): rng = os.urandom(16) pairID = rng.encode('hex') + hashlib.sha256(rng).digest()[0].encode('hex') self.pairqr.setData(pairID) self.modebox.setVisible(False) self.helpmsg.setVisible(False) self.pinbox.setVisible(False) self.cardbox.setVisible(False) self.pairbox.setVisible(True) self.pairqr.setMinimumSize(300,300) if self.ws: self.ws.stop() self.ws = LedgerWebSocket(self, pairID) self.ws.pairing_done.connect(self.pairing_done) self.ws.start() def pairing_done(self, data): if data is not None: self.cfg['pair'] = [ data['pairid'], data['name'], data['platform'] ] self.cfg['mode'] = 2 self.handler.win.wallet.get_keystore().cfg = self.cfg self.handler.win.wallet.save_keystore() self.pin = 'paired' self.accept() def req_validation(self): if self.cfg['pair'] and 'secureScreenData' in self.txdata: if self.ws: self.ws.stop() self.ws = LedgerWebSocket(self, self.cfg['pair'][0], self.txdata) self.ws.req_updated.connect(self.req_updated) self.ws.start() def req_updated(self, pin): if pin == 'accepted': self.helpmsg.setText(helpTxt[3]) else: self.pin = str(pin) self.accept() def getDevice2FAMode(self): apdu = [0xe0, 0x24, 0x01, 0x00, 0x00, 0x01] # get 2fa mode try: mode = self.dongle.exchange( bytearray(apdu) ) return mode except BTChipException, e: debug_msg('Device getMode Failed') return 0x11 def closeEvent(self, evnt): debug_msg("CLOSE - Stop WS") if self.ws: self.ws.stop() if self.pairbox.isVisible(): evnt.ignore() self.update_dlg() class LedgerWebSocket(QThread): pairing_done = pyqtSignal(object) req_updated = pyqtSignal(str) def __init__(self, dlg, pairID, txdata=None): QThread.__init__(self) self.stopping = False self.pairID = pairID self.txreq = '{"type":"request","second_factor_data":"' + str(txdata['secureScreenData']).encode('hex') + '"}' if txdata else None self.dlg = dlg self.dongle = self.dlg.dongle self.data = None #websocket.enableTrace(True) logging.basicConfig(level=logging.INFO) self.ws = websocket.WebSocketApp('wss://ws.ledgerwallet.com/2fa/channels', on_message = self.on_message, on_error = self.on_error, on_close = self.on_close, on_open = self.on_open) def run(self): while not self.stopping: self.ws.run_forever() def stop(self): debug_msg("WS: Stopping") self.stopping = True self.ws.close() def on_message(self, ws, msg): data = json.loads(msg) if data['type'] == 'identify': debug_msg('Identify') apdu = [0xe0, 0x12, 0x01, 0x00, 0x41] # init pairing apdu.extend(data['public_key'].decode('hex')) try: challenge = self.dongle.exchange( bytearray(apdu) ) ws.send( '{"type":"challenge","data":"%s" }' % str(challenge).encode('hex') ) self.data = data except BTChipException, e: debug_msg('Identify Failed') if data['type'] == 'challenge': debug_msg('Challenge') apdu = [0xe0, 0x12, 0x02, 0x00, 0x10] # confirm pairing apdu.extend(data['data'].decode('hex')) try: self.dongle.exchange( bytearray(apdu) ) debug_msg('Pairing Successful') ws.send( '{"type":"pairing","is_successful":"true"}' ) self.data['pairid'] = self.pairID self.pairing_done.emit(self.data) except BTChipException, e: debug_msg('Pairing Failed') ws.send( '{"type":"pairing","is_successful":"false"}' ) self.pairing_done.emit(None) ws.send( '{"type":"disconnect"}' ) self.stopping = True ws.close() if data['type'] == 'accept': debug_msg('Accepted') self.req_updated.emit('accepted') if data['type'] == 'response': debug_msg('Responded', data) self.req_updated.emit(str(data['pin']) if data['is_accepted'] else '') self.txreq = None self.stopping = True ws.close() if data['type'] == 'repeat': debug_msg('Repeat') if self.txreq: ws.send( self.txreq ) debug_msg("Req Sent", self.txreq) if data['type'] == 'connect': debug_msg('Connected') if self.txreq: ws.send( self.txreq ) debug_msg("Req Sent", self.txreq) if data['type'] == 'disconnect': debug_msg('Disconnected') ws.close() def on_error(self, ws, error): message = getattr(error, 'strerror', '') if not message: message = getattr(error, 'message', '') debug_msg("WS: %s" % message) def on_close(self, ws): debug_msg("WS: ### socket closed ###") def on_open(self, ws): debug_msg("WS: ### socket open ###") debug_msg("Joining with pairing ID", self.pairID) ws.send( '{"type":"join","room":"%s"}' % self.pairID ) ws.send( '{"type":"repeat"}' ) if self.txreq: ws.send( self.txreq ) debug_msg("Req Sent", self.txreq) def debug_msg(*args): if DEBUG: print_msg(*args)
40.775862
157
0.576885
79489b7008fc251521a1d53dc4fb2a3b76dc6fd1
3,183
py
Python
contrib/testgen/base58.py
vivuscoin/vivuscoin
ba0db89712234bf68b2d6b63ef2c420d65c7c25d
[ "MIT" ]
null
null
null
contrib/testgen/base58.py
vivuscoin/vivuscoin
ba0db89712234bf68b2d6b63ef2c420d65c7c25d
[ "MIT" ]
null
null
null
contrib/testgen/base58.py
vivuscoin/vivuscoin
ba0db89712234bf68b2d6b63ef2c420d65c7c25d
[ "MIT" ]
null
null
null
# Copyright (c) 2012-2018 The Bitcoin Core developers # Copyright (c) 2021 The Vivuscoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Vivuscoin base58 encoding and decoding. Based on https://vivuscointalk.org/index.php?topic=1026.0 (public domain) ''' import hashlib # for compatibility with following code... class SHA256: new = hashlib.sha256 if str != bytes: # Python 3.x def ord(c): return c def chr(n): return bytes( (n,) ) __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' __b58base = len(__b58chars) b58chars = __b58chars def b58encode(v): """ encode v, which is a string of bytes, to base58. """ long_value = 0 for (i, c) in enumerate(v[::-1]): if isinstance(c, str): c = ord(c) long_value += (256**i) * c result = '' while long_value >= __b58base: div, mod = divmod(long_value, __b58base) result = __b58chars[mod] + result long_value = div result = __b58chars[long_value] + result # Vivuscoin does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == 0: nPad += 1 else: break return (__b58chars[0]*nPad) + result def b58decode(v, length = None): """ decode v into a string of len bytes """ long_value = 0 for i, c in enumerate(v[::-1]): pos = __b58chars.find(c) assert pos != -1 long_value += pos * (__b58base**i) result = bytes() while long_value >= 256: div, mod = divmod(long_value, 256) result = chr(mod) + result long_value = div result = chr(long_value) + result nPad = 0 for c in v: if c == __b58chars[0]: nPad += 1 continue break result = bytes(nPad) + result if length is not None and len(result) != length: return None return result def checksum(v): """Return 32-bit checksum based on SHA256""" return SHA256.new(SHA256.new(v).digest()).digest()[0:4] def b58encode_chk(v): """b58encode a string, with 32-bit checksum""" return b58encode(v + checksum(v)) def b58decode_chk(v): """decode a base58 string, check and remove checksum""" result = b58decode(v) if result is None: return None if result[-4:] == checksum(result[:-4]): return result[:-4] else: return None def get_bcaddress_version(strAddress): """ Returns None if strAddress is invalid. Otherwise returns integer version of address. """ addr = b58decode_chk(strAddress) if addr is None or len(addr)!=21: return None version = addr[0] return ord(version) if __name__ == '__main__': # Test case (from http://gitorious.org/vivuscoin/python-base58.git) assert get_bcaddress_version('15VjRaDX9zpbA8LVnbrCAFzrVzN7ixHNsC') is 0 _ohai = 'o hai'.encode('ascii') _tmp = b58encode(_ohai) assert _tmp == 'DYB3oMS' assert b58decode(_tmp, 5) == _ohai print("Tests passed")
27.205128
97
0.625196
79489c3e0ecda38f25ac78eb8365ab9ca319621d
559
py
Python
warehouse/urls.py
NotEnterprising/DATABASE_supermarket
2d54e4ba66e24bf30f26a97d553eef23f601d821
[ "MIT" ]
null
null
null
warehouse/urls.py
NotEnterprising/DATABASE_supermarket
2d54e4ba66e24bf30f26a97d553eef23f601d821
[ "MIT" ]
null
null
null
warehouse/urls.py
NotEnterprising/DATABASE_supermarket
2d54e4ba66e24bf30f26a97d553eef23f601d821
[ "MIT" ]
null
null
null
from django.urls import path from .views import WarehouseListView, WarehouseCreateView, WarehouseUpdateView, WarehouseDetailView, WarehouseDeleteView urlpatterns = [ path('list/', WarehouseListView.as_view(), name='warehouse-list'), path('<int:pk>/', WarehouseDetailView.as_view(), name='warehouse-detail'), path('create/', WarehouseCreateView.as_view(), name='warehouse-create'), path('<int:pk>/update/', WarehouseUpdateView.as_view(), name='warehouse-update'), path('<int:pk>/delete/', WarehouseDeleteView.as_view(), name='warehouse-delete'), ]
46.583333
120
0.753131
79489ca0b3b4ada29645b07dce74663e06baaaf4
12,559
py
Python
model/VAE.py
shpandey/MRIproject
040c904ea2aea81776787021e904400d1c5a8974
[ "MIT" ]
null
null
null
model/VAE.py
shpandey/MRIproject
040c904ea2aea81776787021e904400d1c5a8974
[ "MIT" ]
10
2020-01-28T22:13:58.000Z
2022-03-11T23:53:26.000Z
model/VAE.py
JP-MRPhys/fastMRI-GAN
f69c9947edd95a7b85027abd2049c5aeb892569d
[ "MIT" ]
null
null
null
#import tensorflow as tf import tensorflow.compat.v1 as tf #NOTE: To train on tensorflow version 2.0 tf.disable_v2_behavior() import h5py import os import numpy as np import pathlib #from utils.subsample import MaskFunc #import utils.transforms as T from matplotlib import pyplot as plt from fastmri_data import get_training_pair_images_vae, get_random_accelerations import math import logging import shutil LOG_FILENAME="./logs/VAE_TRAINING.LOG" logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) class CVAE(tf.keras.Model): def __init__(self): super(CVAE, self).__init__() #TODO: add config parser #self.initizler = tf.keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None) #self.training_datadir='/media/jehill/DATA/ML_data/fastmri/singlecoil/train/singlecoil_train/' self.training_datadir = '/jmain01/home/JAD029/txl04/jxp48-txl04/data/fastmri_singlecoil/singlecoil_train/' self.BATCH_SIZE = 16 self.num_epochs = 150 self.learning_rate = 1e-3 self.model_name="CVAE" self.image_dim = 128 self.channels = 1 self.latent_dim = 64 self.kernel_size = 3 lrelu = lambda x: tf.keras.activations.relu(x, alpha=0.3) self.activation = lrelu self.input_image_1 = tf.placeholder(tf.float32, shape=[None, 256, 256, self.channels]) #for time being resize images self.input_image = tf.image.resize_images(self.input_image_1, [np.int(self.image_dim), np.int(self.image_dim)]) self.image_shape = self.input_image.shape[1:] self.learning_rate = tf.placeholder(tf.float32, [], name='learning_rate') self.encoder = self.inference_net() self.decoder = self.generative_net() # note these are keras model mean, logvar = tf.split(self.encoder(self.input_image), num_or_size_splits=2, axis=1) self.z = self.reparameterize(mean, logvar) logits = self.decoder(self.z) self.reconstructed = tf.sigmoid(logits) # calculate the KL loss var = tf.exp(logvar) kl_loss = 0.5 * tf.reduce_sum(tf.square(mean) + var - 1. - logvar) # cal mse loss sse_loss = 0.5 * tf.reduce_sum(tf.square(self.input_image - logits)) self.total_loss = tf.reduce_mean(kl_loss + sse_loss) / self.BATCH_SIZE self.list_gradients = self.encoder.trainable_variables + self.decoder.trainable_variables self.Optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.5).minimize(self.total_loss, var_list=self.list_gradients) # summary and writer for tensorboard visulization tf.summary.image("Reconstructed image", self.reconstructed) tf.summary.image("Input image", self.input_image) tf.summary.scalar("KL", kl_loss) tf.summary.scalar("SSE",sse_loss) tf.summary.scalar("Total loss", self.total_loss) self.merged_summary = tf.summary.merge_all() self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.logdir = './trained_models/' + self.model_name # if not exist create logdir self.image_dir = self.logdir + '/images/' self.model_dir = self.logdir + '/final_model' self.gpu_list=['/gpu:0', '/gpu:1' ,'/gpu:2', '/gpu:3'] #self.gpu_list = ['/gpu:0'] print("Completed creating the model") logging.debug("Completed creating the model") if (os.path.exists(self.image_dir)): shutil.rmtree(self.image_dir, ignore_errors=True) os.makedirs(self.image_dir) else: os.makedirs(self.image_dir) def inference_net(self): input_image = tf.keras.layers.Input(self.image_shape) # 224,224,1 net = tf.keras.layers.Conv2D( filters=32, kernel_size=3, strides=(2, 2), activation='relu')(input_image) # 112,112,32 net = tf.keras.layers.BatchNormalization()(net) net = tf.keras.layers.Conv2D( filters=64, kernel_size=3, strides=(2, 2), activation='relu')(net) # 56,56,64 net = tf.keras.layers.BatchNormalization()(net) net = tf.keras.layers.Conv2D( filters=32, kernel_size=3, strides=(2, 2), activation='relu')(net) # 56,56,64 net = tf.keras.layers.BatchNormalization()(net) net = tf.keras.layers.Flatten()(net) # No activation net = tf.keras.layers.Dense(self.latent_dim + self.latent_dim)(net) net = tf.keras.Model(inputs=input_image, outputs=net) return net def generative_net(self): latent_input = tf.keras.layers.Input((self.latent_dim,)) net = tf.keras.layers.Dense(units=8 * 8 * 128, activation=tf.nn.relu)(latent_input) net = tf.keras.layers.Reshape(target_shape=(8, 8, 128))(net) net = tf.keras.layers.BatchNormalization()(net) net = tf.keras.layers.Conv2DTranspose( filters=256, kernel_size=5, strides=(2, 2), padding="SAME", activation=self.activation)(net) net = tf.keras.layers.BatchNormalization()(net) net = tf.keras.layers.Conv2DTranspose( filters=128, kernel_size=5, strides=(2, 2), padding="SAME", activation=self.activation)(net) net = tf.keras.layers.BatchNormalization()(net) net = tf.keras.layers.Conv2DTranspose( filters=64, kernel_size=5, strides=(2, 2), padding="SAME", activation=self.activation)(net) net = tf.keras.layers.BatchNormalization()(net) net = tf.keras.layers.Conv2DTranspose( filters=32, kernel_size=5, strides=(2, 2), padding="SAME", activation=self.activation)(net) net = tf.keras.layers.BatchNormalization()(net) # No activation net = tf.keras.layers.Conv2DTranspose( filters=self.channels, kernel_size=3, strides=(1, 1), padding="SAME", activation=None)(net) upsampling_net = tf.keras.Model(inputs=latent_input, outputs=net) return upsampling_net def reparameterize(self, mean, logvar): eps = tf.random.normal(tf.shape(mean)) # return eps * tf.exp(logvar * .5) + mean return eps * tf.sqrt(tf.exp(logvar)) + mean def train(self): for d in self.gpu_list: with tf.device(d): with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as self.sess: #learning_rate=1e-3 counter = 0 self.train_writer = tf.summary.FileWriter(self.logdir, tf.get_default_graph()) self.sess.run(self.init) # so can see improvement fix z_samples z_samples = np.random.uniform(-1, 1, size=(self.BATCH_SIZE, self.latent_dim)).astype(np.float32) for epoch in range(0, self.num_epochs): print("************************ epoch:" + str(epoch) + "*****************") logging.debug("************************ epoch:" + str(epoch) + "*****************") learning_rate=self.step_decay(epoch) filenames = list(pathlib.Path(self.training_datadir).iterdir()) np.random.shuffle(filenames) print("Number training data " + str(len(filenames))) np.random.shuffle(filenames) for file in filenames: centre_fraction, acceleration = get_random_accelerations(high=5) # training_images: fully sampled MRI images # training labels: , obtained using various mask functions, here we obtain using center_fraction =[], acceleration=[] training_images, training_labels = get_training_pair_images_vae(file, centre_fraction, acceleration) [batch_length, x, y, z] = training_images.shape for idx in range(0, batch_length, self.BATCH_SIZE): batch_images = training_images[idx:idx + self.BATCH_SIZE, :, :] batch_labels = training_labels[idx:idx + self.BATCH_SIZE, :, :] feed_dict = {self.input_image_1: batch_images, self.learning_rate: learning_rate} summary, reconstructed_images, opt, loss = self.sess.run( [self.merged_summary, self.reconstructed, self.Optimizer, self.total_loss], feed_dict=feed_dict) elbo = -loss if math.isnan(elbo): logging.debug("Epoch: " + str(epoch) + "stopping as elbo is nan") break #sampled_image = self.sess.run(self.reconstructed, feed_dict={self.z: z_samples}) print("Epoch: " + str(epoch) + " learning rate:" + str(learning_rate) + "ELBO: " + str(elbo)) counter += 1 if (counter % 50 == 0): logging.debug("Epoch: " + str(epoch) + " learning rate:" + str(learning_rate) + "ELBO: " + str(elbo)) sampled_image = self.sess.run(self.reconstructed, feed_dict={self.z: z_samples}) logging.debug("Epoch: " + str(epoch) + "completed") print("epoch:" + str(epoch) + "Completed") self.save_images(reconstructed_images,"recon"+str(epoch)) self.save_images(sampled_image,"sample"+str(epoch)) if (epoch % 10 == 0): logging.debug("Epoch: " + str(epoch) + " learning rate:" + str(learning_rate) + "ELBO: " + str(elbo)) if math.isnan(elbo): logging.debug("Epoch: " + str(epoch) + "stopping as elbo is nan") break self.save_model(self.model_name) if (epoch % 20 == 0): self.train_writer.add_summary(summary) print("Training completed .... Saving model") logging.debug(("Training completed .... Saving model")) self.save_model(self.model_name + "_final") print("All completed good bye") def sample(self): with tf.device('/gpu:0'): with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as self.sess: self.train_writer = tf.summary.FileWriter(self.logdir, tf.get_default_graph()) self.sess.run(self.init) # so can see improvement fix z_samples z_samples = np.random.uniform(-1, 1, size=(self.batch_size, self.latent_dim)).astype(np.float32) sampled_image = self.sess.run(self.reconstructed, feed_dict={self.z: z_samples}) return sampled_image def save_model(self, model_name): print ("Saving the model after training") if (os.path.exists(self.model_dir)): shutil.rmtree(self.model_dir, ignore_errors=True) os.makedirs(self.model_dir) self.saver.save(self.sess, os.path.join(self.model_dir, self.model_name)) print("Completed saving the model") logging.debug("Completed saving the model") def load_model(self, model_name): print ("Checking for the model") with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as new_sess: saver =tf.train.import_meta_graph((model_name + '.meta')) #saver.restore(self.sess, self.model_dir) saver.restore(new_sess,tf.train.latest_checkpoint("./")) print ("Session restored") return new_sess def step_decay(self, epoch): initial_lrate=0.001 drop = 0.5 epochs_drop=4 lrate= initial_lrate* math.pow(drop, math.floor((1+epoch)/epochs_drop)) return lrate def save_images(self, numpy_array, tag): fig = plt.figure(figsize=(4,4)) for i in range(numpy_array.shape[0]): plt.subplot(4,4,i+1) plt.imshow(numpy_array[i,:,:,0], cmap='gray') plt.axis("off") filename=self.image_dir + '_image_at_epoch_' + tag + '_.png'; plt.savefig(filename) if __name__ == '__main__': model=CVAE() model.train()
39.124611
161
0.590493
79489d369e4393c81add7710ecda8068f08f14d9
9,457
py
Python
extrap/gui/CubeFileReader.py
arima0714/extrap
ac535fa9a4d10ecb59a29f063ff0515b6a98517f
[ "BSD-3-Clause" ]
13
2020-11-12T21:50:09.000Z
2022-03-03T11:01:27.000Z
extrap/gui/CubeFileReader.py
arima0714/extrap
ac535fa9a4d10ecb59a29f063ff0515b6a98517f
[ "BSD-3-Clause" ]
3
2020-12-04T12:49:37.000Z
2021-05-06T11:41:31.000Z
extrap/gui/CubeFileReader.py
arima0714/extrap
ac535fa9a4d10ecb59a29f063ff0515b6a98517f
[ "BSD-3-Clause" ]
6
2021-01-14T16:06:47.000Z
2021-09-01T09:54:37.000Z
# This file is part of the Extra-P software (http://www.scalasca.org/software/extra-p) # # Copyright (c) 2020, Technical University of Darmstadt, Germany # # This software may be modified and distributed under the terms of a BSD-style license. # See the LICENSE file in the base directory for details. from functools import partial from threading import Event from PySide2.QtCore import * # @UnusedWildImport from PySide2.QtWidgets import * # @UnusedWildImport from extrap.fileio.cube_file_reader2 import read_cube_file from extrap.util.exceptions import CancelProcessError from extrap.util.progress_bar import ProgressBar class ParameterWidget(QWidget): def __init__(self, parent): super(ParameterWidget, self).__init__(parent) self.name = "Parameter" self.values = "1" def init_UI(self): layout = QFormLayout(self) self.name_edit = QLineEdit(self) self.name_edit.setText(self.name) layout.addRow("Parameter name:", self.name_edit) self.values_edit = QLineEdit(self) self.values_edit.setText(self.values) layout.addRow("Values:", self.values_edit) self.setLayout(layout) def onNewValues(self): self.name_edit.setText(self.name) self.values_edit.setText(self.values) class CubeFileReader(QDialog): def __init__(self, parent, dirName): super(CubeFileReader, self).__init__(parent) self.valid = False self.dir_name = dirName self.num_params = 1 self.max_params = 3 self.prefix = "" self.postfix = "" self.filename = "profile.cubex" self.repetitions = 1 self.parameters = list() self._cancel_event = Event() # for _ in range(0, self.max_params): # self.parameters.append(ParameterWidget(self)) self.init_UI() def init_UI(self): self.setWindowTitle("Import Settings") self.setWindowModality(Qt.WindowModal) self.setWindowFlag(Qt.WindowContextHelpButtonHint, False) self.setWindowFlag(Qt.WindowCloseButtonHint, False) main_layout = QFormLayout(self) layout = QFormLayout() self.controls_layout = layout # self.num_params_choice = QSpinBox(self) # self.num_params_choice.setMinimum(1) # self.num_params_choice.setMaximum(self.max_params) # self.num_params_choice.setValue(self.num_params) # self.num_params_choice.valueChanged.connect(self.change_param_num) # # layout.addRow("Number of Parameters:", self.num_params_choice) # # self.prefix_edit = QLineEdit(self) # self.prefix_edit.setText(self.prefix) # # layout.addRow("Prefix:", self.prefix_edit) # # self.postfix_edit = QLineEdit(self) # self.postfix_edit.setText(self.postfix) # # layout.addRow("Postfix:", self.postfix_edit) # # self.filename_edit = QLineEdit(self) # self.filename_edit.setText(self.filename) # # layout.addRow("File name:", self.filename_edit) # # self.parameter_tabs = QTabWidget(self) # self.parameter_tabs.setMovable(False) # self.parameter_tabs.setTabsClosable(False) # for param in self.parameters: # param.init_UI() # # layout.addRow(self.parameter_tabs) # # self.spin_box = QSpinBox(self) # self.spin_box.setMinimum(1) # spin_box_max_val = 1073741824 # self.spin_box.setMaximum(spin_box_max_val) # self.spin_box.setValue(self.repetitions) # # layout.addRow("Repetitions:", self.spin_box) # self.scaling_choice = QComboBox(self) self.scaling_choice.addItem("weak") self.scaling_choice.addItem("strong") layout.addRow("Scaling type:", self.scaling_choice) self.progress_indicator = QProgressBar(self) self.progress_indicator.hide() layout.addRow(self.progress_indicator) # If the user presses the enter key on any element it activates the # first button somehow. Thus, create a fake button, that does nothing # To avoid that any entry in the value list activates that OK button. # fake_button = QPushButton(self) # fake_button.setText("OK") # fake_button.move(-1120, -1220) # fake_button.hide() # self.ok_button = QPushButton(self) # self.ok_button.setText("OK") # self.ok_button.clicked.connect(self.ok_button.hide) # self.ok_button.pressed.connect(self.ok_pressed) # # layout.addRow(self.ok_button) # cancel_button = QPushButton(self) # cancel_button.setText("Cancel") # cancel_button.pressed.connect(self.close) main_layout.addRow(layout) self.buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) main_layout.addRow(self.buttonBox) # self.change_param_num() self.setLayout(main_layout) # def change_param_num(self): # self.num_params = self.num_params_choice.value() # self.parameter_tabs.clear() # for param in self.parameters: # param.hide() # for index in range(0, self.num_params): # self.parameter_tabs.addTab(self.parameters[index], # "Parameter " + str(index + 1)) # self.parameters[index].show() # # self.autoFillOptions() # self.prefix_edit.setText(self.prefix) # self.postfix_edit.setText(self.postfix) # self.filename_edit.setText(self.filename) # self.spin_box.setValue(self.repetitions) # for index in range(0, self.num_params): # self.parameters[index].onNewValues() # # self.update() # # def autoFillOptions(self): # # auto_fill_rule = r"^([^.]+)" # for i in range(0, self.num_params): # auto_fill_rule = auto_fill_rule + r"([_\.][^\d]+)(\d+)" # auto_fill_rule = auto_fill_rule + r"[_\.]r(\d+)$" # auto_fill_regex = re.compile(auto_fill_rule) # # # meaningful defaults # self.filename = "profile.cubex" # self.postfix = "" # self.prefix = "" # self.repetitions = 1 # # # get list of existing directories matching the pattern # available_dirs = os.listdir(self.dir_name) # dir_matches = list() # for d in available_dirs: # m = auto_fill_regex.match(d) # if m is not None: # dir_matches.append(m) # # # print("matched directoty list with given pattern: ", dir_matches) # # if len(dir_matches) == 0: # return # # # get prefix from first match # self.prefix = dir_matches[0].group(1) # matching_prefix = [d for d in dir_matches if d.group(1) == self.prefix] # # for i in range(0, self.num_params): # # get parameter name from first match # self.parameters[i].name = dir_matches[0].group(2 + i * 2) # # # extract all values for parameter p # available_p_values = sorted( # set(int(m.group(3 + i * 2)) for m in matching_prefix)) # self.parameters[i].values = ','.join( # str(v) for v in available_p_values) # # # get maximum repetition count # max_repetitions = max(int(m.group(2 + self.num_params * 2)) # for m in matching_prefix) # self.repetitions = max_repetitions @Slot() def reject(self): self._cancel_event.set() super().reject() @Slot() def accept(self): # self.prefix = self.prefix_edit.text() # self.postfix = self.postfix_edit.text() # self.filename = self.filename_edit.text() # self.repetitions = self.spin_box.value() self.scaling_type = self.scaling_choice.currentText() with ProgressBar(total=0, gui=True) as pbar: self._show_progressbar() pbar.display = partial(self._display_progress, pbar) pbar.sp = None # read the cube files try: self.experiment = read_cube_file(self.dir_name, self.scaling_type, pbar) except Exception as err: self.close() raise err if not self.experiment: QMessageBox.critical(self, "Error", "Could not read Cube Files, may be corrupt!", QMessageBox.Ok, QMessageBox.Ok) self.close() return self.valid = True super().accept() def _show_progressbar(self): self.controls_layout.setEnabled(False) self.buttonBox.button(QDialogButtonBox.Ok).setEnabled(False) self.progress_indicator.show() def _display_progress(self, pbar: ProgressBar, msg=None, pos=None): if self._cancel_event.is_set(): raise CancelProcessError() self.progress_indicator.setMaximum(pbar.total) self.progress_indicator.setValue(pbar.n) QApplication.processEvents()
35.82197
88
0.606323
79489d9929339de87b59af7586d3f9f1b0bdd150
391
py
Python
HLTrigger/Configuration/python/HLT_75e33/paths/HLT_Ele26_WP70_Unseeded_cfi.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
1
2021-11-30T16:24:46.000Z
2021-11-30T16:24:46.000Z
HLTrigger/Configuration/python/HLT_75e33/paths/HLT_Ele26_WP70_Unseeded_cfi.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
4
2021-11-29T13:57:56.000Z
2022-03-29T06:28:36.000Z
HLTrigger/Configuration/python/HLT_75e33/paths/HLT_Ele26_WP70_Unseeded_cfi.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
1
2021-11-30T16:16:05.000Z
2021-11-30T16:16:05.000Z
import FWCore.ParameterSet.Config as cms from ..modules.hltPreEle26WP70Unseeded_cfi import * from ..sequences.HLTBeginSequence_cfi import * from ..sequences.HLTEle26WP70UnseededSequence_cfi import * from ..sequences.HLTEndSequence_cfi import * HLT_Ele26_WP70_Unseeded = cms.Path( HLTBeginSequence + hltPreEle26WP70Unseeded + HLTEle26WP70UnseededSequence + HLTEndSequence )
27.928571
58
0.810742
79489e082dafefccd4c4ac9027eb2cc78b8057a8
1,115
py
Python
database/apis/api_psql.py
JhonSaguay/Observatorioapi
642a3c7fa6ac121225de156cd07b96d1ee3b34c0
[ "MIT" ]
null
null
null
database/apis/api_psql.py
JhonSaguay/Observatorioapi
642a3c7fa6ac121225de156cd07b96d1ee3b34c0
[ "MIT" ]
null
null
null
database/apis/api_psql.py
JhonSaguay/Observatorioapi
642a3c7fa6ac121225de156cd07b96d1ee3b34c0
[ "MIT" ]
null
null
null
import requests import psycopg2 import json import time def savedatabase(conexion,my_dict): cur = conexion.cursor() for dato in my_dict: # dato_json={"en":dato} json_string=(json.dumps(dato)) sql1="insert into apidata(datosjson) values ('"+json_string+"')" cur.execute(sql1) # conexion.commit() def consultarapicompras(apiurl,conexion): my_dict={'data':['prueba']} cont=1 while len(my_dict['data'])>0: try: r = requests.get(apiurl+str(cont)) my_dict = r.json() if len(my_dict['data'])==0: continue savedatabase(conexion,my_dict['data']) conexion.commit() print('entro: '+str(cont)) cont+=1 except: print("Ha ocurrido un error") time.sleep(5) apiurl = "https://datosabiertos.compraspublicas.gob.ec/PLATAFORMA/api/search_ocds?year=2021&search=&page=" conexion = psycopg2.connect(host="localhost", database="PuebasApi", user="postgres", password="1998414") consultarapicompras(apiurl,conexion) conexion.close()
30.972222
106
0.61435
79489e2465732d974655139b8c55fbf53f8fb74d
6,628
py
Python
misc/scripts/upgrade-wildfly/lib/wildfly/upgrade/dependencies/3rd_party/fabric8-analytics-version-comparator/f8a_version_comparator/comparable_version.py
evtr/keycloak
35375146dedfa14ff1c117d22b840b1ab3cc8f73
[ "Apache-2.0" ]
12,252
2015-01-01T02:39:03.000Z
2022-03-31T19:57:55.000Z
misc/scripts/upgrade-wildfly/lib/wildfly/upgrade/dependencies/3rd_party/fabric8-analytics-version-comparator/f8a_version_comparator/comparable_version.py
evtr/keycloak
35375146dedfa14ff1c117d22b840b1ab3cc8f73
[ "Apache-2.0" ]
4,567
2015-01-06T09:27:52.000Z
2022-03-31T21:38:13.000Z
misc/scripts/upgrade-wildfly/lib/wildfly/upgrade/dependencies/3rd_party/fabric8-analytics-version-comparator/f8a_version_comparator/comparable_version.py
skew202/keycloak
2aaceeab7ef5e059fb3bc737e6271bad85cf1545
[ "Apache-2.0" ]
5,376
2015-01-04T13:39:48.000Z
2022-03-31T19:57:56.000Z
# Copyright © 2018 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Geetika Batra <gbatra@redhat.com> # """Module to implement Comparable Version class.""" import typing from .item_object import IntegerItem from .item_object import StringItem from .item_object import ListItem class ComparableVersion: """Class for Comparable Version.""" def __init__(self, version: str): """Initialize comparable version class. :version: Version supplied as a string """ if not isinstance(version, str): raise TypeError( "Invalid type {got!r} of argument `version`, expected {expected!r}".format( got=type(version), expected=str )) self.version = version self.items = self.parse_version() def __repr__(self): """Return representation of ComparableVersion object.""" return "{cls!s}(version={version!r})".format( cls=self.__class__.__name__, version=self.version ) def __str__(self): """Return version string held by ComparableVersion object.""" return "{version!s}".format( version=self.version ) def __eq__(self, other): """Compare ComparableVersion objects for equality. This rich comparison implies whether self == other """ # don't call compare_to(None) if other is None: return False return self.compare_to(other) == 0 def __ne__(self, other): """Compare ComparableVersion objects for equality. This rich comparison implies whether self != other """ # don't call compare_to(None) if other is None: return True return self.compare_to(other) != 0 def __lt__(self, other): """Compare ComparableVersion objects. This rich comparison implies whether self < other """ # don't call compare_to(None) if other is None: return False return self.compare_to(other) == -1 def __le__(self, other): """Compare ComparableVersion objects. This rich comparison implies whether self <= other """ # don't call compare_to(None) if other is None: return False return self.compare_to(other) <= 0 def __gt__(self, other): """Compare ComparableVersion objects. This rich comparison implies whether self > other """ # don't call compare_to(None) if other is None: return True return self.compare_to(other) == 1 def __ge__(self, other): """Compare ComparableVersion objects. This rich comparison implies whether self >= other """ # don't call compare_to(None) if other is None: return True return self.compare_to(other) >= 0 def parse_version(self): """Parse version.""" # TODO: reduce cyclomatic complexity ref_list = ListItem() items = ref_list parse_stack = list() version = self.version.lower() parse_stack.append(ref_list) _is_digit = False _start_index = 0 for _ch in range(0, len(version)): ver_char = version[_ch] if ver_char == ".": if _ch == _start_index: ref_list.add_item(IntegerItem(0)) else: ref_list.add_item(self.parse_item(_is_digit, version[_start_index: _ch])) _start_index = _ch + 1 elif ver_char == "-": if _ch == _start_index: ref_list.add_item(IntegerItem(0)) else: ref_list.add_item(self.parse_item(_is_digit, version[_start_index: _ch])) _start_index = _ch + 1 temp = ListItem() ref_list.add_item(temp) ref_list = temp parse_stack.append(ref_list) elif ver_char.isdigit(): if not _is_digit and _ch > _start_index: ref_list.add_item(StringItem(version[_start_index: _ch], True)) _start_index = _ch temp = ListItem() ref_list.add_item(temp) ref_list = temp parse_stack.append(ref_list) _is_digit = True else: if _is_digit and _ch > _start_index: ref_list.add_item(self.parse_item(True, version[_start_index:_ch])) _start_index = _ch temp = ListItem() ref_list.add_item(temp) ref_list = temp parse_stack.append(ref_list) _is_digit = False if len(version) > _start_index: ref_list.add_item(self.parse_item(_is_digit, version[_start_index:])) while parse_stack: ref_list = parse_stack.pop() ref_list.normalize() return items @staticmethod def parse_item(_is_digit, buf): """Wrap items in version in respective object class.""" # TODO: make this function static (it does not need 'self') if _is_digit: return IntegerItem(buf) return StringItem(buf, False) def compare_to(self, obj: typing.Union["ComparableVersion", str]): """Compare two ComparableVersion objects.""" if isinstance(obj, ComparableVersion): # compare two objects of the same type cmp_result = self.items.compare_to(obj.items) elif isinstance(obj, str): # compare against string cmp_result = self.items.compare_to(ComparableVersion(obj).items) else: raise TypeError( "Invalid type {got!r} of argument `obj`, expected <{expected}>".format( got=type(obj), expected=typing.Union["ComparableVersion", str] )) return cmp_result
30.971963
93
0.576946
79489e68282246d3583180b4eb3beb3bd20cab62
2,743
py
Python
camera.py
nolita26/Human-Act-Recogntion
df6c27c1b6b8564605332e510caa27777c25fa7b
[ "MIT" ]
2
2020-05-17T12:53:06.000Z
2021-04-12T02:13:43.000Z
camera.py
nolita26/Human-Act-Recogntion
df6c27c1b6b8564605332e510caa27777c25fa7b
[ "MIT" ]
null
null
null
camera.py
nolita26/Human-Act-Recogntion
df6c27c1b6b8564605332e510caa27777c25fa7b
[ "MIT" ]
null
null
null
import cv2 from twilio.rest import Client # Your Account Sid and Auth Token from twilio.com/console # DANGER! This is insecure. See http://twil.io/secure account_sid = 'AC9ff3f227c0a9de0606351f3656ee2274' auth_token = '6eaec067e0c697309716afdc6e1c8a2a' client = Client(account_sid, auth_token) face_cascade=cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml") ds_factor=0.6 class VideoCamera(object): def __init__(self): self.video = cv2.VideoCapture(0) def __del__(self): self.video.release() def get_frame(self): fgbg = cv2.createBackgroundSubtractorMOG2() j = 0 fall=0 while(1): count=0 ret, frame = self.video.read() if ret: ret, jpeg = cv2.imencode('.jpg', frame) return jpeg.tobytes() #Conver each frame to gray scale and subtract the background gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) fgmask = fgbg.apply(gray) #Find contours #_ , contours, _ = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if contours: areas = [] for contour in contours: ar = cv2.contourArea(contour) areas.append(ar) max_area = max(areas or [0]) max_area_index = areas.index(max_area) cnt = contours[max_area_index] M = cv2.moments(cnt) x, y, w, h = cv2.boundingRect(cnt) cv2.drawContours(fgmask, [cnt], 0, (255,255,255), 3, maxLevel = 0) if h < w: j += 1 if j > 10: cv2.putText(fgmask, 'FALL', (x, y), cv2.FONT_HERSHEY_TRIPLEX, 0.5, (255,255,255), 2) cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2) print("Fall detected") count=1 # print(message.sid) if h > w: j = 0 cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2) fall=0 cv2.imshow('video', frame) if cv2.waitKey(33) == 27: break if count==1 and fall==0: message = client.messages.create( body='ALERT!!! FALL DETECTED! Please call 102 immeditately', from_='whatsapp:+14155238886', to='whatsapp:+919892938847' ) fall=1
35.623377
93
0.504557
79489f3fc4bcd6f44c2a66368b43b772766963e5
9,106
py
Python
lib/datasets/V1datasets.py
Wangyf46/deeplabv3plus-pytorch
dbbbe88d7774d6e02f7ea13e770ee4278dc528fd
[ "MIT" ]
2
2019-08-03T12:02:12.000Z
2019-08-03T12:35:46.000Z
lib/datasets/V1datasets.py
Wangyf46/deeplabv3plus-pytorch
dbbbe88d7774d6e02f7ea13e770ee4278dc528fd
[ "MIT" ]
null
null
null
lib/datasets/V1datasets.py
Wangyf46/deeplabv3plus-pytorch
dbbbe88d7774d6e02f7ea13e770ee4278dc528fd
[ "MIT" ]
null
null
null
