index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
720,244
ete3.clustering.clustertree
__init__
null
def __init__(self, newick = None, text_array = None, \ fdist=clustvalidation.default_dist): # Default dist is spearman_dist when scipy module is loaded # otherwise, it is set to euclidean_dist. # Initialize basic tree features and loads the newick (if any) TreeNode.__init__(self, newick) self._fdist = None self._silhouette = None self._intercluster_dist = None self._intracluster_dist = None self._profile = None self._std_profile = None # Cluster especific features self.features.add("intercluster_dist") self.features.add("intracluster_dist") self.features.add("silhouette") self.features.add("profile") self.features.add("deviation") # Initialize tree with array data if text_array: self.link_to_arraytable(text_array) if newick: self.set_distance_function(fdist)
(self, newick=None, text_array=None, fdist=<function spearman_dist at 0x7ff39b713d90>)
720,245
ete3.coretype.tree
__iter__
Iterator over leaf nodes
def __iter__(self): """ Iterator over leaf nodes""" return self.iter_leaves()
(self)
720,246
ete3.coretype.tree
__len__
Node len returns number of children.
def __len__(self): """Node len returns number of children.""" return len(self.get_leaves())
(self)
720,248
ete3.clustering.clustertree
__repr__
null
def __repr__(self): return "ClusterTree node (%s)" %hex(self.__hash__())
(self)
720,249
ete3.coretype.tree
__str__
Print tree in newick format.
def __str__(self): """ Print tree in newick format. """ return self.get_ascii(compact=DEFAULT_COMPACT, \ show_internal=DEFAULT_SHOWINTERNAL)
(self)
720,250
ete3.coretype.tree
_asciiArt
Returns the ASCII representation of the tree. Code based on the PyCogent GPL project.
def _asciiArt(self, char1='-', show_internal=True, compact=False, attributes=None): """ Returns the ASCII representation of the tree. Code based on the PyCogent GPL project. """ if not attributes: attributes = ["name"] node_name = ', '.join(map(str, [getattr(self, v) for v in attributes if hasattr(self, v)])) LEN = max(3, len(node_name) if not self.children or show_internal else 3) PAD = ' ' * LEN PA = ' ' * (LEN-1) if not self.is_leaf(): mids = [] result = [] for c in self.children: if len(self.children) == 1: char2 = '/' elif c is self.children[0]: char2 = '/' elif c is self.children[-1]: char2 = '\\' else: char2 = '-' (clines, mid) = c._asciiArt(char2, show_internal, compact, attributes) mids.append(mid+len(result)) result.extend(clines) if not compact: result.append('') if not compact: result.pop() (lo, hi, end) = (mids[0], mids[-1], len(result)) prefixes = [PAD] * (lo+1) + [PA+'|'] * (hi-lo-1) + [PAD] * (end-hi) mid = int((lo + hi) / 2) prefixes[mid] = char1 + '-'*(LEN-2) + prefixes[mid][-1] result = [p+l for (p,l) in zip(prefixes, result)] if show_internal: stem = result[mid] result[mid] = stem[0] + node_name + stem[len(node_name)+1:] return (result, mid) else: return ([char1 + '-' + node_name], 0)
(self, char1='-', show_internal=True, compact=False, attributes=None)
720,251
ete3.clustering.clustertree
_calculate_avg_profile
This internal function updates the mean profile associated to an internal node.
def _calculate_avg_profile(self): """ This internal function updates the mean profile associated to an internal node. """ # Updates internal values self._profile, self._std_profile = clustvalidation.get_avg_profile(self)
(self)
720,252
ete3.coretype.tree
_diff
.. versionadded:: 2.3 Show or return the difference between two tree topologies. :param [raw|table|topology|diffs|diffs_tab] output: Output type
def _diff(self, t2, output='topology', attr_t1='name', attr_t2='name', color=True): """ .. versionadded:: 2.3 Show or return the difference between two tree topologies. :param [raw|table|topology|diffs|diffs_tab] output: Output type """ from ..tools import ete_diff difftable = ete_diff.treediff(self, t2, attr1=attr_t1, attr2=attr_t2) if output == "topology": ete_diff.show_difftable_topo(difftable, attr_t1, attr_t2, usecolor=color) elif output == "diffs": ete_diff.show_difftable(difftable) elif output == "diffs_tab": ete_diff.show_difftable_tab(difftable) elif output == 'table': rf, rf_max, _, _, _, _, _ = self.robinson_foulds(t2, attr_t1=attr_t1, attr_t2=attr_t2)[:2] ete_diff.show_difftable_summary(difftable, rf, rf_max) else: return difftable
(self, t2, output='topology', attr_t1='name', attr_t2='name', color=True)
720,253
ete3.coretype.tree
_get_children
null
def _get_children(self): return self._children
(self)
720,254
ete3.coretype.tree
_get_dist
null
def _get_dist(self): return self._dist
(self)
720,255
ete3.coretype.tree
_get_face_areas
null
def _get_face_areas(self): if not hasattr(self, "_faces"): self._faces = _FaceAreas() return self._faces
(self)
720,256
ete3.coretype.tree
_get_farthest_and_closest_leaves
null
def _get_farthest_and_closest_leaves(self, topology_only=False, is_leaf_fn=None): # if called from a leaf node, no necessary to compute if (is_leaf_fn and is_leaf_fn(self)) or self.is_leaf(): return self, 0.0, self, 0.0 min_dist = None min_node = None max_dist = None max_node = None d = 0.0 for post, n in self.iter_prepostorder(is_leaf_fn=is_leaf_fn): if n is self: continue if post: d -= n.dist if not topology_only else 1.0 else: if (is_leaf_fn and is_leaf_fn(n)) or n.is_leaf(): total_d = d + n.dist if not topology_only else d if min_dist is None or total_d < min_dist: min_dist = total_d min_node = n if max_dist is None or total_d > max_dist: max_dist = total_d max_node = n else: d += n.dist if not topology_only else 1.0 return min_node, min_dist, max_node, max_dist
(self, topology_only=False, is_leaf_fn=None)
720,257
ete3.clustering.clustertree
_get_inter
null
def _get_inter(self): if self._silhouette is None: self.get_silhouette() return self._intercluster_dist
(self)
720,258
ete3.clustering.clustertree
_get_intra
null
def _get_intra(self): if self._silhouette is None: self.get_silhouette() return self._intracluster_dist
(self)
720,259
ete3.clustering.clustertree
_get_prof
null
def _get_prof(self): if self._profile is None: self._calculate_avg_profile() return self._profile
(self)
720,260
ete3.clustering.clustertree
_get_silh
null
def _get_silh(self): if self._silhouette is None: self.get_silhouette() return self._silhouette
(self)
720,261
ete3.clustering.clustertree
_get_std
null
def _get_std(self): if self._std_profile is None: self._calculate_avg_profile() return self._std_profile
(self)
720,262
ete3.coretype.tree
_get_style
null
def _get_style(self): if self._img_style is None: self._set_style(None) return self._img_style
(self)
720,263
ete3.coretype.tree
_get_support
null
def _get_support(self): return self._support
(self)
720,264
ete3.coretype.tree
_get_up
null
def _get_up(self): return self._up
(self)
720,265
ete3.coretype.tree
_iter_descendants_levelorder
Iterate over all desdecendant nodes.
def _iter_descendants_levelorder(self, is_leaf_fn=None): """ Iterate over all desdecendant nodes. """ tovisit = deque([self]) while len(tovisit)>0: node = tovisit.popleft() yield node if not is_leaf_fn or not is_leaf_fn(node): tovisit.extend(node.children)
(self, is_leaf_fn=None)
720,266
ete3.coretype.tree
_iter_descendants_postorder
null
def _iter_descendants_postorder(self, is_leaf_fn=None): to_visit = [self] if is_leaf_fn is not None: _leaf = is_leaf_fn else: _leaf = self.__class__.is_leaf while to_visit: node = to_visit.pop(-1) try: node = node[1] except TypeError: # PREORDER ACTIONS if not _leaf(node): # ADD CHILDREN to_visit.extend(reversed(node.children + [[1, node]])) else: yield node else: #POSTORDER ACTIONS yield node
(self, is_leaf_fn=None)
720,267
ete3.coretype.tree
_iter_descendants_preorder
Iterator over all descendant nodes.
def _iter_descendants_preorder(self, is_leaf_fn=None): """ Iterator over all descendant nodes. """ to_visit = deque() node = self while node is not None: yield node if not is_leaf_fn or not is_leaf_fn(node): to_visit.extendleft(reversed(node.children)) try: node = to_visit.popleft() except: node = None
(self, is_leaf_fn=None)
720,268
ete3.coretype.tree
_set_children
null
def _set_children(self, value): if type(value) == list: for n in value: if type(n) != type(self): raise TreeError("Incorrect child node type") self._children = value else: raise TreeError("Incorrect children type")
(self, value)
720,269
ete3.coretype.tree
_set_dist
null
def _set_dist(self, value): try: self._dist = float(value) except ValueError: raise TreeError('node dist must be a float number')
(self, value)
720,270
ete3.coretype.tree
_set_face_areas
null
def _set_face_areas(self, value): if isinstance(value, _FaceAreas): self._faces = value else: raise ValueError("[%s] is not a valid FaceAreas instance" %type(value))
(self, value)
720,271
ete3.clustering.clustertree
_set_forbidden
null
def _set_forbidden(self, value): raise ValueError("This attribute can not be manually set.")
(self, value)
720,272
ete3.clustering.clustertree
_set_profile
null
def _set_profile(self, value): self._profile = value
(self, value)
720,273
ete3.coretype.tree
_set_style
null
def _set_style(self, value): self.set_style(value)
(self, value)
720,274
ete3.coretype.tree
_set_support
null
def _set_support(self, value): try: self._support = float(value) except ValueError: raise TreeError('node support must be a float number')
(self, value)
720,275
ete3.coretype.tree
_set_up
null
def _set_up(self, value): if type(value) == type(self) or value is None: self._up = value else: raise TreeError("bad node_up type")
(self, value)
720,276
ete3.coretype.tree
add_child
Adds a new child to this node. If child node is not suplied as an argument, a new node instance will be created. :argument None child: the node instance to be added as a child. :argument None name: the name that will be given to the child. :argument None dist: the distance from the node to the child. :argument None support: the support value of child partition. :returns: The child node instance
def add_child(self, child=None, name=None, dist=None, support=None): """ Adds a new child to this node. If child node is not suplied as an argument, a new node instance will be created. :argument None child: the node instance to be added as a child. :argument None name: the name that will be given to the child. :argument None dist: the distance from the node to the child. :argument None support: the support value of child partition. :returns: The child node instance """ if child is None: child = self.__class__() if name is not None: child.name = name if dist is not None: child.dist = dist if support is not None: child.support = support self.children.append(child) child.up = self return child
(self, child=None, name=None, dist=None, support=None)
720,277
ete3.coretype.tree
add_face
.. versionadded: 2.1 Add a fixed face to the node. This type of faces will be always attached to nodes, independently of the layout function. :argument face: a Face or inherited instance :argument column: An integer number starting from 0 :argument "branch-right" position: Posible values are: "branch-right", "branch-top", "branch-bottom", "float", "aligned"
def add_face(self, face, column, position="branch-right"): """ .. versionadded: 2.1 Add a fixed face to the node. This type of faces will be always attached to nodes, independently of the layout function. :argument face: a Face or inherited instance :argument column: An integer number starting from 0 :argument "branch-right" position: Posible values are: "branch-right", "branch-top", "branch-bottom", "float", "aligned" """ if not hasattr(self, "_faces"): self._faces = _FaceAreas() if position not in FACE_POSITIONS: raise ValueError("face position not in %s" %FACE_POSITIONS) if isinstance(face, Face): getattr(self._faces, position).add_face(face, column=column) else: raise ValueError("not a Face instance")
(self, face, column, position='branch-right')
720,278
ete3.coretype.tree
add_feature
Add or update a node's feature.
