index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
720,345
ete3.coretype.tree
write
Returns the newick representation of current node. Several arguments control the way in which extra data is shown for every node: :argument features: a list of feature names to be exported using the Extended Newick Format (i.e. features=["name", "dist"]). Use an empty list to export all available features in each node (features=[]) :argument outfile: writes the output to a given file :argument format: defines the newick standard used to encode the tree. See tutorial for details. :argument False format_root_node: If True, it allows features and branch information from root node to be exported as a part of the newick text string. For newick compatibility reasons, this is False by default. :argument is_leaf_fn: See :func:`TreeNode.traverse` for documentation. **Example:** :: t.write(features=["species","name"], format=1)
def write(self, features=None, outfile=None, format=0, is_leaf_fn=None, format_root_node=False, dist_formatter=None, support_formatter=None, name_formatter=None, quoted_node_names=False): """ Returns the newick representation of current node. Several arguments control the way in which extra data is shown for every node: :argument features: a list of feature names to be exported using the Extended Newick Format (i.e. features=["name", "dist"]). Use an empty list to export all available features in each node (features=[]) :argument outfile: writes the output to a given file :argument format: defines the newick standard used to encode the tree. See tutorial for details. :argument False format_root_node: If True, it allows features and branch information from root node to be exported as a part of the newick text string. For newick compatibility reasons, this is False by default. :argument is_leaf_fn: See :func:`TreeNode.traverse` for documentation. **Example:** :: t.write(features=["species","name"], format=1) """ nw = write_newick(self, features=features, format=format, is_leaf_fn=is_leaf_fn, format_root_node=format_root_node, dist_formatter=dist_formatter, support_formatter=support_formatter, name_formatter=name_formatter, quoted_names=quoted_node_names) if outfile is not None: with open(outfile, "w") as OUT: OUT.write(nw) else: return nw
(self, features=None, outfile=None, format=0, is_leaf_fn=None, format_root_node=False, dist_formatter=None, support_formatter=None, name_formatter=None, quoted_node_names=False)
720,453
ete3.evol.evoltree
EvolNode
Re-implementation of the standart TreeNode instance. It adds attributes and methods to work with phylogentic trees. :argument newick: path to tree in newick format, can also be a string :argument alignment: path to alignment, can also be a string. :argument fasta alg_format: alignment format. :argument sp_naming_function: function to infer species name. :argument format: type of newick format :argument binpath: path to binaries, in case codeml or SLR are not in global path.
class EvolNode(PhyloNode): """ Re-implementation of the standart TreeNode instance. It adds attributes and methods to work with phylogentic trees. :argument newick: path to tree in newick format, can also be a string :argument alignment: path to alignment, can also be a string. :argument fasta alg_format: alignment format. :argument sp_naming_function: function to infer species name. :argument format: type of newick format :argument binpath: path to binaries, in case codeml or SLR are not in global path. """ def __init__(self, newick=None, alignment=None, alg_format="fasta", sp_naming_function=_parse_species, format=0, binpath='', **kwargs): ''' freebranch: path to find codeml output of freebranch model. ''' # _update names? self.workdir = '/tmp/ete3-tmp/' if not binpath: ete3_path = which("ete3") binpath = os.path.split(ete3_path)[0] self.execpath = binpath self._models = {} self.__gui_mark_mode = False PhyloNode.__init__(self, newick=newick, format=format, sp_naming_function=sp_naming_function, **kwargs) if newick: self._label_as_paml() # initialize node marks self.mark_tree([]) def _set_mark_mode(self, val): self.__gui_mark_mode = val def _is_mark_mode(self): return self.__gui_mark_mode def _label_internal_nodes(self, nid=None): """ nid needs to be a list in order to keep count through recursivity """ for node in self.get_children(): if node.is_leaf(): continue nid[0] += 1 node.add_feature('node_id', nid[0]) node._label_internal_nodes(nid) def _label_as_paml(self): ''' to label tree as paml, nearly walking man over the tree algorithm WARNING: sorted names in same order that sequence WARNING: depends on tree topology conformation, not the same after a swap activates the function get_descendants_by_pamlid ''' nid = 1 # check we do not have dupplicated names in tree if (len(self)) != len(set(self.get_leaf_names())): duplis = [n for n in self.get_leaf_names( ) if self.get_leaf_names().count(n) > 1] raise Exception('EvolTree require unique names for leaves', duplis) # put ids for leaf in sorted(self, key=lambda x: x.name): leaf.add_feature('node_id', nid) nid += 1 self.add_feature('node_id', nid) self._label_internal_nodes([nid]) def get_descendant_by_node_id(self, idname): ''' returns node list corresponding to a given idname ''' try: for n in self.iter_descendants(): if n.node_id == idname: return n if self.node_id == idname: return self except AttributeError: warn('Should be first labelled as paml ' + '(automatically done when alignemnt is loaded)') def _write_algn(self, fullpath): """ to write algn in paml format """ seq_group = SeqGroup() for n in self: seq_group.id2seq[n.node_id] = n.nt_sequence seq_group.id2name[n.node_id] = n.name seq_group.name2id[n.name] = n.node_id seq_group.write(outfile=fullpath, format='paml') def run_model(self, model_name, ctrl_string='', keep=True, **kwargs): ''' To compute evolutionnary models. e.g.: b_free_lala.vs.lele, will launch one free branch model, and store it in "WORK_DIR/b_free_lala.vs.lele" directory WARNING: this functionality needs to create a working directory in "rep" WARNING: you need to have codeml and/or SLR in your path The models available are: =========== ============================= ================== Model name Description Model kind =========== ============================= ==================\n%s =========== ============================= ==================\n **Note that M1 and M2 models are making reference to the new versions of these models, with continuous omega rates (namely M1a and M2a in the PAML user guide).** :argument model_name: a string like "model-name[.some-secondary-name]" (e.g.: "fb.my_first_try", or just "fb") * model-name is compulsory, is the name of the model (see table above for the full list) * the second part is accessory, it is to avoid over-writing models with the same name. :argument ctrl_string: list of parameters that can be used as control file. :argument True keep: links the model to the tree (equivalen of running `EVOL_TREE.link_to_evol_model(MODEL_NAME)`) :argument kwargs: extra parameters should be one of: %s. ''' from subprocess import Popen, PIPE model_obj = Model(model_name, self, **kwargs) fullpath = os.path.join(self.workdir, model_obj.name) os.system("mkdir -p %s" % fullpath) # write tree file self._write_algn(fullpath + '/algn') if model_obj.properties['exec'] == 'Slr': self.write(outfile=fullpath+'/tree', format=(11)) else: self.write(outfile=fullpath+'/tree', format=(10 if model_obj.properties['allow_mark'] else 9)) # write algn file # MODEL MODEL MDE if ctrl_string == '': ctrl_string = model_obj.get_ctrl_string(fullpath+'/tmp.ctl') else: open(fullpath+'/tmp.ctl', 'w').write(ctrl_string) hlddir = os.getcwd() os.chdir(fullpath) bin_ = os.path.join(self.execpath, model_obj.properties['exec']) try: proc = Popen([bin_, 'tmp.ctl'], stdout=PIPE, stdin=PIPE, stderr=PIPE) except OSError: raise Exception(('ERROR: {} not installed, ' + 'or wrong path to binary\n').format(bin_)) # send \n via stdin in case codeml/slr asks something (note on py3, stdin needs bytes) run, err = proc.communicate(b'\n') run = run.decode(sys.stdout.encoding) os.chdir(hlddir) if err: warn("ERROR: inside codeml!!\n" + err) return 1 if keep: setattr(model_obj, 'run', run) self.link_to_evol_model(os.path.join(fullpath, 'out'), model_obj) sep = '\n' run_model.__doc__ = run_model.__doc__ % \ (sep.join([' %-8s %-27s %-15s ' % ('%s' % (x), AVAIL[x]['evol'], AVAIL[x]['typ']) for x in sorted(sorted(AVAIL.keys()), key=lambda x: AVAIL[x]['typ'], reverse=True)]), ', '.join(list(PARAMS.keys()))) # def test_codon_model(self): # for c_frq in range(4): # self.run_model('M0.model_test-'+str(c_frq), CodonFreq=c_frq) # if self.get_most_likely('M0.model_test-1', 'M0.model_test-0') > 0.05: # # self.get_most_likely('M0.model_test-2', 'M0.model_test-0') # self.get_most_likely('M0.model_test-3', 'M0.model_test-0') # self.get_most_likely('M0.model_test-2', 'M0.model_test-1') # self.get_most_likely('M0.model_test-3', 'M0.model_test-1') # self.get_most_likely('M0.model_test-3', 'M0.model_test-2') def link_to_alignment(self, alignment, alg_format="paml", nucleotides=True, **kwargs): ''' same function as for phyloTree, but translate sequences if nucleotides nucleotidic sequence is kept under node.nt_sequence :argument alignment: path to alignment or string :argument alg_format: one of fasta phylip or paml :argument True alignment: set to False in case we want to keep it untranslated ''' super(EvolTree, self).link_to_alignment(alignment, alg_format=alg_format, **kwargs) check_len = 0 for leaf in self.iter_leaves(): seq_len = len(str(leaf.sequence)) if check_len and check_len != seq_len: warn('WARNING: sequences with different lengths found!') check_len = seq_len leaf.nt_sequence = str(leaf.sequence) if nucleotides: leaf.sequence = translate(leaf.nt_sequence) def show(self, layout=None, tree_style=None, histfaces=None): ''' call super show of PhyloTree histface should be a list of models to be displayes as histfaces :argument layout: a layout function :argument None tree_style: tree_style object :argument Nonehistface: an histogram face function. This is only to plot selective pressure among sites ''' if TREEVIEW: if not tree_style: ts = TreeStyle() else: ts = tree_style if histfaces: for hist in histfaces: try: mdl = self.get_evol_model(hist) except AttributeError: warn('model %s not computed' % (hist)) if not 'histface' in mdl.properties: if len(histfaces) > 1 and histfaces.index(hist) != 0: mdl.set_histface(up=False) else: mdl.set_histface() if mdl.properties['histface'].up: ts.aligned_header.add_face( mdl.properties['histface'], 1) else: ts.aligned_foot.add_face( mdl.properties['histface'], 1) super(EvolTree, self).show(layout=layout, tree_style=ts) else: raise ValueError("Treeview module is disabled") def render(self, file_name, layout=None, w=None, h=None, tree_style=None, header=None, histfaces=None): ''' call super show adding up and down faces :argument layout: a layout function :argument None tree_style: tree_style object :argument Nonehistface: an histogram face function. This is only to plot selective pressure among sites ''' if TREEVIEW: if not tree_style: ts = TreeStyle() else: ts = tree_style if histfaces: for hist in histfaces: try: mdl = self.get_evol_model(hist) except AttributeError: warn('model %s not computed' % (hist)) if not 'histface' in mdl.properties: if len(histfaces) > 1 and histfaces.index(hist) != 0: mdl.set_histface(up=False) else: mdl.set_histface() if mdl.properties['histface'].up: ts.aligned_header.add_face( mdl.properties['histface'], 1) else: ts.aligned_foot.add_face( mdl.properties['histface'], 1) return super(EvolTree, self).render(file_name, layout=layout, tree_style=ts, w=w, h=h) else: raise ValueError("Treeview module is disabled") def mark_tree(self, node_ids, verbose=False, **kargs): ''' function to mark branches on tree in order that paml could interpret it. takes a "marks" argument that should be a list of #1,#1,#2 e.g.: :: t=Tree.mark_tree([2,3], marks=["#1","#2"]) :argument node_ids: list of node ids (have a look to node.node_id) :argument False verbose: warn if marks do not correspond to codeml standard :argument kargs: mainly for the marks key-word which needs a list of marks (marks=['#1', '#2']) ''' from re import match node_ids = list(map(int, node_ids)) if 'marks' in kargs: marks = list(kargs['marks']) else: marks = ['#1']*len(node_ids) for node in self.traverse(): if not hasattr(node, 'node_id'): continue if node.node_id in node_ids: if ('.' in marks[node_ids.index(node.node_id)] or match('#[0-9]+', marks[node_ids.index(node.node_id)]) is None) and verbose: warn('WARNING: marks should be "#" sign directly ' + 'followed by integer\n' + self.mark_tree.__doc__) node.add_feature( 'mark', ' '+marks[node_ids.index(node.node_id)]) elif not 'mark' in node.features: node.add_feature('mark', '') def link_to_evol_model(self, path, model): ''' link EvolTree to evolutionary model * free-branch model ("fb") will append evol values to tree * Site models (M0, M1, M2, M7, M8) will give evol values by site and likelihood :argument path: path to outfile containing model computation result :argument model: either the name of a model, or a Model object (usually empty) ''' if isinstance(model, str): model = Model(model, self, path) else: model._load(path) # new entry in _models dict while model.name in self._models: model.name = model.name.split('__')[0] + str( (int(model.name.split('__')[1]) + 1) if '__' in model.name else 0) self._models[model.name] = model if not os.path.isfile(path): warn("ERROR: not a file: " + path) return 1 if len(self._models) == 1 and model.properties['exec'] == 'codeml': self.change_dist_to_evol('bL', model, fill=True) def get_evol_model(self, modelname): ''' returns one precomputed model :argument modelname: string of the name of a model object stored :returns: Model object ''' try: return self._models[modelname] except KeyError: Exception("ERROR: Model %s not found." % (modelname)) def write(self, features=None, outfile=None, format=10): """ Inherits from Tree but adds the tenth format, that allows to display marks for CodeML. TODO: internal writting format need to be something like 0 """ from re import sub if int(format) == 11: nwk = ' %s 1\n' % (len(self)) nwk += sub('\[&&NHX:mark=([ #0-9.]