Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
Japanese
Size:
< 1K
License:
metadata
annotations_creators:
- derived
language:
- ja
license: cc-by-sa-4.0
multilinguality: monolingual
task_categories:
- text-retrieval
task_ids:
- document-retrieval
tags:
- mteb
- text
- code
- japanese
- sample
configs:
- config_name: corpus
data_files:
- split: train
path: corpus/train-*
- config_name: default
data_files:
- split: test
path: data/test-*
- config_name: queries
data_files:
- split: train
path: queries/train-*
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 338
num_examples: 5
download_size: 1765
dataset_size: 338
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 150
num_examples: 5
download_size: 1551
dataset_size: 150
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 453
num_examples: 5
download_size: 1667
dataset_size: 453
JapaneseCode1Retrieval-sample
A sample dataset for Japanese-English code retrieval evaluation. This dataset contains Japanese natural language descriptions paired with Python code snippets.
Task category
Retrieval
Domains
Programming, Code Generation
Dataset Structure
The dataset follows the standard MTEB retrieval format:
corpus/corpus-00000-of-00001.parquet
: 5 Python code documents with fields_id
,title
,text
queries/queries-00000-of-00001.parquet
: 5 Japanese queries with fields_id
,text
data/test-00000-of-00001.parquet
: 5 relevance judgments with fieldsquery-id
,corpus-id
,score
Usage
You can evaluate an embedding model on this sample dataset using the following code:
import mteb
# Load the sample dataset
task = mteb.get_task("JapaneseCode1Retrieval-sample")
evaluator = mteb.MTEB(tasks=[task])
# Run evaluation with your model
model = mteb.get_model("your-model-name")
results = evaluator.run(model)
Sample Content
This sample dataset contains:
- 5 Japanese natural language queries describing programming tasks
- 5 corresponding Python code snippets
- 5 relevance judgments connecting queries to code
The data has been slightly modified for demonstration purposes.
License
Please refer to the CC BY-SA 4.0 license terms.