#-*-coding:utf-8-*- # ---------------------------------------- # Written by Yude Wang # ---------------------------------------- from __future__ import print_function, division import os import sys import pandas as pd import cv2 import tqdm import multiprocessing from PIL import Image import numpy as np from torch.utils.data import Dataset from lib.datasets.transform import * import ipdb class V1datasets(Dataset): def __init__(self, dataset_name, cfg, period, aug): self.dataset_name = dataset_name self.dataset_dir = os.path.join(cfg.ROOT_DIR, dataset_name) self.rst_dir = os.path.join('../../results', cfg.EXP_NAME, cfg.DATE, cfg.MODEL_BACKBONE) self.eval_dir = os.path.join('../../eval_result', cfg.EXP_NAME, cfg.DATE, cfg.MODEL_BACKBONE) if not os.path.isdir(self.rst_dir): os.makedirs(self.rst_dir) if not os.path.isdir(self.eval_dir): os.makedirs(self.eval_dir) self.period = period if period == 'train': self.img_dir = os.path.join(self.dataset_dir, 'train_img') self.seg_dir = os.path.join(self.dataset_dir, 'train_gt') self.name_list = os.listdir(self.seg_dir) elif period == 'val': self.img_dir = os.path.join(self.dataset_dir, 'val_img') self.seg_dir = os.path.join(self.dataset_dir, 'val_gt') self.name_list = os.listdir(self.seg_dir) ### else: self.img_dir = os.path.join('/nfs-data/wangyf/Output/seg_out/test_image_51') self.name_list = os.listdir(self.img_dir) self.rescale = None self.centerlize = None self.randomcrop = None self.randomflip = None self.randomrotation = None self.randomscale = None self.randomhsv = None self.multiscale = None self.totensor = ToTensor() self.cfg = cfg if dataset_name == 'clean_datasets_V1': self.categories = [ 'human'] # 1 self.num_categories = len(self.categories) assert (self.num_categories+1 == self.cfg.MODEL_NUM_CLASSES) self.cmap = self.__colormap(len(self.categories)+1) if cfg.DATA_RESCALE > 0: self.rescale = Rescale(cfg.DATA_RESCALE, fix=False) if 'train' in self.period: if cfg.DATA_RANDOMCROP > 0: self.randomcrop = RandomCrop(cfg.DATA_RANDOMCROP) if cfg.DATA_RANDOMROTATION > 0: self.randomrotation = RandomRotation(cfg.DATA_RANDOMROTATION) if cfg.DATA_RANDOMSCALE != 1: self.randomscale = RandomScale(cfg.DATA_RANDOMSCALE) if cfg.DATA_RANDOMFLIP > 0: self.randomflip = RandomFlip(cfg.DATA_RANDOMFLIP) if cfg.DATA_RANDOM_H > 0 or cfg.DATA_RANDOM_S > 0 or cfg.DATA_RANDOM_V > 0: self.randomhsv = RandomHSV(cfg.DATA_RANDOM_H, cfg.DATA_RANDOM_S, cfg.DATA_RANDOM_V) else: self.multiscale = Multiscale(self.cfg.TEST_MULTISCALE) def __len__(self): return len(self.name_list) def __getitem__(self, idx): img_file = self.name_list[idx] image = cv2.imread(img_file) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # image = np.array(io.imread(img_file),dtype=np.uint8) r, c, _ = image.shape sample = {'image': image, 'name': name, 'row': r, 'col': c} if 'train' in self.period: seg_file = self.seg_dir + '/' + name segmentation = np.array(Image.open(seg_file).convert('L')) sample['segmentation'] = segmentation if self.cfg.DATA_RANDOM_H > 0 or self.cfg.DATA_RANDOM_S > 0 or self.cfg.DATA_RANDOM_V > 0: sample = self.randomhsv(sample) if self.cfg.DATA_RANDOMFLIP > 0: sample = self.randomflip(sample) if self.cfg.DATA_RANDOMROTATION > 0: sample = self.randomrotation(sample) if self.cfg.DATA_RANDOMSCALE != 1: sample = self.randomscale(sample) if self.cfg.DATA_RANDOMCROP > 0: sample = self.randomcrop(sample) if self.cfg.DATA_RESCALE > 0: sample = self.rescale(sample) else: if self.cfg.DATA_RESCALE > 0: sample = self.rescale(sample) sample = self.multiscale(sample) if 'segmentation' in sample.keys(): sample['mask'] = sample['segmentation'] < self.cfg.MODEL_NUM_CLASSES t = sample['segmentation'] t[t >= self.cfg.MODEL_NUM_CLASSES] = 0 sample['segmentation_onehot'] = onehot(t, self.cfg.MODEL_NUM_CLASSES) sample = self.totensor(sample) return sample def __colormap(self, N): """Get the map from label index to color Args: N: number of class return: a Nx3 matrix """ cmap = np.zeros((N, 3), dtype=np.uint8) def uint82bin(n, count=8): """returns the binary of integer n, count refers to amount of bits""" return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)]) for i in range(N): r = 0 g = 0 b = 0 idx = i for j in range(7): str_id = uint82bin(idx) r = r ^ (np.uint8(str_id[-1]) << (7 - j)) g = g ^ (np.uint8(str_id[-2]) << (7 - j)) b = b ^ (np.uint8(str_id[-3]) << (7 - j)) idx = idx >> 3 cmap[i, 0] = r cmap[i, 1] = g cmap[i, 2] = b return cmap def label2colormap(self, label): m = label.astype(np.uint8) r, c = m.shape cmap = np.zeros((r, c, 3), dtype=np.uint8) cmap[:, :, 0] = (m & 1) << 7 | (m & 8) << 3 cmap[:, :, 1] = (m & 2) << 6 | (m & 16) << 2 cmap[:, :, 2] = (m & 4) << 5 return cmap def save_result(self, result_list, model_id): """Save test results Args: result_list(list of dict): [{'name':name1, 'predict':predict_seg1},{...},...] """ i = 1 folder_path = os.path.join(self.rst_dir, '%s_%s_cls' % (model_id, self.period)) if not os.path.exists(folder_path): os.makedirs(folder_path) for sample in result_list: file_path = os.path.join(folder_path, '%s' % sample['name']) # predict_color = self.label2colormap(sample['predict']) # p = self.__coco2voc(sample['predict']) cv2.imwrite(file_path, sample['predict']) print('[%d/%d] %s saved' % (i, len(result_list), file_path)) i += 1 def do_python_eval(self, model_id): predict_folder = os.path.join(self.rst_dir,'%s_%s_cls'%(model_id,self.period)) # predict_folder = '../../results/exp_V1/2019-06-29/res101_atrous/deeplabv3plus_val_cls/' # predict_folder = '/nfs-data/wangyf/datasets/clean_datasets_V1/val_out/' gt_folder = self.seg_dir TP = np.zeros((self.cfg.MODEL_NUM_CLASSES), np.uint64) P = np.zeros((self.cfg.MODEL_NUM_CLASSES), np.uint64) T = np.zeros((self.cfg.MODEL_NUM_CLASSES), np.uint64) for idx in range(len(self.name_list)): print('%d/%d'%(idx,len(self.name_list))) name = self.name_list[idx] ''' str1 = name.split('.')[0] str2 = str1.split('-') if len(str2) != 1: if str2[-1] == 'profile': str1 = str2[0] predict_file = predict_folder + '/' + str1 + '.png' if os.path.isfile(predict_file) == False: predict_file = predict_folder + '/' + str1 + '.jpg' gt_file = os.path.join(gt_folder, '%s'%name) predict = np.array(Image.open(predict_file)) gt = np.array(Image.open(gt_file).convert('L').resize((96, 160), Image.ANTIALIAS)) ''' predict_file = os.path.join(predict_folder, '%s'%name) gt_file = os.path.join(gt_folder, '%s'%name) predict = np.array(Image.open(predict_file)) ## gt = np.array(Image.open(gt_file).convert('L')) # predict = cv2.imread(predict_file) # gt = cv2.imread(gt_file) cal = gt < 255 mask = (predict==gt) & cal for i in range(self.cfg.MODEL_NUM_CLASSES): P[i] += np.sum((predict==i) * cal) T[i] += np.sum((gt==i) * cal) TP[i] += np.sum((gt==i) * mask) TP = TP.astype(np.float64) T = T.astype(np.float64) P = P.astype(np.float64) IoU = TP/(T+P-TP) for i in range(self.cfg.MODEL_NUM_CLASSES): if i == 0: print('%15s:%7.3f%%'%('backbound', IoU[i] * 100)) else: print('%15s:%7.3f%%'%(self.categories[i-1], IoU[i] * 100)) miou = np.mean(IoU) print('==================================') print('%15s:%7.3f%%'%('mIoU',miou * 100))
39.419913
102
0.544586
7948a02319228a5d974f3b3d1e0bba4861a1c76f
1,250
py
Python
back-end/migrations/versions/65d2fcbb8c38_add_comments_table.py
mahaoyang/flask-vuejs-madblog
04737b9d72d1fb011498b09c7dd6f0a43e704525
[ "MIT" ]
756
2018-10-29T06:18:17.000Z
2022-03-30T09:10:36.000Z
back-end/migrations/versions/65d2fcbb8c38_add_comments_table.py
tianxinyueming/flask-vuejs-madblog
b5d239e8b7bf99ff917ac7c757a333de6cac664d
[ "MIT" ]
8
2018-12-21T05:50:00.000Z
2021-09-08T04:35:51.000Z
back-end/migrations/versions/65d2fcbb8c38_add_comments_table.py
tianxinyueming/flask-vuejs-madblog
b5d239e8b7bf99ff917ac7c757a333de6cac664d
[ "MIT" ]
204
2018-11-08T12:57:01.000Z
2022-03-15T07:51:32.000Z
"""add comments table Revision ID: 65d2fcbb8c38 Revises: b7fa03819d57 Create Date: 2018-11-15 11:18:14.585190 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '65d2fcbb8c38' down_revision = 'b7fa03819d57' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('comments', sa.Column('id', sa.Integer(), nullable=False), sa.Column('body', sa.Text(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('disabled', sa.Boolean(), nullable=True), sa.Column('author_id', sa.Integer(), nullable=True), sa.Column('post_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['author_id'], ['users.id'], ), sa.ForeignKeyConstraint(['post_id'], ['posts.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_comments_timestamp'), 'comments', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_comments_timestamp'), table_name='comments') op.drop_table('comments') # ### end Alembic commands ###
30.487805
91
0.6784
7948a1f35c0909a4f81426558064ff18b23b5e3e
5,163
py
Python
mfctracker/models.py
gonzoua/mfctracker
77800ee5ab17e4efefb12bfbd547bff1ed94c6a1
[ "BSD-2-Clause" ]
3
2016-10-19T05:01:31.000Z
2019-06-06T18:20:11.000Z
mfctracker/models.py
gonzoua/mfctracker
77800ee5ab17e4efefb12bfbd547bff1ed94c6a1
[ "BSD-2-Clause" ]
3
2017-11-28T17:31:58.000Z
2021-04-12T02:37:27.000Z
mfctracker/models.py
gonzoua/mfctracker
77800ee5ab17e4efefb12bfbd547bff1ed94c6a1
[ "BSD-2-Clause" ]
1
2020-06-26T14:05:53.000Z
2020-06-26T14:05:53.000Z
# Copyright (c) 2016-2019 Oleksandr Tymoshenko <gonzo@bluezbox.com> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. from django.conf import settings from django.contrib.auth.models import User from django.db import models from django.db.models.signals import post_save from django.dispatch import receiver from django.utils.crypto import get_random_string import jsonfield class Branch(models.Model): """Branch info""" name = models.CharField(max_length=30, unique=True) path = models.CharField(max_length=128, unique=True) is_trunk = models.BooleanField(default=False) # Last imported revision last_commit = models.CharField(max_length=64) # Branchpoint branch_commit = models.CharField(max_length=64) branch_date = models.DateTimeField() @classmethod def create(cls, name, path): obj = cls(name=name, path=path) return obj @classmethod def trunk(cls): return cls.objects.get(is_trunk=True) @classmethod def maintenance(cls): return cls.objects.filter(is_trunk=False) class Commit(models.Model): """Single commit info""" sha = models.CharField(primary_key=True, max_length=64) svn_revision = models.IntegerField(null=True) commit_counter = models.IntegerField(null=True) author = models.CharField(max_length=30) date = models.DateTimeField() mfc_after = models.DateField(blank=True, null=True) msg = models.TextField() merged_to = models.ManyToManyField(Branch, blank=True, related_name='merges') branch = models.ForeignKey(Branch, null=True, on_delete=models.SET_NULL, related_name='commits') mfc_with = models.ManyToManyField("self", blank=True) @classmethod def create(cls, sha, author, date, msg): commit = cls(sha=sha, author=author, date=date, msg=msg) return commit @property def summary(self): msg = self.msg.strip() eol = msg.find('\n') if eol >= 0: return msg[0:eol] return msg @property def more(self): msg = self.msg.strip() eol = msg.find('\n') if eol >= 0: return msg[eol:].strip() return '' @property def viewvc_url(self): return settings.VIEWVC_REVISION_URL.format(revision=self.svn_revision) @property def cgit_url(self): return settings.CGIT_COMMIT_URL.format(sha=self.sha) @property def sha_abbr(self): return self.sha[:8] class Change(models.Model): path = models.CharField(max_length=1024) commit = models.ForeignKey(Commit, on_delete=models.CASCADE, related_name='changes') @classmethod def create(cls, commit, path): commit = cls(path=path, commit=commit) return commit class UserProfile(models.Model): '''User-specific data like basket, share URL, etc...''' user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='profile') share_token = models.CharField(max_length=30, blank=True) mfc_basket = jsonfield.JSONField(default=[]) do_not_merge = models.ManyToManyField(Commit, blank=True) @classmethod def create(cls, user): obj = cls() obj.user = user obj.share_token = get_random_string(length=8) return obj @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: profile = UserProfile.objects.create(share_token=get_random_string(length=8), user=instance) profile.save() class CommitNote(models.Model): text = models.TextField() commit = models.ForeignKey(Commit, on_delete=models.CASCADE, related_name='notes') user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='notes') @classmethod def create(cls, commit, user, text): note = cls(commit=commit, user=user, text=text) return note
35.854167
102
0.706566
7948a227444eb8363750141c94691e5b37b9a9ca
32,091
py
Python
pyspeckit/cubes/cubes.py
mwcraig/pyspeckit
6d6c09aac29549a8c094d97fb385c9283422bb82
[ "MIT" ]
null
null
null
pyspeckit/cubes/cubes.py
mwcraig/pyspeckit
6d6c09aac29549a8c094d97fb385c9283422bb82
[ "MIT" ]
null
null
null
pyspeckit/cubes/cubes.py
mwcraig/pyspeckit
6d6c09aac29549a8c094d97fb385c9283422bb82
[ "MIT" ]
1
2018-10-02T15:11:17.000Z
2018-10-02T15:11:17.000Z
""" ~~~~~~~~ cubes.py ~~~~~~~~ From `agpy <http://code.google.com/p/agpy/source/browse/trunk/agpy/cubes.py>`_, contains functions to perform various transformations on data cubes and their headers. """ from __future__ import print_function from astropy.extern.six.moves import xrange from numpy import sqrt,repeat,indices,newaxis,pi,cos,sin,array,mean,nansum from math import acos,atan2,tan import numpy import numpy as np import copy import os import astropy.io.fits as fits import astropy.wcs as pywcs import tempfile import warnings from astropy import coordinates from astropy import log try: from AG_fft_tools import smooth smoothOK = True except ImportError: smoothOK = False try: from scipy.interpolate import UnivariateSpline scipyOK = True except ImportError: scipyOK = False from . import posang # agpy code from ..parallel_map import parallel_map from ..spectrum import smooth dtor = pi/180.0 def blfunc_generator(x=None, polyorder=None, splineorder=None, sampling=1): """ Generate a function that will fit a baseline (polynomial or spline) to a data set. Either ``splineorder`` or ``polyorder`` must be set Parameters ---------- x : np.ndarray or None The X-axis of the fitted array. Will be set to ``np.arange(len(data))`` if not specified polyorder : None or int The polynomial order. splineorder : None or int sampling : int The sampling rate to use for the data. Can set to higher numbers to effectively downsample the data before fitting """ def blfunc(args, x=x): yfit,yreal = args if hasattr(yfit,'mask'): mask = ~yfit.mask else: mask = np.isfinite(yfit) if x is None: x = np.arange(yfit.size, dtype=yfit.dtype) ngood = np.count_nonzero(mask) if polyorder is not None: if ngood < polyorder: return yreal else: endpoint = ngood - (ngood % sampling) y = np.mean([yfit[mask][ii:endpoint:sampling] for ii in range(sampling)], axis=0) polypars = np.polyfit(x[mask][sampling/2:endpoint:sampling], y, polyorder) return yreal-np.polyval(polypars, x).astype(yreal.dtype) elif splineorder is not None and scipyOK: if splineorder < 1 or splineorder > 4: raise ValueError("Spline order must be in {1,2,3,4}") elif ngood <= splineorder: return yreal else: log.debug("splinesampling: {0} " "splineorder: {1}".format(sampling, splineorder)) endpoint = ngood - (ngood % sampling) y = np.mean([yfit[mask][ii:endpoint:sampling] for ii in range(sampling)], axis=0) if len(y) <= splineorder: raise ValueError("Sampling is too sparse. Use finer sampling or " "decrease the spline order.") spl = UnivariateSpline(x[mask][sampling/2:endpoint:sampling], y, k=splineorder, s=0) return yreal-spl(x) else: raise ValueError("Must provide polyorder or splineorder") return blfunc def baseline_cube(cube, polyorder=None, cubemask=None, splineorder=None, numcores=None, sampling=1): """ Given a cube, fit a polynomial to each spectrum Parameters ---------- cube: np.ndarray An ndarray with ndim = 3, and the first dimension is the spectral axis polyorder: int Order of the polynomial to fit and subtract cubemask: boolean ndarray Mask to apply to cube. Values that are True will be ignored when fitting. numcores : None or int Number of cores to use for parallelization. If None, will be set to the number of available cores. """ x = np.arange(cube.shape[0], dtype=cube.dtype) #polyfitfunc = lambda y: np.polyfit(x, y, polyorder) blfunc = blfunc_generator(x=x, splineorder=splineorder, polyorder=polyorder, sampling=sampling) reshaped_cube = cube.reshape(cube.shape[0], cube.shape[1]*cube.shape[2]).T if cubemask is None: log.debug("No mask defined.") fit_cube = reshaped_cube else: if cubemask.dtype != 'bool': raise TypeError("Cube mask *must* be a boolean array.") if cubemask.shape != cube.shape: raise ValueError("Mask shape does not match cube shape") log.debug("Masking cube with shape {0} " "with mask of shape {1}".format(cube.shape, cubemask.shape)) masked_cube = cube.copy() masked_cube[cubemask] = np.nan fit_cube = masked_cube.reshape(cube.shape[0], cube.shape[1]*cube.shape[2]).T baselined = np.array(parallel_map(blfunc, zip(fit_cube,reshaped_cube), numcores=numcores)) blcube = baselined.T.reshape(cube.shape) return blcube def flatten_header(header,delete=False): """ Attempt to turn an N-dimensional fits header into a 2-dimensional header Turns all CRPIX[>2] etc. into new keywords with suffix 'A' header must be a fits.Header instance """ if not isinstance(header,fits.Header): raise Exception("flatten_header requires a fits.Header instance") newheader = header.copy() for key in newheader.keys(): try: if delete and int(key[-1]) >= 3 and key[:2] in ['CD','CR','CT','CU','NA']: newheader.pop(key) elif (int(key[-1]) >= 3 or int(key[2])>=3) and key[:2] in ['CD','CR','CT','CU','NA','PC']: newheader.rename_keyword(key,'A'+key,force=True) if delete and (int(key[4]) >= 3 or int(key[7]) >= 3) and key[:2]=='PC' and key in newheader: newheader.pop(key) except ValueError: # if key[-1] is not an int pass except IndexError: # if len(key) < 2 pass newheader['NAXIS'] = 2 if header.get('WCSAXES'): newheader['WCSAXES'] = 2 return newheader def speccen_header(header, lon=None, lat=None, proj='TAN', system='celestial', spectral_axis=3, celestial_axes=[1,2]): """ Turn a cube header into a spectrum header, retaining RA/Dec vals where possible (speccen is like flatten; spec-ify would be better but, specify? nah) Assumes 3rd axis is velocity """ newheader = header.copy() new_spectral_axis = 1 newheader['CRVAL{0}'.format(new_spectral_axis)] = header.get('CRVAL{0}'.format(spectral_axis)) newheader['CRPIX{0}'.format(new_spectral_axis)] = header.get('CRPIX{0}'.format(spectral_axis)) if 'CD{0}_{0}'.format(new_spectral_axis) in header: newheader.rename_keyword('CD{0}_{0}'.format(new_spectral_axis), 'OLDCD{0}_{0}'.format(new_spectral_axis)) elif 'CDELT{0}'.format(new_spectral_axis) in header: newheader.rename_keyword('CDELT{0}'.format(new_spectral_axis),'OLDCDEL{0}'.format(new_spectral_axis)) if 'CD{0}_{0}'.format(spectral_axis) in header: newheader['CDELT{0}'.format(new_spectral_axis)] = header.get('CD{0}_{0}'.format(spectral_axis)) elif 'CDELT{0}'.format(spectral_axis) in header: newheader['CDELT{0}'.format(new_spectral_axis)] = header.get('CDELT{0}'.format(spectral_axis)) newheader['CTYPE{0}'.format(new_spectral_axis)] = 'VRAD' if header.get('CUNIT{0}'.format(spectral_axis)): newheader['CUNIT{0}'.format(new_spectral_axis)] = header.get('CUNIT{0}'.format(spectral_axis)) else: print("Assuming CUNIT3 is km/s in speccen_header") newheader['CUNIT{0}'.format(new_spectral_axis)] = 'km/s' newheader['CRPIX2'] = 1 newheader['CRPIX{0}'.format(spectral_axis)] = 1 if system == 'celestial': c2 = 'RA---' c3 = 'DEC--' elif system == 'galactic': c2 = 'GLON-' c3 = 'GLAT-' elif system == 'PIXEL': c2 = 'PIX--' c3 = 'PIX--' newheader['CTYPE2'] = c2+proj newheader['CTYPE{0}'.format(spectral_axis)] = c3+proj if lon is not None: newheader['CRVAL2'] = lon if lat is not None: newheader['CRVAL{0}'.format(spectral_axis)] = lat if 'CD2_2' in header: newheader.rename_keyword('CD2_2','OLDCD2_2') if 'CD{0}_{0}'.format(spectral_axis) in header: newheader.rename_keyword('CD{0}_{0}'.format(spectral_axis), 'OLDCD{0}_{0}'.format(spectral_axis)) if 'CROTA2' in header: newheader.rename_keyword('CROTA2','OLDCROT2') return newheader def extract_aperture(cube, ap, r_mask=False, wcs=None, coordsys='galactic', wunit='arcsec', debug=False, method='mean'): """ Extract an aperture from a data cube. E.g. to acquire a spectrum of an outflow that is extended. Cube should have shape [z,y,x], e.g. cube = fits.getdata('datacube.fits') Apertures are specified in PIXEL units with an origin of 0,0 (NOT the 1,1 fits standard!) unless wcs and coordsys are specified Parameters ---------- ap : list For a circular aperture, len(ap)=3: ap = [xcen,ycen,radius] For an elliptical aperture, len(ap)=5: ap = [xcen,ycen,height,width,PA] wcs : wcs a pywcs.WCS instance associated with the data cube coordsys : str the coordinate system the aperture is specified in. Options are 'celestial' and 'galactic'. Default is 'galactic' wunit : str units of width/height. default 'arcsec', options 'arcmin' and 'degree' method : str 'mean' or 'sum' (average over spectra, or sum them) or 'error' for sqrt(sum-of-squares / n) Other Parameters ---------------- r_mask : bool return mask in addition to spectrum (for error checking?) """ warnings.warn("SpectralCube can do what subimage_integ does much more easily!", DeprecationWarning) if wcs is not None and coordsys is not None: if debug: print("Converting aperture ",ap,) ap = aper_world2pix(ap,wcs,coordsys=coordsys,wunit=wunit) if debug: print(" to ",ap) if len(ap) == 3: sh = cube.shape yind,xind = indices(sh[1:3]) # recall that python indices are backwards dis = sqrt((xind-ap[0])**2+(yind-ap[1])**2) mask = dis < ap[2] elif len(ap) == 5: yinds,xinds = indices(cube.shape[1:3]) th = (ap[4])*dtor xindr = (xinds-ap[0])*cos(th) + (yinds-ap[1])*sin(th) yindr = (xinds-ap[0])*-sin(th) + (yinds-ap[1])*cos(th) ratio = max(ap[2:4])/min(ap[2:4]) mask = ((xindr*ratio)**2 + yindr**2)**0.5 < max(ap[2:4]) else: raise Exception("Wrong number of parameters. Need either 3 parameters " "for a circular aperture or 5 parameters for an " "elliptical aperture.") npixinmask = mask.sum() mask3d = repeat(mask[newaxis,:,:],cube.shape[0],axis=0) if method == 'mean': specsum = nansum(nansum((cube*mask3d),axis=2),axis=1) spec = specsum / npixinmask elif method == 'error': specsum = nansum(nansum((cube*mask3d)**2,axis=2),axis=1) spec = (specsum)**0.5 / npixinmask else: spec = nansum(nansum((cube*mask3d),axis=2),axis=1) if r_mask: return spec,mask else: return spec def integ(file,vrange,xcen=None,xwidth=None,ycen=None,ywidth=None,**kwargs): """ wrapper of subimage_integ that defaults to using the full image """ if isinstance(file,fits.PrimaryHDU): header = file.header cube = file.data elif isinstance(file,fits.HDUList): header = file[0].header cube = file[0].data else: file = fits.open(file) header = file[0].header cube = file[0].data if None in [xcen,xwidth,ycen,ywidth]: xcen = header['NAXIS1'] / 2 xwidth = xcen + header['NAXIS1'] % 2 ycen = header['NAXIS2'] / 2 ywidth = ycen + header['NAXIS2'] % 2 return subimage_integ(cube,xcen,xwidth,ycen,ywidth,vrange,header=header,**kwargs) def subimage_integ(cube, xcen, xwidth, ycen, ywidth, vrange, header=None, average=mean, dvmult=False, return_HDU=False, units="pixels", zunits=None): """ Returns a sub-image from a data cube integrated over the specified velocity range NOTE: With `spectral_cube <spectral-cube.rtfd.org>`_, subcube features can be easily applied with the `.subcube` method, and integration is handled separately. Parameters ---------- cube : np.ndarray A 3-dimensional numpy array with dimensions (velocity, y, x) xcen,ycen : float The center in the X,Y-dimension. See `units` below for unit information xwidth,ywidth : float The width in the X,Y-dimension. See `units` below for unit information xwidth and ywidth are "radius" values, i.e. half the length that will be extracted vrange : (float,float) The velocity range to integrate over. See `zunits` below for unit information header : `astropy.io.fits.Header` or None If specified, will allow the use of WCS units average : function The function to apply when 'integrating' over the subcube dvmult : bool If dvmult is set, multiply the average by DV (this is useful if you set average=sum and dvmul=True to get an integrated value, e.g. K km/s or Jy km/s) return_hdu : bool If specified, will return an HDU object, otherwise will return the array and header units : 'pixels' or 'wcs' If 'pixels', all units (xcen, ycen, xwidth, ywidth) will be in pixels. If 'wcs', the values will be converted from WCS units to pixel units using the WCS specified by the `header` zunits : 'pixels' or 'wcs' or None If None, will be set to be the same as `units` Returns ------- subim, hdu : tuple A tuple (integrated array, header) if ``return_hdu`` is ``False``, or an HDU if it is True """ if header: flathead = flatten_header(header.copy()) wcs = pywcs.WCS(header=flathead) if header.get('CD3_3'): CD3 = header.get('CD3_3') else: CD3 = header.get('CDELT3') if units=="pixels": xlo = int( max([xcen-xwidth,0]) ) ylo = int( max([ycen-ywidth,0]) ) xhi = int( min([xcen+xwidth,cube.shape[2]]) ) yhi = int( min([ycen+ywidth,cube.shape[1]]) ) elif units=="wcs" and header: newxcen,newycen = wcs.wcs_world2pix(xcen,ycen,0) try: newxwid,newywid = xwidth / abs(wcs.wcs.cd[0,0]), ywidth / abs(wcs.wcs.cd[1,1]) except AttributeError: newxwid,newywid = xwidth / abs(wcs.wcs.cdelt[0]), ywidth / abs(wcs.wcs.cdelt[1]) xlo = int( max([newxcen-newxwid,0]) ) ylo = int( max([newycen-newywid,0]) ) xhi = int( min([newxcen+newxwid,cube.shape[2]]) ) yhi = int( min([newycen+newywid,cube.shape[1]]) ) else: print("Can only use wcs if you pass a header.") if zunits is None: zunits = units if zunits == 'pixels': zrange = vrange if zunits == 'wcs': zrange = ( array(vrange)-header.get('CRVAL3') ) / CD3 - 1 + header.get('CRPIX3') subim = average(cube[zrange[0]:zrange[1],ylo:yhi,xlo:xhi],axis=0) if dvmult and CD3: subim *= CD3 elif dvmult: print("Error: could not multiply by dv; CD3=",CD3) if header is None: return subim else: # Cannot set crval2 != 0 for Galactic coordinates: therefore, probably # wrong approach in general #crv1,crv2 = wcs.wcs_pix2world(xlo,ylo,0) #try: # flathead['CRVAL1'] = crv1[0] # flathead['CRVAL2'] = crv2[0] #except IndexError: # flathead['CRVAL1'] = crv1.item() # np 0-d arrays are not scalar # flathead['CRVAL2'] = crv2.item() # np 0-d arrays are not scalar # xlo, ylo have been forced to integers already above flathead['CRPIX1'] = flathead['CRPIX1'] - xlo flathead['CRPIX2'] = flathead['CRPIX2'] - ylo if return_HDU: return fits.PrimaryHDU(data=subim,header=flathead) else: return subim,flathead def subcube(cube, xcen, xwidth, ycen, ywidth, header=None, dvmult=False, return_HDU=False, units="pixels", widthunits="pixels"): """ Crops a data cube All units assumed to be pixel units cube has dimensions (velocity, y, x) xwidth and ywidth are "radius" values, i.e. half the length that will be extracted if dvmult is set, multiple the average by DV (this is useful if you set average=sum and dvmul=True to get an integrated value) """ if header: newheader = header.copy() flathead = flatten_header(header.copy()) wcs = pywcs.WCS(header=flathead) if widthunits == "pixels": newxwid, newywid = xwidth, ywidth elif widthunits == "wcs": try: newxwid,newywid = xwidth / abs(wcs.wcs.cd[0,0]), ywidth / abs(wcs.wcs.cd[1,1]) except AttributeError: newxwid,newywid = xwidth / abs(wcs.wcs.cdelt[0]), ywidth / abs(wcs.wcs.cdelt[1]) else: raise Exception("widthunits must be either 'wcs' or 'pixels'") if units=="pixels": newxcen,newycen = xcen,ycen elif units=="wcs" and header: newxcen,newycen = wcs.wcs_world2pix(xcen,ycen,0) else: raise Exception("units must be either 'wcs' or 'pixels'") x1 = int( numpy.floor( max([newxcen-newxwid,0]) ) ) y1 = int( numpy.floor( max([newycen-newywid,0]) ) ) x2 = int( numpy.ceil( min([newxcen+newxwid,cube.shape[2]]) ) ) y2 = int( numpy.ceil( min([newycen+newywid,cube.shape[1]]) ) ) xhi = max(x1,x2) xlo = min(x1,x2) yhi = max(y1,y2) ylo = min(y1,y2) subim = cube[:,ylo:yhi,xlo:xhi] if return_HDU: xmid_sky,ymid_sky = wcs.wcs_pix2world(xlo+xwidth,ylo+ywidth,0) try: newheader['CRVAL1'] = xmid_sky[0] newheader['CRVAL2'] = ymid_sky[0] except IndexError: newheader['CRVAL1'] = float(xmid_sky) newheader['CRVAL2'] = float(ymid_sky) newheader['CRPIX1'] = 1+xwidth newheader['CRPIX2'] = 1+ywidth newHDU = fits.PrimaryHDU(data=subim,header=newheader) if newHDU.header.get('NAXIS1') == 0 or newHDU.header.get('NAXIS2') == 0: raise Exception("Cube has been cropped to 0 in one dimension") return newHDU else: return subim def aper_world2pix(ap,wcs,coordsys='galactic',wunit='arcsec'): """ Converts an elliptical aperture (x,y,width,height,PA) from WCS to pixel coordinates given an input wcs (an instance of the pywcs.WCS class). Must be a 2D WCS header. """ convopt = {'arcsec':3600.0,'arcmin':60.0,'degree':1.0} try: conv = convopt[wunit] except: raise Exception("Must specify wunit='arcsec','arcmin', or 'degree'") if len(wcs.wcs.cdelt) != 2: raise Exception("WCS header is not strictly 2-dimensional. Look for 3D keywords.") if '' in wcs.wcs.ctype: raise Exception("WCS header has no CTYPE.") if coordsys.lower() == 'galactic': pos = coordinates.SkyCoord(ap[0],ap[1],unit=('deg','deg'), frame='galactic') elif coordsys.lower() in ('radec','fk5','icrs','celestial'): pos = coordinates.SkyCoord(ap[0],ap[1],unit=('deg','deg'), frame='fk5') if wcs.wcs.ctype[0][:2] == 'RA': ra,dec = pos.icrs.ra.deg,pos.icrs.dec.deg elif wcs.wcs.ctype[0][:4] == 'GLON': ra,dec = pos.galactic.l.deg,pos.galactic.b.deg else: raise Exception("WCS CTYPE has no match.") # workaround for a broken wcs.wcs_sky2pix try: radif = (wcs.wcs.crval[0]-ra)*dtor gamma = acos(cos(dec*dtor)*cos(wcs.wcs.crval[1]*dtor)*cos(radif)+sin(dec*dtor)*sin(wcs.wcs.crval[1]*dtor)) / dtor theta = atan2( sin(radif) , ( tan(dec*dtor)*cos(wcs.wcs.crval[1]*dtor)-sin(wcs.wcs.crval[1]*dtor)*cos(radif) ) ) x = -gamma * sin(theta) / wcs.wcs.cd[0,0] + wcs.wcs.crpix[0] y = gamma * cos(theta) / wcs.wcs.cd[1,1] + wcs.wcs.crpix[1] except: radif = (wcs.wcs.crval[0]-ra)*dtor gamma = acos(cos(dec*dtor)*cos(wcs.wcs.crval[1]*dtor)*cos(radif)+sin(dec*dtor)*sin(wcs.wcs.crval[1]*dtor)) / dtor theta = atan2( sin(radif) , ( tan(dec*dtor)*cos(wcs.wcs.crval[1]*dtor)-sin(wcs.wcs.crval[1]*dtor)*cos(radif) ) ) x = -gamma * sin(theta) / wcs.wcs.cdelt[0] + wcs.wcs.crpix[0] y = gamma * cos(theta) / wcs.wcs.cdelt[1] + wcs.wcs.crpix[1] #print "DEBUG: x,y from math (vectors): ",x,y #x,y = wcs.wcs_world2pix(ra,dec,0) # convert WCS coordinate to pixel coordinate (0 is origin, do not use fits convention) #print "DEBUG: x,y from wcs: ",x,y try: x=x[0] - 1 # change from FITS to python convention y=y[0] - 1 # change from FITS to python convention #print "DEBUG: x,y from math: ",x,y except: pass # cd is default, cdelt is backup if len(ap) > 3: try: width = ap[2] / conv / abs(wcs.wcs.cd[0,0]) # first is width, second is height in DS9 PA convention height = ap[3] / conv / abs(wcs.wcs.cd[0,0]) except: width = ap[2] / conv / abs(wcs.wcs.cdelt[0]) # first is width, second is height in DS9 PA convention height = ap[3] / conv / abs(wcs.wcs.cdelt[0]) apold = copy.copy(ap) if len(ap) == 5: PA = ap[4] ap = [x,y,width,height,PA] else: ap = [x,y,width,height] elif len(ap) == 3: try: width = ap[2] / conv / abs(wcs.wcs.cd[0,0]) # first is width, second is height in DS9 PA convention except: width = ap[2] / conv / abs(wcs.wcs.cdelt[0]) # first is width, second is height in DS9 PA convention apold = copy.copy(ap) ap = [x,y,width] else: raise TypeError("Aperture length is incorrect.") return ap def getspec(lon,lat,rad,cube,header,r_fits=True,inherit=True,wunit='arcsec'): """ Given a longitude, latitude, aperture radius (arcsec), and a cube file, return a .fits file or a spectrum. Parameters ---------- lon: float lat: float longitude and latitude center of a circular aperture in WCS coordinates must be in coordinate system of the file rad: float radius (default degrees) of aperture """ convopt = {'arcsec':1.0,'arcmin':60.0,'degree':3600.0} flathead = flatten_header(header) wcs = pywcs.WCS(flathead) if wcs.wcs.ctype[0][:2] == 'RA': coordsys='celestial' elif wcs.wcs.ctype[0][:4] == 'GLON': coordsys='galactic' spec = extract_aperture(cube,[lon,lat,rad],wcs=wcs, coordsys=coordsys,wunit=wunit) if nansum(spec) == 0: print("Total of extracted spectrum was zero. lon,lat,rad: ",lon,lat,rad) #import pdb; pdb.set_trace() if r_fits: if inherit: newhead = header.copy() else: newhead = fits.Header() try: newhead['CD1_1'] = header['CD3_3'] except KeyError: newhead['CD1_1'] = header['CDELT3'] newhead['CRPIX1'] = header['CRPIX3'] newhead['CRVAL1'] = header['CRVAL3'] try: newhead['CTYPE1'] = header['CTYPE3'] except KeyError: newhead['CTYPE1'] = "VRAD" try: newhead['CUNIT1'] = header['CUNIT3'] except KeyError: print("Header did not contain CUNIT3 keyword. Defaulting to km/s") newhead['CUNIT1'] = "km/s" newhead['BUNIT'] = header['BUNIT'] newhead['APGLON'] = lon newhead['APGLAT'] = lat newhead['APRAD'] = (rad*convopt[wunit],'arcseconds') # radius in arcsec newfile = fits.PrimaryHDU(data=spec,header=newhead) return newfile else: return spec def getspec_reg(cubefilename,region,**kwargs): """ Aperture extraction from a cube using a pyregion circle region The region must be in the same coordinate system as the cube header .. warning:: The second argument of getspec_reg requires a pyregion region list, and therefore this code depends on `pyregion`_. """ ds9tocoords = {'fk5':'celestial','galactic':'galactic','icrs':'celestial'} if region.name != 'circle': raise Exception("Only circular apertures are implemented so far") l,b,r = region.coord_list #pos = coords.Position([l,b],system=ds9tocoords[region.coord_format]) if isinstance(cubefilename,fits.HDUList): cubefile = cubefilename else: cubefile = fits.open(cubefilename) header = cubefile[0].header cube = cubefile[0].data if len(cube.shape) == 4: cube = cube[0,:,:,:] sp = getspec(l,b,r,cube,header,wunit='degree',**kwargs) return sp def coords_in_image(fitsfile,lon,lat,system='galactic'): """ Determine whether the coordinates are inside the image """ if not isinstance(fitsfile,fits.HDUList): fitsfile = fits.open(fitsfile) wcs = pywcs.WCS(flatten_header(fitsfile[0].header)) if 'RA' in wcs.wcs.ctype[0]: pos = coords.Position((lon,lat),system=system) lon,lat = pos.j2000() if 'GLON' in wcs.wcs.ctype[0]: pos = coords.Position((lon,lat),system=system) lon,lat = pos.galactic() x,y = wcs.wcs_world2pix(lon,lat,0) #DEBUG print x,y,wcs.naxis1,wcs.naxis2 if (0 < x < wcs.naxis1) and (0 < y < wcs.naxis2): return True else: return False def spectral_smooth(cube, smooth_factor, downsample=True, parallel=True, numcores=None, **kwargs): """ Smooth the cube along the spectral direction """ yy,xx = numpy.indices(cube.shape[1:]) if downsample: newshape = cube[::smooth_factor,:,:].shape else: newshape = cube.shape # need to make the cube "flat" along dims 1&2 for iteration in the "map" flatshape = (cube.shape[0],cube.shape[1]*cube.shape[2]) Ssmooth = lambda x: smooth.smooth(x, smooth_factor, downsample=downsample, **kwargs) if parallel: newcube = numpy.array(parallel_map(Ssmooth, cube.reshape(flatshape).T, numcores=numcores)).T.reshape(newshape) else: newcube = numpy.array(map(Ssmooth, cube.reshape(flatshape).T)).T.reshape(newshape) #naive, non-optimal version # for (x,y) in zip(xx.flat,yy.flat): # newcube[:,y,x] = smooth.smooth(cube[:,y,x], smooth_factor, # downsample=downsample, **kwargs) return newcube def plane_smooth(cube,cubedim=0,parallel=True,numcores=None,**kwargs): """ parallel-map the smooth function Parameters ---------- parallel: bool defaults True. Set to false if you want serial (for debug purposes?) numcores: int pass to parallel_map (None = use all available) """ if not smoothOK: return if cubedim != 0: cube = cube.swapaxes(0,cubedim) cubelist = [cube[ii,:,:] for ii in xrange(cube.shape[0])] Psmooth = lambda C: smooth(C,**kwargs) if parallel: smoothcube = array(parallel_map(Psmooth,cubelist,numcores=numcores)) else: smoothcube = array(map(Psmooth,cubelist)) if cubedim != 0: smoothcube = smoothcube.swapaxes(0,cubedim) return smoothcube try: import montage def rotcrop_cube(x1, y1, x2, y2, cubename, outname, xwidth=25, ywidth=25, in_system='galactic', out_system='equatorial', clobber=True, newheader=None, xcen=None, ycen=None): """ Crop a data cube and then rotate it with montage """ cubefile = fits.open(cubename) if xcen is None and ycen is None: pos1 = coords.Position([x1,y1],system=in_system) pos2 = coords.Position([x2,y2],system=in_system) if cubefile[0].header.get('CTYPE1')[:2] == 'RA': x1,y1 = pos1.j2000() x2,y2 = pos2.j2000() coord_system = 'celestial' elif cubefile[0].header.get('CTYPE1')[:4] == 'GLON': x1,y1 = pos1.galactic() x2,y2 = pos2.galactic() coord_system = 'galactic' xcen = (x1+x2)/2.0 ycen = (y1+y2)/2.0 print(xcen,ycen,xwidth,ywidth,coord_system) else: coord_system = in_system sc = subcube(cubefile[0].data, xcen, xwidth, ycen, ywidth, widthunits='pixels', units="wcs", header=cubefile[0].header, return_HDU=True) # note: there should be no security risk here because fits' writeto # will not overwrite by default tempcube = tempfile.mktemp(suffix='.fits') sc.writeto(tempcube) pa = posang.posang(x1,y1,x2,y2,system=coord_system) - 90 if newheader is None: newheader = sc.header.copy() cd11 = newheader.get('CDELT1') if newheader.get('CDELT1') else newheader.get('CD1_1') cd22 = newheader.get('CDELT2') if newheader.get('CDELT2') else newheader.get('CD2_2') cd12 = newheader.get('CD1_2') if newheader.get('CD1_2') else 0.0 cd21 = newheader.get('CD2_1') if newheader.get('CD2_1') else 0.0 cdelt = numpy.sqrt(cd11**2+cd12**2) tempheader = tempfile.mktemp(suffix='.hdr') ycensign = "+" if numpy.sign(ycen) >= 0 else "-" montage.mHdr("%s %1s%s" % (xcen, ycensign, numpy.abs(ycen)), xwidth*cdelt, tempheader, system=out_system, height=ywidth*cdelt, pix_size=cdelt*3600.0, rotation=pa) os.system("sed -i bck '/END/d' %s" % (tempheader)) newheader2 = fits.Header() newheader2.fromTxtFile(tempheader) #newheader2.fromtextfile(tempheader) for key in ('CRPIX3','CRVAL3','CDELT3','CD3_3','CUNIT3','WCSTYPE3','CTYPE3'): if newheader.get(key): newheader2[key] = newheader.get(key) if newheader.get('CD3_3') and newheader2.get('CDELT3') is None: newheader2['CDELT3'] = newheader.get('CD3_3') newheader2.toTxtFile(tempheader,clobber=True) #if newheader2.get('CDELT3') is None: # raise Exception("No CD3_3 or CDELT3 in header.") else: if isinstance(newheader,str): newheader2 = fits.Header() newheader2.fromTxtFile(newheader) tempheader = tempfile.mktemp(suffix='.hdr') newheader2.toTxtFile(tempheader,clobber=True) montage.wrappers.reproject_cube(tempcube,outname,header=tempheader,clobber=clobber) #print "\n",outname #os.system('imhead %s | grep CDELT' % outname) # AWFUL hack because montage removes CDELT3 tempcube = fits.open(outname) tempcube.header = newheader2 #if tempcube.header.get('CDELT3') is None: # raise Exception("No CD3_3 or CDELT3 in header.") #print tempcube.header.get('CDELT3') tempcube.writeto(outname,clobber=True) #print tempcube.get('CDELT3') #print "\n",outname #os.system('imhead %s | grep CDELT' % outname) return def resample_cube(cubefilename, header): inhdr = fits.getheader(cubefilename) except: pass
36.675429
126
0.595961
7948a2954b16df15ef10ffe43910ec6d08118d3e
123
py
Python
experiments/iterfibo.py
johnpaulguzman/Algorithm-Analyzer
e93abfb51f2f67b6df1af8d95cc6855ad7de69f2
[ "MIT" ]
null
null
null
experiments/iterfibo.py
johnpaulguzman/Algorithm-Analyzer
e93abfb51f2f67b6df1af8d95cc6855ad7de69f2
[ "MIT" ]
null
null
null
experiments/iterfibo.py
johnpaulguzman/Algorithm-Analyzer
e93abfb51f2f67b6df1af8d95cc6855ad7de69f2
[ "MIT" ]
null
null
null
def f(n): nm1=1 nm2=0 for i in range(n-1): temp=nm1+nm2 nm2=nm1 nm1=temp return nm1
15.375
24
0.471545
7948a36ce4f60bf2de9cb7e2c67d28371576195e
3,164
py
Python
qa/rpc-tests/bip65-cltv.py
cryptoandcoffee/DCUMN
85b873a90b3a2df6870d7ea74ea5087945e238bb
[ "MIT" ]
null
null
null
qa/rpc-tests/bip65-cltv.py
cryptoandcoffee/DCUMN
85b873a90b3a2df6870d7ea74ea5087945e238bb
[ "MIT" ]
null
null
null
qa/rpc-tests/bip65-cltv.py
cryptoandcoffee/DCUMN
85b873a90b3a2df6870d7ea74ea5087945e238bb
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test the CHECKLOCKTIMEVERIFY (BIP65) soft-fork logic # from test_framework.test_framework import DCUTestFramework from test_framework.util import * class BIP65Test(DCUTestFramework): def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, [])) self.nodes.append(start_node(1, self.options.tmpdir, ["-blockversion=3"])) self.nodes.append(start_node(2, self.options.tmpdir, ["-blockversion=4"])) connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) self.is_network_split = False self.sync_all() def run_test(self): cnt = self.nodes[0].getblockcount() # Mine some old-version blocks self.nodes[1].generate(100) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 100): raise AssertionError("Failed to mine 100 version=3 blocks") # Mine 750 new-version blocks for i in xrange(15): self.nodes[2].generate(50) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 850): raise AssertionError("Failed to mine 750 version=4 blocks") # TODO: check that new CHECKLOCKTIMEVERIFY rules are not enforced # Mine 1 new-version block self.nodes[2].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 851): raise AssertionError("Failed to mine a version=4 blocks") # TODO: check that new CHECKLOCKTIMEVERIFY rules are enforced # Mine 198 new-version blocks for i in xrange(2): self.nodes[2].generate(99) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1049): raise AssertionError("Failed to mine 198 version=4 blocks") # Mine 1 old-version block self.nodes[1].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1050): raise AssertionError("Failed to mine a version=3 block after 949 version=4 blocks") # Mine 1 new-version blocks self.nodes[2].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1051): raise AssertionError("Failed to mine a version=4 block") # Mine 1 old-version blocks try: self.nodes[1].generate(1) raise AssertionError("Succeeded to mine a version=3 block after 950 version=4 blocks") except JSONRPCException: pass self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1051): raise AssertionError("Accepted a version=3 block after 950 version=4 blocks") # Mine 1 new-version blocks self.nodes[2].generate(1) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 1052): raise AssertionError("Failed to mine a version=4 block") if __name__ == '__main__': BIP65Test().main()