*)\]', r'\1', write_newick(self, features=['mark'], format=9)) elif int(format) == 10: nwk = sub('\[&&NHX:mark=([ #0-9.]*)\]', r'\1', write_newick(self, features=['mark'], format=9)) else: nwk = write_newick(self, features=features, format=format) if outfile is not None: open(outfile, "w").write(nwk) return nwk else: return nwk write.__doc__ += super(PhyloNode, PhyloNode()).write.__doc__.replace( 'argument format', 'argument 10 format') def get_most_likely(self, altn, null): ''' Returns pvalue of LRT between alternative model and null model. usual comparison are: ============ ======= =========================================== Alternative Null Test ============ ======= =========================================== M2 M1 PS on sites (M2 prone to miss some sites) (Yang 2000). M3 M0 test of variability among sites M8 M7 PS on sites (Yang 2000) M8 M8a RX on sites?? think so.... bsA bsA1 PS on sites on specific branch (Zhang 2005) bsA M1 RX on sites on specific branch (Zhang 2005) bsC M1 different omegas on clades branches sites ref: Yang Nielsen 2002 bsD M3 different omegas on clades branches sites (Yang Nielsen 2002, Bielawski 2004) b_free b_neut foreground branch not neutral (w != 1) - RX if P<0.05 (means that w on frg=1) - PS if P>0.05 and wfrg>1 - CN if P>0.05 and wfrg>1 (Yang Nielsen 2002) b_free M0 different ratio on branches (Yang Nielsen 2002) ============ ======= =========================================== **Note that M1 and M2 models are making reference to the new versions of these models, with continuous omega rates (namely M1a and M2a in the PAML user guide).** :argument altn: model with higher number of parameters (np) :argument null: model with lower number of parameters (np) ''' altn = self.get_evol_model(altn) null = self.get_evol_model(null) if null.np > altn.np: warn("first model should be the alternative, change the order") return 1.0 try: if hasattr(altn, 'lnL') and hasattr(null, 'lnL'): if null.lnL - altn.lnL < 0: return chi_high(2 * abs(altn.lnL - null.lnL), float(altn.np - null.np)) else: warn("\nWARNING: Likelihood of the alternative model is " "smaller than null's (%f - %f = %f)" % ( null.lnL, altn.lnL, null.lnL - altn.lnL) + "\nLarge differences (> 0.1) may indicate mistaken " "assigantion of null and alternative models") return 1 except KeyError: warn("at least one of %s or %s, was not calculated" % (altn.name, null.name)) exit(self.get_most_likely.__doc__) def change_dist_to_evol(self, evol, model, fill=False): ''' change dist/branch length of the tree to a given evolutionary variable (dN, dS, w or bL), default is bL. :argument evol: evolutionary variable :argument model: Model object from which to retrieve evolutionary variables :argument False fill: do not affects only dist parameter, each node will be annotated with all evolutionary variables (nodel.dN, node.w...). ''' # branch-site outfiles do not give specific branch info if not model.branches: return for node in self.iter_descendants(): if not evol in model.branches[node.node_id]: continue node.dist = model.branches[node.node_id][evol] if fill: for e in ['dN', 'dS', 'w', 'bL']: node.add_feature(e, model.branches[node.node_id][e])
(newick=None, alignment=None, alg_format='fasta', sp_naming_function=<function _parse_species at 0x7ff39bbe70a0>, format=0, binpath='', **kwargs)
720,454
ete3.phylo.phylotree
__get_speciation_trees_recursive
experimental and testing
def __get_speciation_trees_recursive(self): """ experimental and testing """ t = self.copy() if autodetect_duplications: dups = 0 #n2content, n2species = t.get_node2species() n2content = t.get_cached_content() n2species = t.get_cached_content(store_attr="species") #print "Detecting dups" for node in n2content: sp_subtotal = sum([len(n2species[_ch]) for _ch in node.children]) if len(n2species[node]) > 1 and len(n2species[node]) != sp_subtotal: node.add_features(evoltype="D") dups += 1 elif node.is_leaf(): node._leaf = True #print dups else: for node in t.iter_leaves(): node._leaf = True subtrees = _get_subtrees_recursive(t) return len(subtrees), 0, subtrees
(self)
720,459
ete3.evol.evoltree
__init__
freebranch: path to find codeml output of freebranch model.
def __init__(self, newick=None, alignment=None, alg_format="fasta", sp_naming_function=_parse_species, format=0, binpath='', **kwargs): ''' freebranch: path to find codeml output of freebranch model. ''' # _update names? self.workdir = '/tmp/ete3-tmp/' if not binpath: ete3_path = which("ete3") binpath = os.path.split(ete3_path)[0] self.execpath = binpath self._models = {} self.__gui_mark_mode = False PhyloNode.__init__(self, newick=newick, format=format, sp_naming_function=sp_naming_function, **kwargs) if newick: self._label_as_paml() # initialize node marks self.mark_tree([])
(self, newick=None, alignment=None, alg_format='fasta', sp_naming_function=<function _parse_species at 0x7ff39bbe70a0>, format=0, binpath='', **kwargs)
720,463
ete3.phylo.phylotree
__repr__
null
def __repr__(self): return "PhyloTree node '%s' (%s)" %(self.name, hex(self.__hash__()))
(self)
720,471
ete3.phylo.phylotree
_get_species
null
def _get_species(self): if self._speciesFunction: try: return self._speciesFunction(self.name) except: return self._speciesFunction(self) else: return self._species
(self)
720,475
ete3.evol.evoltree
_is_mark_mode
null
def _is_mark_mode(self): return self.__gui_mark_mode
(self)
720,479
ete3.evol.evoltree
_label_as_paml
to label tree as paml, nearly walking man over the tree algorithm WARNING: sorted names in same order that sequence WARNING: depends on tree topology conformation, not the same after a swap activates the function get_descendants_by_pamlid
def _label_as_paml(self): ''' to label tree as paml, nearly walking man over the tree algorithm WARNING: sorted names in same order that sequence WARNING: depends on tree topology conformation, not the same after a swap activates the function get_descendants_by_pamlid ''' nid = 1 # check we do not have dupplicated names in tree if (len(self)) != len(set(self.get_leaf_names())): duplis = [n for n in self.get_leaf_names( ) if self.get_leaf_names().count(n) > 1] raise Exception('EvolTree require unique names for leaves', duplis) # put ids for leaf in sorted(self, key=lambda x: x.name): leaf.add_feature('node_id', nid) nid += 1 self.add_feature('node_id', nid) self._label_internal_nodes([nid])
(self)
720,480
ete3.evol.evoltree
_label_internal_nodes
nid needs to be a list in order to keep count through recursivity
def _label_internal_nodes(self, nid=None): """ nid needs to be a list in order to keep count through recursivity """ for node in self.get_children(): if node.is_leaf(): continue nid[0] += 1 node.add_feature('node_id', nid[0]) node._label_internal_nodes(nid)
(self, nid=None)
720,484
ete3.evol.evoltree
_set_mark_mode
null
def _set_mark_mode(self, val): self.__gui_mark_mode = val
(self, val)
720,485
ete3.phylo.phylotree
_set_species
null
def _set_species(self, value): if self._speciesFunction: pass else: self._species = value
(self, value)
720,489
ete3.evol.evoltree
_write_algn
to write algn in paml format
def _write_algn(self, fullpath): """ to write algn in paml format """ seq_group = SeqGroup() for n in self: seq_group.id2seq[n.node_id] = n.nt_sequence seq_group.id2name[n.node_id] = n.name seq_group.name2id[n.name] = n.node_id seq_group.write(outfile=fullpath, format='paml')
(self, fullpath)
720,495
ete3.phylo.phylotree
annotate_ncbi_taxa
Add NCBI taxonomy annotation to all descendant nodes. Leaf nodes are expected to contain a feature (name, by default) encoding a valid taxid number. All descendant nodes (including internal nodes) are annotated with the following new features: `Node.spname`: scientific spcies name as encoded in the NCBI taxonomy database `Node.named_lineage`: the NCBI lineage track using scientific names `Node.taxid`: NCBI taxid number `Node.lineage`: same as named_lineage but using taxid codes. Note that for internal nodes, NCBI information will refer to the first common lineage of the grouped species. :param name taxid_attr: the name of the feature that should be used to access the taxid number associated to each node. :param None tax2name: A dictionary where keys are taxid numbers and values are their translation into NCBI scientific name. Its use is optional and allows to avoid database queries when annotating many trees containing the same set of taxids. :param None tax2track: A dictionary where keys are taxid numbers and values are their translation into NCBI lineage tracks (taxids). Its use is optional and allows to avoid database queries when annotating many trees containing the same set of taxids. :param None tax2rank: A dictionary where keys are taxid numbers and values are their translation into NCBI rank name. Its use is optional and allows to avoid database queries when annotating many trees containing the same set of taxids. :param None dbfile : If provided, the provided file will be used as a local copy of the NCBI taxonomy database. :returns: tax2name (a dictionary translating taxid numbers into scientific name), tax2lineage (a dictionary translating taxid numbers into their corresponding NCBI lineage track) and tax2rank (a dictionary translating taxid numbers into rank names).
def annotate_ncbi_taxa(self, taxid_attr='species', tax2name=None, tax2track=None, tax2rank=None, dbfile=None): """Add NCBI taxonomy annotation to all descendant nodes. Leaf nodes are expected to contain a feature (name, by default) encoding a valid taxid number. All descendant nodes (including internal nodes) are annotated with the following new features: `Node.spname`: scientific spcies name as encoded in the NCBI taxonomy database `Node.named_lineage`: the NCBI lineage track using scientific names `Node.taxid`: NCBI taxid number `Node.lineage`: same as named_lineage but using taxid codes. Note that for internal nodes, NCBI information will refer to the first common lineage of the grouped species. :param name taxid_attr: the name of the feature that should be used to access the taxid number associated to each node. :param None tax2name: A dictionary where keys are taxid numbers and values are their translation into NCBI scientific name. Its use is optional and allows to avoid database queries when annotating many trees containing the same set of taxids. :param None tax2track: A dictionary where keys are taxid numbers and values are their translation into NCBI lineage tracks (taxids). Its use is optional and allows to avoid database queries when annotating many trees containing the same set of taxids. :param None tax2rank: A dictionary where keys are taxid numbers and values are their translation into NCBI rank name. Its use is optional and allows to avoid database queries when annotating many trees containing the same set of taxids. :param None dbfile : If provided, the provided file will be used as a local copy of the NCBI taxonomy database. :returns: tax2name (a dictionary translating taxid numbers into scientific name), tax2lineage (a dictionary translating taxid numbers into their corresponding NCBI lineage track) and tax2rank (a dictionary translating taxid numbers into rank names). """ ncbi = NCBITaxa(dbfile=dbfile) return ncbi.annotate_tree(self, taxid_attr=taxid_attr, tax2name=tax2name, tax2track=tax2track, tax2rank=tax2rank)
(self, taxid_attr='species', tax2name=None, tax2track=None, tax2rank=None, dbfile=None)
720,496
ete3.evol.evoltree
change_dist_to_evol
change dist/branch length of the tree to a given evolutionary variable (dN, dS, w or bL), default is bL. :argument evol: evolutionary variable :argument model: Model object from which to retrieve evolutionary variables :argument False fill: do not affects only dist parameter, each node will be annotated with all evolutionary variables (nodel.dN, node.w...).
def change_dist_to_evol(self, evol, model, fill=False): ''' change dist/branch length of the tree to a given evolutionary variable (dN, dS, w or bL), default is bL. :argument evol: evolutionary variable :argument model: Model object from which to retrieve evolutionary variables :argument False fill: do not affects only dist parameter, each node will be annotated with all evolutionary variables (nodel.dN, node.w...). ''' # branch-site outfiles do not give specific branch info if not model.branches: return for node in self.iter_descendants(): if not evol in model.branches[node.node_id]: continue node.dist = model.branches[node.node_id][evol] if fill: for e in ['dN', 'dS', 'w', 'bL']: node.add_feature(e, model.branches[node.node_id][e])
(self, evol, model, fill=False)
720,498
ete3.phylo.phylotree
collapse_lineage_specific_expansions
Converts lineage specific expansion nodes into a single tip node (randomly chosen from tips within the expansion). :param None species: If supplied, only expansions matching the species criteria will be pruned. When None, all expansions within the tree will be processed.