def add_feature(self, pr_name, pr_value): """ Add or update a node's feature. """ setattr(self, pr_name, pr_value) self.features.add(pr_name)
(self, pr_name, pr_value)
720,279
ete3.coretype.tree
add_features
Add or update several features.
def add_features(self, **features): """ Add or update several features. """ for fname, fvalue in six.iteritems(features): setattr(self, fname, fvalue) self.features.add(fname)
(self, **features)
720,280
ete3.coretype.tree
add_sister
Adds a sister to this node. If sister node is not supplied as an argument, a new TreeNode instance will be created and returned.
def add_sister(self, sister=None, name=None, dist=None): """ Adds a sister to this node. If sister node is not supplied as an argument, a new TreeNode instance will be created and returned. """ if self.up is None: raise TreeError("A parent node is required to add a sister") else: return self.up.add_child(child=sister, name=name, dist=dist)
(self, sister=None, name=None, dist=None)
720,281
ete3.coretype.tree
check_monophyly
.. versionadded: 2.2 Returns True if a given target attribute is monophyletic under this node for the provided set of values. If not all values are represented in the current tree structure, a ValueError exception will be raised to warn that strict monophyly could never be reached (this behaviour can be avoided by enabling the `ignore_missing` flag. :param values: a set of values for which monophyly is expected. :param target_attr: node attribute being used to check monophyly (i.e. species for species trees, names for gene family trees, or any custom feature present in the tree). :param False ignore_missing: Avoid raising an Exception when missing attributes are found. .. versionchanged: 2.3 :param False unrooted: If True, tree will be treated as unrooted, thus allowing to find monophyly even when current outgroup is splitting a monophyletic group. :returns: the following tuple IsMonophyletic (boolean), clade type ('monophyletic', 'paraphyletic' or 'polyphyletic'), leaves breaking the monophyly (set)
def check_monophyly(self, values, target_attr, ignore_missing=False, unrooted=False): """ .. versionadded: 2.2 Returns True if a given target attribute is monophyletic under this node for the provided set of values. If not all values are represented in the current tree structure, a ValueError exception will be raised to warn that strict monophyly could never be reached (this behaviour can be avoided by enabling the `ignore_missing` flag. :param values: a set of values for which monophyly is expected. :param target_attr: node attribute being used to check monophyly (i.e. species for species trees, names for gene family trees, or any custom feature present in the tree). :param False ignore_missing: Avoid raising an Exception when missing attributes are found. .. versionchanged: 2.3 :param False unrooted: If True, tree will be treated as unrooted, thus allowing to find monophyly even when current outgroup is splitting a monophyletic group. :returns: the following tuple IsMonophyletic (boolean), clade type ('monophyletic', 'paraphyletic' or 'polyphyletic'), leaves breaking the monophyly (set) """ if type(values) != set: values = set(values) # This is the only time I traverse the tree, then I use cached # leaf content n2leaves = self.get_cached_content() # Raise an error if requested attribute values are not even present if ignore_missing: found_values = set([getattr(n, target_attr) for n in n2leaves[self]]) missing_values = values - found_values values = values & found_values # Locate leaves matching requested attribute values targets = set([leaf for leaf in n2leaves[self] if getattr(leaf, target_attr) in values]) if not ignore_missing: if values - set([getattr(leaf, target_attr) for leaf in targets]): raise ValueError('The monophyly of the provided values could never be reached, as not all of them exist in the tree.' ' Please check your target attribute and values, or set the ignore_missing flag to True') if unrooted: smallest = None for side1, side2 in self.iter_edges(cached_content=n2leaves): if targets.issubset(side1) and (not smallest or len(side1) < len(smallest)): smallest = side1 elif targets.issubset(side2) and (not smallest or len(side2) < len(smallest)): smallest = side2 if smallest is not None and len(smallest) == len(targets): break foreign_leaves = smallest - targets else: # Check monophyly with get_common_ancestor. Note that this # step does not require traversing the tree again because # targets are node instances instead of node names, and # get_common_ancestor function is smart enough to detect it # and avoid unnecessary traversing. common = self.get_common_ancestor(targets) observed = n2leaves[common] foreign_leaves = set([leaf for leaf in observed if getattr(leaf, target_attr) not in values]) if not foreign_leaves: return True, "monophyletic", foreign_leaves else: # if the requested attribute is not monophyletic in this # node, let's differentiate between poly and paraphyly. poly_common = self.get_common_ancestor(foreign_leaves) # if the common ancestor of all foreign leaves is self # contained, we have a paraphyly. Otherwise, polyphyly. polyphyletic = [leaf for leaf in poly_common if getattr(leaf, target_attr) in values] if polyphyletic: return False, "polyphyletic", foreign_leaves else: return False, "paraphyletic", foreign_leaves
(self, values, target_attr, ignore_missing=False, unrooted=False)
720,282
ete3.coretype.tree
compare
compare this tree with another using robinson foulds symmetric difference and number of shared edges. Trees of different sizes and with duplicated items allowed. returns: a Python dictionary with results
def compare(self, ref_tree, use_collateral=False, min_support_source=0.0, min_support_ref=0.0, has_duplications=False, expand_polytomies=False, unrooted=False, max_treeko_splits_to_be_artifact=1000, ref_tree_attr='name', source_tree_attr='name'): """compare this tree with another using robinson foulds symmetric difference and number of shared edges. Trees of different sizes and with duplicated items allowed. returns: a Python dictionary with results """ source_tree = self def _safe_div(a, b): if a != 0: return a / float(b) else: return 0.0 def _compare(src_tree, ref_tree): # calculate partitions and rf distances rf, maxrf, common, ref_p, src_p, ref_disc, src_disc = ref_tree.robinson_foulds(src_tree, expand_polytomies=expand_polytomies, unrooted_trees=unrooted, attr_t1=ref_tree_attr, attr_t2=source_tree_attr, min_support_t2=min_support_source, min_support_t1=min_support_ref) # if trees share leaves, count their distances if len(common) > 0 and src_p and ref_p: if unrooted: valid_ref_edges = set([p for p in (ref_p - ref_disc) if len(p[0])>1 and len(p[1])>0]) valid_src_edges = set([p for p in (src_p - src_disc) if len(p[0])>1 and len(p[1])>0]) common_edges = valid_ref_edges & valid_src_edges else: valid_ref_edges = set([p for p in (ref_p - ref_disc) if len(p)>1]) valid_src_edges = set([p for p in (src_p - src_disc) if len(p)>1]) common_edges = valid_ref_edges & valid_src_edges else: valid_ref_edges = set() valid_src_edges = set() common_edges = set() # # % of ref edges found in tree # ref_found.append(float(len(p2 & p1)) / reftree_edges) # # valid edges in target, discard also leaves # p2bis = set([p for p in (p2-d2) if len(p[0])>1 and len(p[1])>1]) # if p2bis: # incompatible_target_branches = float(len((p2-d2) - p1)) # target_found.append(1 - (incompatible_target_branches / (len(p2-d2)))) return rf, maxrf, len(common), valid_ref_edges, valid_src_edges, common_edges total_valid_ref_edges = len([n for n in ref_tree.traverse() if n.children and n.support > min_support_ref]) result = {} if has_duplications: orig_target_size = len(source_tree) ntrees, ndups, sp_trees = source_tree.get_speciation_trees( autodetect_duplications=True, newick_only=True, target_attr=source_tree_attr, map_features=[source_tree_attr, "support"]) if ntrees < max_treeko_splits_to_be_artifact: all_rf = [] ref_found = [] src_found = [] tree_sizes = [] all_max_rf = [] common_names = 0 for subtree_nw in sp_trees: #if seedid and not use_collateral and (seedid not in subtree_nw): # continue subtree = source_tree.__class__(subtree_nw, sp_naming_function = source_tree._speciesFunction) if not subtree.children: continue # only necessary if rf function is going to filter by support # value. It slows downs the analysis, obviously, as it has to # find the support for each node in the treeko tree from the # original one. if min_support_source > 0: subtree_content = subtree.get_cached_content(store_attr='name') for n in subtree.traverse(): if n.children: n.support = source_tree.get_common_ancestor(subtree_content[n]).support total_rf, max_rf, ncommon, valid_ref_edges, valid_src_edges, common_edges = _compare(subtree, ref_tree) all_rf.append(total_rf) all_max_rf.append(max_rf) tree_sizes.append(ncommon) if unrooted: ref_found_in_src = len(common_edges)/float(len(valid_ref_edges)) if valid_ref_edges else None src_found_in_ref = len(common_edges)/float(len(valid_src_edges)) if valid_src_edges else None else: # in rooted trees, we want to discount the root edge # from the percentage of congruence. Otherwise we will never see a 0% # congruence for totally different trees ref_found_in_src = (len(common_edges)-1)/float(len(valid_ref_edges)-1) if len(valid_ref_edges)>1 else None src_found_in_ref = (len(common_edges)-1)/float(len(valid_src_edges)-1) if len(valid_src_edges)>1 else None if ref_found_in_src is not None: ref_found.append(ref_found_in_src) if src_found_in_ref is not None: src_found.append(src_found_in_ref) if all_rf: # Treeko speciation distance alld = [_safe_div(all_rf[i], float(all_max_rf[i])) for i in range(len(all_rf))] a = sum([alld[i] * tree_sizes[i] for i in range(len(all_rf))]) b = float(sum(tree_sizes)) treeko_d = a/b if a else 0.0 result["treeko_dist"] = treeko_d result["rf"] = utils.mean(all_rf) result["max_rf"] = max(all_max_rf) result["effective_tree_size"] = utils.mean(tree_sizes) result["norm_rf"] = utils.mean([_safe_div(all_rf[i], float(all_max_rf[i])) for i in range(len(all_rf))]) result["ref_edges_in_source"] = utils.mean(ref_found) result["source_edges_in_ref"] = utils.mean(src_found) result["source_subtrees"] = len(all_rf) result["common_edges"] = set() result["source_edges"] = set() result["ref_edges"] = set() else: total_rf, max_rf, ncommon, valid_ref_edges, valid_src_edges, common_edges = _compare(source_tree, ref_tree) result["rf"] = float(total_rf) if max_rf else "NA" result["max_rf"] = float(max_rf) if unrooted: result["ref_edges_in_source"] = len(common_edges)/float(len(valid_ref_edges)) if valid_ref_edges else "NA" result["source_edges_in_ref"] = len(common_edges)/float(len(valid_src_edges)) if valid_src_edges else "NA" else: # in rooted trees, we want to discount the root edge from the # percentage of congruence. Otherwise we will never see a 0% # congruence for totally different trees result["ref_edges_in_source"] = (len(common_edges)-1)/float(len(valid_ref_edges)-1) if len(valid_ref_edges)>1 else "NA" result["source_edges_in_ref"] = (len(common_edges)-1)/float(len(valid_src_edges)-1) if len(valid_src_edges)>1 else "NA" result["effective_tree_size"] = ncommon result["norm_rf"] = total_rf/float(max_rf) if max_rf else "NA" result["treeko_dist"] = "NA" result["source_subtrees"] = 1 result["common_edges"] = common_edges result["source_edges"] = valid_src_edges result["ref_edges"] = valid_ref_edges return result
(self, ref_tree, use_collateral=False, min_support_source=0.0, min_support_ref=0.0, has_duplications=False, expand_polytomies=False, unrooted=False, max_treeko_splits_to_be_artifact=1000, ref_tree_attr='name', source_tree_attr='name')
720,283
ete3.coretype.tree
convert_to_ultrametric
.. versionadded: 2.1 Converts a tree into ultrametric topology (all leaves must have the same distance to root). Note that, for visual inspection of ultrametric trees, node.img_style["size"] should be set to 0.
