file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.support_copy
[ { "state_after": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu' v' : V\np : Walk G u' v'\n⊢ support (Walk.copy p (_ : u' = u') (_ : v' = v')) = support p", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v u' v' : V\np : Walk G u v\nhu : u = u'\nhv : v = v'\n⊢ support (Walk.copy p hu hv) = support p", "tactic": "subst_vars" }, { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu' v' : V\np : Walk G u' v'\n⊢ support (Walk.copy p (_ : u' = u') (_ : v' = v')) = support p", "tactic": "rfl" } ]
[ 549, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 546, 1 ]
Mathlib/LinearAlgebra/CrossProduct.lean
dot_cross_self
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nv w : Fin 3 → R\n⊢ w ⬝ᵥ ↑(↑crossProduct v) w = 0", "tactic": "rw [← cross_anticomm, Matrix.dotProduct_neg, dot_self_cross, neg_zero]" } ]
[ 109, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
ofMul_multiset_prod
[ { "state_after": "ι : Type ?u.997044\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝ : CommMonoid α\ns : Multiset α\n⊢ Multiset.prod s = Multiset.sum s", "state_before": "ι : Type ?u.997044\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝ : CommMonoid α\ns : Multiset α\n⊢ ↑ofMul (Multiset.prod s) = Multiset.sum (Multiset.map (↑ofMul) s)", "tactic": "simp [ofMul]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.997044\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝ : CommMonoid α\ns : Multiset α\n⊢ Multiset.prod s = Multiset.sum s", "tactic": "rfl" } ]
[ 2323, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2322, 1 ]
Mathlib/Order/UpperLower/Basic.lean
isUpperSet_iUnion₂
[]
[ 139, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Mathlib/Algebra/MonoidAlgebra/Basic.lean
MonoidAlgebra.sum_single_index
[]
[ 116, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Topology/Algebra/Monoid.lean
ContinuousAt.pow
[]
[ 613, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 611, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.BinaryBicone.inlCokernelCofork_π
[]
[ 1628, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1628, 1 ]
Mathlib/Data/TypeVec.lean
TypeVec.prod_snd_mk
[ { "state_after": "case fz\nn : ℕ\nα✝ β✝ : TypeVec n\ni : Fin2 n\na✝ : α✝ i\nb✝ : β✝ i\nn✝ : ℕ\nα β : TypeVec (succ n✝)\na : α Fin2.fz\nb : β Fin2.fz\n⊢ prod.snd Fin2.fz (prod.mk Fin2.fz a b) = b\n\ncase fs\nn : ℕ\nα✝ β✝ : TypeVec n\ni : Fin2 n\na✝¹ : α✝ i\nb✝ : β✝ i\nn✝ : ℕ\na✝ : Fin2 n✝\ni_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b\nα β : TypeVec (succ n✝)\na : α (Fin2.fs a✝)\nb : β (Fin2.fs a✝)\n⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b", "state_before": "n : ℕ\nα β : TypeVec n\ni : Fin2 n\na : α i\nb : β i\n⊢ prod.snd i (prod.mk i a b) = b", "tactic": "induction' i with _ _ _ i_ih" }, { "state_after": "case fs\nn : ℕ\nα✝ β✝ : TypeVec n\ni : Fin2 n\na✝¹ : α✝ i\nb✝ : β✝ i\nn✝ : ℕ\na✝ : Fin2 n✝\ni_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b\nα β : TypeVec (succ n✝)\na : α (Fin2.fs a✝)\nb : β (Fin2.fs a✝)\n⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b", "state_before": "case fz\nn : ℕ\nα✝ β✝ : TypeVec n\ni : Fin2 n\na✝ : α✝ i\nb✝ : β✝ i\nn✝ : ℕ\nα β : TypeVec (succ n✝)\na : α Fin2.fz\nb : β Fin2.fz\n⊢ prod.snd Fin2.fz (prod.mk Fin2.fz a b) = b\n\ncase fs\nn : ℕ\nα✝ β✝ : TypeVec n\ni : Fin2 n\na✝¹ : α✝ i\nb✝ : β✝ i\nn✝ : ℕ\na✝ : Fin2 n✝\ni_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b\nα β : TypeVec (succ n✝)\na : α (Fin2.fs a✝)\nb : β (Fin2.fs a✝)\n⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b", "tactic": "simp_all [prod.snd, prod.mk]" }, { "state_after": "no goals", "state_before": "case fs\nn : ℕ\nα✝ β✝ : TypeVec n\ni : Fin2 n\na✝¹ : α✝ i\nb✝ : β✝ i\nn✝ : ℕ\na✝ : Fin2 n✝\ni_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b\nα β : TypeVec (succ n✝)\na : α (Fin2.fs a✝)\nb : β (Fin2.fs a✝)\n⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b", "tactic": "apply i_ih" } ]
[ 556, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 552, 1 ]
Mathlib/CategoryTheory/Limits/Final.lean
CategoryTheory.Functor.final_of_initial_op
[]
[ 115, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Data/Fintype/Basic.lean
Set.toFinset_congr
[ { "state_after": "α : Type u_1\nβ : Type ?u.77478\nγ : Type ?u.77481\ns✝ t s : Set α\ninst✝¹ inst✝ : Fintype ↑s\n⊢ toFinset s = toFinset s", "state_before": "α : Type u_1\nβ : Type ?u.77478\nγ : Type ?u.77481\ns✝ t✝ s t : Set α\ninst✝¹ : Fintype ↑s\ninst✝ : Fintype ↑t\nh : s = t\n⊢ toFinset s = toFinset t", "tactic": "subst h" }, { "state_after": "case h.e_3.h\nα : Type u_1\nβ : Type ?u.77478\nγ : Type ?u.77481\ns✝ t s : Set α\ninst✝¹ inst✝ : Fintype ↑s\n⊢ inst✝¹ = inst✝", "state_before": "α : Type u_1\nβ : Type ?u.77478\nγ : Type ?u.77481\ns✝ t s : Set α\ninst✝¹ inst✝ : Fintype ↑s\n⊢ toFinset s = toFinset s", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case h.e_3.h\nα : Type u_1\nβ : Type ?u.77478\nγ : Type ?u.77481\ns✝ t s : Set α\ninst✝¹ inst✝ : Fintype ↑s\n⊢ inst✝¹ = inst✝", "tactic": "exact Subsingleton.elim _ _" } ]
[ 613, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 612, 1 ]
Mathlib/Data/Int/GCD.lean
Int.gcd_assoc
[]
[ 268, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.mk_compl_eq_mk_compl_infinite
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : Infinite α\ns t : Set α\nhs : (#↑s) < (#α)\nht : (#↑t) < (#α)\n⊢ (#↑(sᶜ)) = (#↑(tᶜ))", "tactic": "rw [mk_compl_of_infinite s hs, mk_compl_of_infinite t ht]" } ]
[ 1163, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1161, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_map_mul
[]
[ 199, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 198, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.image_eq_preimage
[]
[ 1019, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1018, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.val_le
[]
[ 62, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.tendsto_nat_tsum
[ { "state_after": "α : Type ?u.259758\nβ : Type ?u.259761\nγ : Type ?u.259764\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf✝ g : α → ℝ≥0∞\nf : ℕ → ℝ≥0∞\n⊢ HasSum (fun i => f i) (∑' (n : ℕ), f n)", "state_before": "α : Type ?u.259758\nβ : Type ?u.259761\nγ : Type ?u.259764\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf✝ g : α → ℝ≥0∞\nf : ℕ → ℝ≥0∞\n⊢ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' (n : ℕ), f n))", "tactic": "rw [← hasSum_iff_tendsto_nat]" }, { "state_after": "no goals", "state_before": "α : Type ?u.259758\nβ : Type ?u.259761\nγ : Type ?u.259764\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf✝ g : α → ℝ≥0∞\nf : ℕ → ℝ≥0∞\n⊢ HasSum (fun i => f i) (∑' (n : ℕ), f n)", "tactic": "exact ENNReal.summable.hasSum" } ]
[ 935, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 932, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Basis.lean
AffineBasis.coe_coord_of_subsingleton_eq_one
[ { "state_after": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "state_before": "ι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\n⊢ ↑(coord b i) = 1", "tactic": "ext q" }, { "state_after": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "state_before": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "tactic": "have hp : (range b).Subsingleton := by\n rw [← image_univ]\n apply Subsingleton.image\n apply subsingleton_of_subsingleton" }, { "state_after": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "state_before": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "tactic": "haveI := AffineSubspace.subsingleton_of_subsingleton_span_eq_top hp b.tot" }, { "state_after": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "state_before": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "tactic": "let s : Finset ι := {i}" }, { "state_after": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "state_before": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "tactic": "have hi : i ∈ s := by simp" }, { "state_after": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\nhw : Finset.sum s (Function.const ι 1) = 1\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "state_before": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "tactic": "have hw : s.sum (Function.const ι (1 : k)) = 1 := by simp" }, { "state_after": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\nhw : Finset.sum s (Function.const ι 1) = 1\nhq : q = ↑(Finset.affineCombination k s ↑b) (Function.const ι 1)\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "state_before": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\nhw : Finset.sum s (Function.const ι 1) = 1\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "tactic": "have hq : q = s.affineCombination k b (Function.const ι (1 : k)) := by simp" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\nhw : Finset.sum s (Function.const ι 1) = 1\nhq : q = ↑(Finset.affineCombination k s ↑b) (Function.const ι 1)\n⊢ ↑(coord b i) q = OfNat.ofNat 1 q", "tactic": "rw [Pi.one_apply, hq, b.coord_apply_combination_of_mem hi hw, Function.const_apply]" }, { "state_after": "ι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\n⊢ Set.Subsingleton (↑b '' univ)", "state_before": "ι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\n⊢ Set.Subsingleton (range ↑b)", "tactic": "rw [← image_univ]" }, { "state_after": "case hs\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\n⊢ Set.Subsingleton univ", "state_before": "ι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\n⊢ Set.Subsingleton (↑b '' univ)", "tactic": "apply Subsingleton.image" }, { "state_after": "no goals", "state_before": "case hs\nι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\n⊢ Set.Subsingleton univ", "tactic": "apply subsingleton_of_subsingleton" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\n⊢ i ∈ s", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\n⊢ Finset.sum s (Function.const ι 1) = 1", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nι' : Type ?u.129150\nk : Type u_2\nV : Type u_4\nP : Type u_3\ninst✝⁴ : AddCommGroup V\ninst✝³ : AffineSpace V P\ninst✝² : Ring k\ninst✝¹ : Module k V\nb : AffineBasis ι k P\ns✝ : Finset ι\ni✝ j : ι\ne : ι ≃ ι'\ninst✝ : Subsingleton ι\ni : ι\nq : P\nhp : Set.Subsingleton (range ↑b)\nthis : Subsingleton P\ns : Finset ι := {i}\nhi : i ∈ s\nhw : Finset.sum s (Function.const ι 1) = 1\n⊢ q = ↑(Finset.affineCombination k s ↑b) (Function.const ι 1)", "tactic": "simp" } ]
