file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
CategoryTheory.Limits.Cofork.π_precompose
[]
[ 671, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 669, 1 ]
Mathlib/Analysis/Calculus/FDerivMeasurable.lean
aestronglyMeasurable_deriv
[]
[ 450, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 448, 1 ]
Mathlib/Algebra/Order/Hom/Monoid.lean
OrderMonoidWithZeroHom.toFun_eq_coe
[]
[ 609, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 608, 1 ]
Mathlib/Data/Dfinsupp/Interval.lean
Finset.card_dfinsupp
[]
[ 46, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 44, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.spanningSetsIndex_eq_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.728649\nγ : Type ?u.728652\nδ : Type ?u.728655\nι : Type ?u.728658\nR : Type ?u.728661\nR' : Type ?u.728664\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nμ : Measure α\ninst✝ : SigmaFinite μ\nx : α\nn : ℕ\n⊢ spanningSetsIndex μ x = n ↔ x ∈ disjointed (spanningSets μ) n", "tactic": "convert Set.ext_iff.1 (preimage_spanningSetsIndex_singleton μ n) x" } ]
[ 3507, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3505, 1 ]
Mathlib/MeasureTheory/Group/FundamentalDomain.lean
MeasureTheory.sdiff_fundamentalInterior
[]
[ 605, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
src/lean/Init/Core.lean
Decidable.byContradiction
[]
[ 739, 43 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 738, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isBigOWith_pi
[ { "state_after": "α : Type u_3\nβ : Type ?u.690828\nE : Type ?u.690831\nF : Type ?u.690834\nG : Type ?u.690837\nE'✝ : Type ?u.690840\nF' : Type u_4\nG' : Type ?u.690846\nE'' : Type ?u.690849\nF'' : Type ?u.690852\nG'' : Type ?u.690855\nR : Type ?u.690858\nR' : Type ?u.690861\n𝕜 : Type ?u.690864\n𝕜' : Type ?u.690867\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'✝\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf✝ : α → E\ng : α → F\nk : α → G\nf' : α → E'✝\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\ninst✝¹ : Fintype ι\nE' : ι → Type u_2\ninst✝ : (i : ι) → NormedAddCommGroup (E' i)\nf : α → (i : ι) → E' i\nC : ℝ\nhC : 0 ≤ C\nthis : ∀ (x : α), 0 ≤ C * ‖g' x‖\n⊢ IsBigOWith C l f g' ↔ ∀ (i : ι), IsBigOWith C l (fun x => f x i) g'", "state_before": "α : Type u_3\nβ : Type ?u.690828\nE : Type ?u.690831\nF : Type ?u.690834\nG : Type ?u.690837\nE'✝ : Type ?u.690840\nF' : Type u_4\nG' : Type ?u.690846\nE'' : Type ?u.690849\nF'' : Type ?u.690852\nG'' : Type ?u.690855\nR : Type ?u.690858\nR' : Type ?u.690861\n𝕜 : Type ?u.690864\n𝕜' : Type ?u.690867\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'✝\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf✝ : α → E\ng : α → F\nk : α → G\nf' : α → E'✝\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\ninst✝¹ : Fintype ι\nE' : ι → Type u_2\ninst✝ : (i : ι) → NormedAddCommGroup (E' i)\nf : α → (i : ι) → E' i\nC : ℝ\nhC : 0 ≤ C\n⊢ IsBigOWith C l f g' ↔ ∀ (i : ι), IsBigOWith C l (fun x => f x i) g'", "tactic": "have : ∀ x, 0 ≤ C * ‖g' x‖ := fun x => mul_nonneg hC (norm_nonneg _)" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type ?u.690828\nE : Type ?u.690831\nF : Type ?u.690834\nG : Type ?u.690837\nE'✝ : Type ?u.690840\nF' : Type u_4\nG' : Type ?u.690846\nE'' : Type ?u.690849\nF'' : Type ?u.690852\nG'' : Type ?u.690855\nR : Type ?u.690858\nR' : Type ?u.690861\n𝕜 : Type ?u.690864\n𝕜' : Type ?u.690867\ninst✝¹⁴ : Norm E\ninst✝¹³ : Norm F\ninst✝¹² : Norm G\ninst✝¹¹ : SeminormedAddCommGroup E'✝\ninst✝¹⁰ : SeminormedAddCommGroup F'\ninst✝⁹ : SeminormedAddCommGroup G'\ninst✝⁸ : NormedAddCommGroup E''\ninst✝⁷ : NormedAddCommGroup F''\ninst✝⁶ : NormedAddCommGroup G''\ninst✝⁵ : SeminormedRing R\ninst✝⁴ : SeminormedRing R'\ninst✝³ : NormedField 𝕜\ninst✝² : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf✝ : α → E\ng : α → F\nk : α → G\nf' : α → E'✝\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\ninst✝¹ : Fintype ι\nE' : ι → Type u_2\ninst✝ : (i : ι) → NormedAddCommGroup (E' i)\nf : α → (i : ι) → E' i\nC : ℝ\nhC : 0 ≤ C\nthis : ∀ (x : α), 0 ≤ C * ‖g' x‖\n⊢ IsBigOWith C l f g' ↔ ∀ (i : ι), IsBigOWith C l (fun x => f x i) g'", "tactic": "simp only [isBigOWith_iff, pi_norm_le_iff_of_nonneg (this _), eventually_all]" } ]
[ 2138, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2134, 1 ]
Std/Data/String/Lemmas.lean
String.Iterator.Valid.setCurr
[ { "state_after": "c : Char\nit : Iterator\nh✝ : Valid it\nl r : List Char\nh : ValidFor l r it\n⊢ Valid (Iterator.setCurr it c)", "state_before": "c : Char\nit : Iterator\nh : Valid it\n⊢ Valid (Iterator.setCurr it c)", "tactic": "let ⟨l, r, h⟩ := h.validFor" }, { "state_after": "no goals", "state_before": "c : Char\nit : Iterator\nh✝ : Valid it\nl r : List Char\nh : ValidFor l r it\n⊢ Valid (Iterator.setCurr it c)", "tactic": "exact h.setCurr'.valid" } ]
[ 649, 27 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 646, 1 ]
Mathlib/Order/Filter/Pointwise.lean
Filter.mul_pure
[]
[ 360, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 359, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.mul_iSup
[ { "state_after": "ι : Sort u_1\nf✝ f : ι → ℝ≥0\na : ℝ≥0\n⊢ (↑a * ⨆ (i : ι), ↑(f i)) = ⨆ (i : ι), ↑(a * f i)", "state_before": "ι : Sort u_1\nf✝ f : ι → ℝ≥0\na : ℝ≥0\n⊢ (a * ⨆ (i : ι), f i) = ⨆ (i : ι), a * f i", "tactic": "rw [← NNReal.coe_eq, NNReal.coe_mul, NNReal.coe_iSup, NNReal.coe_iSup]" }, { "state_after": "no goals", "state_before": "ι : Sort u_1\nf✝ f : ι → ℝ≥0\na : ℝ≥0\n⊢ (↑a * ⨆ (i : ι), ↑(f i)) = ⨆ (i : ι), ↑(a * f i)", "tactic": "exact Real.mul_iSup_of_nonneg (NNReal.coe_nonneg _) _" } ]
[ 964, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 962, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
hasSum_zero_iff
[]
[ 210, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.sum_eq_top_iff
[]
[ 1232, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1231, 1 ]
Mathlib/GroupTheory/Submonoid/Basic.lean
Submonoid.coe_top
[]
[ 277, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 276, 1 ]
Mathlib/Data/List/Basic.lean
List.enum_cons
[]
[ 3883, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3882, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.tendsto_nhds_top_iff_nat
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.40146\nγ : Type ?u.40149\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nm : α → ℝ≥0∞\nf : Filter α\nh : ∀ (x : ℝ≥0), ∀ᶠ (a : α) in f, ↑x < m a\nn : ℕ\n⊢ ∀ᶠ (a : α) in f, ↑n < m a", "tactic": "simpa only [ENNReal.coe_nat] using h n" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.40146\nγ : Type ?u.40149\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx✝ y✝ z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nm : α → ℝ≥0∞\nf : Filter α\nh : ∀ (n : ℕ), ∀ᶠ (a : α) in f, ↑n < m a\nx : ℝ≥0\nn : ℕ\nhn : x < ↑n\ny : α\n⊢ ↑x < ↑n", "tactic": "rwa [← ENNReal.coe_nat, coe_lt_coe]" } ]
[ 173, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/Order/UpperLower/Basic.lean
UpperSet.mem_iInf₂_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.60515\nγ : Type ?u.60518\nι : Sort u_2\nκ : ι → Sort u_3\ninst✝ : LE α\nS : Set (UpperSet α)\ns t : UpperSet α\na : α\nf : (i : ι) → κ i → UpperSet α\n⊢ (a ∈ ⨅ (i : ι) (j : κ i), f i j) ↔ ∃ i j, a ∈ f i j", "tactic": "simp_rw [mem_iInf_iff]" } ]
[ 619, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 618, 1 ]
Mathlib/Topology/Algebra/Ring/Basic.lean
Subring.le_topologicalClosure
[]
[ 255, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Analysis/Normed/Group/Quotient.lean
Ideal.Quotient.norm_mk_le
[]
[ 497, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 496, 1 ]
Mathlib/Order/Disjointed.lean
disjointed_le
[]
[ 74, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/LinearAlgebra/Span.lean
LinearMap.toSpanSingleton_zero
[ { "state_after": "case h\nR : Type u_1\nR₂ : Type ?u.332387\nK : Type ?u.332390\nM : Type u_2\nM₂ : Type ?u.332396\nV : Type ?u.332399\nS : Type ?u.332402\ninst✝² : Semiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\n⊢ ↑(toSpanSingleton R M 0) 1 = ↑0 1", "state_before": "R : Type u_1\nR₂ : Type ?u.332387\nK : Type ?u.332390\nM : Type u_2\nM₂ : Type ?u.332396\nV : Type ?u.332399\nS : Type ?u.332402\ninst✝² : Semiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\n⊢ toSpanSingleton R M 0 = 0", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\nR₂ : Type ?u.332387\nK : Type ?u.332390\nM : Type u_2\nM₂ : Type ?u.332396\nV : Type ?u.332399\nS : Type ?u.332402\ninst✝² : Semiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\n⊢ ↑(toSpanSingleton R M 0) 1 = ↑0 1", "tactic": "simp" } ]
[ 933, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 931, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.vsub_empty
[]
[ 1478, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1477, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
iteratedFDerivWithin_const_smul_apply
[]
[ 1572, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1570, 1 ]
Mathlib/Data/Num/Lemmas.lean
PosNum.one_add
[ { "state_after": "no goals", "state_before": "α : Type ?u.30381\nn : PosNum\n⊢ 1 + n = succ n", "tactic": "cases n <;> rfl" } ]
[ 83, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/Data/Finset/Interval.lean
Finset.card_Iic_finset
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\ns t : Finset α\n⊢ card (Iic s) = 2 ^ card s", "tactic": "rw [Iic_eq_powerset, card_powerset]" } ]
[ 123, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.range_re
[]
[ 76, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
HasSum.sub
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.401752\nδ : Type ?u.401755\ninst✝² : AddCommGroup α\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalAddGroup α\nf g : β → α\na a₁ a₂ : α\nhf : HasSum f a₁\nhg : HasSum g a₂\n⊢ HasSum (fun b => f b + -g b) (a₁ + -a₂)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.401752\nδ : Type ?u.401755\ninst✝² : AddCommGroup α\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalAddGroup α\nf g : β → α\na a₁ a₂ : α\nhf : HasSum f a₁\nhg : HasSum g a₂\n⊢ HasSum (fun b => f b - g b) (a₁ - a₂)", "tactic": "simp only [sub_eq_add_neg]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.401752\nδ : Type ?u.401755\ninst✝² : AddCommGroup α\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalAddGroup α\nf g : β → α\na a₁ a₂ : α\nhf : HasSum f a₁\nhg : HasSum g a₂\n⊢ HasSum (fun b => f b + -g b) (a₁ + -a₂)", "tactic": "exact hf.add hg.neg" } ]
[ 822, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 819, 1 ]
Mathlib/Data/List/Sections.lean
List.mem_sections_length
[]
[ 41, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/Topology/UniformSpace/Completion.lean
UniformSpace.Completion.comap_coe_eq_uniformity
