|
--- |
|
license: mit |
|
task_categories: |
|
- image-to-text |
|
- object-detection |
|
- token-classification |
|
language: |
|
- id |
|
- en |
|
tags: |
|
- receipt |
|
- ocr |
|
- information-extraction |
|
- cord |
|
- indonesian |
|
size_categories: |
|
- n<1K |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: ground_truth |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 7311152.0 |
|
num_examples: 5 |
|
download_size: 7282064 |
|
dataset_size: 7311152.0 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
# parlarlax/tiny-cord |
|
|
|
|
|
CORD (Consolidated Receipt Dataset) is a dataset for receipt understanding tasks. |
|
This dataset contains Indonesian restaurant receipts with structured annotations |
|
for menu items, prices, and text extraction with bounding boxes. |
|
|
|
|
|
## Dataset Details |
|
|
|
### Dataset Description |
|
|
|
The CORD dataset contains receipt images and their corresponding structured annotations. |
|
Each example includes: |
|
|
|
- **Receipt Image**: High-resolution image of Indonesian restaurant receipts |
|
- **Menu Items**: Structured data with item names, quantities, and prices |
|
- **Totals**: Subtotal, service charges, taxes, and final total |
|
- **Text Annotations**: Detailed text extraction with bounding box coordinates |
|
|
|
### Dataset Structure |
|
|
|
```python |
|
{ |
|
'image': PIL.Image, |
|
'image_id': int, |
|
'image_size': {'width': int, 'height': int}, |
|
'version': str, |
|
'split': str, |
|
'menu_items': [ |
|
{'nm': str, 'cnt': str, 'price': str}, ... |
|
], |
|
'totals': { |
|
'subtotal_price': str, |
|
'service_price': str, |
|
'tax_price': str, |
|
'etc': str, |
|
'total_price': str |
|
}, |
|
'text_annotations': [ |
|
{ |
|
'words': [{'text': str, 'bbox': [int, int, int, int], 'is_key': int}, ...], |
|
'category': str, |
|
'group_id': int, |
|
'sub_group_id': int |
|
}, ... |
|
] |
|
} |
|
``` |
|
|
|
### Supported Tasks |
|
|
|
- **Receipt Understanding**: Extract structured information from receipt images |
|
- **OCR (Optical Character Recognition)**: Text extraction with spatial information |
|
- **Information Extraction**: Named entity recognition for receipt components |
|
- **Document Layout Analysis**: Understanding spatial relationships in receipts |
|
|
|
### Languages |
|
|
|
The receipts contain text in: |
|
- Indonesian (primary language) |
|
- English (some menu items and labels) |
|
|
|
### Dataset Statistics |
|
|
|
- Number of examples: Varies based on available receipt images |
|
- Image dimensions: 864 x 1296 pixels |
|
- Average menu items per receipt: ~20-25 items |
|
- Text annotations include bounding boxes for precise localization |
|
|
|
## Dataset Creation |
|
|
|
This dataset was created from receipt images and corresponding JSON annotations |
|
containing ground truth information about menu items, prices, and text locations. |
|
|
|
### Source Data |
|
|
|
The source receipts are from Indonesian restaurants, primarily from the Bali region. |
|
All prices are in Indonesian Rupiah (IDR). |
|
|
|
## Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("parlarlax/tiny-cord") |
|
|
|
# Access an example |
|
example = dataset['train'][0] |
|
image = example['image'] |
|
menu_items = example['menu_items'] |
|
total_price = example['totals']['total_price'] |
|
``` |
|
|
|
## Dataset Card Contact |
|
|
|
For questions or issues regarding this dataset, please create an issue in the repository. |
|
|