file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Algebra/GCDMonoid/Basic.lean
Associated.gcd_eq_left
[]
[ 502, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 499, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_pair
[ { "state_after": "no goals", "state_before": "ι : Type ?u.12245\nα : Type u_1\nβ : Type ?u.12251\nγ : Type ?u.12254\ninst✝ : CommMonoid α\ns t : Multiset α\na✝ : α\nm : Multiset ι\nf g : ι → α\na b : α\n⊢ prod {a, b} = a * b", "tactic": "rw [insert_eq_cons, prod_cons, prod_singleton]" } ]
[ 113, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Order/Monotone/Union.lean
MonotoneOn.union_right
[ { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\n⊢ f x ≤ f y", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\n⊢ MonotoneOn f (s ∪ t)", "tactic": "intro x hx y hy hxy" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\n⊢ f x ≤ f y\n\ncase inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhcx : c ≤ x\n⊢ f x ≤ f y", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\n⊢ f x ≤ f y", "tactic": "rcases lt_or_le x c with (hxc | hcx)" }, { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhx : x ∈ s ∪ t\nhxc : x ≤ c\n⊢ x ∈ s", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\n⊢ ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s", "tactic": "intro x hx hxc" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhxc : x ≤ c\nh✝ : x ∈ s\n⊢ x ∈ s\n\ncase inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhxc : x ≤ c\nh✝ : x ∈ t\n⊢ x ∈ s", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhx : x ∈ s ∪ t\nhxc : x ≤ c\n⊢ x ∈ s", "tactic": "cases hx" }, { "state_after": "case inr.inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nx : α\nh✝ : x ∈ t\nhs : IsGreatest s x\nht : IsLeast t x\nhxc : x ≤ x\n⊢ x ∈ s\n\ncase inr.inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhxc : x ≤ c\nh✝ : x ∈ t\nh'x : x < c\n⊢ x ∈ s", "state_before": "case inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhxc : x ≤ c\nh✝ : x ∈ t\n⊢ x ∈ s", "tactic": "rcases eq_or_lt_of_le hxc with (rfl | h'x)" }, { "state_after": "no goals", "state_before": "case inr.inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhxc : x ≤ c\nh✝ : x ∈ t\nh'x : x < c\n⊢ x ∈ s", "tactic": "exact (lt_irrefl _ (h'x.trans_le (ht.2 (by assumption)))).elim" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhxc : x ≤ c\nh✝ : x ∈ s\n⊢ x ∈ s", "tactic": "assumption" }, { "state_after": "no goals", "state_before": "case inr.inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nx : α\nh✝ : x ∈ t\nhs : IsGreatest s x\nht : IsLeast t x\nhxc : x ≤ x\n⊢ x ∈ s", "tactic": "exact hs.1" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nx : α\nhxc : x ≤ c\nh✝ : x ∈ t\nh'x : x < c\n⊢ x ∈ t", "tactic": "assumption" }, { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nx : α\nhx : x ∈ s ∪ t\nhxc : c ≤ x\n⊢ x ∈ t", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\n⊢ ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t", "tactic": "intro x hx hxc" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nx : α\nhx✝ : x ∈ s ∪ t\nhxc : c ≤ x\nhx : x ∈ t\n⊢ x ∈ t", "tactic": "exact hx" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nhx✝ : c ∈ s ∪ t\nhxc : c ≤ c\nhx : c ∈ s\n⊢ c ∈ t\n\ncase inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nx : α\nhx✝ : x ∈ s ∪ t\nhxc : c ≤ x\nhx : x ∈ s\nh'x : c < x\n⊢ x ∈ t", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nx : α\nhx✝ : x ∈ s ∪ t\nhxc : c ≤ x\nhx : x ∈ s\n⊢ x ∈ t", "tactic": "rcases eq_or_lt_of_le hxc with (rfl | h'x)" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nx : α\nhx✝ : x ∈ s ∪ t\nhxc : c ≤ x\nhx : x ∈ s\nh'x : c < x\n⊢ x ∈ t", "tactic": "exact (lt_irrefl _ (h'x.trans_le (hs.2 hx))).elim" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nhx✝ : c ∈ s ∪ t\nhxc : c ≤ c\nhx : c ∈ s\n⊢ c ∈ t", "tactic": "exact ht.1" }, { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\nxs : x ∈ s\n⊢ f x ≤ f y", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\n⊢ f x ≤ f y", "tactic": "have xs : x ∈ s := A _ hx hxc.le" }, { "state_after": "case inl.inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\nxs : x ∈ s\nhyc : y < c\n⊢ f x ≤ f y\n\ncase inl.inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\nxs : x ∈ s\nhcy : c ≤ y\n⊢ f x ≤ f y", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\nxs : x ∈ s\n⊢ f x ≤ f y", "tactic": "rcases lt_or_le y c with (hyc | hcy)" }, { "state_after": "no goals", "state_before": "case inl.inl\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\nxs : x ∈ s\nhyc : y < c\n⊢ f x ≤ f y", "tactic": "exact h₁ xs (A _ hy hyc.le) hxy" }, { "state_after": "no goals", "state_before": "case inl.inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhxc : x < c\nxs : x ∈ s\nhcy : c ≤ y\n⊢ f x ≤ f y", "tactic": "exact (h₁ xs hs.1 hxc.le).trans (h₂ ht.1 (B _ hy hcy) hcy)" }, { "state_after": "case inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhcx : c ≤ x\nxt : x ∈ t\n⊢ f x ≤ f y", "state_before": "case inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhcx : c ≤ x\n⊢ f x ≤ f y", "tactic": "have xt : x ∈ t := B _ hx hcx" }, { "state_after": "case inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhcx : c ≤ x\nxt : x ∈ t\nyt : y ∈ t\n⊢ f x ≤ f y", "state_before": "case inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhcx : c ≤ x\nxt : x ∈ t\n⊢ f x ≤ f y", "tactic": "have yt : y ∈ t := B _ hy (hcx.trans hxy)" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrder α\ninst✝ : Preorder β\na : α\nf : α → β\ns t : Set α\nc : α\nh₁ : MonotoneOn f s\nh₂ : MonotoneOn f t\nhs : IsGreatest s c\nht : IsLeast t c\nA : ∀ (x : α), x ∈ s ∪ t → x ≤ c → x ∈ s\nB : ∀ (x : α), x ∈ s ∪ t → c ≤ x → x ∈ t\nx : α\nhx : x ∈ s ∪ t\ny : α\nhy : y ∈ s ∪ t\nhxy : x ≤ y\nhcx : c ≤ x\nxt : x ∈ t\nyt : y ∈ t\n⊢ f x ≤ f y", "tactic": "exact h₂ xt yt hxy" } ]
[ 106, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 11 ]
Std/Data/RBMap/Lemmas.lean
Std.RBNode.Stream.foldl_eq_foldl_toList
[ { "state_after": "no goals", "state_before": "α : Type u_1\nα✝ : Type u_2\nf : α✝ → α → α✝\ninit : α✝\nt : RBNode.Stream α\n⊢ foldl f init t = List.foldl f init (toList t)", "tactic": "induction t generalizing init <;> simp [-List.foldl] <;> simp [*, RBNode.foldl_eq_foldl_toList]" } ]
[ 383, 98 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 382, 1 ]
Mathlib/GroupTheory/Sylow.lean
Sylow.prime_dvd_card_quotient_normalizer
[ { "state_after": "no goals", "state_before": "G : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np n : ℕ\nhp : Fact (Nat.Prime p)\nhdvd : p ^ (n + 1) ∣ Fintype.card G\nH : Subgroup G\nhH : Fintype.card { x // x ∈ H } = p ^ n\ns : ℕ\nhs : Fintype.card G = s * p ^ (n + 1)\n⊢ Fintype.card (G ⧸ H) * Fintype.card { x // x ∈ H } = s * p * Fintype.card { x // x ∈ H }", "tactic": "rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]" }, { "state_after": "no goals", "state_before": "G : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np n : ℕ\nhp : Fact (Nat.Prime p)\nhdvd : p ^ (n + 1) ∣ Fintype.card G\nH : Subgroup G\nhH : Fintype.card { x // x ∈ H } = p ^ n\ns : ℕ\nhs : Fintype.card G = s * p ^ (n + 1)\nhcard : Fintype.card (G ⧸ H) = s * p\nhm : s * p % p = Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) % p\n⊢ Fintype.card ({ x // x ∈ normalizer H } ⧸ Subgroup.comap (Subgroup.subtype (normalizer H)) H) % p = 0", "tactic": "rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm" } ]
[ 580, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 568, 1 ]
Mathlib/Algebra/Field/Basic.lean
div_sub'
[ { "state_after": "no goals", "state_before": "α : Type ?u.57003\nβ : Type ?u.57006\nK : Type u_1\ninst✝ : Field K\na b c : K\nhc : c ≠ 0\n⊢ a / c - b = (a - c * b) / c", "tactic": "simpa using div_sub_div a b hc one_ne_zero" } ]
[ 246, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 1 ]
Mathlib/Topology/Algebra/Order/LiminfLimsup.lean
Filter.Tendsto.liminf_eq
[]
[ 207, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
Finset.weightedVSubVSubWeights_self
[ { "state_after": "no goals", "state_before": "k : Type u_2\nV : Type ?u.418752\nP : Type ?u.418755\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.419411\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\ni : ι\n⊢ weightedVSubVSubWeights k i i = 0", "tactic": "simp [weightedVSubVSubWeights]" } ]
[ 681, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 680, 1 ]
Mathlib/CategoryTheory/NatIso.lean
CategoryTheory.NatIso.inv_inv_app
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF✝ G✝ : C ⥤ D\nα : F✝ ≅ G✝\nF G : C ⥤ D\ne : F ≅ G\nX : C\n⊢ inv (e.inv.app X) = e.hom.app X", "tactic": "aesop_cat" } ]