def convert_to_ultrametric(self, tree_length=None, strategy='balanced'): """ .. versionadded: 2.1 Converts a tree into ultrametric topology (all leaves must have the same distance to root). Note that, for visual inspection of ultrametric trees, node.img_style["size"] should be set to 0. """ # Could something like this replace the old algorithm? #most_distant_leaf, tree_length = self.get_farthest_leaf() #for leaf in self: # d = leaf.get_distance(self) # leaf.dist += (tree_length - d) #return # pre-calculate how many splits remain under each node node2max_depth = {} for node in self.traverse("postorder"): if not node.is_leaf(): max_depth = max([node2max_depth[c] for c in node.children]) + 1 node2max_depth[node] = max_depth else: node2max_depth[node] = 1 node2dist = {self: 0.0} if not tree_length: most_distant_leaf, tree_length = self.get_farthest_leaf() else: tree_length = float(tree_length) step = tree_length / node2max_depth[self] for node in self.iter_descendants("levelorder"): if strategy == "balanced": node.dist = (tree_length - node2dist[node.up]) / node2max_depth[node] node2dist[node] = node.dist + node2dist[node.up] elif strategy == "fixed": if not node.is_leaf(): node.dist = step else: node.dist = tree_length - ((node2dist[node.up]) * step) node2dist[node] = node2dist[node.up] + 1 node.dist = node.dist
(self, tree_length=None, strategy='balanced')
720,284
ete3.coretype.tree
cophenetic_matrix
.. versionadded: 3.1.1 Generate a cophenetic distance matrix of the treee to standard output The `cophenetic matrix <https://en.wikipedia.org/wiki/Cophenetic>` is a matrix representation of the distance between each node. if we have a tree like ----A _____________|y | | | ----B ________|z | ----C | | |____________|x -----D | | |______|w | | -----E Where w,x,y,z are internal nodes. d(A,B) = d(y,A) + d(y,B) and d(A, E) = d(z,A) + d(z, E) = {d(z,y) + d(y,A)} + {d(z,x) + d(x,w) + d(w,E)} We use an idea inspired by the ete3 team: https://gist.github.com/jhcepas/279f9009f46bf675e3a890c19191158b : For each node find its path to the root. e.g. A -> A, y, z E -> E, w, x,z and make these orderless sets. Then we XOR the two sets to only find the elements that are in one or other sets but not both. In this case A, E, y, x, w. The distance between the two nodes is the sum of the distances from each of those nodes to the parent One more optimization: since the distances are symmetric, and distance to itself is zero we user itertools.combinations rather than itertools.permutations. This cuts our computes from theta(n^2) 1/2n^2 - n (= O(n^2), which is still not great, but in reality speeds things up for large trees). For this tree, we will return the two dimensional array: A B C D E A 0 d(A-y) + d(B-y) d(A-z) + d(C-z) d(A-z) + d(D-z) d(A-z) + d(E-z) B d(B-y) + d(A-y) 0 d(B-z) + d(C-z) d(B-z) + d(D-z) d(B-z) + d(E-z) C d(C-z) + d(A-z) d(C-z) + d(B-z) 0 d(C-x) + d(D-x) d(C-x) + d(E-x) D d(D-z) + d(A-z) d(D-z) + d(B-z) d(D-x) + d(C-x) 0 d(D-w) + d(E-w) E d(E-z) + d(A-z) d(E-z) + d(B-z) d(E-x) + d(C-x) d(E-w) + d(D-w) 0 We will also return the one dimensional array with the leaves in the order in which they appear in the matrix (i.e. the column and/or row headers). :param filename: the optional file to write to. If not provided, output will be to standard output :return: two-dimensional array and a one dimensional array
def cophenetic_matrix(self): """ .. versionadded: 3.1.1 Generate a cophenetic distance matrix of the treee to standard output The `cophenetic matrix <https://en.wikipedia.org/wiki/Cophenetic>` is a matrix representation of the distance between each node. if we have a tree like ----A _____________|y | | | ----B ________|z | ----C | | |____________|x -----D | | |______|w | | -----E Where w,x,y,z are internal nodes. d(A,B) = d(y,A) + d(y,B) and d(A, E) = d(z,A) + d(z, E) = {d(z,y) + d(y,A)} + {d(z,x) + d(x,w) + d(w,E)} We use an idea inspired by the ete3 team: https://gist.github.com/jhcepas/279f9009f46bf675e3a890c19191158b : For each node find its path to the root. e.g. A -> A, y, z E -> E, w, x,z and make these orderless sets. Then we XOR the two sets to only find the elements that are in one or other sets but not both. In this case A, E, y, x, w. The distance between the two nodes is the sum of the distances from each of those nodes to the parent One more optimization: since the distances are symmetric, and distance to itself is zero we user itertools.combinations rather than itertools.permutations. This cuts our computes from theta(n^2) 1/2n^2 - n (= O(n^2), which is still not great, but in reality speeds things up for large trees). For this tree, we will return the two dimensional array: A B C D E A 0 d(A-y) + d(B-y) d(A-z) + d(C-z) d(A-z) + d(D-z) d(A-z) + d(E-z) B d(B-y) + d(A-y) 0 d(B-z) + d(C-z) d(B-z) + d(D-z) d(B-z) + d(E-z) C d(C-z) + d(A-z) d(C-z) + d(B-z) 0 d(C-x) + d(D-x) d(C-x) + d(E-x) D d(D-z) + d(A-z) d(D-z) + d(B-z) d(D-x) + d(C-x) 0 d(D-w) + d(E-w) E d(E-z) + d(A-z) d(E-z) + d(B-z) d(E-x) + d(C-x) d(E-w) + d(D-w) 0 We will also return the one dimensional array with the leaves in the order in which they appear in the matrix (i.e. the column and/or row headers). :param filename: the optional file to write to. If not provided, output will be to standard output :return: two-dimensional array and a one dimensional array """ leaves = self.get_leaves() paths = {x: set() for x in leaves} # get the paths going up the tree # we get all the nodes up to the last one and store them in a set for n in leaves: if n.is_root(): continue movingnode = n while not movingnode.is_root(): paths[n].add(movingnode) movingnode = movingnode.up # now we want to get all pairs of nodes using itertools combinations. We need AB AC etc but don't need BA CA leaf_distances = {x.name: {} for x in leaves} for (leaf1, leaf2) in itertools.combinations(leaves, 2): # figure out the unique nodes in the path uniquenodes = paths[leaf1] ^ paths[leaf2] distance = sum(x.dist for x in uniquenodes) leaf_distances[leaf1.name][leaf2.name] = leaf_distances[leaf2.name][leaf1.name] = distance allleaves = sorted(leaf_distances.keys()) # the leaves in order that we will return output = [] # the two dimensional array that we will return for i, n in enumerate(allleaves): output.append([]) for m in allleaves: if m == n: output[i].append(0) # distance to ourself = 0 else: output[i].append(leaf_distances[n][m]) return output, allleaves
(self)
720,285
ete3.coretype.tree
copy
.. versionadded: 2.1 Returns a copy of the current node. :var cpickle method: Protocol used to copy the node structure. The following values are accepted: - "newick": Tree topology, node names, branch lengths and branch support values will be copied by as represented in the newick string (copy by newick string serialisation). - "newick-extended": Tree topology and all node features will be copied based on the extended newick format representation. Only node features will be copied, thus excluding other node attributes. As this method is also based on newick serialisation, features will be converted into text strings when making the copy. - "cpickle": The whole node structure and its content is cloned based on cPickle object serialisation (slower, but recommended for full tree copying) - "deepcopy": The whole node structure and its content is copied based on the standard "copy" Python functionality (this is the slowest method but it allows to copy complex objects even if attributes point to lambda functions, etc.)
def copy(self, method="cpickle"): """.. versionadded: 2.1 Returns a copy of the current node. :var cpickle method: Protocol used to copy the node structure. The following values are accepted: - "newick": Tree topology, node names, branch lengths and branch support values will be copied by as represented in the newick string (copy by newick string serialisation). - "newick-extended": Tree topology and all node features will be copied based on the extended newick format representation. Only node features will be copied, thus excluding other node attributes. As this method is also based on newick serialisation, features will be converted into text strings when making the copy. - "cpickle": The whole node structure and its content is cloned based on cPickle object serialisation (slower, but recommended for full tree copying) - "deepcopy": The whole node structure and its content is copied based on the standard "copy" Python functionality (this is the slowest method but it allows to copy complex objects even if attributes point to lambda functions, etc.) """ method = method.lower() if method=="newick": new_node = self.__class__(self.write(features=["name"], format_root_node=True)) elif method=="newick-extended": self.write(features=[], format_root_node=True) new_node = self.__class__(self.write(features=[])) elif method == "deepcopy": parent = self.up self.up = None new_node = copy.deepcopy(self) self.up = parent elif method == "cpickle": parent = self.up self.up = None new_node = six.moves.cPickle.loads(six.moves.cPickle.dumps(self, 2)) self.up = parent else: raise TreeError("Invalid copy method") return new_node
(self, method='cpickle')
720,286
ete3.coretype.tree
del_feature
Permanently deletes a node's feature.
def del_feature(self, pr_name): """ Permanently deletes a node's feature. """ if hasattr(self, pr_name): delattr(self, pr_name) self.features.remove(pr_name)
(self, pr_name)
720,287
ete3.coretype.tree
delete
Deletes node from the tree structure. Notice that this method makes 'disappear' the node from the tree structure. This means that children from the deleted node are transferred to the next available parent. :param True prevent_nondicotomic: When True (default), delete function will be execute recursively to prevent single-child nodes. :param False preserve_branch_length: If True, branch lengths of the deleted nodes are transferred (summed up) to its parent's branch, thus keeping original distances among nodes. **Example:** :: / C root-| | / B \--- H | \ A > H.delete() will produce this structure: / C | root-|--B | \ A
def delete(self, prevent_nondicotomic=True, preserve_branch_length=False): """ Deletes node from the tree structure. Notice that this method makes 'disappear' the node from the tree structure. This means that children from the deleted node are transferred to the next available parent. :param True prevent_nondicotomic: When True (default), delete function will be execute recursively to prevent single-child nodes. :param False preserve_branch_length: If True, branch lengths of the deleted nodes are transferred (summed up) to its parent's branch, thus keeping original distances among nodes. **Example:** :: / C root-| | / B \--- H | \ A > H.delete() will produce this structure: / C | root-|--B | \ A """ parent = self.up if parent: if preserve_branch_length: if len(self.children) == 1: self.children[0].dist += self.dist elif len(self.children) > 1: parent.dist += self.dist for ch in self.children: parent.add_child(ch) parent.remove_child(self) # Avoids parents with only one child if prevent_nondicotomic and parent and\ len(parent.children) < 2: parent.delete(prevent_nondicotomic=False, preserve_branch_length=preserve_branch_length)
(self, prevent_nondicotomic=True, preserve_branch_length=False)
720,288
ete3.coretype.tree
describe
Prints general information about this node and its connections.