def collapse_lineage_specific_expansions(self, species=None, return_copy=True): """ Converts lineage specific expansion nodes into a single tip node (randomly chosen from tips within the expansion). :param None species: If supplied, only expansions matching the species criteria will be pruned. When None, all expansions within the tree will be processed. """ if species and isinstance(species, (list, tuple)): species = set(species) elif species and (not isinstance(species, (set, frozenset))): raise TypeError("species argument should be a set (preferred), list or tuple") prunned = self.copy("deepcopy") if return_copy else self n2sp = prunned.get_cached_content(store_attr="species") n2leaves = prunned.get_cached_content() is_expansion = lambda n: (len(n2sp[n])==1 and len(n2leaves[n])>1 and (species is None or species & n2sp[n])) for n in prunned.get_leaves(is_leaf_fn=is_expansion): repre = list(n2leaves[n])[0] repre.detach() if n is not prunned: n.up.add_child(repre) n.detach() else: return repre return prunned
(self, species=None, return_copy=True)
720,510
ete3.phylo.phylotree
get_age
Implements the phylostratigrafic method described in: Huerta-Cepas, J., & Gabaldon, T. (2011). Assigning duplication events to relative temporal scales in genome-wide studies. Bioinformatics, 27(1), 38-45.
def get_age(self, species2age): """ Implements the phylostratigrafic method described in: Huerta-Cepas, J., & Gabaldon, T. (2011). Assigning duplication events to relative temporal scales in genome-wide studies. Bioinformatics, 27(1), 38-45. """ return max([species2age[sp] for sp in self.get_species()])
(self, species2age)
720,511
ete3.phylo.phylotree
get_age_balanced_outgroup
.. versionadded:: 2.2 Returns the node better balance current tree structure according to the topological age of the different leaves and internal node sizes. :param species2age: A dictionary translating from leaf names into a topological age. .. warning: This is currently an experimental method!!
def get_age_balanced_outgroup(self, species2age): """ .. versionadded:: 2.2 Returns the node better balance current tree structure according to the topological age of the different leaves and internal node sizes. :param species2age: A dictionary translating from leaf names into a topological age. .. warning: This is currently an experimental method!! """ root = self all_seqs = set(self.get_leaf_names()) outgroup_dist = 0 best_balance = max(species2age.values()) outgroup_node = self outgroup_size = 0 for leaf in root.iter_descendants(): leaf_seqs = set(leaf.get_leaf_names()) size = len(leaf_seqs) leaf_species =[self._speciesFunction(s) for s in leaf_seqs] out_species = [self._speciesFunction(s) for s in all_seqs-leaf_seqs] leaf_age_min = min([species2age[sp] for sp in leaf_species]) out_age_min = min([species2age[sp] for sp in out_species]) leaf_age_max = max([species2age[sp] for sp in leaf_species]) out_age_max = max([species2age[sp] for sp in out_species]) leaf_age = leaf_age_max - leaf_age_min out_age = out_age_max - out_age_min age_inbalance = abs(out_age - leaf_age) # DEBUG ONLY # leaf.add_features(age_inbalance = age_inbalance, age=leaf_age) update = False if age_inbalance < best_balance: update = True elif age_inbalance == best_balance: if size > outgroup_size: update = True elif size == outgroup_size: dist = self.get_distance(leaf) outgroup_dist = self.get_distance(outgroup_node) if dist > outgroup_dist: update = True if update: best_balance = age_inbalance outgroup_node = leaf outgroup_size = size return outgroup_node
(self, species2age)
720,518
ete3.evol.evoltree
get_descendant_by_node_id
returns node list corresponding to a given idname
def get_descendant_by_node_id(self, idname): ''' returns node list corresponding to a given idname ''' try: for n in self.iter_descendants(): if n.node_id == idname: return n if self.node_id == idname: return self except AttributeError: warn('Should be first labelled as paml ' + '(automatically done when alignemnt is loaded)')
(self, idname)
720,519
ete3.phylo.phylotree
get_descendant_evol_events
Returns a list of **all** duplication and speciation events detected after this node. Nodes are assumed to be duplications when a species overlap is found between its child linages. Method is described more detail in: "The Human Phylome." Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol. 2007;8(6):R109.
def get_descendant_evol_events(self, sos_thr=0.0): """ Returns a list of **all** duplication and speciation events detected after this node. Nodes are assumed to be duplications when a species overlap is found between its child linages. Method is described more detail in: "The Human Phylome." Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol. 2007;8(6):R109. """ return spoverlap.get_evol_events_from_root(self, sos_thr=sos_thr)
(self, sos_thr=0.0)
720,523
ete3.evol.evoltree
get_evol_model
returns one precomputed model :argument modelname: string of the name of a model object stored :returns: Model object
def get_evol_model(self, modelname): ''' returns one precomputed model :argument modelname: string of the name of a model object stored :returns: Model object ''' try: return self._models[modelname] except KeyError: Exception("ERROR: Model %s not found." % (modelname))
(self, modelname)
720,526
ete3.phylo.phylotree
get_farthest_oldest_leaf
Returns the farthest oldest leaf to the current one. It requires an species2age dictionary with the age estimation for all species. :argument None is_leaf_fn: A pointer to a function that receives a node instance as unique argument and returns True or False. It can be used to dynamically collapse nodes, so they are seen as leaves.
def get_farthest_oldest_leaf(self, species2age, is_leaf_fn=None): """ Returns the farthest oldest leaf to the current one. It requires an species2age dictionary with the age estimation for all species. :argument None is_leaf_fn: A pointer to a function that receives a node instance as unique argument and returns True or False. It can be used to dynamically collapse nodes, so they are seen as leaves. """ root = self.get_tree_root() outgroup_dist = 0 outgroup_node = self outgroup_age = 0 # self.get_age(species2age) for leaf in root.iter_leaves(is_leaf_fn=is_leaf_fn): if leaf.get_age(species2age) > outgroup_age: outgroup_dist = leaf.get_distance(self) outgroup_node = leaf outgroup_age = species2age[leaf.get_species().pop()] elif leaf.get_age(species2age) == outgroup_age: dist = leaf.get_distance(self) if dist>outgroup_dist: outgroup_dist = leaf.get_distance(self) outgroup_node = leaf outgroup_age = species2age[leaf.get_species().pop()] return outgroup_node
(self, species2age, is_leaf_fn=None)
720,527
ete3.phylo.phylotree
get_farthest_oldest_node
.. versionadded:: 2.1 Returns the farthest oldest node (leaf or internal). The difference with get_farthest_oldest_leaf() is that in this function internal nodes grouping seqs from the same species are collapsed.
def get_farthest_oldest_node(self, species2age): """ .. versionadded:: 2.1 Returns the farthest oldest node (leaf or internal). The difference with get_farthest_oldest_leaf() is that in this function internal nodes grouping seqs from the same species are collapsed. """ # I use a custom is_leaf() function to collapse nodes groups # seqs from the same species is_leaf = lambda node: len(node.get_species())==1 return self.get_farthest_oldest_leaf(species2age, is_leaf_fn=is_leaf)
(self, species2age)
720,533
ete3.evol.evoltree
get_most_likely
Returns pvalue of LRT between alternative model and null model. usual comparison are: ============ ======= =========================================== Alternative Null Test ============ ======= =========================================== M2 M1 PS on sites (M2 prone to miss some sites) (Yang 2000). M3 M0 test of variability among sites M8 M7 PS on sites (Yang 2000) M8 M8a RX on sites?? think so.... bsA bsA1 PS on sites on specific branch (Zhang 2005) bsA M1 RX on sites on specific branch (Zhang 2005) bsC M1 different omegas on clades branches sites ref: Yang Nielsen 2002 bsD M3 different omegas on clades branches sites (Yang Nielsen 2002, Bielawski 2004) b_free b_neut foreground branch not neutral (w != 1) - RX if P<0.05 (means that w on frg=1) - PS if P>0.05 and wfrg>1 - CN if P>0.05 and wfrg>1 (Yang Nielsen 2002) b_free M0 different ratio on branches (Yang Nielsen 2002) ============ ======= =========================================== **Note that M1 and M2 models are making reference to the new versions of these models, with continuous omega rates (namely M1a and M2a in the PAML user guide).** :argument altn: model with higher number of parameters (np) :argument null: model with lower number of parameters (np)
def get_most_likely(self, altn, null): ''' Returns pvalue of LRT between alternative model and null model. usual comparison are: ============ ======= =========================================== Alternative Null Test ============ ======= =========================================== M2 M1 PS on sites (M2 prone to miss some sites) (Yang 2000). M3 M0 test of variability among sites M8 M7 PS on sites (Yang 2000) M8 M8a RX on sites?? think so.... bsA bsA1 PS on sites on specific branch (Zhang 2005) bsA M1 RX on sites on specific branch (Zhang 2005) bsC M1 different omegas on clades branches sites ref: Yang Nielsen 2002 bsD M3 different omegas on clades branches sites (Yang Nielsen 2002, Bielawski 2004) b_free b_neut foreground branch not neutral (w != 1) - RX if P<0.05 (means that w on frg=1) - PS if P>0.05 and wfrg>1 - CN if P>0.05 and wfrg>1 (Yang Nielsen 2002) b_free M0 different ratio on branches (Yang Nielsen 2002) ============ ======= =========================================== **Note that M1 and M2 models are making reference to the new versions of these models, with continuous omega rates (namely M1a and M2a in the PAML user guide).** :argument altn: model with higher number of parameters (np) :argument null: model with lower number of parameters (np) ''' altn = self.get_evol_model(altn) null = self.get_evol_model(null) if null.np > altn.np: warn("first model should be the alternative, change the order") return 1.0 try: if hasattr(altn, 'lnL') and hasattr(null, 'lnL'): if null.lnL - altn.lnL < 0: return chi_high(2 * abs(altn.lnL - null.lnL), float(altn.np - null.np)) else: warn("\nWARNING: Likelihood of the alternative model is " "smaller than null's (%f - %f = %f)" % ( null.lnL, altn.lnL, null.lnL - altn.lnL) + "\nLarge differences (> 0.1) may indicate mistaken " "assigantion of null and alternative models") return 1 except KeyError: warn("at least one of %s or %s, was not calculated" % (altn.name, null.name)) exit(self.get_most_likely.__doc__)
(self, altn, null)
720,534
ete3.phylo.phylotree
get_my_evol_events
Returns a list of duplication and speciation events in which the current node has been involved. Scanned nodes are also labeled internally as dup=True|False. You can access this labels using the 'node.dup' sintaxis. Method: the algorithm scans all nodes from the given leafName to the root. Nodes are assumed to be duplications when a species overlap is found between its child linages. Method is described more detail in: "The Human Phylome." Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol. 2007;8(6):R109.
def get_my_evol_events(self, sos_thr=0.0): """ Returns a list of duplication and speciation events in which the current node has been involved. Scanned nodes are also labeled internally as dup=True|False. You can access this labels using the 'node.dup' sintaxis. Method: the algorithm scans all nodes from the given leafName to the root. Nodes are assumed to be duplications when a species overlap is found between its child linages. Method is described more detail in: "The Human Phylome." Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol. 2007;8(6):R109. """ return spoverlap.get_evol_events_from_leaf(self, sos_thr=sos_thr)
(self, sos_thr=0.0)
720,536
ete3.phylo.phylotree
get_speciation_trees
.. versionadded: 2.2 Calculates all possible species trees contained within a duplicated gene family tree as described in `Treeko <http://treeko.cgenomics.org>`_ (see `Marcet and Gabaldon, 2011 <http://www.ncbi.nlm.nih.gov/pubmed/21335609>`_ ). :argument True autodetect_duplications: If True, duplication nodes will be automatically detected using the Species Overlap algorithm (:func:`PhyloNode.get_descendants_evol_events`. If False, duplication nodes within the original tree are expected to contain the feature "evoltype=D". :argument None features: A list of features that should be mapped from the original gene family tree to each species tree subtree. :returns: (number_of_sptrees, number_of_dups, species_tree_iterator)
def get_speciation_trees(self, map_features=None, autodetect_duplications=True, newick_only=False, target_attr='species'): """ .. versionadded: 2.2 Calculates all possible species trees contained within a duplicated gene family tree as described in `Treeko <http://treeko.cgenomics.org>`_ (see `Marcet and Gabaldon, 2011 <http://www.ncbi.nlm.nih.gov/pubmed/21335609>`_ ). :argument True autodetect_duplications: If True, duplication nodes will be automatically detected using the Species Overlap algorithm (:func:`PhyloNode.get_descendants_evol_events`. If False, duplication nodes within the original tree are expected to contain the feature "evoltype=D". :argument None features: A list of features that should be mapped from the original gene family tree to each species tree subtree. :returns: (number_of_sptrees, number_of_dups, species_tree_iterator) """ t = self if autodetect_duplications: #n2content, n2species = t.get_node2species() n2content = t.get_cached_content() n2species = t.get_cached_content(store_attr=target_attr) for node in n2content: sp_subtotal = sum([len(n2species[_ch]) for _ch in node.children]) if len(n2species[node]) > 1 and len(n2species[node]) != sp_subtotal: node.add_features(evoltype="D") sp_trees = get_subtrees(t, features=map_features, newick_only=newick_only) return sp_trees
(self, map_features=None, autodetect_duplications=True, newick_only=False, target_attr='species')
720,537
ete3.phylo.phylotree
get_species
Returns the set of species covered by its partition.
def get_species(self): """ Returns the set of species covered by its partition. """ return set([l.species for l in self.iter_leaves()])
(self)
720,549
ete3.phylo.phylotree
iter_species
Returns an iterator over the species grouped by this node.