35.954545
98
0.625474
7948a475bbaad5978368f1d68372174e4b7a8ab7
5,703
py
Python
tensorflow/python/kernel_tests/manip_ops_test.py
mohammadzainabbas/tensorflow
352142267a1a151b04c6198de83b40b7e979d1d8
[ "Apache-2.0" ]
4
2019-02-18T17:38:14.000Z
2019-09-05T14:14:47.000Z
tensorflow/python/kernel_tests/manip_ops_test.py
mohammadzainabbas/tensorflow
352142267a1a151b04c6198de83b40b7e979d1d8
[ "Apache-2.0" ]
null
null
null
tensorflow/python/kernel_tests/manip_ops_test.py
mohammadzainabbas/tensorflow
352142267a1a151b04c6198de83b40b7e979d1d8
[ "Apache-2.0" ]
3
2018-04-11T03:08:18.000Z
2021-05-09T21:51:42.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for manip_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors_impl from tensorflow.python.framework import test_util from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import manip_ops from tensorflow.python.platform import test as test_lib # pylint: disable=g-import-not-at-top try: from distutils.version import StrictVersion as Version # numpy.roll for multiple shifts was introduced in numpy version 1.12.0 NP_ROLL_CAN_MULTISHIFT = Version(np.version.version) >= Version("1.12.0") except ImportError: NP_ROLL_CAN_MULTISHIFT = False # pylint: enable=g-import-not-at-top class RollTest(test_util.TensorFlowTestCase): def _testRoll(self, np_input, shift, axis): expected_roll = np.roll(np_input, shift, axis) with self.test_session(): roll = manip_ops.roll(np_input, shift, axis) self.assertAllEqual(roll.eval(), expected_roll) def _testGradient(self, np_input, shift, axis): with self.test_session(): inx = constant_op.constant(np_input.tolist()) xs = list(np_input.shape) y = manip_ops.roll(inx, shift, axis) # Expected y's shape to be the same ys = xs jacob_t, jacob_n = gradient_checker.compute_gradient( inx, xs, y, ys, x_init_value=np_input) self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def _testAll(self, np_input, shift, axis): self._testRoll(np_input, shift, axis) if np_input.dtype == np.float32: self._testGradient(np_input, shift, axis) def testIntTypes(self): for t in [np.int32, np.int64]: self._testAll(np.random.randint(-100, 100, (5)).astype(t), 3, 0) if NP_ROLL_CAN_MULTISHIFT: self._testAll( np.random.randint(-100, 100, (4, 4, 3)).astype(t), [1, -2, 3], [0, 1, 2]) self._testAll( np.random.randint(-100, 100, (4, 2, 1, 3)).astype(t), [0, 1, -2], [1, 2, 3]) def testFloatTypes(self): for t in [np.float32, np.float64]: self._testAll(np.random.rand(5).astype(t), 2, 0) if NP_ROLL_CAN_MULTISHIFT: self._testAll(np.random.rand(3, 4).astype(t), [1, 2], [1, 0]) self._testAll(np.random.rand(1, 3, 4).astype(t), [1, 0, -3], [0, 1, 2]) def testComplexTypes(self): for t in [np.complex64, np.complex128]: x = np.random.rand(4, 4).astype(t) self._testAll(x + 1j * x, 2, 0) if NP_ROLL_CAN_MULTISHIFT: x = np.random.rand(2, 5).astype(t) self._testAll(x + 1j * x, [1, 2], [1, 0]) x = np.random.rand(3, 2, 1, 1).astype(t) self._testAll(x + 1j * x, [2, 1, 1, 0], [0, 3, 1, 2]) def testNegativeAxis(self): self._testAll(np.random.randint(-100, 100, (5)).astype(np.int32), 3, -1) self._testAll(np.random.randint(-100, 100, (4, 4)).astype(np.int32), 3, -2) # Make sure negative axis shoudl be 0 <= axis + dims < dims with self.test_session(): with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "is out of range"): manip_ops.roll(np.random.randint(-100, 100, (4, 4)).astype(np.int32), 3, -10).eval() def testRollInputMustVectorHigherRaises(self): tensor = 7 shift = 1 axis = 0 with self.test_session(): with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "input must be 1-D or higher"): manip_ops.roll(tensor, shift, axis).eval() def testRollAxisMustBeScalarOrVectorRaises(self): tensor = [[1, 2], [3, 4]] shift = 1 axis = [[0, 1]] with self.test_session(): with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "axis must be a scalar or a 1-D vector"): manip_ops.roll(tensor, shift, axis).eval() def testRollShiftMustBeScalarOrVectorRaises(self): tensor = [[1, 2], [3, 4]] shift = [[0, 1]] axis = 1 with self.test_session(): with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "shift must be a scalar or a 1-D vector"): manip_ops.roll(tensor, shift, axis).eval() def testRollShiftAndAxisMustBeSameSizeRaises(self): tensor = [[1, 2], [3, 4]] shift = [1] axis = [0, 1] with self.test_session(): with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "shift and axis must have the same size"): manip_ops.roll(tensor, shift, axis).eval() def testRollAxisOutOfRangeRaises(self): tensor = [1, 2] shift = 1 axis = 1 with self.test_session(): with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "is out of range"): manip_ops.roll(tensor, shift, axis).eval() if __name__ == "__main__": test_lib.main()
38.275168
80
0.639663
7948a85bf1e2af8f733a54d6e41d236c50ce9fbb
1,858
py
Python
examples/exampleDepthImageOpenCV.py
i-zro/pyKinectAzure
291c0398169a7cc9143e883b32eea581d77ecae3
[ "MIT" ]
null
null
null
examples/exampleDepthImageOpenCV.py
i-zro/pyKinectAzure
291c0398169a7cc9143e883b32eea581d77ecae3
[ "MIT" ]
null
null
null
examples/exampleDepthImageOpenCV.py
i-zro/pyKinectAzure
291c0398169a7cc9143e883b32eea581d77ecae3
[ "MIT" ]
null
null
null
import sys sys.path.insert(1, '../pyKinectAzure/') import numpy as np from pyKinectAzure import pyKinectAzure, _k4a import cv2 # Path to the module # TODO: Modify with the path containing the k4a.dll from the Azure Kinect SDK modulePath = 'C:\\Program Files\\Azure Kinect SDK v1.4.1\\sdk\\windows-desktop\\amd64\\release\\bin\\k4a.dll' # under x86_64 linux please use r'/usr/lib/x86_64-linux-gnu/libk4a.so' # In Jetson please use r'/usr/lib/aarch64-linux-gnu/libk4a.so' if __name__ == "__main__": # Initialize the library with the path containing the module pyK4A = pyKinectAzure(modulePath) # Open device pyK4A.device_open() # Modify camera configuration device_config = pyK4A.config device_config.color_resolution = _k4a.K4A_COLOR_RESOLUTION_1080P device_config.depth_mode = _k4a.K4A_DEPTH_MODE_WFOV_2X2BINNED print(device_config) # Start cameras using modified configuration pyK4A.device_start_cameras(device_config) k = 0 while True: # Get capture pyK4A.device_get_capture() # Get the depth image from the capture depth_image_handle = pyK4A.capture_get_depth_image() # Check the image has been read correctly if depth_image_handle: # Read and convert the image data to numpy array: depth_image = pyK4A.image_convert_to_numpy(depth_image_handle) depth_color_image = cv2.convertScaleAbs (depth_image, alpha=0.05) #alpha is fitted by visual comparison with Azure k4aviewer results depth_color_image = cv2.applyColorMap(depth_color_image, cv2.COLORMAP_JET) cv2.namedWindow('Colorized Depth Image',cv2.WINDOW_NORMAL) cv2.VideoWriter(cv2.imshow('Colorized Depth Image',depth_color_image)) k = cv2.waitKey(1) # Release the image pyK4A.image_release(depth_image_handle) pyK4A.capture_release() if k==27: # Esc key to stop break pyK4A.device_stop_cameras() pyK4A.device_close()
29.967742
138
0.770721
7948a86d5cd5800ac8b7aa2e34a4234d89ec72e2
4,822
py
Python
tests/tree_build_tests.py
ascott1/regulations-parser
1d653ec2d78c9cbfd3b0c651788e5ab14dcc76ca
[ "CC0-1.0" ]
1
2019-12-29T17:52:32.000Z
2019-12-29T17:52:32.000Z
tests/tree_build_tests.py
ascott1/regulations-parser
1d653ec2d78c9cbfd3b0c651788e5ab14dcc76ca
[ "CC0-1.0" ]
null
null
null
tests/tree_build_tests.py
ascott1/regulations-parser
1d653ec2d78c9cbfd3b0c651788e5ab14dcc76ca
[ "CC0-1.0" ]
null
null
null
#vim: set encoding=utf-8 from unittest import TestCase from regparser.tree.struct import Node, NodeEncoder from regparser.tree.build import * class TreeBuildTest(TestCase): def test_find_cfr_part(self): text = "PART 202-Content\nSome text here\n" text += "This has 201.44 in it. But also 203.33\n" text += "But then, 201.33 returns." self.assertEqual(202, find_cfr_part(text)) def test_build_whole_regtree(self): """Integration test for the plain-text regulation tree parser""" text = "PART 200-Regulation Q\n" text += u"§ 200.1 First section.\n" text += "(a) First par\n" text += "(b) Second par\n" text += u"§ 200.2 Second section.\n" text += "Content without sub pars\n" text += "Appendix A to Part 200 - Appendix Title\n" text += "A-1 Appendix 1\n" text += "(a) Appendix par 1\n" text += "Supplement I to Part 200 - Official Interpretations\n" text += "Section 200.2 Second section\n" text += "2(a)(5) First par\n" text += "1. Commentary 1\n" text += "2. Commentary 2\n" node201 = Node("\n", label=['200', '1'], title=u"§ 200.1 First section.", children=[ Node(u"(a) First par\n", label=["200", "1", "a"]), Node(u"(b) Second par\n", label=["200", "1", "b"]) ]) node202 = Node("\nContent without sub pars\n", label=["200", "2"], title=u"§ 200.2 Second section.") nodeA = Node( "\n", label=["200", "A"], node_type=Node.APPENDIX, title="Appendix A to Part 200 - Appendix Title", children=[ Node("\n", label=["200", "A", "1"], title="A-1 Appendix 1", node_type=Node.APPENDIX, children=[Node("(a) Appendix par 1\n", node_type=Node.APPENDIX, label=["200", "A", "1", "a"])]) ] ) nodeI1 = Node('1. Commentary 1\n', node_type=Node.INTERP, label=['200', '2', 'a', '5', Node.INTERP_MARK, '1']) nodeI2 = Node('2. Commentary 2\n', node_type=Node.INTERP, label=['200', '2', 'a', '5', Node.INTERP_MARK, '2']) nodeI = Node( '\n', label=['200', Node.INTERP_MARK], node_type=Node.INTERP, title='Supplement I to Part 200 - Official Interpretations', children=[ Node('\n', label=['200', '2', Node.INTERP_MARK], node_type=Node.INTERP, title='Section 200.2 Second section', children=[ Node('\n', label=['200', '2', 'a', '5', Node.INTERP_MARK], node_type=Node.INTERP, title='2(a)(5) First par', children=[nodeI1, nodeI2]) ]) ] ) nodeEP = Node('', label=['200', 'Subpart'], title='', children=[node201, node202], node_type=Node.EMPTYPART) res = build_whole_regtree(text) # Convert to JSON so we can ignore some unicode issues enc = NodeEncoder(sort_keys=True) self.assertEqual( enc.encode(build_whole_regtree(text)), enc.encode(Node("\n", label=["200"], title="PART 200-Regulation Q", children=[nodeEP, nodeA, nodeI])) ) def test_build_whole_regtree_missing_interp(self): """Not all regs have an interpretation section.""" text = "PART 200-Regulation Q\n" text += u"§ 200.1 First section.\n" text += "Section content\n" text += "Appendix A to Part 200 - Appendix Title\n" text += "Appendix content" node200_1 = Node("\nSection content\n", label=['200', '1'], title=u"§ 200.1 First section.", children=[], node_type=Node.REGTEXT) nodeA = Node("\nAppendix content", label=["200", "A"], title="Appendix A to Part 200 - Appendix Title", children=[], node_type=Node.APPENDIX) nodeEP = Node('', label=['200', 'Subpart'], title='', children=[node200_1], node_type=Node.EMPTYPART) res = build_whole_regtree(text) # Convert to JSON so we can ignore some unicode issues enc = NodeEncoder(sort_keys=True) self.assertEqual( enc.encode(build_whole_regtree(text)), enc.encode(Node("\n", label=["200"], title="PART 200-Regulation Q", children=[nodeEP, nodeA])) )
44.238532
79
0.502074
7948a8dee45b1c0510e1492c13b0b678118d8c22
2,138
py
Python
ripper/actions/attack.py
alexmon1989/russia_ddos
6bee2718a4d9fb9a495ffe7063a3dfc68bdafa0d
[ "MIT" ]
199
2022-02-28T23:28:02.000Z
2022-03-30T18:00:45.000Z
ripper/actions/attack.py
alexmon1989/russia_ddos
6bee2718a4d9fb9a495ffe7063a3dfc68bdafa0d
[ "MIT" ]
14
2022-03-05T21:48:34.000Z
2022-03-18T12:28:36.000Z
ripper/actions/attack.py
alexmon1989/russia_ddos
6bee2718a4d9fb9a495ffe7063a3dfc68bdafa0d
[ "MIT" ]
40
2022-03-02T00:19:31.000Z
2022-03-28T01:48:09.000Z
import threading from threading import Thread, Event from ripper.actions.attack_method import AttackMethod from ripper.actions.http_bypass import HttpBypass from ripper.actions.http_flood import HttpFlood from ripper.actions.tcp_flood import TcpFlood from ripper.actions.udp_flood import UdpFlood from ripper.context.events_journal import EventsJournal # Forward Reference Context = 'Context' Target = 'Target' events_journal = EventsJournal() # noinspection PyTypeChecker attack_methods: list[AttackMethod] = [ UdpFlood, TcpFlood, HttpFlood, HttpBypass, ] attack_method_labels: list[str] = list(map(lambda am: am.label, attack_methods)) def attack_method_factory(_ctx: Context, target: Target): attack_method_name = target.attack_method # events_journal.info(f'Set attack method to {target.attack_method}', target=target) if attack_method_name == 'udp-flood': return UdpFlood(target=target, context=_ctx) elif attack_method_name == 'http-flood': return HttpFlood(target=target, context=_ctx) elif attack_method_name == 'tcp-flood': return TcpFlood(target=target, context=_ctx) elif attack_method_name == 'http-bypass': return HttpBypass(target=target, context=_ctx) # Dangerous, may lead to exception return None class Attack(Thread): """This class creates threads with specified attack method.""" _ctx: Context target: Target stop_event: Event = None def __init__(self, _ctx: Context, target: Target): """ :param target: Target IPv4 address and destination port. :param method: Attack method. """ Thread.__init__(self, daemon=True) self._ctx = _ctx self.target = target self.target.add_attack_thread(self) self.stop_event = threading.Event() def stop(self): self.stop_event.set() def run(self): self.target.init() runner = attack_method_factory(_ctx=self._ctx, target=self.target) if self._ctx.dry_run: runner() exit(0) while not self.stop_event.is_set(): runner()
28.891892
88
0.696445
7948a9328ce96d6bfe1e08f5e982d07c27c362a5
7,094
py
Python
visualize/grad_cam.py
apyrros/HCC-comorbidities
fd74fb2f1438bc741cfe6728c5cb64737bc99d68
[ "MIT" ]
null
null
null
visualize/grad_cam.py
apyrros/HCC-comorbidities
fd74fb2f1438bc741cfe6728c5cb64737bc99d68
[ "MIT" ]
null
null
null
visualize/grad_cam.py
apyrros/HCC-comorbidities
fd74fb2f1438bc741cfe6728c5cb64737bc99d68
[ "MIT" ]
1
2021-09-15T14:16:35.000Z
2021-09-15T14:16:35.000Z
#!/usr/bin/env python # coding: utf-8 # # Author: Kazuto Nakashima # URL: http://kazuto1011.github.io # Created: 2017-05-26 from collections import Sequence import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from tqdm import tqdm class _BaseWrapper(object): def __init__(self, model): super(_BaseWrapper, self).__init__() self.device = next(model.parameters()).device self.model = model self.handlers = [] # a set of hook function handlers def _encode_one_hot(self, ids): one_hot = torch.zeros_like(self.outputs).to(self.device) one_hot.scatter_(1, ids, 1.0) return one_hot def forward(self, image): self.image_shape = image.shape[2:] self.outputs = self.model(image) self.scores = torch.zeros_like(self.outputs).to(self.device) for i in range(0, 33, 3): s = i e = i + 3 self.scores[:, s:e] = F.softmax(self.outputs[:, s:e], dim=-1) self.scores[:, 33:] = self.outputs[:, 33:] return self.outputs, self.scores def backward(self, ids): """ Class-specific backpropagation """ one_hot = self._encode_one_hot(ids) self.model.zero_grad() self.outputs.backward(gradient=one_hot, retain_graph=True) def generate(self): raise NotImplementedError def remove_hook(self): """ Remove all the forward/backward hook functions """ for handle in self.handlers: handle.remove() class BackPropagation(_BaseWrapper): def forward(self, image): self.image = image.requires_grad_() return super(BackPropagation, self).forward(self.image) def generate(self): gradient = self.image.grad.clone() self.image.grad.zero_() return gradient class GuidedBackPropagation(BackPropagation): """ "Striving for Simplicity: the All Convolutional Net" https://arxiv.org/pdf/1412.6806.pdf Look at Figure 1 on page 8. """ def __init__(self, model): super(GuidedBackPropagation, self).__init__(model) def backward_hook(module, grad_in, grad_out): # Cut off negative gradients if isinstance(module, nn.ReLU): return (F.relu(grad_in[0]),) for module in self.model.named_modules(): self.handlers.append(module[1].register_backward_hook(backward_hook)) class Deconvnet(BackPropagation): """ "Striving for Simplicity: the All Convolutional Net" https://arxiv.org/pdf/1412.6806.pdf Look at Figure 1 on page 8. """ def __init__(self, model): super(Deconvnet, self).__init__(model) def backward_hook(module, grad_in, grad_out): # Cut off negative gradients and ignore ReLU if isinstance(module, nn.ReLU): return (F.relu(grad_out[0]),) for module in self.model.named_modules(): self.handlers.append(module[1].register_backward_hook(backward_hook)) class GradCAM(_BaseWrapper): """ "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" https://arxiv.org/pdf/1610.02391.pdf Look at Figure 2 on page 4 """ def __init__(self, model, candidate_layers=None): super(GradCAM, self).__init__(model) self.fmap_pool = {} self.grad_pool = {} self.candidate_layers = candidate_layers # list def save_fmaps(key): def forward_hook(module, input, output): self.fmap_pool[key] = output.detach() return forward_hook def save_grads(key): def backward_hook(module, grad_in, grad_out): self.grad_pool[key] = grad_out[0].detach() return backward_hook # If any candidates are not specified, the hook is registered to all the layers. for name, module in self.model.named_modules(): if self.candidate_layers is None or name in self.candidate_layers: self.handlers.append(module.register_forward_hook(save_fmaps(name))) self.handlers.append(module.register_backward_hook(save_grads(name))) def _find(self, pool, target_layer): if target_layer in pool.keys(): return pool[target_layer] else: raise ValueError("Invalid layer name: {}".format(target_layer)) def generate(self, target_layer): fmaps = self._find(self.fmap_pool, target_layer) grads = self._find(self.grad_pool, target_layer) if len(grads.shape) == 2: grads = grads.unsqueeze(-1).unsqueeze(-1) weights = F.adaptive_avg_pool2d(grads, 1) gcam = torch.mul(fmaps, weights).sum(dim=1, keepdim=True) gcam = F.relu(gcam) gcam = F.interpolate( gcam, self.image_shape, mode="bilinear", align_corners=False ) B, C, H, W = gcam.shape gcam = gcam.view(B, -1) gcam -= gcam.min(dim=1, keepdim=True)[0] gcam /= gcam.max(dim=1, keepdim=True)[0] gcam = gcam.view(B, C, H, W) return gcam def occlusion_sensitivity( model, images, ids, mean=None, patch=35, stride=1, n_batches=128 ): """ "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" https://arxiv.org/pdf/1610.02391.pdf Look at Figure A5 on page 17 Originally proposed in: "Visualizing and Understanding Convolutional Networks" https://arxiv.org/abs/1311.2901 """ torch.set_grad_enabled(False) model.eval() mean = mean if mean else 0 patch_H, patch_W = patch if isinstance(patch, Sequence) else (patch, patch) pad_H, pad_W = patch_H // 2, patch_W // 2 # Padded image images = F.pad(images, (pad_W, pad_W, pad_H, pad_H), value=mean) B, _, H, W = images.shape new_H = (H - patch_H) // stride + 1 new_W = (W - patch_W) // stride + 1 # Prepare sampling grids anchors = [] grid_h = 0 while grid_h <= H - patch_H: grid_w = 0 while grid_w <= W - patch_W: grid_w += stride anchors.append((grid_h, grid_w)) grid_h += stride # Baseline score without occlusion baseline = model(images).detach().gather(1, ids) # Compute per-pixel logits scoremaps = [] for i in tqdm(range(0, len(anchors), n_batches), leave=False): batch_images = [] batch_ids = [] for grid_h, grid_w in anchors[i : i + n_batches]: images_ = images.clone() images_[..., grid_h : grid_h + patch_H, grid_w : grid_w + patch_W] = mean batch_images.append(images_) batch_ids.append(ids) batch_images = torch.cat(batch_images, dim=0) batch_ids = torch.cat(batch_ids, dim=0) scores = model(batch_images).detach().gather(1, batch_ids) scoremaps += list(torch.split(scores, B)) diffmaps = torch.cat(scoremaps, dim=1) - baseline diffmaps = diffmaps.view(B, new_H, new_W) return diffmaps
31.528889
88
0.622075
7948a9b1ab44c65b3cc37fd4ed08c5d7d0f9eeac
5,884
py
Python
indy_node/test/catchup/test_requests_post_new_node_catchup.py
imadharb75/mynewid
b417edc71bfe38eb167909509ce2a2de526bc83e
[ "Apache-2.0" ]
null
null
null
indy_node/test/catchup/test_requests_post_new_node_catchup.py
imadharb75/mynewid
b417edc71bfe38eb167909509ce2a2de526bc83e
[ "Apache-2.0" ]
null
null
null
indy_node/test/catchup/test_requests_post_new_node_catchup.py
imadharb75/mynewid
b417edc71bfe38eb167909509ce2a2de526bc83e
[ "Apache-2.0" ]
1
2020-03-19T00:37:32.000Z
2020-03-19T00:37:32.000Z
from plenum.common.constants import DOMAIN_LEDGER_ID from plenum.common.util import randomString from plenum.test.node_catchup.helper import checkNodeDataForEquality, \ waitNodeDataEquality from plenum.test.pool_transactions.helper import sdk_add_new_nym from plenum.test.test_node import ensure_node_disconnected, checkNodesConnected from indy_node.test.conftest import sdk_node_theta_added from indy_node.test.helper import TestNode, sdk_add_raw_attribute from indy_common.config_helper import NodeConfigHelper def test_new_node_catchup_update_projection(looper, nodeSet, tconf, tdir, sdk_pool_handle, sdk_wallet_trustee, allPluginsPath, some_transactions_done): """ A node which receives txns from catchup updates both ledger and projection 4 nodes start up and some txns happen, after txns are done, new node joins and starts catching up, the node should not process requests while catchup is in progress. Make sure the new requests are coming from the new NYMs added while the node was offline or catching up. """ # Create a new node and stop it. new_steward_wallet, new_node = sdk_node_theta_added(looper, nodeSet, tdir, tconf, sdk_pool_handle, sdk_wallet_trustee, allPluginsPath, node_config_helper_class=NodeConfigHelper, testNodeClass=TestNode) waitNodeDataEquality(looper, new_node, *nodeSet[:-1]) ta_count = 2 np_count = 2 new_txn_count = 2 * ta_count + np_count # Since ATTRIB txn is done for TA old_ledger_sizes = {} new_ledger_sizes = {} old_projection_sizes = {} new_projection_sizes = {} old_seq_no_map_sizes = {} new_seq_no_map_sizes = {} def get_ledger_size(node): return len(node.domainLedger) def get_projection_size(node): domain_state = node.getState(DOMAIN_LEDGER_ID) return len(domain_state.as_dict) def get_seq_no_map_size(node): return node.seqNoDB.size def fill_counters(ls, ps, ss, nodes): for n in nodes: ls[n.name] = get_ledger_size(n) ps[n.name] = get_projection_size(n) ss[n.name] = get_seq_no_map_size(n) def check_sizes(nodes): for node in nodes: assert new_ledger_sizes[node.name] - \ old_ledger_sizes[node.name] == new_txn_count assert new_projection_sizes[node.name] - \ old_projection_sizes[node.name] == new_txn_count assert new_seq_no_map_sizes[node.name] - \ old_seq_no_map_sizes[node.name] == new_txn_count # Stop a node and note down the sizes of ledger and projection (state) other_nodes = nodeSet[:-1] fill_counters(old_ledger_sizes, old_projection_sizes, old_seq_no_map_sizes, other_nodes) new_node.cleanupOnStopping = False new_node.stop() looper.removeProdable(new_node) ensure_node_disconnected(looper, new_node, other_nodes) trust_anchors = [] attributes = [] for i in range(ta_count): trust_anchors.append( sdk_add_new_nym(looper, sdk_pool_handle, sdk_wallet_trustee, role='TRUST_ANCHOR', alias='TA' + str(i))) attributes.append((randomString(6), randomString(10))) sdk_add_raw_attribute(looper, sdk_pool_handle, trust_anchors[-1], *attributes[-1]) non_privileged = [] for i in range(np_count): non_privileged.append( sdk_add_new_nym(looper, sdk_pool_handle, sdk_wallet_trustee, alias='NP' + str(i))) checkNodeDataForEquality(nodeSet[0], *other_nodes) fill_counters(new_ledger_sizes, new_projection_sizes, new_seq_no_map_sizes, other_nodes) # The size difference should be same as number of new NYM txns check_sizes(other_nodes) config_helper = NodeConfigHelper(new_node.name, tconf, chroot=tdir) new_node = TestNode( new_node.name, config_helper=config_helper, config=tconf, pluginPaths=allPluginsPath, ha=new_node.nodestack.ha, cliha=new_node.clientstack.ha) looper.add(new_node) nodeSet[-1] = new_node fill_counters(old_ledger_sizes, old_projection_sizes, old_seq_no_map_sizes, [new_node]) looper.run(checkNodesConnected(nodeSet)) waitNodeDataEquality(looper, new_node, *other_nodes) fill_counters(new_ledger_sizes, new_projection_sizes, new_seq_no_map_sizes, [new_node]) check_sizes([new_node]) # Set the old counters to be current ledger and projection size fill_counters(old_ledger_sizes, old_projection_sizes, old_seq_no_map_sizes, nodeSet) more_nyms_count = 2 for wh in trust_anchors: for i in range(more_nyms_count): non_privileged.append(sdk_add_new_nym(looper, sdk_pool_handle, wh, alias='NP1' + str(i))) # The new node should process transactions done by Nyms added to its # ledger while catchup fill_counters(new_ledger_sizes, new_projection_sizes, new_seq_no_map_sizes, nodeSet) new_txn_count = more_nyms_count * len(trust_anchors) check_sizes(nodeSet)
42.948905
98
0.617267
7948ab54a21c528d8e19f8b45141a191f75d8d67
12,446
py
Python
floodlight/io/tracab.py
manuba95/floodlight
02c64763e78b14ef37555e1dc435256dbd4eca09
[ "MIT" ]
26
2022-01-25T22:15:22.000Z
2022-03-02T11:06:29.000Z
floodlight/io/tracab.py
manuba95/floodlight
02c64763e78b14ef37555e1dc435256dbd4eca09
[ "MIT" ]
12
2021-11-17T15:42:28.000Z
2022-03-28T19:59:24.000Z
floodlight/io/tracab.py
manuba95/floodlight
02c64763e78b14ef37555e1dc435256dbd4eca09
[ "MIT" ]
8
2021-11-03T09:01:22.000Z
2022-03-23T10:43:14.000Z
from pathlib import Path from typing import Dict, Tuple, Union import numpy as np from lxml import etree from floodlight.core.code import Code from floodlight.core.pitch import Pitch from floodlight.core.xy import XY def _read_metadata(filepath_metadata: Union[str, Path]) -> Tuple[Dict, Dict, Pitch]: """Reads TRACAB's metadata file and extracts information about match metainfo, periods and the pitch. Parameters ---------- filepath_metadata: str or pathlib.Path Full path to metadata.xml file. Returns ------- metainfo: Dict Dictionary with metainformation such as framerate. periods: Dict Dictionary with start and endframes: `periods[segment] = (startframe, endframe)`. pitch: Pitch Pitch object with actual pitch length and width. """ # set up XML tree tree = etree.parse(str(filepath_metadata)) root = tree.getroot() # parse XML file, extract matchinfo and period start/endframes metadata = {} periods = {} attributes = root.find("match").attrib framerate = attributes.get("iFrameRateFps") metadata["framerate"] = int(framerate) if framerate else None length = attributes.get("fPitchXSizeMeters") metadata["length"] = float(length) if length else None width = attributes.get("fPitchYSizeMeters") metadata["width"] = float(width) if width else None for elem in root.findall("match/period"): if elem.attrib["iEndFrame"] != "0": segment = "HT" + elem.attrib["iId"] start = int(elem.attrib["iStartFrame"]) end = int(elem.attrib["iEndFrame"]) periods[segment] = (start, end) pitch = Pitch.from_template( "tracab", length=float(metadata["length"]), width=float(metadata["width"]), sport="football", ) return metadata, periods, pitch def _read_dat_single_line( package: str, ) -> Tuple[ int, Dict[str, Dict[str, Tuple[float, float, float]]], Dict[str, Union[str, tuple]] ]: """Extracts all relevant information from a single line of TRACAB's .dat file (i.e. one frame of data). Parameters ---------- package: str One full line from TRACAB's .dat-file, equals one "package" according to the file-format documentation. Returns ------- frame_number: int The number of current frame. positions: Dict[str, Dict[str, Tuple[float, float, float]]] Nested dictionary that stores player position information for each team and player. Has the form `positions[team][jID] = (x, y, speed)`. ball: Dict[str] Dictionary with ball information. Has keys 'position', 'possession' and 'ballstatus'. """ # bins positions = {"Home": {}, "Away": {}, "Other": {}} ball = {} # split package to chunks chunk1, chunk2, chunk3, _ = package.split(sep=":") # first chunk (frame number) frame_number = int(chunk1) # second chunk (player positions) targets = chunk2[:-1].split(sep=";") for t in targets: player_data = t.split(sep=",") # type conversions team, system_id, jID = map(lambda x: int(x), player_data[:3]) x, y, speed = map(lambda x: float(x), player_data[3:]) if team == 1: team = "Home" elif team == 0: team = "Away" else: team = "Other" # assign positions[team][jID] = (x, y, speed) # third chunk (ball data) ball_data = chunk3.split(sep=",")[:6] ball["position"] = tuple(map(lambda x: float(x), ball_data[:2])) ball["possession"] = ball_data[4] ball["ballstatus"] = ball_data[5][0] return frame_number, positions, ball def _frame_in_period( frame_number: int, periods: Dict[str, Tuple[int, int]] ) -> Union[str, None]: """Checks if a given frame is within the range of start- and endframe for all periods and returns the name of the period the frame belongs to, or None if it can't find any. Parameters ---------- frame_number: int Frame number to be checked. periods: Dict[str, Tuple[int, int]] Dictionary with period start- and endframes of the form `periods[segment] = (startframe, endframe)` as it is returned by :meth:`floodlight.io.tracab._read_metadata`. Returns ------- segment: str or None Name of the segment the frame belongs to, or None if it does not belong to any of the supplied segments. """ # determine current segment by iterating through all segments (i) segment = None for i in periods.keys(): if frame_number in range(periods[i][0], periods[i][1] + 1): segment = i return segment def _read_dat_jersey_numbers(filepath_dat: Union[str, Path]): """Reads entire TRACAB .dat file and extracts unique set of jIDs (jerseynumbers) for both teams. Parameters ---------- filepath_dat: str or pathlib.Path Full path to .dat file. Returns ------- home_jIDs: set away_jIDs: set """ # bins home_jIDs = set() away_jIDs = set() # loop with open(str(filepath_dat), "r") as f: while True: package = f.readline() # terminate if at end of file if len(package) == 0: break # read line _, positions, _ = _read_dat_single_line(package) # Extract jersey numbers home_jIDs |= positions["Home"].keys() away_jIDs |= positions["Away"].keys() return home_jIDs, away_jIDs def create_links_from_dat(filepath_dat: Union[str, Path]) -> Dict[str, Dict[int, int]]: """Parses the entire TRACAB .dat file for unique jIDs (jerseynumbers) and creates a dictionary linking jIDs to xIDs in ascending order. Parameters ---------- filepath_dat: str or pathlib.Path Full path to .dat file. Returns ------- links: Dict[str, Dict[int, int]] Link-dictionary of the form `links[team][jID] = xID`. """ homejrsy, awayjrsy = _read_dat_jersey_numbers(filepath_dat) homejrsy = list(homejrsy) awayjrsy = list(awayjrsy) homejrsy.sort() awayjrsy.sort() links = { "Home": {jID: xID for xID, jID in enumerate(homejrsy)}, "Away": {jID: xID for xID, jID in enumerate(awayjrsy)}, } return links def read_tracab_files( filepath_dat: Union[str, Path], filepath_metadata: Union[str, Path], links: Dict[str, Dict[int, int]] = None, ) -> Tuple[XY, XY, XY, XY, XY, XY, Code, Code, Code, Code, Pitch]: """Parse TRACAB files and extract position data, possession and ballstatus codes as well as pitch information. ChyronHego's TRACAB system delivers two separate files, a .dat file containing the actual data as well as a metadata.xml containing information about pitch size, framerate and start- and endframes of match periods. This function provides a high-level access to TRACAB data by parsing "the full match" given both files. Parameters ---------- filepath_dat: str or pathlib.Path Full path to dat-file. filepath_metadata: str or pathlib.Path Full path to metadata.xml file. links: Dict[str, Dict[int, int]], optional A link dictionary of the form `links[team][jID] = xID`. Player's are identified in TRACAB files via jID, and this dictionary is used to map them to a specific xID in the respective XY objects. Should be supplied if that order matters. If None is given (default), the links are automatically extracted from the .dat file at the cost of a second pass through the entire file. Returns ------- data_objects: Tuple[XY, XY, XY, XY, XY, XY, Code, Code, Code, Code, Pitch] XY-, Code-, and Pitch-objects for both teams and both halves. The order is (home_ht1, home_ht2, away_ht1, away_ht2, ball_ht1, ball_ht2, possession_ht1, possession_ht2, ballstatus_ht1, ballstatus_ht2, pitch) """ # read metadata metadata, periods, pitch = _read_metadata(filepath_metadata) segments = list(periods.keys()) # create or check links if links is None: links = create_links_from_dat(filepath_dat) else: pass # potential check vs jerseys in dat file # infer data array shapes number_of_home_players = max(links["Home"].values()) + 1 number_of_away_players = max(links["Away"].values()) + 1 number_of_frames = {} for segment in segments: start = periods[segment][0] end = periods[segment][1] number_of_frames[segment] = end - start + 1 # bins xydata = {} xydata["Home"] = { segment: np.full( [number_of_frames[segment], number_of_home_players * 2], np.nan ) for segment in segments } xydata["Away"] = { segment: np.full( [number_of_frames[segment], number_of_away_players * 2], np.nan ) for segment in segments } xydata["Ball"] = { segment: np.full([number_of_frames[segment], 2], np.nan) for segment in segments } codes = { code: {segment: [] for segment in segments} for code in ["possession", "ballstatus"] } # loop with open(filepath_dat, "r") as f: while True: package = f.readline() # terminate if at end of file if len(package) == 0: break # read line to get absolute frame (in file), player positions and ball info frame_abs, positions, ball = _read_dat_single_line(package) # check if frame is in any segment segment = _frame_in_period(frame_abs, periods) if segment is None: # skip line if not continue else: # otherwise calculate relative frame (in respective segment) frame_rel = frame_abs - periods[segment][0] # insert (x,y)-data into correct np.array, at correct place (t, xID) for team in ["Home", "Away"]: for jID in positions[team].keys(): # map jersey number to array index and infer respective columns x_col = (links[team][jID]) * 2 y_col = (links[team][jID]) * 2 + 1 xydata[team][segment][frame_rel, x_col] = positions[team][jID][0] xydata[team][segment][frame_rel, y_col] = positions[team][jID][1] # get ball data xydata["Ball"][segment][ frame_rel, ] = ball["position"] codes["possession"][segment].append(ball.get("possession", np.nan)) codes["ballstatus"][segment].append(ball.get("ballstatus", np.nan)) # create XY objects home_ht1 = XY(xy=xydata["Home"]["HT1"], framerate=metadata["framerate"]) home_ht2 = XY(xy=xydata["Home"]["HT2"], framerate=metadata["framerate"]) away_ht1 = XY(xy=xydata["Away"]["HT1"], framerate=metadata["framerate"]) away_ht2 = XY(xy=xydata["Away"]["HT2"], framerate=metadata["framerate"]) ball_ht1 = XY(xy=xydata["Ball"]["HT1"], framerate=metadata["framerate"]) ball_ht2 = XY(xy=xydata["Ball"]["HT2"], framerate=metadata["framerate"]) # create Code objects possession_ht1 = Code( code=np.array(codes["possession"]["HT1"]), name="possession", definitions={"H": "Home", "A": "Away"}, framerate=metadata["framerate"], ) possession_ht2 = Code( code=np.array(codes["possession"]["HT2"]), name="possession", definitions={"H": "Home", "A": "Away"}, framerate=metadata["framerate"], ) ballstatus_ht1 = Code( code=np.array(codes["ballstatus"]["HT1"]), name="ballstatus", definitions={"D": "Dead", "A": "Alive"}, framerate=metadata["framerate"], ) ballstatus_ht2 = Code( code=np.array(codes["ballstatus"]["HT2"]), name="ballstatus", definitions={"D": "Dead", "A": "Alive"}, framerate=metadata["framerate"], ) data_objects = ( home_ht1, home_ht2, away_ht1, away_ht2, ball_ht1, ball_ht2, possession_ht1, possession_ht2, ballstatus_ht1, ballstatus_ht2, pitch, ) return data_objects
32.83905
88
0.607183
7948ab87300d8415a52f92d678047c0f7fcd10fe
3,136
py
Python
plugins/youtube.py
TeamPeggle/ppp-helpdesk
6e5551ab674b3096c0fdf6ef4537215cdd27b4fe
[ "Unlicense" ]
2
2016-10-22T20:45:57.000Z
2017-08-06T20:35:43.000Z
plugins/youtube.py
TeamPeggle/ppp-helpdesk
6e5551ab674b3096c0fdf6ef4537215cdd27b4fe
[ "Unlicense" ]
9
2015-01-12T21:33:24.000Z
2018-04-02T15:59:22.000Z
plugins/youtube.py
TeamPeggle/ppp-helpdesk
6e5551ab674b3096c0fdf6ef4537215cdd27b4fe
[ "Unlicense" ]
1
2017-08-01T22:13:33.000Z
2017-08-01T22:13:33.000Z
from __future__ import unicode_literals from builtins import str import re import time from calendar import timegm from util import hook, http, timesince youtube_re = (r'(?:youtube.*?(?:v=|/v/)|youtu\.be/|yooouuutuuube.*?id=)' '([-_a-z0-9]+)', re.I) BASE_URL = 'https://www.googleapis.com/youtube/v3/' INFO_URL = BASE_URL + 'videos?part=snippet,contentDetails,statistics&hl=en' SEARCH_API_URL = BASE_URL + 'search' VIDEO_URL = 'https://youtu.be/%s' def get_video_description(vid_id, api_key): j = http.get_json(INFO_URL, id=vid_id, key=api_key) if not j['pageInfo']['totalResults']: return j = j['items'][0] duration = j['contentDetails']['duration'].replace('PT', '').lower() published = j['snippet']['publishedAt'].replace('.000Z', 'Z') published = time.strptime(published, "%Y-%m-%dT%H:%M:%SZ") published_since = timesince.timesince(timegm(published)) views = 0 likes = 0 dislikes = 0 if 'statistics' in j: views = group_int_digits(j['statistics'].get('viewCount', 0), ',') likes = j['statistics'].get('likeCount', 0) dislikes = j['statistics'].get('dislikeCount', 0) channel_title = j['snippet']['channelTitle'] title = j['snippet']['title'] if 'localized' in j['snippet']: title = j['snippet']['localized'].get('title') or title out = ( '\x02{title}\x02 - length \x02{duration}\x02 - ' '{likes}\u2191{dislikes}\u2193 - ' '\x02{views}\x02 views - ' 'published \x02{published_since}\x02 ago by \x02{channel_title}\x02' ).format( title=title, duration=duration, likes=likes, dislikes=dislikes, views=views, published_since=published_since, channel_title=channel_title ) if 'rating' in j: out += ' - rated \x02%.2f/5.0\x02 (%d)' % (j['rating'], j['ratingCount']) if 'contentRating' in j: out += ' - \x034NSFW\x02' return out def group_int_digits(number, delimiter=' ', grouping=3): base = str(number).strip() builder = [] while base: builder.append(base[-grouping:]) base = base[:-grouping] builder.reverse() return delimiter.join(builder) @hook.api_key('google') @hook.regex(*youtube_re) def youtube_url(match, api_key=None): return get_video_description(match.group(1), api_key) @hook.api_key('google') @hook.command('yt') @hook.command('y') @hook.command def youtube(inp, api_key=None): '.youtube <query> -- returns the first YouTube search result for <query>' params = { 'key': api_key, 'fields': 'items(id(videoId))', 'part': 'snippet', 'type': 'video', 'maxResults': '1', 'q': inp, } j = http.get_json(SEARCH_API_URL, **params) if 'error' in j: return 'error while performing the search' results = j.get("items") if not results: return 'no results found' vid_id = j['items'][0]['id']['videoId'] return get_video_description(vid_id, api_key) + " - " + VIDEO_URL % vid_id
26.803419
78
0.601084
7948ac3e86deed7ce0390f7cce82578527dfdeda
4,320
py
Python
registry/tests/log_test.py
jbn/quilt
67960d2739ce5ea34c05febbe8f2bb9f75e211a8
[ "Apache-2.0" ]
null
null
null
registry/tests/log_test.py
jbn/quilt
67960d2739ce5ea34c05febbe8f2bb9f75e211a8
[ "Apache-2.0" ]
null
null
null
registry/tests/log_test.py
jbn/quilt
67960d2739ce5ea34c05febbe8f2bb9f75e211a8