[ 254, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 243, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
ClosedEmbedding.measurable
[]
[ 829, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 828, 1 ]
Mathlib/Order/Bounds/Basic.lean
Antitone.mem_lowerBounds_image
[]
[ 1314, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1313, 1 ]
Mathlib/Analysis/SpecificLimits/Normed.lean
Antitone.tendsto_alternating_series_of_tendsto_zero
[]
[ 645, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 642, 1 ]
Mathlib/Analysis/Calculus/LocalExtr.lean
IsLocalMax.hasFDerivAt_eq_zero
[]
[ 204, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Geometry/Manifold/SmoothManifoldWithCorners.lean
LocalHomeomorph.extend_symm_preimage_inter_range_eventuallyEq
[ { "state_after": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.164976\nM' : Type ?u.164979\nH' : Type ?u.164982\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhs : s ⊆ (extend f I).source\nhx : x ∈ f.source\n⊢ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I =ᶠ[𝓝 (↑(extend f I) x)] ↑(extend f I) '' s", "state_before": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.164976\nM' : Type ?u.164979\nH' : Type ?u.164982\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhs : s ⊆ f.source\nhx : x ∈ f.source\n⊢ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I =ᶠ[𝓝 (↑(extend f I) x)] ↑(extend f I) '' s", "tactic": "rw [← f.extend_source I] at hs" }, { "state_after": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.164976\nM' : Type ?u.164979\nH' : Type ?u.164982\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhs : s ⊆ (extend f I).source\nhx : x ∈ f.source\n⊢ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I =ᶠ[𝓝 (↑(extend f I) x)]\n (extend f I).target ∩ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s", "state_before": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.164976\nM' : Type ?u.164979\nH' : Type ?u.164982\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhs : s ⊆ (extend f I).source\nhx : x ∈ f.source\n⊢ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I =ᶠ[𝓝 (↑(extend f I) x)] ↑(extend f I) '' s", "tactic": "rw [(f.extend I).image_eq_target_inter_inv_preimage hs]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_4\nE : Type u_3\nM : Type u_1\nH : Type u_2\nE' : Type ?u.164976\nM' : Type ?u.164979\nH' : Type ?u.164982\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : TopologicalSpace H\ninst✝⁴ : TopologicalSpace M\nf f' : LocalHomeomorph M H\nI : ModelWithCorners 𝕜 E H\ninst✝³ : NormedAddCommGroup E'\ninst✝² : NormedSpace 𝕜 E'\ninst✝¹ : TopologicalSpace H'\ninst✝ : TopologicalSpace M'\nI' : ModelWithCorners 𝕜 E' H'\nx✝ : M\ns✝ t s : Set M\nx : M\nhs : s ⊆ (extend f I).source\nhx : x ∈ f.source\n⊢ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s ∩ range ↑I =ᶠ[𝓝 (↑(extend f I) x)]\n (extend f I).target ∩ ↑(LocalEquiv.symm (extend f I)) ⁻¹' s", "tactic": "exact f.extend_symm_preimage_inter_range_eventuallyEq_aux I hx" } ]
[ 957, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 952, 1 ]
Mathlib/Data/Polynomial/Reverse.lean
Polynomial.coeff_zero_reverse
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : Semiring R\nf✝ f : R[X]\n⊢ coeff (reverse f) 0 = leadingCoeff f", "tactic": "rw [coeff_reverse, revAt_le (zero_le f.natDegree), tsub_zero, leadingCoeff]" } ]
[ 259, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/Algebra/Hom/Units.lean
IsUnit.eq_inv_mul_iff_mul_eq
[]
[ 326, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 325, 11 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.eval_eq
[]
[ 1129, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1127, 1 ]
Mathlib/MeasureTheory/Measure/Content.lean
MeasureTheory.Content.outerMeasure_opens
[]
[ 258, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Topology/Order/LowerTopology.lean
LowerTopology.isOpen_iff_generate_Ici_compl
[ { "state_after": "α : Type u_1\nβ : Type ?u.3811\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : LowerTopology α\ns : Set α\n⊢ IsOpen s ↔ GenerateOpen {t | ∃ a, Ici aᶜ = t} s", "state_before": "α : Type u_1\nβ : Type ?u.3811\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : LowerTopology α\ns : Set α\n⊢ IsOpen s ↔ GenerateOpen {t | ∃ a, Ici aᶜ = t} s", "tactic": "rw [topology_eq α]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.3811\ninst✝² : Preorder α\ninst✝¹ : TopologicalSpace α\ninst✝ : LowerTopology α\ns : Set α\n⊢ IsOpen s ↔ GenerateOpen {t | ∃ a, Ici aᶜ = t} s", "tactic": "rfl" } ]
[ 172, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/Topology/Separation.lean
Filter.HasBasis.exists_inter_eq_singleton_of_mem_discrete
[ { "state_after": "case intro.intro\nα : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\nι : Type u_1\np : ι → Prop\nt : ι → Set α\ns : Set α\ninst✝ : DiscreteTopology ↑s\nx : α\nhb : HasBasis (𝓝 x) p t\nhx : x ∈ s\ni : ι\nhi : p i\nhix : t i ∩ s ⊆ {x}\n⊢ ∃ i, p i ∧ t i ∩ s = {x}", "state_before": "α : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\nι : Type u_1\np : ι → Prop\nt : ι → Set α\ns : Set α\ninst✝ : DiscreteTopology ↑s\nx : α\nhb : HasBasis (𝓝 x) p t\nhx : x ∈ s\n⊢ ∃ i, p i ∧ t i ∩ s = {x}", "tactic": "rcases (nhdsWithin_hasBasis hb s).mem_iff.1 (singleton_mem_nhdsWithin_of_mem_discrete hx) with\n ⟨i, hi, hix⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\nι : Type u_1\np : ι → Prop\nt : ι → Set α\ns : Set α\ninst✝ : DiscreteTopology ↑s\nx : α\nhb : HasBasis (𝓝 x) p t\nhx : x ∈ s\ni : ι\nhi : p i\nhix : t i ∩ s ⊆ {x}\n⊢ ∃ i, p i ∧ t i ∩ s = {x}", "tactic": "exact ⟨i, hi, hix.antisymm <| singleton_subset_iff.2 ⟨mem_of_mem_nhds <| hb.mem_of_mem hi, hx⟩⟩" } ]
[ 831, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 826, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.frequently_or_distrib_right
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.164816\nι : Sort x\nf : Filter α\ninst✝ : NeBot f\np : α → Prop\nq : Prop\n⊢ (∃ᶠ (x : α) in f, p x ∨ q) ↔ (∃ᶠ (x : α) in f, p x) ∨ q", "tactic": "simp" } ]
[ 1350, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1349, 1 ]
src/lean/Init/Core.lean
recSubsingleton
[]
[ 902, 22 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 893, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.isClosed_iff_zeroLocus
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nZ : Set (PrimeSpectrum R)\n⊢ IsClosed Z ↔ ∃ s, Z = zeroLocus s", "tactic": "rw [← isOpen_compl_iff, isOpen_iff, compl_compl]" } ]
[ 422, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 421, 1 ]
Mathlib/Algebra/MonoidAlgebra/Division.lean
AddMonoidAlgebra.modOf_apply_of_exists_add
[ { "state_after": "no goals", "state_before": "k : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng g' : G\nh : ∃ d, g' = g + d\n⊢ ¬¬∃ g₂, g' = g + g₂", "tactic": "rwa [Classical.not_not]" } ]
[ 144, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.Perm.prodExtendRight_apply_eq
[]
[ 831, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 830, 1 ]
Mathlib/Algebra/Quaternion.lean
QuaternionAlgebra.coe_re
[]
[ 144, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean
FundamentalGroupoid.map_eq
[]
[ 372, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 371, 1 ]
Mathlib/Data/Set/Pointwise/BigOperators.lean
Set.finset_prod_singleton
[]
[ 174, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.mul_self_abs
[]
[ 969, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 968, 1 ]
Mathlib/Order/RelClasses.lean
IsStrictOrder.swap
[]
[ 104, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
Matrix.mul_mul_invOf_self_cancel
[ { "state_after": "no goals", "state_before": "l : Type ?u.16996\nm : Type u\nn : Type u'\nα : Type v\ninst✝³ : Fintype n\ninst✝² : DecidableEq n\ninst✝¹ : CommRing α\nA : Matrix m n α\nB : Matrix n n α\ninst✝ : Invertible B\n⊢ A ⬝ B ⬝ ⅟B = A", "tactic": "rw [Matrix.mul_assoc, Matrix.mul_invOf_self, Matrix.mul_one]" } ]
[ 97, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 11 ]
Mathlib/Order/Interval.lean
NonemptyInterval.dual_map₂
[]
[ 220, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/RingTheory/Noetherian.lean
isNoetherian_top_iff
[ { "state_after": "case mp\nR : Type u_1\nM : Type u_2\nP : Type ?u.20594\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : AddCommMonoid P\ninst✝¹ : Module R M\ninst✝ : Module R P\nh : IsNoetherian R { x // x ∈ ⊤ }\n⊢ IsNoetherian R M\n\ncase mpr\nR : Type u_1\nM : Type u_2\nP : Type ?u.20594\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : AddCommMonoid P\ninst✝¹ : Module R M\ninst✝ : Module R P\nh : IsNoetherian R M\n⊢ IsNoetherian R { x // x ∈ ⊤ }", "state_before": "R : Type u_1\nM : Type u_2\nP : Type ?u.20594\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : AddCommMonoid P\ninst✝¹ : Module R M\ninst✝ : Module R P\n⊢ IsNoetherian R { x // x ∈ ⊤ } ↔ IsNoetherian R M", "tactic": "constructor <;> intro h" }, { "state_after": "no goals", "state_before": "case mp\nR : Type u_1\nM : Type u_2\nP : Type ?u.20594\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : AddCommMonoid P\ninst✝¹ : Module R M\ninst✝ : Module R P\nh : IsNoetherian R { x // x ∈ ⊤ }\n⊢ IsNoetherian R M", "tactic": "exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl)" }, { "state_after": "no goals", "state_before": "case mpr\nR : Type u_1\nM : Type u_2\nP : Type ?u.20594\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : AddCommMonoid P\ninst✝¹ : Module R M\ninst✝ : Module R P\nh : IsNoetherian R M\n⊢ IsNoetherian R { x // x ∈ ⊤ }", "tactic": "exact isNoetherian_of_linearEquiv (LinearEquiv.ofTop (⊤ : Submodule R M) rfl).symm" } ]
