|
--- |
|
language: |
|
- ar |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: Amiri |
|
path: Amiri/*.csv |
|
- split: Sakkal_Majalla |
|
path: Sakkal_Majalla/*.csv |
|
- split: Arial |
|
path: Arial/*.csv |
|
- split: Calibri |
|
path: Calibri/*.csv |
|
- split: Scheherazade_New |
|
path: Scheherazade_New/*.csv |
|
features: |
|
text: |
|
dtype: string |
|
csv_options: |
|
delimiter: ',' |
|
quotechar: '"' |
|
encoding: utf-8 |
|
tags: |
|
- dataset |
|
- OCR |
|
- Arabic |
|
- Image_To_Text |
|
license: apache-2.0 |
|
task_categories: |
|
- image-to-text |
|
pretty_name: 'SAND: A Large-Scale Synthetic Arabic OCR Corpus for Vision-Language Models' |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# SARD: Synthetic Arabic Recognition Dataset |
|
|
|
[](https://huggingface.co/datasets/riotu-lab/SAND) |
|
[](https://github.com/riotu-lab/text2image) |
|
|
|
## Overview |
|
|
|
**SARD** (Synthetic Arabic Recognition Dataset) is a large-scale, synthetically generated dataset designed for training and evaluating Optical Character Recognition (OCR) models for Arabic text. This dataset addresses the critical need for comprehensive Arabic text recognition resources by providing controlled, diverse, and scalable training data that simulates real-world book layouts. |
|
|
|
## Key Features |
|
|
|
- **Massive Scale**: 743,000 document images containing 662.15 million words |
|
- **Typographic Diversity**: Five distinct Arabic fonts (Amiri, Sakkal Majalla, Arial, Calibri, and Scheherazade New) |
|
- **Structured Formatting**: Designed to mimic real-world book layouts with consistent typography |
|
- **Clean Data**: Synthetically generated with no scanning artifacts, blur, or distortions |
|
- **Content Diversity**: Text spans multiple domains including culture, literature, Shariah, social topics, and more |
|
|
|
## Dataset Structure |
|
|
|
The dataset is divided into five splits based on font name: |
|
|
|
- **Amiri**: ~148,541 document images |
|
- **Sakkal Majalla**: ~148,541 document images |
|
- **Arial**: ~148,541 document images |
|
- **Calibri**: ~148,541 document images |
|
- **Scheherazade New**: ~148,541 document images |
|
|
|
📋 Sample Images |
|
<div align="center"> |
|
<table> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/gwF9jkkkpzRSzrP9GCE_l.png" width="300" alt="Sample 1 - Amiri Font"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/dsqWoCh5x31eGq-u-PqPS.png" width="300" alt="Sample 2 - Arial Font"/></td> |
|
</tr> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/2XK9Ey6k6HSDXKXCxmVRG.png" width="300" alt="Sample 3 - Calibri Font"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/CxKITKvc3EnDIuqnNy_bV.png" width="300" alt="Sample 4 - Scheherazade Font"/></td> |
|
</tr> |
|
</table> |
|
</div> |
|
|
|
Each split contains data specific to a single font with the following attributes: |
|
|
|
- `image_name`: Unique identifier for each image |
|
- `chunk`: The text content associated with the image |
|
- `font_name`: The font used in text rendering |
|
- `image_base64`: Base64-encoded image representation |
|
|
|
## Content Distribution |
|
|
|
| Category | Number of Articles | |
|
|----------|-------------------| |
|
| Culture | 13,253 | |
|
| Fatawa & Counsels | 8,096 | |
|
| Literature & Language | 11,581 | |
|
| Bibliography | 26,393 | |
|
| Publications & Competitions | 1,123 | |
|
| Shariah | 46,665 | |
|
| Social | 8,827 | |
|
| Translations | 443 | |
|
| Muslim's News | 16,725 | |
|
| **Total Articles** | **133,105** | |
|
|
|
## Font Specifications |
|
|
|
| Font | Words Per Page | Font Size | |
|
|------|----------------|-----------| |
|
| Sakkal Majalla | 50–300 | 14 pt | |
|
| Arial | 50–500 | 12 pt | |
|
| Calibri | 50–500 | 12 pt | |
|
| Amiri | 50–300 | 12 pt | |
|
| Scheherazade | 50–250 | 12 pt | |
|
|
|
## Page Layout |
|
|
|
| Specification | Measurement | |
|
|---------------|-------------| |
|
| Left Margin | 0.9 inches | |
|
| Right Margin | 0.9 inches | |
|
| Top Margin | 1.0 inch | |
|
| Bottom Margin | 1.0 inch | |
|
| Gutter Margin | 0.2 inches | |
|
| Page Width | 8.27 inches (A4) | |
|
| Page Height | 11.69 inches (A4) | |
|
|
|
## Usage Example |
|
|
|
```python |
|
from datasets import load_dataset |
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
|
|
# Load dataset with streaming enabled |
|
ds = load_dataset("riotu-lab/SARD", streaming=True) |
|
print(ds) |
|
|
|
# Iterate over a specific font dataset (e.g., Amiri) |
|
for sample in ds["Amiri"]: |
|
image_name = sample["image_name"] |
|
chunk = sample["chunk"] # Arabic text transcription |
|
font_name = sample["font_name"] |
|
|
|
# Decode Base64 image |
|
image_data = base64.b64decode(sample["image_base64"]) |
|
image = Image.open(BytesIO(image_data)) |
|
|
|
# Display the image |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
plt.axis('off') |
|
plt.title(f"Font: {font_name}") |
|
plt.show() |
|
|
|
# Print the details |
|
print(f"Image Name: {image_name}") |
|
print(f"Font Name: {font_name}") |
|
print(f"Text Chunk: {chunk}") |
|
|
|
# Break after one sample for testing |
|
break |
|
``` |
|
|
|
|
|
## Applications |
|
|
|
SAND is designed to support various Arabic text recognition tasks: |
|
|
|
- Training and evaluating OCR models for Arabic text |
|
- Developing vision-language models for document understanding |
|
- Fine-tuning existing OCR models for better Arabic script recognition |
|
- Benchmarking OCR performance across different fonts and layouts |
|
- Research in Arabic natural language processing and computer vision |
|
|
|
|
|
|
|
## Acknowledgments |
|
|
|
The authors thank Prince Sultan University for their support in developing this dataset. |