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017 Quilt Data, Inc. All rights reserved. """ Log tests """ import json import requests from unittest.mock import patch from quilt_server.const import PaymentPlan, PUBLIC from quilt_server.core import hash_contents, GroupNode, RootNode from .utils import QuiltTestCase class LogTestCase(QuiltTestCase): """ Test log endpoint. """ def setUp(self): super(LogTestCase, self).setUp() self.user = "test_user" self.pkg = "pkg" self.contents_list = [ RootNode(dict( foo=GroupNode(dict()) )), RootNode(dict( bar=GroupNode(dict()) )), RootNode(dict( baz=GroupNode(dict()) )) ] # Upload three package instances. for contents in self.contents_list: self.put_package(self.user, self.pkg, contents, tag_latest=True) def make_version(i, version): resp = self.app.put( '/api/version/{usr}/{pkg}/{version}'.format( usr=self.user, pkg=self.pkg, version=version ), data=json.dumps(dict( hash=hash_contents(self.contents_list[i]) )), content_type='application/json', headers={ 'Authorization': self.user } ) assert resp.status_code == requests.codes.ok make_version(0, '1.0.0') make_version(1, '2.0.0') make_version(2, '3.0.0') def testLog(self): resp = self.app.get( '/api/log/{usr}/{pkg}/'.format( usr=self.user, pkg=self.pkg ), headers={ 'Authorization': self.user } ) assert resp.status_code == requests.codes.ok data = json.loads(resp.data.decode('utf8')) logs = data['logs'] assert len(logs) == 3 tag_list = [None, None, ['latest']] version_list = [['1.0.0'], ['2.0.0'], ['3.0.0']] for log, contents, tags, versions in zip(logs, self.contents_list, tag_list, version_list): assert log['author'] == self.user assert log['hash'] == hash_contents(contents) assert log['tags'] == tags assert log['versions'] == versions @patch('quilt_server.views.ALLOW_ANONYMOUS_ACCESS', True) def testAccess(self): sharewith = "share_with" # Can't view as a user with no access. resp = self.app.get( '/api/log/{usr}/{pkg}/'.format( usr=self.user, pkg=self.pkg ), headers={ 'Authorization': sharewith } ) assert resp.status_code == requests.codes.not_found # Can't view when not logged in. resp = self.app.get( '/api/log/{usr}/{pkg}/'.format( usr=self.user, pkg=self.pkg ), ) assert resp.status_code == requests.codes.not_found # Share the package. resp = self._share_package(self.user, self.pkg, sharewith) assert resp.status_code == requests.codes.ok # Can view once it's shared. resp = self.app.get( '/api/log/{usr}/{pkg}/'.format( usr=self.user, pkg=self.pkg ), headers={ 'Authorization': sharewith } ) assert resp.status_code == requests.codes.ok # Still can't view when not logged in. resp = self.app.get( '/api/log/{usr}/{pkg}/'.format( usr=self.user, pkg=self.pkg ), ) assert resp.status_code == requests.codes.not_found # Share the package publicly. resp = self._share_package(self.user, self.pkg, PUBLIC) assert resp.status_code == requests.codes.ok # Can now view when not logged in. resp = self.app.get( '/api/log/{usr}/{pkg}/'.format( usr=self.user, pkg=self.pkg ), ) assert resp.status_code == requests.codes.ok
28.8
99
0.502778
7948adfbe324abc73698581cc1204bba2764244c
771
py
Python
.history/chapter01/python_05_if_condition_20201128215501.py
KustomApe/nerdape
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
[ "MIT" ]
null
null
null
.history/chapter01/python_05_if_condition_20201128215501.py
KustomApe/nerdape
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
[ "MIT" ]
null
null
null
.history/chapter01/python_05_if_condition_20201128215501.py
KustomApe/nerdape
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
[ "MIT" ]
null
null
null
"""[if文について] もし〜だったら、こうして """ # if 条件: # 実行するブロック # 条件によって処理を適応したい場合 # 3000kmごとにオイル交換しないといけない distance = 3403 # if distance > 3000: # print('オイル交換時期です') # 文字列を比較する/リストを比較する # if 'abc' == 'ABC': # print('1同類です') # if 'CDE' == 'CDE': # print('2同類です') # if 'あいうえお' == 'あいうえお': # print('3同類です') # if ['apple', 'banana'] == ['apple', 'banana']: # print('1リスト同類') # if ['apple', 'banana'] == ['APPLE', 'BANANA']: # print('2リスト同類') # if [1, 2, 3] == ['1', '2', '3']: # print('3リスト同類') # if [1, 2, 3] == [1, 2, 3]: # print('4リスト同類') # 文字列を検索する/リストの要素を検索する if 'abc' in "ABC": print('ヒットしました!') if 'ドリフト' in '僕はドリフトが好きです': print('ヒットしました!') if 'japan' in 'japanese domestic market vehicle': print('ヒットしました!') # else文 # elif文
17.930233
49
0.546044
7948afaa1f3a9d1099a8051b48e1bb9892292ca7
3,549
py
Python
test/functional/p2p_feefilter.py
manfromafar/safecash-temp
de9623678fe76bc58928c8a36b6491d4d0766588
[ "MIT" ]
3
2018-06-05T15:12:08.000Z
2018-07-01T04:51:42.000Z
test/functional/p2p_feefilter.py
manfromafar/safecash-temp
de9623678fe76bc58928c8a36b6491d4d0766588
[ "MIT" ]
null
null
null
test/functional/p2p_feefilter.py
manfromafar/safecash-temp
de9623678fe76bc58928c8a36b6491d4d0766588
[ "MIT" ]
2
2018-05-25T13:25:55.000Z
2018-06-30T18:14:10.000Z
#!/usr/bin/env python3 # Copyright (c) 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test processing of feefilter messages.""" from test_framework.mininode import * from test_framework.test_framework import SafeCashTestFramework from test_framework.util import * import time def hashToHex(hash): return format(hash, '064x') # Wait up to 60 secs to see if the testnode has received all the expected invs def allInvsMatch(invsExpected, testnode): for x in range(60): with mininode_lock: if (sorted(invsExpected) == sorted(testnode.txinvs)): return True time.sleep(1) return False class TestNode(P2PInterface): def __init__(self): super().__init__() self.txinvs = [] def on_inv(self, message): for i in message.inv: if (i.type == 1): self.txinvs.append(hashToHex(i.hash)) def clear_invs(self): with mininode_lock: self.txinvs = [] class FeeFilterTest(SafeCashTestFramework): def set_test_params(self): self.num_nodes = 2 def run_test(self): node1 = self.nodes[1] node0 = self.nodes[0] # Get out of IBD node1.generate(1) sync_blocks(self.nodes) # Setup the p2p connections and start up the network thread. self.nodes[0].add_p2p_connection(TestNode()) network_thread_start() self.nodes[0].p2p.wait_for_verack() # Test that invs are received for all txs at feerate of 20 sat/byte node1.settxfee(Decimal("0.00020000")) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() # Set a filter of 15 sat/byte self.nodes[0].p2p.send_and_ping(msg_feefilter(15000)) # Test that txs are still being received (paying 20 sat/byte) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() # Change tx fee rate to 10 sat/byte and test they are no longer received node1.settxfee(Decimal("0.00010000")) [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] sync_mempools(self.nodes) # must be sure node 0 has received all txs # Send one transaction from node0 that should be received, so that we # we can sync the test on receipt (if node1's txs were relayed, they'd # be received by the time this node0 tx is received). This is # unfortunately reliant on the current relay behavior where we batch up # to 35 entries in an inv, which means that when this next transaction # is eligible for relay, the prior transactions from node1 are eligible # as well. node0.settxfee(Decimal("0.00020000")) txids = [node0.sendtoaddress(node0.getnewaddress(), 1)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() # Remove fee filter and check that txs are received again self.nodes[0].p2p.send_and_ping(msg_feefilter(0)) txids = [node1.sendtoaddress(node1.getnewaddress(), 1) for x in range(3)] assert(allInvsMatch(txids, self.nodes[0].p2p)) self.nodes[0].p2p.clear_invs() if __name__ == '__main__': FeeFilterTest().main()
37.755319
81
0.659904
7948b0405dacb239f3e9cb1bb9703d56eb60dcee
23
py
Python
home.py
wuxuechen/news
05fe821ed81e3ececc58264acd6e9142e4fd66a2
[ "MIT" ]
null
null
null
home.py
wuxuechen/news
05fe821ed81e3ececc58264acd6e9142e4fd66a2
[ "MIT" ]
null
null
null
home.py
wuxuechen/news
05fe821ed81e3ececc58264acd6e9142e4fd66a2
[ "MIT" ]
null
null
null
hi, this is a new home
11.5
22
0.695652
7948b090584b208a822b205cc5e11e0d630bb49b
599
py
Python
src/_nats/aio/types.py
charbonnierg/jetstream.py
4d8dc56fc6953d0a28d207b9b162c6f8d0080d37
[ "Apache-2.0" ]
8
2021-07-26T10:54:10.000Z
2021-12-06T08:41:02.000Z
src/_nats/aio/types.py
charbonnierg/jetstream.py
4d8dc56fc6953d0a28d207b9b162c6f8d0080d37
[ "Apache-2.0" ]
3
2021-08-09T10:25:39.000Z
2021-12-06T08:40:41.000Z
src/_nats/aio/types.py
charbonnierg/jetstream.py
4d8dc56fc6953d0a28d207b9b162c6f8d0080d37
[ "Apache-2.0" ]
3
2021-08-22T01:55:11.000Z
2021-09-13T13:51:42.000Z
from typing import Dict, List, TypedDict class ServerInfos(TypedDict, total=False): server_id: str server_name: str version: str go: str git_commit: str host: str port: int max_payload: int proto: int client_id: int client_ip: str auth_required: bool tls_required: bool tls_verify: bool connect_urls: List[str] ldm: bool jetstream: bool headers: Dict[str, str] nonce: str class ClientStats(TypedDict): in_msgs: int out_msgs: int in_bytes: int out_bytes: int reconnects: int errors_received: int
18.151515
42
0.656093
7948b10f4d3e20be1edb9fb958db6e6f9453aa9a
864
py
Python
morbitwrapper/__init__.py
manuelbb-upb/MorbitWrapper
eecd77c33fdbc5e867e10fbe5ec217a2ada6924c
[ "MIT" ]
null
null
null
morbitwrapper/__init__.py
manuelbb-upb/MorbitWrapper
eecd77c33fdbc5e867e10fbe5ec217a2ada6924c
[ "MIT" ]
3
2021-05-25T15:02:44.000Z
2021-05-26T09:38:39.000Z
morbitwrapper/__init__.py
manuelbb-upb/MorbitWrapper
eecd77c33fdbc5e867e10fbe5ec217a2ada6924c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 15 16:25:44 2020 @author: manuelbb """ from .MOPClasses import RbfConfig, MOP, AlgoConfig, LagrangeConfig, TaylorConfig, ExactConfig from .optimization import optimize, initialize_data, iterate, get_ret_values from .optimization import print_fin_info, print_stop_info from .globals import load_settings, make_sysimage from .globals import set_MORBIT_SYS_IMG, get_MORBIT_SYS_IMG, set_JULIA_ENV from .globals import get_JULIA_ENV, set_JULIA_RUNTIME, get_JULIA_RUNTIME, get_JULIA_RUNTIME_NAME from .globals import get_JULIA_DEPOT_PATH, set_JULIA_DEPOT_PATH from .globals import set_FORCE_PYCALL_REBUILD, get_FORCE_PYCALL_REBUILD from .globals import julia_main #NOTE # DONT make globals accessible from outside the module directly # … leads only to confusion; use setters and getters instead
36
96
0.822917
7948b1b60c843dd7adbbe7b6a4359146eeaecd0a
982
py
Python
model/fcn.py
lixiaoyu0575/physionet_challenge2020_pytorch
39b5aeeead440eaa88d6fdaf4a8a70c15373e062
[ "MIT" ]
1
2021-05-24T08:09:30.000Z
2021-05-24T08:09:30.000Z
model/fcn.py
lixiaoyu0575/physionet_challenge2020_pytorch
39b5aeeead440eaa88d6fdaf4a8a70c15373e062
[ "MIT" ]
null
null
null
model/fcn.py
lixiaoyu0575/physionet_challenge2020_pytorch
39b5aeeead440eaa88d6fdaf4a8a70c15373e062
[ "MIT" ]
null
null
null
import torch from torch import nn from .util import ConvBlock class FCN(nn.Module): """A PyTorch implementation of the FCN Baseline From https://arxiv.org/abs/1909.04939 Attributes ---------- sequence_length: The size of the input sequence num_pred_classes: The number of output classes """ def __init__(self, in_channels: int, num_pred_classes: int = 1) -> None: super().__init__() # for easier saving and loading self.input_args = { 'in_channels': in_channels, 'num_pred_classes': num_pred_classes } self.layers = nn.Sequential(*[ ConvBlock(in_channels, 128, 8, 1), ConvBlock(128, 256, 5, 1), ConvBlock(256, 128, 3, 1), ]) self.final = nn.Linear(128, num_pred_classes) def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore x = self.layers(x) return self.final(x.mean(dim=-1))
27.277778
76
0.593686
7948b6dcbb796baefff47c3e791983c0dd58b297
1,868
py
Python
12_browser_automation_selenium/lectures/9_adding_some_error_handling/pages/quotes_page.py
gdia/The-Complete-Python-Course
ed375b65242249bc749c3e292a6149f8528b9dcf
[ "MIT" ]
29
2019-09-02T21:15:59.000Z
2022-01-14T02:20:05.000Z
12_browser_automation_selenium/lectures/9_adding_some_error_handling/pages/quotes_page.py
gdia/The-Complete-Python-Course
ed375b65242249bc749c3e292a6149f8528b9dcf
[ "MIT" ]
2
2020-08-20T05:48:36.000Z
2021-06-02T03:16:31.000Z
12_browser_automation_selenium/lectures/9_adding_some_error_handling/pages/quotes_page.py
gdia/The-Complete-Python-Course
ed375b65242249bc749c3e292a6149f8528b9dcf
[ "MIT" ]
38
2019-10-20T14:29:12.000Z
2022-03-27T19:50:05.000Z
from typing import List from selenium.webdriver.support.ui import Select from locators.quotes_page_locators import QuotesPageLocators from parsers.quote import QuoteParser class QuotesPage: def __init__(self, browser): self.browser = browser @property def quotes(self) -> List[QuoteParser]: return [ QuoteParser(e) for e in self.browser.find_elements_by_css_selector( QuotesPageLocators.QUOTE ) ] @property def author_dropdown(self) -> Select: element = self.browser.find_element_by_css_selector( QuotesPageLocators.AUTHOR_DROPDOWN ) return Select(element) @property def tags_dropdown(self): element = self.browser.find_element_by_css_selector( QuotesPageLocators.TAG_DROPDOWN ) return Select(element) @property def search_button(self): return self.browser.find_element_by_css_selector( QuotesPageLocators.SEARCH_BUTTON ) def select_author(self, author_name: str): self.author_dropdown.select_by_visible_text(author_name) def get_available_tags(self) -> List[str]: return [option.text.strip() for option in self.tags_dropdown.options] def select_tag(self, tag_name: str): self.tags_dropdown.select_by_visible_text(tag_name) def search_for_quotes(self, author_name: str, tag_name: str) -> List[QuoteParser]: self.select_author(author_name) try: self.select_tag(tag_name) except NoSuchElementException: raise InvalidTagForAuthorError( f"Author '{author_name}' does not have any quotes tagged with '{tag_name}'." ) self.search_button.click() return self.quotes class InvalidTagForAuthorError(ValueError): pass
29.1875
92
0.669165
7948b719ad04f742fcabc108c4a63778fb82fe6a
917
py
Python
thomas/flask/flask tutorial files/tutorial 5.py
ThomasDerZweifler/pyPro
8bc6531483f08982b19c08a4cdb1a0c9dbd03737
[ "Apache-2.0" ]
null
null
null
thomas/flask/flask tutorial files/tutorial 5.py
ThomasDerZweifler/pyPro
8bc6531483f08982b19c08a4cdb1a0c9dbd03737
[ "Apache-2.0" ]
null
null
null
thomas/flask/flask tutorial files/tutorial 5.py
ThomasDerZweifler/pyPro
8bc6531483f08982b19c08a4cdb1a0c9dbd03737
[ "Apache-2.0" ]
1
2020-07-22T17:57:04.000Z
2020-07-22T17:57:04.000Z
from flask import * # from flask import Flask, redirect, url_for, render_template, request, session from datetime import timedelta app = Flask(__name__) app.secret_key = "hello" app.permanent_session_lifetime = timedelta(minutes=5) @app.route("/") def home(): return render_template("index.html") @app.route("/login", methods=["POST", "GET"]) def login(): if request.method == "POST": session.permanent = True user = request.form["nm"] session["user"] = user return redirect(url_for("user")) else: if "user" in session: return redirect(url_for("user")) return render_template("login.html") @app.route("/user") def user(): if "user" in session: user = session["user"] return f"<h1>User: {user}</h1>" else: return redirect(url_for("login")) @app.route("/logout") def logout(): session.pop("user", None) return redirect(url_for("login")) if __name__ == "__main__": app.run(debug=True)
22.925
79
0.691385
7948b7a91f3593819f79d5bab0926e3d18a74b09
4,980
py
Python
people/committee_meeting_attendees.py
lee-elenbaas/knesset-data-pipelines
5ae9f6b0c89b9b7fce647f693535a6a5cdbafbce
[ "MIT" ]
8
2017-07-24T12:11:22.000Z
2019-04-16T03:28:28.000Z
people/committee_meeting_attendees.py
lee-elenbaas/knesset-data-pipelines
5ae9f6b0c89b9b7fce647f693535a6a5cdbafbce
[ "MIT" ]
141
2017-07-24T12:10:57.000Z
2019-12-04T07:39:02.000Z
people/committee_meeting_attendees.py
lee-elenbaas/knesset-data-pipelines
5ae9f6b0c89b9b7fce647f693535a6a5cdbafbce
[ "MIT" ]
28
2017-07-30T14:20:12.000Z
2022-02-20T12:01:12.000Z
from datapackage_pipelines.wrapper import process import logging, requests, os from knesset_data.protocols.committee import CommitteeMeetingProtocol import hashlib, json BASE_HASH_OBJ = hashlib.md5() with open('../Pipfile.lock') as f: BASE_HASH_OBJ.update(str(json.load(f)['default']['knesset-data']['hashes']).encode()) def process_row(row, row_index, spec, resource_index, parameters, stats): if spec['name'] == 'kns_committeesession': row.update(mks=None, invitees=None, legal_advisors=None, manager=None) if ( (not parameters.get("filter-meeting-id") or int(row["CommitteeSessionID"]) in parameters["filter-meeting-id"]) and (not parameters.get("filter-committee-id") or int(row["CommitteeID"]) in parameters["filter-committee-id"]) and (not parameters.get("filter-knesset-num") or int(row["KnessetNum"]) in parameters["filter-knesset-num"]) ): if row["text_parsed_filename"]: new_cache_hash, old_cache_hash, cache_hash_path, cache_hash_row = None, None, None, None if os.environ.get('KNESSET_PIPELINES_DATA_PATH'): m = BASE_HASH_OBJ.copy() m.update(str(row['text_crc32c']).encode()) m.update(str(row['parts_crc32c']).encode()) new_cache_hash = m.hexdigest() cache_hash_path = os.path.join(os.environ['KNESSET_PIPELINES_DATA_PATH'], 'people/committees/meeting-attendees/cache_hash/{}.json'.format(row["text_parsed_filename"])) if os.path.exists(cache_hash_path): with open(cache_hash_path) as f: cache_data = json.load(f) old_cache_hash = cache_data['hash'] cache_hash_row = cache_data['row'] if cache_hash_path and old_cache_hash and old_cache_hash == new_cache_hash: row.update(**cache_hash_row) else: logging.info('getting attendees for meeting {}'.format(row['CommitteeSessionID'])) text = None if os.environ.get('KNESSET_PIPELINES_DATA_PATH'): protocol_text_path = os.path.join(os.environ['KNESSET_PIPELINES_DATA_PATH'], 'committees/meeting_protocols_text/{}'.format(row["text_parsed_filename"])) if os.path.exists(protocol_text_path) and os.path.getsize(protocol_text_path) > 0: with open(protocol_text_path) as f: text = f.read() else: protocol_text_url = "https://storage.googleapis.com/knesset-data-pipelines/data/committees/" \ "meeting_protocols_text/{}".format(row["text_parsed_filename"]) res = requests.get(protocol_text_url) if res.status_code == 200: text = res.content.decode("utf-8") update_row = dict(mks=None, invitees=None, legal_advisors=None, manager=None) if text: with CommitteeMeetingProtocol.get_from_text(text) as protocol: attendees = protocol.attendees if attendees: update_row = dict(mks=attendees['mks'], invitees=attendees['invitees'], legal_advisors=attendees['legal_advisors'], manager=attendees['manager'], financial_advisors=attendees.get('financial_advisors', [])) row.update(**update_row) if cache_hash_path: os.makedirs(os.path.dirname(cache_hash_path), exist_ok=True) with open(cache_hash_path, 'w') as f: json.dump({'hash': new_cache_hash, 'row': update_row}, f) return row def modify_datapackage(datapackage, parameters, stats): for descriptor in datapackage['resources']: if descriptor['name'] == 'kns_committeesession': descriptor['schema']['fields'] += [{"name": "mks", "type": "array"}, {"name": "invitees", "type": "array"}, {"name": "legal_advisors", "type": "array"}, {"name": "manager", "type": "array"}, {"name": "financial_advisors", "type": "array"}] return datapackage if __name__ == '__main__': process(modify_datapackage, process_row)
60
144
0.523896
7948b7dd2a5dc61b8ea18180f008b733d4bfbc30
3,523
py
Python
tests/python/backends.py
piengeng/openldap
07429efcff9dc50abb8ca265c8e8caa8cd25d01c
[ "OLDAP-2.8" ]
null
null
null
tests/python/backends.py
piengeng/openldap
07429efcff9dc50abb8ca265c8e8caa8cd25d01c
[ "OLDAP-2.8" ]
null
null
null
tests/python/backends.py
piengeng/openldap
07429efcff9dc50abb8ca265c8e8caa8cd25d01c
[ "OLDAP-2.8" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This work is part of OpenLDAP Software <http://www.openldap.org/>. # # Copyright 2021-2022 The OpenLDAP Foundation. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted only as authorized by the OpenLDAP # Public License. # # A copy of this license is available in the file LICENSE in the # top-level directory of the distribution or, alternatively, at # <http://www.OpenLDAP.org/license.html>. # # ACKNOWLEDGEMENTS: # This work was initially developed by Ondřej Kuzník # for inclusion in OpenLDAP Software. """ OpenLDAP fixtures for backends """ import ldap0 import logging import os import pathlib import pytest import secrets import tempfile from ldap0.controls.readentry import PostReadControl from .slapd import server SOURCEROOT = pathlib.Path(os.environ.get('TOP_SRCDIR', "..")).absolute() BUILDROOT = pathlib.Path(os.environ.get('TOP_BUILDDIR', SOURCEROOT)).absolute() logger = logging.getLogger(__name__) class Database: have_directory = True def __init__(self, server, suffix, backend): self.server = server self.suffix = suffix self.rootdn = suffix self.secret = secrets.token_urlsafe() self.overlays = [] if suffix in server.suffixes: raise RuntimeError(f"Suffix {suffix} already configured in server") if self.have_directory: self.directory = tempfile.TemporaryDirectory(dir=server.home) conn = server.connect() conn.simple_bind_s("cn=config", server.secret) # We're just after the generated DN, no other attributes at the moment control = PostReadControl(True, []) result = conn.add_s( f"olcDatabase={backend},cn=config", self._entry(), req_ctrls=[control]) dn = result.ctrls[0].res.dn_s self.dn = dn server.suffixes[suffix] = self def _entry(self): entry = { "objectclass": [self.objectclass.encode()], "olcSuffix": [self.suffix.encode()], "olcRootDN": [self.suffix.encode()], "olcRootPW": [self.secret.encode()], } if self.have_directory: entry["olcDbDirectory"] = [self.directory.name.encode()] return entry class MDB(Database): have_directory = True objectclass = "olcMdbConfig" _size = 10 * (1024 ** 3) def __init__(self, server, suffix): super().__init__(server, suffix, "mdb") def _entry(self): entry = { "olcDbMaxSize": [str(self._size).encode()], } return {**super()._entry(), **entry} class LDAP(Database): have_directory = False objectclass = "olcLDAPConfig" def __init__(self, server, suffix, uris): self.uris = uris super().__init__(server, suffix, "ldap") def _entry(self): entry = { "olcDbURI": [" ".join(self.uris).encode()], } return {**super()._entry(), **entry} backend_types = { "mdb": MDB, "ldap": LDAP, } @pytest.fixture(scope="class") def db(request, server): marker = request.node.get_closest_marker("db") database_type = marker.args[0] if marker else "mdb" klass = backend_types[database_type] conn = server.connect() conn.simple_bind_s("cn=config", server.secret) db = klass(server, "cn=test") yield db conn.delete_s(db.dn) class TestDB: def test_db_setup(self, db): pass
25.164286
79
0.639512
7948b8d7bc9575bd02d8814da9f7b812455f2d19
827
py
Python
backend/alembic/versions/20210105124927_984ad93b1b7c_add_model_table.py
BodenmillerGroup/histocat-web
c598cd07506febf0b7c209626d4eb869761f2e62
[ "MIT" ]
4
2021-06-14T15:19:25.000Z
2022-02-09T13:17:39.000Z
backend/alembic/versions/20210105124927_984ad93b1b7c_add_model_table.py
BodenmillerGroup/histocat-web
c598cd07506febf0b7c209626d4eb869761f2e62
[ "MIT" ]
null
null
null
backend/alembic/versions/20210105124927_984ad93b1b7c_add_model_table.py
BodenmillerGroup/histocat-web
c598cd07506febf0b7c209626d4eb869761f2e62
[ "MIT" ]
1
2022-02-09T13:17:41.000Z
2022-02-09T13:17:41.000Z
"""Add model table Revision ID: 984ad93b1b7c Revises: bcd5ecf42c3e Create Date: 2021-01-05 12:49:27.310783 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects.postgresql import JSONB # revision identifiers, used by Alembic. revision = '984ad93b1b7c' down_revision = 'bcd5ecf42c3e' branch_labels = None depends_on = None def upgrade(): op.create_table( 'model', sa.Column('id', sa.Integer(), primary_key=True, index=True), sa.Column('name', sa.String(), nullable=False, index=True, unique=True), sa.Column('description', sa.String()), sa.Column('location', sa.String(4096)), sa.Column('meta', JSONB()), sa.Column('created_at', sa.DateTime(), default=sa.sql.func.now(), nullable=False), ) def downgrade(): op.drop_table('model')
24.323529
90
0.675937
7948b8f4c845755aa1b868b8d10288c09f23324f
3,922
py
Python
src/networks/my_LeNet.py
LukasKratochvila/Deep-SVDD-PyTorch
a94bd9b6be4d953706daf969b061ddf55d6cbf4c
[ "MIT" ]
null
null
null
src/networks/my_LeNet.py
LukasKratochvila/Deep-SVDD-PyTorch
a94bd9b6be4d953706daf969b061ddf55d6cbf4c
[ "MIT" ]
null
null
null
src/networks/my_LeNet.py
LukasKratochvila/Deep-SVDD-PyTorch
a94bd9b6be4d953706daf969b061ddf55d6cbf4c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 19 18:40:39 2020 @author: kratochvila """ import torch import torch.nn as nn import torch.nn.functional as F from base.base_net import BaseNet class MY_LeNet(BaseNet): def __init__(self): super().__init__() self.rep_dim = 128 self.pool = nn.MaxPool2d(2, 2) self.conv1 = nn.Conv2d(3, 32, 5, bias=False, padding=2) self.bn2d1 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.conv2 = nn.Conv2d(32, 64, 5, bias=False, padding=2) self.bn2d2 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.conv3 = nn.Conv2d(64, 128, 5, bias=False, padding=2) self.bn2d3 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.fc1 = nn.Linear(128 * 80 * 60, self.rep_dim, bias=False) # 20 * 15 def forward(self, x): x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn2d1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2d2(x))) x = self.conv3(x) x = self.pool(F.leaky_relu(self.bn2d3(x))) x = x.view(x.size(0), -1) x = self.fc1(x) return x class MY_LeNet_Autoencoder(BaseNet): def __init__(self): super().__init__() self.rep_dim = 128 self.pool = nn.MaxPool2d(2, 2) # Encoder (must match the Deep SVDD network above) self.conv1 = nn.Conv2d(3, 32, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d1 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.conv2 = nn.Conv2d(32, 64, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d2 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.conv3 = nn.Conv2d(64, 128, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.conv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d3 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.fc1 = nn.Linear(128 * 80 * 60, self.rep_dim, bias=False) self.bn1d = nn.BatchNorm1d(self.rep_dim, eps=1e-04, affine=False) # Decoder self.deconv1 = nn.ConvTranspose2d(int(self.rep_dim / (4 * 4)), 128, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv1.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d4 = nn.BatchNorm2d(128, eps=1e-04, affine=False) self.deconv2 = nn.ConvTranspose2d(128, 64, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv2.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d5 = nn.BatchNorm2d(64, eps=1e-04, affine=False) self.deconv3 = nn.ConvTranspose2d(64, 32, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv3.weight, gain=nn.init.calculate_gain('leaky_relu')) self.bn2d6 = nn.BatchNorm2d(32, eps=1e-04, affine=False) self.deconv4 = nn.ConvTranspose2d(32, 3, 5, bias=False, padding=2) nn.init.xavier_uniform_(self.deconv4.weight, gain=nn.init.calculate_gain('leaky_relu')) def forward(self, x): x = self.conv1(x) x = self.pool(F.leaky_relu(self.bn2d1(x))) x = self.conv2(x) x = self.pool(F.leaky_relu(self.bn2d2(x))) x = self.conv3(x) x = self.pool(F.leaky_relu(self.bn2d3(x))) x = x.view(x.size(0), -1) x = self.bn1d(self.fc1(x)) x = x.view(x.size(0), int(self.rep_dim / (4 * 4)), 4, 4) x = F.leaky_relu(x) x = self.deconv1(x) x = F.interpolate(F.leaky_relu(self.bn2d4(x)), scale_factor=2) x = self.deconv2(x) x = F.interpolate(F.leaky_relu(self.bn2d5(x)), scale_factor=2) x = self.deconv3(x) x = F.interpolate(F.leaky_relu(self.bn2d6(x)), scale_factor=2) x = self.deconv4(x) x = torch.sigmoid(x) return x
40.020408
101
0.620857
7948b92c92375527847fc71801171e30eff7b96c
2,881
py
Python
river/stats/mode.py
fox-ds/river
9ce947ebfc012ec7059de0a09c765b2da7fc1d25
[ "BSD-3-Clause" ]
null
null
null
river/stats/mode.py
fox-ds/river
9ce947ebfc012ec7059de0a09c765b2da7fc1d25
[ "BSD-3-Clause" ]
1
2022-03-31T14:51:13.000Z
2022-03-31T15:57:05.000Z
river/stats/mode.py
fox-ds/river
9ce947ebfc012ec7059de0a09c765b2da7fc1d25
[ "BSD-3-Clause" ]
null
null
null
import collections import typing from . import base __all__ = ["Mode"] class Mode(base.Univariate): """Running mode. The mode is simply the most common value. An approximate mode can be computed by setting the number of first unique values to count. Parameters ---------- k Only the first `k` unique values will be included. If `k` equals -1, the exact mode is computed. Examples -------- >>> from river import stats >>> X = ['sunny', 'cloudy', 'cloudy', 'rainy', 'rainy', 'rainy'] >>> mode = stats.Mode(k=2) >>> for x in X: ... print(mode.update(x).get()) sunny sunny cloudy cloudy cloudy cloudy >>> mode = stats.Mode(k=-1) >>> for x in X: ... print(mode.update(x).get()) sunny sunny cloudy cloudy cloudy rainy """ def __init__(self, k=25): self.k = k self.counts = collections.defaultdict(int) @property def name(self): return "mode" def update(self, x): if self.k == -1 or x in self.counts or len(self.counts) < self.k: self.counts[x] += 1 return self def get(self): return max(self.counts, key=self.counts.get, default=None) class RollingMode(base.RollingUnivariate): """Running mode over a window. The mode is the most common value. Parameters ---------- window_size Size of the rolling window. Attributes ---------- counts : collections.defaultdict Value counts. Examples -------- >>> from river import stats >>> X = ['sunny', 'sunny', 'sunny', 'rainy', 'rainy', 'rainy', 'rainy'] >>> rolling_mode = stats.RollingMode(window_size=2) >>> for x in X: ... print(rolling_mode.update(x).get()) sunny sunny sunny sunny rainy rainy rainy >>> rolling_mode = stats.RollingMode(window_size=5) >>> for x in X: ... print(rolling_mode.update(x).get()) sunny sunny sunny sunny sunny rainy rainy """ def __init__(self, window_size: int): self.window = collections.deque(maxlen=window_size) self.counts: typing.DefaultDict[typing.Any, int] = collections.defaultdict(int) @property def window_size(self): return self.window.maxlen def update(self, x): if len(self.window) >= self.window_size: # Subtract the counter of the last element first_in = self.window[0] self.counts[first_in] -= 1 # No need to store the value if it's counter is 0 if self.counts[first_in] == 0: self.counts.pop(first_in) self.counts[x] += 1 self.window.append(x) return self def get(self): return max(self.counts, key=self.counts.get, default=None)
21.183824
96
0.570288
7948ba2bbfba076c4fdda268dbec67afc657681b
11,287
py
Python
app.py
pedrobcst/Xerus-streamlit
9c94a4d05e5aa4439ac6165a5b6951b26d3d2e4d
[ "MIT" ]
null
null
null
app.py
pedrobcst/Xerus-streamlit
9c94a4d05e5aa4439ac6165a5b6951b26d3d2e4d
[ "MIT" ]
14
2022-03-23T09:21:23.000Z
2022-03-31T06:36:11.000Z
app.py
pedrobcst/Xerus-streamlit
9c94a4d05e5aa4439ac6165a5b6951b26d3d2e4d
[ "MIT" ]
null
null
null
import os import shutil from typing import List, Union import pandas as pd import streamlit as st from st_aggrid import AgGrid from conf import AppSettings from xerus_plot import plot_highest_correlated, plot_read_data from xerus_run import run_opt, run_xerus os.makedirs(AppSettings.TMP_FOLDER, exist_ok=True) os.makedirs(AppSettings.RESULTS_TMP_FOLDER, exist_ok=True) from utils import make_selection_label, process_input, read_input st.title('XERUS Streamlit Interface Beta') st.sidebar.markdown("**X**Ray **E**stimation and **R**efinement **U**sing **S**imilarity (**XERUS**)") st.sidebar.image("https://raw.githubusercontent.com/pedrobcst/Xerus/master/img/g163.png", width=100) base_columns = list(AppSettings.KEEP_COLUMNS) # Session state stuff if 'xerus_started' not in st.session_state: st.session_state['xerus_started'] = False if 'xerus_object' not in st.session_state: st.session_state['xerus_object'] = None if 'zip_file' not in st.session_state: st.session_state['zip_file'] = False if 'optmized' not in st.session_state: st.session_state['optmized'] = False @st.cache(allow_output_mutation=True) def run_analysis(args_xerus: dict, args_analysis: dict): return run_xerus(args_xerus, args_analysis) @st.cache(allow_output_mutation=True) def run_optmizer(xerus_object, index_list: Union[int, List[int]], opt_args: dict): return run_opt(xerus_object, index_list, opt_args) # Settings st.sidebar.header("Data Upload and Name") name = st.sidebar.text_input("Dataset name", key="name") file = st.sidebar.file_uploader("Upload data", key="data_uploaded") if file: data_format = st.sidebar.text_input("Data format", value=file.name.split(".")[-1], key="data_format") path = read_input(file) working_folder = os.path.join(AppSettings.RESULTS_TMP_FOLDER, file.name.split(".")[0]) + f"_{name}" os.makedirs(working_folder, exist_ok=True) # Data Visualization Settings with st.expander('Data View and Settings', expanded=True): if path: c1, c2 = st.columns([2, 4]) # Background / Preprocessing information with c1: remove_background = st.checkbox("Remove background", value=True, key="remove_bg") use_preprocessed = st.checkbox("Use preprocessed data", value=False, key="use_pre") poly_degree = 10 if remove_background: poly_degree = st.number_input("Polynomial degree", min_value=2, max_value=12, step=1, value=8,key="poly_degree") elements = st.text_input("Elements seperated by comma", value="Ho", key="element_list").split(",") elements = [element.strip() for element in elements if len(element) > 0] max_oxygen = st.number_input("Max oxygen", min_value=0, max_value=10, step=1, value=2, key="max_oxy") st.write("Current element list is:", elements) # Data plot with c2: figure = plot_read_data(path, format=data_format, poly_degree=int(poly_degree), remove_base=remove_background) figure.update_layout(legend=dict(yanchor="top",y=1.35,xanchor="left",x=0.00, bgcolor="white")) st.plotly_chart(figure, use_container_width=True, template="presentation", bgcolor="white") c1, c2 = st.columns(2) # Algorithm settings with c1: with st.expander('Required Analysis Settings', expanded=True): n_runs = st.text_input("Number of runs", value="auto", key="n_runs") if n_runs != "auto": n_runs = int(n_runs) g = int(st.number_input("g", min_value=1, max_value=999, value=3, step=1, key="grabtop")) delta = st.number_input(r"delta", min_value=1.0, max_value=5.0, value=1.3, step=0.1, key="delta") # Optional search settings with c2: with st.expander("Optional Analysis Settings", expanded=True): ignore_ids = process_input(st.text_input("Ignore IDs", value="", key="ignore_ids")) ignore_providers = process_input(st.text_input("Ignore providers", value="AFLOW", key="ignore_providers")) ignore_comb = process_input(st.text_input("Ignore combinations", value="", key="ignore_comb")) # Filter Settings with st.expander("Current Filter Settings", expanded=False): c1, c2, c3 = st.columns(3) c1.markdown("**Ignore IDs**") c1.write(ignore_ids) c2.markdown("**Ignore providers**") c2.write(ignore_comb) c3.markdown("**Ignore combinations**") c3.write(ignore_providers) if st.button("Run analysis", key="run_analysis"): args_xerus = dict(name=name, working_folder=working_folder, exp_data_file=path, elements=elements, max_oxy=max_oxygen, use_preprocessed=use_preprocessed, remove_background=remove_background, poly_degree=poly_degree, data_fmt=data_format) args_analysis = dict(n_runs=n_runs, grabtop=g, delta=delta, ignore_ids=ignore_ids, ignore_provider=ignore_providers, ignore_comb=ignore_comb) results_search = run_analysis(args_xerus, args_analysis) st.session_state['optmized'] = False st.session_state['zip_file'] = False st.balloons() st.session_state['xerus_object'] = results_search if st.session_state.xerus_object: st.header('Analysis Results') results_search = st.session_state.xerus_object df = results_search.results.copy() if 'wt' in df.columns: base_columns.append('wt') df = df[base_columns] df['id'] = df.index simuls_df = results_search.simulated_gsas2 df = df[['id'] + base_columns] with st.expander('Results (Tabular)', expanded = True): AgGrid(df, width='50%', height=200) with st.expander('Visualization of Analysis', expanded = True): viz_number = st.selectbox("Results to Visualize", options=df.index, key="viz_number", format_func = lambda idx: make_selection_label(idx, df)) fig = results_search.plot_result(viz_number) fig.update_layout(title=None, width=800, height=500) fig.update_xaxes(title=r'2theta (deg.)') st.plotly_chart(fig, use_container_width=True) plot_highest_corr = st.checkbox("Plot Highest correlated", value=False, key='plot_highest_corr') if plot_highest_corr: c1, c2 = st.columns([2,4]) pattern_show = results_search.cif_info.copy() pattern_show.sort_values(by='Cij', inplace=True, ascending=False) pattern_show.reset_index(drop=True, inplace=True) highest_correlated = int(c1.number_input("Highest k correlated phases", min_value=1, max_value=len(simuls_df) - 1, value=len(simuls_df) // 3, step=1, key='highest_corr')) options = pattern_show.filename[:highest_correlated] with c2: st.caption("List of all Options") AgGrid(pattern_show.loc[:highest_correlated, ['filename', 'Cij', 'spacegroup']], width="50%", height=250) patterns_show = st.multiselect("Patterns to show", options=options, key='patterns_show', default=options) fig_highest_corr = plot_highest_correlated(data=results_search.exp_data_file, format=data_format, cif_info=results_search.cif_info.copy(), top=highest_correlated, width=800, height=500, filter_columns=patterns_show) st.plotly_chart(fig_highest_corr, use_container_width=True) c1, c2 = st.columns(2) with c1: if st.button('Zip Contents'): shutil.make_archive(working_folder, 'zip', working_folder) st.session_state['zip_file'] = True with c2: if st.session_state['zip_file']: if os.path.exists(f"{working_folder}.zip"): with open(f"{working_folder}.zip", "rb") as fp: btn = st.download_button( label="Download ZIP file", data=fp, file_name=f"{name}_results.zip", mime="application/zip" ) with st.expander('Optimizer Settings'): # Basic optimizer settings c1,c2,c3,c4 = st.columns(4) optimizer_idx = process_input(c1.text_input('Indexes to optmize seperated by comma:', value="0", key="opt_list"),return_int=True) n_trials = int(c2.number_input("Number of trials", min_value=20, max_value=99999, value=200, step=1, key="n_trials")) param = c3.selectbox(label="Param to optimize", options=["rwp", "gof"]) random_state = int(c4.number_input(label="Random seed number", min_value=0, max_value=9999, step=1, value=42, key='random_state')) # Checkboxes c5, c6, c7, c8, c9 = st.columns(5) allow_pref_orient = c5.checkbox('Pref Orientation', value=True, key='pref_ori') allow_atomic_params = c6.checkbox('Atomic Params', value=False, key='atomic') allow_broad = c7.checkbox('Atomic Params', value=False, key='broadening') allow_angle = c8.checkbox('Acute angle', value=False, key='acute') force_ori = c9.checkbox('Force to use pref. ori', value=False, key='force_ori') opt_args = dict(n_trials=n_trials, allow_pref_orient=allow_pref_orient, allow_atomic_params=allow_atomic_params, allow_broad=allow_broad, allow_angle=allow_angle, param=param, random_state=random_state, force_ori=force_ori ) st.write(opt_args) if st.button('Run optimization'): st.session_state['xerus_object'] = run_optmizer(results_search, optimizer_idx, opt_args) st.session_state['optmized'] = True st.balloons() if st.session_state['optmized']: with st.expander('Optimization Results'): st.write( f'Optimization finished. Best rwp is {st.session_state.xerus_object.optimizer.optim.rwp_best:.3f}%') st.subheader('Refinement Result') fig = st.session_state.xerus_object.optimizer.optim.plot_best(save=False, engine="plotly") st.plotly_chart(fig, use_container_width=True) st.subheader('Crystal Structure Result') AgGrid(pd.DataFrame(data=st.session_state.xerus_object.optimizer.lattice_best), height=100) if st.button('Export Results to Working Folder'): st.session_state.xerus_object.export_results() st.write('Optimizaton results were exported to folder!') st.write('Rezip and press download again!')