[ 142, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
MeasurableSet.of_subtype_image
[]
[ 552, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 550, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.lt_def
[]
[ 636, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 635, 1 ]
Mathlib/Data/Dfinsupp/NeLocus.lean
Dfinsupp.mem_neLocus
[ { "state_after": "no goals", "state_before": "α : Type u_1\nN : α → Type u_2\ninst✝² : DecidableEq α\ninst✝¹ : (a : α) → DecidableEq (N a)\ninst✝ : (a : α) → Zero (N a)\nf✝ g✝ f g : Π₀ (a : α), N a\na : α\n⊢ a ∈ neLocus f g ↔ ↑f a ≠ ↑g a", "tactic": "simpa only [neLocus, Finset.mem_filter, Finset.mem_union, mem_support_iff,\n and_iff_right_iff_imp] using Ne.ne_or_ne _" } ]
[ 46, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 44, 1 ]
Mathlib/Data/Polynomial/Monic.lean
Polynomial.Monic.eq_one_of_isUnit
[ { "state_after": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\n⊢ p = 1", "state_before": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q r : R[X]\nhm : Monic p\nhpu : IsUnit p\n⊢ p = 1", "tactic": "nontriviality R" }, { "state_after": "case intro\nR : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q✝ r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\nq : R[X]\nh : p * q = 1\n⊢ p = 1", "state_before": "R : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\n⊢ p = 1", "tactic": "obtain ⟨q, h⟩ := hpu.exists_right_inv" }, { "state_after": "case intro\nR : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q✝ r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\nq : R[X]\nh : p * q = 1\nthis : natDegree (p * q) = natDegree p + natDegree q\n⊢ p = 1", "state_before": "case intro\nR : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q✝ r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\nq : R[X]\nh : p * q = 1\n⊢ p = 1", "tactic": "have := hm.natDegree_mul' (right_ne_zero_of_mul_eq_one h)" }, { "state_after": "case intro\nR : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q✝ r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\nq : R[X]\nh : p * q = 1\nthis : natDegree p = 0 ∧ natDegree q = 0\n⊢ p = 1", "state_before": "case intro\nR : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q✝ r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\nq : R[X]\nh : p * q = 1\nthis : natDegree (p * q) = natDegree p + natDegree q\n⊢ p = 1", "tactic": "rw [h, natDegree_one, eq_comm, add_eq_zero_iff] at this" }, { "state_after": "no goals", "state_before": "case intro\nR : Type u\nS : Type v\na b : R\nm n : ℕ\nι : Type y\ninst✝ : Semiring R\np q✝ r : R[X]\nhm : Monic p\nhpu : IsUnit p\n✝ : Nontrivial R\nq : R[X]\nh : p * q = 1\nthis : natDegree p = 0 ∧ natDegree q = 0\n⊢ p = 1", "tactic": "exact hm.natDegree_eq_zero_iff_eq_one.mp this.1" } ]
[ 252, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 247, 1 ]
Mathlib/Algebra/Lie/IdealOperations.lean
LieSubmodule.bot_lie
[ { "state_after": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\n⊢ ⁅⊥, N⁆ ≤ ⊥", "state_before": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\n⊢ ⁅⊥, N⁆ = ⊥", "tactic": "suffices ⁅(⊥ : LieIdeal R L), N⁆ ≤ ⊥ by exact le_bot_iff.mp this" }, { "state_after": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\n⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥", "state_before": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\n⊢ ⁅⊥, N⁆ ≤ ⊥", "tactic": "rw [lieIdeal_oper_eq_span, lieSpan_le]" }, { "state_after": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nhx : x ∈ ⊥\nn : { x // x ∈ N }\nhn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m\n⊢ m ∈ ↑⊥", "state_before": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\n⊢ {m | ∃ x n, ⁅↑x, ↑n⁆ = m} ⊆ ↑⊥", "tactic": "rintro m ⟨⟨x, hx⟩, n, hn⟩" }, { "state_after": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nhx : x ∈ ⊥\nn : { x // x ∈ N }\nhn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m\n⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥", "state_before": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nhx : x ∈ ⊥\nn : { x // x ∈ N }\nhn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m\n⊢ m ∈ ↑⊥", "tactic": "rw [← hn]" }, { "state_after": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nn : { x // x ∈ N }\nhx : x ∈ ⊥\nhn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m\n⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥", "state_before": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nhx : x ∈ ⊥\nn : { x // x ∈ N }\nhn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m\n⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥", "tactic": "change x ∈ (⊥ : LieIdeal R L) at hx" }, { "state_after": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nn : { x // x ∈ N }\nhx✝ : x ∈ ⊥\nhx : x = 0\nhn : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m\n⊢ ⁅↑{ val := x, property := hx✝ }, ↑n⁆ ∈ ↑⊥", "state_before": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nn : { x // x ∈ N }\nhx : x ∈ ⊥\nhn : ⁅↑{ val := x, property := hx }, ↑n⁆ = m\n⊢ ⁅↑{ val := x, property := hx }, ↑n⁆ ∈ ↑⊥", "tactic": "rw [mem_bot] at hx" }, { "state_after": "no goals", "state_before": "case intro.mk.intro\nR : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nm : M\nx : L\nn : { x // x ∈ N }\nhx✝ : x ∈ ⊥\nhx : x = 0\nhn : ⁅↑{ val := x, property := hx✝ }, ↑n⁆ = m\n⊢ ⁅↑{ val := x, property := hx✝ }, ↑n⁆ ∈ ↑⊥", "tactic": "simp [hx]" }, { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nM : Type w\nM₂ : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R M₂\ninst✝¹ : LieRingModule L M₂\ninst✝ : LieModule R L M₂\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\nN₂ : LieSubmodule R L M₂\nthis : ⁅⊥, N⁆ ≤ ⊥\n⊢ ⁅⊥, N⁆ = ⊥", "tactic": "exact le_bot_iff.mp this" } ]
[ 145, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 1 ]
Mathlib/FieldTheory/RatFunc.lean
RatFunc.num_eq_zero_iff
[ { "state_after": "no goals", "state_before": "K : Type u\ninst✝ : Field K\nx : RatFunc K\nh : num x = 0\n⊢ x = 0", "tactic": "rw [← num_div_denom x, h, RingHom.map_zero, zero_div]" } ]
[ 1253, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1252, 1 ]
Mathlib/CategoryTheory/Limits/HasLimits.lean
CategoryTheory.Limits.HasLimit.isoOfEquivalence_hom_π
[ { "state_after": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nk : K\n⊢ IsLimit.lift (limit.isLimit G)\n ((Cones.equivalenceOfReindexing (Equivalence.symm e)\n ((isoWhiskerLeft e.inverse w).symm ≪≫ Equivalence.invFunIdAssoc e G)).functor.obj\n (limit.cone F)) ≫\n limit.π G k =\n limit.π F (e.inverse.obj k) ≫ w.inv.app (e.inverse.obj k) ≫ G.map ((Equivalence.counit e).app k)", "state_before": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nk : K\n⊢ (isoOfEquivalence e w).hom ≫ limit.π G k =\n limit.π F (e.inverse.obj k) ≫ w.inv.app (e.inverse.obj k) ≫ G.map ((Equivalence.counit e).app k)", "tactic": "simp only [HasLimit.isoOfEquivalence, IsLimit.conePointsIsoOfEquivalence_hom]" }, { "state_after": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nk : K\n⊢ limit.lift G\n ((Cones.postcompose (whiskerLeft e.inverse w.inv ≫ (Equivalence.invFunIdAssoc e G).hom)).obj\n (Cone.whisker e.inverse (limit.cone F))) ≫\n limit.π G k =\n limit.π F (e.inverse.obj k) ≫ w.inv.app (e.inverse.obj k) ≫ G.map ((Equivalence.counit e).app k)", "state_before": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nk : K\n⊢ IsLimit.lift (limit.isLimit G)\n ((Cones.equivalenceOfReindexing (Equivalence.symm e)\n ((isoWhiskerLeft e.inverse w).symm ≪≫ Equivalence.invFunIdAssoc e G)).functor.obj\n (limit.cone F)) ≫\n limit.π G k =\n limit.π F (e.inverse.obj k) ≫ w.inv.app (e.inverse.obj k) ≫ G.map ((Equivalence.counit e).app k)", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasLimit F\nG : K ⥤ C\ninst✝ : HasLimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nk : K\n⊢ limit.lift G\n ((Cones.postcompose (whiskerLeft e.inverse w.inv ≫ (Equivalence.invFunIdAssoc e G).hom)).obj\n (Cone.whisker e.inverse (limit.cone F))) ≫\n limit.π G k =\n limit.π F (e.inverse.obj k) ≫ w.inv.app (e.inverse.obj k) ≫ G.map ((Equivalence.counit e).app k)", "tactic": "simp" } ]
[ 392, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 386, 1 ]
Mathlib/Data/PFun.lean
PFun.mem_preimage
[]
[ 435, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 434, 1 ]
Mathlib/Order/Heyting/Basic.lean
sup_sdiff_cancel'
[ { "state_after": "no goals", "state_before": "ι : Type ?u.92580\nα : Type u_1\nβ : Type ?u.92586\ninst✝ : GeneralizedCoheytingAlgebra α\na b c d : α\nhab : a ≤ b\nhbc : b ≤ c\n⊢ b ⊔ c \\ a = c", "tactic": "rw [sup_sdiff_eq_sup hab, sup_of_le_right hbc]" } ]
[ 577, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 576, 1 ]
src/lean/Init/Prelude.lean
Nat.lt_of_le_of_ne
[]
[ 1673, 51 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 1670, 11 ]
Mathlib/Order/Compare.lean
eq_iff_eq_of_cmp_eq_cmp
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ✝ : Type ?u.20888\ninst✝¹ : LinearOrder α\nx y : α\nβ : Type u_2\ninst✝ : LinearOrder β\nx' y' : β\nh : cmp x y = cmp x' y'\n⊢ x = y ↔ x' = y'", "tactic": "rw [le_antisymm_iff, le_antisymm_iff, le_iff_le_of_cmp_eq_cmp h,\n le_iff_le_of_cmp_eq_cmp (cmp_eq_cmp_symm.1 h)]" } ]
[ 267, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.HasFiniteIntegral.congr'
[]
[ 156, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/LinearAlgebra/Basic.lean
Submodule.comap_zero
[ { "state_after": "no goals", "state_before": "R : Type u_2\nR₁ : Type ?u.631576\nR₂ : Type u_3\nR₃ : Type ?u.631582\nR₄ : Type ?u.631585\nS : Type ?u.631588\nK : Type ?u.631591\nK₂ : Type ?u.631594\nM : Type u_1\nM' : Type ?u.631600\nM₁ : Type ?u.631603\nM₂ : Type u_4\nM₃ : Type ?u.631609\nM₄ : Type ?u.631612\nN : Type ?u.631615\nN₂ : Type ?u.631618\nι : Type ?u.631621\nV : Type ?u.631624\nV₂ : Type ?u.631627\ninst✝¹³ : Semiring R\ninst✝¹² : Semiring R₂\ninst✝¹¹ : Semiring R₃\ninst✝¹⁰ : AddCommMonoid M\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : AddCommMonoid M₃\ninst✝⁷ : AddCommMonoid M'\ninst✝⁶ : Module R M\ninst✝⁵ : Module R M'\ninst✝⁴ : Module R₂ M₂\ninst✝³ : Module R₃ M₃\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R →+* R₃\nσ₂₁ : R₂ →+* R\ninst✝² : RingHomInvPair σ₁₂ σ₂₁\ninst✝¹ : RingHomInvPair σ₂₁ σ₁₂\ninst✝ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\np p' : Submodule R M\nq q' : Submodule R₂ M₂\nq₁ q₁' : Submodule R M'\nr : R\nx y : M\nF : Type ?u.632164\nsc : SemilinearMapClass F σ₁₂ M M₂\n⊢ ∀ (x : M), x ∈ comap 0 q ↔ x ∈ ⊤", "tactic": "simp" } ]