def iter_species(self): """ Returns an iterator over the species grouped by this node. """ spcs = set([]) for l in self.iter_leaves(): if l.species not in spcs: spcs.add(l.species) yield l.species
(self)
720,551
ete3.evol.evoltree
link_to_alignment
same function as for phyloTree, but translate sequences if nucleotides nucleotidic sequence is kept under node.nt_sequence :argument alignment: path to alignment or string :argument alg_format: one of fasta phylip or paml :argument True alignment: set to False in case we want to keep it untranslated
def link_to_alignment(self, alignment, alg_format="paml", nucleotides=True, **kwargs): ''' same function as for phyloTree, but translate sequences if nucleotides nucleotidic sequence is kept under node.nt_sequence :argument alignment: path to alignment or string :argument alg_format: one of fasta phylip or paml :argument True alignment: set to False in case we want to keep it untranslated ''' super(EvolTree, self).link_to_alignment(alignment, alg_format=alg_format, **kwargs) check_len = 0 for leaf in self.iter_leaves(): seq_len = len(str(leaf.sequence)) if check_len and check_len != seq_len: warn('WARNING: sequences with different lengths found!') check_len = seq_len leaf.nt_sequence = str(leaf.sequence) if nucleotides: leaf.sequence = translate(leaf.nt_sequence)
(self, alignment, alg_format='paml', nucleotides=True, **kwargs)
720,552
ete3.evol.evoltree
link_to_evol_model
link EvolTree to evolutionary model * free-branch model ("fb") will append evol values to tree * Site models (M0, M1, M2, M7, M8) will give evol values by site and likelihood :argument path: path to outfile containing model computation result :argument model: either the name of a model, or a Model object (usually empty)
def link_to_evol_model(self, path, model): ''' link EvolTree to evolutionary model * free-branch model ("fb") will append evol values to tree * Site models (M0, M1, M2, M7, M8) will give evol values by site and likelihood :argument path: path to outfile containing model computation result :argument model: either the name of a model, or a Model object (usually empty) ''' if isinstance(model, str): model = Model(model, self, path) else: model._load(path) # new entry in _models dict while model.name in self._models: model.name = model.name.split('__')[0] + str( (int(model.name.split('__')[1]) + 1) if '__' in model.name else 0) self._models[model.name] = model if not os.path.isfile(path): warn("ERROR: not a file: " + path) return 1 if len(self._models) == 1 and model.properties['exec'] == 'codeml': self.change_dist_to_evol('bL', model, fill=True)
(self, path, model)
720,553
ete3.evol.evoltree
mark_tree
function to mark branches on tree in order that paml could interpret it. takes a "marks" argument that should be a list of #1,#1,#2 e.g.: :: t=Tree.mark_tree([2,3], marks=["#1","#2"]) :argument node_ids: list of node ids (have a look to node.node_id) :argument False verbose: warn if marks do not correspond to codeml standard :argument kargs: mainly for the marks key-word which needs a list of marks (marks=['#1', '#2'])
def mark_tree(self, node_ids, verbose=False, **kargs): ''' function to mark branches on tree in order that paml could interpret it. takes a "marks" argument that should be a list of #1,#1,#2 e.g.: :: t=Tree.mark_tree([2,3], marks=["#1","#2"]) :argument node_ids: list of node ids (have a look to node.node_id) :argument False verbose: warn if marks do not correspond to codeml standard :argument kargs: mainly for the marks key-word which needs a list of marks (marks=['#1', '#2']) ''' from re import match node_ids = list(map(int, node_ids)) if 'marks' in kargs: marks = list(kargs['marks']) else: marks = ['#1']*len(node_ids) for node in self.traverse(): if not hasattr(node, 'node_id'): continue if node.node_id in node_ids: if ('.' in marks[node_ids.index(node.node_id)] or match('#[0-9]+', marks[node_ids.index(node.node_id)]) is None) and verbose: warn('WARNING: marks should be "#" sign directly ' + 'followed by integer\n' + self.mark_tree.__doc__) node.add_feature( 'mark', ' '+marks[node_ids.index(node.node_id)]) elif not 'mark' in node.features: node.add_feature('mark', '')
(self, node_ids, verbose=False, **kargs)
720,554
ete3.phylo.phylotree
ncbi_compare
null
def ncbi_compare(self, autodetect_duplications=True, cached_content=None): if not cached_content: cached_content = self.get_cached_content() cached_species = set([n.species for n in cached_content[self]]) if len(cached_species) != len(cached_content[self]): print(cached_species) ntrees, ndups, target_trees = self.get_speciation_trees(autodetect_duplications=autodetect_duplications, map_features=["taxid"]) else: target_trees = [self] ncbi = NCBITaxa() for t in target_trees: ncbi.get_broken_branches(t, cached_content)
(self, autodetect_duplications=True, cached_content=None)
720,558
ete3.phylo.phylotree
reconcile
Returns the reconcilied topology with the provided species tree, and a list of evolutionary events inferred from such reconciliation.
def reconcile(self, species_tree): """ Returns the reconcilied topology with the provided species tree, and a list of evolutionary events inferred from such reconciliation. """ return get_reconciled_tree(self, species_tree, [])
(self, species_tree)
720,561
ete3.evol.evoltree
render
call super show adding up and down faces :argument layout: a layout function :argument None tree_style: tree_style object :argument Nonehistface: an histogram face function. This is only to plot selective pressure among sites
def render(self, file_name, layout=None, w=None, h=None, tree_style=None, header=None, histfaces=None): ''' call super show adding up and down faces :argument layout: a layout function :argument None tree_style: tree_style object :argument Nonehistface: an histogram face function. This is only to plot selective pressure among sites ''' if TREEVIEW: if not tree_style: ts = TreeStyle() else: ts = tree_style if histfaces: for hist in histfaces: try: mdl = self.get_evol_model(hist) except AttributeError: warn('model %s not computed' % (hist)) if not 'histface' in mdl.properties: if len(histfaces) > 1 and histfaces.index(hist) != 0: mdl.set_histface(up=False) else: mdl.set_histface() if mdl.properties['histface'].up: ts.aligned_header.add_face( mdl.properties['histface'], 1) else: ts.aligned_foot.add_face( mdl.properties['histface'], 1) return super(EvolTree, self).render(file_name, layout=layout, tree_style=ts, w=w, h=h) else: raise ValueError("Treeview module is disabled")
(self, file_name, layout=None, w=None, h=None, tree_style=None, header=None, histfaces=None)
720,564
ete3.evol.evoltree
run_model
To compute evolutionnary models. e.g.: b_free_lala.vs.lele, will launch one free branch model, and store it in "WORK_DIR/b_free_lala.vs.lele" directory WARNING: this functionality needs to create a working directory in "rep" WARNING: you need to have codeml and/or SLR in your path The models available are: =========== ============================= ================== Model name Description Model kind =========== ============================= ================== M1 relaxation site M10 beta and gamma + 1 site M11 beta and normal > 1 site M12 0 and 2 normal > 2 site M13 3 normal > 0 site M2 positive-selection site M3 discrete site M4 frequencies site M5 gamma site M6 2 gamma site M7 relaxation site M8 positive-selection site M8a relaxation site M9 beta and gamma site SLR positive/negative selection site M0 negative-selection null fb_anc free-ratios branch_ancestor bsA positive-selection branch-site bsA1 relaxation branch-site bsB positive-selection branch-site bsC different-ratios branch-site bsD different-ratios branch-site b_free positive-selection branch b_neut relaxation branch fb free-ratios branch XX User defined Unknown =========== ============================= ================== **Note that M1 and M2 models are making reference to the new versions of these models, with continuous omega rates (namely M1a and M2a in the PAML user guide).** :argument model_name: a string like "model-name[.some-secondary-name]" (e.g.: "fb.my_first_try", or just "fb") * model-name is compulsory, is the name of the model (see table above for the full list) * the second part is accessory, it is to avoid over-writing models with the same name. :argument ctrl_string: list of parameters that can be used as control file. :argument True keep: links the model to the tree (equivalen of running `EVOL_TREE.link_to_evol_model(MODEL_NAME)`) :argument kwargs: extra parameters should be one of: seqfile, treefile, outfile, noisy, verbose, runmode, seqtype, CodonFreq, clock, aaDist, model, NSsites, icode, Mgene, fix_kappa, kappa, ndata, fix_omega, omega, fix_alpha, alpha, Malpha, ncatG, getSE, RateAncestor, fix_blength, Small_Diff, cleandata, method.
def run_model(self, model_name, ctrl_string='', keep=True, **kwargs): ''' To compute evolutionnary models. e.g.: b_free_lala.vs.lele, will launch one free branch model, and store it in "WORK_DIR/b_free_lala.vs.lele" directory WARNING: this functionality needs to create a working directory in "rep" WARNING: you need to have codeml and/or SLR in your path The models available are: =========== ============================= ================== Model name Description Model kind =========== ============================= ==================\n%s =========== ============================= ==================\n **Note that M1 and M2 models are making reference to the new versions of these models, with continuous omega rates (namely M1a and M2a in the PAML user guide).** :argument model_name: a string like "model-name[.some-secondary-name]" (e.g.: "fb.my_first_try", or just "fb") * model-name is compulsory, is the name of the model (see table above for the full list) * the second part is accessory, it is to avoid over-writing models with the same name. :argument ctrl_string: list of parameters that can be used as control file. :argument True keep: links the model to the tree (equivalen of running `EVOL_TREE.link_to_evol_model(MODEL_NAME)`) :argument kwargs: extra parameters should be one of: %s. ''' from subprocess import Popen, PIPE model_obj = Model(model_name, self, **kwargs) fullpath = os.path.join(self.workdir, model_obj.name) os.system("mkdir -p %s" % fullpath) # write tree file self._write_algn(fullpath + '/algn') if model_obj.properties['exec'] == 'Slr': self.write(outfile=fullpath+'/tree', format=(11)) else: self.write(outfile=fullpath+'/tree', format=(10 if model_obj.properties['allow_mark'] else 9)) # write algn file # MODEL MODEL MDE if ctrl_string == '': ctrl_string = model_obj.get_ctrl_string(fullpath+'/tmp.ctl') else: open(fullpath+'/tmp.ctl', 'w').write(ctrl_string) hlddir = os.getcwd() os.chdir(fullpath) bin_ = os.path.join(self.execpath, model_obj.properties['exec']) try: proc = Popen([bin_, 'tmp.ctl'], stdout=PIPE, stdin=PIPE, stderr=PIPE) except OSError: raise Exception(('ERROR: {} not installed, ' + 'or wrong path to binary\n').format(bin_)) # send \n via stdin in case codeml/slr asks something (note on py3, stdin needs bytes) run, err = proc.communicate(b'\n') run = run.decode(sys.stdout.encoding) os.chdir(hlddir) if err: warn("ERROR: inside codeml!!\n" + err) return 1 if keep: setattr(model_obj, 'run', run) self.link_to_evol_model(os.path.join(fullpath, 'out'), model_obj)
(self, model_name, ctrl_string='', keep=True, **kwargs)
720,567
ete3.phylo.phylotree
set_species_naming_function
Sets the parsing function used to extract species name from a node's name. :argument fn: Pointer to a parsing python function that receives nodename as first argument and returns the species name. :: # Example of a parsing function to extract species names for # all nodes in a given tree. def parse_sp_name(node_name): return node_name.split("_")[1] tree.set_species_naming_function(parse_sp_name)
def set_species_naming_function(self, fn): """ Sets the parsing function used to extract species name from a node's name. :argument fn: Pointer to a parsing python function that receives nodename as first argument and returns the species name. :: # Example of a parsing function to extract species names for # all nodes in a given tree. def parse_sp_name(node_name): return node_name.split("_")[1] tree.set_species_naming_function(parse_sp_name) """ if fn: for n in self.traverse(): n._speciesFunction = fn if n.is_leaf(): n.features.add("species")
(self, fn)
720,569
ete3.evol.evoltree
show
call super show of PhyloTree histface should be a list of models to be displayes as histfaces :argument layout: a layout function :argument None tree_style: tree_style object :argument Nonehistface: an histogram face function. This is only to plot selective pressure among sites
def show(self, layout=None, tree_style=None, histfaces=None): ''' call super show of PhyloTree histface should be a list of models to be displayes as histfaces :argument layout: a layout function :argument None tree_style: tree_style object :argument Nonehistface: an histogram face function. This is only to plot selective pressure among sites ''' if TREEVIEW: if not tree_style: ts = TreeStyle() else: ts = tree_style if histfaces: for hist in histfaces: try: mdl = self.get_evol_model(hist) except AttributeError: warn('model %s not computed' % (hist)) if not 'histface' in mdl.properties: if len(histfaces) > 1 and histfaces.index(hist) != 0: mdl.set_histface(up=False) else: mdl.set_histface() if mdl.properties['histface'].up: ts.aligned_header.add_face( mdl.properties['histface'], 1) else: ts.aligned_foot.add_face( mdl.properties['histface'], 1) super(EvolTree, self).show(layout=layout, tree_style=ts) else: raise ValueError("Treeview module is disabled")
(self, layout=None, tree_style=None, histfaces=None)
720,571
ete3.phylo.phylotree
split_by_dups
.. versionadded: 2.2 Returns the list of all subtrees resulting from splitting current tree by its duplication nodes. :argument True autodetect_duplications: If True, duplication nodes will be automatically detected using the Species Overlap algorithm (:func:`PhyloNode.get_descendants_evol_events`. If False, duplication nodes within the original tree are expected to contain the feature "evoltype=D". :returns: species_trees
def split_by_dups(self, autodetect_duplications=True): """ .. versionadded: 2.2 Returns the list of all subtrees resulting from splitting current tree by its duplication nodes. :argument True autodetect_duplications: If True, duplication nodes will be automatically detected using the Species Overlap algorithm (:func:`PhyloNode.get_descendants_evol_events`. If False, duplication nodes within the original tree are expected to contain the feature "evoltype=D". :returns: species_trees """ try: t = self.copy() except Exception: t = self.copy("deepcopy") if autodetect_duplications: dups = 0 #n2content, n2species = t.get_node2species() n2content = t.get_cached_content() n2species = t.get_cached_content(store_attr="species") #print "Detecting dups" for node in n2content: sp_subtotal = sum([len(n2species[_ch]) for _ch in node.children]) if len(n2species[node]) > 1 and len(n2species[node]) != sp_subtotal: node.add_features(evoltype="D") dups += 1 elif node.is_leaf(): node._leaf = True #print dups else: for node in t.iter_leaves(): node._leaf = True sp_trees = get_subparts(t) return sp_trees
(self, autodetect_duplications=True)
720,576
ete3.evol.evoltree
write
Inherits from Tree but adds the tenth format, that allows to display marks for CodeML. TODO: internal writting format need to be something like 0 Returns the newick representation of current node. Several arguments control the way in which extra data is shown for every node: :argument features: a list of feature names to be exported using the Extended Newick Format (i.e. features=["name", "dist"]). Use an empty list to export all available features in each node (features=[]) :argument outfile: writes the output to a given file :argument 10 format: defines the newick standard used to encode the tree. See tutorial for details. :argument False format_root_node: If True, it allows features and branch information from root node to be exported as a part of the newick text string. For newick compatibility reasons, this is False by default. :argument is_leaf_fn: See :func:`TreeNode.traverse` for documentation. **Example:** :: t.write(features=["species","name"], format=1)
def write(self, features=None, outfile=None, format=10): """ Inherits from Tree but adds the tenth format, that allows to display marks for CodeML. TODO: internal writting format need to be something like 0 """ from re import sub if int(format) == 11: nwk = ' %s 1\n' % (len(self)) nwk += sub('\[&&NHX:mark=([ #0-9.]*)\]', r'\1', write_newick(self, features=['mark'], format=9)) elif int(format) == 10: nwk = sub('\[&&NHX:mark=([ #0-9.]*)\]', r'\1', write_newick(self, features=['mark'], format=9)) else: nwk = write_newick(self, features=features, format=format) if outfile is not None: open(outfile, "w").write(nwk) return nwk else: return nwk
(self, features=None, outfile=None, format=10)
720,701
ete3.ncbi_taxonomy.ncbiquery
NCBITaxa
versionadded: 2.3 Provides a local transparent connector to the NCBI taxonomy database.