52.013825
154
0.622132
7948ba428194527fdea02348a393c7319614fded
775
py
Python
openapi_python_client/parser/reference.py
gmerz/matterapi-generator
4ba29c7d308c43365b286e41220e3252fa250526
[ "MIT" ]
null
null
null
openapi_python_client/parser/reference.py
gmerz/matterapi-generator
4ba29c7d308c43365b286e41220e3252fa250526
[ "MIT" ]
null
null
null
openapi_python_client/parser/reference.py
gmerz/matterapi-generator
4ba29c7d308c43365b286e41220e3252fa250526
[ "MIT" ]
null
null
null
""" A Reference is ultimately a Class which will be in models, usually defined in a body input or return type """ from dataclasses import dataclass from typing import Dict from .. import utils class_overrides: Dict[str, "Reference"] = {} @dataclass class Reference: """A reference to a class which will be in models""" class_name: str module_name: str @staticmethod def from_ref(ref: str) -> "Reference": """Get a Reference from the openapi #/schemas/blahblah string""" ref_value = ref.split("/")[-1] class_name = utils.pascal_case(ref_value) if class_name in class_overrides: return class_overrides[class_name] return Reference(class_name=class_name, module_name=utils.snake_case(class_name))
27.678571
113
0.694194
7948bc13fb9c540a92603bca8f423d02aecf81c6
6,681
py
Python
fluid/PaddleCV/rcnn/utility.py
zzszmyf/models
95f0a9de0e820ddcf2c6529a3bcb9d12bba13128
[ "Apache-2.0" ]
1
2019-02-27T12:27:49.000Z
2019-02-27T12:27:49.000Z
fluid/PaddleCV/rcnn/utility.py
ThinkPeace/models
5d25e00c94943e50e64780a244136f88f13c0a88
[ "Apache-2.0" ]
null
null
null
fluid/PaddleCV/rcnn/utility.py
ThinkPeace/models
5d25e00c94943e50e64780a244136f88f13c0a88
[ "Apache-2.0" ]
1
2018-12-23T06:37:22.000Z
2018-12-23T06:37:22.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. """ Contains common utility functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import distutils.util import numpy as np import six import collections from collections import deque import datetime from paddle.fluid import core import argparse import functools from config import * def print_arguments(args): """Print argparse's arguments. Usage: .. code-block:: python parser = argparse.ArgumentParser() parser.add_argument("name", default="Jonh", type=str, help="User name.") args = parser.parse_args() print_arguments(args) :param args: Input argparse.Namespace for printing. :type args: argparse.Namespace """ print("----------- Configuration Arguments -----------") for arg, value in sorted(six.iteritems(vars(args))): print("%s: %s" % (arg, value)) print("------------------------------------------------") def add_arguments(argname, type, default, help, argparser, **kwargs): """Add argparse's argument. Usage: .. code-block:: python parser = argparse.ArgumentParser() add_argument("name", str, "Jonh", "User name.", parser) args = parser.parse_args() """ type = distutils.util.strtobool if type == bool else type argparser.add_argument( "--" + argname, default=default, type=type, help=help + ' Default: %(default)s.', **kwargs) class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size): self.deque = deque(maxlen=window_size) def add_value(self, value): self.deque.append(value) def get_median_value(self): return np.median(self.deque) def now_time(): return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f') class TrainingStats(object): def __init__(self, window_size, stats_keys): self.smoothed_losses_and_metrics = { key: SmoothedValue(window_size) for key in stats_keys } def update(self, stats): for k, v in self.smoothed_losses_and_metrics.items(): v.add_value(stats[k]) def get(self, extras=None): stats = collections.OrderedDict() if extras: for k, v in extras.items(): stats[k] = v for k, v in self.smoothed_losses_and_metrics.items(): stats[k] = round(v.get_median_value(), 3) return stats def log(self, extras=None): d = self.get(extras) strs = ', '.join(str(dict({x: y})).strip('{}') for x, y in d.items()) return strs def parse_args(): """return all args """ parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable # ENV add_arg('parallel', bool, True, "Whether use parallel.") add_arg('use_gpu', bool, True, "Whether use GPU.") add_arg('model_save_dir', str, 'output', "The path to save model.") add_arg('pretrained_model', str, 'imagenet_resnet50_fusebn', "The init model path.") add_arg('dataset', str, 'coco2017', "coco2014, coco2017.") add_arg('class_num', int, 81, "Class number.") add_arg('data_dir', str, 'dataset/coco', "The data root path.") add_arg('use_pyreader', bool, True, "Use pyreader.") add_arg('use_profile', bool, False, "Whether use profiler.") add_arg('padding_minibatch',bool, False, "If False, only resize image and not pad, image shape is different between" " GPUs in one mini-batch. If True, image shape is the same in one mini-batch.") #SOLVER add_arg('learning_rate', float, 0.01, "Learning rate.") add_arg('max_iter', int, 180000, "Iter number.") add_arg('log_window', int, 20, "Log smooth window, set 1 for debug, set 20 for train.") # RCNN # RPN add_arg('anchor_sizes', int, [32,64,128,256,512], "The size of anchors.") add_arg('aspect_ratios', float, [0.5,1.0,2.0], "The ratio of anchors.") add_arg('variance', float, [1.,1.,1.,1.], "The variance of anchors.") add_arg('rpn_stride', float, [16.,16.], "Stride of the feature map that RPN is attached.") add_arg('rpn_nms_thresh', float, 0.7, "NMS threshold used on RPN proposals") # TRAIN VAL INFER add_arg('MASK_ON', bool, False, "Option for different models. If False, choose faster_rcnn. If True, choose mask_rcnn") add_arg('im_per_batch', int, 1, "Minibatch size.") add_arg('max_size', int, 1333, "The resized image height.") add_arg('scales', int, [800], "The resized image height.") add_arg('batch_size_per_im',int, 512, "fast rcnn head batch size") add_arg('pixel_means', float, [102.9801, 115.9465, 122.7717], "pixel mean") add_arg('nms_thresh', float, 0.5, "NMS threshold.") add_arg('score_thresh', float, 0.05, "score threshold for NMS.") add_arg('snapshot_stride', int, 10000, "save model every snapshot stride.") # SINGLE EVAL AND DRAW add_arg('draw_threshold', float, 0.8, "Confidence threshold to draw bbox.") add_arg('image_path', str, 'dataset/coco/val2017', "The image path used to inference and visualize.") add_arg('image_name', str, '', "The single image used to inference and visualize.") # ce parser.add_argument( '--enable_ce', action='store_true', help='If set, run the task with continuous evaluation logs.') # yapf: enable args = parser.parse_args() file_name = sys.argv[0] if 'train' in file_name or 'profile' in file_name: merge_cfg_from_args(args, 'train') else: merge_cfg_from_args(args, 'val') return args
37.960227
123
0.626553
7948bc771a28060b74b667f943c7e964840c4d63
2,680
py
Python
2d-fluvial/dataloader.py
sees-usc/geo-selection-inversion
31fd16389d1e6a2b057ab71e1db87333572d1463
[ "Apache-2.0" ]
null
null
null
2d-fluvial/dataloader.py
sees-usc/geo-selection-inversion
31fd16389d1e6a2b057ab71e1db87333572d1463
[ "Apache-2.0" ]
1
2021-11-17T05:31:34.000Z
2021-11-17T05:31:34.000Z
2d-fluvial/dataloader.py
sees-usc/geo-selection-inversion
31fd16389d1e6a2b057ab71e1db87333572d1463
[ "Apache-2.0" ]
null
null
null
import random import string import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'} import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) class DataLoader: def __init__(self, simulator, verbose=False): self.verbose = verbose self.x_train = [] self.x_test = [] self.y_train = [] self.y_test = [] self.y_reg_train = [] self.y_reg_test = [] self.sim = simulator self.maxs = [] def normalize(self, x): x_min = np.min(x) x_max = np.max(x) return (x - x_min)/(x_max - x_min) def load_data(self): '''create (simulate) a synthetic "time series" data vector (y) for each of the input (x) such that y=Gx and G is linear self.sim represents some abstract function (i.e. fluid flow simulator) self.y_reg is presimulated ''' x = np.load("data\M.npy") y_reg = np.load("data\D.npy") #reshape the models x_r = np.zeros([x.shape[0], 100, 100, 1]) for i in range(x.shape[0]): x_r[i,:,:,:] = np.reshape(x[i,:], [1, 100, 100, 1]) x = x_r self.maxs = np.max(y_reg, axis=0) y_reg = y_reg/self.maxs #create label, for every 500 models for 5 scenarios y = np.zeros([x.shape[0], ], dtype=np.int32) for i in range(5): y[i*500:i*500+500] = i #randomly sample from five scenarios np.random.seed(999) indexes = np.random.permutation(np.arange(0, x.shape[0], dtype=np.int32)) partition = int(x.shape[0]*0.8) train_idx = indexes[0:partition] test_idx = indexes[partition:] self.x_train = x[train_idx] self.x_test = x[test_idx] self.y_train = y[train_idx] self.y_test = y[test_idx] self.y_reg_train = y_reg[train_idx] self.y_reg_test = y_reg[test_idx] if self.verbose: print("Loaded training data x {:s} and y {:s} and y_labels {:s}".format(str(self.x_train.shape), str(self.y_reg_train.shape), str(self.y_train.shape))) print("Loaded testing data x {:s} and y {:s} and y_labels {:s}".format(str(self.x_test.shape), str(self.y_reg_test.shape), str(self.y_test.shape))) return self.x_train, self.x_test, self.y_train, self.y_test, self.y_reg_train, self.y_reg_test def simulator(self, ms): '''simulate observations for a given set of models ''' ms = np.where(ms<0.5, 0, 1) d_dim = self.sim.shape[-1] ds = np.zeros([ms.shape[0], d_dim]) for i in range(ms.shape[0]): print("Running simulation ", i) ds[i:i+1, :] = np.reshape((ms[i:i+1, :, :, 0]), [1, ms.shape[1]*ms.shape[2]])@self.sim ds[i:i+1, :] = ds[i:i+1, :] /np.squeeze(self.maxs) return np.expand_dims(ds, axis=-1)
29.450549
154
0.657463
7948bca7cba26e291e8de9ff71ddee1cc9187899
2,315
py
Python
projects/python_plugin_code/pandas_1.2_code/tests/html_meta_data/test_meta.py
rendner/py-plugin-dataframe-viewer
188585bd31a6c14413949865b3467dcbf6f5e2d1
[ "Apache-2.0" ]
1
2021-11-07T03:47:51.000Z
2021-11-07T03:47:51.000Z
projects/python_plugin_code/pandas_1.2_code/tests/html_meta_data/test_meta.py
rendner/py-plugin-dataframe-viewer
188585bd31a6c14413949865b3467dcbf6f5e2d1
[ "Apache-2.0" ]
null
null
null
projects/python_plugin_code/pandas_1.2_code/tests/html_meta_data/test_meta.py
rendner/py-plugin-dataframe-viewer
188585bd31a6c14413949865b3467dcbf6f5e2d1
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 cms.rendner (Daniel Schmidt) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytest from plugin_code.patched_styler import PatchedStyler from tests.helpers.asserts.table_extractor import TableExtractor, OffsetIndexTranslator, SequenceIndexTranslator df = pd.DataFrame.from_dict({ "col_0": [0, 1, 2, 3, 4], "col_1": [5, 6, 7, 8, 9], "col_2": [10, 11, 12, 13, 14], "col_3": [15, 16, 17, 18, 19], "col_4": [20, 21, 22, 23, 24], }) @pytest.mark.parametrize( "styler, expected_row_indexer_class, expected_col_indexer_class", [ (df.style, OffsetIndexTranslator, OffsetIndexTranslator), (df.style.hide_index().hide_columns(subset=df.columns), OffsetIndexTranslator, OffsetIndexTranslator), (df.style.hide_columns(subset=['col_1']), OffsetIndexTranslator, SequenceIndexTranslator), (df.style.hide_index(), OffsetIndexTranslator, OffsetIndexTranslator), ]) def test_correct_indexer(styler, expected_row_indexer_class, expected_col_indexer_class): table_extractor = TableExtractor() patched_styler = PatchedStyler(styler) rows_per_chunk = 2 cols_per_chunk = 2 table_structure = patched_styler.get_table_structure() for ri in range(0, table_structure.visible_rows_count, rows_per_chunk): for ci in range(0, table_structure.visible_columns_count, cols_per_chunk): chunk_html = patched_styler.render_chunk( ri, ci, ri + rows_per_chunk, ci + cols_per_chunk ) table_extractor.extract(chunk_html) assert isinstance(table_extractor.ctx.col_indexer, expected_col_indexer_class) assert isinstance(table_extractor.ctx.row_indexer, expected_row_indexer_class)
40.614035
112
0.714471
7948bd2959c9a88f180f6ff153c3b93d0b338ebe
3,549
py
Python
bindings/python/ensmallen/datasets/string/stanieriacyanosphaera.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-09-10T18:31:58.000Z
2022-03-24T04:28:04.000Z
bindings/python/ensmallen/datasets/string/stanieriacyanosphaera.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/stanieriacyanosphaera.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Stanieria cyanosphaera. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def StanieriaCyanosphaera( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Stanieria cyanosphaera graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Stanieria cyanosphaera graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="StanieriaCyanosphaera", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
32.861111
223
0.677656
7948bd7d09cf1dbd26dee5eab201ac3dc58b399f
5,878
py
Python
discord/stage_instance.py
CuzImSyntax/dis.py
2f56d546f2594e1dbb6955c8b13b3a884a04eca6
[ "MIT" ]
1
2021-09-11T13:39:44.000Z
2021-09-11T13:39:44.000Z
discord/stage_instance.py
CuzImSyntax/discordIO
47cd508ed48004aa61a41a5b196d3ff003456219
[ "MIT" ]
null
null
null
discord/stage_instance.py
CuzImSyntax/discordIO
47cd508ed48004aa61a41a5b196d3ff003456219
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2015-2021 Rapptz 2021-present CuzImSyntax Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import Optional, TYPE_CHECKING from .utils import MISSING, cached_slot_property from .mixins import Hashable from .errors import InvalidArgument from .enums import StagePrivacyLevel, try_enum __all__ = ( 'StageInstance', ) if TYPE_CHECKING: from .types.channel import StageInstance as StageInstancePayload from .state import ConnectionState from .channel import StageChannel from .guild import Guild class StageInstance(Hashable): """Represents a stage instance of a stage channel in a guild. .. versionadded:: 2.0 .. container:: operations .. describe:: x == y Checks if two stage instances are equal. .. describe:: x != y Checks if two stage instances are not equal. .. describe:: hash(x) Returns the stage instance's hash. Attributes ----------- id: :class:`int` The stage instance's ID. guild: :class:`Guild` The guild that the stage instance is running in. channel_id: :class:`int` The ID of the channel that the stage instance is running in. topic: :class:`str` The topic of the stage instance. privacy_level: :class:`StagePrivacyLevel` The privacy level of the stage instance. discoverable_disabled: :class:`bool` Whether discoverability for the stage instance is disabled. """ __slots__ = ( '_state', 'id', 'guild', 'channel_id', 'topic', 'privacy_level', 'discoverable_disabled', '_cs_channel', ) def __init__(self, *, state: ConnectionState, guild: Guild, data: StageInstancePayload) -> None: self._state = state self.guild = guild self._update(data) def _update(self, data: StageInstancePayload): self.id: int = int(data['id']) self.channel_id: int = int(data['channel_id']) self.topic: str = data['topic'] self.privacy_level: StagePrivacyLevel = try_enum(StagePrivacyLevel, data['privacy_level']) self.discoverable_disabled: bool = data.get('discoverable_disabled', False) def __repr__(self) -> str: return f'<StageInstance id={self.id} guild={self.guild!r} channel_id={self.channel_id} topic={self.topic!r}>' @cached_slot_property('_cs_channel') def channel(self) -> Optional[StageChannel]: """Optional[:class:`StageChannel`]: The channel that stage instance is running in.""" # the returned channel will always be a StageChannel or None return self._state.get_channel(self.channel_id) # type: ignore def is_public(self) -> bool: return self.privacy_level is StagePrivacyLevel.public async def edit(self, *, topic: str = MISSING, privacy_level: StagePrivacyLevel = MISSING, reason: Optional[str] = None) -> None: """|coro| Edits the stage instance. You must have the :attr:`~Permissions.manage_channels` permission to use this. Parameters ----------- topic: :class:`str` The stage instance's new topic. privacy_level: :class:`StagePrivacyLevel` The stage instance's new privacy level. reason: :class:`str` The reason the stage instance was edited. Shows up on the audit log. Raises ------ InvalidArgument If the ``privacy_level`` parameter is not the proper type. Forbidden You do not have permissions to edit the stage instance. HTTPException Editing a stage instance failed. """ payload = {} if topic is not MISSING: payload['topic'] = topic if privacy_level is not MISSING: if not isinstance(privacy_level, StagePrivacyLevel): raise InvalidArgument('privacy_level field must be of type PrivacyLevel') payload['privacy_level'] = privacy_level.value if payload: await self._state.http.edit_stage_instance(self.channel_id, **payload, reason=reason) async def delete(self, *, reason: Optional[str] = None) -> None: """|coro| Deletes the stage instance. You must have the :attr:`~Permissions.manage_channels` permission to use this. Parameters ----------- reason: :class:`str` The reason the stage instance was deleted. Shows up on the audit log. Raises ------ Forbidden You do not have permissions to delete the stage instance. HTTPException Deleting the stage instance failed. """ await self._state.http.delete_stage_instance(self.channel_id, reason=reason)
33.20904
132
0.6623
7948bf95f48d341182df24c9e4b019dba8fed4bd
2,040
py
Python
matchms/importing/load_from_usi.py
maximskorik/matchms
922f5afaef123a793194bdd74391027477cbb844
[ "Apache-2.0" ]
null
null
null
matchms/importing/load_from_usi.py
maximskorik/matchms
922f5afaef123a793194bdd74391027477cbb844
[ "Apache-2.0" ]
null
null
null
matchms/importing/load_from_usi.py
maximskorik/matchms
922f5afaef123a793194bdd74391027477cbb844
[ "Apache-2.0" ]
null
null
null
import json import logging import numpy as np import requests from ..Spectrum import Spectrum logger = logging.getLogger("matchms") def load_from_usi(usi: str, server: str = "https://metabolomics-usi.ucsd.edu", metadata_harmonization: bool = True): """Load spectrum from metabolomics USI. USI returns JSON data with keys "peaks", "n_peaks" and "precuror_mz" .. code-block:: python from matchms.importing import load_from_usi spectrum = load_from_usi("mzspec:MASSBANK::accession:SM858102") print(f"Found spectrum with precursor m/z of {spectrum.get("precursor_mz"):.2f}.") Parameters ---------- usi: Provide the usi. server: string USI server metadata_harmonization : bool, optional Set to False if metadata harmonization to default keys is not desired. The default is True. """ # Create the url url = server + "/json/?usi1=" + usi metadata = {"usi": usi, "server": server} response = requests.get(url) if response.status_code == 404: return None # Extract data and create Spectrum object try: spectral_data = response.json() if spectral_data is None or "peaks" not in spectral_data: logger.info("Empty spectrum found (no data found). Will not be imported.") return None peaks = spectral_data["peaks"] if len(peaks) == 0: logger.info("Empty spectrum found (no peaks in 'peaks_json'). Will not be imported.") return None mz_list, intensity_list = zip(*peaks) mz_array = np.array(mz_list) intensity_array = np.array(intensity_list) metadata["precursor_mz"] = spectral_data.get("precursor_mz", None) s = Spectrum(mz_array, intensity_array, metadata, metadata_harmonization=metadata_harmonization) return s except json.decoder.JSONDecodeError: logger.warning("Failed to unpack json (JSONDecodeError).") return None
30.909091
97
0.644118
7948bff6364f769ed01dac24ef18a8322ab8dda5
2,988
py
Python
forte/data/container.py
bhaskar2443053/forte
95fabd94126d45c0db07cdcc197049ed1859d228
[ "Apache-2.0" ]
null
null
null
forte/data/container.py
bhaskar2443053/forte
95fabd94126d45c0db07cdcc197049ed1859d228
[ "Apache-2.0" ]
null
null
null
forte/data/container.py
bhaskar2443053/forte
95fabd94126d45c0db07cdcc197049ed1859d228
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The Forte Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Forte Container module. """ # Disable some pylint check for stub and overloads. # pylint: disable=function-redefined,multiple-statements from abc import abstractmethod from typing import Dict, Generic, Set, Tuple, TypeVar, Iterator __all__ = [ "EntryContainer", "ContainerType", "BasePointer", ] E = TypeVar("E") L = TypeVar("L") G = TypeVar("G") class BasePointer: """ Objects to point to other objects in the data pack. """ def __str__(self): raise NotImplementedError def __getstate__(self): state = self.__dict__.copy() return state class EntryContainer(Generic[E, L, G]): def __init__(self): # Record the set of entries created by some components. self._creation_records: Dict[str, Set[int]] = {} # Record the set of fields modified by this component. The 2-tuple # identify the entry field, such as (2, lemma). self._field_records: Dict[str, Set[Tuple[int, str]]] = {} def __setstate__(self, state): r"""In deserialization, - The :class:`IdManager` is recreated from the id count. """ self.__dict__.update(state) if "creation_records" in self.__dict__: self._creation_records = self.__dict__.pop("creation_records") if "field_records" in self.__dict__: self._field_records = self.__dict__.pop("field_records") @abstractmethod def on_entry_creation(self, entry: E): raise NotImplementedError @abstractmethod def record_field(self, entry_id: int, field_name: str): raise NotImplementedError @abstractmethod def _validate(self, item: E) -> bool: r"""Validate whether this entry type can be added. This method is called by the :meth:`~forte.data.ontology.core.Entry.__init__` method when an instance of :class:`~forte.data.ontology.core.Entry` is being added to the pack. Args: item: The entry itself. """ raise NotImplementedError @abstractmethod def get_entry(self, ptr: int) -> E: raise NotImplementedError def get_span_text(self, begin: int, end: int): raise NotImplementedError def get_all_creator(self) -> Iterator[str]: yield from self._creation_records.keys() ContainerType = TypeVar("ContainerType", bound=EntryContainer)
29.584158
77
0.677041
7948c1451e18296a8c4d038cc00e22177b21a941
12,235
py
Python
resource_manage_sdk/model/easy_command/task_detail_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
resource_manage_sdk/model/easy_command/task_detail_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
resource_manage_sdk/model/easy_command/task_detail_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: task_detail.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from resource_manage_sdk.model.easy_command import task_callback_pb2 as resource__manage__sdk_dot_model_dot_easy__command_dot_task__callback__pb2 from resource_manage_sdk.model.easy_command import target_log_pb2 as resource__manage__sdk_dot_model_dot_easy__command_dot_target__log__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='task_detail.proto', package='easy_command', syntax='proto3', serialized_options=_b('ZFgo.easyops.local/contracts/protorepo-models/easyops/model/easy_command'), serialized_pb=_b('\n\x11task_detail.proto\x12\x0c\x65\x61sy_command\x1a:resource_manage_sdk/model/easy_command/task_callback.proto\x1a\x37resource_manage_sdk/model/easy_command/target_log.proto\"\xd7\x03\n\nTaskDetail\x12\x0e\n\x06taskId\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0c\n\x04type\x18\x03 \x01(\t\x12\x11\n\toperation\x18\x04 \x01(\t\x12\x0f\n\x07groupId\x18\x05 \x01(\t\x12\r\n\x05\x61ppId\x18\x06 \x01(\t\x12\x11\n\tclusterId\x18\x07 \x01(\t\x12\x11\n\tpackageId\x18\x08 \x01(\t\x12\x11\n\tversionId\x18\t \x01(\t\x12\x12\n\nneedNotify\x18\n \x01(\x08\x12,\n\x08\x63\x61llback\x18\x0b \x01(\x0b\x32\x1a.easy_command.TaskCallback\x12\x10\n\x08\x62\x61tchNum\x18\x0c \x01(\x05\x12\x15\n\rbatchInterval\x18\r \x01(\x05\x12\x12\n\nfailedStop\x18\x0e \x01(\x08\x12\x0b\n\x03org\x18\x0f \x01(\x05\x12\x10\n\x08operator\x18\x10 \x01(\t\x12\x0e\n\x06status\x18\x11 \x01(\t\x12\x0c\n\x04\x63ode\x18\x12 \x01(\x05\x12\x10\n\x08usedTime\x18\x13 \x01(\x05\x12\x11\n\tstartTime\x18\x14 \x01(\t\x12\x12\n\nupdateTime\x18\x15 \x01(\t\x12\x0f\n\x07\x65ndTime\x18\x16 \x01(\t\x12+\n\ntargetsLog\x18\x17 \x03(\x0b\x32\x17.easy_command.TargetLogBHZFgo.easyops.local/contracts/protorepo-models/easyops/model/easy_commandb\x06proto3') , dependencies=[resource__manage__sdk_dot_model_dot_easy__command_dot_task__callback__pb2.DESCRIPTOR,resource__manage__sdk_dot_model_dot_easy__command_dot_target__log__pb2.DESCRIPTOR,]) _TASKDETAIL = _descriptor.Descriptor( name='TaskDetail', full_name='easy_command.TaskDetail', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='taskId', full_name='easy_command.TaskDetail.taskId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='easy_command.TaskDetail.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='easy_command.TaskDetail.type', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='operation', full_name='easy_command.TaskDetail.operation', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupId', full_name='easy_command.TaskDetail.groupId', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='appId', full_name='easy_command.TaskDetail.appId', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clusterId', full_name='easy_command.TaskDetail.clusterId', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='packageId', full_name='easy_command.TaskDetail.packageId', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionId', full_name='easy_command.TaskDetail.versionId', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='needNotify', full_name='easy_command.TaskDetail.needNotify', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='callback', full_name='easy_command.TaskDetail.callback', index=10, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batchNum', full_name='easy_command.TaskDetail.batchNum', index=11, number=12, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batchInterval', full_name='easy_command.TaskDetail.batchInterval', index=12, number=13, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='failedStop', full_name='easy_command.TaskDetail.failedStop', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='org', full_name='easy_command.TaskDetail.org', index=14, number=15, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='operator', full_name='easy_command.TaskDetail.operator', index=15, number=16, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='easy_command.TaskDetail.status', index=16, number=17, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='code', full_name='easy_command.TaskDetail.code', index=17, number=18, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='usedTime', full_name='easy_command.TaskDetail.usedTime', index=18, number=19, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='startTime', full_name='easy_command.TaskDetail.startTime', index=19, number=20, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='updateTime', full_name='easy_command.TaskDetail.updateTime', index=20, number=21, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='endTime', full_name='easy_command.TaskDetail.endTime', index=21, number=22, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targetsLog', full_name='easy_command.TaskDetail.targetsLog', index=22, number=23, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=153, serialized_end=624, ) _TASKDETAIL.fields_by_name['callback'].message_type = resource__manage__sdk_dot_model_dot_easy__command_dot_task__callback__pb2._TASKCALLBACK _TASKDETAIL.fields_by_name['targetsLog'].message_type = resource__manage__sdk_dot_model_dot_easy__command_dot_target__log__pb2._TARGETLOG DESCRIPTOR.message_types_by_name['TaskDetail'] = _TASKDETAIL _sym_db.RegisterFileDescriptor(DESCRIPTOR) TaskDetail = _reflection.GeneratedProtocolMessageType('TaskDetail', (_message.Message,), { 'DESCRIPTOR' : _TASKDETAIL, '__module__' : 'task_detail_pb2' # @@protoc_insertion_point(class_scope:easy_command.TaskDetail) }) _sym_db.RegisterMessage(TaskDetail) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
52.965368
1,242
0.746955
7948c203b13283171734d7e581161f22b3632daa
6,041
py
Python
mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
232
2021-05-25T12:55:24.000Z
2022-03-25T07:58:49.000Z
mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
51
2021-05-29T06:36:54.000Z
2022-03-27T09:24:39.000Z
mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
66
2021-06-01T03:40:08.000Z
2022-03-30T16:51:21.000Z
import numpy as np import torch from ..builder import BBOX_SAMPLERS from .random_sampler import RandomSampler @BBOX_SAMPLERS.register_module() class IoUBalancedNegSampler(RandomSampler): """IoU Balanced Sampling arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) Sampling proposals according to their IoU. `floor_fraction` of needed RoIs are sampled from proposals whose IoU are lower than `floor_thr` randomly. The others are sampled from proposals whose IoU are higher than `floor_thr`. These proposals are sampled from some bins evenly, which are split by `num_bins` via IoU evenly. Args: num (int): number of proposals. pos_fraction (float): fraction of positive proposals. floor_thr (float): threshold (minimum) IoU for IoU balanced sampling, set to -1 if all using IoU balanced sampling. floor_fraction (float): sampling fraction of proposals under floor_thr. num_bins (int): number of bins in IoU balanced sampling. """ def __init__(self, num, pos_fraction, floor_thr=-1, floor_fraction=0, num_bins=3, **kwargs): super(IoUBalancedNegSampler, self).__init__(num, pos_fraction, **kwargs) assert floor_thr >= 0 or floor_thr == -1 assert 0 <= floor_fraction <= 1 assert num_bins >= 1 self.floor_thr = floor_thr self.floor_fraction = floor_fraction self.num_bins = num_bins def sample_via_interval(self, max_overlaps, full_set, num_expected): max_iou = max_overlaps.max() iou_interval = (max_iou - self.floor_thr) / self.num_bins per_num_expected = int(num_expected / self.num_bins) sampled_inds = [] for i in range(self.num_bins): start_iou = self.floor_thr + i * iou_interval end_iou = self.floor_thr + (i + 1) * iou_interval tmp_set = set( np.where( np.logical_and(max_overlaps >= start_iou, max_overlaps < end_iou))[0]) tmp_inds = list(tmp_set & full_set) if len(tmp_inds) > per_num_expected: tmp_sampled_set = self.random_choice(tmp_inds, per_num_expected) else: tmp_sampled_set = np.array(tmp_inds, dtype=np.int) sampled_inds.append(tmp_sampled_set) sampled_inds = np.concatenate(sampled_inds) if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(full_set - set(sampled_inds))) if len(extra_inds) > num_extra: extra_inds = self.random_choice(extra_inds, num_extra) sampled_inds = np.concatenate([sampled_inds, extra_inds]) return sampled_inds def _sample_neg(self, assign_result, num_expected, **kwargs): neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: max_overlaps = assign_result.max_overlaps.cpu().numpy() # balance sampling for negative samples neg_set = set(neg_inds.cpu().numpy()) if self.floor_thr > 0: floor_set = set( np.where( np.logical_and(max_overlaps >= 0, max_overlaps < self.floor_thr))[0]) iou_sampling_set = set( np.where(max_overlaps >= self.floor_thr)[0]) elif self.floor_thr == 0: floor_set = set(np.where(max_overlaps == 0)[0]) iou_sampling_set = set( np.where(max_overlaps > self.floor_thr)[0]) else: floor_set = set() iou_sampling_set = set( np.where(max_overlaps > self.floor_thr)[0]) # for sampling interval calculation self.floor_thr = 0 floor_neg_inds = list(floor_set & neg_set) iou_sampling_neg_inds = list(iou_sampling_set & neg_set) num_expected_iou_sampling = int(num_expected * (1 - self.floor_fraction)) if len(iou_sampling_neg_inds) > num_expected_iou_sampling: if self.num_bins >= 2: iou_sampled_inds = self.sample_via_interval( max_overlaps, set(iou_sampling_neg_inds), num_expected_iou_sampling) else: iou_sampled_inds = self.random_choice( iou_sampling_neg_inds, num_expected_iou_sampling) else: iou_sampled_inds = np.array( iou_sampling_neg_inds, dtype=np.int) num_expected_floor = num_expected - len(iou_sampled_inds) if len(floor_neg_inds) > num_expected_floor: sampled_floor_inds = self.random_choice( floor_neg_inds, num_expected_floor) else: sampled_floor_inds = np.array(floor_neg_inds, dtype=np.int) sampled_inds = np.concatenate( (sampled_floor_inds, iou_sampled_inds)) if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(neg_set - set(sampled_inds))) if len(extra_inds) > num_extra: extra_inds = self.random_choice(extra_inds, num_extra) sampled_inds = np.concatenate((sampled_inds, extra_inds)) sampled_inds = torch.from_numpy(sampled_inds).long().to( assign_result.gt_inds.device) return sampled_inds
43.775362
79
0.578878
7948c2201ac2c9dd120543c19363ced7ca3f257c
6,994
py
Python
torchero/meters/confusion_matrix.py
juancruzsosa/torchero
d1440b7a9c3ab2c1d3abbb282abb9ee1ea240797
[ "MIT" ]
10
2020-07-06T13:35:26.000Z
2021-08-10T09:46:53.000Z
torchero/meters/confusion_matrix.py
juancruzsosa/torchero
d1440b7a9c3ab2c1d3abbb282abb9ee1ea240797
[ "MIT" ]
6
2020-07-07T20:52:16.000Z
2020-07-14T04:05:02.000Z
torchero/meters/confusion_matrix.py
juancruzsosa/torchero
d1440b7a9c3ab2c1d3abbb282abb9ee1ea240797
[ "MIT" ]
1
2021-06-28T17:56:11.000Z
2021-06-28T17:56:11.000Z
from abc import ABCMeta, abstractmethod import torch from torchero.meters.base import BaseMeter class ConfusionMatrixController(object, metaclass=ABCMeta): def __init__(self, normalize=False): self.normalize = normalize self.reset() @property @abstractmethod def matrix(self): pass @abstractmethod def reset(self): pass def increment(self, a, b): for i, j in zip(a, b): self.matrix[i][j] += 1 @property def num_classes(self): return self.matrix.shape[0] def plot(self, ax=None, fig=None, classes=None, xlabel="Predicted label", ylabel="True label", title="Confusion Matrix", cmap="Blues", colorbar=False): try: from matplotlib import pyplot as plt except ImportError: raise ImportError( "Matplotlib is required in order to plot confusion matrix" ) if (classes is not None) and (len(classes) != self.num_classes): raise ValueError("number of classes is: {} but {} were passed!".format(self.num_classes, len(classes))) if ax is None: ax = plt.gca() if fig is None: fig = plt.gcf() matrix = self.matrix normalized_matrix = matrix / matrix.sum(dim=0) cmap = plt.get_cmap(cmap) im=ax.imshow(normalized_matrix, cmap=cmap, vmin=0, vmax=1) ax.set_xticks(range(self.num_classes)) ax.set_yticks(range(self.num_classes)) ax.xaxis.set_ticks_position('top') ax.xaxis.set_label_position('top') for i in range(matrix.shape[0]): for j in range(matrix.shape[1]): value = matrix[i, j].item() normalized_value = normalized_matrix[i, j].item() if self.normalize: value = '{:.2f}'.format(value) else: value = '{}'.format(int(value)) if i == j: value += " " + "({:.0f}%)".format(normalized_value * 100) r, g, b, _ = cmap(normalized_value) text_color = 'white' if r * g * b < 0.5 else 'black' text = ax.text(j, i, value, ha="center", va="center", color=text_color) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if title is not None: ax.set_title(title) if classes is not None: ax.set_xticklabels(classes) ax.set_yticklabels(classes) if colorbar: fig.colorbar(im, ax=ax) class FixedConfusionMatrixController(ConfusionMatrixController): def __init__(self, nr_classes, normalize=False): if not isinstance(nr_classes, int) or nr_classes == 0: raise Exception(ConfusionMatrix.INVALID_NR_OF_CLASSES_MESSAGE .format(nr_classes=nr_classes)) self._nr_classes = nr_classes super(FixedConfusionMatrixController, self).__init__(normalize=normalize) @property def matrix(self): if self.normalize: return self._matrix / self._matrix.sum(dim=0) else: return self._matrix def reset(self): self._matrix = torch.zeros(self._nr_classes, self._nr_classes) def check_inputs(self, xs): if not ((0 <= xs) & (xs < self._matrix.shape[0])).all(): raise Exception(ConfusionMatrix.INVALID_LABELS_MESSAGE) def increment(self, a, b): self.check_inputs(torch.cat([a, b])) super(FixedConfusionMatrixController, self).increment(a, b) class ResizableConfusionMatrixController(ConfusionMatrixController): @property def matrix(self): if self.normalize: return self._matrix / self._matrix.sum(dim=0) else: return self._matrix def reset(self): self._matrix = torch.zeros(1, 1) def expand(self, n): total_rows = n + self._matrix.shape[0] total_cols = n + self._matrix.shape[1] old_matrix, self._matrix = self._matrix, torch.zeros(total_rows, total_cols) self._matrix[:old_matrix.shape[0], :old_matrix.shape[1]] = old_matrix def increment(self, a, b): max_class_nr = max(torch.max(a), torch.max(b)) if max_class_nr >= self._matrix.shape[0]: n = max_class_nr - self._matrix.shape[0] + 1 self.expand(n) super(ResizableConfusionMatrixController, self).increment(a, b) class ConfusionMatrix(BaseMeter): INVALID_NR_OF_CLASSES_MESSAGE = ( 'Expected number of classes to be greater than one. Got {nr_classes}' ) INVALID_INPUT_TYPE_MESSAGE = ( 'Expected input tensors of type LongTensor. Got {type_}' ) INVALID_BATCH_DIMENSION_MESSAGE = ( 'Expected input tensors of 1-dimention. Got {dims}' ) INVALID_LENGTHS_MESSAGE = ( 'Expected input and targets of same lengths' ) INVALID_LABELS_MESSAGE = ( 'Expected labels between 0 and number of classes' ) def __init__(self, nr_classes='auto', normalize=False): """ Constructor Arguments: nr_classes (int or str): If 'auto' is passed the confusion matrix will readjust to the observed ranges. If a number is passed this will reserve the confusion matrix for that size. Default 'auto' normalize (bool): IF passed the confusion matrix will hold percentages """ if isinstance(nr_classes, str) and nr_classes == 'auto': self.matrix_controller = ResizableConfusionMatrixController(normalize=normalize) elif isinstance(nr_classes, int) and nr_classes > 0: self.matrix_controller = FixedConfusionMatrixController(nr_classes, normalize=normalize) else: raise ValueError(self.INVALID_NR_OF_CLASSES_MESSAGE .format(nr_classes=nr_classes)) self.reset() def reset(self): self.matrix_controller.reset() def check_tensor(self, a): if (isinstance(a, torch.FloatTensor) or isinstance(a, torch.cuda.FloatTensor)): raise Exception(self.INVALID_INPUT_TYPE_MESSAGE .format(type_=a.type())) if a.dim() > 1: raise Exception(self.INVALID_BATCH_DIMENSION_MESSAGE .format(dims=a.dim())) def measure(self, a, b): if a.dim() == 2: a = a.topk(k=1, dim=1)[1].squeeze(1) if b.dim() == 2: b = b.topk(k=1, dim=1)[1].squeeze(1) self.check_tensor(a) self.check_tensor(b) if len(a) != len(b): raise Exception(self.INVALID_LENGTHS_MESSAGE) self.matrix_controller.increment(a, b) def value(self): return self.matrix_controller
34.117073
155
0.591221
7948c2813024cd7d1a5a678af60c5d4f84b72bd9
227
py
Python
server/deploy.py
Autophagy/Regn
f3cae76f7662b45a062c9a8f20e0f085b5eba3cd
[ "MIT" ]
3
2018-04-02T23:35:05.000Z
2018-04-03T18:51:56.000Z
server/deploy.py
Autophagy/Regn
f3cae76f7662b45a062c9a8f20e0f085b5eba3cd
[ "MIT" ]
null
null
null
server/deploy.py
Autophagy/Regn
f3cae76f7662b45a062c9a8f20e0f085b5eba3cd
[ "MIT" ]
null
null
null
from app import create_app, db import os app = create_app(os.getenv('FLASK_CONFIG') or 'default') db.create_all() if __name__ == "__main__": port = int(os.environ.get('PORT', 5000)) app.run(host='0.0.0.0', port=port)
22.7
56
0.678414
7948c2c62855eef8c6e5b22a2d02f4ff62c046a5
496
py
Python
python_basico_(logica_de_programacao)/aula20.py
Alesxander36/Curso_de_Python3
438f25789921e5d61500e3483af62fc41bddc50f
[ "MIT" ]
null
null
null
python_basico_(logica_de_programacao)/aula20.py
Alesxander36/Curso_de_Python3
438f25789921e5d61500e3483af62fc41bddc50f
[ "MIT" ]
null
null
null
python_basico_(logica_de_programacao)/aula20.py
Alesxander36/Curso_de_Python3
438f25789921e5d61500e3483af62fc41bddc50f
[ "MIT" ]
null
null
null
# Indices # 0123456789.................33 frase = 'o rato roeu a roupa do rei de roma' # Iterável tamanho_frase = len(frase) print(tamanho_frase) contador = 0 nova_string = '' input_do_usuario = input('Qual letra deseja colocar em maiuscula: ') # Iteração <- Iterar while contador < tamanho_frase: letra = frase[contador] if letra == input_do_usuario: nova_string += input_do_usuario.upper() else: nova_string += letra contador += 1 print(nova_string)
21.565217
68
0.663306
7948c4c3b4efe69fbd1db2e3c76ecc667093d073
25,992
py
Python
pythonscript/x11-64-cpython/lib/python3.6/asyncio/sslproto.py
LeonardoJavalindo/GameJamMiner
f0aeff4e666cd0de439f2237e632b8ab03871476
[ "Apache-2.0", "OpenSSL" ]
7
2018-09-10T05:42:46.000Z
2021-05-01T12:48:30.000Z
pythonscript/x11-64-cpython/lib/python3.6/asyncio/sslproto.py
LeonardoJavalindo/GameJamMiner
f0aeff4e666cd0de439f2237e632b8ab03871476
[ "Apache-2.0", "OpenSSL" ]
null
null
null
pythonscript/x11-64-cpython/lib/python3.6/asyncio/sslproto.py
LeonardoJavalindo/GameJamMiner
f0aeff4e666cd0de439f2237e632b8ab03871476
[ "Apache-2.0", "OpenSSL" ]
1
2021-06-09T16:44:57.000Z
2021-06-09T16:44:57.000Z
import collections import warnings try: import ssl except ImportError: # pragma: no cover ssl = None from . import base_events from . import compat from . import protocols from . import transports from .log import logger def _create_transport_context(server_side, server_hostname): if server_side: raise ValueError('Server side SSL needs a valid SSLContext') # Client side may pass ssl=True to use a default # context; in that case the sslcontext passed is None. # The default is secure for client connections. if hasattr(ssl, 'create_default_context'): # Python 3.4+: use up-to-date strong settings. sslcontext = ssl.create_default_context() if not server_hostname: sslcontext.check_hostname = False else: # Fallback for Python 3.3. sslcontext = ssl.SSLContext(ssl.PROTOCOL_SSLv23) sslcontext.options |= ssl.OP_NO_SSLv2 sslcontext.options |= ssl.OP_NO_SSLv3 sslcontext.set_default_verify_paths() sslcontext.verify_mode = ssl.CERT_REQUIRED return sslcontext def _is_sslproto_available(): return hasattr(ssl, "MemoryBIO") # States of an _SSLPipe. _UNWRAPPED = "UNWRAPPED" _DO_HANDSHAKE = "DO_HANDSHAKE" _WRAPPED = "WRAPPED" _SHUTDOWN = "SHUTDOWN" class _SSLPipe(object): """An SSL "Pipe". An SSL pipe allows you to communicate with an SSL/TLS protocol instance through memory buffers. It can be used to implement a security layer for an existing connection where you don't have access to the connection's file descriptor, or for some reason you don't want to use it. An SSL pipe can be in "wrapped" and "unwrapped" mode. In unwrapped mode, data is passed through untransformed. In wrapped mode, application level data is encrypted to SSL record level data and vice versa. The SSL record level is the lowest level in the SSL protocol suite and is what travels as-is over the wire. An SslPipe initially is in "unwrapped" mode. To start SSL, call do_handshake(). To shutdown SSL again, call unwrap(). """ max_size = 256 * 1024 # Buffer size passed to read() def __init__(self, context, server_side, server_hostname=None): """ The *context* argument specifies the ssl.SSLContext to use. The *server_side* argument indicates whether this is a server side or client side transport. The optional *server_hostname* argument can be used to specify the hostname you are connecting to. You may only specify this parameter if the _ssl module supports Server Name Indication (SNI). """ self._context = context self._server_side = server_side self._server_hostname = server_hostname self._state = _UNWRAPPED self._incoming = ssl.MemoryBIO() self._outgoing = ssl.MemoryBIO() self._sslobj = None self._need_ssldata = False self._handshake_cb = None self._shutdown_cb = None @property def context(self): """The SSL context passed to the constructor.""" return self._context @property def ssl_object(self): """The internal ssl.SSLObject instance. Return None if the pipe is not wrapped. """ return self._sslobj @property def need_ssldata(self): """Whether more record level data is needed to complete a handshake that is currently in progress.""" return self._need_ssldata @property def wrapped(self): """ Whether a security layer is currently in effect. Return False during handshake. """ return self._state == _WRAPPED def do_handshake(self, callback=None): """Start the SSL handshake. Return a list of ssldata. A ssldata element is a list of buffers The optional *callback* argument can be used to install a callback that will be called when the handshake is complete. The callback will be called with None if successful, else an exception instance. """ if self._state != _UNWRAPPED: raise RuntimeError('handshake in progress or completed') self._sslobj = self._context.wrap_bio( self._incoming, self._outgoing, server_side=self._server_side, server_hostname=self._server_hostname) self._state = _DO_HANDSHAKE self._handshake_cb = callback ssldata, appdata = self.feed_ssldata(b'', only_handshake=True) assert len(appdata) == 0 return ssldata def shutdown(self, callback=None): """Start the SSL shutdown sequence. Return a list of ssldata. A ssldata element is a list of buffers The optional *callback* argument can be used to install a callback that will be called when the shutdown is complete. The callback will be called without arguments. """ if self._state == _UNWRAPPED: raise RuntimeError('no security layer present') if self._state == _SHUTDOWN: raise RuntimeError('shutdown in progress') assert self._state in (_WRAPPED, _DO_HANDSHAKE) self._state = _SHUTDOWN self._shutdown_cb = callback ssldata, appdata = self.feed_ssldata(b'') assert appdata == [] or appdata == [b''] return ssldata def feed_eof(self): """Send a potentially "ragged" EOF. This method will raise an SSL_ERROR_EOF exception if the EOF is unexpected. """ self._incoming.write_eof() ssldata, appdata = self.feed_ssldata(b'') assert appdata == [] or appdata == [b''] def feed_ssldata(self, data, only_handshake=False): """Feed SSL record level data into the pipe. The data must be a bytes instance. It is OK to send an empty bytes instance. This can be used to get ssldata for a handshake initiated by this endpoint. Return a (ssldata, appdata) tuple. The ssldata element is a list of buffers containing SSL data that needs to be sent to the remote SSL. The appdata element is a list of buffers containing plaintext data that needs to be forwarded to the application. The appdata list may contain an empty buffer indicating an SSL "close_notify" alert. This alert must be acknowledged by calling shutdown(). """ if self._state == _UNWRAPPED: # If unwrapped, pass plaintext data straight through. if data: appdata = [data] else: appdata = [] return ([], appdata) self._need_ssldata = False if data: self._incoming.write(data) ssldata = [] appdata = [] try: if self._state == _DO_HANDSHAKE: # Call do_handshake() until it doesn't raise anymore. self._sslobj.do_handshake() self._state = _WRAPPED if self._handshake_cb: self._handshake_cb(None) if only_handshake: return (ssldata, appdata) # Handshake done: execute the wrapped block if self._state == _WRAPPED: # Main state: read data from SSL until close_notify while True: chunk = self._sslobj.read(self.max_size) appdata.append(chunk) if not chunk: # close_notify break elif self._state == _SHUTDOWN: # Call shutdown() until it doesn't raise anymore. self._sslobj.unwrap() self._sslobj = None self._state = _UNWRAPPED if self._shutdown_cb: self._shutdown_cb() elif self._state == _UNWRAPPED: # Drain possible plaintext data after close_notify. appdata.append(self._incoming.read()) except (ssl.SSLError, ssl.CertificateError) as exc: if getattr(exc, 'errno', None) not in ( ssl.SSL_ERROR_WANT_READ, ssl.SSL_ERROR_WANT_WRITE, ssl.SSL_ERROR_SYSCALL): if self._state == _DO_HANDSHAKE and self._handshake_cb: self._handshake_cb(exc) raise self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ) # Check for record level data that needs to be sent back. # Happens for the initial handshake and renegotiations. if self._outgoing.pending: ssldata.append(self._outgoing.read()) return (ssldata, appdata) def feed_appdata(self, data, offset=0): """Feed plaintext data into the pipe. Return an (ssldata, offset) tuple. The ssldata element is a list of buffers containing record level data that needs to be sent to the remote SSL instance. The offset is the number of plaintext bytes that were processed, which may be less than the length of data. NOTE: In case of short writes, this call MUST be retried with the SAME buffer passed into the *data* argument (i.e. the id() must be the same). This is an OpenSSL requirement. A further particularity is that a short write will always have offset == 0, because the _ssl module does not enable partial writes. And even though the offset is zero, there will still be encrypted data in ssldata. """ assert 0 <= offset <= len(data) if self._state == _UNWRAPPED: # pass through data in unwrapped mode if offset < len(data): ssldata = [data[offset:]] else: ssldata = [] return (ssldata, len(data)) ssldata = [] view = memoryview(data) while True: self._need_ssldata = False try: if offset < len(view): offset += self._sslobj.write(view[offset:]) except ssl.SSLError as exc: # It is not allowed to call write() after unwrap() until the # close_notify is acknowledged. We return the condition to the # caller as a short write. if exc.reason == 'PROTOCOL_IS_SHUTDOWN': exc.errno = ssl.SSL_ERROR_WANT_READ if exc.errno not in (ssl.SSL_ERROR_WANT_READ, ssl.SSL_ERROR_WANT_WRITE, ssl.SSL_ERROR_SYSCALL): raise self._need_ssldata = (exc.errno == ssl.SSL_ERROR_WANT_READ) # See if there's any record level data back for us. if self._outgoing.pending: ssldata.append(self._outgoing.read()) if offset == len(view) or self._need_ssldata: break return (ssldata, offset) class _SSLProtocolTransport(transports._FlowControlMixin, transports.Transport): def __init__(self, loop, ssl_protocol, app_protocol): self._loop = loop # SSLProtocol instance self._ssl_protocol = ssl_protocol self._app_protocol = app_protocol self._closed = False def get_extra_info(self, name, default=None): """Get optional transport information.""" return self._ssl_protocol._get_extra_info(name, default) def set_protocol(self, protocol): self._app_protocol = protocol def get_protocol(self): return self._app_protocol def is_closing(self): return self._closed def close(self): """Close the transport. Buffered data will be flushed asynchronously. No more data will be received. After all buffered data is flushed, the protocol's connection_lost() method will (eventually) called with None as its argument. """ self._closed = True self._ssl_protocol._start_shutdown() # On Python 3.3 and older, objects with a destructor part of a reference # cycle are never destroyed. It's not more the case on Python 3.4 thanks # to the PEP 442. if compat.PY34: def __del__(self): if not self._closed: warnings.warn("unclosed transport %r" % self, ResourceWarning, source=self) self.close() def pause_reading(self): """Pause the receiving end. No data will be passed to the protocol's data_received() method until resume_reading() is called. """ self._ssl_protocol._transport.pause_reading() def resume_reading(self): """Resume the receiving end. Data received will once again be passed to the protocol's data_received() method. """ self._ssl_protocol._transport.resume_reading() def set_write_buffer_limits(self, high=None, low=None): """Set the high- and low-water limits for write flow control. These two values control when to call the protocol's pause_writing() and resume_writing() methods. If specified, the low-water limit must be less than or equal to the high-water limit. Neither value can be negative. The defaults are implementation-specific. If only the high-water limit is given, the low-water limit defaults to an implementation-specific value less than or equal to the high-water limit. Setting high to zero forces low to zero as well, and causes pause_writing() to be called whenever the buffer becomes non-empty. Setting low to zero causes resume_writing() to be called only once the buffer is empty. Use of zero for either limit is generally sub-optimal as it reduces opportunities for doing I/O and computation concurrently. """ self._ssl_protocol._transport.set_write_buffer_limits(high, low) def get_write_buffer_size(self): """Return the current size of the write buffer.""" return self._ssl_protocol._transport.get_write_buffer_size() def write(self, data): """Write some data bytes to the transport. This does not block; it buffers the data and arranges for it to be sent out asynchronously. """ if not isinstance(data, (bytes, bytearray, memoryview)): raise TypeError("data: expecting a bytes-like instance, got {!r}" .format(type(data).