[ 871, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 870, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.measure_toMeasurable_inter_of_cover
[ { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\n⊢ ↑↑μ\n ((if h : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t then Exists.choose h\n else\n if h' : ∃ t_1 x, MeasurableSet t_1 ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t_1 ∩ u) = ↑↑μ (t ∩ u) then\n Exists.choose h'\n else Exists.choose (_ : ∃ t_1, t ⊆ t_1 ∧ MeasurableSet t_1 ∧ ↑↑μ t_1 = ↑↑μ t)) ∩\n s) =\n ↑↑μ (t ∩ s)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\n⊢ ↑↑μ (toMeasurable μ t ∩ s) = ↑↑μ (t ∩ s)", "tactic": "rw [toMeasurable]" }, { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\nht : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t\n⊢ ↑↑μ (Exists.choose (_ : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t) ∩ s) = ↑↑μ (t ∩ s)\n\ncase inr\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\nht : ¬∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t\n⊢ ↑↑μ (Exists.choose A ∩ s) = ↑↑μ (t ∩ s)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\n⊢ ↑↑μ\n ((if h : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t then Exists.choose h\n else\n if h' : ∃ t_1 x, MeasurableSet t_1 ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t_1 ∩ u) = ↑↑μ (t ∩ u) then\n Exists.choose h'\n else Exists.choose (_ : ∃ t_1, t ⊆ t_1 ∧ MeasurableSet t_1 ∧ ↑↑μ t_1 = ↑↑μ t)) ∩\n s) =\n ↑↑μ (t ∩ s)", "tactic": "split_ifs with ht" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "tactic": "let w n := toMeasurable μ (t ∩ v n)" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "tactic": "have hw : ∀ n, μ (w n) < ∞ := by\n intro n\n simp_rw [measure_toMeasurable]\n exact (h'v n).lt_top" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "tactic": "set t' := ⋃ n, toMeasurable μ (t ∩ disjointed w n) with ht'" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "tactic": "have tt' : t ⊆ t' :=\n calc\n t ⊆ ⋃ n, t ∩ disjointed w n := by\n rw [← inter_iUnion, iUnion_disjointed, inter_iUnion]\n intro x hx\n rcases mem_iUnion.1 (hv hx) with ⟨n, hn⟩\n refine' mem_iUnion.2 ⟨n, _⟩\n have : x ∈ t ∩ v n := ⟨hx, hn⟩\n exact ⟨hx, subset_toMeasurable μ _ this⟩\n _ ⊆ ⋃ n, toMeasurable μ (t ∩ disjointed w n) :=\n iUnion_mono fun n => subset_toMeasurable _ _" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\n⊢ ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "tactic": "refine' ⟨t', tt', MeasurableSet.iUnion fun n => measurableSet_toMeasurable μ _, fun u hu => _⟩" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ↑↑μ (t' ∩ u) ≤ ↑↑μ (t ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)", "tactic": "apply le_antisymm _ (measure_mono (inter_subset_inter tt' Subset.rfl))" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nn : ℕ\n⊢ ↑↑μ (w n) < ⊤", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\n⊢ ∀ (n : ℕ), ↑↑μ (w n) < ⊤", "tactic": "intro n" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nn : ℕ\n⊢ ↑↑μ (t ∩ v n) < ⊤", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nn : ℕ\n⊢ ↑↑μ (w n) < ⊤", "tactic": "simp_rw [measure_toMeasurable]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nn : ℕ\n⊢ ↑↑μ (t ∩ v n) < ⊤", "tactic": "exact (h'v n).lt_top" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\n⊢ t ⊆ ⋃ (i : ℕ), t ∩ w i", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\n⊢ t ⊆ ⋃ (n : ℕ), t ∩ disjointed w n", "tactic": "rw [← inter_iUnion, iUnion_disjointed, inter_iUnion]" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\n⊢ x ∈ ⋃ (i : ℕ), t ∩ w i", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\n⊢ t ⊆ ⋃ (i : ℕ), t ∩ w i", "tactic": "intro x hx" }, { "state_after": "case intro\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\nn : ℕ\nhn : x ∈ v n\n⊢ x ∈ ⋃ (i : ℕ), t ∩ w i", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\n⊢ x ∈ ⋃ (i : ℕ), t ∩ w i", "tactic": "rcases mem_iUnion.1 (hv hx) with ⟨n, hn⟩" }, { "state_after": "case intro\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\nn : ℕ\nhn : x ∈ v n\n⊢ x ∈ t ∩ w n", "state_before": "case intro\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\nn : ℕ\nhn : x ∈ v n\n⊢ x ∈ ⋃ (i : ℕ), t ∩ w i", "tactic": "refine' mem_iUnion.2 ⟨n, _⟩" }, { "state_after": "case intro\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\nn : ℕ\nhn : x ∈ v n\nthis : x ∈ t ∩ v n\n⊢ x ∈ t ∩ w n", "state_before": "case intro\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\nn : ℕ\nhn : x ∈ v n\n⊢ x ∈ t ∩ w n", "tactic": "have : x ∈ t ∩ v n := ⟨hx, hn⟩" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nx : α\nhx : x ∈ t\nn : ℕ\nhn : x ∈ v n\nthis : x ∈ t ∩ v n\n⊢ x ∈ t ∩ w n", "tactic": "exact ⟨hx, subset_toMeasurable μ _ this⟩" }, { "state_after": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ↑↑μ (⋃ (i : ℕ), toMeasurable μ (t ∩ disjointed w i) ∩ u) ≤ ∑' (n : ℕ), ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ↑↑μ (t' ∩ u) ≤ ∑' (n : ℕ), ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u)", "tactic": "rw [ht', iUnion_inter]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ↑↑μ (⋃ (i : ℕ), toMeasurable μ (t ∩ disjointed w i) ∩ u) ≤ ∑' (n : ℕ), ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u)", "tactic": "exact measure_iUnion_le _" }, { "state_after": "case e_f\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ (fun n => ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u)) = fun n => ↑↑μ (t ∩ disjointed w n ∩ u)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ (∑' (n : ℕ), ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u)) = ∑' (n : ℕ), ↑↑μ (t ∩ disjointed w n ∩ u)", "tactic": "congr 1" }, { "state_after": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u) = ↑↑μ (t ∩ disjointed w n ∩ u)", "state_before": "case e_f\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ (fun n => ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u)) = fun n => ↑↑μ (t ∩ disjointed w n ∩ u)", "tactic": "ext1 n" }, { "state_after": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (t ∩ disjointed w n) ≠ ⊤", "state_before": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (toMeasurable μ (t ∩ disjointed w n) ∩ u) = ↑↑μ (t ∩ disjointed w n ∩ u)", "tactic": "apply measure_toMeasurable_inter hu" }, { "state_after": "case e_f.h.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (t ∩ disjointed w n) < ⊤", "state_before": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (t ∩ disjointed w n) ≠ ⊤", "tactic": "apply ne_of_lt" }, { "state_after": "no goals", "state_before": "case e_f.h.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (t ∩ disjointed w n) < ⊤", "tactic": "calc\n μ (t ∩ disjointed w n) ≤ μ (t ∩ w n) :=\n measure_mono (inter_subset_inter_right _ (disjointed_le w n))\n _ ≤ μ (w n) := (measure_mono (inter_subset_right _ _))\n _ < ∞ := hw n" }, { "state_after": "case e_f\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ (fun n => ↑↑μ (t ∩ disjointed w n ∩ u)) = fun n => ↑↑(restrict μ (t ∩ u)) (disjointed w n)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ (∑' (n : ℕ), ↑↑μ (t ∩ disjointed w n ∩ u)) = ∑' (n : ℕ), ↑↑(restrict μ (t ∩ u)) (disjointed w n)", "tactic": "congr 1" }, { "state_after": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (t ∩ disjointed w n ∩ u) = ↑↑(restrict μ (t ∩ u)) (disjointed w n)", "state_before": "case e_f\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ (fun n => ↑↑μ (t ∩ disjointed w n ∩ u)) = fun n => ↑↑(restrict μ (t ∩ u)) (disjointed w n)", "tactic": "ext1 n" }, { "state_after": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ MeasurableSet (disjointed w n)", "state_before": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ ↑↑μ (t ∩ disjointed w n ∩ u) = ↑↑(restrict μ (t ∩ u)) (disjointed w n)", "tactic": "rw [restrict_apply, inter_comm t _, inter_assoc]" }, { "state_after": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn✝ n : ℕ\n⊢ MeasurableSet (w n)", "state_before": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn : ℕ\n⊢ MeasurableSet (disjointed w n)", "tactic": "refine MeasurableSet.disjointed (fun n => ?_) n" }, { "state_after": "no goals", "state_before": "case e_f.h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\nn✝ n : ℕ\n⊢ MeasurableSet (w n)", "tactic": "exact measurableSet_toMeasurable _ _" }, { "state_after": "case hn\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ Pairwise (Disjoint on fun n => disjointed w n)\n\ncase h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ∀ (i : ℕ), MeasurableSet (disjointed w i)", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ (∑' (n : ℕ), ↑↑(restrict μ (t ∩ u)) (disjointed w n)) = ↑↑(restrict μ (t ∩ u)) (⋃ (n : ℕ), disjointed w n)", "tactic": "rw [measure_iUnion]" }, { "state_after": "no goals", "state_before": "case hn\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ Pairwise (Disjoint on fun n => disjointed w n)", "tactic": "exact disjoint_disjointed _" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\ni : ℕ\n⊢ MeasurableSet (disjointed w i)", "state_before": "case h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ∀ (i : ℕ), MeasurableSet (disjointed w i)", "tactic": "intro i" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\ni n : ℕ\n⊢ MeasurableSet (w n)", "state_before": "case h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\ni : ℕ\n⊢ MeasurableSet (disjointed w i)", "tactic": "refine MeasurableSet.disjointed (fun n => ?