def describe(self): """ Prints general information about this node and its connections. """ if len(self.get_tree_root().children)==2: rooting = "Yes" elif len(self.get_tree_root().children)>2: rooting = "No" else: rooting = "No children" max_node, max_dist = self.get_farthest_leaf() cached_content = self.get_cached_content() print("Number of leaf nodes:\t%d" % len(cached_content[self])) print("Total number of nodes:\t%d" % len(cached_content)) print("Rooted:\t%s" %rooting) print("Most distant node:\t%s" %max_node.name) print("Max. distance:\t%f" %max_dist)
(self)
720,289
ete3.coretype.tree
detach
Detachs this node (and all its descendants) from its parent and returns the referent to itself. Detached node conserves all its structure of descendants, and can be attached to another node through the 'add_child' function. This mechanism can be seen as a cut and paste.
def detach(self): """ Detachs this node (and all its descendants) from its parent and returns the referent to itself. Detached node conserves all its structure of descendants, and can be attached to another node through the 'add_child' function. This mechanism can be seen as a cut and paste. """ if self.up: self.up.children.remove(self) self.up = None return self
(self)
720,290
ete3.coretype.tree
expand_polytomies
.. versionadded:: 2.3 Given a tree with one or more polytomies, this functions returns the list of all trees (in newick format) resulting from the combination of all possible solutions of the multifurcated nodes. .. warning: Please note that the number of of possible binary trees grows exponentially with the number and size of polytomies. Using this function with large multifurcations is not feasible: polytomy size: 3 number of binary trees: 3 polytomy size: 4 number of binary trees: 15 polytomy size: 5 number of binary trees: 105 polytomy size: 6 number of binary trees: 945 polytomy size: 7 number of binary trees: 10395 polytomy size: 8 number of binary trees: 135135 polytomy size: 9 number of binary trees: 2027025 http://ajmonline.org/2010/darwin.php
def expand_polytomies(self, map_attr="name", polytomy_size_limit=5, skip_large_polytomies=False): ''' .. versionadded:: 2.3 Given a tree with one or more polytomies, this functions returns the list of all trees (in newick format) resulting from the combination of all possible solutions of the multifurcated nodes. .. warning: Please note that the number of of possible binary trees grows exponentially with the number and size of polytomies. Using this function with large multifurcations is not feasible: polytomy size: 3 number of binary trees: 3 polytomy size: 4 number of binary trees: 15 polytomy size: 5 number of binary trees: 105 polytomy size: 6 number of binary trees: 945 polytomy size: 7 number of binary trees: 10395 polytomy size: 8 number of binary trees: 135135 polytomy size: 9 number of binary trees: 2027025 http://ajmonline.org/2010/darwin.php ''' class TipTuple(tuple): pass def add_leaf(tree, label): yield (label, tree) if not isinstance(tree, TipTuple) and isinstance(tree, tuple): for left in add_leaf(tree[0], label): yield (left, tree[1]) for right in add_leaf(tree[1], label): yield (tree[0], right) def enum_unordered(labels): if len(labels) == 1: yield labels[0] else: for tree in enum_unordered(labels[1:]): for new_tree in add_leaf(tree, labels[0]): yield new_tree n2subtrees = {} for n in self.traverse("postorder"): if n.is_leaf(): subtrees = [getattr(n, map_attr)] else: subtrees = [] if len(n.children) > polytomy_size_limit: if skip_large_polytomies: for childtrees in itertools.product(*[n2subtrees[ch] for ch in n.children]): subtrees.append(TipTuple(childtrees)) else: raise TreeError("Found polytomy larger than current limit: %s" %n) else: for childtrees in itertools.product(*[n2subtrees[ch] for ch in n.children]): subtrees.extend([TipTuple(subtree) for subtree in enum_unordered(childtrees)]) n2subtrees[n] = subtrees return ["%s;"%str(nw) for nw in n2subtrees[self]] # tuples are in newick format ^_^
(self, map_attr='name', polytomy_size_limit=5, skip_large_polytomies=False)
720,291
ete3.coretype.tree
from_parent_child_table
Converts a parent-child table into an ETE Tree instance. :argument parent_child_table: a list of tuples containing parent-child relationships. For example: [("A", "B", 0.1), ("A", "C", 0.2), ("C", "D", 1), ("C", "E", 1.5)]. Where each tuple represents: [parent, child, child-parent-dist] :returns: A new Tree instance :example: >>> tree = Tree.from_parent_child_table([("A", "B", 0.1), ("A", "C", 0.2), ("C", "D", 1), ("C", "E", 1.5)]) >>> print tree
@staticmethod def from_parent_child_table(parent_child_table): """Converts a parent-child table into an ETE Tree instance. :argument parent_child_table: a list of tuples containing parent-child relationships. For example: [("A", "B", 0.1), ("A", "C", 0.2), ("C", "D", 1), ("C", "E", 1.5)]. Where each tuple represents: [parent, child, child-parent-dist] :returns: A new Tree instance :example: >>> tree = Tree.from_parent_child_table([("A", "B", 0.1), ("A", "C", 0.2), ("C", "D", 1), ("C", "E", 1.5)]) >>> print tree """ def get_node(nodename, dist=None): if nodename not in nodes_by_name: nodes_by_name[nodename] = Tree(name=nodename, dist=dist) node = nodes_by_name[nodename] if dist is not None: node.dist = dist node.name = nodename return nodes_by_name[nodename] nodes_by_name = {} for columns in parent_child_table: if len(columns) == 3: parent_name, child_name, distance = columns dist = float(distance) else: parent_name, child_name = columns dist = None parent = get_node(parent_name) parent.add_child(get_node(child_name, dist=dist)) root = parent.get_tree_root() return root
(parent_child_table)
720,292
ete3.coretype.tree
from_skbio
Converts a scikit-bio TreeNode object into ETE Tree object. :argument skbio_tree: a scikit bio TreeNode instance :argument None map_attributes: A list of attribute nanes in the scikit-bio tree that should be mapped into the ETE tree instance. (name, id and branch length are always mapped) :returns: A new Tree instance :example: >>> tree = Tree.from_skibio(skbioTree, map_attributes=["value"])
@staticmethod def from_skbio(skbio_tree, map_attributes=None): """Converts a scikit-bio TreeNode object into ETE Tree object. :argument skbio_tree: a scikit bio TreeNode instance :argument None map_attributes: A list of attribute nanes in the scikit-bio tree that should be mapped into the ETE tree instance. (name, id and branch length are always mapped) :returns: A new Tree instance :example: >>> tree = Tree.from_skibio(skbioTree, map_attributes=["value"]) """ from skbio import TreeNode as skbioTreeNode def get_ete_node(skbio_node): ete_node = all_nodes.get(skbio_node, Tree()) if skbio_node.length is not None: ete_node.dist = float(skbio_node.length) ete_node.name = skbio_node.name ete_node.add_features(id=skbio_node.id) if map_attributes: for a in map_attributes: ete_node.add_feature(a, getattr(skbio_node, a, None)) return ete_node all_nodes = {} if isinstance(skbio_tree, skbioTreeNode): for node in skbio_tree.preorder(include_self=True): all_nodes[node] = get_ete_node(node) ete_node = all_nodes[node] for ch in node.children: ete_ch = get_ete_node(ch) ete_node.add_child(ete_ch) all_nodes[ch] = ete_ch return ete_ch.get_tree_root()
(skbio_tree, map_attributes=None)
720,293
ete3.coretype.tree
get_ancestors
versionadded: 2.2 Returns the list of all ancestor nodes from current node to the current tree root.
def get_ancestors(self): '''versionadded: 2.2 Returns the list of all ancestor nodes from current node to the current tree root. ''' return [n for n in self.iter_ancestors()]
(self)
720,294
ete3.coretype.tree
get_ascii
Returns a string containing an ascii drawing of the tree. :argument show_internal: includes internal edge names. :argument compact: use exactly one line per tip. :param attributes: A list of node attributes to shown in the ASCII representation.
def get_ascii(self, show_internal=True, compact=False, attributes=None): """ Returns a string containing an ascii drawing of the tree. :argument show_internal: includes internal edge names. :argument compact: use exactly one line per tip. :param attributes: A list of node attributes to shown in the ASCII representation. """ (lines, mid) = self._asciiArt(show_internal=show_internal, compact=compact, attributes=attributes) return '\n'+'\n'.join(lines)
(self, show_internal=True, compact=False, attributes=None)
720,295
ete3.coretype.tree
get_cached_content
.. versionadded: 2.2 Returns a dictionary pointing to the preloaded content of each internal node under this tree. Such a dictionary is intended to work as a cache for operations that require many traversal operations. :param None store_attr: Specifies the node attribute that should be cached (i.e. name, distance, etc.). When none, the whole node instance is cached. :param _store: (internal use)
def get_cached_content(self, store_attr=None, container_type=set, leaves_only=True, _store=None): """ .. versionadded: 2.2 Returns a dictionary pointing to the preloaded content of each internal node under this tree. Such a dictionary is intended to work as a cache for operations that require many traversal operations. :param None store_attr: Specifies the node attribute that should be cached (i.e. name, distance, etc.). When none, the whole node instance is cached. :param _store: (internal use) """ if _store is None: _store = {} def get_value(_n): if store_attr is None: _val = [_n] else: if not isinstance(store_attr, six.string_types): _val = [tuple(getattr(_n, attr, None) for attr in store_attr)] else: _val = [getattr(_n, store_attr, None)] return _val for ch in self.children: ch.get_cached_content(store_attr=store_attr, container_type=container_type, leaves_only=leaves_only, _store=_store) if self.children: if not leaves_only: val = container_type(get_value(self)) else: val = container_type() for ch in self.children: if type(val) == list: val.extend(_store[ch]) if type(val) == set: val.update(_store[ch]) if not leaves_only: if type(val) == list: val.extend(get_value(ch)) if type(val) == set: val.update(get_value(ch)) _store[self] = val else: _store[self] = container_type(get_value(self)) return _store
(self, store_attr=None, container_type=<class 'set'>, leaves_only=True, _store=None)
720,296
ete3.coretype.tree
get_children
Returns an independent list of node's children.
def get_children(self): """ Returns an independent list of node's children. """ return [ch for ch in self.children]
(self)
720,297
ete3.coretype.tree
get_closest_leaf
Returns node's closest descendant leaf and the distance to it. :argument False topology_only: If set to True, distance between nodes will be referred to the number of nodes between them. In other words, topological distance will be used instead of branch length distances. :return: A tuple containing the closest leaf referred to the current node and the distance to it.
def get_closest_leaf(self, topology_only=False, is_leaf_fn=None): """Returns node's closest descendant leaf and the distance to it. :argument False topology_only: If set to True, distance between nodes will be referred to the number of nodes between them. In other words, topological distance will be used instead of branch length distances. :return: A tuple containing the closest leaf referred to the current node and the distance to it. """ min_node, min_dist, max_node, max_dist = self._get_farthest_and_closest_leaves( topology_only=topology_only, is_leaf_fn=is_leaf_fn) return min_node, min_dist
(self, topology_only=False, is_leaf_fn=None)
720,298
ete3.coretype.tree
get_common_ancestor
Returns the first common ancestor between this node and a given list of 'target_nodes'. **Examples:** :: t = tree.Tree("(((A:0.1, B:0.01):0.001, C:0.0001):1.0[&&NHX:name=common], (D:0.00001):0.000001):2.0[&&NHX:name=root];") A = t.get_descendants_by_name("A")[0] C = t.get_descendants_by_name("C")[0] common = A.get_common_ancestor(C) print common.name
def get_common_ancestor(self, *target_nodes, **kargs): """ Returns the first common ancestor between this node and a given list of 'target_nodes'. **Examples:** :: t = tree.Tree("(((A:0.1, B:0.01):0.001, C:0.0001):1.0[&&NHX:name=common], (D:0.00001):0.000001):2.0[&&NHX:name=root];") A = t.get_descendants_by_name("A")[0] C = t.get_descendants_by_name("C")[0] common = A.get_common_ancestor(C) print common.name """ get_path = kargs.get("get_path", False) if len(target_nodes) == 1 and type(target_nodes[0]) \ in set([set, tuple, list, frozenset]): target_nodes = target_nodes[0] # Convert node names into node instances target_nodes = _translate_nodes(self, *target_nodes) if type(target_nodes) != list: # If only one node is provided and is the same as the seed node, # return itself if target_nodes is self: if get_path: return self, {} else: return self else: #Otherwise find the common ancestor of current seed node and #the target_node provided target_nodes = [target_nodes, self] n2path = {} reference = [] ref_node = None for n in target_nodes: current = n while current: n2path.setdefault(n, set()).add(current) if not ref_node: reference.append(current) current = current.up if not ref_node: ref_node = n common = None for n in reference: broken = False for node, path in six.iteritems(n2path): if node is not ref_node and n not in path: broken = True break if not broken: common = n break if not common: raise TreeError("Nodes are not connected!") if get_path: return common, n2path else: return common
(self, *target_nodes, **kargs)
720,299
ete3.coretype.tree
get_descendants
Returns a list of all (leaves and internal) descendant nodes. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation.