__name__)) if not data: return self._ssl_protocol._write_appdata(data) def can_write_eof(self): """Return True if this transport supports write_eof(), False if not.""" return False def abort(self): """Close the transport immediately. Buffered data will be lost. No more data will be received. The protocol's connection_lost() method will (eventually) be called with None as its argument. """ self._ssl_protocol._abort() class SSLProtocol(protocols.Protocol): """SSL protocol. Implementation of SSL on top of a socket using incoming and outgoing buffers which are ssl.MemoryBIO objects. """ def __init__(self, loop, app_protocol, sslcontext, waiter, server_side=False, server_hostname=None, call_connection_made=True): if ssl is None: raise RuntimeError('stdlib ssl module not available') if not sslcontext: sslcontext = _create_transport_context(server_side, server_hostname) self._server_side = server_side if server_hostname and not server_side: self._server_hostname = server_hostname else: self._server_hostname = None self._sslcontext = sslcontext # SSL-specific extra info. More info are set when the handshake # completes. self._extra = dict(sslcontext=sslcontext) # App data write buffering self._write_backlog = collections.deque() self._write_buffer_size = 0 self._waiter = waiter self._loop = loop self._app_protocol = app_protocol self._app_transport = _SSLProtocolTransport(self._loop, self, self._app_protocol) # _SSLPipe instance (None until the connection is made) self._sslpipe = None self._session_established = False self._in_handshake = False self._in_shutdown = False # transport, ex: SelectorSocketTransport self._transport = None self._call_connection_made = call_connection_made def _wakeup_waiter(self, exc=None): if self._waiter is None: return if not self._waiter.cancelled(): if exc is not None: self._waiter.set_exception(exc) else: self._waiter.set_result(None) self._waiter = None def connection_made(self, transport): """Called when the low-level connection is made. Start the SSL handshake. """ self._transport = transport self._sslpipe = _SSLPipe(self._sslcontext, self._server_side, self._server_hostname) self._start_handshake() def connection_lost(self, exc): """Called when the low-level connection is lost or closed. The argument is an exception object or None (the latter meaning a regular EOF is received or the connection was aborted or closed). """ if self._session_established: self._session_established = False self._loop.call_soon(self._app_protocol.connection_lost, exc) self._transport = None self._app_transport = None self._wakeup_waiter(exc) def pause_writing(self): """Called when the low-level transport's buffer goes over the high-water mark. """ self._app_protocol.pause_writing() def resume_writing(self): """Called when the low-level transport's buffer drains below the low-water mark. """ self._app_protocol.resume_writing() def data_received(self, data): """Called when some SSL data is received. The argument is a bytes object. """ try: ssldata, appdata = self._sslpipe.feed_ssldata(data) except ssl.SSLError as e: if self._loop.get_debug(): logger.warning('%r: SSL error %s (reason %s)', self, e.errno, e.reason) self._abort() return for chunk in ssldata: self._transport.write(chunk) for chunk in appdata: if chunk: self._app_protocol.data_received(chunk) else: self._start_shutdown() break def eof_received(self): """Called when the other end of the low-level stream is half-closed. If this returns a false value (including None), the transport will close itself. If it returns a true value, closing the transport is up to the protocol. """ try: if self._loop.get_debug(): logger.debug("%r received EOF", self) self._wakeup_waiter(ConnectionResetError) if not self._in_handshake: keep_open = self._app_protocol.eof_received() if keep_open: logger.warning('returning true from eof_received() ' 'has no effect when using ssl') finally: self._transport.close() def _get_extra_info(self, name, default=None): if name in self._extra: return self._extra[name] elif self._transport is not None: return self._transport.get_extra_info(name, default) else: return default def _start_shutdown(self): if self._in_shutdown: return if self._in_handshake: self._abort() else: self._in_shutdown = True self._write_appdata(b'') def _write_appdata(self, data): self._write_backlog.append((data, 0)) self._write_buffer_size += len(data) self._process_write_backlog() def _start_handshake(self): if self._loop.get_debug(): logger.debug("%r starts SSL handshake", self) self._handshake_start_time = self._loop.time() else: self._handshake_start_time = None self._in_handshake = True # (b'', 1) is a special value in _process_write_backlog() to do # the SSL handshake self._write_backlog.append((b'', 1)) self._loop.call_soon(self._process_write_backlog) def _on_handshake_complete(self, handshake_exc): self._in_handshake = False sslobj = self._sslpipe.ssl_object try: if handshake_exc is not None: raise handshake_exc peercert = sslobj.getpeercert() if not hasattr(self._sslcontext, 'check_hostname'): # Verify hostname if requested, Python 3.4+ uses check_hostname # and checks the hostname in do_handshake() if (self._server_hostname and self._sslcontext.verify_mode != ssl.CERT_NONE): ssl.match_hostname(peercert, self._server_hostname) except BaseException as exc: if self._loop.get_debug(): if isinstance(exc, ssl.CertificateError): logger.warning("%r: SSL handshake failed " "on verifying the certificate", self, exc_info=True) else: logger.warning("%r: SSL handshake failed", self, exc_info=True) self._transport.close() if isinstance(exc, Exception): self._wakeup_waiter(exc) return else: raise if self._loop.get_debug(): dt = self._loop.time() - self._handshake_start_time logger.debug("%r: SSL handshake took %.1f ms", self, dt * 1e3) # Add extra info that becomes available after handshake. self._extra.update(peercert=peercert, cipher=sslobj.cipher(), compression=sslobj.compression(), ssl_object=sslobj, ) if self._call_connection_made: self._app_protocol.connection_made(self._app_transport) self._wakeup_waiter() self._session_established = True # In case transport.write() was already called. Don't call # immediately _process_write_backlog(), but schedule it: # _on_handshake_complete() can be called indirectly from # _process_write_backlog(), and _process_write_backlog() is not # reentrant. self._loop.call_soon(self._process_write_backlog) def _process_write_backlog(self): # Try to make progress on the write backlog. if self._transport is None: return try: for i in range(len(self._write_backlog)): data, offset = self._write_backlog[0] if data: ssldata, offset = self._sslpipe.feed_appdata(data, offset) elif offset: ssldata = self._sslpipe.do_handshake( self._on_handshake_complete) offset = 1 else: ssldata = self._sslpipe.shutdown(self._finalize) offset = 1 for chunk in ssldata: self._transport.write(chunk) if offset < len(data): self._write_backlog[0] = (data, offset) # A short write means that a write is blocked on a read # We need to enable reading if it is paused! assert self._sslpipe.need_ssldata if self._transport._paused: self._transport.resume_reading() break # An entire chunk from the backlog was processed. We can # delete it and reduce the outstanding buffer size. del self._write_backlog[0] self._write_buffer_size -= len(data) except BaseException as exc: if self._in_handshake: # BaseExceptions will be re-raised in _on_handshake_complete. self._on_handshake_complete(exc) else: self._fatal_error(exc, 'Fatal error on SSL transport') if not isinstance(exc, Exception): # BaseException raise def _fatal_error(self, exc, message='Fatal error on transport'): # Should be called from exception handler only. if isinstance(exc, base_events._FATAL_ERROR_IGNORE): if self._loop.get_debug(): logger.debug("%r: %s", self, message, exc_info=True) else: self._loop.call_exception_handler({ 'message': message, 'exception': exc, 'transport': self._transport, 'protocol': self, }) if self._transport: self._transport._force_close(exc) def _finalize(self): self._sslpipe = None if self._transport is not None: self._transport.close() def _abort(self): try: if self._transport is not None: self._transport.abort() finally: self._finalize()
37.131429
80
0.6008
7948c551307777621e02d1b7b73aec4b093a1b1d
1,058
py
Python
Discord-Bot/commands/Sync.py
akarealemil/WHMCS-Discord-Sync
72c9f16e9c3bfa92bf16d718f04b3fee51c8261c
[ "MIT" ]
null
null
null
Discord-Bot/commands/Sync.py
akarealemil/WHMCS-Discord-Sync
72c9f16e9c3bfa92bf16d718f04b3fee51c8261c
[ "MIT" ]
1
2022-03-14T08:49:20.000Z
2022-03-31T07:40:54.000Z
Discord-Bot/commands/Sync.py
akarealemil/WHMCS-Discord-Sync
72c9f16e9c3bfa92bf16d718f04b3fee51c8261c
[ "MIT" ]
null
null
null
from discord.ext import commands from util import other # Manually syncs all members of the discord # If they're connected and have one or more active products, they receive the client role # Otherwise they lose it class Sync(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(pass_context=True) @commands.is_owner() async def sync(self, ctx): # Deletes original message await ctx.message.delete() # Sends information message message = await ctx.send(embed=other.warning_embed("Manually syncing all members. This may take a while...")) # Function to sync all members await other.total_rank_sync(ctx.author.guild, message) @sync.error async def show_error(self, ctx, error): # If user fails 'is_admin' check if isinstance(error, commands.CheckFailure): await ctx.send(embed=other.error_embed("You do not have permission to use this command.")) def setup(bot): bot.add_cog(Sync(bot))
31.117647
118
0.666352
7948c614a0f5cd66fc523acd84e6f564a708d470
411
py
Python
pygfa/graph_element/parser/__init__.py
Francesco2304/pygfa
9bf6fb5f0a959685300ab863a0e716a2268109f7
[ "MIT" ]
3
2020-06-25T22:47:02.000Z
2022-02-27T15:16:02.000Z
pygfa/graph_element/parser/__init__.py
Francesco2304/pygfa
9bf6fb5f0a959685300ab863a0e716a2268109f7
[ "MIT" ]
3
2017-08-08T12:24:23.000Z
2022-02-27T15:17:25.000Z
pygfa/graph_element/parser/__init__.py
Francesco2304/pygfa
9bf6fb5f0a959685300ab863a0e716a2268109f7
[ "MIT" ]
4
2019-02-04T20:54:53.000Z
2020-05-14T19:52:24.000Z
from pygfa.graph_element.parser import header from pygfa.graph_element.parser import segment from pygfa.graph_element.parser import link from pygfa.graph_element.parser import containment from pygfa.graph_element.parser import path from pygfa.graph_element.parser import edge from pygfa.graph_element.parser import fragment from pygfa.graph_element.parser import gap from pygfa.graph_element.parser import group
45.666667
50
0.871046
7948c7224a121160f1c0eeb24d04e62b461d9950
3,637
py
Python
search_index.py
eduard0729/hocrviewer
83f7d5024d32019d529a1657cbf5b9081a2d6eff
[ "MIT" ]
null
null
null
search_index.py
eduard0729/hocrviewer
83f7d5024d32019d529a1657cbf5b9081a2d6eff
[ "MIT" ]
null
null
null
search_index.py
eduard0729/hocrviewer
83f7d5024d32019d529a1657cbf5b9081a2d6eff
[ "MIT" ]
null
null
null
# encoding=utf-8 from __future__ import unicode_literals import os import re from lxml import etree from whoosh import highlight from whoosh.analysis import CharsetFilter, RegexTokenizer from whoosh.fields import Schema, ID, NUMERIC, TEXT from whoosh.index import create_in, open_dir from whoosh.query import And, Term from whoosh.qparser import QueryParser from whoosh.support.charset import accent_map analyzer = RegexTokenizer() | CharsetFilter(accent_map) schema = Schema( bookname=ID(stored=True), pagenum=NUMERIC(stored=True), content=TEXT(analyzer=analyzer, stored=True) ) BOOK_PATH = os.path.join(os.path.expanduser('books'), '') INDEX_PATH = os.path.join(BOOK_PATH, '.index') class StringFormatter(highlight.Formatter): def __init__(self, begin_str, end_str): self.begin_str = begin_str self.end_str = end_str def format_token(self, text, token, replace=False): tokentext = highlight.get_text(text, token, replace) return "{0}{1}{2}".format(self.begin_str, tokentext, self.end_str) def _get_index(): if not os.path.exists(INDEX_PATH): os.mkdir(INDEX_PATH) ix = create_in(INDEX_PATH, schema) else: ix = open_dir(INDEX_PATH) return ix def index_book(bookname): # TODO: Index by paragraph, not page idx = _get_index() writer = idx.writer() writer.delete_by_term('bookname', unicode(bookname)) path = os.path.join(BOOK_PATH, bookname, "{0}.hocr".format(bookname)) bookname = unicode(os.path.splitext(os.path.basename(path))[0]) booktree = etree.parse(path) for page in booktree.xpath('//div[@class="ocr_page"]'): # Get cleaned up text for page text = "\n".join("".join(x.itertext()).strip() for x in page.xpath('.//span[@class="ocr_line"]')) pagenum = int(page.get('id')[5:]) writer.add_document(bookname=bookname, pagenum=pagenum, content=text) writer.commit() def search(term, bookname=None, limit=None): out_list = [] with _get_index().searcher() as searcher: parser = QueryParser("content", schema=schema) print searcher query = parser.parse(term) if bookname: query = And([query, Term("bookname", unicode(bookname))]) results = searcher.search(query, limit=limit) results.fragmenter.charlimit = None results.fragmenter.maxchars = 300 results.fragmenter.surround = 50 results.formatter = StringFormatter('{{{', '}}}') for hit in results: out_list.append({ 'bookname': hit['bookname'], 'pagenum': hit['pagenum'], 'snippet': hit.highlights("content"), 'highlights': _get_highlights(hit) }) print out_list return out_list def _get_highlights(result): # FIXME: This is f*****ing slow... highlights = [] fname = os.path.join(BOOK_PATH, result['bookname'], "{0}.hocr".format(result['bookname'])) tree = etree.parse(fname) page = tree.xpath('//div[@id="page_{0}"]'.format(result['pagenum']))[0] hl_tokens = set(re.findall(r'{{{([^{}]+)}}}', result.highlights("content"))) for token in hl_tokens: occurences = [x for x in page.xpath('.//span[@class="ocrx_word"]') if "".join(x.itertext()) and token.lower() in "".join(x.itertext()).lower()] for hit in occurences: highlights.append(tuple(hit.get('title').replace('bbox ', '') .split(' '))) return tuple(highlights)
34.971154
77
0.624416
7948c8903b09835e90240f84bbcfc08d8fb622a6
634
py
Python
uncertainty_library/utils.py
Featurespace/uncertainty-attribution
06986c56600366e5516f5b39ec2bc61436ba4b35
[ "MIT" ]
3
2021-07-26T13:10:27.000Z
2022-01-03T16:27:31.000Z
uncertainty_library/utils.py
Featurespace/uncertainty-attribution
06986c56600366e5516f5b39ec2bc61436ba4b35
[ "MIT" ]
null
null
null
uncertainty_library/utils.py
Featurespace/uncertainty-attribution
06986c56600366e5516f5b39ec2bc61436ba4b35
[ "MIT" ]
null
null
null
import tensorflow as tf import numpy as np def remove_test_time_dropout(model_drop): config = model_drop.get_config() for layer in config['layers']: if 'Dropout' in layer['class_name']: layer['inbound_nodes'][0][0][3]['training'] = False model = tf.keras.Model().from_config(config) model.set_weights(model_drop.get_weights()) return model def ds2numpy(ds, max_num_batches): x, y = [], [] for batch in ds.take(max_num_batches): x.append(batch[0].numpy()) y.append(batch[1].numpy()) x = np.concatenate(x, axis=0) y = np.concatenate(y, axis=0) return x, y
27.565217
63
0.641956
7948c9b20366c15ff6b2ff665e5e6b77ab954b0c
13,010
py
Python
ParseSpectra.py
wjs018/DNASpectra
1d62955417651488e6289fcdb4cffa0911663d02
[ "MIT" ]
null
null
null
ParseSpectra.py
wjs018/DNASpectra
1d62955417651488e6289fcdb4cffa0911663d02
[ "MIT" ]
null
null
null
ParseSpectra.py
wjs018/DNASpectra
1d62955417651488e6289fcdb4cffa0911663d02
[ "MIT" ]
null
null
null
"""Parses spectra text files from the Rogers spectrometer and calculates the absorption spectra for DNA (260 nm). A lot of the automation in this program is done through using filename conventions. See README for complete documentation regarding filename conventions. """ import os import re import numpy as np import datetime as dt import matplotlib.pyplot as plt class Spectrum: """A class containing all the data from a single spectrum.""" def __init__(self, eth_gly, mM_NaCl, temperature, time=None): """The ethylene glycol, mM NaCl, and temperature need to be set in the call initializing the spectrum. Time is an optional parameter to be used in time series and ramp experiments.""" self.eth_gly = eth_gly self.mM_NaCl = mM_NaCl self.temperature = temperature self.time = time if temperature == 'blank': self.blank = True else: self.blank = False def add_data(self, lambdas, intensities): """Add the wavelength and intensity data to the spectrum. Should be in the form of numpy arrays.""" self.lambdas = lambdas self.intensities = intensities class Experiment: """A class containing all the spectra from a single experiment.""" def __init__(self, exp_type, ramp=None): """Define the experiment type when initializing an Experiment. Can either be 'time' for a time series measurement, 'temp' for a temperature series experiment, or 'ramp' for a temperature ramp experiment. If the exp_type is a ramp, then the parameter ramp must be specified. It is a tuple containing three floats (start temperature, stop temperature, temperature change per minute).""" self.spectra_list = [] self.abs_list = [] self.blank_list = [] self.exp_type = exp_type if ramp: self.ramp_start = ramp[0] self.ramp_stop = ramp[1] self.ramp_grad = ramp[2] def add_spectrum(self, spectrum): """Add one more spectrum to the experiment.""" if spectrum.blank == True: self.blank_list.append(spectrum) else: self.spectra_list.append(spectrum) def get_temps(self): """Return the list of temperatures for the spectra in the Experiment.""" temp_list = [] if self.exp_type == 'temp': for spec in self.spectra_list: temp_list.append(spec.temperature) return temp_list def calc_abs(self): """Calculate the absorbance spectra.""" if len(self.blank_list) == len(self.spectra_list): # First, sort spectra and blanks by time to make sure they are in order self.sort_spectra() self.sort_spectra(type='blank') for i in range(len(self.spectra_list)): spec = self.spectra_list[i] blank = self.blank_list[i] trans = np.divide( spec.intensities, blank.intensities) trans = trans.clip(min=1e-10) absorb = - np.log10(trans) abs_spec = Spectrum( spec.eth_gly, spec.mM_NaCl, spec.temperature) abs_spec.add_data(spec.lambdas, absorb) self.abs_list.append(abs_spec) else: print "Number of spectra and blanks do not match!" def get_abs_maxes(self): """Get the 260 nm absorbance maximum from each spectrum.""" abs_max_list = [] if len(self.abs_list) == 0: self.calc_abs() if len(self.abs_list) == len(self.spectra_list): lambdas = self.blank_list[0].lambdas ix = np.where((258 < lambdas) & (lambdas < 262)) for spec in self.abs_list: abs_max_list.append(np.max(spec.intensities[ix])) return abs_max_list def plot_melting(self): """Plots Absorbance vs. Temperature curve.""" if len(self.abs_list) == 0: self.calc_abs() if len(self.abs_list) == len(self.spectra_list): temps = self.get_temps() maxes = self.get_abs_maxes() plt.plot(temps, maxes, 'o') plt.title(str(self.spectra_list[0].eth_gly) + "% Ethylene Glycol") plt.show() def get_times(self, type=None): """Returns a list of times the spectra in the experiment were taken. To get a list of times for the blank spectra, specify type='blank'.""" if self.exp_type == 'temp': print "Experiment is wrong type for this function." return None time_list = [] if not type: for spec in self.spectra_list: time_list.append(spec.time) elif type == 'blank': for spec in self.blank_list: time_list.append(spec.time) return time_list def sort_spectra(self, type=None): """Sorts the spectra according to timestamp. Specify type='blank' to sort blank spectra.""" if self.exp_type == 'temp': print "Experiment is wrong type for this function." return None time_list = self.get_times(type=type) time_list.sort() if not type: spec_list = self.spectra_list else: spec_list = self.blank_list sorted_spec_list = [] for timestamp in time_list: for spec in spec_list: if timestamp == spec.time: sorted_spec_list.append(spec) break if not type: self.spectra_list = sorted_spec_list else: self.blank_list = sorted_spec_list def plot_time(self): """Plots absorption as a function of time.""" if len(self.abs_list) == 0: self.calc_abs() if len(self.abs_list) == len(self.spectra_list): times = self.get_times() maxes = self.get_abs_maxes() plt.plot(times, maxes, 'o') plt.title(str(self.spectra_list[0].eth_gly) + "% Ethylene Glycol") plt.show() def save(self, output_file): """Saves the results of the experiment. For time series and ramp experiments, it will save a csv file with two columns, time and absorbance. For temperature series, it will save a csv with two columns, temperature and absorbance.""" import csv outfile = open(output_file, 'wb') writer = csv.writer(outfile) if self.exp_type in ['time', 'ramp']: col1 = self.get_times() col2 = self.get_abs_maxes() elif self.exp_type == 'temp': col1 = self.get_temps() col2 = self.get_abs_maxes() for i in range(len(col1)): writer.writerow([col1[i], col2[i]]) outfile.close() def parse_folder(dir_path): """Parse the DNA spectra in the given directory. Returns a dictionary of the Experiment objects discovered from the files in the directory.""" source_dir = dir_path for root, dirs, files in os.walk(source_dir): files = [os.path.join(root, f) for f in files if f.endswith('.txt')] # Experiments distinguished according to ethylene glycol content experiment_dict = {} for spectrum_file in files: # First, get the filename separate from the directory structure os_test = os.path.join('test', 'path') split_char = os_test[4] filename = spectrum_file.split(split_char)[-1] filename = filename[0:-4] # Next, get the ethylene glycol content filename_parts = filename.split('_') chunks = len(filename_parts) # Determine experiment type if any('time' in s.lower() for s in filename_parts): exp_type = 'time' elif any('temp' in s.lower() for s in filename_parts): exp_type = 'temp' elif any('ramp' in s.lower() for s in filename_parts): exp_type = 'ramp' # Determine if this spectrum is a blank blank_flag = False if any('blank' in s.lower() for s in filename_parts): temperature = 'blank' blank_flag = True for i in range(1, chunks - 1): # Get the ethylene glycol content if filename_parts[i] == 'Eth' and filename_parts[i + 1] == 'Gly' and filename_parts[i - 1].isdigit(): eth_gly = float(filename_parts[i - 1]) # Get the salt content if filename_parts[i] == 'mM' and filename_parts[i + 1] == 'NaCl' and filename_parts[i - 1].isdigit(): mM_NaCl = float(filename_parts[i - 1]) # Extract the temperature if it is not a blank if exp_type != 'ramp' or blank_flag == False: temperature_inds = re.search("[0-9]C", filename) temperature = float(filename[temperature_inds.start() - 1:temperature_inds.end() - 1]) # Actually read in the data from the text file (16 rows of header) data = np.loadtxt(spectrum_file, delimiter="\t", skiprows=16) lambdas = data[:, 0] intensities = data[:, 1] # Save to a Spectrum object spectrum_obj = Spectrum(eth_gly, mM_NaCl, temperature) spectrum_obj.add_data(lambdas, intensities) # Check whether this is a temperature or time series experiment if exp_type == 'temp': # This is a temperature experiment exp_time = None elif exp_type in ['time', 'ramp']: # This is a time series experiment, we need to extract the timestamp time_str = filename_parts[-1] time_parts = time_str.split('-') # We need to convert strings into ints for the time object for i in range(len(time_parts)): time_parts[i] = int(time_parts[i]) exp_short_time = dt.time( time_parts[0], time_parts[1], time_parts[2], time_parts[3]) today_date = dt.date.today() exp_time = dt.datetime.combine(today_date, exp_short_time) if exp_type == 'ramp': # Need to get the ramp parameters for i in range(chunks): chunk = filename_parts[i] temp_str = re.search("[0-9]C", chunk) if temp_str: if filename_parts[i+1].lower() == 'start': ramp_start = float(chunk[temp_str.start() - 1:temp_str.end() - 1]) elif filename_parts[i+1].lower() == 'end': ramp_stop = float(chunk[temp_str.start() - 1:temp_str.end() - 1]) elif filename_parts[i+1].lower() == 'min': ramp_grad = float(chunk[temp_str.start() - 2:temp_str.end() - 1]) ramp_params = (ramp_start, ramp_stop, ramp_grad) else: ramp_params = None exp_key = str(eth_gly) + '_' + str(mM_NaCl) + '_' + exp_type # Save to a Spectrum object spectrum_obj = Spectrum(eth_gly, mM_NaCl, temperature, time=exp_time) spectrum_obj.add_data(lambdas, intensities) # Add the spectrum to an existing Experiment or create a new one if exp_key in experiment_dict: experiment_dict[exp_key].add_spectrum(spectrum_obj) else: experiment_dict[exp_key] = Experiment(exp_type = exp_type, ramp = ramp_params) experiment_dict[exp_key].add_spectrum(spectrum_obj) # Return the dictionary of experiments return experiment_dict if __name__ == '__main__': #========================================================================= # Change the line below if you want to specify a different directory. #========================================================================= source_dir = '/media/sf_M_DRIVE/DNA Spectra/20160531' experiment_dict = parse_folder(source_dir) for key in experiment_dict: print str(len(experiment_dict[key].spectra_list)) + ' data spectra in ' + key print str(len(experiment_dict[key].blank_list)) + ' blank spectra in ' + key # Plot results depending on type of experiment for key in experiment_dict: exp = experiment_dict[key] if exp.exp_type == 'temp': exp.plot_melting() else: exp.plot_time() # Save results to a csv file exp.save(os.path.join(source_dir, key + '.csv'))
30.97619
113
0.565642
7948ca70ffc9c2633c3ed57d337dd7a58652be38
393
py
Python
task_man/wsgi.py
vshumanov/django_task_mon
25ea1a4af986df5abb65fcaae8163abd8dc6cce9
[ "MIT" ]
null
null
null
task_man/wsgi.py
vshumanov/django_task_mon
25ea1a4af986df5abb65fcaae8163abd8dc6cce9
[ "MIT" ]
null
null
null
task_man/wsgi.py
vshumanov/django_task_mon
25ea1a4af986df5abb65fcaae8163abd8dc6cce9
[ "MIT" ]
null
null
null
""" WSGI config for task_man project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/4.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'task_man.settings') application = get_wsgi_application()
23.117647
78
0.78626
7948ca7f37c2132ae50d7b0fb2c42336d60c9e03
2,868
py
Python
buildserver/pypi_utils.py
akshitdewan/cs61a-apps
155f2afe98b238fb4b1c4ca1c79610ec55e826e6
[ "MIT" ]
5
2020-09-10T01:45:09.000Z
2022-01-10T23:24:03.000Z
buildserver/pypi_utils.py
akshitdewan/cs61a-apps
155f2afe98b238fb4b1c4ca1c79610ec55e826e6
[ "MIT" ]
424
2020-08-24T06:22:59.000Z
2021-10-10T02:36:11.000Z
buildserver/pypi_utils.py
akshitdewan/cs61a-apps
155f2afe98b238fb4b1c4ca1c79610ec55e826e6
[ "MIT" ]
7
2020-08-28T22:05:10.000Z
2022-03-04T12:47:05.000Z
import re from typing import Optional, Tuple from packaging.version import Version import requests from app_config import App VERSION_REGEX = r"version=\"(\d*).(\d)*.\*\"" def get_latest_version( app: App, pr_number: int ) -> Tuple[Optional[Version], Optional[Version]]: """ Finds the latest deployed version of the package, or `None` if no such version can be found. If we are making a prod build, it just finds the latest deployed prod version. If we are making a PR build, it returns both the latest deployed prod version, as well as the latest pre-release for that PR. """ package_name = app.config["package_name"] data = requests.get(f"https://pypi.org/pypi/{package_name}/json") if data.status_code == 404: return None, None versions = [Version(release) for release in data.json()["releases"]] prod_versions = [version for version in versions if version.pre is None] pr_versions = [ version for version in versions if version.pre is not None and version.pre[1] == pr_number ] latest_prod = max(prod_versions) if prod_versions else None latest_pr = max(pr_versions) if pr_versions else None return latest_prod, latest_pr def update_setup_py(app: App, pr_number: int): with open("setup.py", "a+") as f: f.seek(0) setup_contents = f.read() match = re.search(VERSION_REGEX, setup_contents) if match is None: raise Exception("Could not find version in setup.py") major, minor = int(match.group(1)), int(match.group(2)) latest_prod_version, latest_pr_version = get_latest_version(app, pr_number) if latest_prod_version is None: micro = 0 else: if ( latest_prod_version.major > major or latest_prod_version.major == major and latest_prod_version.minor > minor ): raise Exception( f"Latest version {latest_prod_version} is greater than current build {major}.{minor}" ) if ( latest_prod_version.major == major and latest_prod_version.minor == minor ): micro = latest_prod_version.micro + 1 else: micro = 0 if latest_pr_version is None: dev_number = 0 else: dev_number = latest_pr_version.dev + 1 if pr_number == 0: next_version = Version(f"{major}.{minor}.{micro}") else: next_version = Version( f"{major}.{minor}.{micro}b{pr_number}.dev{dev_number}" ) f.seek(0) f.truncate() f.write(re.sub(VERSION_REGEX, f'version="{next_version}"', setup_contents)) app.deployed_pypi_version = str(next_version)
33.741176
105
0.609484
7948ca820f8cb576363125ddbc7c1c445344afc0
373
py
Python
src/simulator/services/persistent_state/persistent_state_object.py
ed741/PathBench
50fe138eb1f824f49fe1a862705e435a1c3ec3ae
[ "BSD-3-Clause" ]
46
2020-12-25T04:09:15.000Z
2022-03-25T12:32:42.000Z
src/simulator/services/persistent_state/persistent_state_object.py
ed741/PathBench
50fe138eb1f824f49fe1a862705e435a1c3ec3ae
[ "BSD-3-Clause" ]
36
2020-12-21T16:10:02.000Z
2022-01-03T01:42:01.000Z
src/simulator/services/persistent_state/persistent_state_object.py
judicaelclair/PathBenchURO
101e67674efdfa8e27e1cf7787dac9fdf99552fe
[ "BSD-3-Clause" ]
11
2021-01-06T23:34:12.000Z
2022-03-21T17:21:47.000Z
from abc import ABC, abstractmethod from typing import Dict, Any class PersistentStateObject(ABC): _state: 'PersistentState' def __init__(self, state: 'PersistentState'): self._state = state @abstractmethod def _from_json(self, data: Dict[str, Any]) -> None: ... @abstractmethod def _to_json(self) -> Dict[str, Any]: ...
21.941176
55
0.646113
7948cae67a8c512feed0fe22f6b69a61310b2dd0
21,486
py
Python
examples/lm1b/train.py
davisyoshida/flax
d03a262249671db92f9924f990437907cac36b21
[ "Apache-2.0" ]
4
2020-05-28T11:25:47.000Z
2021-04-30T13:08:48.000Z
examples/lm1b/train.py
n2cholas/flax
0848d9cf203cc5dfe63d4a5dece3c6aa8e135107
[ "Apache-2.0" ]
null
null
null
examples/lm1b/train.py
n2cholas/flax
0848d9cf203cc5dfe63d4a5dece3c6aa8e135107
[ "Apache-2.0" ]
2
2021-04-30T13:08:58.000Z
2021-12-08T00:50:25.000Z
# Copyright 2021 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Language Modeling example. This script trains a Transformer on a LM1B dataset. """ # pytype: disable=wrong-arg-count # pytype: disable=attribute-error import collections import functools import os from absl import logging from clu import metric_writers from clu import periodic_actions from flax import jax_utils from flax import linen as nn from flax import optim import input_pipeline import models import temperature_sampler from flax.training import checkpoints from flax.training import common_utils import jax from jax import random import jax.numpy as jnp import ml_collections import numpy as np import tensorflow as tf def create_learning_rate_scheduler( factors="constant * linear_warmup * rsqrt_decay", base_learning_rate=0.5, warmup_steps=1000, decay_factor=0.5, steps_per_decay=20000, steps_per_cycle=100000): """Creates learning rate schedule. Interprets factors in the factors string which can consist of: * constant: interpreted as the constant value, * linear_warmup: interpreted as linear warmup until warmup_steps, * rsqrt_decay: divide by square root of max(step, warmup_steps) * rsqrt_normalized_decay: divide by square root of max(step/warmup_steps, 1) * decay_every: Every k steps decay the learning rate by decay_factor. * cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter. Args: factors: string, factors separated by "*" that defines the schedule. base_learning_rate: float, the starting constant for the lr schedule. warmup_steps: int, how many steps to warm up for in the warmup schedule. decay_factor: float, the amount to decay the learning rate by. steps_per_decay: int, how often to decay the learning rate. steps_per_cycle: int, steps per cycle when using cosine decay. Returns: a function learning_rate(step): float -> {"learning_rate": float}, the step-dependent lr. """ factors = [n.strip() for n in factors.split("*")] def step_fn(step): """Step to learning rate function.""" ret = 1.0 for name in factors: if name == "constant": ret *= base_learning_rate elif name == "linear_warmup": ret *= jnp.minimum(1.0, step / warmup_steps) elif name == "rsqrt_decay": ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == "rsqrt_normalized_decay": ret *= jnp.sqrt(warmup_steps) ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == "decay_every": ret *= (decay_factor**(step // steps_per_decay)) elif name == "cosine_decay": progress = jnp.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle)) ret *= jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0)))) else: raise ValueError("Unknown factor %s." % name) return jnp.asarray(ret, dtype=jnp.float32) return step_fn def compute_weighted_cross_entropy(logits, targets, weights=None, label_smoothing=0.0): """Compute weighted cross entropy and entropy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. weights: None or array of shape [batch, length]. label_smoothing: label smoothing constant, used to determine the on and off values. Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError("Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))) vocab_size = logits.shape[-1] confidence = 1.0 - label_smoothing low_confidence = (1.0 - confidence) / (vocab_size - 1) normalizing_constant = -( confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)) soft_targets = common_utils.onehot( targets, vocab_size, on_value=confidence, off_value=low_confidence) loss = -jnp.sum(soft_targets * nn.log_softmax(logits), axis=-1) loss = loss - normalizing_constant normalizing_factor = np.prod(targets.shape) if weights is not None: loss = loss * weights normalizing_factor = weights.sum() return loss.sum(), normalizing_factor def compute_weighted_accuracy(logits, targets, weights=None): """Compute weighted accuracy for log probs and targets. Args: logits: [batch, length, num_classes] float array. targets: categorical targets [batch, length] int array. weights: None or array of shape [batch, length] Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError("Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))) loss = jnp.equal(jnp.argmax(logits, axis=-1), targets) normalizing_factor = np.prod(logits.shape[:-1]) if weights is not None: loss = loss * weights normalizing_factor = weights.sum() return loss.sum(), normalizing_factor def compute_metrics(logits, labels, weights, label_smoothing=0.0): """Compute summary metrics.""" loss, weight_sum = compute_weighted_cross_entropy(logits, labels, weights, label_smoothing) acc, _ = compute_weighted_accuracy(logits, labels, weights) metrics = { "loss": loss, "accuracy": acc, "denominator": weight_sum, } metrics = jax.lax.psum(metrics, axis_name="batch") return metrics # Primary training / eval / decode step functions. # ----------------------------------------------------------------------------- def train_step(optimizer, batch, config, learning_rate_fn, label_smoothing=0.0, dropout_rng=None): """Perform a single training step.""" # X_position and X_segmentation are needed only when using "packed examples" # where multiple sequences are packed into the same example with this # metadata. # if such features are not present they are ignored and the example is treated # like a normal, unpacked sequence example. train_keys = ["inputs", "inputs_position", "inputs_segmentation"] (inputs, inputs_positions, inputs_segmentation ) = [batch.get(k, None) for k in train_keys] weights = jnp.where(inputs > 0, 1, 0).astype(jnp.float32) dropout_rng = jax.random.fold_in(dropout_rng, optimizer.state.step) def loss_fn(params): """loss function used for training.""" logits = models.TransformerLM(config).apply( {"params": params}, inputs, inputs_positions=inputs_positions, inputs_segmentation=inputs_segmentation, rngs={"dropout": dropout_rng}) loss, weight_sum = compute_weighted_cross_entropy(logits, inputs, weights, label_smoothing) mean_loss = loss / weight_sum return mean_loss, logits step = optimizer.state.step lr = learning_rate_fn(step) grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (_, logits), grad = grad_fn(optimizer.target) grad = jax.lax.pmean(grad, "batch") new_optimizer = optimizer.apply_gradient(grad, learning_rate=lr) metrics = compute_metrics(logits, inputs, weights) metrics["learning_rate"] = lr return new_optimizer, metrics def eval_step(params, batch, config, label_smoothing=0.0): """Calculate evaluation metrics on a batch.""" inputs = batch["inputs"] weights = jnp.where(inputs > 0, 1.0, 0.0) logits = models.TransformerLM(config).apply({"params": params}, inputs) return compute_metrics(logits, inputs, weights, label_smoothing) def predict_step(inputs, params, rngkey, eos_id, max_decode_len, config, temperature, top_k): """Predict language model on a batch.""" target_shape = (inputs.shape[0], max_decode_len) + inputs.shape[2:] initial_variables = models.TransformerLM(config).init( jax.random.PRNGKey(0), jnp.ones(target_shape, config.dtype)) cache = initial_variables["cache"] def tokens_ids_to_logits(flat_ids, flat_cache): """Token slice to logits from decoder model.""" # --> [batch * beam, 1, vocab] flat_logits, new_vars = models.TransformerLM(config).apply( { "params": params, "cache": flat_cache }, flat_ids, mutable=["cache"]) new_flat_cache = new_vars["cache"] # Remove singleton sequence-length dimension: # [batch, 1, vocab] --> [batch, vocab] flat_logits = flat_logits.squeeze(axis=1) return flat_logits, new_flat_cache # Using the above-defined single-step decoder function, run a # beam search over possible sequences given input encoding. seqs = temperature_sampler.temperature_sample( inputs, cache, tokens_ids_to_logits, rngkey, temperature=temperature, topk=top_k, eos_token=eos_id) return seqs # Utils for prediction # ----------------------------------------------------------------------------- def pad_examples(x, desired_batch_size): """Expand batch to desired size by repeating last slice.""" batch_pad = desired_batch_size - x.shape[0] return np.concatenate([x, np.tile(x[-1], (batch_pad, 1))], axis=0) def per_host_sum_pmap(in_tree): """Execute psum on in_tree"s leaves over one device per host.""" host2devices = collections.defaultdict(list) for d in jax.devices(): host2devices[d.host_id].append(d) devices = [host2devices[k][0] for k in host2devices] host_psum = jax.pmap(lambda x: jax.lax.psum(x, "i"), "i", devices=devices) def pre_pmap(xs): return jax.tree_map(lambda x: jnp.broadcast_to(x, (1,) + x.shape), xs) def post_pmap(xs): return jax.tree_map(lambda x: x[0], xs) return post_pmap(host_psum(pre_pmap(in_tree))) def tohost(x): """Collect batches from all devices to host and flatten batch dimensions.""" n_device, n_batch, *remaining_dims = x.shape return np.array(x).reshape((n_device * n_batch,) + tuple(remaining_dims)) def evaluate(*, p_eval_step, target, eval_ds: tf.data.Dataset, num_eval_steps: int): """Evaluate the target an return a dictionary with the metrics.""" logging.info("Gathering evaluation metrics.") eval_metrics = [] eval_iter = iter(eval_ds) # pytype: disable=wrong-arg-types for _, eval_batch in zip(range(num_eval_steps), eval_iter): eval_batch = jax.tree_map(lambda x: x._numpy(), eval_batch) # pylint: disable=protected-access eval_batch = common_utils.shard(eval_batch) metrics = p_eval_step(target, eval_batch) eval_metrics.append(metrics) eval_metrics = common_utils.get_metrics(eval_metrics) eval_metrics_sums = jax.tree_map(jnp.sum, eval_metrics) eval_denominator = eval_metrics_sums.pop("denominator") eval_summary = jax.tree_map( lambda x: x / eval_denominator, # pylint: disable=cell-var-from-loop eval_metrics_sums) return eval_summary def generate_prediction(*, p_pred_step, target, tokenized_prompts, eos_id, inference_rng, decode_tokens, max_predict_length: int): """Generate text from the prompt.""" n_devices = jax.local_device_count() logging.info("Generating text.") predictions = [] # Use batch of prompts provided by user. for pred_batch in jnp.array_split( tokenized_prompts, int(np.ceil(len(tokenized_prompts) / n_devices))): cur_pred_batch_size = pred_batch.shape[0] if cur_pred_batch_size % n_devices: padded_size = int( np.ceil(cur_pred_batch_size / n_devices) * n_devices) pred_batch = jax.tree_map( lambda x: pad_examples(x, padded_size), pred_batch) # pylint: disable=cell-var-from-loop pred_batch = common_utils.shard(pred_batch) inference_rng, sub_rng = random.split(inference_rng) inference_rngs = random.split(sub_rng, n_devices) predicted = p_pred_step(pred_batch, target, inference_rngs, eos_id, max_predict_length) predicted = tohost(predicted) # Iterate through non-padding examples of batch. for s in predicted[:cur_pred_batch_size]: prediction = decode_tokens(s) logging.info("Sample: %s", str(prediction)) predictions.append(prediction) # Save generated texts for tensorboard. exemplars = "" for prediction in predictions: exemplars += f"{prediction}\n\n" return exemplars def train_and_evaluate(config: ml_collections.ConfigDict, workdir: str): """Runs a training and evaluation loop. Args: config: Configuration to use. workdir: Working directory for checkpoints and TF summaries. If this contains checkpoint training will be resumed from the latest checkpoint. """ tf.io.gfile.makedirs(workdir) vocab_path = config.vocab_path if vocab_path is None: vocab_path = os.path.join(workdir, "sentencepiece_model") config.vocab_path = vocab_path tf.io.gfile.makedirs(os.path.split(vocab_path)[0]) # Load Dataset # --------------------------------------------------------------------------- logging.info("Initializing dataset.") train_ds, eval_ds, _, encoder = input_pipeline.get_datasets( n_devices=jax.local_device_count(), config=config, vocab_path=vocab_path) train_iter = iter(train_ds) vocab_size = int(encoder.vocab_size()) eos_id = temperature_sampler.EOS_ID # Default Sentencepiece EOS token. def decode_tokens(toks): valid_toks = toks[:np.argmax(toks == eos_id) + 1].astype(np.int32) return encoder.detokenize(valid_toks).numpy().decode("utf-8") def encode_strings(strs, max_len): tokenized_batch = np.zeros((len(strs), max_len), np.int32) for i, s in enumerate(strs): toks = encoder.tokenize(s).numpy() # Remove EOS token in prompt. tokenized_batch[i, :toks.shape[0]-1] = toks[:-1] return tokenized_batch tokenized_prompts = encode_strings( [config.prompts], config.max_predict_length) logging.info("Initializing model, optimizer, and step functions.") # Build Model and Optimizer # --------------------------------------------------------------------------- train_config = models.TransformerConfig( vocab_size=vocab_size, output_vocab_size=vocab_size, logits_via_embedding=config.logits_via_embedding, dtype=jnp.bfloat16 if config.use_bfloat16 else jnp.float32, emb_dim=config.emb_dim, num_heads=config.num_heads, num_layers=config.num_layers, qkv_dim=config.qkv_dim, mlp_dim=config.mlp_dim, max_len=max(config.max_target_length, config.max_eval_target_length), dropout_rate=config.dropout_rate, attention_dropout_rate=config.attention_dropout_rate, deterministic=False, decode=False, kernel_init=nn.initializers.xavier_uniform(), bias_init=nn.initializers.normal(stddev=1e-6)) eval_config = train_config.replace(deterministic=True) predict_config = train_config.replace(deterministic=True, decode=True) start_step = 0 rng = jax.random.PRNGKey(config.seed) rng, init_rng = jax.random.split(rng) rng, inference_rng = random.split(rng) input_shape = (config.per_device_batch_size, config.max_target_length) m = models.TransformerLM(eval_config) initial_variables = jax.jit(m.init)(init_rng, jnp.ones(input_shape, jnp.float32)) # apply an optimizer to this tree optimizer_def = optim.Adam( config.learning_rate, beta1=0.9, beta2=0.98, eps=1e-9, weight_decay=config.weight_decay) optimizer = optimizer_def.create(initial_variables["params"]) # We access model params only from optimizer below via optimizer.target. del initial_variables if config.restore_checkpoints: # Restore unreplicated optimizer + model state from last checkpoint. optimizer = checkpoints.restore_checkpoint(workdir, optimizer) # Grab last step. start_step = int(optimizer.state.step) writer = metric_writers.create_default_writer( workdir, just_logging=jax.host_id() > 0) if start_step == 0: writer.write_hparams(dict(config)) # Replicate optimizer. optimizer = jax_utils.replicate(optimizer) learning_rate_fn = create_learning_rate_scheduler( base_learning_rate=config.learning_rate, warmup_steps=config.warmup_steps) # compile multidevice versions of train/eval/predict step fn. p_train_step = jax.pmap( functools.partial( train_step, config=train_config, learning_rate_fn=learning_rate_fn), axis_name="batch", donate_argnums=(0,)) # pytype: disable=wrong-arg-types p_eval_step = jax.pmap( functools.partial( eval_step, config=eval_config), axis_name="batch") p_pred_step = jax.pmap( functools.partial( predict_step, config=predict_config, temperature=config.sampling_temperature, top_k=config.sampling_top_k), axis_name="batch", static_broadcasted_argnums=(3, 4)) # eos token, max_length are constant # Main Train Loop # --------------------------------------------------------------------------- # We init the first set of dropout PRNG keys, but update it afterwards inside # the main pmap"d training update for performance. dropout_rngs = jax.random.split(rng, jax.local_device_count()) del rng logging.info("Starting training loop.") hooks = [] report_progress = periodic_actions.ReportProgress( num_train_steps=config.num_train_steps, writer=writer) if jax.host_id() == 0: hooks += [ report_progress, periodic_actions.Profile(logdir=workdir, num_profile_steps=5) ] train_metrics = [] with metric_writers.ensure_flushes(writer): for step in range(start_step, config.num_train_steps): is_last_step = step == config.num_train_steps - 1 # Shard data to devices and do a training step. with jax.profiler.StepTraceAnnotation("train", step_num=step): batch = common_utils.shard(jax.tree_map(np.asarray, next(train_iter))) optimizer, metrics = p_train_step( optimizer, batch, dropout_rng=dropout_rngs) train_metrics.append(metrics) # Quick indication that training is happening. logging.log_first_n(logging.INFO, "Finished training step %d.", 5, step) for h in hooks: h(step) # Periodic metric handling. if step % config.eval_every_steps == 0 or is_last_step: with report_progress.timed("training_metrics"): logging.info("Gathering training metrics.") train_metrics = common_utils.get_metrics(train_metrics) lr = train_metrics.pop("learning_rate").mean() metrics_sums = jax.tree_map(jnp.sum, train_metrics) denominator = metrics_sums.pop("denominator") summary = jax.tree_map(lambda x: x / denominator, metrics_sums) # pylint: disable=cell-var-from-loop summary["learning_rate"] = lr summary["perplexity"] = jnp.clip( jnp.exp(summary["loss"]), a_max=1.0e4) summary = {"train_" + k: v for k, v in summary.items()} writer.write_scalars(step, summary) train_metrics = [] with report_progress.timed("eval"): eval_results = evaluate( p_eval_step=p_eval_step, target=optimizer.target, eval_ds=eval_ds, num_eval_steps=config.num_eval_steps) # (clipped) perplexity after averaging log-perplexitie eval_results["perplexity"] = jnp.clip( jnp.exp(eval_results["loss"]), a_max=1.0e4) writer.write_scalars( step, {"eval_" + k: v for k, v in eval_results.items()}) with report_progress.timed("generate_text"): exemplars = generate_prediction( p_pred_step=p_pred_step, target=optimizer.target, tokenized_prompts=tokenized_prompts, eos_id=eos_id, inference_rng=inference_rng, decode_tokens=decode_tokens, max_predict_length=config.max_predict_length) writer.write_texts(step, {"samples": exemplars}) # Save a checkpoint on one host after every checkpoint_freq steps. save_checkpoint = (step % config.checkpoint_every_steps == 0 or is_last_step) if config.save_checkpoints and save_checkpoint and jax.host_id() == 0: with report_progress.timed("checkpoint"): checkpoints.save_checkpoint(workdir, jax_utils.unreplicate(optimizer), step)
36.854202