_) i" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\ni n : ℕ\n⊢ MeasurableSet (w n)", "tactic": "exact measurableSet_toMeasurable _ _" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nw : ℕ → Set α := fun n => toMeasurable μ (t ∩ v n)\nhw : ∀ (n : ℕ), ↑↑μ (w n) < ⊤\nt' : Set α := ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\nht' : t' = ⋃ (n : ℕ), toMeasurable μ (t ∩ disjointed w n)\ntt' : t ⊆ t'\nu : Set α\nhu : MeasurableSet u\n⊢ ↑↑(restrict μ (t ∩ u)) univ = ↑↑μ (t ∩ u)", "tactic": "rw [restrict_apply MeasurableSet.univ, univ_inter]" }, { "state_after": "case inl.H\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\nht : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t\n⊢ Exists.choose (_ : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t) ∩ s =ᶠ[ae μ] t ∩ s", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\nht : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t\n⊢ ↑↑μ (Exists.choose (_ : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t) ∩ s) = ↑↑μ (t ∩ s)", "tactic": "apply measure_congr" }, { "state_after": "no goals", "state_before": "case inl.H\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\nht : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t\n⊢ Exists.choose (_ : ∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t) ∩ s =ᶠ[ae μ] t ∩ s", "tactic": "exact ae_eq_set_inter ht.choose_spec.snd.2 (ae_eq_refl _)" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.746309\nγ : Type ?u.746312\nδ : Type ?u.746315\nι : Type ?u.746318\nR : Type ?u.746321\nR' : Type ?u.746324\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ s : Set α\nhs : MeasurableSet s\nt : Set α\nv : ℕ → Set α\nhv : t ⊆ ⋃ (n : ℕ), v n\nh'v : ∀ (n : ℕ), ↑↑μ (t ∩ v n) ≠ ⊤\nA : ∃ t' x, MeasurableSet t' ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t' ∩ u) = ↑↑μ (t ∩ u)\nht : ¬∃ t_1 x, MeasurableSet t_1 ∧ t_1 =ᶠ[ae μ] t\n⊢ ↑↑μ (Exists.choose A ∩ s) = ↑↑μ (t ∩ s)", "tactic": "exact A.choose_spec.snd.2 s hs" } ]
[ 3699, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3637, 1 ]
Mathlib/ModelTheory/Semantics.lean
FirstOrder.Language.BoundedFormula.realize_toFormula
[ { "state_after": "case falsum\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula falsum) v ↔ Realize falsum (v ∘ Sum.inl) (v ∘ Sum.inr)\n\ncase equal\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nt₁✝ t₂✝ : Term L (α ⊕ Fin n✝)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (equal t₁✝ t₂✝)) v ↔ Realize (equal t₁✝ t₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr)\n\ncase rel\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ l✝ : ℕ\nR✝ : Relations L l✝\nts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (rel R✝ ts✝)) v ↔ Realize (rel R✝ ts✝) (v ∘ Sum.inl) (v ∘ Sum.inr)\n\ncase imp\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf₁✝ f₂✝ : BoundedFormula L α n✝\nih1 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₁✝) v ↔ Realize f₁✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nih2 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₂✝) v ↔ Realize f₂✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (f₁✝ ⟹ f₂✝)) v ↔ Realize (f₁✝ ⟹ f₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr)\n\ncase all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (∀'f✝)) v ↔ Realize (∀'f✝) (v ∘ Sum.inl) (v ∘ Sum.inr)", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nφ : BoundedFormula L α n\nv : α ⊕ Fin n → M\n⊢ Formula.Realize (toFormula φ) v ↔ Realize φ (v ∘ Sum.inl) (v ∘ Sum.inr)", "tactic": "induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih3 a8 a9 a0" }, { "state_after": "no goals", "state_before": "case falsum\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula falsum) v ↔ Realize falsum (v ∘ Sum.inl) (v ∘ Sum.inr)", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case equal\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nt₁✝ t₂✝ : Term L (α ⊕ Fin n✝)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (equal t₁✝ t₂✝)) v ↔ Realize (equal t₁✝ t₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr)", "tactic": "simp [BoundedFormula.Realize]" }, { "state_after": "no goals", "state_before": "case rel\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ l✝ : ℕ\nR✝ : Relations L l✝\nts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (rel R✝ ts✝)) v ↔ Realize (rel R✝ ts✝) (v ∘ Sum.inl) (v ∘ Sum.inr)", "tactic": "simp [BoundedFormula.Realize]" }, { "state_after": "no goals", "state_before": "case imp\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf₁✝ f₂✝ : BoundedFormula L α n✝\nih1 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₁✝) v ↔ Realize f₁✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nih2 : ∀ (v : α ⊕ Fin n✝ → M), Formula.Realize (toFormula f₂✝) v ↔ Realize f₂✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (f₁✝ ⟹ f₂✝)) v ↔ Realize (f₁✝ ⟹ f₂✝) (v ∘ Sum.inl) (v ∘ Sum.inr)", "tactic": "rw [toFormula, Formula.Realize, realize_imp, ← Formula.Realize, ih1, ← Formula.Realize, ih2,\n realize_imp]" }, { "state_after": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\n⊢ (∀ (a : M),\n Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a)) ↔\n ∀ (a : M), Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\n⊢ Formula.Realize (toFormula (∀'f✝)) v ↔ Realize (∀'f✝) (v ∘ Sum.inl) (v ∘ Sum.inr)", "tactic": "rw [toFormula, Formula.Realize, realize_all, realize_all]" }, { "state_after": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\n⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\n⊢ (∀ (a : M),\n Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a)) ↔\n ∀ (a : M), Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "tactic": "refine' forall_congr' fun a => _" }, { "state_after": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inl)\n (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inr)\n⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\n⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "tactic": "have h := ih3 (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a))" }, { "state_after": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\n⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inl)\n (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a) ∘ Sum.inr)\n⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "tactic": "simp only [Sum.elim_comp_inl, Sum.elim_comp_inr] at h" }, { "state_after": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\n⊢ Realize (toFormula f✝)\n (Sum.elim v (snoc default a ∘ ↑(castAdd 0)) ∘\n Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm))\n (snoc default a ∘ ↑(natAdd 1)) =\n Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) default", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\n⊢ Realize (relabel (Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm)) (toFormula f✝)) v\n (snoc default a) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)", "tactic": "rw [← h, realize_relabel, Formula.Realize, iff_iff_eq]" }, { "state_after": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\n⊢ (Realize (toFormula f✝)\n (fun x =>\n Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x))\n fun x => snoc default a (↑(natAdd 1) x)) =\n Realize (toFormula f✝) (Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a)) default", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\n⊢ Realize (toFormula f✝)\n (Sum.elim v (snoc default a ∘ ↑(castAdd 0)) ∘\n Sum.elim (Sum.inl ∘ Sum.inl) (Sum.map Sum.inr id ∘ ↑finSumFinEquiv.symm))\n (snoc default a ∘ ↑(natAdd 1)) =\n Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) default", "tactic": "simp only [Function.comp]" }, { "state_after": "case all.e__v.h\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : α ⊕ Fin (n✝ + 1)\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) x\n\ncase all.e__xs.h\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin 0\n⊢ snoc default a (↑(natAdd 1) x) = default x", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\n⊢ (Realize (toFormula f✝)\n (fun x =>\n Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x))\n fun x => snoc default a (↑(natAdd 1) x)) =\n Realize (toFormula f✝) (Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a)) default", "tactic": "congr with x" }, { "state_after": "case all.e__v.h.inl\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nval✝ : α\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inl val✝)) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inl val✝)\n\ncase all.e__v.h.inr\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inr x)) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr x)", "state_before": "case all.e__v.h\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : α ⊕ Fin (n✝ + 1)\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) x) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) x", "tactic": "cases' x with _ x" }, { "state_after": "no goals", "state_before": "case all.e__v.h.inl\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nval✝ : α\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inl val✝)) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inl val✝)", "tactic": "simp" }, { "state_after": "case all.e__v.h.inr.refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x))\n (Sum.inr (last n✝))) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (last n✝))\n\ncase all.e__v.h.inr.refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ ∀ (i : Fin n✝),\n Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x))\n (Sum.inr (↑castSucc i))) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (↑castSucc i))", "state_before": "case all.e__v.h.inr\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x)) (Sum.inr x)) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr x)", "tactic": "refine' Fin.lastCases _ _ x" }, { "state_after": "case all.e__v.h.inr.refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ snoc default a (↑(castAdd 0) (id 0)) = snoc (fun x => v (Sum.inr x)) a (last n✝)", "state_before": "case all.e__v.h.inr.refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x))\n (Sum.inr (last n✝))) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (last n✝))", "tactic": "rw [Sum.elim_inr, Sum.elim_inr,\n