Commit
·
be52ebc
1
Parent(s):
bcf486c
Add README
Browse files- README.md +78 -0
- assets/teaser.mp4 +3 -0
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language: en
|
4 |
+
tags:
|
5 |
+
- robotics
|
6 |
+
- motion-retargeting
|
7 |
+
- reinforcement-learning
|
8 |
+
- humanoid
|
9 |
+
- trajectory-optimization
|
10 |
+
---
|
11 |
+
|
12 |
+
# OmniRetarget Dataset: Humanoid Loco-Manipulation & Scene Interaction
|
13 |
+
|
14 |
+
This dataset contains motion trajectories of a G1 humanoid robot interacting with objects and complex terrains. It was generated by **OMNIRETARGET**, an interaction-preserving data generation engine that produces high-quality, kinematically feasible trajectories free of common artifacts like foot-skating and penetration.
|
15 |
+
|
16 |
+
<div align="center">
|
17 |
+
<video autoplay loop muted controls width="70%">
|
18 |
+
<source src="https://huggingface.co/datasets/omniretarget/OmniRetarget_Dataset/resolve/main/assets/teaser.mp4" type="video/mp4">
|
19 |
+
</video>
|
20 |
+
</div>
|
21 |
+
|
22 |
+
## Dataset Structure
|
23 |
+
|
24 |
+
| Subset | Description | Source Data | Duration (hours) |
|
25 |
+
| ------------------------ | --------------------------------------------------- | --------------- | ---------------- |
|
26 |
+
| `robot-object/` | Motions of the robot carrying objects. | OMOMO | 2.78 |
|
27 |
+
| `robot-terrain/` | Dynamic motions of the robot climbing challenging terrains. | In-house MoCap | 0.5 |
|
28 |
+
| `robot-object-terrain/` | Motions involving both object and terrain interaction. | In-house MoCap | 0.5 |
|
29 |
+
| **Total** | | | **3.78** |
|
30 |
+
|
31 |
+
Additionally, the `models/` directory contains all the necessary URDF, SDF, and OBJ assets for visualization. These are not required for loading or training with the trajectory data.
|
32 |
+
|
33 |
+
## Data Format
|
34 |
+
|
35 |
+
Each `.npz` file contains a single trajectory with two keys:
|
36 |
+
- **`fps`**: Frames per second.
|
37 |
+
- **`qpos`**: A NumPy array of shape `[T, D]` representing the system state over `T` timesteps. The vector is structured as follows:
|
38 |
+
- **Robot Pose (36D):**
|
39 |
+
- Floating Base `[qw, qx, qy, qz, x, y, z]` (7D)
|
40 |
+
- Joint Positions (29D)
|
41 |
+
- **Object Pose (7D, optional):**
|
42 |
+
- `[qw, qx, qy, qz, x, y, z]`
|
43 |
+
- The total dimension `D` is 36 for motions without an object, and 43 with an object.
|
44 |
+
|
45 |
+
## Quick Usage
|
46 |
+
```bash
|
47 |
+
# Clone the repository
|
48 |
+
git lfs install
|
49 |
+
git clone https://huggingface.co/datasets/omniretarget/OmniRetarget_Dataset
|
50 |
+
|
51 |
+
# Load data
|
52 |
+
pip install numpy
|
53 |
+
import glob, numpy as np
|
54 |
+
paths = glob.glob("robot-object/*.npz")
|
55 |
+
with np.load(paths[0]) as data:
|
56 |
+
qpos = data["qpos"] # (T, D)
|
57 |
+
fps = float(data["fps"]) # e.g., 30.0
|
58 |
+
```
|
59 |
+
|
60 |
+
## Visualize (optional)
|
61 |
+
A `visualize.py` script using Drake and Meshcat is provided.
|
62 |
+
```bash
|
63 |
+
# Install dependencies
|
64 |
+
pip install drake
|
65 |
+
|
66 |
+
# Set `task` inside the script: "object" | "terrain" | "object-terrain"
|
67 |
+
python visualize.py
|
68 |
+
```
|
69 |
+
|
70 |
+
## Citation
|
71 |
+
```bibtex
|
72 |
+
@inproceedings{Yang2026OmniRetarget,
|
73 |
+
title={OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction},
|
74 |
+
author={Yang, Lujie and Huang, Xiaoyu and Wu, Zhen and Kanazawa, Angjoo and Abbeel, Pieter and Sferrazza, Carmelo and Liu, C. Karen and Duan, Rocky and Shi, Guanya},
|
75 |
+
booktitle={arXiv},
|
76 |
+
year={2026}
|
77 |
+
}
|
78 |
+
```
|
assets/teaser.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:866b14534f597b0e2e3230518523b90f4069d2b6baefcf2e4998e6fa057fdf79
|
3 |
+
size 2642654
|