class NCBITaxa(object): """ versionadded: 2.3 Provides a local transparent connector to the NCBI taxonomy database. """ def __init__(self, dbfile=None, taxdump_file=None, update=True): if not dbfile: self.dbfile = DEFAULT_TAXADB else: self.dbfile = dbfile if taxdump_file: self.update_taxonomy_database(taxdump_file) if dbfile != DEFAULT_TAXADB and not os.path.exists(self.dbfile): print('NCBI database not present yet (first time used?)', file=sys.stderr) self.update_taxonomy_database(taxdump_file) if not os.path.exists(self.dbfile): raise ValueError("Cannot open taxonomy database: %s" % self.dbfile) self.db = None self._connect() if not is_taxadb_up_to_date(self.dbfile) and update: print('NCBI database format is outdated. Upgrading', file=sys.stderr) self.update_taxonomy_database(taxdump_file) def update_taxonomy_database(self, taxdump_file=None): """Updates the ncbi taxonomy database by downloading and parsing the latest taxdump.tar.gz file from the NCBI FTP site (via HTTP). :param None taxdump_file: an alternative location of the taxdump.tax.gz file. """ if not taxdump_file: update_db(self.dbfile) else: update_db(self.dbfile, taxdump_file) def _connect(self): self.db = sqlite3.connect(self.dbfile) def _translate_merged(self, all_taxids): conv_all_taxids = set((list(map(int, all_taxids)))) cmd = 'select taxid_old, taxid_new FROM merged WHERE taxid_old IN (%s)' %','.join(map(str, all_taxids)) result = self.db.execute(cmd) conversion = {} for old, new in result.fetchall(): conv_all_taxids.discard(int(old)) conv_all_taxids.add(int(new)) conversion[int(old)] = int(new) return conv_all_taxids, conversion def get_fuzzy_name_translation(self, name, sim=0.9): ''' Given an inexact species name, returns the best match in the NCBI database of taxa names. :argument 0.9 sim: Min word similarity to report a match (from 0 to 1). :return: taxid, species-name-match, match-score ''' import sqlite3.dbapi2 as dbapi2 _db = dbapi2.connect(self.dbfile) _db.enable_load_extension(True) module_path = os.path.split(os.path.realpath(__file__))[0] _db.execute("select load_extension('%s')" % os.path.join(module_path, "SQLite-Levenshtein/levenshtein.sqlext")) print("Trying fuzzy search for %s" % name) maxdiffs = math.ceil(len(name) * (1-sim)) cmd = 'SELECT taxid, spname, LEVENSHTEIN(spname, "%s") AS sim FROM species WHERE sim<=%s ORDER BY sim LIMIT 1;' % (name, maxdiffs) taxid, spname, score = None, None, len(name) result = _db.execute(cmd) try: taxid, spname, score = result.fetchone() except TypeError: cmd = 'SELECT taxid, spname, LEVENSHTEIN(spname, "%s") AS sim FROM synonym WHERE sim<=%s ORDER BY sim LIMIT 1;' % (name, maxdiffs) result = _db.execute(cmd) try: taxid, spname, score = result.fetchone() except: pass else: taxid = int(taxid) else: taxid = int(taxid) norm_score = 1 - (float(score)/len(name)) if taxid: print("FOUND! %s taxid:%s score:%s (%s)" %(spname, taxid, score, norm_score)) return taxid, spname, norm_score def get_rank(self, taxids): 'return a dictionary converting a list of taxids into their corresponding NCBI taxonomy rank' all_ids = set(taxids) all_ids.discard(None) all_ids.discard("") query = ','.join(['"%s"' %v for v in all_ids]) cmd = "select taxid, rank FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) id2rank = {} for tax, spname in result.fetchall(): id2rank[tax] = spname return id2rank def get_lineage_translator(self, taxids): """Given a valid taxid number, return its corresponding lineage track as a hierarchically sorted list of parent taxids. """ all_ids = set(taxids) all_ids.discard(None) all_ids.discard("") query = ','.join(['"%s"' %v for v in all_ids]) result = self.db.execute('SELECT taxid, track FROM species WHERE taxid IN (%s);' %query) id2lineages = {} for tax, track in result.fetchall(): id2lineages[tax] = list(map(int, reversed(track.split(",")))) return id2lineages def get_lineage(self, taxid): """Given a valid taxid number, return its corresponding lineage track as a hierarchically sorted list of parent taxids. """ if not taxid: return None taxid = int(taxid) result = self.db.execute('SELECT track FROM species WHERE taxid=%s' %taxid) raw_track = result.fetchone() if not raw_track: #perhaps is an obsolete taxid _, merged_conversion = self._translate_merged([taxid]) if taxid in merged_conversion: result = self.db.execute('SELECT track FROM species WHERE taxid=%s' %merged_conversion[taxid]) raw_track = result.fetchone() # if not raise error if not raw_track: #raw_track = ["1"] raise ValueError("%s taxid not found" %taxid) else: warnings.warn("taxid %s was translated into %s" %(taxid, merged_conversion[taxid])) track = list(map(int, raw_track[0].split(","))) return list(reversed(track)) def get_common_names(self, taxids): query = ','.join(['"%s"' %v for v in taxids]) cmd = "select taxid, common FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) id2name = {} for tax, common_name in result.fetchall(): if common_name: id2name[tax] = common_name return id2name def get_taxid_translator(self, taxids, try_synonyms=True): """Given a list of taxids, returns a dictionary with their corresponding scientific names. """ all_ids = set(map(int, taxids)) all_ids.discard(None) all_ids.discard("") query = ','.join(['"%s"' %v for v in all_ids]) cmd = "select taxid, spname FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) id2name = {} for tax, spname in result.fetchall(): id2name[tax] = spname # any taxid without translation? lets tray in the merged table if len(all_ids) != len(id2name) and try_synonyms: not_found_taxids = all_ids - set(id2name.keys()) taxids, old2new = self._translate_merged(not_found_taxids) new2old = {v: k for k,v in six.iteritems(old2new)} if old2new: query = ','.join(['"%s"' %v for v in new2old]) cmd = "select taxid, spname FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) for tax, spname in result.fetchall(): id2name[new2old[tax]] = spname return id2name def get_name_translator(self, names): """ Given a list of taxid scientific names, returns a dictionary translating them into their corresponding taxids. Exact name match is required for translation. """ name2id = {} #name2realname = {} name2origname = {} for n in names: name2origname[n.lower()] = n names = set(name2origname.keys()) query = ','.join(['"%s"' %n for n in six.iterkeys(name2origname)]) cmd = 'select spname, taxid from species where spname IN (%s)' %query result = self.db.execute('select spname, taxid from species where spname IN (%s)' %query) for sp, taxid in result.fetchall(): oname = name2origname[sp.lower()] name2id.setdefault(oname, []).append(taxid) #name2realname[oname] = sp missing = names - set([n.lower() for n in name2id.keys()]) if missing: query = ','.join(['"%s"' %n for n in missing]) result = self.db.execute('select spname, taxid from synonym where spname IN (%s)' %query) for sp, taxid in result.fetchall(): oname = name2origname[sp.lower()] name2id.setdefault(oname, []).append(taxid) #name2realname[oname] = sp return name2id def translate_to_names(self, taxids): """ Given a list of taxid numbers, returns another list with their corresponding scientific names. """ id2name = self.get_taxid_translator(taxids) names = [] for sp in taxids: names.append(id2name.get(sp, sp)) return names def get_descendant_taxa(self, parent, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, return_tree=False): """ given a parent taxid or scientific species name, returns a list of all its descendants taxids. If intermediate_nodes is set to True, internal nodes will also be dumped. """ try: taxid = int(parent) except ValueError: try: taxid = self.get_name_translator([parent])[parent][0] except KeyError: raise ValueError('%s not found!' %parent) # checks if taxid is a deprecated one, and converts into the right one. _, conversion = self._translate_merged([taxid]) #try to find taxid in synonyms table if conversion: taxid = conversion[taxid] with open(self.dbfile+".traverse.pkl", "rb") as CACHED_TRAVERSE: prepostorder = pickle.load(CACHED_TRAVERSE) descendants = {} found = 0 for tid in prepostorder: if tid == taxid: found += 1 elif found == 1: descendants[tid] = descendants.get(tid, 0) + 1 elif found == 2: break if not found: raise ValueError("taxid not found:%s" %taxid) elif found == 1: return [taxid] if rank_limit or collapse_subspecies or return_tree: tree = self.get_topology(list(descendants.keys()), intermediate_nodes=intermediate_nodes, collapse_subspecies=collapse_subspecies, rank_limit=rank_limit) if return_tree: return tree elif intermediate_nodes: return list(map(int, [n.name for n in tree.get_descendants()])) else: return list(map(int, [n.name for n in tree])) elif intermediate_nodes: return [tid for tid, count in six.iteritems(descendants)] else: return [tid for tid, count in six.iteritems(descendants) if count == 1] def get_topology(self, taxids, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, annotate=True): """Given a list of taxid numbers, return the minimal pruned NCBI taxonomy tree containing all of them. :param False intermediate_nodes: If True, single child nodes representing the complete lineage of leaf nodes are kept. Otherwise, the tree is pruned to contain the first common ancestor of each group. :param None rank_limit: If valid NCBI rank name is provided, the tree is pruned at that given level. For instance, use rank="species" to get rid of sub-species or strain leaf nodes. :param False collapse_subspecies: If True, any item under the species rank will be collapsed into the species upper node. """ from .. import PhyloTree taxids, merged_conversion = self._translate_merged(taxids) if len(taxids) == 1: root_taxid = int(list(taxids)[0]) with open(self.dbfile+".traverse.pkl", "rb") as CACHED_TRAVERSE: prepostorder = pickle.load(CACHED_TRAVERSE) descendants = {} found = 0 nodes = {} hit = 0 visited = set() start = prepostorder.index(root_taxid) try: end = prepostorder.index(root_taxid, start+1) subtree = prepostorder[start:end+1] except ValueError: # If root taxid is not found in postorder, must be a tip node subtree = [root_taxid] leaves = set([v for v, count in Counter(subtree).items() if count == 1]) nodes[root_taxid] = PhyloTree(name=str(root_taxid)) current_parent = nodes[root_taxid] for tid in subtree: if tid in visited: current_parent = nodes[tid].up else: visited.add(tid) nodes[tid] = PhyloTree(name=str(tid)) current_parent.add_child(nodes[tid]) if tid not in leaves: current_parent = nodes[tid] root = nodes[root_taxid] else: taxids = set(map(int, taxids)) sp2track = {} elem2node = {} id2lineage = self.get_lineage_translator(taxids) all_taxids = set() for lineage in id2lineage.values(): all_taxids.update(lineage) id2rank = self.get_rank(all_taxids) for sp in taxids: track = [] lineage = id2lineage[sp] for elem in lineage: if elem not in elem2node: node = elem2node.setdefault(elem, PhyloTree()) node.name = str(elem) node.taxid = elem node.add_feature("rank", str(id2rank.get(int(elem), "no rank"))) else: node = elem2node[elem] track.append(node) sp2track[sp] = track # generate parent child relationships for sp, track in six.iteritems(sp2track): parent = None for elem in track: if parent and elem not in parent.children: parent.add_child(elem) if rank_limit and elem.rank == rank_limit: break parent = elem root = elem2node[1] #remove onechild-nodes if not intermediate_nodes: for n in root.get_descendants(): if len(n.children) == 1 and int(n.name) not in taxids: n.delete(prevent_nondicotomic=False) if len(root.children) == 1: tree = root.children[0].detach() else: tree = root if collapse_subspecies: to_detach = [] for node in tree.traverse(): if node.rank == "species": to_detach.extend(node.children) for n in to_detach: n.detach() if annotate: self.annotate_tree(tree) return tree def annotate_tree(self, t, taxid_attr="name", tax2name=None, tax2track=None, tax2rank=None): """Annotate a tree containing taxids as leaf names by adding the 'taxid', 'sci_name', 'lineage', 'named_lineage' and 'rank' additional attributes. :param t: a Tree (or Tree derived) instance. :param name taxid_attr: Allows to set a custom node attribute containing the taxid number associated