finSumFinEquiv_symm_last, Sum.map_inr, Sum.elim_inr]" }, { "state_after": "no goals", "state_before": "case all.e__v.h.inr.refine'_1\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ snoc default a (↑(castAdd 0) (id 0)) = snoc (fun x => v (Sum.inr x)) a (last n✝)", "tactic": "simp [Fin.snoc]" }, { "state_after": "case all.e__v.h.inr.refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (↑(castAdd 1) i)", "state_before": "case all.e__v.h.inr.refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ ∀ (i : Fin n✝),\n Sum.elim v (fun x => snoc default a (↑(castAdd 0) x))\n (Sum.elim (fun x => Sum.inl (Sum.inl x)) (fun x => Sum.map Sum.inr id (↑finSumFinEquiv.symm x))\n (Sum.inr (↑castSucc i))) =\n Sum.elim (fun x => v (Sum.inl x)) (snoc (fun x => v (Sum.inr x)) a) (Sum.inr (↑castSucc i))", "tactic": "simp only [castSucc, Function.comp_apply, Sum.elim_inr,\n finSumFinEquiv_symm_apply_castAdd, Sum.map_inl, Sum.elim_inl]" }, { "state_after": "case all.e__v.h.inr.refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (↑castSucc i)", "state_before": "case all.e__v.h.inr.refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (↑(castAdd 1) i)", "tactic": "rw [← castSucc]" }, { "state_after": "no goals", "state_before": "case all.e__v.h.inr.refine'_2\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin (n✝ + 1)\n⊢ ∀ (i : Fin n✝), v (Sum.inr i) = snoc (fun x => v (Sum.inr x)) a (↑castSucc i)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case all.e__xs.h\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.638594\nP : Type ?u.638597\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\nT : Theory L\nv✝ : α ⊕ Fin n → M\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih3 : ∀ (v : α ⊕ Fin (n✝ + 1) → M), Formula.Realize (toFormula f✝) v ↔ Realize f✝ (v ∘ Sum.inl) (v ∘ Sum.inr)\nv : α ⊕ Fin n✝ → M\na : M\nh :\n Formula.Realize (toFormula f✝) (Sum.elim (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)) ↔\n Realize f✝ (v ∘ Sum.inl) (snoc (v ∘ Sum.inr) a)\nx : Fin 0\n⊢ snoc default a (↑(natAdd 1) x) = default x", "tactic": "exact Fin.elim0 x" } ]
[ 942, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 916, 1 ]
Mathlib/Data/Polynomial/Derivative.lean
Polynomial.derivative_one
[]
[ 142, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/RingTheory/DedekindDomain/Ideal.lean
Associates.le_singleton_iff
[ { "state_after": "no goals", "state_before": "R : Type ?u.817526\nA : Type u_1\nK : Type ?u.817532\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : IsDedekindDomain A\ninst✝¹ : Algebra A K\ninst✝ : IsFractionRing A K\nx : A\nn : ℕ\nI : Ideal A\n⊢ Associates.mk I ^ n ≤ Associates.mk (span {x}) ↔ x ∈ I ^ n", "tactic": "simp_rw [← Associates.dvd_eq_le, ← Associates.mk_pow, Associates.mk_dvd_mk,\n Ideal.dvd_span_singleton]" } ]
[ 778, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 775, 1 ]
Mathlib/Topology/Algebra/ConstMulAction.lean
closure_smul₀
[ { "state_after": "case inl\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\ns : Set E\n⊢ closure (0 • s) = 0 • closure s\n\ncase inr\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc✝ : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\nc : G₀\ns : Set E\nhc : c ≠ 0\n⊢ closure (c • s) = c • closure s", "state_before": "M : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc✝ : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\nc : G₀\ns : Set E\n⊢ closure (c • s) = c • closure s", "tactic": "rcases eq_or_ne c 0 with (rfl | hc)" }, { "state_after": "case inl.inl\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\n⊢ closure (0 • ∅) = 0 • closure ∅\n\ncase inl.inr\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\ns : Set E\nhs : Set.Nonempty s\n⊢ closure (0 • s) = 0 • closure s", "state_before": "case inl\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\ns : Set E\n⊢ closure (0 • s) = 0 • closure s", "tactic": "rcases eq_empty_or_nonempty s with (rfl | hs)" }, { "state_after": "no goals", "state_before": "case inl.inl\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\n⊢ closure (0 • ∅) = 0 • closure ∅", "tactic": "simp" }, { "state_after": "case inl.inr\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\ns : Set E\nhs : Set.Nonempty s\n⊢ closure 0 = 0", "state_before": "case inl.inr\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\ns : Set E\nhs : Set.Nonempty s\n⊢ closure (0 • s) = 0 • closure s", "tactic": "rw [zero_smul_set hs, zero_smul_set hs.closure]" }, { "state_after": "no goals", "state_before": "case inl.inr\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\ns : Set E\nhs : Set.Nonempty s\n⊢ closure 0 = 0", "tactic": "exact closure_singleton" }, { "state_after": "no goals", "state_before": "case inr\nM : Type ?u.97023\nα : Type ?u.97026\nβ : Type ?u.97029\nG₀ : Type u_2\ninst✝⁹ : TopologicalSpace α\ninst✝⁸ : GroupWithZero G₀\ninst✝⁷ : MulAction G₀ α\ninst✝⁶ : ContinuousConstSMul G₀ α\ninst✝⁵ : TopologicalSpace β\nf : β → α\nb : β\nc✝ : G₀\ns✝ : Set β\nE : Type u_1\ninst✝⁴ : Zero E\ninst✝³ : MulActionWithZero G₀ E\ninst✝² : TopologicalSpace E\ninst✝¹ : T1Space E\ninst✝ : ContinuousConstSMul G₀ E\nc : G₀\ns : Set E\nhc : c ≠ 0\n⊢ closure (c • s) = c • closure s", "tactic": "exact ((Homeomorph.smulOfNeZero c hc).image_closure s).symm" } ]
[ 348, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 341, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snorm_zero
[ { "state_after": "case pos\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : p = 0\n⊢ snorm 0 p μ = 0\n\ncase neg\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : ¬p = 0\n⊢ snorm 0 p μ = 0", "state_before": "α : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\n⊢ snorm 0 p μ = 0", "tactic": "by_cases h0 : p = 0" }, { "state_after": "case pos\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : ¬p = 0\nh_top : p = ⊤\n⊢ snorm 0 p μ = 0\n\ncase neg\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : ¬p = 0\nh_top : ¬p = ⊤\n⊢ snorm 0 p μ = 0", "state_before": "case neg\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : ¬p = 0\n⊢ snorm 0 p μ = 0", "tactic": "by_cases h_top : p = ∞" }, { "state_after": "case neg\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : p ≠ 0\nh_top : ¬p = ⊤\n⊢ snorm 0 p μ = 0", "state_before": "case neg\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : ¬p = 0\nh_top : ¬p = ⊤\n⊢ snorm 0 p μ = 0", "tactic": "rw [← Ne.def] at h0" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : p ≠ 0\nh_top : ¬p = ⊤\n⊢ snorm 0 p μ = 0", "tactic": "simp [snorm_eq_snorm' h0 h_top, ENNReal.toReal_pos h0 h_top]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : p = 0\n⊢ snorm 0 p μ = 0", "tactic": "simp [h0]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.922031\nF : Type u_2\nG : Type ?u.922037\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nh0 : ¬p = 0\nh_top : p = ⊤\n⊢ snorm 0 p μ = 0", "tactic": "simp only [h_top, snorm_exponent_top, snormEssSup_zero]" } ]
[ 210, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.tsum_coe_ne_top_iff_summable_coe
[ { "state_after": "α : Type u_1\nβ : Type ?u.306594\nγ : Type ?u.306597\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf : α → ℝ≥0\n⊢ (∑' (a : α), ↑(f a)) ≠ ⊤ ↔ Summable fun a => f a", "state_before": "α : Type u_1\nβ : Type ?u.306594\nγ : Type ?u.306597\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf : α → ℝ≥0\n⊢ (∑' (a : α), ↑(f a)) ≠ ⊤ ↔ Summable fun a => ↑(f a)", "tactic": "rw [NNReal.summable_coe]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.306594\nγ : Type ?u.306597\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf : α → ℝ≥0\n⊢ (∑' (a : α), ↑(f a)) ≠ ⊤ ↔ Summable fun a => f a", "tactic": "exact tsum_coe_ne_top_iff_summable" } ]
[ 1075, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1072, 1 ]
Mathlib/CategoryTheory/Limits/Lattice.lean
CategoryTheory.Limits.CompleteLattice.coprod_eq_sup
[ { "state_after": "no goals", "state_before": "α : Type u\nJ : Type w\ninst✝³ : SmallCategory J\ninst✝² : FinCategory J\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nx y : α\n⊢ colimit (pair x y) = Finset.sup Finset.univ (pair x y).toPrefunctor.obj", "tactic": "rw [finite_colimit_eq_finset_univ_sup (pair x y)]" }, { "state_after": "no goals", "state_before": "α : Type u\nJ : Type w\ninst✝³ : SmallCategory J\ninst✝² : FinCategory J\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nx y : α\n⊢ x ⊔ (y ⊔ ⊥) = x ⊔ y", "tactic": "rw [sup_bot_eq]" } ]
[ 151, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Order/MinMax.lean
lt_max_of_lt_left
[]
[ 92, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Topology/Order/Basic.lean
isOpen_Ioo
[]
[ 306, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.le_iff_mem_closure
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\ninst✝¹ : CommRing R\ninst✝ : CommRing S\nx y : PrimeSpectrum R\n⊢ x ≤ y ↔ y ∈ closure {x}", "tactic": "rw [← asIdeal_le_asIdeal, ← zeroLocus_vanishingIdeal_eq_closure, mem_zeroLocus,\n vanishingIdeal_singleton, SetLike.coe_subset_coe]" } ]
[ 932, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 929, 1 ]
Mathlib/MeasureTheory/Constructions/Prod/Integral.lean
MeasureTheory.AEStronglyMeasurable.integral_prod_right'
[ { "state_after": "no goals", "state_before": "α : Type u_3\nα' : Type ?u.2386685\nβ : Type u_1\nβ' : Type ?u.2386691\nγ : Type ?u.2386694\nE : Type u_2\ninst✝⁸ : MeasurableSpace α\ninst✝⁷ : MeasurableSpace α'\ninst✝⁶ : MeasurableSpace β\ninst✝⁵ : MeasurableSpace β'\ninst✝⁴ : MeasurableSpace γ\nμ μ' : Measure α\nν ν' : Measure β\nτ : Measure γ\ninst✝³ : NormedAddCommGroup E\ninst✝² : SigmaFinite ν\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf : α × β → E\nhf : AEStronglyMeasurable f (Measure.prod μ ν)\n⊢ (fun x => ∫ (y : β), f (x, y) ∂ν) =ᶠ[ae μ] fun x => ∫ (y : β), AEStronglyMeasurable.mk f hf (x, y) ∂ν", "tactic": "filter_upwards [ae_ae_of_ae_prod hf.ae_eq_mk] with _ hx using integral_congr_ae hx" } ]
[ 204, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 200, 1 ]
Mathlib/Data/Set/Intervals/Instances.lean
Set.Icc.mul_le_left
[]
