metadata
dataset_info:
features:
- name: episode_id
dtype: int64
- name: goal
dtype: string
- name: screenshots_b64
sequence: string
- name: actions
list:
- name: action_type
dtype: string
- name: app_name
dtype: string
- name: direction
dtype: string
- name: text
dtype: string
- name: x
dtype: int64
- name: 'y'
dtype: int64
- name: step_instructions
sequence: string
splits:
- name: test
num_bytes: 13222360728
num_examples: 3051
- name: train
num_bytes: 54855940258
num_examples: 12232
download_size: 67435592965
dataset_size: 68078300986
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
- split: train
path: data/train-*
Dataset Card: Android Control Episodes (with Screenshots)
Dataset Summary
This dataset contains Android UI control episodes consisting of:
- episode-level metadata (
episode_id
,goal
) - step-by-step instructions (
step_instructions
) - action sequences (
actions
as a list of structs) - base64-encoded screenshots per step (
screenshots_b64
)
Each episode records a short interaction trajectory on an Android device, including what the agent/user attempted to do and how (tap, swipe, text input, etc.).
Supported Tasks and Benchmarks
- UI task planning and control
- Multimodal grounding (text instructions + UI visual context)
- Imitation learning / behavior cloning for mobile agents
- Action prediction and trajectory modeling
Languages
- Prompts and instructions: English
Dataset Structure
Data Fields
episode_id
(int64): Unique identifier of the episode.goal
(string): Natural language description of the objective for the episode.screenshots_b64
(list[string]): Base64-encoded screenshots captured along the trajectory. Large; dominates file sizes.actions
(list[struct]): Sequence of actions taken. Each element has:action_type
(string): e.g., "open_app", "click", "swipe", "type".app_name
(string or null): App associated with the action, if any.direction
(string or null): For gestures like swipe (e.g., "up", "down").text
(string or null): Text content for typing actions, if applicable.x
(int64 or null): X coordinate for tap/click.y
(int64 or null): Y coordinate for tap/click.
step_instructions
(list[string]): Short imperative instructions per step.
Example Instance (images excluded for brevity)
{
"episode_id": 13,
"goal": "On cruisedeals, I would like to view the cruise schedules for a four-night trip from New York to Canada.",
"actions": [
{"action_type": "open_app", "app_name": "CruiseDeals", "direction": null, "text": null, "x": null, "y": null},
{"action_type": "click", "app_name": null, "direction": null, "text": null, "x": 313, "y": 742},
{"action_type": "swipe", "app_name": null, "direction": "up", "text": null, "x": null, "y": null}
],
"step_instructions": [
"Open the cruisedeals app",
"Click on the suggested searched result",
"Swipe up to view schedules"
],
"screenshots_b64": ["<base64>", "<base64>", "<base64>"]
}
Data Splits
train
: 12,232 episodes across 275 Parquet shards (1 row group per file)test
: 3,051 episodes across 67 Parquet shards (1 row group per file)
Total compressed size on the Hub is approximately 67.4 GB (train ≈ 54.3 GB, test ≈ 13.1 GB). The screenshots_b64
column contributes the majority of the size.
Typical per-shard stats (example shard):
- ~45 episodes per shard
- ~6–7 screenshots per episode on average
- ~5–6 actions per episode on average
- ~5–6 step instructions per episode on average
Usage
Load with Datasets (streaming to avoid full download)
from datasets import load_dataset
ds = load_dataset(
"parquet",
data_files="hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet",
streaming=True,
)["train"]
for i, ex in enumerate(ds):
ex.pop("screenshots_b64", None) # skip large images for lightweight inspection
print(ex["episode_id"], ex["goal"])
if i >= 4:
break
Materialize a small slice without streaming
from datasets import load_dataset
small = load_dataset(
"parquet",
data_files="hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet",
split="train[:1%]",
)
print(len(small))
DuckDB: schema preview and lightweight sampling
import duckdb
# Peek schema of one shard
duckdb.sql("""
DESCRIBE SELECT * FROM
'hf://datasets/<owner>/<repo>@~parquet/default/train/0000.parquet'
""").show()
# Count rows via metadata only (no full scan)
duckdb.sql("""
SELECT SUM(row_group_num_rows) AS total_rows
FROM parquet_metadata('hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet')
""").show()
# Sample a few rows excluding heavy images
duckdb.sql("""
SELECT episode_id, goal,
list_length(actions) AS num_actions,
list_length(step_instructions) AS num_steps
FROM 'hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet'
LIMIT 10
""").show()
PyArrow: footer-only metadata or row-group reads
from huggingface_hub import HfFileSystem
import pyarrow.parquet as pq
fs = HfFileSystem()
path = "hf://datasets/<owner>/<repo>@~parquet/default/train/0000.parquet"
# Metadata-only: schema & row groups
with fs.open(path, "rb") as f:
pf = pq.ParquetFile(f)
print(pf.schema_arrow)
print(pf.metadata.num_rows, pf.num_row_groups)
# Read a single row group without images
with fs.open(path, "rb") as f:
pf = pq.ParquetFile(f)
cols = [c for c in pf.schema_arrow.names if c != "screenshots_b64"]
tbl = pf.read_row_group(0, columns=cols)
print(tbl.slice(0, 3).to_pydict())
Dask: predicate/projection pushdown
import dask.dataframe as dd
ddf = dd.read_parquet(
"hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet",
columns=["episode_id", "goal", "actions", "step_instructions"],
)
print(ddf.head())
Efficiency Tips
- Prefer streaming or column selection to avoid downloading
screenshots_b64
unless needed. - Use DuckDB
parquet_metadata(...)
or PyArrowParquetFile(...).metadata
to inspect sizes/counts without reading data pages. - Each file has one row group; shard-level parallelism is straightforward.
Licensing
[More Information Needed]
Citation
If you use this dataset in your work, please cite the source dataset/creators as appropriate and this repository. Example placeholder:
@misc{android_control_episodes,
title = {Android Control Episodes Dataset},
year = {2025},
url = {https://huggingface.co/datasets/smolagents/android-control}
}
Limitations and Risks
- Screenshots are stored as base64 strings and can be large; consider storage and memory implications.
- Some action fields (e.g.,
app_name
,direction
,text
) may be null for many steps. - Visual UI elements may vary across Android versions/devices.
Maintainers
[more information needed]