def get_descendants(self, strategy="levelorder", is_leaf_fn=None): """ Returns a list of all (leaves and internal) descendant nodes. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation. """ return [n for n in self.iter_descendants(strategy=strategy, \ is_leaf_fn=is_leaf_fn)]
(self, strategy='levelorder', is_leaf_fn=None)
720,300
ete3.coretype.tree
get_distance
Returns the distance between two nodes. If only one target is specified, it returns the distance between the target and the current node. :argument target: a node within the same tree structure. :argument target2: a node within the same tree structure. If not specified, current node is used as target2. :argument False topology_only: If set to True, distance will refer to the number of nodes between target and target2. :returns: branch length distance between target and target2. If topology_only flag is True, returns the number of nodes between target and target2.
def get_distance(self, target, target2=None, topology_only=False): """ Returns the distance between two nodes. If only one target is specified, it returns the distance between the target and the current node. :argument target: a node within the same tree structure. :argument target2: a node within the same tree structure. If not specified, current node is used as target2. :argument False topology_only: If set to True, distance will refer to the number of nodes between target and target2. :returns: branch length distance between target and target2. If topology_only flag is True, returns the number of nodes between target and target2. """ if target2 is None: target2 = self root = self.get_tree_root() else: # is target node under current node? root = self target, target2 = _translate_nodes(root, target, target2) ancestor = root.get_common_ancestor(target, target2) dist = 0.0 for n in [target2, target]: current = n while current != ancestor: if topology_only: if current!=target: dist += 1 else: dist += current.dist current = current.up return dist
(self, target, target2=None, topology_only=False)
720,301
ete3.clustering.clustertree
get_dunn
Calculates the Dunn index for the given set of descendant nodes.
def get_dunn(self, clusters, fdist=None): """ Calculates the Dunn index for the given set of descendant nodes. """ if fdist is None: fdist = self._fdist nodes = _translate_nodes(self, *clusters) return clustvalidation.get_dunn_index(fdist, *nodes)
(self, clusters, fdist=None)
720,302
ete3.coretype.tree
get_edges
.. versionadded:: 2.3 Returns the list of edges of a tree. Each edge is represented as a tuple of two elements, each containing the list of nodes separated by the edge.
def get_edges(self, cached_content = None): ''' .. versionadded:: 2.3 Returns the list of edges of a tree. Each edge is represented as a tuple of two elements, each containing the list of nodes separated by the edge. ''' return [edge for edge in self.iter_edges(cached_content)]
(self, cached_content=None)
720,303
ete3.coretype.tree
get_farthest_leaf
Returns node's farthest descendant node (which is always a leaf), and the distance to it. :argument False topology_only: If set to True, distance between nodes will be referred to the number of nodes between them. In other words, topological distance will be used instead of branch length distances. :return: A tuple containing the farthest leaf referred to the current node and the distance to it.
def get_farthest_leaf(self, topology_only=False, is_leaf_fn=None): """ Returns node's farthest descendant node (which is always a leaf), and the distance to it. :argument False topology_only: If set to True, distance between nodes will be referred to the number of nodes between them. In other words, topological distance will be used instead of branch length distances. :return: A tuple containing the farthest leaf referred to the current node and the distance to it. """ min_node, min_dist, max_node, max_dist = self._get_farthest_and_closest_leaves( topology_only=topology_only, is_leaf_fn=is_leaf_fn) return max_node, max_dist
(self, topology_only=False, is_leaf_fn=None)
720,304
ete3.coretype.tree
get_farthest_node
Returns the node's farthest descendant or ancestor node, and the distance to it. :argument False topology_only: If set to True, distance between nodes will be referred to the number of nodes between them. In other words, topological distance will be used instead of branch length distances. :return: A tuple containing the farthest node referred to the current node and the distance to it.
def get_farthest_node(self, topology_only=False): """ Returns the node's farthest descendant or ancestor node, and the distance to it. :argument False topology_only: If set to True, distance between nodes will be referred to the number of nodes between them. In other words, topological distance will be used instead of branch length distances. :return: A tuple containing the farthest node referred to the current node and the distance to it. """ # Init farthest node to current farthest leaf farthest_node, farthest_dist = self.get_farthest_leaf(topology_only=topology_only) prev = self cdist = 0.0 if topology_only else prev.dist current = prev.up while current is not None: for ch in current.children: if ch != prev: if not ch.is_leaf(): fnode, fdist = ch.get_farthest_leaf(topology_only=topology_only) else: fnode = ch fdist = 0 if topology_only: fdist += 1.0 else: fdist += ch.dist if cdist+fdist > farthest_dist: farthest_dist = cdist + fdist farthest_node = fnode prev = current if topology_only: cdist += 1 else: cdist += prev.dist current = prev.up return farthest_node, farthest_dist
(self, topology_only=False)
720,305
ete3.coretype.tree
get_leaf_names
Returns the list of terminal node names under the current node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation.
def get_leaf_names(self, is_leaf_fn=None): """ Returns the list of terminal node names under the current node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation. """ return [name for name in self.iter_leaf_names(is_leaf_fn=is_leaf_fn)]
(self, is_leaf_fn=None)
720,306
ete3.clustering.clustertree
get_leaf_profiles
Returns the list of all the profiles associated to the leaves under this node.
def get_leaf_profiles(self): """ Returns the list of all the profiles associated to the leaves under this node.""" return [l.get_profile()[0] for l in self.iter_leaves()]
(self)
720,307
ete3.coretype.tree
get_leaves
Returns the list of terminal nodes (leaves) under this node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation.
def get_leaves(self, is_leaf_fn=None): """ Returns the list of terminal nodes (leaves) under this node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation. """ return [n for n in self.iter_leaves(is_leaf_fn=is_leaf_fn)]
(self, is_leaf_fn=None)
720,308
ete3.coretype.tree
get_leaves_by_name
Returns a list of leaf nodes matching a given name.
def get_leaves_by_name(self, name): """ Returns a list of leaf nodes matching a given name. """ return self.search_nodes(name=name, children=[])
(self, name)
720,309
ete3.coretype.tree
get_midpoint_outgroup
Returns the node that divides the current tree into two distance-balanced partitions.
def get_midpoint_outgroup(self): """ Returns the node that divides the current tree into two distance-balanced partitions. """ # Gets the farthest node to the current root root = self.get_tree_root() nA, r2A_dist = root.get_farthest_leaf() nB, A2B_dist = nA.get_farthest_node() outgroup = nA middist = A2B_dist / 2.0 cdist = 0 current = nA while current is not None: cdist += current.dist if cdist > (middist): # Deja de subir cuando se pasa del maximo break else: current = current.up # if we reached the root, the tree is already at midpoint. Return any child as valid outgroup if current is None: current = self.children[0] return current
(self)
720,310
ete3.coretype.tree
get_monophyletic
.. versionadded:: 2.2 Returns a list of nodes matching the provided monophyly criteria. For a node to be considered a match, all `target_attr` values within and node, and exclusively them, should be grouped. :param values: a set of values for which monophyly is expected. :param target_attr: node attribute being used to check monophyly (i.e. species for species trees, names for gene family trees).
def get_monophyletic(self, values, target_attr): """ .. versionadded:: 2.2 Returns a list of nodes matching the provided monophyly criteria. For a node to be considered a match, all `target_attr` values within and node, and exclusively them, should be grouped. :param values: a set of values for which monophyly is expected. :param target_attr: node attribute being used to check monophyly (i.e. species for species trees, names for gene family trees). """ if type(values) != set: values = set(values) n2values = self.get_cached_content(store_attr=target_attr) is_monophyletic = lambda node: n2values[node] == values for match in self.iter_leaves(is_leaf_fn=is_monophyletic): if is_monophyletic(match): yield match
(self, values, target_attr)
720,311
ete3.clustering.clustertree
get_silhouette
Calculates the node's silhouette value by using a given distance function. By default, euclidean distance is used. It also calculates the deviation profile, mean profile, and inter/intra-cluster distances. It sets the following features into the analyzed node: - node.intracluster - node.intercluster - node.silhouete intracluster distances a(i) are calculated as the Centroid Diameter intercluster distances b(i) are calculated as the Centroid linkage distance ** Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53-65.
def get_silhouette(self, fdist=None): """ Calculates the node's silhouette value by using a given distance function. By default, euclidean distance is used. It also calculates the deviation profile, mean profile, and inter/intra-cluster distances. It sets the following features into the analyzed node: - node.intracluster - node.intercluster - node.silhouete intracluster distances a(i) are calculated as the Centroid Diameter intercluster distances b(i) are calculated as the Centroid linkage distance ** Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53-65. """ if fdist is None: fdist = self._fdist # Updates internal values self._silhouette, self._intracluster_dist, self._intercluster_dist = \ clustvalidation.get_silhouette_width(fdist, self) # And returns them return self._silhouette, self._intracluster_dist, self._intercluster_dist
(self, fdist=None)
720,312
ete3.coretype.tree
get_sisters
Returns an independent list of sister nodes.
def get_sisters(self): """ Returns an independent list of sister nodes. """ if self.up is not None: return [ch for ch in self.up.children if ch!=self] else: return []
(self)
720,313
ete3.coretype.tree
get_topology_id
.. versionadded:: 2.3 Returns the unique ID representing the topology of the current tree. Two trees with the same topology will produce the same id. If trees are unrooted, make sure that the root node is not binary or use the tree.unroot() function before generating the topology id. This is useful to detect the number of unique topologies over a bunch of trees, without requiring full distance methods. The id is, by default, calculated based on the terminal node's names. Any other node attribute could be used instead.
def get_topology_id(self, attr="name"): ''' .. versionadded:: 2.3 Returns the unique ID representing the topology of the current tree. Two trees with the same topology will produce the same id. If trees are unrooted, make sure that the root node is not binary or use the tree.unroot() function before generating the topology id. This is useful to detect the number of unique topologies over a bunch of trees, without requiring full distance methods. The id is, by default, calculated based on the terminal node's names. Any other node attribute could be used instead. ''' edge_keys = [] for s1, s2 in self.get_edges(): k1 = sorted([getattr(e, attr) for e in s1]) k2 = sorted([getattr(e, attr) for e in s2]) edge_keys.append(sorted([k1, k2])) return md5(str(sorted(edge_keys)).encode('utf-8')).hexdigest()
(self, attr='name')
720,314
ete3.coretype.tree
get_tree_root
Returns the absolute root node of current tree structure.