[ 166, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 165, 1 ]
Mathlib/ModelTheory/Basic.lean
FirstOrder.Language.Equiv.map_rel
[]
[ 803, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 801, 1 ]
Mathlib/Data/Seq/Seq.lean
Stream'.Seq1.join_nil
[]
[ 941, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 940, 1 ]
Mathlib/Topology/Connected.lean
Continuous.image_connectedComponent_subset
[]
[ 712, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 709, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Cardinal.derivFamily_lt_ord_lift
[ { "state_after": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ a < ord c → derivFamily f a < ord c", "state_before": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\n⊢ a < ord c → derivFamily f a < ord c", "tactic": "have hω : ℵ₀ < c.ord.cof := by\n rw [hc.cof_eq]\n exact lt_of_le_of_ne hc.1 hc'.symm" }, { "state_after": "case H₁\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ 0 < ord c → derivFamily f 0 < ord c\n\ncase H₂\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ ∀ (o : Ordinal), (o < ord c → derivFamily f o < ord c) → succ o < ord c → derivFamily f (succ o) < ord c\n\ncase H₃\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ ∀ (o : Ordinal),\n Ordinal.IsLimit o →\n (∀ (o' : Ordinal), o' < o → o' < ord c → derivFamily f o' < ord c) → o < ord c → derivFamily f o < ord c", "state_before": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ a < ord c → derivFamily f a < ord c", "tactic": "apply a.limitRecOn" }, { "state_after": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\n⊢ ℵ₀ < c", "state_before": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\n⊢ ℵ₀ < Ordinal.cof (ord c)", "tactic": "rw [hc.cof_eq]" }, { "state_after": "no goals", "state_before": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\n⊢ ℵ₀ < c", "tactic": "exact lt_of_le_of_ne hc.1 hc'.symm" }, { "state_after": "case H₁\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ 0 < ord c → nfpFamily f 0 < ord c", "state_before": "case H₁\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ 0 < ord c → derivFamily f 0 < ord c", "tactic": "rw [derivFamily_zero]" }, { "state_after": "no goals", "state_before": "case H₁\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ 0 < ord c → nfpFamily f 0 < ord c", "tactic": "exact nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf" }, { "state_after": "no goals", "state_before": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ lift (#ι) < Ordinal.cof (ord c)", "tactic": "rwa [hc.cof_eq]" }, { "state_after": "case H₂\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : b < ord c → derivFamily f b < ord c\nhb' : succ b < ord c\n⊢ derivFamily f (succ b) < ord c", "state_before": "case H₂\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ ∀ (o : Ordinal), (o < ord c → derivFamily f o < ord c) → succ o < ord c → derivFamily f (succ o) < ord c", "tactic": "intro b hb hb'" }, { "state_after": "case H₂\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : b < ord c → derivFamily f b < ord c\nhb' : succ b < ord c\n⊢ nfpFamily f (succ (derivFamily f b)) < ord c", "state_before": "case H₂\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : b < ord c → derivFamily f b < ord c\nhb' : succ b < ord c\n⊢ derivFamily f (succ b) < ord c", "tactic": "rw [derivFamily_succ]" }, { "state_after": "no goals", "state_before": "case H₂\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : b < ord c → derivFamily f b < ord c\nhb' : succ b < ord c\n⊢ nfpFamily f (succ (derivFamily f b)) < ord c", "tactic": "exact\n nfpFamily_lt_ord_lift hω (by rwa [hc.cof_eq]) hf\n ((ord_isLimit hc.1).2 _ (hb ((lt_succ b).trans hb')))" }, { "state_after": "no goals", "state_before": "α : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : b < ord c → derivFamily f b < ord c\nhb' : succ b < ord c\n⊢ lift (#ι) < Ordinal.cof (ord c)", "tactic": "rwa [hc.cof_eq]" }, { "state_after": "case H₃\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : Ordinal.IsLimit b\nH : ∀ (o' : Ordinal), o' < b → o' < ord c → derivFamily f o' < ord c\nhb' : b < ord c\n⊢ derivFamily f b < ord c", "state_before": "case H₃\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\n⊢ ∀ (o : Ordinal),\n Ordinal.IsLimit o →\n (∀ (o' : Ordinal), o' < o → o' < ord c → derivFamily f o' < ord c) → o < ord c → derivFamily f o < ord c", "tactic": "intro b hb H hb'" }, { "state_after": "case H₃\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : Ordinal.IsLimit b\nH : ∀ (o' : Ordinal), o' < b → o' < ord c → derivFamily f o' < ord c\nhb' : b < ord c\n⊢ (bsup b fun a x => derivFamily f a) < ord c", "state_before": "case H₃\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : Ordinal.IsLimit b\nH : ∀ (o' : Ordinal), o' < b → o' < ord c → derivFamily f o' < ord c\nhb' : b < ord c\n⊢ derivFamily f b < ord c", "tactic": "rw [derivFamily_limit f hb]" }, { "state_after": "no goals", "state_before": "case H₃\nα : Type ?u.164801\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : lift (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\nhω : ℵ₀ < Ordinal.cof (ord c)\nb : Ordinal\nhb : Ordinal.IsLimit b\nH : ∀ (o' : Ordinal), o' < b → o' < ord c → derivFamily f o' < ord c\nhb' : b < ord c\n⊢ (bsup b fun a x => derivFamily f a) < ord c", "tactic": "exact\n bsup_lt_ord_of_isRegular.{u, v} hc (ord_lt_ord.1 ((ord_card_le b).trans_lt hb')) fun o' ho' =>\n H o' ho' (ho'.trans hb')" } ]
[ 1179, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1160, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.span_iUnion
[]
[ 137, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/GroupTheory/Solvable.lean
derivedSeries_normal
[ { "state_after": "case zero\nG : Type u_1\nG' : Type ?u.4100\ninst✝¹ : Group G\ninst✝ : Group G'\nf : G →* G'\n⊢ Normal (derivedSeries G Nat.zero)\n\ncase succ\nG : Type u_1\nG' : Type ?u.4100\ninst✝¹ : Group G\ninst✝ : Group G'\nf : G →* G'\nn : ℕ\nih : Normal (derivedSeries G n)\n⊢ Normal (derivedSeries G (Nat.succ n))", "state_before": "G : Type u_1\nG' : Type ?u.4100\ninst✝¹ : Group G\ninst✝ : Group G'\nf : G →* G'\nn : ℕ\n⊢ Normal (derivedSeries G n)", "tactic": "induction' n with n ih" }, { "state_after": "no goals", "state_before": "case zero\nG : Type u_1\nG' : Type ?u.4100\ninst✝¹ : Group G\ninst✝ : Group G'\nf : G →* G'\n⊢ Normal (derivedSeries G Nat.zero)", "tactic": "exact (⊤ : Subgroup G).normal_of_characteristic" }, { "state_after": "no goals", "state_before": "case succ\nG : Type u_1\nG' : Type ?u.4100\ninst✝¹ : Group G\ninst✝ : Group G'\nf : G →* G'\nn : ℕ\nih : Normal (derivedSeries G n)\n⊢ Normal (derivedSeries G (Nat.succ n))", "tactic": "exact @Subgroup.commutator_normal G _ (derivedSeries G n) (derivedSeries G n) ih ih" } ]
[ 62, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Algebra/Star/Prod.lean
Prod.snd_star
[]
[ 37, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 36, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
Ordinal.succ_one
[ { "state_after": "α : Type ?u.178408\nβ : Type ?u.178411\nγ : Type ?u.178414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ succ One.toOfNat1.1 = { ofNat := ↑2 }.1", "state_before": "α : Type ?u.178408\nβ : Type ?u.178411\nγ : Type ?u.178414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ succ 1 = 2", "tactic": "unfold instOfNat OfNat.ofNat" }, { "state_after": "no goals", "state_before": "α : Type ?u.178408\nβ : Type ?u.178411\nγ : Type ?u.178414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ succ One.toOfNat1.1 = { ofNat := ↑2 }.1", "tactic": "simpa using by rfl" }, { "state_after": "no goals", "state_before": "α : Type ?u.178408\nβ : Type ?u.178411\nγ : Type ?u.178414\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\n⊢ One.toOfNat1.1 = 1", "tactic": "rfl" } ]
[ 1070, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1068, 1 ]
Mathlib/Logic/Equiv/Defs.lean
Equiv.permCongr_def
[]
[ 432, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 432, 1 ]
Mathlib/CategoryTheory/Monad/Algebra.lean
CategoryTheory.Monad.algebra_iso_of_iso
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nT : Monad C\nA B : Algebra T\nf : A ⟶ B\ninst✝ : IsIso f.f\n⊢ T.map (inv f.f) ≫ T.map f.f ≫ B.a = B.a", "state_before": "C : Type u₁\ninst✝¹ : Category C\nT : Monad C\nA B : Algebra T\nf : A ⟶ B\ninst✝ : IsIso f.f\n⊢ T.map (inv f.f) ≫ A.a = B.a ≫ inv f.f", "tactic": "rw [IsIso.eq_comp_inv f.f, Category.assoc, ← f.h]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nT : Monad C\nA B : Algebra T\nf : A ⟶ B\ninst✝ : IsIso f.f\n⊢ T.map (inv f.f) ≫ T.map f.f ≫ B.a = B.a", "tactic": "simp" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nT : Monad C\nA B : Algebra T\nf : A ⟶ B\ninst✝ : IsIso f.f\n⊢ f ≫ Algebra.Hom.mk (inv f.f) = 𝟙 A ∧ Algebra.Hom.mk (inv f.f) ≫ f = 𝟙 B", "tactic": "aesop_cat" } ]
