nano-imagenet-c / README.md
niuniandaji's picture
Upload README.md with huggingface_hub
09b56d6 verified
|
raw
history blame
2 kB
metadata
license: mit
tags:
  - image-classification
  - computer-vision
  - imagenet-c

Nano ImageNet-C (Severity 5)

This is a randomly sampled subset of the ImageNet-C dataset, containing 5,000 images exclusively from corruption severity level 5. It is designed for efficient testing and validation of model robustness.

这是一个从 ImageNet-C 数据集中随机抽样的子集,包含 5000 张仅来自损坏等级为 5 的图像。它旨在用于高效地测试和验证模型的鲁棒性。

How to Generate / 如何生成

This dataset was generated using the create_nano_dataset.py script included in this repository. To ensure reproducibility, the following parameters were used:

本数据集使用此仓库中包含的 create_nano_dataset.py 脚本生成。为确保可复现性,生成时使用了以下参数:

  • Source Dataset / 源数据集: The full ImageNet-C dataset is required. / 需要完整的 ImageNet-C 数据集。
  • Random Seed / 随机种子: 7600
  • Python Version / Python 版本: 3.10.14

Dataset Structure / 数据集结构

The dataset is provided as a single .tar file named nano-imagenet-c.tar in the webdataset format. The internal structure preserves the original ImageNet-C hierarchy: corruption_type/class_name/image.jpg.

数据集以 webdataset 格式打包在名为 nano-imagenet-c.tar 的单个 .tar 文件中。其内部结构保留了原始 ImageNet-C 的层次结构:corruption_type/class_name/image.jpg

Citation / 引用

If you use this dataset, please cite the original ImageNet-C paper:

如果您使用此数据集,请引用原始 ImageNet-C 的论文:

@inproceedings{danhendrycks2019robustness,
  title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
  author={Dan Hendrycks and Thomas Dietterich},
  booktitle={International Conference on Learning Representations},
  year={2019},
  url={https://openreview.net/forum?id=HJz6tiCqYm},
}