[ { "state_after": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\nthis :\n (fun x => (↑α x.fst, ↑α x.snd)) =\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘\n fun x => (pureCauchy x.fst, pureCauchy x.snd)\n⊢ Filter.comap (fun p => (↑α p.fst, ↑α p.snd)) (𝓤 (Completion α)) = 𝓤 α", "state_before": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\n⊢ Filter.comap (fun p => (↑α p.fst, ↑α p.snd)) (𝓤 (Completion α)) = 𝓤 α", "tactic": "have :\n (fun x : α × α => ((x.1 : Completion α), (x.2 : Completion α))) =\n (fun x : CauchyFilter α × CauchyFilter α => (⟦x.1⟧, ⟦x.2⟧)) ∘ fun x : α × α =>\n (pureCauchy x.1, pureCauchy x.2) :=\n by ext ⟨a, b⟩ <;> simp <;> rfl" }, { "state_after": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\nthis :\n (fun x => (↑α x.fst, ↑α x.snd)) =\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘\n fun x => (pureCauchy x.fst, pureCauchy x.snd)\n⊢ Filter.comap (fun x => (pureCauchy x.fst, pureCauchy x.snd))\n (Filter.comap\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd))\n (𝓤 (Completion α))) =\n 𝓤 α", "state_before": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\nthis :\n (fun x => (↑α x.fst, ↑α x.snd)) =\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘\n fun x => (pureCauchy x.fst, pureCauchy x.snd)\n⊢ Filter.comap (fun p => (↑α p.fst, ↑α p.snd)) (𝓤 (Completion α)) = 𝓤 α", "tactic": "rw [this, ← Filter.comap_comap]" }, { "state_after": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\nthis :\n (fun x => (↑α x.fst, ↑α x.snd)) =\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘\n fun x => (pureCauchy x.fst, pureCauchy x.snd)\n⊢ Filter.comap (fun x => (pureCauchy x.fst, pureCauchy x.snd))\n (Filter.comap\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd))\n (𝓤 (Quotient (separationSetoid (CauchyFilter α))))) =\n 𝓤 α", "state_before": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\nthis :\n (fun x => (↑α x.fst, ↑α x.snd)) =\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘\n fun x => (pureCauchy x.fst, pureCauchy x.snd)\n⊢ Filter.comap (fun x => (pureCauchy x.fst, pureCauchy x.snd))\n (Filter.comap\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd))\n (𝓤 (Completion α))) =\n 𝓤 α", "tactic": "change Filter.comap _ (Filter.comap _ (𝓤 <| Quotient <| separationSetoid <| CauchyFilter α)) = 𝓤 α" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\nthis :\n (fun x => (↑α x.fst, ↑α x.snd)) =\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘\n fun x => (pureCauchy x.fst, pureCauchy x.snd)\n⊢ Filter.comap (fun x => (pureCauchy x.fst, pureCauchy x.snd))\n (Filter.comap\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd))\n (𝓤 (Quotient (separationSetoid (CauchyFilter α))))) =\n 𝓤 α", "tactic": "rw [comap_quotient_eq_uniformity, uniformEmbedding_pureCauchy.comap_uniformity]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : UniformSpace α\nβ : Type ?u.37466\ninst✝¹ : UniformSpace β\nγ : Type ?u.37472\ninst✝ : UniformSpace γ\n⊢ (fun x => (↑α x.fst, ↑α x.snd)) =\n (fun x =>\n (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst,\n Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘\n fun x => (pureCauchy x.fst, pureCauchy x.snd)", "tactic": "ext ⟨a, b⟩ <;> simp <;> rfl" } ]
[ 408, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 399, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
zpow_le_zpow_iff'
[]
[ 409, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/Algebra/MonoidAlgebra/Basic.lean
MonoidAlgebra.smul_of
[ { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.464052\ninst✝¹ : Semiring k\ninst✝ : MulOneClass G\ng : G\nr : k\n⊢ r • ↑(of k G) g = single g r", "tactic": "rw [of_apply, smul_single', mul_one]" } ]
[ 520, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 518, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
Metric.hausdorffDist_empty
[ { "state_after": "case inl\nι : Sort ?u.74934\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\nh : s = ∅\n⊢ hausdorffDist s ∅ = 0\n\ncase inr\nι : Sort ?u.74934\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\nh : Set.Nonempty s\n⊢ hausdorffDist s ∅ = 0", "state_before": "ι : Sort ?u.74934\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\n⊢ hausdorffDist s ∅ = 0", "tactic": "cases' s.eq_empty_or_nonempty with h h" }, { "state_after": "no goals", "state_before": "case inl\nι : Sort ?u.74934\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\nh : s = ∅\n⊢ hausdorffDist s ∅ = 0", "tactic": "simp [h]" }, { "state_after": "no goals", "state_before": "case inr\nι : Sort ?u.74934\nα : Type u\nβ : Type v\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\ns t u : Set α\nx y : α\nΦ : α → β\nh : Set.Nonempty s\n⊢ hausdorffDist s ∅ = 0", "tactic": "simp [hausdorffDist, hausdorffEdist_empty h]" } ]
[ 734, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 731, 1 ]
Mathlib/GroupTheory/Exponent.lean
Nat.Prime.exists_orderOf_eq_pow_factorization_exponent
[ { "state_after": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "haveI := Fact.mk hp" }, { "state_after": "case inl\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p = 0\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p\n\ncase inr\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p ≠ 0\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "rcases eq_or_ne ((exponent G).factorization p) 0 with (h | h)" }, { "state_after": "case inr\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p ≠ 0\nhe : 0 < exponent G\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "state_before": "case inr\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p ≠ 0\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "have he : 0 < exponent G :=\n Ne.bot_lt fun ht => by\n rw [ht] at h\n apply h\n rw [bot_eq_zero, Nat.factorization_zero, Finsupp.zero_apply]" }, { "state_after": "case inr\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "state_before": "case inr\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p ≠ 0\nhe : 0 < exponent G\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "rw [← Finsupp.mem_support_iff] at h" }, { "state_after": "case inr.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "state_before": "case inr.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "obtain ⟨k, hk : exponent G = p ^ _ * k⟩ := Nat.ord_proj_dvd _ _" }, { "state_after": "case inr.intro.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "state_before": "case inr.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "obtain ⟨t, ht⟩ := Nat.exists_eq_succ_of_ne_zero (Finsupp.mem_support_iff.mp h)" }, { "state_after": "case inr.intro.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ orderOf (g ^ k) = p ^ ↑(Nat.factorization (exponent G)) p", "state_before": "case inr.intro.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "refine' ⟨g ^ k, _⟩" }, { "state_after": "case inr.intro.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ orderOf (g ^ k) = p ^ Nat.succ t", "state_before": "case inr.intro.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ orderOf (g ^ k) = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "rw [ht]" }, { "state_after": "case inr.intro.intro.intro.hnot\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ ¬(g ^ k) ^ p ^ t = 1\n\ncase inr.intro.intro.intro.hfin\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ (g ^ k) ^ p ^ (t + 1) = 1", "state_before": "case inr.intro.intro.intro\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ orderOf (g ^ k) = p ^ Nat.succ t", "tactic": "apply orderOf_eq_prime_pow" }, { "state_after": "no goals", "state_before": "case inl\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p = 0\n⊢ ∃ g, orderOf g = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "refine' ⟨1, by rw [h, pow_zero, orderOf_one]⟩" }, { "state_after": "no goals", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p = 0\n⊢ orderOf 1 = p ^ ↑(Nat.factorization (exponent G)) p", "tactic": "rw [h, pow_zero, orderOf_one]" }, { "state_after": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization ⊥) p ≠ 0\nht : exponent G = ⊥\n⊢ False", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization (exponent G)) p ≠ 0\nht : exponent G = ⊥\n⊢ False", "tactic": "rw [ht] at h" }, { "state_after": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization ⊥) p ≠ 0\nht : exponent G = ⊥\n⊢ ↑(Nat.factorization ⊥) p = 0", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization ⊥) p ≠ 0\nht : exponent G = ⊥\n⊢ False", "tactic": "apply h" }, { "state_after": "no goals", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : ↑(Nat.factorization ⊥) p ≠ 0\nht : exponent G = ⊥\n⊢ ↑(Nat.factorization ⊥) p = 0", "tactic": "rw [bot_eq_zero, Nat.factorization_zero, Finsupp.zero_apply]" }, { "state_after": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\nkey : ¬exponent G ∣ exponent G / p\n⊢ ∃ g, g ^ (exponent G / p) ≠ 1\n\ncase key\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\n⊢ ¬exponent G ∣ exponent G / p", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\n⊢ ∃ g, g ^ (exponent G / p) ≠ 1", "tactic": "suffices key : ¬exponent G ∣ exponent G / p" }, { "state_after": "no goals", "state_before": "case key\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\n⊢ ¬exponent G ∣ exponent G / p", "tactic": "exact fun hd =>\n hp.one_lt.not_le\n ((mul_le_iff_le_one_left he).mp <|\n Nat.le_of_dvd he <| Nat.mul_dvd_of_dvd_div (Nat.dvd_of_mem_factorization h) hd)" }, { "state_after": "no goals", "state_before": "G : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\nkey : ¬exponent G ∣ exponent G / p\n⊢ ∃ g, g ^ (exponent G / p) ≠ 1", "tactic": "simpa using mt (exponent_dvd_of_forall_pow_eq_one G (exponent G / p)) key" }, { "state_after": "no goals", "state_before": "case inr.intro.intro.intro.hnot\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ ¬(g ^ k) ^ p ^ t = 1", "tactic": "rwa [hk, mul_comm, ht, pow_succ', ← mul_assoc, Nat.mul_div_cancel _ hp.pos, pow_mul] at hg" }, { "state_after": "case inr.intro.intro.intro.hfin\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ g ^ exponent G = 1", "state_before": "case inr.intro.intro.intro.hfin\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ (g ^ k) ^ p ^ (t + 1) = 1", "tactic": "rw [← Nat.succ_eq_add_one, ← ht, ← pow_mul, mul_comm, ← hk]" }, { "state_after": "no goals", "state_before": "case inr.intro.intro.intro.hfin\nG : Type u\ninst✝ : Monoid G\np : ℕ\nhp : Nat.Prime p\nthis : Fact (Nat.Prime p)\nh : p ∈ (Nat.factorization (exponent G)).support\nhe : 0 < exponent G\ng : G\nhg : g ^ (exponent G / p) ≠ 1\nk : ℕ\nhk : exponent G = p ^ ↑(Nat.factorization (exponent G)) p * k\nt : ℕ\nht : ↑(Nat.factorization (exponent G)) p = Nat.succ t\n⊢ g ^ exponent G = 1", "tactic": "exact pow_exponent_eq_one g" } ]
[ 217, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Init/Logic.lean
false_or_iff
[]
[ 183, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.restr_coe_symm
[]
[ 579, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 578, 1 ]
Mathlib/ModelTheory/Substructures.lean
FirstOrder.Language.Substructure.map_map
[]
[ 466, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 465, 1 ]
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.AECover.inter
[]
[ 115, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf
[ { "state_after": "𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\n⊢ (𝓝 0 = ⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0)) ↔ 𝓝 0 = ⨅ (i : ι), 𝓝 0", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\n⊢ WithSeminorms p ↔ t = ⨅ (i : ι), UniformSpace.toTopologicalSpace", "tactic": "rw [p.withSeminorms_iff_nhds_eq_iInf,\n TopologicalAddGroup.ext_iff inferInstance (topologicalAddGroup_iInf fun i => inferInstance),\n nhds_iInf]" }, { "state_after": "𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\n⊢ (𝓝 0 = ⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0)) = (𝓝 0 = ⨅ (i : ι), 𝓝 0)", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\n⊢ (𝓝 0 = ⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0)) ↔ 𝓝 0 = ⨅ (i : ι), 𝓝 0", "tactic": "refine Eq.to_iff ?_" }, { "state_after": "case e_a.e_s\n𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\n⊢ (fun i => Filter.comap (↑(p i)) (𝓝 0)) = fun i => 𝓝 0", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\n⊢ (𝓝 0 = ⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0)) = (𝓝 0 = ⨅ (i : ι), 𝓝 0)", "tactic": "congr" }, { "state_after": "case e_a.e_s.h\n𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\ni : ι\n⊢ Filter.comap (↑(p i)) (𝓝 0) = 𝓝 0", "state_before": "case e_a.e_s\n𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\n⊢ (fun i => Filter.comap (↑(p i)) (𝓝 0)) = fun i => 𝓝 0", "tactic": "funext i" }, { "state_after": "no goals", "state_before": "case e_a.e_s.h\n𝕜 : Type u_1\n𝕜₂ : Type ?u.446340\n𝕝 : Type ?u.446343\n𝕝₂ : Type ?u.446346\nE : Type u_2\nF : Type ?u.446352\nG : Type ?u.446355\nι : Type u_3\nι' : Type ?u.446361\ninst✝⁴ : NormedField 𝕜\ninst✝³ : AddCommGroup E\ninst✝² : Module 𝕜 E\ninst✝¹ : Nonempty ι\nt : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\ni : ι\n⊢ Filter.comap (↑(p i)) (𝓝 0) = 𝓝 0", "tactic": "exact @comap_norm_nhds_zero _ (p i).toAddGroupSeminorm.toSeminormedAddGroup" } ]
[ 463, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
affineIndependent_iff_linearIndependent_vsub
[ { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\n⊢ AffineIndependent k p → LinearIndependent k fun i => p ↑i -ᵥ p i1\n\ncase mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\n⊢ (LinearIndependent k fun i => p ↑i -ᵥ p i1) → AffineIndependent k p", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\n⊢ AffineIndependent k p ↔ LinearIndependent k fun i => p ↑i -ᵥ p i1", "tactic": "constructor" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\n⊢ LinearIndependent k fun i => p ↑i -ᵥ p i1", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\n⊢ AffineIndependent k p → LinearIndependent k fun i => p ↑i -ᵥ p i1", "tactic": "intro h" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\n⊢ ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\n⊢ LinearIndependent k fun i => p ↑i -ᵥ p i1", "tactic": "rw [linearIndependent_iff']" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\n⊢ g i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\n⊢ ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0", "tactic": "intro s g hg i hi" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\n⊢ g i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\n⊢ g i = 0", "tactic": "set f : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g ⟨x, hx⟩ with hfdef" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\n⊢ g i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\n⊢ g i = 0", "tactic": "let s2 : Finset ι := insert i1 (s.map (Embedding.subtype _))" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ g i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\n⊢ g i = 0", "tactic": "have hfg : ∀ x : { x // x ≠ i1 }, g x = f x := by\n intro x\n rw [hfdef]\n dsimp only\n erw [dif_neg x.property, Subtype.coe_eta]" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ f ↑i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ g i = 0", "tactic": "rw [hfg]" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\n⊢ f ↑i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ f ↑i = 0", "tactic": "have hf : (∑ ι in s2, f ι) = 0 := by\n rw [Finset.sum_insert\n (Finset.not_mem_map_subtype_of_not_property s (Classical.not_not.2 rfl)),\n Finset.sum_subtype_map_embedding fun x _ => (hfg x).symm]\n rw [hfdef]\n dsimp only\n rw [dif_pos rfl]\n exact neg_add_self _" }, { "state_after": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nhs2 : ↑(Finset.weightedVSub s2 p) f = 0\n⊢ f ↑i = 0", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\n⊢ f ↑i = 0", "tactic": "have hs2 : s2.weightedVSub p f = (0 : V) := by\n set f2 : ι → V := fun x => f x • (p x -ᵥ p i1) with hf2def\n set g2 : { x // x ≠ i1 } → V := fun x => g x • (p x -ᵥ p i1)\n have hf2g2 : ∀ x : { x // x ≠ i1 }, f2 x = g2 x := by\n simp only [hf2def]\n refine' fun x => _\n rw [hfg]\n rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s2 f p hf (p i1),\n Finset.weightedVSubOfPoint_insert, Finset.weightedVSubOfPoint_apply,\n Finset.sum_subtype_map_embedding fun x _ => hf2g2 x]\n exact hg" }, { "state_after": "no goals", "state_before": "case mp\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nhs2 : ↑(Finset.weightedVSub s2 p) f = 0\n⊢ f ↑i = 0", "tactic": "exact h s2 f hf hs2 i (Finset.mem_insert_of_mem (Finset.mem_map.2 ⟨i, hi, rfl⟩))" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nx : { x // x ≠ i1 }\n⊢ g x = f ↑x", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\n⊢ ∀ (x : { x // x ≠ i1 }), g x = f ↑x", "tactic": "intro x" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nx : { x // x ≠ i1 }\n⊢ g x = (fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }) ↑x", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nx : { x // x ≠ i1 }\n⊢ g x = f ↑x", "tactic": "rw [hfdef]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nx : { x // x ≠ i1 }\n⊢ g x = if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nx : { x // x ≠ i1 }\n⊢ g x = (fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }) ↑x", "tactic": "dsimp only" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nx : { x // x ≠ i1 }\n⊢ g x = if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }", "tactic": "erw [dif_neg x.property, Subtype.coe_eta]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ f i1 + ∑ x in s, g x = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ ∑ ι in s2, f ι = 0", "tactic": "rw [Finset.sum_insert\n (Finset.not_mem_map_subtype_of_not_property s (Classical.not_not.2 rfl)),\n Finset.sum_subtype_map_embedding fun x _ => (hfg x).symm]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ (fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }) i1 + ∑ x in s, g x = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ f i1 + ∑ x in s, g x = 0", "tactic": "rw [hfdef]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ (if hx : i1 = i1 then -∑ y in s, g y else g { val := i1, property := hx }) + ∑ x in s, g x = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ (fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }) i1 + ∑ x in s, g x = 0", "tactic": "dsimp only" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ -∑ y in s, g y + ∑ x in s, g x = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ (if hx : i1 = i1 then -∑ y in s, g y else g { val := i1, property := hx }) + ∑ x in s, g x = 0", "tactic": "rw [dif_pos rfl]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\n⊢ -∑ y in s, g y + ∑ x in s, g x = 0", "tactic": "exact neg_add_self _" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\n⊢ ↑(Finset.weightedVSub s2 p) f = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\n⊢ ↑(Finset.weightedVSub s2 p) f = 0", "tactic": "set f2 : ι → V := fun x => f x • (p x -ᵥ p i1) with hf2def" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\n⊢ ↑(Finset.weightedVSub s2 p) f = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\nhg : ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\n⊢ ↑(Finset.weightedVSub s2 p) f = 0", "tactic": "set g2 : { x // x ≠ i1 } → V := fun x => g x • (p x -ᵥ p i1)" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\nhf2g2 : ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x\n⊢ ↑(Finset.weightedVSub s2 p) f = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\n⊢ ↑(Finset.weightedVSub s2 p) f = 0", "tactic": "have hf2g2 : ∀ x : { x // x ≠ i1 }, f2 x = g2 x := by\n simp only [hf2def]\n refine' fun x => _\n rw [hfg]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\nhf2g2 : ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x\n⊢ ∑ x in s, g2 x = 0", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\nhf2g2 : ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x\n⊢ ↑(Finset.weightedVSub s2 p) f = 0", "tactic": "rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s2 f p hf (p i1),\n Finset.weightedVSubOfPoint_insert, Finset.weightedVSubOfPoint_apply,\n Finset.sum_subtype_map_embedding fun x _ => hf2g2 x]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\nhf2g2 : ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x\n⊢ ∑ x in s, g2 x = 0", "tactic": "exact hg" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\n⊢ ∀ (x : { x // x ≠ i1 }),\n (if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }) • (p ↑x -ᵥ p i1) = g x • (p ↑x -ᵥ p i1)", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\n⊢ ∀ (x : { x // x ≠ i1 }), f2 ↑x = g2 x", "tactic": "simp only [hf2def]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\nx : { x // x ≠ i1 }\n⊢ (if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }) • (p ↑x -ᵥ p i1) = g x • (p ↑x -ᵥ p i1)", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\n⊢ ∀ (x : { x // x ≠ i1 }),\n (if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }) • (p ↑x -ᵥ p i1) = g x • (p ↑x -ᵥ p i1)", "tactic": "refine' fun x => _" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : AffineIndependent k p\ns : Finset { x // x ≠ i1 }\ng : { x // x ≠ i1 } → k\ni : { x // x ≠ i1 }\nhi : i ∈ s\nf : ι → k := fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\nhfdef : f = fun x => if hx : x = i1 then -∑ y in s, g y else g { val := x, property := hx }\ns2 : Finset ι := insert i1 (Finset.map (Embedding.subtype fun x => x ≠ i1) s)\nhfg : ∀ (x : { x // x ≠ i1 }), g x = f ↑x\nhf : ∑ ι in s2, f ι = 0\nf2 : ι → V := fun x => f x • (p x -ᵥ p i1)\nhf2def : f2 = fun x => f x • (p x -ᵥ p i1)\ng2 : { x // x ≠ i1 } → V := fun x => g x • (p ↑x -ᵥ p i1)\nhg : Finset.sum s g2 = 0\nx : { x // x ≠ i1 }\n⊢ (if hx : ↑x = i1 then -∑ y in s, g y else g { val := ↑x, property := hx }) • (p ↑x -ᵥ p i1) = g x • (p ↑x -ᵥ p i1)", "tactic": "rw [hfg]" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : LinearIndependent k fun i => p ↑i -ᵥ p i1\n⊢ AffineIndependent k p", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\n⊢ (LinearIndependent k fun i => p ↑i -ᵥ p i1) → AffineIndependent k p", "tactic": "intro h" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\n⊢ AffineIndependent k p", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh : LinearIndependent k fun i => p ↑i -ᵥ p i1\n⊢ AffineIndependent k p", "tactic": "rw [linearIndependent_iff'] at h" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ni : ι\nhi : i ∈ s\n⊢ w i = 0", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\n⊢ AffineIndependent k p", "tactic": "intro s w hw hs i hi" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\n⊢ w i = 0", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ↑(Finset.weightedVSub