[ 136, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.mem_union_right
[]
[ 1354, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1353, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.coe_toIcoMod
[ { "state_after": "θ ψ : ℝ\n⊢ ∃ k, toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑k", "state_before": "θ ψ : ℝ\n⊢ ↑(toIcoMod two_pi_pos ψ θ) = ↑θ", "tactic": "rw [angle_eq_iff_two_pi_dvd_sub]" }, { "state_after": "θ ψ : ℝ\n⊢ toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑(-toIcoDiv two_pi_pos ψ θ)", "state_before": "θ ψ : ℝ\n⊢ ∃ k, toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑k", "tactic": "refine' ⟨-toIcoDiv two_pi_pos ψ θ, _⟩" }, { "state_after": "no goals", "state_before": "θ ψ : ℝ\n⊢ toIcoMod two_pi_pos ψ θ - θ = 2 * π * ↑(-toIcoDiv two_pi_pos ψ θ)", "tactic": "rw [toIcoMod_sub_self, zsmul_eq_mul, mul_comm]" } ]
[ 511, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 508, 1 ]
Mathlib/RingTheory/Noetherian.lean
isNoetherian_of_tower
[ { "state_after": "R : Type u_1\nS : Type u_2\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : SMul R S\ninst✝² : Module S M\ninst✝¹ : Module R M\ninst✝ : IsScalarTower R S M\nh : WellFounded fun x x_1 => x > x_1\n⊢ WellFounded fun x x_1 => x > x_1", "state_before": "R : Type u_1\nS : Type u_2\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : SMul R S\ninst✝² : Module S M\ninst✝¹ : Module R M\ninst✝ : IsScalarTower R S M\nh : IsNoetherian R M\n⊢ IsNoetherian S M", "tactic": "rw [isNoetherian_iff_wellFounded] at h⊢" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type u_2\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : SMul R S\ninst✝² : Module S M\ninst✝¹ : Module R M\ninst✝ : IsScalarTower R S M\nh : WellFounded fun x x_1 => x > x_1\n⊢ WellFounded fun x x_1 => x > x_1", "tactic": "refine' (Submodule.restrictScalarsEmbedding R S M).dual.wellFounded h" } ]
[ 533, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 530, 1 ]
Mathlib/Order/Monotone/Basic.lean
StrictMonoOn.dual
[]
[ 250, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 11 ]
Mathlib/Algebra/Hom/Ring.lean
RingHom.codomain_trivial_iff_range_trivial
[ { "state_after": "no goals", "state_before": "F : Type ?u.86859\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.86868\nx✝² : NonAssocSemiring α\nx✝¹ : NonAssocSemiring β\nf : α →+* β\nx✝ y : α\nh : ↑f 1 = 0\nx : α\n⊢ ↑f x = 0", "tactic": "rw [← mul_one x, map_mul, h, mul_zero]" } ]
[ 605, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 603, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
LinearMap.leftInverse_splittingOfFunOnFintypeSurjective
[]
[ 1262, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1260, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.div_lt
[]
[ 919, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 918, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.inf_adj
[]
[ 266, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/Algebra/Group/Basic.lean
eq_mul_of_div_eq'
[ { "state_after": "no goals", "state_before": "α : Type ?u.67078\nβ : Type ?u.67081\nG : Type u_1\ninst✝ : CommGroup G\na b c d : G\nh : a / b = c\n⊢ a = b * c", "tactic": "simp [h.symm]" } ]
[ 920, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 920, 1 ]
Mathlib/Algebra/Order/Group/Abs.lean
neg_abs_le_neg
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : AddGroup α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1\na✝ b c a : α\n⊢ -abs a ≤ -a", "tactic": "simpa using neg_abs_le_self (-a)" } ]
[ 168, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.inv_eq_iff_eq
[]
[ 115, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearEquiv.ofTop_apply
[]
[ 2103, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2102, 1 ]
Mathlib/MeasureTheory/Integral/SetIntegral.lean
MeasureTheory.set_integral_congr_ae
[]
[ 82, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
Monotone.map_limsSup_of_continuousAt
[]
[ 386, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.coeSort_toFinset
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns t : Set α\na : α\nhs : Set.Finite s\nht : Set.Finite t\nh : Set.Finite s\n⊢ { x // x ∈ Finite.toFinset h } = ↑s", "tactic": "rw [← Finset.coe_sort_coe _, h.coe_toFinset]" } ]
[ 179, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/MeasureTheory/Integral/SetIntegral.lean
MeasureTheory.set_integral_gt_gt
[ { "state_after": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ 0 < ↑↑μ ((support fun a => f a - R) ∩ {x | R < f x})\n\ncase hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ 0 ≤ᵐ[Measure.restrict μ {x | R < f x}] fun a => f a - R\n\ncase hfi\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ IntegrableOn (fun a => f a - R) {x | R < f x}", "state_before": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ ENNReal.toReal (↑↑μ {x | R < f x}) * R < ∫ (x : α) in {x | R < f x}, f x ∂μ", "tactic": "rw [← sub_pos, ← smul_eq_mul, ← set_integral_const, ← integral_sub hfint this,\n set_integral_pos_iff_support_of_nonneg_ae]" }, { "state_after": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\n⊢ (∫⁻ (a : α) in {x | R < f x}, ↑‖(fun x => R) a‖₊ ∂μ) ≤ ∫⁻ (a : α) in {x | R < f x}, ↑‖f a‖₊ ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\n⊢ IntegrableOn (fun x => R) {x | R < f x}", "tactic": "refine' ⟨aestronglyMeasurable_const, lt_of_le_of_lt _ hfint.2⟩" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\n⊢ Measurable fun a => (fun x => R) a\n\ncase refine'_2\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nx : α\nhx : x ∈ {x | R < f x}\n⊢ ↑‖(fun x => R) x‖₊ ≤ ↑‖f x‖₊", "state_before": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\n⊢ (∫⁻ (a : α) in {x | R < f x}, ↑‖(fun x => R) a‖₊ ∂μ) ≤ ∫⁻ (a : α) in {x | R < f x}, ↑‖f a‖₊ ∂μ", "tactic": "refine'\n set_lintegral_mono (Measurable.nnnorm _).coe_nnreal_ennreal hfm.nnnorm.coe_nnreal_ennreal\n fun x hx => _" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\n⊢ Measurable fun a => (fun x => R) a", "tactic": "exact measurable_const" }, { "state_after": "case refine'_2\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nx : α\nhx : x ∈ {x | R < f x}\n⊢ { val := R, property := hR } ≤ { val := f x, property := (_ : 0 ≤ f x) }", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nx : α\nhx : x ∈ {x | R < f x}\n⊢ ↑‖(fun x => R) x‖₊ ≤ ↑‖f x‖₊", "tactic": "simp only [ENNReal.coe_le_coe, Real.nnnorm_of_nonneg hR,\n Real.nnnorm_of_nonneg (hR.trans <| le_of_lt hx), Subtype.mk_le_mk]" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nx : α\nhx : x ∈ {x | R < f x}\n⊢ { val := R, property := hR } ≤ { val := f x, property := (_ : 0 ≤ f x) }", "tactic": "exact le_of_lt hx" }, { "state_after": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : 0 < ↑↑μ {x | R < f x}\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ 0 < ↑↑μ ((support fun a => f a - R) ∩ {x | R < f x})", "state_before": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ 0 < ↑↑μ ((support fun a => f a - R) ∩ {x | R < f x})", "tactic": "rw [← zero_lt_iff] at hμ" }, { "state_after": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : 0 < ↑↑μ {x | R < f x}\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ {x | R < f x} ⊆ support fun a => f a - R", "state_before": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : 0 < ↑↑μ {x | R < f x}\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ 0 < ↑↑μ ((support fun a => f a - R) ∩ {x | R < f x})", "tactic": "rwa [Set.inter_eq_self_of_subset_right]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : 0 < ↑↑μ {x | R < f x}\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ {x | R < f x} ⊆ support fun a => f a - R", "tactic": "exact fun x hx => Ne.symm (ne_of_lt <| sub_pos.2 hx)" }, { "state_after": "case hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ {x | R < f x}, OfNat.ofNat 0 x ≤ (fun a => f a - R) x", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ 0 ≤ᵐ[Measure.restrict μ {x | R < f x}] fun a => f a - R", "tactic": "change ∀ᵐ x ∂μ.restrict _, _" }, { "state_after": "case hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ ∀ᵐ (x : α) ∂μ, x ∈ {x | R < f x} → OfNat.ofNat 0 x ≤ (fun a => f a - R) x\n\ncase hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ MeasurableSet {x | OfNat.ofNat 0 x ≤ (fun a => f a - R) x}", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ {x | R < f x}, OfNat.ofNat 0 x ≤ (fun a => f a - R) x", "tactic": "rw [ae_restrict_iff]" }, { "state_after": "no goals", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ ∀ᵐ (x : α) ∂μ, x ∈ {x | R < f x} → OfNat.ofNat 0 x ≤ (fun a => f a - R) x", "tactic": "exact eventually_of_forall fun x hx => sub_nonneg.2 <| le_of_lt hx" }, { "state_after": "no goals", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ MeasurableSet {x | OfNat.ofNat 0 x ≤ (fun a => f a - R) x}", "tactic": "exact measurableSet_le measurable_zero (hfm.sub measurable_const)" }, { "state_after": "no goals", "state_before": "case hfi\nα : Type u_1\nβ : Type ?u.264063\nE : Type ?u.264066\nF : Type ?u.264069\ninst✝³ : MeasurableSpace α\ninst✝² : NormedAddCommGroup E\nf✝ g : α → E\ns t : Set α\nμ ν : Measure α\nl l' : Filter α\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nR : ℝ\nf : α → ℝ\nhR : 0 ≤ R\nhfm : Measurable f\nhfint : IntegrableOn f {x | R < f x}\nhμ : ↑↑μ {x | R < f x} ≠ 0\nthis : IntegrableOn (fun x => R) {x | R < f x}\n⊢ IntegrableOn (fun a => f a - R) {x | R < f x}", "tactic": "exact Integrable.sub hfint this" } ]
[ 590, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 569, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.isSheaf_of_yoneda
[]
[ 759, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 757, 1 ]
Std/Data/HashMap/WF.lean
Std.HashMap.Imp.Bucket.size_eq
[]
[ 34, 62 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 33, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/WideEqualizers.lean
CategoryTheory.Limits.Cotrident.IsColimit.hom_ext
[]
[ 309, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 307, 1 ]
Mathlib/Data/Int/Order/Basic.lean
Int.mul_lt_of_lt_ediv