def get_tree_root(self): """ Returns the absolute root node of current tree structure. """ root = self while root.up is not None: root = root.up return root
(self)
720,315
ete3.coretype.tree
is_leaf
Return True if current node is a leaf.
def is_leaf(self): """ Return True if current node is a leaf. """ return len(self.children) == 0
(self)
720,316
ete3.coretype.tree
is_root
Returns True if current node has no parent
def is_root(self): """ Returns True if current node has no parent """ if self.up is None: return True else: return False
(self)
720,317
ete3.coretype.tree
iter_ancestors
versionadded: 2.2 Iterates over the list of all ancestor nodes from current node to the current tree root.
def iter_ancestors(self): '''versionadded: 2.2 Iterates over the list of all ancestor nodes from current node to the current tree root. ''' node = self while node.up is not None: yield node.up node = node.up
(self)
720,318
ete3.coretype.tree
iter_descendants
Returns an iterator over all descendant nodes. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation.
def iter_descendants(self, strategy="levelorder", is_leaf_fn=None): """ Returns an iterator over all descendant nodes. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation. """ for n in self.traverse(strategy=strategy, is_leaf_fn=is_leaf_fn): if n is not self: yield n
(self, strategy='levelorder', is_leaf_fn=None)
720,319
ete3.coretype.tree
iter_edges
.. versionadded:: 2.3 Iterate over the list of edges of a tree. Each edge is represented as a tuple of two elements, each containing the list of nodes separated by the edge.
def iter_edges(self, cached_content = None): ''' .. versionadded:: 2.3 Iterate over the list of edges of a tree. Each edge is represented as a tuple of two elements, each containing the list of nodes separated by the edge. ''' if not cached_content: cached_content = self.get_cached_content() all_leaves = cached_content[self] for n, side1 in six.iteritems(cached_content): yield (side1, all_leaves-side1)
(self, cached_content=None)
720,320
ete3.coretype.tree
iter_leaf_names
Returns an iterator over the leaf names under this node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation.
def iter_leaf_names(self, is_leaf_fn=None): """ Returns an iterator over the leaf names under this node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation. """ for n in self.iter_leaves(is_leaf_fn=is_leaf_fn): yield n.name
(self, is_leaf_fn=None)
720,321
ete3.clustering.clustertree
iter_leaf_profiles
Returns an iterator over all the profiles associated to the leaves under this node.
def iter_leaf_profiles(self): """ Returns an iterator over all the profiles associated to the leaves under this node.""" for l in self.iter_leaves(): yield l.get_profile()[0]
(self)
720,322
ete3.coretype.tree
iter_leaves
Returns an iterator over the leaves under this node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation.
def iter_leaves(self, is_leaf_fn=None): """ Returns an iterator over the leaves under this node. :argument None is_leaf_fn: See :func:`TreeNode.traverse` for documentation. """ for n in self.traverse(strategy="preorder", is_leaf_fn=is_leaf_fn): if not is_leaf_fn: if n.is_leaf(): yield n else: if is_leaf_fn(n): yield n
(self, is_leaf_fn=None)
720,323
ete3.coretype.tree
iter_prepostorder
Iterate over all nodes in a tree yielding every node in both pre and post order. Each iteration returns a postorder flag (True if node is being visited in postorder) and a node instance.
def iter_prepostorder(self, is_leaf_fn=None): """ Iterate over all nodes in a tree yielding every node in both pre and post order. Each iteration returns a postorder flag (True if node is being visited in postorder) and a node instance. """ to_visit = [self] if is_leaf_fn is not None: _leaf = is_leaf_fn else: _leaf = self.__class__.is_leaf while to_visit: node = to_visit.pop(-1) try: node = node[1] except TypeError: # PREORDER ACTIONS yield (False, node) if not _leaf(node): # ADD CHILDREN to_visit.extend(reversed(node.children + [[1, node]])) else: #POSTORDER ACTIONS yield (True, node)
(self, is_leaf_fn=None)
720,324
ete3.coretype.tree
iter_search_nodes
Search nodes in an iterative way. Matches are yielded as they are being found. This avoids needing to scan the full tree topology before returning the first matches. Useful when dealing with huge trees.
def iter_search_nodes(self, **conditions): """ Search nodes in an iterative way. Matches are yielded as they are being found. This avoids needing to scan the full tree topology before returning the first matches. Useful when dealing with huge trees. """ for n in self.traverse(): conditions_passed = 0 for key, value in six.iteritems(conditions): if hasattr(n, key) and getattr(n, key) == value: conditions_passed +=1 if conditions_passed == len(conditions): yield n
(self, **conditions)
720,325
ete3.coretype.tree
ladderize
.. versionadded: 2.1 Sort the branches of a given tree (swapping children nodes) according to the size of each partition. :: t = Tree("(f,((d, ((a,b),c)),e));") print t # # /-f # | # | /-d # ----| | # | /---| /-a # | | | /---| # | | \---| \-b # \---| | # | \-c # | # \-e t.ladderize() print t # /-f # ----| # | /-e # \---| # | /-d # \---| # | /-c # \---| # | /-a # \---| # \-b
def ladderize(self, direction=0): """ .. versionadded: 2.1 Sort the branches of a given tree (swapping children nodes) according to the size of each partition. :: t = Tree("(f,((d, ((a,b),c)),e));") print t # # /-f # | # | /-d # ----| | # | /---| /-a # | | | /---| # | | \---| \-b # \---| | # | \-c # | # \-e t.ladderize() print t # /-f # ----| # | /-e # \---| # | /-d # \---| # | /-c # \---| # | /-a # \---| # \-b """ if not self.is_leaf(): n2s = {} for n in self.get_children(): s = n.ladderize(direction=direction) n2s[n] = s self.children.sort(key=lambda x: n2s[x]) if direction == 1: self.children.reverse() size = sum(n2s.values()) else: size = 1 return size
(self, direction=0)
720,326
ete3.clustering.clustertree
link_to_arraytable
Allows to link a given arraytable object to the tree structure under this node. Row names in the arraytable object are expected to match leaf names. Returns a list of nodes for with profiles could not been found in arraytable.
def link_to_arraytable(self, arraytbl): """ Allows to link a given arraytable object to the tree structure under this node. Row names in the arraytable object are expected to match leaf names. Returns a list of nodes for with profiles could not been found in arraytable. """ # Initialize tree with array data if type(arraytbl) == ArrayTable: array = arraytbl else: array = ArrayTable(arraytbl) missing_leaves = [] matrix_values = [i for r in range(len(array.matrix))\ for i in array.matrix[r] if numpy.isfinite(i)] array._matrix_min = min(matrix_values) array._matrix_max = max(matrix_values) for n in self.traverse(): n.arraytable = array if n.is_leaf() and n.name in array.rowNames: n._profile = array.get_row_vector(n.name) elif n.is_leaf(): n._profile = [numpy.nan]*len(array.colNames) missing_leaves.append(n) if len(missing_leaves)>0: print("""[%d] leaf names could not be mapped to the matrix rows.""" %\ len(missing_leaves), file=stderr) self.arraytable = array
(self, arraytbl)
720,327
ete3.coretype.tree
phonehome
null
def phonehome(self): from .. import _ph _ph.call()
(self)
720,328
ete3.coretype.tree
populate
Generates a random topology by populating current node. :argument None names_library: If provided, names library (list, set, dict, etc.) will be used to name nodes. :argument False reuse_names: If True, node names will not be necessarily unique, which makes the process a bit more efficient. :argument False random_branches: If True, branch distances and support values will be randomized. :argument (0,1) branch_range: If random_branches is True, this range of values will be used to generate random distances. :argument (0,1) support_range: If random_branches is True, this range of values will be used to generate random branch support values.
def populate(self, size, names_library=None, reuse_names=False, random_branches=False, branch_range=(0,1), support_range=(0,1)): """ Generates a random topology by populating current node. :argument None names_library: If provided, names library (list, set, dict, etc.) will be used to name nodes. :argument False reuse_names: If True, node names will not be necessarily unique, which makes the process a bit more efficient. :argument False random_branches: If True, branch distances and support values will be randomized. :argument (0,1) branch_range: If random_branches is True, this range of values will be used to generate random distances. :argument (0,1) support_range: If random_branches is True, this range of values will be used to generate random branch support values. """ NewNode = self.__class__ if len(self.children) > 1: connector = NewNode() for ch in self.get_children(): ch.detach() connector.add_child(child = ch) root = NewNode() self.add_child(child = connector) self.add_child(child = root) else: root = self next_deq = deque([root]) for i in range(size-1): if random.randint(0, 1): p = next_deq.pop() else: p = next_deq.popleft() c1 = p.add_child() c2 = p.add_child() next_deq.extend([c1, c2]) if random_branches: c1.dist = random.uniform(*branch_range) c2.dist = random.uniform(*branch_range) c1.support = random.uniform(*branch_range) c2.support = random.uniform(*branch_range) else: c1.dist = 1.0 c2.dist = 1.0 c1.support = 1.0 c2.support = 1.0 # next contains leaf nodes charset = "abcdefghijklmnopqrstuvwxyz" if names_library: names_library = deque(names_library) else: avail_names = itertools.combinations_with_replacement(charset, 10) for n in next_deq: if names_library: if reuse_names: tname = random.sample(names_library, 1)[0] else: tname = names_library.pop() else: tname = ''.join(next(avail_names)) n.name = tname
(self, size, names_library=None, reuse_names=False, random_branches=False, branch_range=(0, 1), support_range=(0, 1))
720,329
ete3.coretype.tree
prune
Prunes the topology of a node to conserve only the selected list of leaf internal nodes. The minimum number of nodes that conserve the topological relationships among the requested nodes will be retained. Root node is always conserved. :var nodes: a list of node names or node objects that should be retained :param False preserve_branch_length: If True, branch lengths of the deleted nodes are transferred (summed up) to its parent's branch, thus keeping original distances among nodes. **Examples:** :: t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B']) # /-A # /D /C| # /F| \-B # | | # /H| \-E # | | /-A #-root \-G -root # | \-B # | /-I # \K| # \-J t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B', 'C']) # /-A # /D /C| # /F| \-B # | | # /H| \-E # | | /-A #-root \-G -root- C| # | \-B # | /-I # \K| # \-J t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B', 'I']) # /-A # /D /C| # /F| \-B # | | # /H| \-E /-I # | | -root #-root \-G | /-A # | \C| # | /-I \-B # \K| # \-J t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B', 'F', 'H']) # /-A # /D /C| # /F| \-B # | | # /H| \-E # | | /-A #-root \-G -root-H /F| # | \-B # | /-I # \K| # \-J
def prune(self, nodes, preserve_branch_length=False): """Prunes the topology of a node to conserve only the selected list of leaf internal nodes. The minimum number of nodes that conserve the topological relationships among the requested nodes will be retained. Root node is always conserved. :var nodes: a list of node names or node objects that should be retained :param False preserve_branch_length: If True, branch lengths of the deleted nodes are transferred (summed up) to its parent's branch, thus keeping original distances among nodes. **Examples:** :: t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B']) # /-A # /D /C| # /F| \-B # | | # /H| \-E # | | /-A #-root \-G -root # | \-B # | /-I # \K| # \-J t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B', 'C']) # /-A # /D /C| # /F| \-B # | | # /H| \-E # | | /-A #-root \-G -root- C| # | \-B # | /-I # \K| # \-J t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B', 'I']) # /-A # /D /C| # /F| \-B # | | # /H| \-E /-I # | | -root #-root \-G | /-A # | \C| # | /-I \-B # \K| # \-J t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1) t1.prune(['A', 'B', 'F', 'H']) # /-A # /D /C| # /F| \-B # | | # /H| \-E # | | /-A #-root \-G -root-H /F| # | \-B # | /-I # \K| # \-J """ def cmp_nodes(x, y): # if several nodes are in the same path of two kept nodes, # only one should be maintained. This prioritize internal # nodes that are already in the to_keep list and then # deeper nodes (closer to the leaves). if n2depth[x] > n2depth[y]: return -1 elif n2depth[x] < n2depth[y]: return 1 else: return 0 to_keep = set(_translate_nodes(self, *nodes)) start, node2path = self.get_common_ancestor(to_keep, get_path=True) to_keep.add(self) # Calculate which kept nodes are visiting the same nodes in # their path to the common ancestor. n2count = {} n2depth = {} for seed, path in six.iteritems(node2path): for visited_node in path: if visited_node not in n2depth: depth = visited_node.get_distance(start, topology_only=True) n2depth[visited_node] = depth if visited_node is not seed: n2count.setdefault(visited_node, set()).add(seed) # if several internal nodes are in the path of exactly the same kept # nodes, only one (the deepest) should be maintain. visitors2nodes = {} for node, visitors in six.iteritems(n2count): # keep nodes connection at least two other nodes if len(visitors)>1: visitor_key = frozenset(visitors) visitors2nodes.setdefault(visitor_key, set()).add(node) for visitors, nodes in six.iteritems(visitors2nodes): if not (to_keep & nodes): sorted_nodes = sorted(nodes, key=cmp_to_key(cmp_nodes)) to_keep.add(sorted_nodes[0]) for n in self.get_descendants('postorder'): if n not in to_keep: if preserve_branch_length: if len(n.children) == 1: n.children[0].dist += n.dist elif len(n.children) > 1 and n.up: n.up.dist += n.dist n.delete(prevent_nondicotomic=False)
(self, nodes, preserve_branch_length=False)
720,330
ete3.coretype.tree
remove_child
Removes a child from this node (parent and child nodes still exit but are no longer connected).