s p) w = 0\ni : ι\nhi : i ∈ s\n⊢ w i = 0", "tactic": "rw [Finset.weightedVSub_eq_weightedVSubOfPoint_of_sum_eq_zero s w p hw (p i1), ←\n s.weightedVSubOfPoint_erase w p i1, Finset.weightedVSubOfPoint_apply] at hs" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\n⊢ w i = 0", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\n⊢ w i = 0", "tactic": "let f : ι → V := fun i => w i • (p i -ᵥ p i1)" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\n⊢ w i = 0", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\n⊢ w i = 0", "tactic": "have hs2 : (∑ i in (s.erase i1).subtype fun i => i ≠ i1, f i) = 0 := by\n rw [← hs]\n convert Finset.sum_subtype_of_mem f fun x => Finset.ne_of_mem_erase" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\nh2 : ∀ (i : { x // x ≠ i1 }), i ∈ Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1) → (fun x => w ↑x) i = 0\n⊢ w i = 0", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\n⊢ w i = 0", "tactic": "have h2 := h ((s.erase i1).subtype fun i => i ≠ i1) (fun x => w x) hs2" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\nh2 : ∀ (i : { x // x ≠ i1 }), ↑i ∈ Finset.erase s i1 → w ↑i = 0\n⊢ w i = 0", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\nh2 : ∀ (i : { x // x ≠ i1 }), i ∈ Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1) → (fun x => w ↑x) i = 0\n⊢ w i = 0", "tactic": "simp_rw [Finset.mem_subtype] at h2" }, { "state_after": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\nh2 : ∀ (i : { x // x ≠ i1 }), ↑i ∈ Finset.erase s i1 → w ↑i = 0\nh2b : ∀ (i : ι), i ∈ s → i ≠ i1 → w i = 0\n⊢ w i = 0", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\nh2 : ∀ (i : { x // x ≠ i1 }), ↑i ∈ Finset.erase s i1 → w ↑i = 0\n⊢ w i = 0", "tactic": "have h2b : ∀ i ∈ s, i ≠ i1 → w i = 0 := fun i his hi =>\n h2 ⟨i, hi⟩ (Finset.mem_erase_of_ne_of_mem hi his)" }, { "state_after": "no goals", "state_before": "case mpr\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\nhs2 : ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0\nh2 : ∀ (i : { x // x ≠ i1 }), ↑i ∈ Finset.erase s i1 → w ↑i = 0\nh2b : ∀ (i : ι), i ∈ s → i ≠ i1 → w i = 0\n⊢ w i = 0", "tactic": "exact Finset.eq_zero_of_sum_eq_zero hw h2b i hi" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\n⊢ ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1)", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\n⊢ ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = 0", "tactic": "rw [← hs]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type u_4\np : ι → P\ni1 : ι\nh :\n ∀ (s : Finset { x // x ≠ i1 }) (g : { x // x ≠ i1 } → k),\n ∑ i in s, g i • (p ↑i -ᵥ p i1) = 0 → ∀ (i : { x // x ≠ i1 }), i ∈ s → g i = 0\ns : Finset ι\nw : ι → k\nhw : ∑ i in s, w i = 0\nhs : ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1) = 0\ni : ι\nhi : i ∈ s\nf : ι → V := fun i => w i • (p i -ᵥ p i1)\n⊢ ∑ i in Finset.subtype (fun i => i ≠ i1) (Finset.erase s i1), f ↑i = ∑ i in Finset.erase s i1, w i • (p i -ᵥ p i1)", "tactic": "convert Finset.sum_subtype_of_mem f fun x => Finset.ne_of_mem_erase" } ]
[ 139, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
BoxIntegral.Box.ne_of_disjoint_coe
[]
[ 195, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.SurjectiveOnWith.surjOn
[]
[ 205, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Analysis/Calculus/Deriv/ZPow.lean
iter_deriv_pow'
[]
[ 141, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.abs_sin_eq_of_two_nsmul_eq
[ { "state_after": "θ ψ : Angle\nh : θ = ψ ∨ θ = ψ + ↑π\n⊢ abs (sin θ) = abs (sin ψ)", "state_before": "θ ψ : Angle\nh : 2 • θ = 2 • ψ\n⊢ abs (sin θ) = abs (sin ψ)", "tactic": "rw [two_nsmul_eq_iff] at h" }, { "state_after": "case inl\nθ : Angle\n⊢ abs (sin θ) = abs (sin θ)\n\ncase inr\nψ : Angle\n⊢ abs (sin (ψ + ↑π)) = abs (sin ψ)", "state_before": "θ ψ : Angle\nh : θ = ψ ∨ θ = ψ + ↑π\n⊢ abs (sin θ) = abs (sin ψ)", "tactic": "rcases h with (rfl | rfl)" }, { "state_after": "no goals", "state_before": "case inl\nθ : Angle\n⊢ abs (sin θ) = abs (sin θ)", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case inr\nψ : Angle\n⊢ abs (sin (ψ + ↑π)) = abs (sin ψ)", "tactic": "rw [sin_add_pi, abs_neg]" } ]
[ 484, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 479, 1 ]
Mathlib/Topology/Connected.lean
IsPreirreducible.isPreconnected
[]
[ 77, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 76, 1 ]
Mathlib/Deprecated/Group.lean
IsMonoidHom.id
[]
[ 209, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Mathlib/Data/Nat/Factorial/DoubleFactorial.lean
Nat.factorial_eq_mul_doubleFactorial
[ { "state_after": "no goals", "state_before": "k : ℕ\n⊢ (k + 1 + 1)! = (k + 1 + 1)‼ * (k + 1)‼", "tactic": "rw [doubleFactorial_add_two, factorial, factorial_eq_mul_doubleFactorial _, mul_comm _ k‼,\n mul_assoc]" } ]
[ 53, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/Analysis/Convex/Slope.lean
ConvexOn.secant_mono
[ { "state_after": "case inl\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhxa : x ≠ a\nhy : x ∈ s\nhya : x ≠ a\nhxy : x ≤ x\n⊢ (f x - f a) / (x - a) ≤ (f x - f a) / (x - a)\n\ncase inr\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa : x ≠ a\nhya : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "state_before": "𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa : x ≠ a\nhya : y ≠ a\nhxy : x ≤ y\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "tactic": "rcases eq_or_lt_of_le hxy with (rfl | hxy)" }, { "state_after": "case inr.inl\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)\n\ncase inr.inr\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x > a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "state_before": "case inr\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa : x ≠ a\nhya : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "tactic": "cases' lt_or_gt_of_ne hxa with hxa hxa" }, { "state_after": "no goals", "state_before": "case inl\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhxa : x ≠ a\nhy : x ∈ s\nhya : x ≠ a\nhxy : x ≤ x\n⊢ (f x - f a) / (x - a) ≤ (f x - f a) / (x - a)", "tactic": "simp" }, { "state_after": "case inr.inl.inl\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y < a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)\n\ncase inr.inl.inr\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y > a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "state_before": "case inr.inl\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "tactic": "cases' lt_or_gt_of_ne hya with hya hya" }, { "state_after": "no goals", "state_before": "case inr.inl.inl\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y < a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "tactic": "convert hf.secant_mono_aux3 hx ha hxy hya using 1 <;> rw [← neg_div_neg_eq] <;> field_simp" }, { "state_after": "case h.e'_3\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y > a\n⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x)", "state_before": "case inr.inl.inr\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y > a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "tactic": "convert hf.slope_mono_adjacent hx hy hxa hya using 1" }, { "state_after": "case h.e'_3\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y > a\n⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x)", "state_before": "case h.e'_3\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y > a\n⊢ (f x - f a) / (x - a) = (f a - f x) / (a - x)", "tactic": "rw [← neg_div_neg_eq]" }, { "state_after": "no goals", "state_before": "case h.e'_3\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya✝ : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x < a\nhya : y > a\n⊢ -(f x - f a) / -(x - a) = (f a - f x) / (a - x)", "tactic": "field_simp" }, { "state_after": "no goals", "state_before": "case inr.inr\n𝕜 : Type u_1\ninst✝ : LinearOrderedField 𝕜\ns : Set 𝕜\nf : 𝕜 → 𝕜\nhf : ConvexOn 𝕜 s f\na x y : 𝕜\nha : a ∈ s\nhx : x ∈ s\nhy : y ∈ s\nhxa✝ : x ≠ a\nhya : y ≠ a\nhxy✝ : x ≤ y\nhxy : x < y\nhxa : x > a\n⊢ (f x - f a) / (x - a) ≤ (f y - f a) / (y - a)", "tactic": "exact hf.secant_mono_aux2 ha hy hxa hxy" } ]
[ 287, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
BoundedContinuousFunction.dist_eq_iSup
[ { "state_after": "case inl\nF : Type ?u.306605\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : PseudoMetricSpace β\ninst✝ : PseudoMetricSpace γ\nf g : α →ᵇ β\nx : α\nC : ℝ\nh✝ : IsEmpty α\n⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x)\n\ncase inr\nF : Type ?u.306605\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : PseudoMetricSpace β\ninst✝ : PseudoMetricSpace γ\nf g : α →ᵇ β\nx : α\nC : ℝ\nh✝ : Nonempty α\n⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x)", "state_before": "F : Type ?u.306605\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : PseudoMetricSpace β\ninst✝ : PseudoMetricSpace γ\nf g : α →ᵇ β\nx : α\nC : ℝ\n⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x)", "tactic": "cases isEmpty_or_nonempty α" }, { "state_after": "case inr\nF : Type ?u.306605\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : PseudoMetricSpace β\ninst✝ : PseudoMetricSpace γ\nf g : α →ᵇ β\nx : α\nC : ℝ\nh✝ : Nonempty α\n⊢ BddAbove (range fun x => dist (↑f x) (↑g x))", "state_before": "case inr\nF : Type ?u.306605\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : PseudoMetricSpace β\ninst✝ : PseudoMetricSpace γ\nf g : α →ᵇ β\nx : α\nC : ℝ\nh✝ : Nonempty α\n⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x)", "tactic": "refine' (dist_le_iff_of_nonempty.mpr <| le_ciSup _).antisymm (ciSup_le dist_coe_le_dist)" }, { "state_after": "no goals", "state_before": "case inr\nF : Type ?u.306605\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : PseudoMetricSpace β\ninst✝ : PseudoMetricSpace γ\nf g : α →ᵇ β\nx : α\nC : ℝ\nh✝ : Nonempty α\n⊢ BddAbove (range fun x => dist (↑f x) (↑g x))", "tactic": "exact dist_set_exists.imp fun C hC => forall_range_iff.2 hC.2" }, { "state_after": "no goals", "state_before": "case inl\nF : Type ?u.306605\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : PseudoMetricSpace β\ninst✝ : PseudoMetricSpace γ\nf g : α →ᵇ β\nx : α\nC : ℝ\nh✝ : IsEmpty α\n⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x)", "tactic": "rw [iSup_of_empty', Real.sSup_empty, dist_zero_of_empty]" } ]
[ 256, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/Algebra/Module/Equiv.lean
LinearEquiv.refl_symm
[]
[ 462, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 461, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.eq_one_of_prod_eq_one