[]
[ 430, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 429, 11 ]
Mathlib/GroupTheory/Submonoid/Membership.lean
Submonoid.map_powers
[ { "state_after": "no goals", "state_before": "M : Type u_3\nA : Type ?u.225218\nB : Type ?u.225221\ninst✝² : Monoid M\nN : Type u_1\nF : Type u_2\ninst✝¹ : Monoid N\ninst✝ : MonoidHomClass F M N\nf : F\nm : M\n⊢ map f (powers m) = powers (↑f m)", "tactic": "simp only [powers_eq_closure, map_mclosure f, Set.image_singleton]" } ]
[ 516, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 514, 1 ]
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.derivedSeries_le_lowerCentralSeries
[ { "state_after": "case zero\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk : ℕ\nN : LieSubmodule R L M\n⊢ derivedSeries R L Nat.zero ≤ lowerCentralSeries R L L Nat.zero\n\ncase succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\nh : derivedSeries R L k ≤ lowerCentralSeries R L L k\n⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k)", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\n⊢ derivedSeries R L k ≤ lowerCentralSeries R L L k", "tactic": "induction' k with k h" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk : ℕ\nN : LieSubmodule R L M\n⊢ derivedSeries R L Nat.zero ≤ lowerCentralSeries R L L Nat.zero", "tactic": "rw [derivedSeries_def, derivedSeriesOfIdeal_zero, lowerCentralSeries_zero]" }, { "state_after": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\nh : derivedSeries R L k ≤ lowerCentralSeries R L L k\nh' : derivedSeries R L k ≤ ⊤\n⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k)", "state_before": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\nh : derivedSeries R L k ≤ lowerCentralSeries R L L k\n⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k)", "tactic": "have h' : derivedSeries R L k ≤ ⊤ := by simp only [le_top]" }, { "state_after": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\nh : derivedSeries R L k ≤ lowerCentralSeries R L L k\nh' : derivedSeries R L k ≤ ⊤\n⊢ ⁅derivedSeriesOfIdeal R L k ⊤, derivedSeriesOfIdeal R L k ⊤⁆ ≤ ⁅⊤, lowerCentralSeries R L L k⁆", "state_before": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\nh : derivedSeries R L k ≤ lowerCentralSeries R L L k\nh' : derivedSeries R L k ≤ ⊤\n⊢ derivedSeries R L (Nat.succ k) ≤ lowerCentralSeries R L L (Nat.succ k)", "tactic": "rw [derivedSeries_def, derivedSeriesOfIdeal_succ, lowerCentralSeries_succ]" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\nh : derivedSeries R L k ≤ lowerCentralSeries R L L k\nh' : derivedSeries R L k ≤ ⊤\n⊢ ⁅derivedSeriesOfIdeal R L k ⊤, derivedSeriesOfIdeal R L k ⊤⁆ ≤ ⁅⊤, lowerCentralSeries R L L k⁆", "tactic": "exact LieSubmodule.mono_lie _ _ _ _ h' h" }, { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN : LieSubmodule R L M\nk : ℕ\nh : derivedSeries R L k ≤ lowerCentralSeries R L L k\n⊢ derivedSeries R L k ≤ ⊤", "tactic": "simp only [le_top]" } ]
[ 181, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Logic/Encodable/Basic.lean
Encodable.encode_inr
[]
[ 295, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 294, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.fromBlocks_submatrix_sum_swap_sum_swap
[ { "state_after": "no goals", "state_before": "l✝ : Type ?u.20447\nm✝ : Type ?u.20450\nn✝ : Type ?u.20453\no✝ : Type ?u.20456\np : Type ?u.20459\nq : Type ?u.20462\nm' : o✝ → Type ?u.20467\nn' : o✝ → Type ?u.20472\np' : o✝ → Type ?u.20477\nR : Type ?u.20480\nS : Type ?u.20483\nα✝ : Type ?u.20486\nβ : Type ?u.20489\nl : Type u_1\nm : Type u_2\nn : Type u_3\no : Type u_4\nα : Type u_5\nA : Matrix n l α\nB : Matrix n m α\nC : Matrix o l α\nD : Matrix o m α\n⊢ submatrix (fromBlocks A B C D) Sum.swap Sum.swap = fromBlocks D C B A", "tactic": "simp" } ]
[ 181, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 179, 1 ]
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
AffineBasis.exists_affineBasis_of_finiteDimensional
[ { "state_after": "case intro.intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : DivisionRing k\ninst✝² : Module k V\ninst✝¹ : Fintype ι\ninst✝ : FiniteDimensional k V\nh : Fintype.card ι = FiniteDimensional.finrank k V + 1\ns : Set P\nb : AffineBasis (↑s) k P\nhb : ↑b = Subtype.val\n⊢ Nonempty (AffineBasis ι k P)", "state_before": "ι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : DivisionRing k\ninst✝² : Module k V\ninst✝¹ : Fintype ι\ninst✝ : FiniteDimensional k V\nh : Fintype.card ι = FiniteDimensional.finrank k V + 1\n⊢ Nonempty (AffineBasis ι k P)", "tactic": "obtain ⟨s, b, hb⟩ := AffineBasis.exists_affineBasis k V P" }, { "state_after": "case intro.intro.intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : DivisionRing k\ninst✝² : Module k V\ninst✝¹ : Fintype ι\ninst✝ : FiniteDimensional k V\nh : Fintype.card ι = FiniteDimensional.finrank k V + 1\ns : Finset P\nb : AffineBasis (↑↑s) k P\nhb : ↑b = Subtype.val\n⊢ Nonempty (AffineBasis ι k P)", "state_before": "case intro.intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : DivisionRing k\ninst✝² : Module k V\ninst✝¹ : Fintype ι\ninst✝ : FiniteDimensional k V\nh : Fintype.card ι = FiniteDimensional.finrank k V + 1\ns : Set P\nb : AffineBasis (↑s) k P\nhb : ↑b = Subtype.val\n⊢ Nonempty (AffineBasis ι k P)", "tactic": "lift s to Finset P using b.finite_set" }, { "state_after": "case intro.intro.intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : DivisionRing k\ninst✝² : Module k V\ninst✝¹ : Fintype ι\ninst✝ : FiniteDimensional k V\nh : Fintype.card ι = FiniteDimensional.finrank k V + 1\ns : Finset P\nb : AffineBasis (↑↑s) k P\nhb : ↑b = Subtype.val\n⊢ Fintype.card ↑↑s = Fintype.card ι", "state_before": "case intro.intro.intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : DivisionRing k\ninst✝² : Module k V\ninst✝¹ : Fintype ι\ninst✝ : FiniteDimensional k V\nh : Fintype.card ι = FiniteDimensional.finrank k V + 1\ns : Finset P\nb : AffineBasis (↑↑s) k P\nhb : ↑b = Subtype.val\n⊢ Nonempty (AffineBasis ι k P)", "tactic": "refine' ⟨b.reindex <| Fintype.equivOfCardEq _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nι : Type u₁\nk : Type u₂\nV : Type u₃\nP : Type u₄\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AffineSpace V P\ninst✝³ : DivisionRing k\ninst✝² : Module k V\ninst✝¹ : Fintype ι\ninst✝ : FiniteDimensional k V\nh : Fintype.card ι = FiniteDimensional.finrank k V + 1\ns : Finset P\nb : AffineBasis (↑↑s) k P\nhb : ↑b = Subtype.val\n⊢ Fintype.card ↑↑s = Fintype.card ι", "tactic": "rw [h, ← b.card_eq_finrank_add_one]" } ]
[ 793, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 788, 1 ]
Mathlib/Algebra/Module/Equiv.lean
LinearEquiv.image_eq_preimage
[]
[ 567, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 566, 11 ]
Mathlib/Algebra/Order/Rearrangement.lean
Monovary.sum_smul_comp_perm_le_sum_smul
[]
[ 249, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 247, 1 ]
Mathlib/LinearAlgebra/ProjectiveSpace/Basic.lean
Projectivization.mk'_eq_mk
[]
[ 68, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Analysis/Asymptotics/Theta.lean
Asymptotics.IsTheta.trans_eventuallyEq
[]
[ 132, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/Topology/ContinuousOn.lean
continuous_if'
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.376081\nδ : Type ?u.376084\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : α → Prop\nf g : α → β\ninst✝ : (a : α) → Decidable (p a)\nhpf : ∀ (a : α), a ∈ frontier {x | p x} → Tendsto f (𝓝[{x | p x}] a) (𝓝 (if p a then f a else g a))\nhpg : ∀ (a : α), a ∈ frontier {x | p x} → Tendsto g (𝓝[{x | ¬p x}] a) (𝓝 (if p a then f a else g a))\nhf : ContinuousOn f {x | p x}\nhg : ContinuousOn g {x | ¬p x}\n⊢ ContinuousOn (fun a => if p a then f a else g a) univ", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.376081\nδ : Type ?u.376084\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : α → Prop\nf g : α → β\ninst✝ : (a : α) → Decidable (p a)\nhpf : ∀ (a : α), a ∈ frontier {x | p x} → Tendsto f (𝓝[{x | p x}] a) (𝓝 (if p a then f a else g a))\nhpg : ∀ (a : α), a ∈ frontier {x | p x} → Tendsto g (𝓝[{x | ¬p x}] a) (𝓝 (if p a then f a else g a))\nhf : ContinuousOn f {x | p x}\nhg : ContinuousOn g {x | ¬p x}\n⊢ Continuous fun a => if p a then f a else g a", "tactic": "rw [continuous_iff_continuousOn_univ]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.376081\nδ : Type ?u.376084\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : α → Prop\nf g : α → β\ninst✝ : (a : α) → Decidable (p a)\nhpf : ∀ (a : α), a ∈ frontier {x | p x} → Tendsto f (𝓝[{x | p x}] a) (𝓝 (if p a then f a else g a))\nhpg : ∀ (a : α), a ∈ frontier {x | p x} → Tendsto g (𝓝[{x | ¬p x}] a) (𝓝 (if p a then f a else g a))\nhf : ContinuousOn f {x | p x}\nhg : ContinuousOn g {x | ¬p x}\n⊢ ContinuousOn (fun a => if p a then f a else g a) univ", "tactic": "apply ContinuousOn.if' <;> simp [*] <;> assumption" } ]
[ 1174, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1168, 1 ]
Mathlib/Data/Polynomial/Degree/Lemmas.lean
Polynomial.natDegree_mul_C_le
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nι : Type w\na✝ b : R\nm n : ℕ\ninst✝ : Semiring R\np q r f : R[X]\na : R\n⊢ natDegree f + natDegree (↑C a) = natDegree f + 0", "tactic": "rw [natDegree_C a]" } ]
[ 105, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Topology/MetricSpace/Contracting.lean
ContractingWith.tendsto_iterate_efixedPoint'
[]
[ 213, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/GroupTheory/Submonoid/Membership.lean
Submonoid.powers_eq_closure
[ { "state_after": "case h\nM : Type u_1\nA : Type ?u.128599\nB : Type ?u.128602\ninst✝ : Monoid M\nn x✝ : M\n⊢ x✝ ∈ powers n ↔ x✝ ∈ closure {n}", "state_before": "M : Type u_1\nA : Type ?u.128599\nB : Type ?u.128602\ninst✝ : Monoid M\nn : M\n⊢ powers n = closure {n}", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nM : Type u_1\nA : Type ?u.128599\nB : Type ?u.128602\ninst✝ : Monoid M\nn x✝ : M\n⊢ x✝ ∈ powers n ↔ x✝ ∈ closure {n}", "tactic": "exact mem_closure_singleton.symm" } ]
[ 446, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 444, 1 ]