111
0.670343
7948caff8f35d998bedb3815629c611a69beee47
10,370
py
Python
banana/interfaces/mrtrix/fibre_est.py
tclose/nianalysis
314b7ade1d36d52817aa1de14ce1be22c5996a8e
[ "Apache-2.0" ]
1
2019-07-30T03:45:57.000Z
2019-07-30T03:45:57.000Z
banana/interfaces/mrtrix/fibre_est.py
tclose/nianalysis
314b7ade1d36d52817aa1de14ce1be22c5996a8e
[ "Apache-2.0" ]
null
null
null
banana/interfaces/mrtrix/fibre_est.py
tclose/nianalysis
314b7ade1d36d52817aa1de14ce1be22c5996a8e
[ "Apache-2.0" ]
null
null
null
import os.path from nipype.interfaces.base import ( traits, InputMultiPath, File, TraitedSpec, isdefined) from nipype.interfaces.mrtrix3.reconst import ( MRTrix3Base, MRTrix3BaseInputSpec) from nipype.interfaces.mrtrix3.preprocess import ( ResponseSD as NipypeResponseSD, ResponseSDInputSpec as NipypeResponseSDInputSpec) from arcana.utils import split_extension class Fod2FixelInputSpec(MRTrix3BaseInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-3, desc='input files') out_file = File(genfile=True, argstr='%s', desc=(""), position=-1) class Fod2FixelOutputSpec(TraitedSpec): out_file = File(exists=True, desc=("")) class Fod2Fixel(MRTrix3Base): """Fod2Fixel""" _cmd = "fod2fixel" input_spec = Fod2FixelInputSpec output_spec = Fod2FixelOutputSpec def _list_outputs(self): outputs = self.output_spec().get() return outputs class Fixel2VoxelInputSpec(MRTrix3BaseInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-3, desc='input files') out_file = File(genfile=True, argstr='%s', desc=(""), position=-1) class Fixel2VoxelOutputSpec(TraitedSpec): out_file = File(exists=True, desc=("")) class Fixel2Voxel(MRTrix3Base): """Fixel2Voxel""" _cmd = "fixel2voxel" input_spec = Fixel2VoxelInputSpec output_spec = Fixel2VoxelOutputSpec def _list_outputs(self): outputs = self.output_spec().get() return outputs class FixelCorrespondenceInputSpec(MRTrix3BaseInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-3, desc='input files') out_file = File(genfile=True, argstr='%s', desc=(""), position=-1) class FixelCorrespondenceOutputSpec(TraitedSpec): out_file = File(exists=True, desc=("")) class FixelCorrespondence(MRTrix3Base): """FixelCorrespondence""" _cmd = "fixelcorrespondence" input_spec = FixelCorrespondenceInputSpec output_spec = FixelCorrespondenceOutputSpec def _list_outputs(self): outputs = self.output_spec().get() return outputs class FixelCFEStatsInputSpec(MRTrix3BaseInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-3, desc='input files') out_file = File(genfile=True, argstr='%s', desc=(""), position=-1) class FixelCFEStatsOutputSpec(TraitedSpec): out_file = File(exists=True, desc=("")) class FixelCFEStats(MRTrix3Base): """FixelCFEStats""" _cmd = "fixelcfestats" input_spec = FixelCFEStatsInputSpec output_spec = FixelCFEStatsOutputSpec def _list_outputs(self): outputs = self.output_spec().get() return outputs class TckSiftInputSpec(MRTrix3BaseInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-3, desc='input files') out_file = File(genfile=True, argstr='%s', desc=(""), position=-1) class TckSiftOutputSpec(TraitedSpec): out_file = File(exists=True, desc=("")) class TckSift(MRTrix3Base): """TckSift""" _cmd = "tcksift" input_spec = TckSiftInputSpec output_spec = TckSiftOutputSpec def _list_outputs(self): outputs = self.output_spec().get() return outputs class Warp2MetricInputSpec(MRTrix3BaseInputSpec): in_file = File(exists=True, argstr='%s', mandatory=True, position=-3, desc='input files') out_file = File(genfile=True, argstr='%s', desc=(""), position=-1) class Warp2MetricOutputSpec(TraitedSpec): out_file = File(exists=True, desc=("")) class Warp2Metric(MRTrix3Base): """Warp2Metric""" _cmd = "warp2metric" input_spec = Warp2MetricInputSpec output_spec = Warp2MetricOutputSpec def _list_outputs(self): outputs = self.output_spec().get() return outputs class AverageReponseInputSpec(MRTrix3BaseInputSpec): in_files = InputMultiPath( File(exists=True), argstr='%s', mandatory=True, position=0, desc="Average response") out_file = File( genfile=True, argstr='%s', position=-1, desc=("the output spherical harmonics coefficients image")) class AverageReponseOutputSpec(TraitedSpec): out_file = File(exists=True, desc='the output response file') class AverageResponse(MRTrix3Base): _cmd = 'average_response' input_spec = AverageReponseInputSpec output_spec = AverageReponseOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['out_file'] = os.path.abspath(self._gen_outfilename()) return outputs def _gen_filename(self, name): if name == 'out_file': fname = self._gen_outfilename() else: assert False return fname def _gen_outfilename(self): if isdefined(self.inputs.out_file): filename = self.inputs.out_file else: base, ext = split_extension( os.path.basename(self.inputs.in_files[0])) filename = os.path.join(os.getcwd(), "{}_avg{}".format(base, ext)) return filename class EstimateFODInputSpec(MRTrix3BaseInputSpec): algorithm = traits.Enum('csd', 'msmt_csd', argstr='%s', mandatory=True, position=0, desc="Algorithm used for CSD estimation") in_file = File(exists=True, argstr='%s', mandatory=True, position=-3, desc='input diffusion weighted images') response = File( exists=True, argstr='%s', mandatory=True, position=-2, desc=('a text file containing the diffusion-weighted signal response ' 'function coefficients for a single fibre population')) out_file = File( 'fods.mif', argstr='%s', mandatory=True, position=-1, usedefault=True, desc=('the output spherical harmonics coefficients' ' image')) # DW Shell selection parameters shell = traits.List(traits.Float, sep=',', argstr='-shell %s', desc='specify one or more dw gradient shells') # Spherical deconvolution parameters max_sh = traits.Int(8, argstr='-lmax %d', desc='maximum harmonic degree of response function') in_mask = File(exists=True, argstr='-mask %s', desc='provide initial mask image') in_dirs = File( exists=True, argstr='-directions %s', desc=('specify the directions over which to apply the non-negativity ' 'constraint (by default, the built-in 300 direction set is ' 'used). These should be supplied as a text file containing the ' '[ az el ] pairs for the directions.')) sh_filter = File( exists=True, argstr='-filter %s', desc=('the linear frequency filtering parameters used for the initial ' 'linear spherical deconvolution step (default = [ 1 1 1 0 0 ]). ' 'These should be supplied as a text file containing the ' 'filtering coefficients for each even harmonic order.')) neg_lambda = traits.Float( 1.0, argstr='-neg_lambda %f', desc=('the regularisation parameter lambda that controls the strength' ' of the non-negativity constraint')) thres = traits.Float( 0.0, argstr='-threshold %f', desc=('the threshold below which the amplitude of the FOD is assumed ' 'to be zero, expressed as an absolute amplitude')) n_iter = traits.Int( 50, argstr='-niter %d', desc=('the maximum number of iterations ' 'to perform for each voxel')) class EstimateFODOutputSpec(TraitedSpec): out_file = File(exists=True, desc='the output response file') class EstimateFOD(MRTrix3Base): """ Convert diffusion-weighted images to tensor images Note that this program makes use of implied symmetries in the diffusion profile. First, the fact the signal attenuation profile is real implies that it has conjugate symmetry, i.e. Y(l,-m) = Y(l,m)* (where * denotes the complex conjugate). Second, the diffusion profile should be antipodally symmetric (i.e. S(x) = S(-x)), implying that all odd l components should be zero. Therefore, this program only computes the even elements. Note that the spherical harmonics equations used here differ slightly from those conventionally used, in that the (-1)^m factor has been omitted. This should be taken into account in all subsequent calculations. The spherical harmonic coefficients are stored as follows. First, since the signal attenuation profile is real, it has conjugate symmetry, i.e. Y(l,-m) = Y(l,m)* (where * denotes the complex conjugate). Second, the diffusion profile should be antipodally symmetric (i.e. S(x) = S(-x)), implying that all odd l components should be zero. Therefore, only the even elements are computed. Note that the spherical harmonics equations used here differ slightly from those conventionally used, in that the (-1)^m factor has been omitted. This should be taken into account in all subsequent calculations. Each volume in the output image corresponds to a different spherical harmonic component. Each volume will correspond to the following: volume 0: l = 0, m = 0 volume 1: l = 2, m = -2 (imaginary part of m=2 SH) volume 2: l = 2, m = -1 (imaginary part of m=1 SH) volume 3: l = 2, m = 0 volume 4: l = 2, m = 1 (real part of m=1 SH) volume 5: l = 2, m = 2 (real part of m=2 SH) etc... Example ------- >>> import nipype.interfaces.mrtrix3 as mrt >>> fod = mrt.EstimateFOD() >>> fod.inputs.in_file = 'dwi.mif' >>> fod.inputs.response = 'response.txt' >>> fod.inputs.in_mask = 'mask.nii.gz' >>> fod.inputs.grad_fsl = ('bvecs', 'bvals') >>> fod.cmdline 'dwi2fod -fslgrad bvecs bvals -mask mask.nii.gz dwi.mif response.txt\ fods.mif' >>> fod.run() """ _cmd = 'dwi2fod' input_spec = EstimateFODInputSpec output_spec = EstimateFODOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['out_file'] = os.path.abspath(self.inputs.out_file) return outputs
33.025478
79
0.65487
7948cb1a7d5966fb7bc26109390b9e366d37fe9e
2,159
py
Python
src/collaborative_recom.py
Sinba7/Movie-Recommender
802c9c66739ef1c49287038aca06cb6943a79bd8
[ "MIT" ]
1
2021-01-28T06:29:31.000Z
2021-01-28T06:29:31.000Z
src/collaborative_recom.py
Sinba7/Movie-Recommender
802c9c66739ef1c49287038aca06cb6943a79bd8
[ "MIT" ]
1
2020-12-18T03:58:04.000Z
2020-12-18T03:58:04.000Z
src/collaborative_recom.py
Sinba7/Movie-Recommender
802c9c66739ef1c49287038aca06cb6943a79bd8
[ "MIT" ]
null
null
null
import pandas as pd from surprise import Dataset, Reader, KNNWithMeans, KNNWithZScore import logbook import sys # logging function_log = logbook.Logger('RECOMMENDER') level = logbook.TRACE logbook.StreamHandler(sys.stdout, level=level).push_application() def collab_recommender(train_data, test_data, user_based=True, normalization= False, k=100, sim='cosine'): """ Input: - train_data: dataframe, n*3, columns are ['userid','movieid','rating'] - test_data: dataframe, n*2, columns are ['userid', 'movieid'] - user_base: boolean, use user-based knn algorithm if True, use item-based knn algorithm if False - normalization: boolean, conduct z-score normalization on user/item matrix if True - k: int, number of nearest neighbors - sim: string, define the similarity matrix from ['cosine', 'pearson', 'msd', 'pearson_baseline'] Output: - pred_rating: dataframe, n*2, columns are ['movieid', 'rating'] """ try: function_log.trace('Start collaborative recommendation function') reader = Reader(rating_scale=(1,5)) data = Dataset.load_from_df(train_data, reader) sim_options = { 'name':sim, 'user_based': user_based } if normalization: algo = KNNWithZScore(k=k, sim_options=sim_options, verbose=False) else: algo = KNNWithMeans(k=k, sim_options=sim_options, verbose=False) train_set = data.build_full_trainset() algo.fit(train_set) pred_rating = {'movieid':[], 'rating':[]} for idx in test_data.index: pred_rating['movieid'].append(test_data.loc[idx, 'movieid']) pred = algo.predict(test_data.loc[idx, 'userid'], test_data.loc[idx, 'movieid']) pred_rating['rating'].append(pred.est) function_log.trace('Finish collaborative recommendation function') return pd.DataFrame(pred_rating) except ValueError: function_log.warn("Training and test data cannot be none.") raise ValueError except Exception as x: function_log.exception(f'collaborative recommendation function failed {x}')
36.59322
106
0.670218
7948cbba9a58424c8618696775d4a232f0d17be4
12,259
py
Python
openpype/hosts/nuke/plugins/load/load_effects_ip.py
icyvapor/OpenPype
bf39fc72a550ce8ac6fc8d4c07bc2359ec9cdfa8
[ "MIT" ]
null
null
null
openpype/hosts/nuke/plugins/load/load_effects_ip.py
icyvapor/OpenPype
bf39fc72a550ce8ac6fc8d4c07bc2359ec9cdfa8
[ "MIT" ]
null
null
null
openpype/hosts/nuke/plugins/load/load_effects_ip.py
icyvapor/OpenPype
bf39fc72a550ce8ac6fc8d4c07bc2359ec9cdfa8
[ "MIT" ]
null
null
null
import json from collections import OrderedDict import nuke from avalon import api, style, io from openpype.hosts.nuke.api import lib from openpype.hosts.nuke.api import ( containerise, update_container, viewer_update_and_undo_stop ) class LoadEffectsInputProcess(api.Loader): """Loading colorspace soft effect exported from nukestudio""" representations = ["effectJson"] families = ["effect"] label = "Load Effects - Input Process" order = 0 icon = "eye" color = style.colors.alert ignore_attr = ["useLifetime"] def load(self, context, name, namespace, data): """ Loading function to get the soft effects to particular read node Arguments: context (dict): context of version name (str): name of the version namespace (str): asset name data (dict): compulsory attribute > not used Returns: nuke node: containerised nuke node object """ # get main variables version = context['version'] version_data = version.get("data", {}) vname = version.get("name", None) first = version_data.get("frameStart", None) last = version_data.get("frameEnd", None) workfile_first_frame = int(nuke.root()["first_frame"].getValue()) namespace = namespace or context['asset']['name'] colorspace = version_data.get("colorspace", None) object_name = "{}_{}".format(name, namespace) # prepare data for imprinting # add additional metadata from the version to imprint to Avalon knob add_keys = ["frameStart", "frameEnd", "handleStart", "handleEnd", "source", "author", "fps"] data_imprint = {"frameStart": first, "frameEnd": last, "version": vname, "colorspaceInput": colorspace, "objectName": object_name} for k in add_keys: data_imprint.update({k: version_data[k]}) # getting file path file = self.fname.replace("\\", "/") # getting data from json file with unicode conversion with open(file, "r") as f: json_f = {self.byteify(key): self.byteify(value) for key, value in json.load(f).iteritems()} # get correct order of nodes by positions on track and subtrack nodes_order = self.reorder_nodes(json_f) # adding nodes to node graph # just in case we are in group lets jump out of it nuke.endGroup() GN = nuke.createNode( "Group", "name {}_1".format(object_name)) # adding content to the group node with GN: pre_node = nuke.createNode("Input") pre_node["name"].setValue("rgb") for ef_name, ef_val in nodes_order.items(): node = nuke.createNode(ef_val["class"]) for k, v in ef_val["node"].items(): if k in self.ignore_attr: continue try: node[k].value() except NameError as e: self.log.warning(e) continue if isinstance(v, list) and len(v) > 4: node[k].setAnimated() for i, value in enumerate(v): if isinstance(value, list): for ci, cv in enumerate(value): node[k].setValueAt( cv, (workfile_first_frame + i), ci) else: node[k].setValueAt( value, (workfile_first_frame + i)) else: node[k].setValue(v) node.setInput(0, pre_node) pre_node = node output = nuke.createNode("Output") output.setInput(0, pre_node) # try to place it under Viewer1 if not self.connect_active_viewer(GN): nuke.delete(GN) return GN["tile_color"].setValue(int("0x3469ffff", 16)) self.log.info("Loaded lut setup: `{}`".format(GN["name"].value())) return containerise( node=GN, name=name, namespace=namespace, context=context, loader=self.__class__.__name__, data=data_imprint) def update(self, container, representation): """Update the Loader's path Nuke automatically tries to reset some variables when changing the loader's path to a new file. These automatic changes are to its inputs: """ # get main variables # Get version from io version = io.find_one({ "type": "version", "_id": representation["parent"] }) # get corresponding node GN = nuke.toNode(container['objectName']) file = api.get_representation_path(representation).replace("\\", "/") name = container['name'] version_data = version.get("data", {}) vname = version.get("name", None) first = version_data.get("frameStart", None) last = version_data.get("frameEnd", None) workfile_first_frame = int(nuke.root()["first_frame"].getValue()) namespace = container['namespace'] colorspace = version_data.get("colorspace", None) object_name = "{}_{}".format(name, namespace) add_keys = ["frameStart", "frameEnd", "handleStart", "handleEnd", "source", "author", "fps"] data_imprint = {"representation": str(representation["_id"]), "frameStart": first, "frameEnd": last, "version": vname, "colorspaceInput": colorspace, "objectName": object_name} for k in add_keys: data_imprint.update({k: version_data[k]}) # Update the imprinted representation update_container( GN, data_imprint ) # getting data from json file with unicode conversion with open(file, "r") as f: json_f = {self.byteify(key): self.byteify(value) for key, value in json.load(f).iteritems()} # get correct order of nodes by positions on track and subtrack nodes_order = self.reorder_nodes(json_f) # adding nodes to node graph # just in case we are in group lets jump out of it nuke.endGroup() # adding content to the group node with GN: # first remove all nodes [nuke.delete(n) for n in nuke.allNodes()] # create input node pre_node = nuke.createNode("Input") pre_node["name"].setValue("rgb") for ef_name, ef_val in nodes_order.items(): node = nuke.createNode(ef_val["class"]) for k, v in ef_val["node"].items(): if k in self.ignore_attr: continue try: node[k].value() except NameError as e: self.log.warning(e) continue if isinstance(v, list) and len(v) > 4: node[k].setAnimated() for i, value in enumerate(v): if isinstance(value, list): for ci, cv in enumerate(value): node[k].setValueAt( cv, (workfile_first_frame + i), ci) else: node[k].setValueAt( value, (workfile_first_frame + i)) else: node[k].setValue(v) node.setInput(0, pre_node) pre_node = node # create output node output = nuke.createNode("Output") output.setInput(0, pre_node) # # try to place it under Viewer1 # if not self.connect_active_viewer(GN): # nuke.delete(GN) # return # get all versions in list versions = io.find({ "type": "version", "parent": version["parent"] }).distinct('name') max_version = max(versions) # change color of node if version.get("name") not in [max_version]: GN["tile_color"].setValue(int("0xd84f20ff", 16)) else: GN["tile_color"].setValue(int("0x3469ffff", 16)) self.log.info("udated to version: {}".format(version.get("name"))) def connect_active_viewer(self, group_node): """ Finds Active viewer and place the node under it, also adds name of group into Input Process of the viewer Arguments: group_node (nuke node): nuke group node object """ group_node_name = group_node["name"].value() viewer = [n for n in nuke.allNodes() if "Viewer1" in n["name"].value()] if len(viewer) > 0: viewer = viewer[0] else: msg = str("Please create Viewer node before you " "run this action again") self.log.error(msg) nuke.message(msg) return None # get coordinates of Viewer1 xpos = viewer["xpos"].value() ypos = viewer["ypos"].value() ypos += 150 viewer["ypos"].setValue(ypos) # set coordinates to group node group_node["xpos"].setValue(xpos) group_node["ypos"].setValue(ypos + 50) # add group node name to Viewer Input Process viewer["input_process_node"].setValue(group_node_name) # put backdrop under lib.create_backdrop( label="Input Process", layer=2, nodes=[viewer, group_node], color="0x7c7faaff") return True def reorder_nodes(self, data): new_order = OrderedDict() trackNums = [v["trackIndex"] for k, v in data.items() if isinstance(v, dict)] subTrackNums = [v["subTrackIndex"] for k, v in data.items() if isinstance(v, dict)] for trackIndex in range( min(trackNums), max(trackNums) + 1): for subTrackIndex in range( min(subTrackNums), max(subTrackNums) + 1): item = self.get_item(data, trackIndex, subTrackIndex) if item is not {}: new_order.update(item) return new_order def get_item(self, data, trackIndex, subTrackIndex): return {key: val for key, val in data.items() if isinstance(val, dict) if subTrackIndex == val["subTrackIndex"] if trackIndex == val["trackIndex"]} def byteify(self, input): """ Converts unicode strings to strings It goes trought all dictionary Arguments: input (dict/str): input Returns: dict: with fixed values and keys """ if isinstance(input, dict): return {self.byteify(key): self.byteify(value) for key, value in input.iteritems()} elif isinstance(input, list): return [self.byteify(element) for element in input] elif isinstance(input, unicode): return input.encode('utf-8') else: return input def switch(self, container, representation): self.update(container, representation) def remove(self, container): node = nuke.toNode(container['objectName']) with viewer_update_and_undo_stop(): nuke.delete(node)
33.77135
79
0.514805
7948cbcd5b329fa8148010494ec9d74c1d6a3e50
2,039
py
Python
api/models.py
thevetdoctor/quickcheck
7990752fa3f118b8308df4a2ae58223d7c394329
[ "MIT" ]
1
2021-12-18T07:08:09.000Z
2021-12-18T07:08:09.000Z
api/models.py
thevetdoctor/quickcheck
7990752fa3f118b8308df4a2ae58223d7c394329
[ "MIT" ]
null
null
null
api/models.py
thevetdoctor/quickcheck
7990752fa3f118b8308df4a2ae58223d7c394329
[ "MIT" ]
null
null
null
from . import db class News(db.Model): id = db.Column(db.Integer, primary_key=True) item_id = db.Column(db.Integer, unique=True, nullable=False) title = db.Column(db.String, nullable=True) type = db.Column(db.String(20), nullable=False) text = db.Column(db.String, nullable=True) time = db.Column(db.Integer, nullable=False) url = db.Column(db.String(250), nullable=True) by = db.Column(db.String(50), nullable=True) source = db.Column(db.String(50), nullable=False) # kids = db.relationship('Comments', backref='news', lazy='joined') def __init__(self, item_id, title, type, text, time, url, by, source): self.item_id = item_id self.title = title self.type = type self.text = text self.time = time self.url = url self.by = by self.source = source class Comments(db.Model): id = db.Column(db.Integer, primary_key=True) item_id = db.Column(db.Integer, unique=True, nullable=False) title = db.Column(db.String, nullable=True) type = db.Column(db.String(20), nullable=False) text = db.Column(db.String, nullable=True) time = db.Column(db.Integer, nullable=False) url = db.Column(db.String(250), nullable=True) by = db.Column(db.String(50), nullable=True) source = db.Column(db.String(50), nullable=False) parent = db.Column(db.Integer, db.ForeignKey( 'news.item_id'), nullable=False) parents = db.relationship('News', lazy='joined', innerjoin=True) parentz = db.Column(db.Integer, db.ForeignKey( 'comments.item_id'), nullable=True) kids = db.relationship( 'Comments', remote_side=[item_id]) def __init__(self, item_id, title, type, text, time, url, by, source, parent, parentz): self.item_id = item_id self.title = title self.type = type self.text = text self.time = time self.url = url self.by = by self.source = source self.parent = parent self.parentz = parentz
34.559322
91
0.635606
7948cd1ef747912261890453712d0d4551fc1019
4,733
py
Python
EncoderDecoder/prep_inchi.py
Fpiotro/MOLECULAR-TRANSLATION
050dd0c093ee4e68326c2404c5b4dbf53ca6c8a0
[ "MIT" ]
5
2021-12-09T11:22:04.000Z
2022-03-28T06:54:29.000Z
EncoderDecoder/prep_inchi.py
Fpiotro/MOLECULAR-TRANSLATION
050dd0c093ee4e68326c2404c5b4dbf53ca6c8a0
[ "MIT" ]
null
null
null
EncoderDecoder/prep_inchi.py
Fpiotro/MOLECULAR-TRANSLATION
050dd0c093ee4e68326c2404c5b4dbf53ca6c8a0
[ "MIT" ]
null
null
null
# ==================================================== # Library # ==================================================== import os import re import numpy as np import pandas as pd import torch # ==================================================== # Data Loading # ==================================================== train = pd.read_csv('../input/bms-molecular-translation/train_labels.csv') print(f'train.shape: {train.shape}') # ==================================================== # Preprocess functions # ==================================================== def split_form(form): string = '' for i in re.findall(r"[A-Z][^A-Z]*", form): elem = re.match(r"\D+", i).group() num = i.replace(elem, "") if num == "": string += f"{elem} " else: string += f"{elem} {str(num)} " return string.rstrip(' ') def split_form2(form): string = '' for i in re.findall(r"[a-z][^a-z]*", form): elem = i[0] num = i.replace(elem, "").replace('/', "") num_string = '' for j in re.findall(r"[0-9]+[^0-9]*", num): num_list = list(re.findall(r'\d+', j)) assert len(num_list) == 1, f"len(num_list) != 1" _num = num_list[0] if j == _num: num_string += f"{_num} " else: extra = j.replace(_num, "") num_string += f"{_num} {' '.join(list(extra))} " string += f"/{elem} {num_string}" return string.rstrip(' ') def get_train_file_path(image_id): return "../input/bms-molecular-translation/train/{}/{}/{}/{}.png".format( image_id[0], image_id[1], image_id[2], image_id ) # ==================================================== # Tokenizer # ==================================================== class Tokenizer(object): def __init__(self): self.stoi = {} self.itos = {} def __len__(self): return len(self.stoi) def fit_on_texts(self, texts): vocab = set() for text in texts: vocab.update(text.split(' ')) vocab = sorted(vocab) vocab.append('<sos>') vocab.append('<eos>') vocab.append('<pad>') for i, s in enumerate(vocab): self.stoi[s] = i self.itos = {item[1]: item[0] for item in self.stoi.items()} def text_to_sequence(self, text): sequence = [] sequence.append(self.stoi['<sos>']) for s in text.split(' '): sequence.append(self.stoi[s]) sequence.append(self.stoi['<eos>']) return sequence def texts_to_sequences(self, texts): sequences = [] for text in texts: sequence = self.text_to_sequence(text) sequences.append(sequence) return sequences def sequence_to_text(self, sequence): return ''.join(list(map(lambda i: self.itos[i], sequence))) def sequences_to_texts(self, sequences): texts = [] for sequence in sequences: text = self.sequence_to_text(sequence) texts.append(text) return texts def predict_captions(self, sequences): captions = [] for sequence in sequences: caption = self.predict_caption(sequence) captions.append(caption) return captions # ==================================================== # Main # ==================================================== def main(): # ==================================================== # preprocess train.csv # ==================================================== train['InChI_text'] = train['InChI'].apply(lambda x: '/'.join(x.split('/')[2:])).progress_apply(split_form2).values # ==================================================== # create tokenizer # ==================================================== tokenizer = Tokenizer() tokenizer.fit_on_texts(train['InChI_text'].values) torch.save(tokenizer, 'tokenizer2.pth') print('Saved tokenizer') # ==================================================== # preprocess train.csv # ==================================================== lengths = [] tk0 = tqdm(train['InChI_text'].values, total=len(train)) for text in tk0: seq = tokenizer.text_to_sequence(text) length = len(seq) - 2 lengths.append(length) train['InChI_length'] = lengths train['file_path'] = train['image_id'].apply(get_train_file_path) train.to_pickle('train2.pkl') print('Saved preprocessed train.pkl') if __name__ == '__main__': main()
34.05036
120
0.445383
7948cdcbab4a100747e3e047695882c6ccc4ac90
4,132
py
Python
ditto/pinboard/migrations/0011_auto_20151002_1525.py
garrettc/django-ditto
fcf15beb8f9b4d61634efd4a88064df12ee16a6f
[ "MIT" ]
54
2016-08-15T17:32:41.000Z
2022-02-27T03:32:05.000Z
ditto/pinboard/migrations/0011_auto_20151002_1525.py
garrettc/django-ditto
fcf15beb8f9b4d61634efd4a88064df12ee16a6f
[ "MIT" ]
229
2015-07-23T12:50:47.000Z
2022-03-24T10:33:20.000Z
ditto/pinboard/migrations/0011_auto_20151002_1525.py
garrettc/django-ditto
fcf15beb8f9b4d61634efd4a88064df12ee16a6f
[ "MIT" ]
8
2015-09-10T17:10:35.000Z
2022-03-25T13:05:01.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ("pinboard", "0010_auto_20150730_1112"), ] operations = [ migrations.AlterField( model_name="account", name="api_token", field=models.CharField( help_text='From https://pinboard.in/settings/password eg, "philgyford:1234567890ABCDEFGHIJ"', # noqa: E501 max_length=51, ), ), migrations.AlterField( model_name="account", name="time_created", field=models.DateTimeField( help_text="The time this item was created in the database.", auto_now_add=True, ), ), migrations.AlterField( model_name="account", name="time_modified", field=models.DateTimeField( help_text="The time this item was last saved to the database.", auto_now=True, ), ), migrations.AlterField( model_name="account", name="url", field=models.URLField( unique=True, help_text="eg, 'https://pinboard.in/u:philgyford'", max_length=255, ), ), migrations.AlterField( model_name="account", name="username", field=models.CharField( unique=True, help_text="eg, 'philgyford'", max_length=30 ), ), migrations.AlterField( model_name="bookmark", name="description", field=models.TextField( help_text="The 'extended' text description.", blank=True ), ), migrations.AlterField( model_name="bookmark", name="fetch_time", field=models.DateTimeField( help_text="The time the item's data was last fetched, and was new or changed.", # noqa: E501 null=True, blank=True, ), ), migrations.AlterField( model_name="bookmark", name="is_private", field=models.BooleanField( help_text="If set, this item will not be shown on public-facing pages.", default=False, ), ), migrations.AlterField( model_name="bookmark", name="permalink", field=models.URLField( help_text="URL of the item on the service's website.", blank=True ), ), migrations.AlterField( model_name="bookmark", name="post_time", field=models.DateTimeField( help_text="The time this was created on Pinboard.", null=True, blank=True, ), ), migrations.AlterField( model_name="bookmark", name="raw", field=models.TextField( help_text="eg, the raw JSON from the API.", blank=True ), ), migrations.AlterField( model_name="bookmark", name="summary", field=models.CharField( help_text="eg, Initial text of a blog post, start of the description of a photo, all of a Tweet's text, etc. No HTML.", # noqa: E501 blank=True, max_length=255, ), ), migrations.AlterField( model_name="bookmark", name="time_created", field=models.DateTimeField( help_text="The time this item was created in the database.", auto_now_add=True, ), ), migrations.AlterField( model_name="bookmark", name="time_modified", field=models.DateTimeField( help_text="The time this item was last saved to the database.", auto_now=True, ), ), ]
32.535433
149
0.505808
7948cdd8b582b2fcd8fce30038647cb2a78a07a2
46
py
Python
miranda/eccc/__init__.py
Ouranosinc/miranda
5c54767a4e6e6c3c1f638ca0fe22673ea98e2746
[ "Apache-2.0" ]
4
2019-11-07T17:45:26.000Z
2021-09-22T18:22:01.000Z
miranda/eccc/__init__.py
Ouranosinc/miranda
5c54767a4e6e6c3c1f638ca0fe22673ea98e2746
[ "Apache-2.0" ]
12
2019-09-19T17:05:39.000Z
2022-03-31T20:26:16.000Z
miranda/eccc/__init__.py
Ouranosinc/miranda
5c54767a4e6e6c3c1f638ca0fe22673ea98e2746
[ "Apache-2.0" ]
1
2020-02-01T01:01:22.000Z
2020-02-01T01:01:22.000Z
from ._raw import * from ._summaries import *
15.333333
25
0.73913
7948cde580135c8041432461eca31cd064cb5736
55,496
py
Python
dask-gateway-server/dask_gateway_server/backends/db_base.py
ncalandra/dask-gateway
17cd3a923b15fdd98a40475d480f80a2e1b463e1
[ "BSD-3-Clause" ]
null
null
null
dask-gateway-server/dask_gateway_server/backends/db_base.py
ncalandra/dask-gateway
17cd3a923b15fdd98a40475d480f80a2e1b463e1
[ "BSD-3-Clause" ]
null
null
null
dask-gateway-server/dask_gateway_server/backends/db_base.py
ncalandra/dask-gateway
17cd3a923b15fdd98a40475d480f80a2e1b463e1
[ "BSD-3-Clause" ]
null
null
null
import asyncio import base64 import json import os import uuid from collections import defaultdict from itertools import chain, islice import sqlalchemy as sa from async_timeout import timeout from traitlets import Unicode, Bool, List, Integer, Float, validate, default from cryptography.fernet import MultiFernet, Fernet from .base import Backend from .. import models from ..proxy import Proxy from ..tls import new_keypair from ..workqueue import WorkQueue, Backoff, WorkQueueClosed from ..utils import FrozenAttrDict, TaskPool, Flag, normalize_address, timestamp __all__ = ("DBBackendBase", "Cluster", "Worker") def _normalize_encrypt_key(key): if isinstance(key, str): key = key.encode("ascii") if len(key) == 44: try: key = base64.urlsafe_b64decode(key) except ValueError: pass if len(key) == 32: return base64.urlsafe_b64encode(key) raise ValueError( "All keys in `db_encrypt_keys`/`DASK_GATEWAY_ENCRYPT_KEYS` must be 32 " "bytes, base64-encoded" ) def _is_in_memory_db(url): return url in ("sqlite://", "sqlite:///:memory:") class _IntEnum(sa.TypeDecorator): impl = sa.Integer def __init__(self, enumclass, *args, **kwargs): super().__init__(*args, **kwargs) self._enumclass = enumclass def process_bind_param(self, value, dialect): return value.value def process_result_value(self, value, dialect): return self._enumclass(value) class _JSON(sa.TypeDecorator): "Represents an immutable structure as a json-encoded string." impl = sa.LargeBinary def process_bind_param(self, value, dialect): if value is not None: value = json.dumps(value).encode("utf-8") return value def process_result_value(self, value, dialect): if value is not None: value = json.loads(value) return value class JobStatus(models.IntEnum): CREATED = 1 SUBMITTED = 2 RUNNING = 3 CLOSING = 4 STOPPED = 5 FAILED = 6 class Cluster(object): """Information on a cluster. Not all attributes on this object are publically accessible. When writing a backend, you may access the following attributes: Attributes ---------- name : str The cluster name. username : str The user associated with this cluster. token : str The API token associated with this cluster. Used to authenticate the cluster with the gateway. config : FrozenAttrDict The serialized ``ClusterConfig`` associated with this cluster. state : dict Any cluster state, as yielded from ``do_start_cluster``. scheduler_address : str The scheduler address. The empty string if the cluster is not running. dashboard_address : str The dashboard address. The empty string if the cluster is not running, or no dashboard is running on the cluster. api_address : str The cluster's api address. The empty string if the cluster is not running. tls_cert : bytes The TLS cert credentials associated with the cluster. tls_key : bytes The TLS key credentials associated with the cluster. """ def __init__( self, id=None, name=None, username=None, token=None, options=None, config=None, status=None, target=None, count=0, state=None, scheduler_address="", dashboard_address="", api_address="", tls_cert=b"", tls_key=b"", start_time=None, stop_time=None, ): self.id = id self.name = name self.username = username self.token = token self.options = options self.config = config self.status = status self.target = target self.count = count self.state = state self.scheduler_address = scheduler_address self.dashboard_address = dashboard_address self.api_address = api_address self.tls_cert = tls_cert self.tls_key = tls_key self.start_time = start_time self.stop_time = stop_time if self.status == JobStatus.RUNNING: self.last_heartbeat = timestamp() else: self.last_heartbeat = None self.worker_start_failure_count = 0 self.added_to_proxies = False self.workers = {} self.ready = Flag() if self.status >= JobStatus.RUNNING: self.ready.set() self.shutdown = Flag() if self.status >= JobStatus.STOPPED: self.shutdown.set() _status_map = { (JobStatus.CREATED, JobStatus.RUNNING): models.ClusterStatus.PENDING, (JobStatus.CREATED, JobStatus.CLOSING): models.ClusterStatus.STOPPING, (JobStatus.CREATED, JobStatus.STOPPED): models.ClusterStatus.STOPPING, (JobStatus.CREATED, JobStatus.FAILED): models.ClusterStatus.STOPPING, (JobStatus.SUBMITTED, JobStatus.RUNNING): models.ClusterStatus.PENDING, (JobStatus.SUBMITTED, JobStatus.CLOSING): models.ClusterStatus.STOPPING, (JobStatus.SUBMITTED, JobStatus.STOPPED): models.ClusterStatus.STOPPING, (JobStatus.SUBMITTED, JobStatus.FAILED): models.ClusterStatus.STOPPING, (JobStatus.RUNNING, JobStatus.RUNNING): models.ClusterStatus.RUNNING, (JobStatus.RUNNING, JobStatus.CLOSING): models.ClusterStatus.STOPPING, (JobStatus.RUNNING, JobStatus.STOPPED): models.ClusterStatus.STOPPING, (JobStatus.RUNNING, JobStatus.FAILED): models.ClusterStatus.STOPPING, (JobStatus.CLOSING, JobStatus.STOPPED): models.ClusterStatus.STOPPING, (JobStatus.CLOSING, JobStatus.FAILED): models.ClusterStatus.STOPPING, (JobStatus.STOPPED, JobStatus.STOPPED): models.ClusterStatus.STOPPED, (JobStatus.FAILED, JobStatus.FAILED): models.ClusterStatus.FAILED, } def active_workers(self): return [w for w in self.workers.values() if w.is_active()] def is_active(self): return self.target < JobStatus.STOPPED def all_workers_at_least(self, status): return all(w.status >= status for w in self.workers.values()) @property def model_status(self): return self._status_map[self.status, self.target] def to_model(self): return models.Cluster( name=self.name, username=self.username, token=self.token, options=self.options, config=self.config, status=self.model_status, scheduler_address=self.scheduler_address, dashboard_address=self.dashboard_address, api_address=self.api_address, tls_cert=self.tls_cert, tls_key=self.tls_key, start_time=self.start_time, stop_time=self.stop_time, ) class Worker(object): """Information on a worker. Not all attributes on this object are publically accessible. When writing a backend, you may access the following attributes: Attributes ---------- name : str The worker name. cluster : Cluster The cluster associated with this worker. state : dict Any worker state, as yielded from ``do_start_worker``. """ def __init__( self, id=None, name=None, cluster=None, status=None, target=None, state=None, start_time=None, stop_time=None, close_expected=False, ): self.id = id self.name = name self.cluster = cluster self.status = status self.target = target self.state = state self.start_time = start_time self.stop_time = stop_time self.close_expected = close_expected def is_active(self): return self.target < JobStatus.STOPPED metadata = sa.MetaData() clusters = sa.Table( "clusters", metadata, sa.Column("id", sa.Integer, primary_key=True, autoincrement=True), sa.Column("name", sa.Unicode(255), nullable=False, unique=True), sa.Column("username", sa.Unicode(255), nullable=False), sa.Column("status", _IntEnum(JobStatus), nullable=False), sa.Column("target", _IntEnum(JobStatus), nullable=False), sa.Column("count", sa.Integer, nullable=False), sa.Column("options", _JSON, nullable=False), sa.Column("config", _JSON, nullable=False), sa.Column("state", _JSON, nullable=False), sa.Column("token", sa.BINARY(140), nullable=False, unique=True), sa.Column("scheduler_address", sa.Unicode(255), nullable=False), sa.Column("dashboard_address", sa.Unicode(255), nullable=False), sa.Column("api_address", sa.Unicode(255), nullable=False), sa.Column("tls_credentials", sa.LargeBinary, nullable=False), sa.Column("start_time", sa.Integer, nullable=False), sa.Column("stop_time", sa.Integer, nullable=True), ) workers = sa.Table( "workers", metadata, sa.Column("id", sa.Integer, primary_key=True, autoincrement=True), sa.Column("name", sa.Unicode(255), nullable=False), sa.Column( "cluster_id", sa.ForeignKey("clusters.id", ondelete="CASCADE"), nullable=False ), sa.Column("status", _IntEnum(JobStatus), nullable=False), sa.Column("target", _IntEnum(JobStatus), nullable=False), sa.Column("state", _JSON, nullable=False), sa.Column("start_time", sa.Integer, nullable=False), sa.Column("stop_time", sa.Integer, nullable=True), sa.Column("close_expected", sa.Integer, nullable=False), ) class DataManager(object): """Holds the internal state for a single Dask Gateway. Keeps the memory representation in-sync with the database. """ def __init__(self, url="sqlite:///:memory:", encrypt_keys=(), **kwargs): if url.startswith("sqlite"): kwargs["connect_args"] = {"check_same_thread": False} if _is_in_memory_db(url): kwargs["poolclass"] = sa.pool.StaticPool self.fernet = None else: self.fernet = MultiFernet([Fernet(key) for key in encrypt_keys]) engine = sa.create_engine(url, **kwargs) if url.startswith("sqlite"): # Register PRAGMA foreigh_keys=on for sqlite @sa.event.listens_for(engine, "connect") def connect(dbapi_con, con_record): cursor = dbapi_con.cursor() cursor.execute("PRAGMA foreign_keys=ON") cursor.close() metadata.create_all(engine) self.db = engine self.username_to_clusters = defaultdict(dict) self.name_to_cluster = {} self.id_to_cluster = {} # Load all existing clusters into memory for c in self.db.execute(clusters.select()): tls_cert, tls_key = self.decode_tls_credentials(c.tls_credentials) token = self.decode_token(c.token) cluster = Cluster( id=c.id, name=c.name, username=c.username, token=token, options=c.options, config=FrozenAttrDict(c.config), status=c.status, target=c.target, count=c.count, state=c.state, scheduler_address=c.scheduler_address, dashboard_address=c.dashboard_address, api_address=c.api_address, tls_cert=tls_cert, tls_key=tls_key, start_time=c.start_time, stop_time=c.stop_time, ) self.username_to_clusters[cluster.username][cluster.name] = cluster self.id_to_cluster[cluster.id] = cluster self.name_to_cluster[cluster.name] = cluster # Next load all existing workers into memory for w in self.db.execute(workers.select()): cluster = self.id_to_cluster[w.cluster_id] worker = Worker( id=w.id, name=w.name, status=w.status, target=w.target, cluster=cluster, state=w.state, start_time=w.start_time, stop_time=w.stop_time, close_expected=w.close_expected, ) cluster.workers[worker.name] = worker def cleanup_expired(self, max_age_in_seconds): cutoff = timestamp() - max_age_in_seconds * 1000 with self.db.begin() as conn: to_delete = conn.execute( sa.select([clusters.c.id]).where(clusters.c.stop_time < cutoff) ).fetchall() if to_delete: to_delete = [i for i, in to_delete] conn.execute( clusters.delete().where(clusters.c.id == sa.bindparam("id")), [{"id": i} for i in to_delete], ) for i in to_delete: cluster = self.id_to_cluster.pop(i) self.name_to_cluster.pop(cluster.name, None) user_clusters = self.username_to_clusters[cluster.username] user_clusters.pop(cluster.name) if not user_clusters: self.username_to_clusters.pop(cluster.username) return len(to_delete) def encrypt(self, b): """Encrypt bytes ``b``. If encryption is disabled this is a no-op""" return b if self.fernet is None else self.fernet.encrypt(b) def decrypt(self, b): """Decrypt bytes ``b``. If encryption is disabled this is a no-op""" return b if self.fernet is None else self.fernet.decrypt(b) def encode_tls_credentials(self, tls_cert, tls_key): return self.encrypt(b";".join((tls_cert, tls_key))) def decode_tls_credentials(self, data): return self.decrypt(data).split(b";") def encode_token(self, token): return self.encrypt(token.encode("utf8")) def decode_token(self, data): return self.decrypt(data).decode() def get_cluster(self, cluster_name): return self.name_to_cluster.get(cluster_name) def list_clusters(self, username=None, statuses=None): if statuses is None: select = lambda x: x.is_active() else: statuses = set(statuses) select = lambda x: x.model_status in statuses if username is None: return [ cluster for cluster in self.name_to_cluster.values() if select(cluster) ] else: clusters = self.username_to_clusters.get(username) if clusters is None: return [] return [cluster for cluster in clusters.values() if select(cluster)] def active_clusters(self): for cluster in self.name_to_cluster.values(): if cluster.is_active(): yield cluster def create_cluster(self, username, options, config): """Create a new cluster for a user""" cluster_name = uuid.uuid4().hex token = uuid.uuid4().hex tls_cert, tls_key = new_keypair(cluster_name) # Encode the tls credentials for storing in the database tls_credentials = self.encode_tls_credentials(tls_cert, tls_key) enc_token = self.encode_token(token) common = { "name": cluster_name, "username": username, "options": options, "status": JobStatus.CREATED, "target": JobStatus.RUNNING, "count": 0, "state": {}, "scheduler_address": "", "dashboard_address": "", "api_address": "", "start_time": timestamp(), } with self.db.begin() as conn: res = conn.execute( clusters.insert().values( tls_credentials=tls_credentials, token=enc_token, config=config, **common, ) ) cluster = Cluster( id=res.inserted_primary_key[0], token=token, tls_cert=tls_cert, tls_key=tls_key, config=FrozenAttrDict(config), **common, ) self.id_to_cluster[cluster.id] = cluster self.name_to_cluster[cluster_name] = cluster self.username_to_clusters[username][cluster_name] = cluster return cluster def create_worker(self, cluster): """Create a new worker for a cluster""" worker_name = uuid.uuid4().hex common = { "name": worker_name, "status": JobStatus.CREATED, "target": JobStatus.RUNNING, "state": {}, "start_time": timestamp(), "close_expected": False, } with self.db.begin() as conn: res = conn.execute(workers.insert().values(cluster_id=cluster.id, **common)) worker = Worker(id=res.inserted_primary_key[0], cluster=cluster, **common) cluster.workers[worker.name] = worker return worker def update_cluster(self, cluster, **kwargs): """Update a cluster's state""" with self.db.begin() as conn: conn.execute( clusters.update().where(clusters.c.id == cluster.id).values(**kwargs) ) for k, v in kwargs.items(): setattr(cluster, k, v) def update_clusters(self, updates): """Update multiple clusters' states""" if not updates: return with self.db.begin() as conn: conn.execute( clusters.update().where(clusters.c.id == sa.bindparam("_id")), [{"_id": c.id, **u} for c, u in updates], ) for c, u in updates: for k, v in u.items(): setattr(c, k, v) def update_worker(self, worker, **kwargs): """Update a worker's state""" with self.db.begin() as conn: conn.execute( workers.update().where(workers.c.id == worker.id).values(**kwargs) ) for k, v in kwargs.items(): setattr(worker, k, v) def update_workers(self, updates): """Update multiple workers' states""" if not updates: return with self.db.begin() as conn: conn.execute( workers.update().where(workers.c.id == sa.bindparam("_id")), [{"_id": w.id, **u} for w, u in updates], ) for w, u in updates: for k, v in u.items(): setattr(w, k, v) class DBBackendBase(Backend): """A base class for defining backends that rely on a database for managing state. Subclasses should define the following methods: - ``do_setup`` - ``do_cleanup`` - ``do_start_cluster`` - ``do_stop_cluster`` - ``do_check_clusters`` - ``do_start_worker`` - ``do_stop_worker`` - ``do_check_workers`` """ db_url = Unicode( "sqlite:///:memory:", help=""" The URL for the database. Default is in-memory only. If not in-memory, ``db_encrypt_keys`` must also be set. """, config=True, ) db_encrypt_keys = List( help=""" A list of keys to use to encrypt private data in the database. Can also be set by the environment variable ``DASK_GATEWAY_ENCRYPT_KEYS``, where the value is a ``;`` delimited string of encryption keys. Each key should be a base64-encoded 32 byte value, and should be cryptographically random. Lacking other options, openssl can be used to generate a single key via: .. code-block:: shell $ openssl rand -base64 32 A single key is valid, multiple keys can be used to support key rotation. """, config=True, ) @default("db_encrypt_keys") def _db_encrypt_keys_default(self): keys = os.environb.get(b"DASK_GATEWAY_ENCRYPT_KEYS", b"").strip() if not keys: return [] return [_normalize_encrypt_key(k) for k in keys.split(b";") if k.strip()] @validate("db_encrypt_keys") def _db_encrypt_keys_validate(self, proposal): if not proposal.value and not _is_in_memory_db(self.db_url): raise ValueError( "Must configure `db_encrypt_keys`/`DASK_GATEWAY_ENCRYPT_KEYS` " "when not using an in-memory database" ) return [_normalize_encrypt_key(k) for k in proposal.value] db_debug = Bool( False, help="If True, all database operations will be logged", config=True ) db_cleanup_period = Float( 600, help=""" Time (in seconds) between database cleanup tasks. This sets how frequently old records are removed from the database. This shouldn't be too small (to keep the overhead low), but should be smaller than ``db_record_max_age`` (probably by an order of magnitude). """, config=True, ) db_cluster_max_age = Float( 3600 * 24, help=""" Max time (in seconds) to keep around records of completed clusters. Every ``db_cleanup_period``, completed clusters older than ``db_cluster_max_age`` are removed from the database. """, config=True, ) stop_clusters_on_shutdown = Bool( True, help=""" Whether to stop active clusters on gateway shutdown. If true, all active clusters will be stopped before shutting down the gateway. Set to False to leave active clusters running. """, config=True, ) @validate("stop_clusters_on_shutdown") def _stop_clusters_on_shutdown_validate(self, proposal): if not proposal.value and _is_in_memory_db(self.db_url): raise ValueError( "When using an in-memory database, `stop_clusters_on_shutdown` " "must be True" ) return proposal.value cluster_status_period = Float( 30, help=""" Time (in seconds) between cluster status checks. A smaller period will detect failed clusters sooner, but will use more resources. A larger period will provide slower feedback in the presence of failures. """, config=True, ) worker_status_period = Float( 30, help=""" Time (in seconds) between worker status checks. A smaller period will detect failed workers sooner, but will use more resources. A larger period will provide slower feedback in the presence of failures. """, config=True, ) cluster_heartbeat_period = Integer( 15, help=""" Time (in seconds) between cluster heartbeats to the gateway. A smaller period will detect failed workers sooner, but will use more resources. A larger period will provide slower feedback in the presence of failures. """, config=True, ) cluster_heartbeat_timeout = Float( help=""" Timeout (in seconds) before killing a dask cluster that's failed to heartbeat. This should be greater than ``cluster_heartbeat_period``. Defaults to ``2 * cluster_heartbeat_period``. """, config=True, ) @default("cluster_heartbeat_timeout") def _default_cluster_heartbeat_timeout(self): return self.cluster_heartbeat_period * 2 cluster_start_timeout = Float( 60, help=""" Timeout (in seconds) before giving up on a starting dask cluster. """, config=True, ) worker_start_timeout = Float( 60, help=""" Timeout (in seconds) before giving up on a starting dask worker. """, config=True, ) check_timeouts_period = Float( help=""" Time (in seconds) between timeout checks. This shouldn't be too small (to keep the overhead low), but should be smaller than ``cluster_heartbeat_timeout``, ``cluster_start_timeout``, and ``worker_start_timeout``. """, config=True, ) @default("check_timeouts_period") def _default_check_timeouts_period(self): min_timeout = min( self.cluster_heartbeat_timeout, self.cluster_start_timeout, self.worker_start_timeout, ) return min(20, min_timeout / 2) worker_start_failure_limit = Integer( 3, help=""" A limit on the number of failed attempts to start a worker before the cluster is marked as failed. Every worker that fails to start (timeouts exempt) increments a counter. The counter is reset if a worker successfully starts. If the counter ever exceeds this limit, the cluster is marked as failed and is shutdown. """, config=True, ) parallelism = Integer( 20, help=""" Number of handlers to use for starting/stopping clusters. """, config=True, ) backoff_base_delay = Float( 0.1, help=""" Base delay (in seconds) for backoff when retrying after failures. If an operation fails, it is retried after a backoff computed as: ``` min(backoff_max_delay, backoff_base_delay * 2 ** num_failures) ``` """, config=True, ) backoff_max_delay = Float( 300, help=""" Max delay (in seconds) for backoff policy when retrying after failures. """, config=True, ) api_url = Unicode( help=""" The address that internal components (e.g. dask clusters) will use when contacting the gateway. Defaults to `{proxy_address}/{prefix}/api`, set manually if a different address should be used. """, config=True, ) @default("api_url") def _api_url_default(self): proxy = self.proxy scheme = "https" if proxy.tls_cert else "http" address = normalize_address(proxy.address, resolve_host=True) return f"{scheme}://{address}{proxy.prefix}/api" async def setup(self, app): await super().setup(app) # Setup reconcilation queues self.queue = WorkQueue( backoff=Backoff( base_delay=self.backoff_base_delay, max_delay=self.backoff_max_delay ) ) self.reconcilers = [ asyncio.ensure_future(self.reconciler_loop()) for _ in range(self.parallelism) ] # Start the proxy self.proxy = Proxy(parent=self, log=self.log) await self.proxy.setup(app) # Load the database self.db = DataManager( url=self.db_url, echo=self.db_debug, encrypt_keys=self.db_encrypt_keys ) # Start background tasks self.task_pool = TaskPool() self.task_pool.spawn(self.check_timeouts_loop()) self.task_pool.spawn(self.check_clusters_loop()) self.task_pool.spawn(self.check_workers_loop()) self.task_pool.spawn(self.cleanup_db_loop()) # Load all active clusters/workers into reconcilation queues for cluster in self.db.name_to_cluster.values(): if cluster.status < JobStatus.STOPPED: self.queue.put(cluster) for worker in cluster.workers.values(): if worker.status < JobStatus.STOPPED: self.queue.put(worker) # Further backend-specific setup await self.do_setup() self.log.info( "Backend started, clusters will contact api server at %s", self.api_url ) async def cleanup(self): if hasattr(self, "task_pool"): # Stop background tasks await self.task_pool.close() if hasattr(self, "db"): if self.stop_clusters_on_shutdown: # Request all active clusters be stopped active = list(self.db.active_clusters()) if active: self.log.info("Stopping %d active clusters...", len(active)) self.db.update_clusters( [(c, {"target": JobStatus.FAILED}) for c in active] ) for c in active: self.queue.put(c) # Wait until all clusters are shutdown pending_shutdown = [ c for c in self.db.name_to_cluster.values() if c.status < JobStatus.STOPPED ] if pending_shutdown: await asyncio.wait([c.shutdown for c in pending_shutdown]) # Stop reconcilation queues if hasattr(self, "reconcilers"): self.queue.close() await asyncio.gather(*self.reconcilers, return_exceptions=True) await self.do_cleanup() if hasattr(self, "proxy"): await self.proxy.cleanup() await super().cleanup() async def list_clusters(self, username=None, statuses=None): clusters = self.db.list_clusters(username=username, statuses=statuses) return [c.to_model() for c in clusters] async def get_cluster(self, cluster_name, wait=False): cluster = self.db.get_cluster(cluster_name) if cluster is None: return None if wait: try: await asyncio.wait_for(cluster.ready, 20) except asyncio.TimeoutError: pass return cluster.to_model() async def start_cluster(self, user, cluster_options): options, config = await self.process_cluster_options(user, cluster_options) cluster = self.db.create_cluster(user.name, options, config.to_dict()) self.log.info("Created cluster %s for user %s", cluster.name, user.name) self.queue.put(cluster) return cluster.name async def stop_cluster(self, cluster_name, failed=False): cluster = self.db.get_cluster(cluster_name) if cluster is None: return if cluster.target <= JobStatus.RUNNING: self.log.info("Stopping cluster %s", cluster.name) target = JobStatus.FAILED if failed else JobStatus.STOPPED self.db.update_cluster(cluster, target=target) self.queue.put(cluster) async def on_cluster_heartbeat(self, cluster_name, msg): cluster = self.db.get_cluster(cluster_name) if cluster is None or cluster.target > JobStatus.RUNNING: return cluster.last_heartbeat = timestamp() if cluster.status == JobStatus.RUNNING: cluster_update = {} else: cluster_update = { "api_address": msg["api_address"], "scheduler_address": msg["scheduler_address"], "dashboard_address": msg["dashboard_address"], } count = msg["count"] active_workers = set(msg["active_workers"]) closing_workers = set(msg["closing_workers"]) closed_workers = set(msg["closed_workers"]) self.log.info( "Cluster %s heartbeat [count: %d, n_active: %d, n_closing: %d, n_closed: %d]", cluster_name, count, len(active_workers), len(closing_workers), len(closed_workers), ) max_workers = cluster.config.get("cluster_max_workers") if max_workers is not None and count > max_workers: # This shouldn't happen under normal operation, but could if the # user does something malicious (or there's a bug). self.log.info( "Cluster %s heartbeat requested %d workers, exceeding limit of %s.", cluster_name, count, max_workers, ) count = max_workers if count != cluster.count: cluster_update["count"] = count created_workers = [] submitted_workers = [] target_updates = [] newly_running = [] close_expected = [] for worker in cluster.workers.values(): if worker.status >= JobStatus.STOPPED: continue elif worker.name in closing_workers: if worker.status < JobStatus.RUNNING: newly_running.append(worker) close_expected.append(worker) elif worker.name in active_workers: if worker.status < JobStatus.RUNNING: newly_running.append(worker) elif worker.name in closed_workers: target = ( JobStatus.STOPPED if worker.close_expected else JobStatus.FAILED ) target_updates.append((worker, {"target": target})) else: if worker.status == JobStatus.SUBMITTED: submitted_workers.append(worker) else: assert worker.status == JobStatus.CREATED created_workers.append(worker) n_pending = len(created_workers) + len(submitted_workers) n_to_stop = len(active_workers) + n_pending - count if n_to_stop > 0: for w in islice(chain(created_workers, submitted_workers), n_to_stop): target_updates.append((w, {"target": JobStatus.STOPPED})) if cluster_update: self.db.update_cluster(cluster, **cluster_update) self.queue.put(cluster) self.db.update_workers(target_updates) for w, u in target_updates: self.queue.put(w) if newly_running: # At least one worker successfully started, reset failure count cluster.worker_start_failure_count = 0 self.db.update_workers( [(w, {"status": JobStatus.RUNNING}) for w in newly_running] ) for w in newly_running: self.log.info("Worker %s is running", w.name) self.db.update_workers([(w, {"close_expected": True}) for w in close_expected]) async def check_timeouts_loop(self): while True: await asyncio.sleep(self.check_timeouts_period) try: await self._check_timeouts() except asyncio.CancelledError: raise except Exception as exc: self.log.warning( "Exception while checking for timed out clusters/workers", exc_info=exc, ) async def _check_timeouts(self): self.log.debug("Checking for timed out clusters/workers") now = timestamp() cluster_heartbeat_cutoff = now - self.cluster_heartbeat_timeout * 1000 cluster_start_cutoff = now - self.cluster_start_timeout * 1000 worker_start_cutoff = now - self.worker_start_timeout * 1000 cluster_updates = [] worker_updates = [] for cluster in self.db.active_clusters(): if cluster.status == JobStatus.SUBMITTED: # Check if submitted clusters have timed out if cluster.start_time < cluster_start_cutoff: self.log.info("Cluster %s startup timed out", cluster.name) cluster_updates.append((cluster, {"target": JobStatus.FAILED})) elif cluster.status == JobStatus.RUNNING: # Check if running clusters have missed a heartbeat if cluster.last_heartbeat < cluster_heartbeat_cutoff: self.log.info("Cluster %s heartbeat timed out", cluster.name) cluster_updates.append((cluster, {"target": JobStatus.FAILED})) else: for w in cluster.workers.values(): # Check if submitted workers have timed out if ( w.status == JobStatus.SUBMITTED and w.target == JobStatus.RUNNING and w.start_time < worker_start_cutoff ): self.log.info("Worker %s startup timed out", w.name) worker_updates.append((w, {"target": JobStatus.FAILED})) self.db.update_clusters(cluster_updates) for c, _ in cluster_updates: self.queue.put(c) self.db.update_workers(worker_updates) for w, _ in worker_updates: self.queue.put(w) async def check_clusters_loop(self): while True: await asyncio.sleep(self.cluster_status_period) self.log.debug("Checking pending cluster statuses") try: clusters = [ c for c in self.db.active_clusters() if c.status == JobStatus.SUBMITTED ] statuses = await self.do_check_clusters(clusters) updates = [ (c, {"target": JobStatus.FAILED}) for c, ok in zip(clusters, statuses) if not ok ] self.db.update_clusters(updates) for c, _ in updates: self.log.info("Cluster %s failed during startup", c.name) self.queue.put(c) except asyncio.CancelledError: raise except Exception as exc: self.log.warning( "Exception while checking cluster statuses", exc_info=exc ) async def check_workers_loop(self): while True: await asyncio.sleep(self.worker_status_period) self.log.debug("Checking pending worker statuses") try: clusters = ( c for c in self.db.active_clusters() if c.status == JobStatus.RUNNING ) workers = [ w for c in clusters for w in c.active_workers() if w.status == JobStatus.SUBMITTED ] statuses = await self.do_check_workers(workers) updates = [ (w, {"target": JobStatus.FAILED}) for w, ok in zip(workers, statuses) if not ok ] self.db.update_workers(updates) for w, _ in updates: self.log.info("Worker %s failed during startup", w.name) w.cluster.worker_start_failure_count += 1 self.queue.put(w) except asyncio.CancelledError: raise except Exception as exc: self.log.warning( "Exception while checking worker statuses", exc_info=exc ) async def cleanup_db_loop(self): while True: try: n = self.db.cleanup_expired(self.db_cluster_max_age) except Exception as exc: self.log.error( "Error while cleaning expired database records", exc_info=exc ) else: self.log.debug("Removed %d expired clusters from the database", n) await asyncio.sleep(self.db_cleanup_period) async def reconciler_loop(self): while True: try: obj = await self.queue.get() except WorkQueueClosed: return if isinstance(obj, Cluster): method = self.reconcile_cluster kind = "cluster" else: method = self.reconcile_worker kind = "worker" self.log.debug( "Reconciling %s %s, %s -> %s", kind, obj.name, obj.status.name, obj.target.name, ) try: await method(obj) except Exception: self.log.warning( "Error while reconciling %s %s", kind, obj.name, exc_info=True ) self.queue.put_backoff(obj) else: self.queue.reset_backoff(obj) finally: self.queue.task_done(obj) async def reconcile_cluster(self, cluster): if cluster.status >= JobStatus.STOPPED: return if cluster.target in (JobStatus.STOPPED, JobStatus.FAILED): if cluster.status == JobStatus.CLOSING: if self.is_cluster_ready_to_close(cluster): await self._cluster_to_stopped(cluster) else: await self._cluster_to_closing(cluster) return if cluster.target == JobStatus.RUNNING: if cluster.status == JobStatus.CREATED: await self._cluster_to_submitted(cluster) return if cluster.status == JobStatus.SUBMITTED and cluster.scheduler_address: await self._cluster_to_running(cluster) if cluster.status == JobStatus.RUNNING: await self._check_cluster_proxied(cluster) await self._check_cluster_scale(cluster) async def reconcile_worker(self, worker): if worker.status >= JobStatus.STOPPED: return if worker.target == JobStatus.CLOSING: if worker.status != JobStatus.CLOSING: self.db.update_worker(worker, status=JobStatus.CLOSING) if self.is_cluster_ready_to_close(worker.cluster): self.queue.put(worker.cluster) return if worker.target in (JobStatus.STOPPED, JobStatus.FAILED): await self._worker_to_stopped(worker) if self.is_cluster_ready_to_close(worker.cluster): self.queue.put(worker.cluster) elif ( worker.cluster.target == JobStatus.RUNNING and not worker.close_expected ): self.queue.put(worker.cluster) return if worker.status == JobStatus.CREATED and worker.target == JobStatus.RUNNING: await self._worker_to_submitted(worker) return def is_cluster_ready_to_close(self, cluster): return ( cluster.status == JobStatus.CLOSING and ( self.supports_bulk_shutdown and cluster.all_workers_at_least(JobStatus.CLOSING) ) or cluster.all_workers_at_least(JobStatus.STOPPED) ) async def _cluster_to_submitted(self, cluster): self.log.info("Submitting cluster %s...", cluster.name) try: async with timeout(self.cluster_start_timeout): async for state in self.do_start_cluster(cluster): self.log.debug("State update for cluster %s", cluster.name) self.db.update_cluster(cluster, state=state) self.db.update_cluster(cluster, status=JobStatus.SUBMITTED) self.log.info("Cluster %s submitted", cluster.name) except asyncio.CancelledError: raise except Exception as exc: if isinstance(exc, asyncio.TimeoutError): self.log.info("Cluster %s startup timed out", cluster.name) else: self.log.warning( "Failed to submit cluster %s", cluster.name, exc_info=exc ) self.db.update_cluster( cluster, status=JobStatus.SUBMITTED, target=JobStatus.FAILED ) self.queue.put(cluster) async def _cluster_to_closing(self, cluster): self.log.debug("Preparing to stop cluster %s", cluster.name) target = JobStatus.CLOSING if self.supports_bulk_shutdown else JobStatus.STOPPED workers = [w for w in cluster.workers.values() if w.target < target] self.db.update_workers([(w, {"target": target}) for w in workers]) for w in workers: self.queue.put(w) self.db.update_cluster(cluster, status=JobStatus.CLOSING) if not workers: # If there are workers, the cluster will be enqueued after the last one closed # If there are no workers, requeue now self.queue.put(cluster) cluster.ready.set() async def _cluster_to_stopped(self, cluster): self.log.info("Stopping cluster %s...", cluster.name) if cluster.status > JobStatus.CREATED: try: await self.do_stop_cluster(cluster) except Exception as exc: self.log.warning( "Exception while stopping cluster %s", cluster.name, exc_info=exc ) await self.proxy.remove_route(kind="PATH", path=f"/clusters/{cluster.name}") await self.proxy.remove_route(kind="SNI", sni=cluster.name) self.log.info("Cluster %s stopped", cluster.name) self.db.update_workers( [ (w, {"status": JobStatus.STOPPED, "target": JobStatus.STOPPED}) for w in cluster.workers.values() if w.status < JobStatus.STOPPED ] ) self.db.update_cluster(cluster, status=cluster.target, stop_time=timestamp()) cluster.ready.set() cluster.shutdown.set() async def _cluster_to_running(self, cluster): self.log.info("Cluster %s is running", cluster.name) self.db.update_cluster(cluster, status=JobStatus.RUNNING) cluster.ready.set() async def _check_cluster_proxied(self, cluster): if not cluster.added_to_proxies: self.log.info("Adding cluster %s routes to proxies", cluster.name) if cluster.dashboard_address: await self.proxy.add_route( kind="PATH", path=f"/clusters/{cluster.name}", target=cluster.dashboard_address, ) await self.proxy.add_route( kind="SNI", sni=cluster.name, target=cluster.scheduler_address ) cluster.added_to_proxies = True async def _check_cluster_scale(self, cluster): if cluster.worker_start_failure_count >= self.worker_start_failure_limit: self.log.info( "Cluster %s had %d consecutive workers fail to start, failing the cluster", cluster.name, cluster.worker_start_failure_count, ) self.db.update_cluster(cluster, target=JobStatus.FAILED) self.queue.put(cluster) return active = cluster.active_workers() if cluster.count > len(active): for _ in range(cluster.count - len(active)): worker = self.db.create_worker(cluster) self.log.info( "Created worker %s for cluster %s", worker.name, cluster.name ) self.queue.put(worker) async def _worker_to_submitted(self, worker): self.log.info("Submitting worker %s...", worker.name) try: async with timeout(self.worker_start_timeout): async for state in self.do_start_worker(worker): self.log.debug("State update for worker %s", worker.name) self.db.update_worker(worker, state=state) self.db.update_worker(worker, status=JobStatus.SUBMITTED) self.log.info("Worker %s submitted", worker.name) except asyncio.CancelledError: raise except Exception as exc: if isinstance(exc, asyncio.TimeoutError): self.log.info("Worker %s startup timed out", worker.name) else: self.log.warning( "Failed to submit worker %s", worker.name, exc_info=exc ) self.db.update_worker( worker, status=JobStatus.SUBMITTED, target=JobStatus.FAILED ) worker.cluster.worker_start_failure_count += 1 self.queue.put(worker) async def _worker_to_stopped(self, worker): self.log.info("Stopping worker %s...", worker.name) if worker.status > JobStatus.CREATED: try: await self.do_stop_worker(worker) except Exception as exc: self.log.warning( "Exception while stopping worker %s", worker.name, exc_info=exc ) self.log.info("Worker %s stopped", worker.name) self.db.update_worker(worker, status=worker.target, stop_time=timestamp()) def get_tls_paths(self, cluster): """Return the paths to the cert and key files for this cluster""" return "dask.crt", "dask.pem" def get_env(self, cluster): """Get a dict of environment variables to set for the process""" out = dict(cluster.config.environment) # Set values that dask-gateway needs to run out.update( { "DASK_GATEWAY_API_URL": self.api_url, "DASK_GATEWAY_API_TOKEN": cluster.token, "DASK_GATEWAY_CLUSTER_NAME": cluster.name, "DASK_DISTRIBUTED__COMM__REQUIRE_ENCRYPTION": "True", } ) return out def get_scheduler_env(self, cluster): env = self.get_env(cluster) tls_cert_path, tls_key_path = self.get_tls_paths(cluster) env.update( { "DASK_DISTRIBUTED__COMM__TLS__CA_FILE": tls_cert_path, "DASK_DISTRIBUTED__COMM__TLS__SCHEDULER__KEY": tls_key_path, "DASK_DISTRIBUTED__COMM__TLS__SCHEDULER__CERT": tls_cert_path, } ) return env def get_worker_env(self, cluster): env = self.get_env(cluster) tls_cert_path, tls_key_path = self.get_tls_paths(cluster) env.update( { "DASK_DISTRIBUTED__COMM__TLS__CA_FILE": tls_cert_path, "DASK_DISTRIBUTED__COMM__TLS__WORKER__KEY": tls_key_path, "DASK_DISTRIBUTED__COMM__TLS__WORKER__CERT": tls_cert_path, } ) return env default_host = "0.0.0.0" def get_scheduler_command(self, cluster): return cluster.config.scheduler_cmd + [ "--protocol", "tls", "--port", "0", "--host", self.default_host, "--dashboard-address", f"{self.default_host}:0", "--preload", "dask_gateway.scheduler_preload", "--dg-api-address", f"{self.default_host}:0", "--dg-heartbeat-period", str(self.cluster_heartbeat_period), "--dg-adaptive-period", str(cluster.config.adaptive_period), "--dg-idle-timeout", str(cluster.config.idle_timeout), ] def worker_nthreads_memory_limit_args(self, cluster): return str(cluster.config.worker_cores), str(cluster.config.worker_memory) def get_worker_command(self, cluster, worker_name, scheduler_address=None): nthreads, memory_limit = self.worker_nthreads_memory_limit_args(cluster) if scheduler_address is None: scheduler_address = cluster.scheduler_address return cluster.config.worker_cmd + [ scheduler_address, "--dashboard-address", f"{self.default_host}:0", "--name", worker_name, "--nthreads", nthreads, "--memory-limit", memory_limit, ] # Subclasses should implement these methods supports_bulk_shutdown = False async def do_setup(self): """Called when the server is starting up. Do any initialization here. """ pass async def do_cleanup(self): """Called when the server is shutting down. Do any cleanup here.""" pass async def do_start_cluster(self, cluster): """Start a cluster. This should do any initialization for the whole dask cluster application, and then start the scheduler. Parameters ---------- cluster : Cluster Information on the cluster to be started. Yields ------ cluster_state : dict Any state needed for further interactions with this cluster. This should be serializable using ``json.dumps``. If startup occurs in multiple stages, can iteratively yield state updates to be checkpointed. If an error occurs at any time, the last yielded state will be used when calling ``do_stop_cluster``. """ raise NotImplementedError async def do_stop_cluster(self, cluster): """Stop a cluster. Parameters ---------- cluster : Cluster Information on the cluster to be stopped. """ raise NotImplementedError async def do_check_clusters(self, clusters): """Check the status of multiple clusters. This is periodically called to check the status of pending clusters. Once a cluster is running this will no longer be called. Parameters ---------- clusters : List[Cluster] The clusters to be checked. Returns ------- statuses : List[bool] The status for each cluster. Return False if the cluster has stopped or failed, True if the cluster is pending start or running. """ raise NotImplementedError async def do_start_worker(self, worker): """Start a worker. Parameters ---------- worker : Worker Information on the worker to be started. Yields ------ worker_state : dict Any state needed for further interactions with this worker. This should be serializable using ``json.dumps``. If startup occurs in multiple stages, can iteratively yield state updates to be checkpointed. If an error occurs at any time, the last yielded state will be used when calling ``do_stop_worker``. """ raise NotImplementedError async def do_stop_worker(self, worker): """Stop a worker. Parameters ---------- worker : Worker Information on the worker to be stopped. """ raise NotImplementedError async def do_check_workers(self, workers): """Check the status of multiple workers. This is periodically called to check the status of pending workers. Once a worker is running this will no longer be called. Parameters ---------- workers : List[Worker] The workers to be checked. Returns ------- statuses : List[bool] The status for each worker. Return False if the worker has stopped or failed, True if the worker is pending start or running. """ raise NotImplementedError
35.213198
91
0.582583
7948ce14ef5b28c9cb3b5eb7ddfbb911bfb8a611
4,774
py
Python
src/wavelet-FE/datasets/custom_dataset.py
Omekaago101/Intracranial-Hemorrhage-Classification
4f53da3a3869be7b451edc558ef06c5c41083b4b
[ "MIT" ]
null
null
null
src/wavelet-FE/datasets/custom_dataset.py
Omekaago101/Intracranial-Hemorrhage-Classification
4f53da3a3869be7b451edc558ef06c5c41083b4b
[ "MIT" ]
null
null
null
src/wavelet-FE/datasets/custom_dataset.py
Omekaago101/Intracranial-Hemorrhage-Classification
4f53da3a3869be7b451edc558ef06c5c41083b4b
[ "MIT" ]
null
null
null
import cv2 import os import torch import numpy as np from torch.utils.data import Dataset from albumentations.pytorch.transforms import ToTensorV2 from albumentations import (MedianBlur, Compose, Normalize, OpticalDistortion, HorizontalFlip, VerticalFlip, ShiftScaleRotate, Transpose, OneOf, IAAAdditiveGaussianNoise, GaussNoise, RandomGamma, Blur, RandomBrightness, HueSaturationValue, RandomBrightnessContrast, GridDistortion,Lambda, NoOp, CenterCrop, Resize,RandomResizedCrop ) class IntracranialDataset(Dataset): def __init__(self, cfg, df, path, labels,AUTOCROP,HFLIP,TRANSPOSE,mode='train'): self.path = path self.data = df self.labels = labels self.crop = AUTOCROP self.cfg = cfg self.mode = mode self.transpose = TRANSPOSE self.hflip = HFLIP self.lbls = cfg.CONST.LABELS if self.mode == "train": self.transform = Compose([ RandomResizedCrop(cfg.DATA.IMG_SIZE, cfg.DATA.IMG_SIZE, interpolation=cv2.INTER_LINEAR, scale=(0.8, 1)), OneOf([ HorizontalFlip(p=1.), VerticalFlip(p=1.), ]), OneOf([ ShiftScaleRotate( shift_limit=0.0625, scale_limit=0.1, rotate_limit=30, border_mode=cv2.BORDER_CONSTANT, value=0, p=1.), GridDistortion( distort_limit=0.2, border_mode=cv2.BORDER_CONSTANT, value=0, p=1.), OpticalDistortion( distort_limit=0.2, shift_limit=0.15, border_mode=cv2.BORDER_CONSTANT, value=0, p=1.), NoOp() ]), OneOf([ IAAAdditiveGaussianNoise(p=1.), GaussNoise(p=1.), NoOp() ]), OneOf([ MedianBlur(blur_limit=3, p=1.), Blur(blur_limit=3, p=1.), NoOp() ]) ]) elif self.mode == 'test' or self.mode == 'valid': HFLIPVAL = 1.0 if self.hflip == 'T' else 0.0 TRANSPOSEVAL = 1.0 if self.transpose == 'P' else 0.0 self.transform = Compose([ HorizontalFlip(p=HFLIPVAL), Transpose(p=TRANSPOSEVAL), Normalize(mean=[0.22363983, 0.18190407, 0.2523437 ], std=[0.32451536, 0.2956294, 0.31335256], max_pixel_value=255.0, p=1.0), ]) self.totensor = ToTensorV2() def __len__(self): return len(self.data) def __getitem__(self, idx): img_name = os.path.join(self.path, self.data.loc[idx, 'Image'] + '.jpg') #img = cv2.imread(img_name, cv2.IMREAD_GRAYSCALE) img = cv2.imread(img_name) if self.crop: try: try: img = self.autocrop(img, threshold=0, kernsel_size = img.shape[0]//15) except: img = self.autocrop(img, threshold=0) except: 1 img = cv2.resize(img,(self.cfg.DATA.IMG_SIZE,self.cfg.DATA.IMG_SIZE)) if self.mode == "train": augmented = self.transform(image=img) img = augmented['image'] if self.labels: labels = torch.tensor( self.data.loc[idx, self.cfg.CONST.LABELS]) return {'image': img, 'labels': labels} else: return {'image': img} def autocrop(image, threshold=0): """Crops any edges below or equal to threshold Crops blank image to 1x1. Returns cropped image. https://stackoverflow.com/questions/13538748/crop-black-edges-with-opencv """ if len(image.shape) == 3: flatImage = np.max(image, 2) else: flatImage = image rows = np.where(np.max(flatImage, 0) > threshold)[0] cols = np.where(np.max(flatImage, 1) > threshold)[0] image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1] #logger.info(image.shape) sqside = max(image.shape) imageout = np.zeros((sqside, sqside, 3), dtype = 'uint8') imageout[:image.shape[0], :image.shape[1],:] = image.copy() return imageout
40.117647
118
0.492459
7948ce6dbb774668f7bb627c6948581403c45b02
587
py
Python
download_videos.py
ferreirafabio/FlyingShapesDataset
ba4aba153daac4f5131f16b0467c52c2eb094850
[ "MIT" ]
null
null
null
download_videos.py
ferreirafabio/FlyingShapesDataset
ba4aba153daac4f5131f16b0467c52c2eb094850
[ "MIT" ]
null
null
null
download_videos.py
ferreirafabio/FlyingShapesDataset
ba4aba153daac4f5131f16b0467c52c2eb094850
[ "MIT" ]
1
2019-10-06T21:27:45.000Z
2019-10-06T21:27:45.000Z
import requests tfrecords_shared_links = "flyingshapes_videos.txt" with open(tfrecords_shared_links, 'r') as link_file: url_list = link_file.read().splitlines() for i, link in enumerate(url_list): file_name = "videos" + ".tar.gz." + str(i+1).zfill(2) r = requests.get(link, stream=True) print("Downloading", file_name) with open(file_name, 'wb') as f: dl = 0 for chunk in r.iter_content(chunk_size=1024): if chunk: dl += len(chunk) f.write(chunk) f.flush() print("Downloading", file_name, "completed")
20.964286
57
0.630324
7948cf101b8c81118b3add4fa66e096192dd0915
4,078
py
Python
neutronclient/common/clientmanager.py
BobzhouCH/python-neutronclient-acc
ff58c60cc96c2e2a4e25088ae3ce5ff75ea42241
[ "Apache-2.0" ]
null
null
null
neutronclient/common/clientmanager.py
BobzhouCH/python-neutronclient-acc
ff58c60cc96c2e2a4e25088ae3ce5ff75ea42241
[ "Apache-2.0" ]
null
null
null
neutronclient/common/clientmanager.py
BobzhouCH/python-neutronclient-acc
ff58c60cc96c2e2a4e25088ae3ce5ff75ea42241
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Manage access to the clients, including authenticating when needed. """ import logging from neutronclient import client from neutronclient.neutron import client as neutron_client LOG = logging.getLogger(__name__) class ClientCache(object): """Descriptor class for caching created client handles.""" def __init__(self, factory): self.factory = factory self._handle = None def __get__(self, instance, owner): # Tell the ClientManager to login to keystone if self._handle is None: self._handle = self.factory(instance) return self._handle class ClientManager(object): """Manages access to API clients, including authentication.""" neutron = ClientCache(neutron_client.make_client) # Provide support for old quantum commands (for example # in stable versions) quantum = neutron def __init__(self, token=None, url=None, auth_url=None, endpoint_type=None, tenant_name=None, tenant_id=None, username=None, user_id=None, password=None, region_name=None, api_version=None, auth_strategy=None, insecure=False, ca_cert=None, log_credentials=False, service_type=None, service_name=None, timeout=None, retries=0, raise_errors=True, session=None, auth=None, ): self._token = token self._url = url self._auth_url = auth_url self._service_type = service_type self._service_name = service_name self._endpoint_type = endpoint_type self._tenant_name = tenant_name self._tenant_id = tenant_id self._username = username self._user_id = user_id self._password = password self._region_name = region_name self._api_version = api_version self._service_catalog = None self._auth_strategy = auth_strategy self._insecure = insecure self._ca_cert = ca_cert self._log_credentials = log_credentials self._timeout = timeout self._retries = retries self._raise_errors = raise_errors self._session = session self._auth = auth return def initialize(self): if not self._url: httpclient = client.construct_http_client( username=self._username, user_id=self._user_id, tenant_name=self._tenant_name, tenant_id=self._tenant_id, password=self._password, region_name=self._region_name, auth_url=self._auth_url, service_type=self._service_type, service_name=self._service_name, endpoint_type=self._endpoint_type, insecure=self._insecure, ca_cert=self._ca_cert, timeout=self._timeout, session=self._session, auth=self._auth, log_credentials=self._log_credentials) httpclient.authenticate() # Populate other password flow attributes self._token = httpclient.auth_token self._url = httpclient.endpoint_url
33.983333
78
0.607896
7948cfbb581efbfe41001fec640fb020aeb368d2
684
py
Python
polls/admin.py
intelivix/django-tutorial
38f4eccb96d78ccd73522c0a30c1fc8d3d8c4fdd
[ "MIT" ]
null
null
null
polls/admin.py
intelivix/django-tutorial
38f4eccb96d78ccd73522c0a30c1fc8d3d8c4fdd
[ "MIT" ]
null
null
null
polls/admin.py
intelivix/django-tutorial
38f4eccb96d78ccd73522c0a30c1fc8d3d8c4fdd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.contrib import admin from polls.models import Choice from polls.models import Question class ChoiceInline(admin.TabularInline): model = Choice extra = 3 class QuestionAdmin(admin.ModelAdmin): fieldsets = [ (None, {'fields': ['question_text']}), ('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}), ] list_display = ('question_text', 'pub_date', 'was_published_recently') list_filter = ['pub_date'] search_fields = ['question_text'] inlines = [ChoiceInline] admin.site.register(Choice) admin.site.register(Question, QuestionAdmin)
26.307692
74
0.635965
7948d0d3929f51dace45f89d3a0824a2d7fa0766
326
py
Python
YP/binary_num.py
HelloAgni/Algorithm
cd804e7535137be26c751125fd6572db57ce1866
[ "MIT" ]
null
null
null
YP/binary_num.py
HelloAgni/Algorithm
cd804e7535137be26c751125fd6572db57ce1866
[ "MIT" ]
null
null
null
YP/binary_num.py
HelloAgni/Algorithm
cd804e7535137be26c751125fd6572db57ce1866
[ "MIT" ]
null
null
null
def binary_num(n): """ Выведите двоичное представление числа. Не используйте встроенные средства языка по переводу чисел в бинарное представление. """ r = '' while n > 0: r = str(n % 2) + r n = n // 2 print(r) if __name__ == '__main__': n = int(input()) binary_num(n)
19.176471
62
0.56135
7948d27feb7e047144b7a3fd7120df83976fdb0f
667
py
Python
api/exporterhub/settings/local.py
yangahh/exporterhub-dev
c41783f4b82812358fa05ec55588c5bb6a02134e
[ "MIT" ]
2
2020-11-17T11:13:53.000Z
2021-01-13T00:38:17.000Z
api/exporterhub/settings/local.py
yangahh/exporterhub-dev
c41783f4b82812358fa05ec55588c5bb6a02134e
[ "MIT" ]
null
null
null
api/exporterhub/settings/local.py
yangahh/exporterhub-dev
c41783f4b82812358fa05ec55588c5bb6a02134e
[ "MIT" ]
1
2020-11-17T11:13:58.000Z
2020-11-17T11:13:58.000Z
from .base import * import my_settings DATABASES = my_settings.DATABASES SECRET_KEY = my_settings.SECRET_KEY ALGORITHM = my_settings.ALGORITHM DEBUG = True # LOGGING = { # 'version': 1, # 'filters': { # 'require_debug_true': { # '()': 'django.utils.log.RequireDebugTrue', # } # }, # 'handlers': { # 'console': { # 'level': 'DEBUG', # 'filters': ['require_debug_true'], # 'class': 'logging.StreamHandler', # } # }, # 'loggers': { # 'django.db.backends': { # 'level': 'DEBUG', # 'handlers': ['console'], # } # } # }
20.84375
56
0.482759
7948d2b02146b48a644ddbcd2f0bf4f1b148380b
12,544
py
Python
azure-batch/azure/batch/models/cloud_task.py
jmalobicky/azure-sdk-for-python
61234a3d83f8fb481d1dd2386e54e888864878fd
[ "MIT" ]
1
2018-07-23T08:59:24.000Z
2018-07-23T08:59:24.000Z
azure-batch/azure/batch/models/cloud_task.py
jmalobicky/azure-sdk-for-python
61234a3d83f8fb481d1dd2386e54e888864878fd
[ "MIT" ]
null
null
null
azure-batch/azure/batch/models/cloud_task.py
jmalobicky/azure-sdk-for-python
61234a3d83f8fb481d1dd2386e54e888864878fd
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class CloudTask(Model): """An Azure Batch task. Batch will retry tasks when a recovery operation is triggered on a compute node. Examples of recovery operations include (but are not limited to) when an unhealthy compute node is rebooted or a compute node disappeared due to host failure. Retries due to recovery operations are independent of and are not counted against the maxTaskRetryCount. Even if the maxTaskRetryCount is 0, an internal retry due to a recovery operation may occur. Because of this, all tasks should be idempotent. This means tasks need to tolerate being interrupted and restarted without causing any corruption or duplicate data. The best practice for long running tasks is to use some form of checkpointing. :param id: A string that uniquely identifies the task within the job. The ID can contain any combination of alphanumeric characters including hyphens and underscores, and cannot contain more than 64 characters. :type id: str :param display_name: A display name for the task. The display name need not be unique and can contain any Unicode characters up to a maximum length of 1024. :type display_name: str :param url: The URL of the task. :type url: str :param e_tag: The ETag of the task. This is an opaque string. You can use it to detect whether the task has changed between requests. In particular, you can be pass the ETag when updating a task to specify that your changes should take effect only if nobody else has modified the task in the meantime. :type e_tag: str :param last_modified: The last modified time of the task. :type last_modified: datetime :param creation_time: The creation time of the task. :type creation_time: datetime :param exit_conditions: How the Batch service should respond when the task completes. :type exit_conditions: ~azure.batch.models.ExitConditions :param state: The current state of the task. Possible values include: 'active', 'preparing', 'running', 'completed' :type state: str or ~azure.batch.models.TaskState :param state_transition_time: The time at which the task entered its current state. :type state_transition_time: datetime :param previous_state: The previous state of the task. This property is not set if the task is in its initial Active state. Possible values include: 'active', 'preparing', 'running', 'completed' :type previous_state: str or ~azure.batch.models.TaskState :param previous_state_transition_time: The time at which the task entered its previous state. This property is not set if the task is in its initial Active state. :type previous_state_transition_time: datetime :param command_line: The command line of the task. For multi-instance tasks, the command line is executed as the primary task, after the primary task and all subtasks have finished executing the coordination command line. The command line does not run under a shell, and therefore cannot take advantage of shell features such as environment variable expansion. If you want to take advantage of such features, you should invoke the shell in the command line, for example using "cmd /c MyCommand" in Windows or "/bin/sh -c MyCommand" in Linux. If the command line refers to file paths, it should use a relative path (relative to the task working directory), or use the Batch provided environment variable (https://docs.microsoft.com/en-us/azure/batch/batch-compute-node-environment-variables). :type command_line: str :param container_settings: The settings for the container under which the task runs. If the pool that will run this task has containerConfiguration set, this must be set as well. If the pool that will run this task doesn't have containerConfiguration set, this must not be set. When this is specified, all directories recursively below the AZ_BATCH_NODE_ROOT_DIR (the root of Azure Batch directories on the node) are mapped into the container, all task environment variables are mapped into the container, and the task command line is executed in the container. :type container_settings: ~azure.batch.models.TaskContainerSettings :param resource_files: A list of files that the Batch service will download to the compute node before running the command line. For multi-instance tasks, the resource files will only be downloaded to the compute node on which the primary task is executed. :type resource_files: list[~azure.batch.models.ResourceFile] :param output_files: A list of files that the Batch service will upload from the compute node after running the command line. For multi-instance tasks, the files will only be uploaded from the compute node on which the primary task is executed. :type output_files: list[~azure.batch.models.OutputFile] :param environment_settings: A list of environment variable settings for the task. :type environment_settings: list[~azure.batch.models.EnvironmentSetting] :param affinity_info: A locality hint that can be used by the Batch service to select a compute node on which to start the new task. :type affinity_info: ~azure.batch.models.AffinityInformation :param constraints: The execution constraints that apply to this task. :type constraints: ~azure.batch.models.TaskConstraints :param user_identity: The user identity under which the task runs. If omitted, the task runs as a non-administrative user unique to the task. :type user_identity: ~azure.batch.models.UserIdentity :param execution_info: Information about the execution of the task. :type execution_info: ~azure.batch.models.TaskExecutionInformation :param node_info: Information about the compute node on which the task ran. :type node_info: ~azure.batch.models.ComputeNodeInformation :param multi_instance_settings: An object that indicates that the task is a multi-instance task, and contains information about how to run the multi-instance task. :type multi_instance_settings: ~azure.batch.models.MultiInstanceSettings :param stats: Resource usage statistics for the task. :type stats: ~azure.batch.models.TaskStatistics :param depends_on: The tasks that this task depends on. This task will not be scheduled until all tasks that it depends on have completed successfully. If any of those tasks fail and exhaust their retry counts, this task will never be scheduled. :type depends_on: ~azure.batch.models.TaskDependencies :param application_package_references: A list of application packages that the Batch service will deploy to the compute node before running the command line. Application packages are downloaded and deployed to a shared directory, not the task working directory. Therefore, if a referenced package is already on the compute node, and is up to date, then it is not re-downloaded; the existing copy on the compute node is used. If a referenced application package cannot be installed, for example because the package has been deleted or because download failed, the task fails. :type application_package_references: list[~azure.batch.models.ApplicationPackageReference] :param authentication_token_settings: The settings for an authentication token that the task can use to perform Batch service operations. If this property is set, the Batch service provides the task with an authentication token which can be used to authenticate Batch service operations without requiring an account access key. The token is provided via the AZ_BATCH_AUTHENTICATION_TOKEN environment variable. The operations that the task can carry out using the token depend on the settings. For example, a task can request job permissions in order to add other tasks to the job, or check the status of the job or of other tasks under the job. :type authentication_token_settings: ~azure.batch.models.AuthenticationTokenSettings """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'e_tag': {'key': 'eTag', 'type': 'str'}, 'last_modified': {'key': 'lastModified', 'type': 'iso-8601'}, 'creation_time': {'key': 'creationTime', 'type': 'iso-8601'}, 'exit_conditions': {'key': 'exitConditions', 'type': 'ExitConditions'}, 'state': {'key': 'state', 'type': 'TaskState'}, 'state_transition_time': {'key': 'stateTransitionTime', 'type': 'iso-8601'}, 'previous_state': {'key': 'previousState', 'type': 'TaskState'}, 'previous_state_transition_time': {'key': 'previousStateTransitionTime', 'type': 'iso-8601'}, 'command_line': {'key': 'commandLine', 'type': 'str'}, 'container_settings': {'key': 'containerSettings', 'type': 'TaskContainerSettings'}, 'resource_files': {'key': 'resourceFiles', 'type': '[ResourceFile]'}, 'output_files': {'key': 'outputFiles', 'type': '[OutputFile]'}, 'environment_settings': {'key': 'environmentSettings', 'type': '[EnvironmentSetting]'}, 'affinity_info': {'key': 'affinityInfo', 'type': 'AffinityInformation'}, 'constraints': {'key': 'constraints', 'type': 'TaskConstraints'}, 'user_identity': {'key': 'userIdentity', 'type': 'UserIdentity'}, 'execution_info': {'key': 'executionInfo', 'type': 'TaskExecutionInformation'}, 'node_info': {'key': 'nodeInfo', 'type': 'ComputeNodeInformation'}, 'multi_instance_settings': {'key': 'multiInstanceSettings', 'type': 'MultiInstanceSettings'}, 'stats': {'key': 'stats', 'type': 'TaskStatistics'}, 'depends_on': {'key': 'dependsOn', 'type': 'TaskDependencies'}, 'application_package_references': {'key': 'applicationPackageReferences', 'type': '[ApplicationPackageReference]'}, 'authentication_token_settings': {'key': 'authenticationTokenSettings', 'type': 'AuthenticationTokenSettings'}, } def __init__(self, id=None, display_name=None, url=None, e_tag=None, last_modified=None, creation_time=None, exit_conditions=None, state=None, state_transition_time=None, previous_state=None, previous_state_transition_time=None, command_line=None, container_settings=None, resource_files=None, output_files=None, environment_settings=None, affinity_info=None, constraints=None, user_identity=None, execution_info=None, node_info=None, multi_instance_settings=None, stats=None, depends_on=None, application_package_references=None, authentication_token_settings=None): super(CloudTask, self).__init__() self.id = id self.display_name = display_name self.url = url self.e_tag = e_tag self.last_modified = last_modified self.creation_time = creation_time self.exit_conditions = exit_conditions self.state = state self.state_transition_time = state_transition_time self.previous_state = previous_state self.previous_state_transition_time = previous_state_transition_time self.command_line = command_line self.container_settings = container_settings self.resource_files = resource_files self.output_files = output_files self.environment_settings = environment_settings self.affinity_info = affinity_info self.constraints = constraints self.user_identity = user_identity self.execution_info = execution_info self.node_info = node_info self.multi_instance_settings = multi_instance_settings self.stats = stats self.depends_on = depends_on self.application_package_references = application_package_references self.authentication_token_settings = authentication_token_settings
61.490196
571
0.722417
7948d393f32ea4d775624b7d29369ee11054d574
220
py
Python
ex_generator/ex2.py
petrewoo/Trash
deb7b4c5b9af76b7dfa6bd1d65233cd4f5e8993e
[ "MIT" ]
null
null
null
ex_generator/ex2.py
petrewoo/Trash
deb7b4c5b9af76b7dfa6bd1d65233cd4f5e8993e
[ "MIT" ]
null
null
null
ex_generator/ex2.py
petrewoo/Trash
deb7b4c5b9af76b7dfa6bd1d65233cd4f5e8993e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- def test(): for y in [1, 2, 3]: y = (yield y) print 'in test:{}'.format(y) y += 1 x = test() z = None z = x.send(z) z = x.send(z) x.close()
12.941176
36
0.454545