def remove_child(self, child): """ Removes a child from this node (parent and child nodes still exit but are no longer connected). """ try: self.children.remove(child) except ValueError as e: raise TreeError("child not found") else: child.up = None return child
(self, child)
720,331
ete3.coretype.tree
remove_sister
Removes a sister node. It has the same effect as **`TreeNode.up.remove_child(sister)`** If a sister node is not supplied, the first sister will be deleted and returned. :argument sister: A node instance :return: The node removed
def remove_sister(self, sister=None): """ Removes a sister node. It has the same effect as **`TreeNode.up.remove_child(sister)`** If a sister node is not supplied, the first sister will be deleted and returned. :argument sister: A node instance :return: The node removed """ sisters = self.get_sisters() if len(sisters) > 0: if sister is None: sister = sisters.pop(0) return self.up.remove_child(sister)
(self, sister=None)
720,332
ete3.coretype.tree
render
Renders the node structure as an image. :var file_name: path to the output image file. valid extensions are .SVG, .PDF, .PNG :var layout: a layout function or a valid layout function name :var tree_style: a `TreeStyle` instance containing the image properties :var px units: "px": pixels, "mm": millimeters, "in": inches :var None h: height of the image in :attr:`units` :var None w: width of the image in :attr:`units` :var 90 dpi: dots per inches.
def render(self, file_name, layout=None, w=None, h=None, \ tree_style=None, units="px", dpi=90): """ Renders the node structure as an image. :var file_name: path to the output image file. valid extensions are .SVG, .PDF, .PNG :var layout: a layout function or a valid layout function name :var tree_style: a `TreeStyle` instance containing the image properties :var px units: "px": pixels, "mm": millimeters, "in": inches :var None h: height of the image in :attr:`units` :var None w: width of the image in :attr:`units` :var 90 dpi: dots per inches. """ from ..treeview import drawer if file_name.startswith('%%return'): return drawer.get_img(self, w=w, h=h, layout=layout, tree_style=tree_style, units=units, dpi=dpi, return_format=file_name) else: return drawer.render_tree(self, file_name, w=w, h=h, layout=layout, tree_style=tree_style, units=units, dpi=dpi)
(self, file_name, layout=None, w=None, h=None, tree_style=None, units='px', dpi=90)
720,333
ete3.coretype.tree
resolve_polytomy
.. versionadded: 2.2 Resolve all polytomies under current node by creating an arbitrary dicotomic structure among the affected nodes. This function randomly modifies current tree topology and should only be used for compatibility reasons (i.e. programs rejecting multifurcated node in the newick representation). :param 0.0 default_dist: artificial branch distance of new nodes. :param 0.0 default_support: artificial branch support of new nodes. :param True recursive: Resolve any polytomy under this node. When False, only current node will be checked and fixed.
def resolve_polytomy(self, default_dist=0.0, default_support=0.0, recursive=True): """ .. versionadded: 2.2 Resolve all polytomies under current node by creating an arbitrary dicotomic structure among the affected nodes. This function randomly modifies current tree topology and should only be used for compatibility reasons (i.e. programs rejecting multifurcated node in the newick representation). :param 0.0 default_dist: artificial branch distance of new nodes. :param 0.0 default_support: artificial branch support of new nodes. :param True recursive: Resolve any polytomy under this node. When False, only current node will be checked and fixed. """ def _resolve(node): if len(node.children) > 2: children = list(node.children) node.children = [] next_node = root = node for i in range(len(children)-2): next_node = next_node.add_child() next_node.dist = default_dist next_node.support = default_support next_node = root for ch in children: next_node.add_child(ch) if ch != children[-2]: next_node = next_node.children[0] target = [self] if recursive: target.extend([n for n in self.get_descendants()]) for n in target: _resolve(n)
(self, default_dist=0.0, default_support=0.0, recursive=True)
720,334
ete3.coretype.tree
robinson_foulds
.. versionadded: 2.2 Returns the Robinson-Foulds symmetric distance between current tree and a different tree instance. :param t2: reference tree :param name attr_t1: Compare trees using a custom node attribute as a node name. :param name attr_t2: Compare trees using a custom node attribute as a node name in target tree. :param False unrooted_trees: If True, consider trees as unrooted. :param False expand_polytomies: If True, all polytomies in the reference and target tree will be expanded into all possible binary trees. Robinson-foulds distance will be calculated between all tree combinations and the minimum value will be returned. See also, :func:`NodeTree.expand_polytomy`. :returns: (rf, rf_max, common_attrs, names, edges_t1, edges_t2, discarded_edges_t1, discarded_edges_t2)
def robinson_foulds(self, t2, attr_t1="name", attr_t2="name", unrooted_trees=False, expand_polytomies=False, polytomy_size_limit=5, skip_large_polytomies=False, correct_by_polytomy_size=False, min_support_t1=0.0, min_support_t2=0.0): """ .. versionadded: 2.2 Returns the Robinson-Foulds symmetric distance between current tree and a different tree instance. :param t2: reference tree :param name attr_t1: Compare trees using a custom node attribute as a node name. :param name attr_t2: Compare trees using a custom node attribute as a node name in target tree. :param False unrooted_trees: If True, consider trees as unrooted. :param False expand_polytomies: If True, all polytomies in the reference and target tree will be expanded into all possible binary trees. Robinson-foulds distance will be calculated between all tree combinations and the minimum value will be returned. See also, :func:`NodeTree.expand_polytomy`. :returns: (rf, rf_max, common_attrs, names, edges_t1, edges_t2, discarded_edges_t1, discarded_edges_t2) """ ref_t = self target_t = t2 if not unrooted_trees and (len(ref_t.children) > 2 or len(target_t.children) > 2): raise TreeError("Unrooted tree found! You may want to activate the unrooted_trees flag.") if expand_polytomies and correct_by_polytomy_size: raise TreeError("expand_polytomies and correct_by_polytomy_size are mutually exclusive.") if expand_polytomies and unrooted_trees: raise TreeError("expand_polytomies and unrooted_trees arguments cannot be enabled at the same time") attrs_t1 = set([getattr(n, attr_t1) for n in ref_t.iter_leaves() if hasattr(n, attr_t1)]) attrs_t2 = set([getattr(n, attr_t2) for n in target_t.iter_leaves() if hasattr(n, attr_t2)]) common_attrs = attrs_t1 & attrs_t2 # release mem attrs_t1, attrs_t2 = None, None # Check for duplicated items (is it necessary? can we optimize? what's the impact in performance?') size1 = len([True for n in ref_t.iter_leaves() if getattr(n, attr_t1, None) in common_attrs]) size2 = len([True for n in target_t.iter_leaves() if getattr(n, attr_t2, None) in common_attrs]) if size1 > len(common_attrs): raise TreeError('Duplicated items found in source tree') if size2 > len(common_attrs): raise TreeError('Duplicated items found in reference tree') if expand_polytomies: ref_trees = [Tree(nw) for nw in ref_t.expand_polytomies(map_attr=attr_t1, polytomy_size_limit=polytomy_size_limit, skip_large_polytomies=skip_large_polytomies)] target_trees = [Tree(nw) for nw in target_t.expand_polytomies(map_attr=attr_t2, polytomy_size_limit=polytomy_size_limit, skip_large_polytomies=skip_large_polytomies)] attr_t1, attr_t2 = "name", "name" else: ref_trees = [ref_t] target_trees = [target_t] polytomy_correction = 0 if correct_by_polytomy_size: corr1 = sum([0]+[len(n.children) - 2 for n in ref_t.traverse() if len(n.children) > 2]) corr2 = sum([0]+[len(n.children) - 2 for n in target_t.traverse() if len(n.children) > 2]) if corr1 and corr2: raise TreeError("Both trees contain polytomies! Try expand_polytomies=True instead") else: polytomy_correction = max([corr1, corr2]) min_comparison = None for t1 in ref_trees: t1_content = t1.get_cached_content() t1_leaves = t1_content[t1] if unrooted_trees: edges1 = set([ tuple(sorted([tuple(sorted([getattr(n, attr_t1) for n in content if hasattr(n, attr_t1) and getattr(n, attr_t1) in common_attrs])), tuple(sorted([getattr(n, attr_t1) for n in t1_leaves-content if hasattr(n, attr_t1) and getattr(n, attr_t1) in common_attrs]))])) for content in six.itervalues(t1_content)]) edges1.discard(((),())) else: edges1 = set([ tuple(sorted([getattr(n, attr_t1) for n in content if hasattr(n, attr_t1) and getattr(n, attr_t1) in common_attrs])) for content in six.itervalues(t1_content)]) edges1.discard(()) if min_support_t1: support_t1 = dict([ (tuple(sorted([getattr(n, attr_t1) for n in content if hasattr(n, attr_t1) and getattr(n, attr_t1) in common_attrs])), branch.support) for branch, content in six.iteritems(t1_content)]) for t2 in target_trees: t2_content = t2.get_cached_content() t2_leaves = t2_content[t2] if unrooted_trees: edges2 = set([ tuple(sorted([ tuple(sorted([getattr(n, attr_t2) for n in content if hasattr(n, attr_t2) and getattr(n, attr_t2) in common_attrs])), tuple(sorted([getattr(n, attr_t2) for n in t2_leaves-content if hasattr(n, attr_t2) and getattr(n, attr_t2) in common_attrs]))])) for content in six.itervalues(t2_content)]) edges2.discard(((),())) else: edges2 = set([ tuple(sorted([getattr(n, attr_t2) for n in content if hasattr(n, attr_t2) and getattr(n, attr_t2) in common_attrs])) for content in six.itervalues(t2_content)]) edges2.discard(()) if min_support_t2: support_t2 = dict([ (tuple(sorted(([getattr(n, attr_t2) for n in content if hasattr(n, attr_t2) and getattr(n, attr_t2) in common_attrs]))), branch.support) for branch, content in six.iteritems(t2_content)]) # if a support value is passed as a constraint, discard lowly supported branches from the analysis discard_t1, discard_t2 = set(), set() if min_support_t1 and unrooted_trees: discard_t1 = set([p for p in edges1 if support_t1.get(p[0], support_t1.get(p[1], 999999999)) < min_support_t1]) elif min_support_t1: discard_t1 = set([p for p in edges1 if support_t1[p] < min_support_t1]) if min_support_t2 and unrooted_trees: discard_t2 = set([p for p in edges2 if support_t2.get(p[0], support_t2.get(p[1], 999999999)) < min_support_t2]) elif min_support_t2: discard_t2 = set([p for p in edges2 if support_t2[p] < min_support_t2]) #rf = len(edges1 ^ edges2) - (len(discard_t1) + len(discard_t2)) - polytomy_correction # poly_corr is 0 if the flag is not enabled #rf = len((edges1-discard_t1) ^ (edges2-discard_t2)) - polytomy_correction # the two root edges are never counted here, as they are always # present in both trees because of the common attr filters rf = len(((edges1 ^ edges2) - discard_t2) - discard_t1) - polytomy_correction if unrooted_trees: # thought this may work, but it does not, still I don't see why #max_parts = (len(common_attrs)*2) - 6 - len(discard_t1) - len(discard_t2) max_parts = (len([p for p in edges1 - discard_t1 if len(p[0])>1 and len(p[1])>1]) + len([p for p in edges2 - discard_t2 if len(p[0])>1 and len(p[1])>1])) else: # thought this may work, but it does not, still I don't see why #max_parts = (len(common_attrs)*2) - 4 - len(discard_t1) - len(discard_t2) # Otherwise we need to count the actual number of valid # partitions in each tree -2 is to avoid counting the root # partition of the two trees (only needed in rooted trees) max_parts = (len([p for p in edges1 - discard_t1 if len(p)>1]) + len([p for p in edges2 - discard_t2 if len(p)>1])) - 2 # print max_parts if not min_comparison or min_comparison[0] > rf: min_comparison = [rf, max_parts, common_attrs, edges1, edges2, discard_t1, discard_t2] return min_comparison