[ { "state_after": "ι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\n⊢ f x = 1", "state_before": "ι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\n⊢ ∀ (x : α), x ∈ s → f x = 1", "tactic": "intro x hx" }, { "state_after": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\nh : x = a\n⊢ f x = 1\n\ncase neg\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\nh : ¬x = a\n⊢ f x = 1", "state_before": "ι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\n⊢ f x = 1", "tactic": "by_cases h : x = a" }, { "state_after": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\nh : x = a\n⊢ f a = 1", "state_before": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\nh : x = a\n⊢ f x = 1", "tactic": "rw [h]" }, { "state_after": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : a ∈ s\nh : x = a\n⊢ f a = 1", "state_before": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\nh : x = a\n⊢ f a = 1", "tactic": "rw [h] at hx" }, { "state_after": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : f a = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : a ∈ s\nh : x = a\n⊢ f a = 1", "state_before": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : a ∈ s\nh : x = a\n⊢ f a = 1", "tactic": "rw [← prod_subset (singleton_subset_iff.2 hx) fun t ht ha => h1 t ht (not_mem_singleton.1 ha),\n prod_singleton] at hp" }, { "state_after": "no goals", "state_before": "case pos\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : f a = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : a ∈ s\nh : x = a\n⊢ f a = 1", "tactic": "exact hp" }, { "state_after": "no goals", "state_before": "case neg\nι : Type ?u.804263\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝ : CommMonoid β\ns : Finset α\nf : α → β\na : α\nhp : ∏ x in s, f x = 1\nh1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1\nx : α\nhx : x ∈ s\nh : ¬x = a\n⊢ f x = 1", "tactic": "exact h1 x hx h" } ]
[ 1719, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1709, 1 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.integral_le_sub_of_hasDeriv_right_of_le
[ { "state_after": "ι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ -(g b - g a) ≤ -∫ (y : ℝ) in a..b, φ y", "state_before": "ι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ (∫ (y : ℝ) in a..b, φ y) ≤ g b - g a", "tactic": "rw [← neg_le_neg_iff]" }, { "state_after": "case h.e'_3\nι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ -(g b - g a) = -g b - -g a\n\ncase h.e'_4\nι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ (-∫ (y : ℝ) in a..b, φ y) = ∫ (y : ℝ) in a..b, (-φ) y", "state_before": "ι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ -(g b - g a) ≤ -∫ (y : ℝ) in a..b, φ y", "tactic": "convert sub_le_integral_of_hasDeriv_right_of_le hab hcont.neg (fun x hx => (hderiv x hx).neg)\n φint.neg fun x hx => neg_le_neg (hφg x hx) using 1" }, { "state_after": "no goals", "state_before": "case h.e'_3\nι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ -(g b - g a) = -g b - -g a", "tactic": "abel" }, { "state_after": "case h.e'_4\nι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ (∫ (x : ℝ) in a..b, -φ x) = ∫ (y : ℝ) in a..b, (-φ) y", "state_before": "case h.e'_4\nι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ (-∫ (y : ℝ) in a..b, φ y) = ∫ (y : ℝ) in a..b, (-φ) y", "tactic": "simp only [← integral_neg]" }, { "state_after": "no goals", "state_before": "case h.e'_4\nι : Type ?u.1832713\n𝕜 : Type ?u.1832716\nE : Type ?u.1832719\nF : Type ?u.1832722\nA : Type ?u.1832725\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf : ℝ → E\ng' g φ : ℝ → ℝ\na b : ℝ\nhab : a ≤ b\nhcont : ContinuousOn g (Icc a b)\nhderiv : ∀ (x : ℝ), x ∈ Ioo a b → HasDerivWithinAt g (g' x) (Ioi x) x\nφint : IntegrableOn φ (Icc a b)\nhφg : ∀ (x : ℝ), x ∈ Ioo a b → φ x ≤ g' x\n⊢ (∫ (x : ℝ) in a..b, -φ x) = ∫ (y : ℝ) in a..b, (-φ) y", "tactic": "rfl" } ]
[ 1156, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1149, 1 ]
Mathlib/Data/Set/Intervals/Pi.lean
Set.pi_univ_Ioc_update_right
[ { "state_after": "ι : Type u_2\nα : ι → Type u_1\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\nthis : Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀)\n⊢ (pi univ fun i => Ioc (x i) (update y i₀ m i)) = {z | z i₀ ≤ m} ∩ pi univ fun i => Ioc (x i) (y i)", "state_before": "ι : Type u_2\nα : ι → Type u_1\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\n⊢ (pi univ fun i => Ioc (x i) (update y i₀ m i)) = {z | z i₀ ≤ m} ∩ pi univ fun i => Ioc (x i) (y i)", "tactic": "have : Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀) := by\n rw [← Ioi_inter_Iic, ← Ioi_inter_Iic, inter_left_comm,\n inter_eq_self_of_subset_left (Iic_subset_Iic.2 hm)]" }, { "state_after": "ι : Type u_2\nα : ι → Type u_1\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\nthis : Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀)\n⊢ ({x_1 | x_1 i₀ ∈ Iic m ∩ Ioc (x i₀) (y i₀)} ∩ pi ({i₀}ᶜ) fun j => Ioc (x j) (y j)) =\n {z | z i₀ ≤ m} ∩ {x_1 | x_1 i₀ ∈ Ioc (x i₀) (y i₀)} ∩ pi ({i₀}ᶜ) fun j => Ioc (x j) (y j)", "state_before": "ι : Type u_2\nα : ι → Type u_1\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\nthis : Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀)\n⊢ (pi univ fun i => Ioc (x i) (update y i₀ m i)) = {z | z i₀ ≤ m} ∩ pi univ fun i => Ioc (x i) (y i)", "tactic": "simp_rw [univ_pi_update i₀ y m fun i z ↦ Ioc (x i) z, ← pi_inter_compl ({i₀} : Set ι),\n singleton_pi', ← inter_assoc, this]" }, { "state_after": "no goals", "state_before": "ι : Type u_2\nα : ι → Type u_1\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\nthis : Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀)\n⊢ ({x_1 | x_1 i₀ ∈ Iic m ∩ Ioc (x i₀) (y i₀)} ∩ pi ({i₀}ᶜ) fun j => Ioc (x j) (y j)) =\n {z | z i₀ ≤ m} ∩ {x_1 | x_1 i₀ ∈ Ioc (x i₀) (y i₀)} ∩ pi ({i₀}ᶜ) fun j => Ioc (x j) (y j)", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "ι : Type u_2\nα : ι → Type u_1\ninst✝¹ : (i : ι) → Preorder (α i)\nx✝ y✝ : (i : ι) → α i\ninst✝ : DecidableEq ι\nx y : (i : ι) → α i\ni₀ : ι\nm : α i₀\nhm : m ≤ y i₀\n⊢ Ioc (x i₀) m = Iic m ∩ Ioc (x i₀) (y i₀)", "tactic": "rw [← Ioi_inter_Iic, ← Ioi_inter_Iic, inter_left_comm,\n inter_eq_self_of_subset_left (Iic_subset_Iic.2 hm)]" } ]
[ 112, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/Algebra/ModEq.lean
AddCommGroup.ModEq.trans
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddCommGroup α\np a a₁ a₂ b b₁ b₂ c : α\nn✝ : ℕ\nz : ℤ\nx✝¹ : a ≡ b [PMOD p]\nx✝ : b ≡ c [PMOD p]\nm : ℤ\nhm : b - a = m • p\nn : ℤ\nhn : c - b = n • p\n⊢ c - a = (m + n) • p", "tactic": "simp [add_smul, ← hm, ← hn]" } ]
[ 75, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/Data/Fintype/Basic.lean
Set.toFinset_ssubset_toFinset
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.85081\nγ : Type ?u.85084\ns t : Set α\ninst✝¹ : Fintype ↑s\ninst✝ : Fintype ↑t\n⊢ toFinset s ⊂ toFinset t ↔ s ⊂ t", "tactic": "simp only [Finset.ssubset_def, toFinset_subset_toFinset, ssubset_def]" } ]
[ 673, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 672, 1 ]
Mathlib/Analysis/Convex/Segment.lean
Pi.segment_subset
[ { "state_after": "case intro.intro.intro.intro.intro\n𝕜 : Type u_3\nE : Type ?u.376048\nF : Type ?u.376051\nG : Type ?u.376054\nι : Type u_1\nπ : ι → Type u_2\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : (i : ι) → AddCommMonoid (π i)\ninst✝ : (i : ι) → Module 𝕜 (π i)\ns : Set ι\nx y z : (i : ι) → π i\na b : 𝕜\nha : 0 ≤ a\nhb : 0 ≤ b\nhab : a + b = 1\nhz : a • x + b • y = z\ni : ι\n⊢ z i ∈ (fun i => [x i-[𝕜]y i]) i", "state_before": "𝕜 : Type u_3\nE : Type ?u.376048\nF : Type ?u.376051\nG : Type ?u.376054\nι : Type u_1\nπ : ι → Type u_2\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : (i : ι) → AddCommMonoid (π i)\ninst✝ : (i : ι) → Module 𝕜 (π i)\ns : Set ι\nx y : (i : ι) → π i\n⊢ [x-[𝕜]y] ⊆ pi s fun i => [x i-[𝕜]y i]", "tactic": "rintro z ⟨a, b, ha, hb, hab, hz⟩ i -" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\n𝕜 : Type u_3\nE : Type ?u.376048\nF : Type ?u.376051\nG : Type ?u.376054\nι : Type u_1\nπ : ι → Type u_2\ninst✝² : OrderedSemiring 𝕜\ninst✝¹ : (i : ι) → AddCommMonoid (π i)\ninst✝ : (i : ι) → Module 𝕜 (π i)\ns : Set ι\nx y z : (i : ι) → π i\na b : 𝕜\nha : 0 ≤ a\nhb : 0 ≤ b\nhab : a + b = 1\nhz : a • x + b • y = z\ni : ι\n⊢ z i ∈ (fun i => [x i-[𝕜]y i]) i", "tactic": "exact ⟨a, b, ha, hb, hab, congr_fun hz i⟩" } ]
[ 648, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 646, 1 ]
Mathlib/Analysis/Normed/Group/AddCircle.lean
AddCircle.norm_eq
[ { "state_after": "⊢ ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))", "state_before": "p x : ℝ\n⊢ ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))", "tactic": "clear! x p" }, { "state_after": "x : ℝ\n⊢ ‖↑x‖ = abs (x - ↑(round x))", "state_before": "⊢ ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))", "tactic": "intros x" }, { "state_after": "x : ℝ\n⊢ sInf (norm '' {m | ↑m = ↑x}) = min (fract x) (1 - fract x)", "state_before": "x : ℝ\n⊢ ‖↑x‖ = abs (x - ↑(round x))", "tactic": "rw [quotient_norm_eq, abs_sub_round_eq_min]" }, { "state_after": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\n⊢ sInf (norm '' {m | ↑m = ↑x}) = min (fract x) (1 - fract x)", "state_before": "x : ℝ\n⊢ sInf (norm '' {m | ↑m = ↑x}) = min (fract x) (1 - fract x)", "tactic": "have h₁ : BddBelow (abs '' { m : ℝ | (m : AddCircle (1 : ℝ)) = x }) :=\n ⟨0, by simp [mem_lowerBounds]⟩" }, { "state_after": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ sInf (norm '' {m | ↑m = ↑x}) = min (fract x) (1 - fract x)", "state_before": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\n⊢ sInf (norm '' {m | ↑m = ↑x}) = min (fract x) (1 - fract x)", "tactic": "have h₂ : (abs '' { m : ℝ | (m : AddCircle (1 : ℝ)) = x }).Nonempty := ⟨|x|, ⟨x, rfl, rfl⟩⟩" }, { "state_after": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ sInf (norm '' {m | ↑m = ↑x}) ≤ min (fract x) (1 - fract x)\n\ncase a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ min (fract x) (1 - fract x) ≤ sInf (norm '' {m | ↑m = ↑x})", "state_before": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ sInf (norm '' {m | ↑m = ↑x}) = min (fract x) (1 - fract x)", "tactic": "apply le_antisymm" }, { "state_after": "case inl\nx : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\n⊢ ‖↑x‖ = abs (x - ↑(round (0⁻¹ * x)) * 0)\n\ncase inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "state_before": "p x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "tactic": "rcases eq_or_ne p 0 with (rfl | hp)" }, { "state_after": "case inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "state_before": "case inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "tactic": "intros" }, { "state_after": "case inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\nhx : ‖↑(p⁻¹ * x)‖ = abs p⁻¹ * ‖↑x‖\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "state_before": "case inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "tactic": "have hx := norm_coe_mul p x p⁻¹" }, { "state_after": "case inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\nhx : abs p * ‖↑(p⁻¹ * x)‖ = ‖↑x‖\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "state_before": "case inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\nhx : ‖↑(p⁻¹ * x)‖ = abs p⁻¹ * ‖↑x‖\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "tactic": "rw [abs_inv, eq_inv_mul_iff_mul_eq₀ ((not_congr abs_eq_zero).mpr hp)] at hx" }, { "state_after": "no goals", "state_before": "case inr\np x : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\nhp : p ≠ 0\nhx : abs p * ‖↑(p⁻¹ * x)‖ = ‖↑x‖\n⊢ ‖↑x‖ = abs (x - ↑(round (p⁻¹ * x)) * p)", "tactic": "rw [← hx, inv_mul_cancel hp, this, ← abs_mul, mul_sub, mul_inv_cancel_left₀ hp, mul_comm