[ 215, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/Algebra/Group/Units.lean
Units.val_eq_one
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : Monoid α\na✝ b c u a : αˣ\n⊢ ↑a = 1 ↔ a = 1", "tactic": "rw [← Units.val_one, eq_iff]" } ]
[ 238, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 238, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.mem_of_mem_nsmul
[ { "state_after": "case zero\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn : ℕ\nh✝ : a ∈ n • s\nh : a ∈ zero • s\n⊢ a ∈ s\n\ncase succ\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn✝ : ℕ\nh✝ : a ∈ n✝ • s\nn : ℕ\nih : a ∈ n • s → a ∈ s\nh : a ∈ succ n • s\n⊢ a ∈ s", "state_before": "α : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn : ℕ\nh : a ∈ n • s\n⊢ a ∈ s", "tactic": "induction' n with n ih" }, { "state_after": "case zero\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn : ℕ\nh✝ : a ∈ n • s\nh : a ∈ 0\n⊢ a ∈ s", "state_before": "case zero\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn : ℕ\nh✝ : a ∈ n • s\nh : a ∈ zero • s\n⊢ a ∈ s", "tactic": "rw [zero_nsmul] at h" }, { "state_after": "no goals", "state_before": "case zero\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn : ℕ\nh✝ : a ∈ n • s\nh : a ∈ 0\n⊢ a ∈ s", "tactic": "exact absurd h (not_mem_zero _)" }, { "state_after": "case succ\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn✝ : ℕ\nh✝ : a ∈ n✝ • s\nn : ℕ\nih : a ∈ n • s → a ∈ s\nh : a ∈ s ∨ a ∈ n • s\n⊢ a ∈ s", "state_before": "case succ\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn✝ : ℕ\nh✝ : a ∈ n✝ • s\nn : ℕ\nih : a ∈ n • s → a ∈ s\nh : a ∈ succ n • s\n⊢ a ∈ s", "tactic": "rw [succ_nsmul, mem_add] at h" }, { "state_after": "no goals", "state_before": "case succ\nα : Type u_1\nβ : Type ?u.46161\nγ : Type ?u.46164\na : α\ns : Multiset α\nn✝ : ℕ\nh✝ : a ∈ n✝ • s\nn : ℕ\nih : a ∈ n • s → a ∈ s\nh : a ∈ s ∨ a ∈ n • s\n⊢ a ∈ s", "tactic": "exact h.elim id ih" } ]
[ 692, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 687, 1 ]
Mathlib/Data/Seq/WSeq.lean
Stream'.WSeq.join_congr
[]
[ 1671, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1670, 1 ]
Mathlib/Order/Cover.lean
Wcovby.le_and_le_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.16828\ninst✝ : PartialOrder α\na b c : α\nh : a ⩿ b\n⊢ c = a ∨ c = b → a ≤ c ∧ c ≤ b", "state_before": "α : Type u_1\nβ : Type ?u.16828\ninst✝ : PartialOrder α\na b c : α\nh : a ⩿ b\n⊢ a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b", "tactic": "refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩" }, { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.16828\ninst✝ : PartialOrder α\nb c : α\nh : c ⩿ b\n⊢ c ≤ c ∧ c ≤ b\n\ncase inr\nα : Type u_1\nβ : Type ?u.16828\ninst✝ : PartialOrder α\na c : α\nh : a ⩿ c\n⊢ a ≤ c ∧ c ≤ c", "state_before": "α : Type u_1\nβ : Type ?u.16828\ninst✝ : PartialOrder α\na b c : α\nh : a ⩿ b\n⊢ c = a ∨ c = b → a ≤ c ∧ c ≤ b", "tactic": "rintro (rfl | rfl)" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.16828\ninst✝ : PartialOrder α\nb c : α\nh : c ⩿ b\n⊢ c ≤ c ∧ c ≤ b\n\ncase inr\nα : Type u_1\nβ : Type ?u.16828\ninst✝ : PartialOrder α\na c : α\nh : a ⩿ c\n⊢ a ≤ c ∧ c ≤ c", "tactic": "exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]" } ]
[ 172, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
one_lt_inv_iff
[]
[ 326, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 325, 1 ]
Mathlib/RingTheory/Coprime/Lemmas.lean
IsCoprime.prod_left
[ { "state_after": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt✝ : Finset I\nb : I\nt : Finset I\nhbt : ¬b ∈ t\nih : (∀ (i : I), i ∈ t → IsCoprime (s i) x) → IsCoprime (∏ i in t, s i) x\nH : ∀ (i : I), i ∈ insert b t → IsCoprime (s i) x\n⊢ IsCoprime (s b * ∏ x in t, s x) x", "state_before": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt✝ : Finset I\nb : I\nt : Finset I\nhbt : ¬b ∈ t\nih : (∀ (i : I), i ∈ t → IsCoprime (s i) x) → IsCoprime (∏ i in t, s i) x\nH : ∀ (i : I), i ∈ insert b t → IsCoprime (s i) x\n⊢ IsCoprime (∏ i in insert b t, s i) x", "tactic": "rw [Finset.prod_insert hbt]" }, { "state_after": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt✝ : Finset I\nb : I\nt : Finset I\nhbt : ¬b ∈ t\nih : (∀ (i : I), i ∈ t → IsCoprime (s i) x) → IsCoprime (∏ i in t, s i) x\nH : IsCoprime (s b) x ∧ ∀ (x_1 : I), x_1 ∈ t → IsCoprime (s x_1) x\n⊢ IsCoprime (s b * ∏ x in t, s x) x", "state_before": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt✝ : Finset I\nb : I\nt : Finset I\nhbt : ¬b ∈ t\nih : (∀ (i : I), i ∈ t → IsCoprime (s i) x) → IsCoprime (∏ i in t, s i) x\nH : ∀ (i : I), i ∈ insert b t → IsCoprime (s i) x\n⊢ IsCoprime (s b * ∏ x in t, s x) x", "tactic": "rw [Finset.forall_mem_insert] at H" }, { "state_after": "no goals", "state_before": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt✝ : Finset I\nb : I\nt : Finset I\nhbt : ¬b ∈ t\nih : (∀ (i : I), i ∈ t → IsCoprime (s i) x) → IsCoprime (∏ i in t, s i) x\nH : IsCoprime (s b) x ∧ ∀ (x_1 : I), x_1 ∈ t → IsCoprime (s x_1) x\n⊢ IsCoprime (s b * ∏ x in t, s x) x", "tactic": "exact H.1.mul_left (ih H.2)" } ]
[ 57, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearEquiv.symm_conj_apply
[]
[ 2380, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2378, 1 ]
Mathlib/Data/Fintype/BigOperators.lean
Function.Bijective.prod_comp
[]
[ 210, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Topology/Algebra/ContinuousAffineMap.lean
ContinuousAffineMap.zero_apply
[]
[ 190, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 190, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.pmap_eq_map_attach
[]
[ 1530, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1528, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.Tendsto.mul_const
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.98424\nγ : Type ?u.98427\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nf : Filter α\nm : α → ℝ≥0∞\na b : ℝ≥0∞\nhm : Tendsto m f (𝓝 a)\nha : a ≠ 0 ∨ b ≠ ⊤\n⊢ Tendsto (fun x => m x * b) f (𝓝 (a * b))", "tactic": "simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha" } ]
[ 384, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 382, 11 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.coeff_sub
[ { "state_after": "case ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\nq : R[X]\nn : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff ({ toFinsupp := toFinsupp✝ } - q) n = coeff { toFinsupp := toFinsupp✝ } n - coeff q n", "state_before": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\np q : R[X]\nn : ℕ\n⊢ coeff (p - q) n = coeff p n - coeff q n", "tactic": "rcases p with ⟨⟩" }, { "state_after": "case ofFinsupp.ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\nn : ℕ\ntoFinsupp✝¹ toFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff ({ toFinsupp := toFinsupp✝¹ } - { toFinsupp := toFinsupp✝ }) n =\n coeff { toFinsupp := toFinsupp✝¹ } n - coeff { toFinsupp := toFinsupp✝ } n", "state_before": "case ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\nq : R[X]\nn : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff ({ toFinsupp := toFinsupp✝ } - q) n = coeff { toFinsupp := toFinsupp✝ } n - coeff q n", "tactic": "rcases q with ⟨⟩" }, { "state_after": "case ofFinsupp.ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\nn : ℕ\ntoFinsupp✝¹ toFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ (match (motive := R[X] → ℕ → R) { toFinsupp := toFinsupp✝¹ - toFinsupp✝ } with\n | { toFinsupp := p } => ↑p)\n n =\n (match (motive := R[X] → ℕ → R) { toFinsupp := toFinsupp✝¹ } with\n | { toFinsupp := p } => ↑p)\n n -\n (match (motive := R[X] → ℕ → R) { toFinsupp := toFinsupp✝ } with\n | { toFinsupp := p } => ↑p)\n n", "state_before": "case ofFinsupp.ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\nn : ℕ\ntoFinsupp✝¹ toFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff ({ toFinsupp := toFinsupp✝¹ } - { toFinsupp := toFinsupp✝ }) n =\n coeff { toFinsupp := toFinsupp✝¹ } n - coeff { toFinsupp := toFinsupp✝ } n", "tactic": "rw [← ofFinsupp_sub, coeff, coeff, coeff]" }, { "state_after": "no goals", "state_before": "case ofFinsupp.ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Ring R\nn : ℕ\ntoFinsupp✝¹ toFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ (match (motive := R[X] → ℕ → R) { toFinsupp := toFinsupp✝¹ - toFinsupp✝ } with\n | { toFinsupp := p } => ↑p)\n n =\n (match (motive := R[X] → ℕ → R) { toFinsupp := toFinsupp✝¹ } with\n | { toFinsupp := p } => ↑p)\n n -\n (match (motive := R[X] → ℕ → R) { toFinsupp := toFinsupp✝ } with\n | { toFinsupp := p } => ↑p)\n n", "tactic": "apply Finsupp.sub_apply" } ]