to each node (i.e. species in PhyloTree instances). :param tax2name,tax2track,tax2rank: Use these arguments to provide pre-calculated dictionaries providing translation from taxid number and names,track lineages and ranks. """ taxids = set() for n in t.traverse(): try: tid = int(getattr(n, taxid_attr)) except (ValueError,AttributeError): pass else: taxids.add(tid) merged_conversion = {} taxids, merged_conversion = self._translate_merged(taxids) if not tax2name or taxids - set(map(int, list(tax2name.keys()))): tax2name = self.get_taxid_translator(taxids) if not tax2track or taxids - set(map(int, list(tax2track.keys()))): tax2track = self.get_lineage_translator(taxids) all_taxid_codes = set([_tax for _lin in list(tax2track.values()) for _tax in _lin]) extra_tax2name = self.get_taxid_translator(list(all_taxid_codes - set(tax2name.keys()))) tax2name.update(extra_tax2name) tax2common_name = self.get_common_names(tax2name.keys()) if not tax2rank: tax2rank = self.get_rank(list(tax2name.keys())) n2leaves = t.get_cached_content() for n in t.traverse('postorder'): try: node_taxid = int(getattr(n, taxid_attr)) except (ValueError, AttributeError): node_taxid = None n.add_features(taxid = node_taxid) if node_taxid: if node_taxid in merged_conversion: node_taxid = merged_conversion[node_taxid] n.add_features(sci_name = tax2name.get(node_taxid, getattr(n, taxid_attr, '')), common_name = tax2common_name.get(node_taxid, ''), lineage = tax2track.get(node_taxid, []), rank = tax2rank.get(node_taxid, 'Unknown'), named_lineage = [tax2name.get(tax, str(tax)) for tax in tax2track.get(node_taxid, [])]) elif n.is_leaf(): n.add_features(sci_name = getattr(n, taxid_attr, 'NA'), common_name = '', lineage = [], rank = 'Unknown', named_lineage = []) else: lineage = self._common_lineage([lf.lineage for lf in n2leaves[n]]) ancestor = lineage[-1] n.add_features(sci_name = tax2name.get(ancestor, str(ancestor)), common_name = tax2common_name.get(ancestor, ''), taxid = ancestor, lineage = lineage, rank = tax2rank.get(ancestor, 'Unknown'), named_lineage = [tax2name.get(tax, str(tax)) for tax in lineage]) return tax2name, tax2track, tax2rank def _common_lineage(self, vectors): occurrence = defaultdict(int) pos = defaultdict(set) for v in vectors: for i, taxid in enumerate(v): occurrence[taxid] += 1 pos[taxid].add(i) common = [taxid for taxid, ocu in six.iteritems(occurrence) if ocu == len(vectors)] if not common: return [""] else: sorted_lineage = sorted(common, key=lambda x: min(pos[x])) return sorted_lineage # OLD APPROACH: # visited = defaultdict(int) # for index, name in [(ei, e) for v in vectors for ei, e in enumerate(v)]: # visited[(name, index)] += 1 # def _sort(a, b): # if a[1] > b[1]: # return 1 # elif a[1] < b[1]: # return -1 # else: # if a[0][1] > b[0][1]: # return 1 # elif a[0][1] < b[0][1]: # return -1 # return 0 # matches = sorted(visited.items(), _sort) # if matches: # best_match = matches[-1] # else: # return "", set() # if best_match[1] != len(vectors): # return "", set() # else: # return best_match[0][0], [m[0][0] for m in matches if m[1] == len(vectors)] def get_broken_branches(self, t, taxa_lineages, n2content=None): """Returns a list of NCBI lineage names that are not monophyletic in the provided tree, as well as the list of affected branches and their size. CURRENTLY EXPERIMENTAL """ if not n2content: n2content = t.get_cached_content() tax2node = defaultdict(set) unknown = set() for leaf in t.iter_leaves(): if leaf.sci_name.lower() != "unknown": lineage = taxa_lineages[leaf.taxid] for index, tax in enumerate(lineage): tax2node[tax].add(leaf) else: unknown.add(leaf) broken_branches = defaultdict(set) broken_clades = set() for tax, leaves in six.iteritems(tax2node): if len(leaves) > 1: common = t.get_common_ancestor(leaves) else: common = list(leaves)[0] if (leaves ^ set(n2content[common])) - unknown: broken_branches[common].add(tax) broken_clades.add(tax) broken_clade_sizes = [len(tax2node[tax]) for tax in broken_clades] return broken_branches, broken_clades, broken_clade_sizes # def annotate_tree_with_taxa(self, t, name2taxa_file, tax2name=None, tax2track=None, attr_name="name"): # if name2taxa_file: # names2taxid = dict([map(strip, line.split("\t")) # for line in open(name2taxa_file)]) # else: # names2taxid = dict([(n.name, getattr(n, attr_name)) for n in t.iter_leaves()]) # not_found = 0 # for n in t.iter_leaves(): # n.add_features(taxid=names2taxid.get(n.name, 0)) # n.add_features(species=n.taxid) # if n.taxid == 0: # not_found += 1 # if not_found: # print >>sys.stderr, "WARNING: %s nodes where not found within NCBI taxonomy!!" %not_found # return self.annotate_tree(t, tax2name, tax2track, attr_name="taxid")
(dbfile=None, taxdump_file=None, update=True)
720,702
ete3.ncbi_taxonomy.ncbiquery
__init__
null
def __init__(self, dbfile=None, taxdump_file=None, update=True): if not dbfile: self.dbfile = DEFAULT_TAXADB else: self.dbfile = dbfile if taxdump_file: self.update_taxonomy_database(taxdump_file) if dbfile != DEFAULT_TAXADB and not os.path.exists(self.dbfile): print('NCBI database not present yet (first time used?)', file=sys.stderr) self.update_taxonomy_database(taxdump_file) if not os.path.exists(self.dbfile): raise ValueError("Cannot open taxonomy database: %s" % self.dbfile) self.db = None self._connect() if not is_taxadb_up_to_date(self.dbfile) and update: print('NCBI database format is outdated. Upgrading', file=sys.stderr) self.update_taxonomy_database(taxdump_file)
(self, dbfile=None, taxdump_file=None, update=True)
720,703
ete3.ncbi_taxonomy.ncbiquery
_common_lineage
null
def _common_lineage(self, vectors): occurrence = defaultdict(int) pos = defaultdict(set) for v in vectors: for i, taxid in enumerate(v): occurrence[taxid] += 1 pos[taxid].add(i) common = [taxid for taxid, ocu in six.iteritems(occurrence) if ocu == len(vectors)] if not common: return [""] else: sorted_lineage = sorted(common, key=lambda x: min(pos[x])) return sorted_lineage # OLD APPROACH: # visited = defaultdict(int) # for index, name in [(ei, e) for v in vectors for ei, e in enumerate(v)]: # visited[(name, index)] += 1 # def _sort(a, b): # if a[1] > b[1]: # return 1 # elif a[1] < b[1]: # return -1 # else: # if a[0][1] > b[0][1]: # return 1 # elif a[0][1] < b[0][1]: # return -1 # return 0 # matches = sorted(visited.items(), _sort) # if matches: # best_match = matches[-1] # else: # return "", set() # if best_match[1] != len(vectors): # return "", set() # else: # return best_match[0][0], [m[0][0] for m in matches if m[1] == len(vectors)]
(self, vectors)
720,704
ete3.ncbi_taxonomy.ncbiquery
_connect
null
def _connect(self): self.db = sqlite3.connect(self.dbfile)
(self)
720,705
ete3.ncbi_taxonomy.ncbiquery
_translate_merged
null
def _translate_merged(self, all_taxids): conv_all_taxids = set((list(map(int, all_taxids)))) cmd = 'select taxid_old, taxid_new FROM merged WHERE taxid_old IN (%s)' %','.join(map(str, all_taxids)) result = self.db.execute(cmd) conversion = {} for old, new in result.fetchall(): conv_all_taxids.discard(int(old)) conv_all_taxids.add(int(new)) conversion[int(old)] = int(new) return conv_all_taxids, conversion
(self, all_taxids)
720,706
ete3.ncbi_taxonomy.ncbiquery
annotate_tree
Annotate a tree containing taxids as leaf names by adding the 'taxid', 'sci_name', 'lineage', 'named_lineage' and 'rank' additional attributes. :param t: a Tree (or Tree derived) instance. :param name taxid_attr: Allows to set a custom node attribute containing the taxid number associated to each node (i.e. species in PhyloTree instances). :param tax2name,tax2track,tax2rank: Use these arguments to provide pre-calculated dictionaries providing translation from taxid number and names,track lineages and ranks.
def annotate_tree(self, t, taxid_attr="name", tax2name=None, tax2track=None, tax2rank=None): """Annotate a tree containing taxids as leaf names by adding the 'taxid', 'sci_name', 'lineage', 'named_lineage' and 'rank' additional attributes. :param t: a Tree (or Tree derived) instance. :param name taxid_attr: Allows to set a custom node attribute containing the taxid number associated to each node (i.e. species in PhyloTree instances). :param tax2name,tax2track,tax2rank: Use these arguments to provide pre-calculated dictionaries providing translation from taxid number and names,track lineages and ranks. """ taxids = set() for n in t.traverse(): try: tid = int(getattr(n, taxid_attr)) except (ValueError,AttributeError): pass else: taxids.add(tid) merged_conversion = {} taxids, merged_conversion = self._translate_merged(taxids) if not tax2name or taxids - set(map(int, list(tax2name.keys()))): tax2name = self.get_taxid_translator(taxids) if not tax2track or taxids - set(map(int, list(tax2track.keys()))): tax2track = self.get_lineage_translator(taxids) all_taxid_codes = set([_tax for _lin in list(tax2track.values()) for _tax in _lin]) extra_tax2name = self.get_taxid_translator(list(all_taxid_codes - set(tax2name.keys()))) tax2name.update(extra_tax2name) tax2common_name = self.get_common_names(tax2name.keys()) if not tax2rank: tax2rank = self.get_rank(list(tax2name.keys())) n2leaves = t.get_cached_content() for n in t.traverse('postorder'): try: node_taxid = int(getattr(n, taxid_attr)) except (ValueError, AttributeError): node_taxid = None n.add_features(taxid = node_taxid) if node_taxid: if node_taxid in merged_conversion: node_taxid = merged_conversion[node_taxid] n.add_features(sci_name = tax2name.get(node_taxid, getattr(n, taxid_attr, '')), common_name = tax2common_name.get(node_taxid, ''), lineage = tax2track.get(node_taxid, []), rank = tax2rank.get(node_taxid, 'Unknown'), named_lineage = [tax2name.get(tax, str(tax)) for tax in tax2track.get(node_taxid, [])]) elif n.is_leaf(): n.add_features(sci_name = getattr(n, taxid_attr, 'NA'), common_name = '', lineage = [], rank = 'Unknown', named_lineage = []) else: lineage = self._common_lineage([lf.lineage for lf in n2leaves[n]]) ancestor = lineage[-1] n.add_features(sci_name = tax2name.get(ancestor, str(ancestor)), common_name = tax2common_name.get(ancestor, ''), taxid = ancestor, lineage = lineage, rank = tax2rank.get(ancestor, 'Unknown'), named_lineage = [tax2name.get(tax, str(tax)) for tax in lineage]) return tax2name, tax2track, tax2rank
(self, t, taxid_attr='name', tax2name=None, tax2track=None, tax2rank=None)
720,707
ete3.ncbi_taxonomy.ncbiquery
get_broken_branches
Returns a list of NCBI lineage names that are not monophyletic in the provided tree, as well as the list of affected branches and their size. CURRENTLY EXPERIMENTAL
def get_broken_branches(self, t, taxa_lineages, n2content=None): """Returns a list of NCBI lineage names that are not monophyletic in the provided tree, as well as the list of affected branches and their size. CURRENTLY EXPERIMENTAL """ if not n2content: n2content = t.get_cached_content() tax2node = defaultdict(set) unknown = set() for leaf in t.iter_leaves(): if leaf.sci_name.lower() != "unknown": lineage = taxa_lineages[leaf.taxid] for index, tax in enumerate(lineage): tax2node[tax].add(leaf) else: unknown.add(leaf) broken_branches = defaultdict(set) broken_clades = set() for tax, leaves in six.iteritems(tax2node): if len(leaves) > 1: common = t.get_common_ancestor(leaves) else: common = list(leaves)[0] if (leaves ^ set(n2content[common])) - unknown: broken_branches[common].add(tax) broken_clades.add(tax) broken_clade_sizes = [len(tax2node[tax]) for tax in broken_clades] return broken_branches, broken_clades, broken_clade_sizes
(self, t, taxa_lineages, n2content=None)
720,708
ete3.ncbi_taxonomy.ncbiquery
get_common_names
null
def get_common_names(self, taxids): query = ','.join(['"%s"' %v for v in taxids]) cmd = "select taxid, common FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) id2name = {} for tax, common_name in result.fetchall(): if common_name: id2name[tax] = common_name return id2name
(self, taxids)
720,709
ete3.ncbi_taxonomy.ncbiquery
get_descendant_taxa
given a parent taxid or scientific species name, returns a list of all its descendants taxids. If intermediate_nodes is set to True, internal nodes will also be dumped.