p]" }, { "state_after": "no goals", "state_before": "case inl\nx : ℝ\nthis : ∀ (x : ℝ), ‖↑x‖ = abs (x - ↑(round x))\n⊢ ‖↑x‖ = abs (x - ↑(round (0⁻¹ * x)) * 0)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "x : ℝ\n⊢ 0 ∈ lowerBounds (abs '' {m | ↑m = ↑x})", "tactic": "simp [mem_lowerBounds]" }, { "state_after": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ ∀ (b : ℝ), b ∈ lowerBounds (abs '' {m | ↑m = ↑x}) → b ≤ fract x ∧ b ≤ 1 - fract x", "state_before": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ sInf (norm '' {m | ↑m = ↑x}) ≤ min (fract x) (1 - fract x)", "tactic": "simp_rw [Real.norm_eq_abs, csInf_le_iff h₁ h₂, le_min_iff]" }, { "state_after": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ b ≤ fract x ∧ b ≤ 1 - fract x", "state_before": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ ∀ (b : ℝ), b ∈ lowerBounds (abs '' {m | ↑m = ↑x}) → b ≤ fract x ∧ b ≤ 1 - fract x", "tactic": "intro b h" }, { "state_after": "case a.refine'_1\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ fract x ∈ {m | ↑m = ↑x}\n\ncase a.refine'_2\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ fract x - 1 ∈ {m | ↑m = ↑x}", "state_before": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ b ≤ fract x ∧ b ≤ 1 - fract x", "tactic": "refine'\n ⟨mem_lowerBounds.1 h _ ⟨fract x, _, abs_fract⟩,\n mem_lowerBounds.1 h _ ⟨fract x - 1, _, by rw [abs_sub_comm, abs_one_sub_fract]⟩⟩" }, { "state_after": "no goals", "state_before": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ abs (fract x - 1) = 1 - fract x", "tactic": "rw [abs_sub_comm, abs_one_sub_fract]" }, { "state_after": "no goals", "state_before": "case a.refine'_1\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ fract x ∈ {m | ↑m = ↑x}", "tactic": "simp only [mem_setOf, fract, sub_eq_self, QuotientAddGroup.mk_sub,\n QuotientAddGroup.eq_zero_iff, int_cast_mem_zmultiples_one]" }, { "state_after": "no goals", "state_before": "case a.refine'_2\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ fract x - 1 ∈ {m | ↑m = ↑x}", "tactic": "simp only [mem_setOf, fract, sub_eq_self, QuotientAddGroup.mk_sub,\n QuotientAddGroup.eq_zero_iff, int_cast_mem_zmultiples_one, sub_sub,\n (by norm_cast : (⌊x⌋ : ℝ) + 1 = (↑(⌊x⌋ + 1) : ℝ))]" }, { "state_after": "no goals", "state_before": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nh : b ∈ lowerBounds (abs '' {m | ↑m = ↑x})\n⊢ ↑⌊x⌋ + 1 = ↑(⌊x⌋ + 1)", "tactic": "norm_cast" }, { "state_after": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ ∀ (b : ℝ), b ∈ abs '' {m | ↑m = ↑x} → min (fract x) (1 - fract x) ≤ b", "state_before": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ min (fract x) (1 - fract x) ≤ sInf (norm '' {m | ↑m = ↑x})", "tactic": "simp only [QuotientAddGroup.mk'_apply, Real.norm_eq_abs, le_csInf_iff h₁ h₂]" }, { "state_after": "case a.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nhb : b ∈ {m | ↑m = ↑x}\n⊢ min (fract x) (1 - fract x) ≤ abs b", "state_before": "case a\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\n⊢ ∀ (b : ℝ), b ∈ abs '' {m | ↑m = ↑x} → min (fract x) (1 - fract x) ≤ b", "tactic": "rintro b' ⟨b, hb, rfl⟩" }, { "state_after": "case a.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nhb : ∃ k, ↑k = b - x\n⊢ min (fract x) (1 - fract x) ≤ abs b", "state_before": "case a.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nhb : b ∈ {m | ↑m = ↑x}\n⊢ min (fract x) (1 - fract x) ≤ abs b", "tactic": "simp only [mem_setOf, QuotientAddGroup.eq_iff_sub_mem, mem_zmultiples_iff,\n smul_one_eq_coe] at hb" }, { "state_after": "case a.intro.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ min (fract x) (1 - fract x) ≤ abs b", "state_before": "case a.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nhb : ∃ k, ↑k = b - x\n⊢ min (fract x) (1 - fract x) ≤ abs b", "tactic": "obtain ⟨z, hz⟩ := hb" }, { "state_after": "case a.intro.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ abs (b - ↑(round b)) ≤ abs b", "state_before": "case a.intro.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ min (fract x) (1 - fract x) ≤ abs b", "tactic": "rw [(by rw [hz]; abel : x = b - z), fract_sub_int, ← abs_sub_round_eq_min]" }, { "state_after": "case h.e'_4.h.e'_3\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ b = b - ↑0", "state_before": "case a.intro.intro.intro\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ abs (b - ↑(round b)) ≤ abs b", "tactic": "convert round_le b 0" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.e'_3\nx : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ b = b - ↑0", "tactic": "simp" }, { "state_after": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ x = b - (b - x)", "state_before": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ x = b - ↑z", "tactic": "rw [hz]" }, { "state_after": "no goals", "state_before": "x : ℝ\nh₁ : BddBelow (abs '' {m | ↑m = ↑x})\nh₂ : Set.Nonempty (abs '' {m | ↑m = ↑x})\nb : ℝ\nz : ℤ\nhz : ↑z = b - x\n⊢ x = b - (b - x)", "tactic": "abel" } ]
[ 121, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Order/Bounded.lean
Set.unbounded_lt_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nr : α → α → Prop\ns t : Set α\ninst✝ : LinearOrder α\n⊢ Unbounded (fun x x_1 => x < x_1) s ↔ ∀ (a : α), ∃ b, b ∈ s ∧ a ≤ b", "tactic": "simp only [Unbounded, not_lt]" } ]
[ 57, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.prod_bot_sup_bot_prod
[]
[ 1261, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1255, 1 ]
Mathlib/RingTheory/IntegralClosure.lean
IsIntegralClosure.mk'_zero
[ { "state_after": "no goals", "state_before": "R : Type u_1\nA : Type u_3\nB : Type u_2\ninst✝⁵ : CommRing R\ninst✝⁴ : CommRing A\ninst✝³ : CommRing B\ninst✝² : Algebra R B\ninst✝¹ : Algebra A B\ninst✝ : IsIntegralClosure A R B\nh : optParam (IsIntegral R 0) (_ : IsIntegral R 0)\n⊢ ↑(algebraMap A B) (mk' A 0 h) = ↑(algebraMap A B) 0", "tactic": "rw [algebraMap_mk', RingHom.map_zero]" } ]
[ 878, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 877, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.HasAntitoneBasis.eventually_subset
[]
[ 1766, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1763, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometry.diam_range
[]
[ 337, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 336, 1 ]
Mathlib/Analysis/NormedSpace/AddTorsorBases.lean
IsOpen.exists_between_affineIndependent_span_eq_top
[ { "state_after": "case intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nhne : Set.Nonempty s\nh : AffineIndependent ℝ Subtype.val\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "obtain ⟨q, hq⟩ := hne" }, { "state_after": "case intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "state_before": "case intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "obtain ⟨ε, ε0, hεu⟩ := Metric.nhds_basis_closedBall.mem_iff.1 (hu.mem_nhds <| hsu hq)" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "state_before": "case intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "obtain ⟨t, ht₁, ht₂, ht₃⟩ := exists_subset_affineIndependent_affineSpan_eq_top h" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "state_before": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "let f : P → P := fun y => lineMap q y (ε / dist y q)" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "state_before": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "have hf : ∀ y, f y ∈ u := by\n refine' fun y => hεu _\n simp only\n rw [Metric.mem_closedBall, lineMap_apply, dist_vadd_left, norm_smul, Real.norm_eq_abs,\n dist_eq_norm_vsub V y q, abs_div, abs_of_pos ε0, abs_of_nonneg (norm_nonneg _), div_mul_comm]\n exact mul_le_of_le_one_left ε0.le (div_self_le_one _)" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "state_before": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "have hεyq : ∀ (y) (_ : y ∉ s), ε / dist y q ≠ 0 := fun y hy =>\n div_ne_zero ε0.ne' (dist_ne_zero.2 (ne_of_mem_of_not_mem hq hy).symm)" }, { "state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\ny : P\n⊢ f y ∈ Metric.closedBall q ε", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\n⊢ ∀ (y : P), f y ∈ u", "tactic": "refine' fun y => hεu _" }, { "state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\ny : P\n⊢ ↑(lineMap q y) (ε / dist y q) ∈ Metric.closedBall q ε", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\ny : P\n⊢ f y ∈ Metric.closedBall q ε", "tactic": "simp only" }, { "state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\ny : P\n⊢ ‖y -ᵥ q‖ / ‖y -ᵥ q‖ * ε ≤ ε", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\ny : P\n⊢ ↑(lineMap q y) (ε / dist y q) ∈ Metric.closedBall q ε", "tactic": "rw [Metric.mem_closedBall, lineMap_apply, dist_vadd_left, norm_smul, Real.norm_eq_abs,\n dist_eq_norm_vsub V y q, abs_div, abs_of_pos ε0, abs_of_nonneg (norm_nonneg _), div_mul_comm]" }, { "state_after": "no goals", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\ny : P\n⊢ ‖y -ᵥ q‖ / ‖y -ᵥ q‖ * ε ≤ ε", "tactic": "exact mul_le_of_le_one_left ε0.le (div_self_le_one _)" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "state_before": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "let w : t → ℝˣ := fun p => if hp : (p : P) ∈ s then 1 else Units.mk0 _ (hεyq (↑p) hp)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.refine'_1\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ s ⊆ range fun p => ↑(lineMap q ↑p) ↑(w p)\n\ncase intro.intro.intro.intro.intro.intro.refine'_2\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ (range fun p => ↑(lineMap q ↑p) ↑(w p)) ⊆ u\n\ncase intro.intro.intro.intro.intro.intro.refine'_3\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ AffineIndependent ℝ Subtype.val\n\ncase intro.intro.intro.intro.intro.intro.refine'_4\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ affineSpan ℝ (range fun p => ↑(lineMap q ↑p) ↑(w p)) = ⊤", "state_before": "case intro.intro.intro.intro.intro.intro\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ ∃ t, s ⊆ t ∧ t ⊆ u ∧ AffineIndependent ℝ Subtype.val ∧ affineSpan ℝ t = ⊤", "tactic": "refine' ⟨Set.range fun p : t => lineMap q p (w p : ℝ), _, _, _, _⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.refine'_1\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\np : P\nhp : p ∈ s\n⊢ p ∈ range fun p => ↑(lineMap q ↑p) ↑(w p)", "state_before": "case intro.intro.intro.intro.intro.intro.refine'_1\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ s ⊆ range fun p => ↑(lineMap q ↑p) ↑(w p)", "tactic": "intro p hp" }, { "state_after": "case intro.intro.intro.intro.intro.intro.refine'_1\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\np : P\nhp : p ∈ s\n⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := (_ : p ∈ t) } = p", "state_before": "case intro.intro.intro.intro.intro.intro.refine'_1\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\np : P\nhp : p ∈ s\n⊢ p ∈ range fun p => ↑(lineMap q ↑p) ↑(w p)", "tactic": "use ⟨p, ht₁ hp⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.refine'_1\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\np : P\nhp : p ∈ s\n⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := (_ : p ∈ t) } = p", "tactic": "simp [hp]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.refine'_2.intro.mk\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\np : P\nhp : p ∈ t\n⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := hp } ∈ u", "state_before": "case intro.intro.intro.intro.intro.intro.refine'_2\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ (range fun p => ↑(lineMap q ↑p) ↑(w p)) ⊆ u", "tactic": "rintro y ⟨⟨p, hp⟩, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.refine'_2.intro.mk\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\np : P\nhp : p ∈ t\n⊢ (fun p => ↑(lineMap q ↑p) ↑(w p)) { val := p, property := hp } ∈ u", "tactic": "by_cases hps : p ∈ s <;>\nsimp only [hps, lineMap_apply_one, Units.val_mk0, dif_neg, dif_pos, not_false_iff,\n Units.val_one, Subtype.coe_mk] <;>\n[exact hsu hps; exact hf p]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.refine'_3\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ AffineIndependent ℝ Subtype.val", "tactic": "exact (ht₂.units_lineMap ⟨q, ht₁ hq⟩ w).range" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.refine'_4\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : NormedSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\ns u : Set P\nhu : IsOpen u\nhsu : s ⊆ u\nh : AffineIndependent ℝ Subtype.val\nq : P\nhq : q ∈ s\nε : ℝ\nε0 : 0 < ε\nhεu : Metric.closedBall q ε ⊆ u\nt : Set P\nht₁ : s ⊆ t\nht₂ : AffineIndependent ℝ fun p => ↑p\nht₃ : affineSpan ℝ t = ⊤\nf : P → P := fun y => ↑(lineMap q y) (ε / dist y q)\nhf : ∀ (y : P), f y ∈ u\nhεyq : ∀ (y : P), ¬y ∈ s → ε / dist y q ≠ 0\nw : ↑t → ℝˣ := fun p => if hp : ↑p ∈ s then 1 else Units.mk0 (ε / dist (↑p) q) (_ : ε / dist (↑p) q ≠ 0)\n⊢ affineSpan ℝ (range fun p => ↑(lineMap q ↑p) ↑(w p)) = ⊤", "tactic": "rw [affineSpan_eq_affineSpan_lineMap_units (ht₁ hq) w, ht₃]" } ]
[ 118, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/Dynamics/Ergodic/MeasurePreserving.lean
MeasureTheory.MeasurePreserving.comp_right_iff
[ { "state_after": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.163029\ninst✝³ : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nμa : Measure α\nμb : Measure β\nμc : Measure γ\nμd : Measure δ\ng : α → β\ne : γ ≃ᵐ α\nh : MeasurePreserving ↑e\nhg : MeasurePreserving (g ∘ ↑e)\n⊢ MeasurePreserving g", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.163029\ninst✝³ : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nμa : Measure α\nμb : Measure β\nμc : Measure γ\nμd : Measure δ\ng : α → β\ne : γ ≃ᵐ α\nh : MeasurePreserving ↑e\n⊢ MeasurePreserving (g ∘ ↑e) ↔ MeasurePreserving g", "tactic": "refine' ⟨fun hg => _, fun hg => hg.comp h⟩" }, { "state_after": "case h.e'_5\nα : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.163029\ninst✝³ : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nμa : Measure α\nμb : Measure β\nμc : Measure γ\nμd : Measure δ\ng : α → β\ne : γ ≃ᵐ α\nh : MeasurePreserving ↑e\nhg : MeasurePreserving (g ∘ ↑e)\n⊢ g = (g ∘ ↑e) ∘ ↑(MeasurableEquiv.symm e)", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.163029\ninst✝³ : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nμa : Measure α\nμb : Measure β\nμc : Measure γ\nμd : Measure δ\ng : α → β\ne : γ ≃ᵐ α\nh : MeasurePreserving ↑e\nhg : MeasurePreserving (g ∘ ↑e)\n⊢ MeasurePreserving g", "tactic": "convert hg.comp (MeasurePreserving.symm e h)" }, { "state_after": "no goals", "state_before": "case h.e'_5\nα : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.163029\ninst✝³ : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nμa : Measure α\nμb : Measure β\nμc : Measure γ\nμd : Measure δ\ng : α → β\ne : γ ≃ᵐ α\nh : MeasurePreserving ↑e\nhg : MeasurePreserving (g ∘ ↑e)\n⊢ g = (g ∘ ↑e) ∘ ↑(MeasurableEquiv.symm e)", "tactic": "simp [Function.comp.assoc g e e.symm]" } ]
[ 116, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 11 ]
Mathlib/Topology/Separation.lean
t1Space_iff_exists_open
[]
[ 508, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 506, 1 ]
Mathlib/Data/Finset/Sups.lean
Finset.biUnion_image_sup_left
[]
[ 187, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Std/Data/String/Lemmas.lean
String.Iterator.Valid.remainingToString
[ { "state_after": "case refl\nl r : List Char\nh : ValidFor l r { s := { data := List.reverseAux l r }, i := { byteIdx := utf8Len l } }\n⊢ Iterator.remainingToString { s := { data := List.reverseAux l r }, i := { byteIdx := utf8Len l } } = { data := r }", "state_before": "l r : List Char\nit : Iterator\nh : ValidFor l r it\n⊢ Iterator.remainingToString it = { data := r }", "tactic": "cases h.out" }, { "state_after": "no goals", "state_before": "case refl\nl r : List Char\nh : ValidFor l r { s := { data := List.reverseAux l r }, i := { byteIdx := utf8Len l } }\n⊢ Iterator.remainingToString { s := { data := List.reverseAux l r }, i := { byteIdx := utf8Len l } } = { data := r }", "tactic": "simpa [Iterator.remainingToString, List.reverseAux_eq] using extract_of_valid l.reverse r []" } ]
[ 655, 95 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 653, 1 ]
Mathlib/Algebra/Order/Ring/WithTop.lean
WithBot.mul_bot
[]
[ 240, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Real.cos_add_nat_mul_two_pi
[]
[ 356, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 355, 1 ]
Mathlib/Analysis/NormedSpace/Exponential.lean
exp_ℝ_ℂ_eq_exp_ℂ_ℂ
[]
[ 668, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 667, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
RingHom.map_pthRoot
[]
[ 115, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Combinatorics/Young/YoungDiagram.lean
YoungDiagram.coe_sup
[]
[ 128, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
Metric.mem_thickening_iff_infDist_lt
[]
[ 973, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 971, 1 ]
Mathlib/Data/Set/Basic.lean
Set.union_diff_cancel_left
[]
[ 1834, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1833, 1 ]
src/lean/Init/Control/ExceptCps.lean
ExceptCpsT.run_bind_lift
[]
[ 58, 162 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 58, 9 ]
Mathlib/GroupTheory/Complement.lean
Subgroup.isComplement'_bot_right
[]
[ 194, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.IsImage.apply_mem_iff
[]
[ 478, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 477, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
padicNormE.image
[ { "state_after": "p : ℕ\nhp : Fact (Nat.Prime p)\nq : ℚ_[p]\nf : CauSeq ℚ (padicNorm p)\nhf : Quotient.mk equiv f ≠ 0\nthis : ¬f ≈ 0\nn : ℤ\nhn : PadicSeq.norm f = ↑p ^ (-n)\n⊢ ‖Quotient.mk equiv f‖ = ↑(PadicSeq.norm f)", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nq : ℚ_[p]\nf : CauSeq ℚ (padicNorm p)\nhf : Quotient.mk equiv f ≠ 0\nthis : ¬f ≈ 0\nn : ℤ\nhn : PadicSeq.norm f = ↑p ^ (-n)\n⊢ ‖Quotient.mk equiv f‖ = ↑(↑p ^ (-n))", "tactic": "rw [← hn]" }, { "state_after": "no goals", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nq : ℚ_[p]\nf : CauSeq ℚ (padicNorm p)\nhf : Quotient.mk equiv f ≠ 0\nthis : ¬f ≈ 0\nn : ℤ\nhn : PadicSeq.norm f = ↑p ^ (-n)\n⊢ ‖Quotient.mk equiv f‖ = ↑(PadicSeq.norm f)", "tactic": "rfl" } ]
[ 876, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 872, 11 ]
Mathlib/LinearAlgebra/TensorPower.lean
TensorPower.algebraMap₀_one
[]
[ 241, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.lintegral_sum
[ { "state_after": "α : Type u_1\nβ : Type ?u.884606\nγ : Type ?u.884609\nδ : Type ?u.884612\nm✝ : MeasurableSpace α\nμ✝ ν : Measure α\nm : MeasurableSpace α\nι : Type u_2\nf : α →ₛ ℝ≥0∞\nμ : ι → Measure α\n⊢ (∑' (x : { x // x ∈ SimpleFunc.range f }) (i : ι), ↑x * ↑↑(μ i) (↑f ⁻¹' {↑x})) =\n ∑' (i : ι) (x : { x // x ∈ SimpleFunc.range f }), ↑x * ↑↑(μ i) (↑f ⁻¹' {↑x})", "state_before": "α : Type u_1\nβ : Type ?u.884606\nγ : Type ?u.884609\nδ : Type ?u.884612\nm✝ : MeasurableSpace α\nμ✝ ν : Measure α\nm : MeasurableSpace α\nι : Type u_2\nf : α →ₛ ℝ≥0∞\nμ : ι → Measure α\n⊢ lintegral f (Measure.sum μ) = ∑' (i : ι), lintegral f (μ i)", "tactic": "simp only [lintegral, Measure.sum_apply, f.measurableSet_preimage, ← Finset.tsum_subtype, ←\n ENNReal.tsum_mul_left]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.884606\nγ : Type ?u.884609\nδ : Type ?u.884612\nm✝ : MeasurableSpace α\nμ✝ ν : Measure α\nm : MeasurableSpace α\nι : Type u_2\nf : α →ₛ ℝ≥0∞\nμ : ι → Measure α\n⊢ (∑' (x : { x // x ∈ SimpleFunc.range f }) (i : ι), ↑x * ↑↑(μ i) (↑f ⁻¹' {↑x})) =\n ∑' (i : ι) (x : { x // x ∈ SimpleFunc.range f }), ↑x * ↑↑(μ i) (↑f ⁻¹' {↑x})", "tactic": "apply ENNReal.tsum_comm" } ]
[ 1062, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1058, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.embedding_coe
[ { "state_after": "α : Type ?u.1479\nβ : Type ?u.1482\nγ : Type ?u.1485\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\n⊢ OrdConnected (Iio ⊤)", "state_before": "α : Type ?u.1479\nβ : Type ?u.1482\nγ : Type ?u.1485\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\n⊢ OrdConnected (range some)", "tactic": "rw [range_coe']" }, { "state_after": "no goals", "state_before": "α : Type ?u.1479\nβ : Type ?u.1482\nγ : Type ?u.1485\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\n⊢ OrdConnected (Iio ⊤)", "tactic": "exact ordConnected_Iio" } ]
[ 54, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Algebra/GroupPower/Ring.lean
eq_or_eq_neg_of_sq_eq_sq
[]
[ 301, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 300, 1 ]
Mathlib/Data/Set/Prod.lean
Set.snd_image_prod
[]
[ 373, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 370, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.strongInductionOn_eq
[ { "state_after": "α : Type u_1\nβ : Type ?u.74655\ns✝ t : Finset α\nf : α → β\nn : ℕ\np : Finset α → Sort u_2\ns : Finset α\nH : (s : Finset α) → ((t : Finset α) → t ⊂ s → p t) → p s\n⊢ strongInduction H s = H s fun t x => strongInduction H t", "state_before": "α : Type u_1\nβ : Type ?u.74655\ns✝ t : Finset α\nf : α → β\nn : ℕ\np : Finset α → Sort u_2\ns : Finset α\nH : (s : Finset α) → ((t : Finset α) → t ⊂ s → p t) → p s\n⊢ strongInductionOn s H = H s fun t x => strongInductionOn t H", "tactic": "dsimp only [strongInductionOn]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.74655\ns✝ t : Finset α\nf : α → β\nn : ℕ\np : Finset α → Sort u_2\ns : Finset α\nH : (s : Finset α) → ((t : Finset α) → t ⊂ s → p t) → p s\n⊢ strongInduction H s = H s fun t x => strongInduction H t", "tactic": "rw [strongInduction]" } ]
[ 660, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 656, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.node4L_size
[ { "state_after": "no goals", "state_before": "α : Type u_1\nl : Ordnode α\nx : α\nm : Ordnode α\ny : α\nr : Ordnode α\nhm : Sized m\n⊢ size (node4L l x m y r) = size l + size m + size r + 2", "tactic": "cases m <;> simp [node4L, node3L, node'] <;> [skip; simp [size, hm.1]] <;> abel" } ]
[ 399, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 397, 1 ]
Mathlib/Topology/LocallyConstant/Basic.lean
LocallyConstant.congr_arg
[]
[ 278, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.zsmul_apply
[]
[ 581, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 580, 1 ]
Mathlib/MeasureTheory/Measure/ProbabilityMeasure.lean