[ 1168, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1164, 1 ]
Mathlib/Order/BooleanAlgebra.lean
disjoint_compl_right_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.60077\nw x y z : α\ninst✝ : BooleanAlgebra α\n⊢ Disjoint x (yᶜ) ↔ x ≤ y", "tactic": "rw [← le_compl_iff_disjoint_right, compl_compl]" } ]
[ 739, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 738, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Iic_union_Ioo_eq_Iio
[]
[ 1431, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1429, 1 ]
Mathlib/Order/Disjoint.lean
Disjoint.sup_right
[]
[ 201, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 200, 1 ]
Mathlib/Data/Set/Image.lean
Set.preimage_comp
[]
[ 150, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/Data/List/Cycle.lean
Cycle.card_toMultiset
[ { "state_after": "no goals", "state_before": "α : Type u_1\ns : Cycle α\n⊢ ∀ (a : List α), ↑Multiset.card (toMultiset (Quotient.mk'' a)) = length (Quotient.mk'' a)", "tactic": "simp" } ]
[ 704, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 703, 1 ]
Mathlib/Analysis/NormedSpace/AffineIsometry.lean
AffineIsometry.isometry
[]
[ 160, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 11 ]
Mathlib/Analysis/Convex/Star.lean
StarConvex.mem_smul
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.156386\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx : E\ns : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht : 1 ≤ t\n⊢ t⁻¹ • x ∈ s", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.156386\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx : E\ns : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht : 1 ≤ t\n⊢ x ∈ t • s", "tactic": "rw [mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans_le ht).ne']" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.156386\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx : E\ns : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht : 1 ≤ t\n⊢ t⁻¹ • x ∈ s", "tactic": "exact hs.smul_mem hx (by positivity) (inv_le_one ht)" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.156386\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx : E\ns : Set E\nhs : StarConvex 𝕜 0 s\nhx : x ∈ s\nt : 𝕜\nht : 1 ≤ t\n⊢ 0 ≤ t⁻¹", "tactic": "positivity" } ]
[ 411, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/Algebra/Free.lean
FreeMagma.toFreeSemigroup_map
[]
[ 738, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 736, 1 ]
Mathlib/Order/Hom/Set.lean
OrderIso.image_preimage
[]
[ 60, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.map_ne_zero
[]
[ 146, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/FieldTheory/SplittingField/IsSplittingField.lean
Polynomial.IsSplittingField.splits
[]
[ 62, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.map_zero
[]
[ 98, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.sum_monomial_eq
[]
[ 361, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 359, 1 ]
Mathlib/RingTheory/Ideal/LocalRing.lean
LocalRing.of_isUnit_or_isUnit_one_sub_self
[]
[ 167, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 165, 1 ]
Mathlib/CategoryTheory/Shift/Basic.lean
CategoryTheory.shift_shiftFunctorCompIsoId_neg_add_self_inv_app
[ { "state_after": "no goals", "state_before": "C : Type u\nA : Type u_1\ninst✝² : Category C\ninst✝¹ : AddGroup A\ninst✝ : HasShift C A\nX✝ Y : C\nf : X✝ ⟶ Y\nn : A\nX : C\n⊢ (shiftFunctor C (-n)).map ((shiftFunctorCompIsoId C (-n) n (_ : -n + n = 0)).inv.app X) =\n (shiftFunctorCompIsoId C n (-n) (_ : n + -n = 0)).inv.app ((shiftFunctor C (-n)).obj X)", "tactic": "apply shift_shiftFunctorCompIsoId_inv_app" } ]
[ 544, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 541, 1 ]
Mathlib/Analysis/Calculus/FDeriv/RestrictScalars.lean
HasFDerivAt.restrictScalars
[]
[ 67, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/Analysis/NormedSpace/Exponential.lean
hasFPowerSeriesAt_exp_zero_of_radius_pos
[]
[ 248, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 246, 1 ]
Mathlib/Combinatorics/SimpleGraph/Density.lean
Rel.card_interedges_finpartition_right