def get_descendant_taxa(self, parent, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, return_tree=False): """ given a parent taxid or scientific species name, returns a list of all its descendants taxids. If intermediate_nodes is set to True, internal nodes will also be dumped. """ try: taxid = int(parent) except ValueError: try: taxid = self.get_name_translator([parent])[parent][0] except KeyError: raise ValueError('%s not found!' %parent) # checks if taxid is a deprecated one, and converts into the right one. _, conversion = self._translate_merged([taxid]) #try to find taxid in synonyms table if conversion: taxid = conversion[taxid] with open(self.dbfile+".traverse.pkl", "rb") as CACHED_TRAVERSE: prepostorder = pickle.load(CACHED_TRAVERSE) descendants = {} found = 0 for tid in prepostorder: if tid == taxid: found += 1 elif found == 1: descendants[tid] = descendants.get(tid, 0) + 1 elif found == 2: break if not found: raise ValueError("taxid not found:%s" %taxid) elif found == 1: return [taxid] if rank_limit or collapse_subspecies or return_tree: tree = self.get_topology(list(descendants.keys()), intermediate_nodes=intermediate_nodes, collapse_subspecies=collapse_subspecies, rank_limit=rank_limit) if return_tree: return tree elif intermediate_nodes: return list(map(int, [n.name for n in tree.get_descendants()])) else: return list(map(int, [n.name for n in tree])) elif intermediate_nodes: return [tid for tid, count in six.iteritems(descendants)] else: return [tid for tid, count in six.iteritems(descendants) if count == 1]
(self, parent, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, return_tree=False)
720,710
ete3.ncbi_taxonomy.ncbiquery
get_fuzzy_name_translation
Given an inexact species name, returns the best match in the NCBI database of taxa names. :argument 0.9 sim: Min word similarity to report a match (from 0 to 1). :return: taxid, species-name-match, match-score
def get_fuzzy_name_translation(self, name, sim=0.9): ''' Given an inexact species name, returns the best match in the NCBI database of taxa names. :argument 0.9 sim: Min word similarity to report a match (from 0 to 1). :return: taxid, species-name-match, match-score ''' import sqlite3.dbapi2 as dbapi2 _db = dbapi2.connect(self.dbfile) _db.enable_load_extension(True) module_path = os.path.split(os.path.realpath(__file__))[0] _db.execute("select load_extension('%s')" % os.path.join(module_path, "SQLite-Levenshtein/levenshtein.sqlext")) print("Trying fuzzy search for %s" % name) maxdiffs = math.ceil(len(name) * (1-sim)) cmd = 'SELECT taxid, spname, LEVENSHTEIN(spname, "%s") AS sim FROM species WHERE sim<=%s ORDER BY sim LIMIT 1;' % (name, maxdiffs) taxid, spname, score = None, None, len(name) result = _db.execute(cmd) try: taxid, spname, score = result.fetchone() except TypeError: cmd = 'SELECT taxid, spname, LEVENSHTEIN(spname, "%s") AS sim FROM synonym WHERE sim<=%s ORDER BY sim LIMIT 1;' % (name, maxdiffs) result = _db.execute(cmd) try: taxid, spname, score = result.fetchone() except: pass else: taxid = int(taxid) else: taxid = int(taxid) norm_score = 1 - (float(score)/len(name)) if taxid: print("FOUND! %s taxid:%s score:%s (%s)" %(spname, taxid, score, norm_score)) return taxid, spname, norm_score
(self, name, sim=0.9)
720,711
ete3.ncbi_taxonomy.ncbiquery
get_lineage
Given a valid taxid number, return its corresponding lineage track as a hierarchically sorted list of parent taxids.
def get_lineage(self, taxid): """Given a valid taxid number, return its corresponding lineage track as a hierarchically sorted list of parent taxids. """ if not taxid: return None taxid = int(taxid) result = self.db.execute('SELECT track FROM species WHERE taxid=%s' %taxid) raw_track = result.fetchone() if not raw_track: #perhaps is an obsolete taxid _, merged_conversion = self._translate_merged([taxid]) if taxid in merged_conversion: result = self.db.execute('SELECT track FROM species WHERE taxid=%s' %merged_conversion[taxid]) raw_track = result.fetchone() # if not raise error if not raw_track: #raw_track = ["1"] raise ValueError("%s taxid not found" %taxid) else: warnings.warn("taxid %s was translated into %s" %(taxid, merged_conversion[taxid])) track = list(map(int, raw_track[0].split(","))) return list(reversed(track))
(self, taxid)
720,712
ete3.ncbi_taxonomy.ncbiquery
get_lineage_translator
Given a valid taxid number, return its corresponding lineage track as a hierarchically sorted list of parent taxids.
def get_lineage_translator(self, taxids): """Given a valid taxid number, return its corresponding lineage track as a hierarchically sorted list of parent taxids. """ all_ids = set(taxids) all_ids.discard(None) all_ids.discard("") query = ','.join(['"%s"' %v for v in all_ids]) result = self.db.execute('SELECT taxid, track FROM species WHERE taxid IN (%s);' %query) id2lineages = {} for tax, track in result.fetchall(): id2lineages[tax] = list(map(int, reversed(track.split(",")))) return id2lineages
(self, taxids)
720,713
ete3.ncbi_taxonomy.ncbiquery
get_name_translator
Given a list of taxid scientific names, returns a dictionary translating them into their corresponding taxids. Exact name match is required for translation.
def get_name_translator(self, names): """ Given a list of taxid scientific names, returns a dictionary translating them into their corresponding taxids. Exact name match is required for translation. """ name2id = {} #name2realname = {} name2origname = {} for n in names: name2origname[n.lower()] = n names = set(name2origname.keys()) query = ','.join(['"%s"' %n for n in six.iterkeys(name2origname)]) cmd = 'select spname, taxid from species where spname IN (%s)' %query result = self.db.execute('select spname, taxid from species where spname IN (%s)' %query) for sp, taxid in result.fetchall(): oname = name2origname[sp.lower()] name2id.setdefault(oname, []).append(taxid) #name2realname[oname] = sp missing = names - set([n.lower() for n in name2id.keys()]) if missing: query = ','.join(['"%s"' %n for n in missing]) result = self.db.execute('select spname, taxid from synonym where spname IN (%s)' %query) for sp, taxid in result.fetchall(): oname = name2origname[sp.lower()] name2id.setdefault(oname, []).append(taxid) #name2realname[oname] = sp return name2id
(self, names)
720,714
ete3.ncbi_taxonomy.ncbiquery
get_rank
return a dictionary converting a list of taxids into their corresponding NCBI taxonomy rank
def get_rank(self, taxids): 'return a dictionary converting a list of taxids into their corresponding NCBI taxonomy rank' all_ids = set(taxids) all_ids.discard(None) all_ids.discard("") query = ','.join(['"%s"' %v for v in all_ids]) cmd = "select taxid, rank FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) id2rank = {} for tax, spname in result.fetchall(): id2rank[tax] = spname return id2rank
(self, taxids)
720,715
ete3.ncbi_taxonomy.ncbiquery
get_taxid_translator
Given a list of taxids, returns a dictionary with their corresponding scientific names.
def get_taxid_translator(self, taxids, try_synonyms=True): """Given a list of taxids, returns a dictionary with their corresponding scientific names. """ all_ids = set(map(int, taxids)) all_ids.discard(None) all_ids.discard("") query = ','.join(['"%s"' %v for v in all_ids]) cmd = "select taxid, spname FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) id2name = {} for tax, spname in result.fetchall(): id2name[tax] = spname # any taxid without translation? lets tray in the merged table if len(all_ids) != len(id2name) and try_synonyms: not_found_taxids = all_ids - set(id2name.keys()) taxids, old2new = self._translate_merged(not_found_taxids) new2old = {v: k for k,v in six.iteritems(old2new)} if old2new: query = ','.join(['"%s"' %v for v in new2old]) cmd = "select taxid, spname FROM species WHERE taxid IN (%s);" %query result = self.db.execute(cmd) for tax, spname in result.fetchall(): id2name[new2old[tax]] = spname return id2name
(self, taxids, try_synonyms=True)
720,716
ete3.ncbi_taxonomy.ncbiquery
get_topology
Given a list of taxid numbers, return the minimal pruned NCBI taxonomy tree containing all of them. :param False intermediate_nodes: If True, single child nodes representing the complete lineage of leaf nodes are kept. Otherwise, the tree is pruned to contain the first common ancestor of each group. :param None rank_limit: If valid NCBI rank name is provided, the tree is pruned at that given level. For instance, use rank="species" to get rid of sub-species or strain leaf nodes. :param False collapse_subspecies: If True, any item under the species rank will be collapsed into the species upper node.
def get_topology(self, taxids, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, annotate=True): """Given a list of taxid numbers, return the minimal pruned NCBI taxonomy tree containing all of them. :param False intermediate_nodes: If True, single child nodes representing the complete lineage of leaf nodes are kept. Otherwise, the tree is pruned to contain the first common ancestor of each group. :param None rank_limit: If valid NCBI rank name is provided, the tree is pruned at that given level. For instance, use rank="species" to get rid of sub-species or strain leaf nodes. :param False collapse_subspecies: If True, any item under the species rank will be collapsed into the species upper node. """ from .. import PhyloTree taxids, merged_conversion = self._translate_merged(taxids) if len(taxids) == 1: root_taxid = int(list(taxids)[0]) with open(self.dbfile+".traverse.pkl", "rb") as CACHED_TRAVERSE: prepostorder = pickle.load(CACHED_TRAVERSE) descendants = {} found = 0 nodes = {} hit = 0 visited = set() start = prepostorder.index(root_taxid) try: end = prepostorder.index(root_taxid, start+1) subtree = prepostorder[start:end+1] except ValueError: # If root taxid is not found in postorder, must be a tip node subtree = [root_taxid] leaves = set([v for v, count in Counter(subtree).items() if count == 1]) nodes[root_taxid] = PhyloTree(name=str(root_taxid)) current_parent = nodes[root_taxid] for tid in subtree: if tid in visited: current_parent = nodes[tid].up else: visited.add(tid) nodes[tid] = PhyloTree(name=str(tid)) current_parent.add_child(nodes[tid]) if tid not in leaves: current_parent = nodes[tid] root = nodes[root_taxid] else: taxids = set(map(int, taxids)) sp2track = {} elem2node = {} id2lineage = self.get_lineage_translator(taxids) all_taxids = set() for lineage in id2lineage.values(): all_taxids.update(lineage) id2rank = self.get_rank(all_taxids) for sp in taxids: track = [] lineage = id2lineage[sp] for elem in lineage: if elem not in elem2node: node = elem2node.setdefault(elem, PhyloTree()) node.name = str(elem) node.taxid = elem node.add_feature("rank", str(id2rank.get(int(elem), "no rank"))) else: node = elem2node[elem] track.append(node) sp2track[sp] = track # generate parent child relationships for sp, track in six.iteritems(sp2track): parent = None for elem in track: if parent and elem not in parent.children: parent.add_child(elem) if rank_limit and elem.rank == rank_limit: break parent = elem root = elem2node[1] #remove onechild-nodes if not intermediate_nodes: for n in root.get_descendants(): if len(n.children) == 1 and int(n.name) not in taxids: n.delete(prevent_nondicotomic=False) if len(root.children) == 1: tree = root.children[0].detach() else: tree = root if collapse_subspecies: to_detach = [] for node in tree.traverse(): if node.rank == "species": to_detach.extend(node.children) for n in to_detach: n.detach() if annotate: self.annotate_tree(tree) return tree
(self, taxids, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, annotate=True)
720,717
ete3.ncbi_taxonomy.ncbiquery
translate_to_names
Given a list of taxid numbers, returns another list with their corresponding scientific names.
