30_8_2025_dataset / README.md
rupindersingh1313's picture
Upload README.md with huggingface_hub
3b6833d verified
# rupindersingh1313/30_8_2025_dataset
## Dataset Description
This dataset contains Punjabi OCR data with page images and their corresponding text annotations, ready for machine learning applications.
### Dataset Summary
- **Language**: Punjabi (pa-IN)
- **Script**: Gurmukhi
- **Total Pages**: 769
- **Source**: Generated using Punjabi OCR annotation pipeline
- **Format**: Image-annotation pairs with original JSON annotations
### Dataset Splits
- **Train**: 615 samples
- **Validation**: 76 samples
- **Test**: 78 samples
The dataset is split into train/validation/test sets with an 80/10/10 ratio by default:
- Training set for model training
- Validation set for hyperparameter tuning and model selection
- Test set for final evaluation
### Dataset Structure
Each row contains:
- `image`: The page image (PNG format, high resolution)
- `annotation`: Complete OCR annotation in JSON format (as string)
The annotation JSON contains the original structure with:
- Document metadata (language, script, image dimensions)
- Text hierarchy (regions, lines, words)
- Bounding box coordinates for all text elements
- Complete text transcription
### Usage
```python
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("rupindersingh1313/30_8_2025_dataset")
# Access different splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]
# Iterate through training data
for sample in train_data:
image = sample["image"]
annotation = json.loads(sample["annotation"]) # Parse JSON annotation
print(f"Image shape: {image.size}")
print(f"Annotation keys: {list(annotation.keys())}")
```
### Annotation Format
The annotation field contains JSON with this structure:
```json
{
"document": {
"id": "doc_001",
"language": "pa-IN",
"script": "Gurmukhi",
"image": {"width": 2481, "height": 3507, "dpi": 300}
},
"hierarchy": {
"regions": [
{
"region_id": 1,
"type": "text_block",
"polygon": [x1, y1, x2, y2, ...],
"lines": [
{
"line_id": 1,
"polygon": [x1, y1, x2, y2, ...],
"words": [
{
"word_id": 1,
"text": "ਪੰਜਾਬੀ",
"polygon": [x1, y1, x2, y2, ...]
}
]
}
]
}
]
}
}
```
### Use Cases
This dataset is suitable for:
- **OCR Model Training**: Train custom OCR models for Punjabi text
- **Text Detection**: Develop text region detection algorithms
- **Document Layout Analysis**: Analyze document structure and layout
- **Multilingual NLP**: Include Punjabi in multilingual language models
- **Research**: Academic research in OCR and document processing
### Data Quality
- High-resolution images (300 DPI)
- Accurate text transcriptions
- Precise bounding box annotations
- Consistent formatting and structure
- Quality-controlled annotation process
### License
Please ensure proper attribution when using this dataset. Contact the dataset creators for commercial use permissions.
### Citation
If you use this dataset, please cite:
```bibtex
@dataset{punjabi_ocr_dataset,
title={Punjabi OCR Dataset - rupindersingh1313/30_8_2025_dataset},
author={Generated using Punjabi OCR Pipeline},
year={2025},
url={https://huggingface.co/datasets/rupindersingh1313/30_8_2025_dataset},
note={High-quality Punjabi OCR dataset with images and annotations}
}
```
### Contact
For questions, issues, or contributions, please contact the dataset maintainers.