fzoll's picture
Upload dataset
779f09f verified
---
annotations_creators:
- derived
language:
- ja
license: cc-by-sa-4.0
multilinguality: monolingual
task_categories:
- text-retrieval
task_ids:
- document-retrieval
tags:
- mteb
- text
- code
- japanese
- sample
configs:
- config_name: corpus
data_files:
- split: train
path: corpus/train-*
- config_name: default
data_files:
- split: test
path: data/test-*
- config_name: queries
data_files:
- split: train
path: queries/train-*
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 338
num_examples: 5
download_size: 1765
dataset_size: 338
- config_name: default
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 150
num_examples: 5
download_size: 1551
dataset_size: 150
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 453
num_examples: 5
download_size: 1667
dataset_size: 453
---
# JapaneseCode1Retrieval-sample
A sample dataset for Japanese-English code retrieval evaluation. This dataset contains Japanese natural language descriptions paired with Python code snippets.
## Task category
Retrieval
## Domains
Programming, Code Generation
## Dataset Structure
The dataset follows the standard MTEB retrieval format:
- `corpus/corpus-00000-of-00001.parquet`: 5 Python code documents with fields `_id`, `title`, `text`
- `queries/queries-00000-of-00001.parquet`: 5 Japanese queries with fields `_id`, `text`
- `data/test-00000-of-00001.parquet`: 5 relevance judgments with fields `query-id`, `corpus-id`, `score`
## Usage
You can evaluate an embedding model on this sample dataset using the following code:
```python
import mteb
# Load the sample dataset
task = mteb.get_task("JapaneseCode1Retrieval-sample")
evaluator = mteb.MTEB(tasks=[task])
# Run evaluation with your model
model = mteb.get_model("your-model-name")
results = evaluator.run(model)
```
## Sample Content
This sample dataset contains:
- 5 Japanese natural language queries describing programming tasks
- 5 corresponding Python code snippets
- 5 relevance judgments connecting queries to code
The data has been slightly modified for demonstration purposes.
## License
Please refer to the CC BY-SA 4.0 license terms.