def translate_to_names(self, taxids): """ Given a list of taxid numbers, returns another list with their corresponding scientific names. """ id2name = self.get_taxid_translator(taxids) names = [] for sp in taxids: names.append(id2name.get(sp, sp)) return names
(self, taxids)
720,718
ete3.ncbi_taxonomy.ncbiquery
update_taxonomy_database
Updates the ncbi taxonomy database by downloading and parsing the latest taxdump.tar.gz file from the NCBI FTP site (via HTTP). :param None taxdump_file: an alternative location of the taxdump.tax.gz file.
def update_taxonomy_database(self, taxdump_file=None): """Updates the ncbi taxonomy database by downloading and parsing the latest taxdump.tar.gz file from the NCBI FTP site (via HTTP). :param None taxdump_file: an alternative location of the taxdump.tax.gz file. """ if not taxdump_file: update_db(self.dbfile) else: update_db(self.dbfile, taxdump_file)
(self, taxdump_file=None)
720,719
ete3.nexml
Nexml
Creates a new nexml project.
class Nexml(_nexml.Nexml): """ Creates a new nexml project. """ def __repr__(self): return "NeXML project <%s>" %hex(hash(self)) def __init__(self, *args, **kargs): _nexml.Nexml.__init__(self, *args, **kargs) def build_from_file(self, fname, index_otus=True): """ Populate Nexml project with data in a nexml file. """ doc = _nexml.parsexml_(fname) rootNode = doc.getroot() rootTag, rootClass = _nexml.get_root_tag(rootNode) if rootClass is None: rootTag = 'Nexml' rootClass = self.__class__ #rootObj = rootClass.factory() self.build(rootNode) # This keeps a pointer from all trees to the parent nexml # project. This way I can access other parts, such as otus, # etc... if index_otus: id2taxa = {} for taxa in self.get_otus(): id2taxon = {} for taxon in taxa.otu: id2taxon[taxon.id] = taxon id2taxa[taxa.id] = [taxa, id2taxon] for trees in self.get_trees(): for t in trees.get_tree(): t.set_nexml_project(self) if trees.otus in id2taxa: t.nexml_otus = id2taxa[trees.otus][0] def export(self, outfile=stdout, level=0): namespace='xmlns:nex="http://www.nexml.org/2009"' return super(Nexml, self).export(outfile=outfile, level=level, namespacedef_=namespace)
(*args, **kargs)
720,720
ete3.nexml
__init__
null
def __init__(self, *args, **kargs): _nexml.Nexml.__init__(self, *args, **kargs)
(self, *args, **kargs)
720,721
ete3.nexml
__repr__
null
def __repr__(self): return "NeXML project <%s>" %hex(hash(self))
(self)
720,722
ete3.nexml._nexml
add_characters
null
def add_characters(self, value): self.characters.append(value)
(self, value)
720,723
ete3.nexml._nexml
add_meta
null
def add_meta(self, value): self.meta.append(value)
(self, value)
720,724
ete3.nexml._nexml
add_otus
null
def add_otus(self, value): self.otus.append(value)
(self, value)
720,725
ete3.nexml._nexml
add_trees
null
def add_trees(self, value): self.trees.append(value)
(self, value)
720,726
ete3.nexml._nexml
build
null
def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_)
(self, node)
720,727
ete3.nexml._nexml
buildAttributes
null
def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('version', node) if value is not None and 'version' not in already_processed: already_processed.append('version') try: self.version = float(value) except ValueError as exp: raise ValueError('Bad float/double attribute (version): %s' % exp) self.validate_Nexml1_0(self.version) # validate type Nexml1_0 value = find_attr_value_('generator', node) if value is not None and 'generator' not in already_processed: already_processed.append('generator') self.generator = value super(Nexml, self).buildAttributes(node, attrs, already_processed)
(self, node, attrs, already_processed)
720,728
ete3.nexml._nexml
buildChildren
null
def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'otus': obj_ = Taxa.factory() obj_.build(child_) self.otus.append(obj_) elif nodeName_ == 'characters': type_name_ = child_.attrib.get('{http://www.w3.org/2001/XMLSchema-instance}type') if type_name_ is None: type_name_ = child_.attrib.get('type') if type_name_ is not None: type_names_ = type_name_.split(':') if len(type_names_) == 1: type_name_ = type_names_[0] else: type_name_ = type_names_[1] class_ = globals()[type_name_] obj_ = class_.factory() obj_.build(child_) else: raise NotImplementedError( 'Class not implemented for <characters> element') self.characters.append(obj_) elif nodeName_ == 'trees': obj_ = Trees.factory() obj_.build(child_) self.trees.append(obj_) super(Nexml, self).buildChildren(child_, node, nodeName_, True)
(self, child_, node, nodeName_, fromsubclass_=False)
720,729
ete3.nexml
build_from_file
Populate Nexml project with data in a nexml file.
def build_from_file(self, fname, index_otus=True): """ Populate Nexml project with data in a nexml file. """ doc = _nexml.parsexml_(fname) rootNode = doc.getroot() rootTag, rootClass = _nexml.get_root_tag(rootNode) if rootClass is None: rootTag = 'Nexml' rootClass = self.__class__ #rootObj = rootClass.factory() self.build(rootNode) # This keeps a pointer from all trees to the parent nexml # project. This way I can access other parts, such as otus, # etc... if index_otus: id2taxa = {} for taxa in self.get_otus(): id2taxon = {} for taxon in taxa.otu: id2taxon[taxon.id] = taxon id2taxa[taxa.id] = [taxa, id2taxon] for trees in self.get_trees(): for t in trees.get_tree(): t.set_nexml_project(self) if trees.otus in id2taxa: t.nexml_otus = id2taxa[trees.otus][0]
(self, fname, index_otus=True)
720,730
ete3.nexml
export
null
def export(self, outfile=stdout, level=0): namespace='xmlns:nex="http://www.nexml.org/2009"' return super(Nexml, self).export(outfile=outfile, level=level, namespacedef_=namespace)
(self, outfile=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, level=0)
720,731
ete3.nexml._nexml
exportAttributes
null
def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Nexml'): super(Nexml, self).exportAttributes(outfile, level, already_processed, namespace_, name_='Nexml') if self.version is not None and 'version' not in already_processed: already_processed.append('version') outfile.write(' version=%s' % (quote_attrib(self.version), )) if self.generator is not None and 'generator' not in already_processed: already_processed.append('generator') outfile.write(' generator=%s' % (self.gds_format_string(quote_attrib(self.generator).encode(ExternalEncoding), input_name='generator'), ))
(self, outfile, level, already_processed, namespace_='', name_='Nexml')
720,732
ete3.nexml._nexml
exportChildren
null
def exportChildren(self, outfile, level, namespace_='', name_='Nexml', fromsubclass_=False): super(Nexml, self).exportChildren(outfile, level, namespace_, name_, True) for otus_ in self.otus: otus_.export(outfile, level, namespace_, name_='otus') for characters_ in self.get_characters(): characters_.export(outfile, level, namespace_, name_='characters') for trees_ in self.trees: trees_.export(outfile, level, namespace_, name_='trees')
(self, outfile, level, namespace_='', name_='Nexml', fromsubclass_=False)
720,733
ete3.nexml._nexml
exportLiteral
null
def exportLiteral(self, outfile, level, name_='Nexml'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_)
(self, outfile, level, name_='Nexml')
720,734
ete3.nexml._nexml
exportLiteralAttributes
null
def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.version is not None and 'version' not in already_processed: already_processed.append('version') showIndent(outfile, level) outfile.write('version = %f,\n' % (self.version,)) if self.generator is not None and 'generator' not in already_processed: already_processed.append('generator') showIndent(outfile, level) outfile.write('generator = "%s",\n' % (self.generator,)) super(Nexml, self).exportLiteralAttributes(outfile, level, already_processed, name_)
(self, outfile, level, already_processed, name_)
720,735
ete3.nexml._nexml
exportLiteralChildren
null
def exportLiteralChildren(self, outfile, level, name_): super(Nexml, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('otus=[\n') level += 1 for otus_ in self.otus: showIndent(outfile, level) outfile.write('model_.Taxa(\n') otus_.exportLiteral(outfile, level, name_='Taxa') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('characters=[\n') level += 1 for characters_ in self.characters: showIndent(outfile, level) outfile.write('model_.AbstractBlock(\n') characters_.exportLiteral(outfile, level, name_='AbstractBlock') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('trees=[\n') level += 1 for trees_ in self.trees: showIndent(outfile, level) outfile.write('model_.Trees(\n') trees_.exportLiteral(outfile, level, name_='Trees') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n')
(self, outfile, level, name_)
720,736
ete3.nexml._nexml
factory
null
def factory(*args_, **kwargs_): if Nexml.subclass: return Nexml.subclass(*args_, **kwargs_) else: return Nexml(*args_, **kwargs_)
(*args_, **kwargs_)
720,737
ete3.nexml._nexml
gds_format_boolean
null
def gds_format_boolean(self, input_data, input_name=''): return '%s' % input_data
(self, input_data, input_name='')
720,738
ete3.nexml._nexml
gds_format_boolean_list
null
def gds_format_boolean_list(self, input_data, input_name=''): return '%s' % input_data
(self, input_data, input_name='')
720,739
ete3.nexml._nexml
gds_format_double
null
def gds_format_double(self, input_data, input_name=''): return '%e' % input_data
(self, input_data, input_name='')
720,740
ete3.nexml._nexml
gds_format_double_list
null
def gds_format_double_list(self, input_data, input_name=''): return '%s' % input_data
(self, input_data, input_name='')
720,741
ete3.nexml._nexml
gds_format_float
null
def gds_format_float(self, input_data, input_name=''): return '%f' % input_data
(self, input_data, input_name='')
720,742
ete3.nexml._nexml
gds_format_float_list
null
def gds_format_float_list(self, input_data, input_name=''): return '%s' % input_data
(self, input_data, input_name='')
720,743
ete3.nexml._nexml
gds_format_integer
null
def gds_format_integer(self, input_data, input_name=''): return '%d' % input_data
(self, input_data, input_name='')
720,744
ete3.nexml._nexml
gds_format_integer_list
null
def gds_format_integer_list(self, input_data, input_name=''): return '%s' % input_data
(self, input_data, input_name='')
720,745
ete3.nexml._nexml
gds_format_string
null
def gds_format_string(self, input_data, input_name=''): return input_data
(self, input_data, input_name='')
720,746
ete3.nexml._nexml
gds_str_lower
null
def gds_str_lower(self, instring): return instring.lower()
(self, instring)
720,747
ete3.nexml._nexml
gds_validate_boolean
null
def gds_validate_boolean(self, input_data, node, input_name=''): return input_data
(self, input_data, node, input_name='')
720,748
ete3.nexml._nexml
gds_validate_boolean_list
null
def gds_validate_boolean_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: if value not in ('true', '1', 'false', '0', ): raise_parse_error(node, 'Requires sequence of booleans ("true", "1", "false", "0")') return input_data
(self, input_data, node, input_name='')
720,749
ete3.nexml._nexml
gds_validate_double
null
def gds_validate_double(self, input_data, node, input_name=''): return input_data
(self, input_data, node, input_name='')
720,750
ete3.nexml._nexml
gds_validate_double_list
null
def gds_validate_double_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: try: fvalue = float(value) except (TypeError, ValueError) as exp: raise_parse_error(node, 'Requires sequence of doubles') return input_data
(self, input_data, node, input_name='')
720,751
ete3.nexml._nexml
gds_validate_float
null
def gds_validate_float(self, input_data, node, input_name=''): return input_data
(self, input_data, node, input_name='')
720,752
ete3.nexml._nexml
gds_validate_float_list
null
def gds_validate_float_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: try: fvalue = float(value) except (TypeError, ValueError) as exp: raise_parse_error(node, 'Requires sequence of floats') return input_data
(self, input_data, node, input_name='')
720,753
ete3.nexml._nexml
gds_validate_integer
null
def gds_validate_integer(self, input_data, node, input_name=''): return input_data
(self, input_data, node, input_name='')
720,754
ete3.nexml._nexml
gds_validate_integer_list
null
def gds_validate_integer_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: try: fvalue = float(value) except (TypeError, ValueError) as exp: raise_parse_error(node, 'Requires sequence of integers') return input_data
(self, input_data, node, input_name='')
720,755
ete3.nexml._nexml
gds_validate_string
null
def gds_validate_string(self, input_data, node, input_name=''): return input_data
(self, input_data, node, input_name='')
720,756
ete3.nexml._nexml
get_about
null
def get_about(self): return self.about
(self)
720,757
ete3.nexml._nexml
get_anyAttributes_
null
def get_anyAttributes_(self): return self.anyAttributes_
(self)
720,758
ete3.nexml._nexml
get_characters
null
def get_characters(self): return self.characters
(self)
720,759
ete3.nexml._nexml
get_generator
null
def get_generator(self): return self.generator
(self)
720,760
ete3.nexml._nexml
get_meta
null
def get_meta(self): return self.meta
(self)
720,761
ete3.nexml._nexml
get_otus
null
def get_otus(self): return self.otus
(self)
720,762
ete3.nexml._nexml
get_path_
null
def get_path_(self, node): path_list = [] self.get_path_list_(node, path_list) path_list.reverse() path = '/'.join(path_list) return path
(self, node)