(self, t2, attr_t1='name', attr_t2='name', unrooted_trees=False, expand_polytomies=False, polytomy_size_limit=5, skip_large_polytomies=False, correct_by_polytomy_size=False, min_support_t1=0.0, min_support_t2=0.0)
720,335
ete3.coretype.tree
search_nodes
Returns the list of nodes matching a given set of conditions. **Example:** :: tree.search_nodes(dist=0.0, name="human")
def search_nodes(self, **conditions): """ Returns the list of nodes matching a given set of conditions. **Example:** :: tree.search_nodes(dist=0.0, name="human") """ matching_nodes = [] for n in self.iter_search_nodes(**conditions): matching_nodes.append(n) return matching_nodes
(self, **conditions)
720,336
ete3.clustering.clustertree
set_distance_function
Sets the distance function used to calculate cluster distances and silouette index. ARGUMENTS: fn: a pointer to python function acepting two arrays (numpy) as arguments. EXAMPLE: # A simple euclidean distance my_dist_fn = lambda x,y: abs(x-y) tree.set_distance_function(my_dist_fn)
def set_distance_function(self, fn): """ Sets the distance function used to calculate cluster distances and silouette index. ARGUMENTS: fn: a pointer to python function acepting two arrays (numpy) as arguments. EXAMPLE: # A simple euclidean distance my_dist_fn = lambda x,y: abs(x-y) tree.set_distance_function(my_dist_fn) """ for n in self.traverse(): n._fdist = fn n._silhouette = None n._intercluster_dist = None n._intracluster_dist = None
(self, fn)
720,337
ete3.coretype.tree
set_outgroup
Sets a descendant node as the outgroup of a tree. This function can be used to root a tree or even an internal node. :argument outgroup: a node instance within the same tree structure that will be used as a basal node.
def set_outgroup(self, outgroup): """ Sets a descendant node as the outgroup of a tree. This function can be used to root a tree or even an internal node. :argument outgroup: a node instance within the same tree structure that will be used as a basal node. """ outgroup = _translate_nodes(self, outgroup) if self == outgroup: raise TreeError("Cannot set myself as outgroup") parent_outgroup = outgroup.up # Detects (sub)tree root n = outgroup while n.up is not self: n = n.up # If outgroup is a child from root, but with more than one # sister nodes, creates a new node to group them self.children.remove(n) if len(self.children) != 1: down_branch_connector = self.__class__() down_branch_connector.dist = 0.0 down_branch_connector.support = n.support for ch in self.get_children(): down_branch_connector.children.append(ch) ch.up = down_branch_connector self.children.remove(ch) else: down_branch_connector = self.children[0] # Connects down branch to myself or to outgroup quien_va_ser_padre = parent_outgroup if quien_va_ser_padre is not self: # Parent-child swapping quien_va_ser_hijo = quien_va_ser_padre.up quien_fue_padre = None buffered_dist = quien_va_ser_padre.dist buffered_support = quien_va_ser_padre.support while quien_va_ser_hijo is not self: quien_va_ser_padre.children.append(quien_va_ser_hijo) quien_va_ser_hijo.children.remove(quien_va_ser_padre) buffered_dist2 = quien_va_ser_hijo.dist buffered_support2 = quien_va_ser_hijo.support quien_va_ser_hijo.dist = buffered_dist quien_va_ser_hijo.support = buffered_support buffered_dist = buffered_dist2 buffered_support = buffered_support2 quien_va_ser_padre.up = quien_fue_padre quien_fue_padre = quien_va_ser_padre quien_va_ser_padre = quien_va_ser_hijo quien_va_ser_hijo = quien_va_ser_padre.up quien_va_ser_padre.children.append(down_branch_connector) down_branch_connector.up = quien_va_ser_padre quien_va_ser_padre.up = quien_fue_padre down_branch_connector.dist += buffered_dist outgroup2 = parent_outgroup parent_outgroup.children.remove(outgroup) outgroup2.dist = 0 else: outgroup2 = down_branch_connector outgroup.up = self outgroup2.up = self # outgroup is always the first children. Some function my # trust on this fact, so do no change this. self.children = [outgroup,outgroup2] middist = (outgroup2.dist + outgroup.dist)/2 outgroup.dist = middist outgroup2.dist = middist outgroup2.support = outgroup.support
(self, outgroup)
720,338
ete3.coretype.tree
set_style
.. versionadded: 2.1 Set 'node_style' as the fixed style for the current node.
def set_style(self, node_style): """ .. versionadded: 2.1 Set 'node_style' as the fixed style for the current node. """ if TREEVIEW: if node_style is None: node_style = NodeStyle() if type(node_style) is NodeStyle: self._img_style = node_style else: raise ValueError("Treeview module is disabled")
(self, node_style)
720,339
ete3.coretype.tree
show
Starts an interactive session to visualize current node structure using provided layout and TreeStyle.
def show(self, layout=None, tree_style=None, name="ETE"): """ Starts an interactive session to visualize current node structure using provided layout and TreeStyle. """ from ..treeview import drawer drawer.show_tree(self, layout=layout, tree_style=tree_style, win_name=name)
(self, layout=None, tree_style=None, name='ETE')
720,340
ete3.coretype.tree
sort_descendants
.. versionadded: 2.1 Sort the branches of a given tree by node names. After the tree is sorted. Note that if duplicated names are present, extra criteria should be added to sort nodes.
def sort_descendants(self, attr="name"): """ .. versionadded: 2.1 Sort the branches of a given tree by node names. After the tree is sorted. Note that if duplicated names are present, extra criteria should be added to sort nodes. """ node2content = self.get_cached_content(store_attr=attr, container_type=list) for n in self.traverse(): if not n.is_leaf(): n.children.sort(key=lambda x: str(sorted(node2content[x])))
(self, attr='name')
720,341
ete3.coretype.tree
standardize
.. versionadded:: 2.3 process current tree structure to produce a standardized topology: nodes with only one child are removed and multifurcations are automatically resolved.
def standardize(self, delete_orphan=True, preserve_branch_length=True): """ .. versionadded:: 2.3 process current tree structure to produce a standardized topology: nodes with only one child are removed and multifurcations are automatically resolved. """ self.resolve_polytomy() for n in self.get_descendants(): if len(n.children) == 1: n.delete(prevent_nondicotomic=True, preserve_branch_length=preserve_branch_length)
(self, delete_orphan=True, preserve_branch_length=True)
720,342
ete3.coretype.tree
swap_children
Swaps current children order.
def swap_children(self): """ Swaps current children order. """ if len(self.children)>1: self.children.reverse()
(self)
720,343
ete3.coretype.tree
traverse
Returns an iterator to traverse the tree structure under this node. :argument "levelorder" strategy: set the way in which tree will be traversed. Possible values are: "preorder" (first parent and then children) 'postorder' (first children and the parent) and "levelorder" (nodes are visited in order from root to leaves) :argument None is_leaf_fn: If supplied, ``is_leaf_fn`` function will be used to interrogate nodes about if they are terminal or internal. ``is_leaf_fn`` function should receive a node instance as first argument and return True or False. Use this argument to traverse a tree by dynamically collapsing internal nodes matching ``is_leaf_fn``.
def traverse(self, strategy="levelorder", is_leaf_fn=None): """ Returns an iterator to traverse the tree structure under this node. :argument "levelorder" strategy: set the way in which tree will be traversed. Possible values are: "preorder" (first parent and then children) 'postorder' (first children and the parent) and "levelorder" (nodes are visited in order from root to leaves) :argument None is_leaf_fn: If supplied, ``is_leaf_fn`` function will be used to interrogate nodes about if they are terminal or internal. ``is_leaf_fn`` function should receive a node instance as first argument and return True or False. Use this argument to traverse a tree by dynamically collapsing internal nodes matching ``is_leaf_fn``. """ if strategy=="preorder": return self._iter_descendants_preorder(is_leaf_fn=is_leaf_fn) elif strategy=="levelorder": return self._iter_descendants_levelorder(is_leaf_fn=is_leaf_fn) elif strategy=="postorder": return self._iter_descendants_postorder(is_leaf_fn=is_leaf_fn)
(self, strategy='levelorder', is_leaf_fn=None)
720,344
ete3.coretype.tree
unroot
Unroots current node. This function is expected to be used on the absolute tree root node, but it can be also be applied to any other internal node. It will convert a split into a multifurcation. :argument "legacy" mode: The value can be "legacy" or "keep". If value is "keep", then function keeps the distance between the leaves by adding the distance associated to the deleted edge to the remaining edge. In the other case the distance value of the deleted edge is dropped
def unroot(self, mode='legacy'): """ Unroots current node. This function is expected to be used on the absolute tree root node, but it can be also be applied to any other internal node. It will convert a split into a multifurcation. :argument "legacy" mode: The value can be "legacy" or "keep". If value is "keep", then function keeps the distance between the leaves by adding the distance associated to the deleted edge to the remaining edge. In the other case the distance value of the deleted edge is dropped """ if not (mode == 'legacy' or mode == 'keep'): raise ValueError("The value of the mode parameter must be 'legacy' or 'keep'") if len(self.children)==2: if not self.children[0].is_leaf(): if mode == "keep": self.children[1].dist+=self.children[0].dist self.children[0].delete() elif not self.children[1].is_leaf(): if mode == "keep": self.children[0].dist+=self.children[1].dist self.children[1].delete() else: raise TreeError("Cannot unroot a tree with only two leaves")
(self, mode='legacy')