metadata
license: mit
task_categories:
- image-to-text
- object-detection
- token-classification
language:
- id
- en
tags:
- receipt
- ocr
- information-extraction
- cord
- indonesian
size_categories:
- n<1K
dataset_info:
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 7311152
num_examples: 5
download_size: 7282064
dataset_size: 7311152
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
parlarlax/tiny-cord
CORD (Consolidated Receipt Dataset) is a dataset for receipt understanding tasks. This dataset contains Indonesian restaurant receipts with structured annotations for menu items, prices, and text extraction with bounding boxes.
Dataset Details
Dataset Description
The CORD dataset contains receipt images and their corresponding structured annotations. Each example includes:
- Receipt Image: High-resolution image of Indonesian restaurant receipts
- Menu Items: Structured data with item names, quantities, and prices
- Totals: Subtotal, service charges, taxes, and final total
- Text Annotations: Detailed text extraction with bounding box coordinates
Dataset Structure
{
'image': PIL.Image,
'image_id': int,
'image_size': {'width': int, 'height': int},
'version': str,
'split': str,
'menu_items': [
{'nm': str, 'cnt': str, 'price': str}, ...
],
'totals': {
'subtotal_price': str,
'service_price': str,
'tax_price': str,
'etc': str,
'total_price': str
},
'text_annotations': [
{
'words': [{'text': str, 'bbox': [int, int, int, int], 'is_key': int}, ...],
'category': str,
'group_id': int,
'sub_group_id': int
}, ...
]
}
Supported Tasks
- Receipt Understanding: Extract structured information from receipt images
- OCR (Optical Character Recognition): Text extraction with spatial information
- Information Extraction: Named entity recognition for receipt components
- Document Layout Analysis: Understanding spatial relationships in receipts
Languages
The receipts contain text in:
- Indonesian (primary language)
- English (some menu items and labels)
Dataset Statistics
- Number of examples: Varies based on available receipt images
- Image dimensions: 864 x 1296 pixels
- Average menu items per receipt: ~20-25 items
- Text annotations include bounding boxes for precise localization
Dataset Creation
This dataset was created from receipt images and corresponding JSON annotations containing ground truth information about menu items, prices, and text locations.
Source Data
The source receipts are from Indonesian restaurants, primarily from the Bali region. All prices are in Indonesian Rupiah (IDR).
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("parlarlax/tiny-cord")
# Access an example
example = dataset['train'][0]
image = example['image']
menu_items = example['menu_items']
total_price = example['totals']['total_price']
Dataset Card Contact
For questions or issues regarding this dataset, please create an issue in the repository.