MeasureTheory.ProbabilityMeasure.coeFn_univ
[]
[ 144, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Algebra/GroupPower/Basic.lean
pow_dvd_pow
[ { "state_after": "no goals", "state_before": "α : Type ?u.103818\nM : Type u\nN : Type v\nG : Type w\nH : Type x\nA : Type y\nB : Type z\nR : Type u₁\nS : Type u₂\ninst✝ : Monoid R\na : R\nm n : ℕ\nh : m ≤ n\n⊢ a ^ n = a ^ m * a ^ (n - m)", "tactic": "rw [← pow_add, Nat.add_comm, Nat.sub_add_cancel h]" } ]
[ 444, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/Data/QPF/Multivariate/Basic.lean
MvQPF.comp_map
[ { "state_after": "n : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\nα β γ : TypeVec n\nf : α ⟹ β\ng : β ⟹ γ\nx : F α\n⊢ (g ⊚ f) <$$> abs (repr x) = g <$$> f <$$> abs (repr x)", "state_before": "n : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\nα β γ : TypeVec n\nf : α ⟹ β\ng : β ⟹ γ\nx : F α\n⊢ (g ⊚ f) <$$> x = g <$$> f <$$> x", "tactic": "rw [← abs_repr x]" }, { "state_after": "case mk\nn : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\nα β γ : TypeVec n\nf✝ : α ⟹ β\ng : β ⟹ γ\nx : F α\na : (P F).A\nf : MvPFunctor.B (P F) a ⟹ α\n⊢ (g ⊚ f✝) <$$> abs { fst := a, snd := f } = g <$$> f✝ <$$> abs { fst := a, snd := f }", "state_before": "n : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\nα β γ : TypeVec n\nf : α ⟹ β\ng : β ⟹ γ\nx : F α\n⊢ (g ⊚ f) <$$> abs (repr x) = g <$$> f <$$> abs (repr x)", "tactic": "cases' repr x with a f" }, { "state_after": "case mk\nn : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\nα β γ : TypeVec n\nf✝ : α ⟹ β\ng : β ⟹ γ\nx : F α\na : (P F).A\nf : MvPFunctor.B (P F) a ⟹ α\n⊢ abs ((g ⊚ f✝) <$$> { fst := a, snd := f }) = abs (g <$$> f✝ <$$> { fst := a, snd := f })", "state_before": "case mk\nn : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\nα β γ : TypeVec n\nf✝ : α ⟹ β\ng : β ⟹ γ\nx : F α\na : (P F).A\nf : MvPFunctor.B (P F) a ⟹ α\n⊢ (g ⊚ f✝) <$$> abs { fst := a, snd := f } = g <$$> f✝ <$$> abs { fst := a, snd := f }", "tactic": "rw [← abs_map, ← abs_map, ← abs_map]" }, { "state_after": "no goals", "state_before": "case mk\nn : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\nα β γ : TypeVec n\nf✝ : α ⟹ β\ng : β ⟹ γ\nx : F α\na : (P F).A\nf : MvPFunctor.B (P F) a ⟹ α\n⊢ abs ((g ⊚ f✝) <$$> { fst := a, snd := f }) = abs (g <$$> f✝ <$$> { fst := a, snd := f })", "tactic": "rfl" } ]
[ 120, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Analysis/SpecialFunctions/Exp.lean
Real.continuousOn_exp
[]
[ 128, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/MeasureTheory/Function/LpSpace.lean
ContinuousMap.hasSum_of_hasSum_Lp
[ { "state_after": "case h.e'_6\nα : Type u_2\nE : Type u_4\nF : Type ?u.15733246\nG : Type ?u.15733249\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : MeasureTheory.Measure α\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedAddCommGroup F\ninst✝⁹ : NormedAddCommGroup G\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : BorelSpace α\ninst✝⁶ : SecondCountableTopologyEither α E\ninst✝⁵ : CompactSpace α\ninst✝⁴ : IsFiniteMeasure μ\n𝕜 : Type u_3\ninst✝³ : Fact (1 ≤ p)\nβ : Type u_1\ninst✝² : Measure.IsOpenPosMeasure μ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 E\ng : β → C(α, E)\nf : C(α, E)\nhg : Summable g\nhg2 : HasSum (↑(toLp p μ 𝕜) ∘ g) (↑(toLp p μ 𝕜) f)\n⊢ f = ∑' (b : β), g b", "state_before": "α : Type u_2\nE : Type u_4\nF : Type ?u.15733246\nG : Type ?u.15733249\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : MeasureTheory.Measure α\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedAddCommGroup F\ninst✝⁹ : NormedAddCommGroup G\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : BorelSpace α\ninst✝⁶ : SecondCountableTopologyEither α E\ninst✝⁵ : CompactSpace α\ninst✝⁴ : IsFiniteMeasure μ\n𝕜 : Type u_3\ninst✝³ : Fact (1 ≤ p)\nβ : Type u_1\ninst✝² : Measure.IsOpenPosMeasure μ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 E\ng : β → C(α, E)\nf : C(α, E)\nhg : Summable g\nhg2 : HasSum (↑(toLp p μ 𝕜) ∘ g) (↑(toLp p μ 𝕜) f)\n⊢ HasSum g f", "tactic": "convert Summable.hasSum hg" }, { "state_after": "no goals", "state_before": "case h.e'_6\nα : Type u_2\nE : Type u_4\nF : Type ?u.15733246\nG : Type ?u.15733249\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : MeasureTheory.Measure α\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedAddCommGroup F\ninst✝⁹ : NormedAddCommGroup G\ninst✝⁸ : TopologicalSpace α\ninst✝⁷ : BorelSpace α\ninst✝⁶ : SecondCountableTopologyEither α E\ninst✝⁵ : CompactSpace α\ninst✝⁴ : IsFiniteMeasure μ\n𝕜 : Type u_3\ninst✝³ : Fact (1 ≤ p)\nβ : Type u_1\ninst✝² : Measure.IsOpenPosMeasure μ\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedSpace 𝕜 E\ng : β → C(α, E)\nf : C(α, E)\nhg : Summable g\nhg2 : HasSum (↑(toLp p μ 𝕜) ∘ g) (↑(toLp p μ 𝕜) f)\n⊢ f = ∑' (b : β), g b", "tactic": "exact toLp_injective μ (hg2.unique ((toLp p μ 𝕜).hasSum <| Summable.hasSum hg))" } ]
[ 1759, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1755, 1 ]
Mathlib/CategoryTheory/Bicategory/Basic.lean
CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_inv
[ { "state_after": "no goals", "state_before": "B : Type u\ninst✝ : Bicategory B\na b c d e : B\nf : a ⟶ b\ng : b ⟶ c\nh : c ⟶ d\ni : d ⟶ e\n⊢ inv ((α_ (f ≫ g) h i).inv ≫ (α_ f g h).hom ▷ i ≫ (α_ f (g ≫ h) i).hom) =\n inv ((α_ f g (h ≫ i)).hom ≫ f ◁ (α_ g h i).inv)", "tactic": "simp" } ]
[ 275, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 272, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
real_inner_comm
[]
[ 448, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 447, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
LinearMap.linearIndependent_iff
[ { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.109994\nR : Type u_1\nK : Type ?u.110000\nM : Type u_2\nM' : Type u_3\nM'' : Type ?u.110009\nV : Type u\nV' : Type ?u.110014\nv : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nf : M →ₗ[R] M'\nhf_inj : ker f = ⊥\nh : LinearIndependent R v\n⊢ Disjoint (span R (Set.range v)) (ker f)", "tactic": "simp only [hf_inj, disjoint_bot_right]" } ]
[ 246, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 244, 11 ]
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.eq_aleph_of_eq_card_ord
[ { "state_after": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ∃ a, ord (aleph a) = o", "state_before": "o : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\n⊢ ∃ a, ord (aleph a) = o", "tactic": "cases' eq_aleph'_of_eq_card_ord ho with a ha" }, { "state_after": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ord (aleph (a - ω)) = o", "state_before": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ∃ a, ord (aleph a) = o", "tactic": "use a - ω" }, { "state_after": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ord (aleph' (ω + (a - ω))) = o", "state_before": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ord (aleph (a - ω)) = o", "tactic": "unfold aleph" }, { "state_after": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ω ≤ a", "state_before": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ord (aleph' (ω + (a - ω))) = o", "tactic": "rwa [Ordinal.add_sub_cancel_of_le]" }, { "state_after": "no goals", "state_before": "case intro\no : Ordinal\nho : ord (card o) = o\nho' : ω ≤ o\na : Ordinal\nha : ord (aleph' a) = o\n⊢ ω ≤ a", "tactic": "rwa [← aleph0_le_aleph', ← ord_le_ord, ha, ord_aleph0]" } ]
[ 389, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 383, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.one_lt_iff_nontrivial
[ { "state_after": "no goals", "state_before": "α✝ β α : Type u\n⊢ 1 < (#α) ↔ Nontrivial α", "tactic": "rw [← not_le, le_one_iff_subsingleton, ← not_nontrivial_iff_subsingleton, Classical.not_not]" } ]
[ 746, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 745, 1 ]
Mathlib/Order/Disjoint.lean
Disjoint.of_disjoint_inf_of_le'
[]
[ 177, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean
Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le
[ { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ i", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\n⊢ ∀ (i : ℕ), natDegree (Polynomial.map (algebraMap R S) f) ≤ i → ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ i", "tactic": "intro i hi" }, { "state_after": "case intro\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ i", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ i", "tactic": "obtain ⟨k, hk⟩ := exists_add_of_le hi" }, { "state_after": "case intro\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f) * x ^ k", "state_before": "case intro\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ i", "tactic": "rw [hk, pow_add]" }, { "state_after": "case intro.intro.intro\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\ny : S\nhy : y ∈ adjoin R {x}\nH : ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f) * x ^ k", "state_before": "case intro\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f) * x ^ k", "tactic": "obtain ⟨y, hy, H⟩ := exists_mem_adjoin_mul_eq_pow_natDegree hx hmo hf" }, { "state_after": "case intro.intro.intro.refine'_1\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\ny : S\nhy : y ∈ adjoin R {x}\nH : ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)\n⊢ y * x ^ k ∈ adjoin R {x}\n\ncase intro.intro.intro.refine'_2\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\ny : S\nhy : y ∈ adjoin R {x}\nH : ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)\n⊢ ↑(algebraMap R S) p * (y * x ^ k) = x ^ natDegree (Polynomial.map (algebraMap R S) f) * x ^ k", "state_before": "case intro.intro.intro\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\ny : S\nhy : y ∈ adjoin R {x}\nH : ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f) * x ^ k", "tactic": "refine' ⟨y * x ^ k, _, _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.refine'_1\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\ny : S\nhy : y ∈ adjoin R {x}\nH : ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)\n⊢ y * x ^ k ∈ adjoin R {x}", "tactic": "exact Subalgebra.mul_mem _ hy (Subalgebra.pow_mem _ (subset_adjoin (Set.mem_singleton x)) _)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.refine'_2\nR : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\ni : ℕ\nhi : natDegree (Polynomial.map (algebraMap R S) f) ≤ i\nk : ℕ\nhk : i = natDegree (Polynomial.map (algebraMap R S) f) + k\ny : S\nhy : y ∈ adjoin R {x}\nH : ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)\n⊢ ↑(algebraMap R S) p * (y * x ^ k) = x ^ natDegree (Polynomial.map (algebraMap R S) f) * x ^ k", "tactic": "rw [← mul_assoc _ y, H]" } ]
[ 125, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Algebra/Order/SMul.lean
Tactic.smul_ne_zero_of_pos_of_ne_zero
[]
[ 321, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 9 ]
Mathlib/Data/Rat/Defs.lean
Rat.num_div_den
[ { "state_after": "a b c r : ℚ\n⊢ ↑r.num / ↑↑r.den = r", "state_before": "a b c r : ℚ\n⊢ ↑r.num / ↑r.den = r", "tactic": "rw [← Int.cast_ofNat]" }, { "state_after": "no goals", "state_before": "a b c r : ℚ\n⊢ ↑r.num / ↑↑r.den = r", "tactic": "erw [← divInt_eq_div, num_den]" } ]
[ 511, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 509, 1 ]