[ { "state_after": "no goals", "state_before": "𝕜 : Type ?u.24112\nι : Type ?u.24115\nκ : Type ?u.24118\nα : Type u_2\nβ : Type u_1\ninst✝² : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝¹ : (a : α) → DecidablePred (r a)\ns✝ s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\ninst✝ : DecidableEq β\ns : Finset α\nP : Finpartition t\n⊢ card (interedges r s t) = ∑ b in P.parts, card (interedges r s b)", "tactic": "classical\nsimp_rw [← P.biUnion_parts, interedges_biUnion_right, id]\nrw [card_biUnion]\nexact fun x hx y hy h ↦ interedges_disjoint_right r _ (P.disjoint hx hy h)" }, { "state_after": "𝕜 : Type ?u.24112\nι : Type ?u.24115\nκ : Type ?u.24118\nα : Type u_2\nβ : Type u_1\ninst✝² : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝¹ : (a : α) → DecidablePred (r a)\ns✝ s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\ninst✝ : DecidableEq β\ns : Finset α\nP : Finpartition t\n⊢ card (Finset.biUnion P.parts fun b => interedges r s b) = ∑ b in P.parts, card (interedges r s b)", "state_before": "𝕜 : Type ?u.24112\nι : Type ?u.24115\nκ : Type ?u.24118\nα : Type u_2\nβ : Type u_1\ninst✝² : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝¹ : (a : α) → DecidablePred (r a)\ns✝ s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\ninst✝ : DecidableEq β\ns : Finset α\nP : Finpartition t\n⊢ card (interedges r s t) = ∑ b in P.parts, card (interedges r s b)", "tactic": "simp_rw [← P.biUnion_parts, interedges_biUnion_right, id]" }, { "state_after": "𝕜 : Type ?u.24112\nι : Type ?u.24115\nκ : Type ?u.24118\nα : Type u_2\nβ : Type u_1\ninst✝² : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝¹ : (a : α) → DecidablePred (r a)\ns✝ s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\ninst✝ : DecidableEq β\ns : Finset α\nP : Finpartition t\n⊢ ∀ (x : Finset β), x ∈ P.parts → ∀ (y : Finset β), y ∈ P.parts → x ≠ y → Disjoint (interedges r s x) (interedges r s y)", "state_before": "𝕜 : Type ?u.24112\nι : Type ?u.24115\nκ : Type ?u.24118\nα : Type u_2\nβ : Type u_1\ninst✝² : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝¹ : (a : α) → DecidablePred (r a)\ns✝ s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\ninst✝ : DecidableEq β\ns : Finset α\nP : Finpartition t\n⊢ card (Finset.biUnion P.parts fun b => interedges r s b) = ∑ b in P.parts, card (interedges r s b)", "tactic": "rw [card_biUnion]" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.24112\nι : Type ?u.24115\nκ : Type ?u.24118\nα : Type u_2\nβ : Type u_1\ninst✝² : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝¹ : (a : α) → DecidablePred (r a)\ns✝ s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\ninst✝ : DecidableEq β\ns : Finset α\nP : Finpartition t\n⊢ ∀ (x : Finset β), x ∈ P.parts → ∀ (y : Finset β), y ∈ P.parts → x ≠ y → Disjoint (interedges r s x) (interedges r s y)", "tactic": "exact fun x hx y hy h ↦ interedges_disjoint_right r _ (P.disjoint hx hy h)" } ]
[ 175, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.pow_apply
[ { "state_after": "case zero\nR : Type u_1\nR₁ : Type ?u.141510\nR₂ : Type ?u.141513\nR₃ : Type ?u.141516\nR₄ : Type ?u.141519\nS : Type ?u.141522\nK : Type ?u.141525\nK₂ : Type ?u.141528\nM : Type u_2\nM' : Type ?u.141534\nM₁ : Type ?u.141537\nM₂ : Type ?u.141540\nM₃ : Type ?u.141543\nM₄ : Type ?u.141546\nN : Type ?u.141549\nN₂ : Type ?u.141552\nι : Type ?u.141555\nV : Type ?u.141558\nV₂ : Type ?u.141561\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf✝ : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf : M →ₗ[R] M\nm : M\n⊢ ↑(f ^ Nat.zero) m = (↑f^[Nat.zero]) m\n\ncase succ\nR : Type u_1\nR₁ : Type ?u.141510\nR₂ : Type ?u.141513\nR₃ : Type ?u.141516\nR₄ : Type ?u.141519\nS : Type ?u.141522\nK : Type ?u.141525\nK₂ : Type ?u.141528\nM : Type u_2\nM' : Type ?u.141534\nM₁ : Type ?u.141537\nM₂ : Type ?u.141540\nM₃ : Type ?u.141543\nM₄ : Type ?u.141546\nN : Type ?u.141549\nN₂ : Type ?u.141552\nι : Type ?u.141555\nV : Type ?u.141558\nV₂ : Type ?u.141561\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf✝ : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf : M →ₗ[R] M\nm : M\nn : ℕ\nih : ↑(f ^ n) m = (↑f^[n]) m\n⊢ ↑(f ^ Nat.succ n) m = (↑f^[Nat.succ n]) m", "state_before": "R : Type u_1\nR₁ : Type ?u.141510\nR₂ : Type ?u.141513\nR₃ : Type ?u.141516\nR₄ : Type ?u.141519\nS : Type ?u.141522\nK : Type ?u.141525\nK₂ : Type ?u.141528\nM : Type u_2\nM' : Type ?u.141534\nM₁ : Type ?u.141537\nM₂ : Type ?u.141540\nM₃ : Type ?u.141543\nM₄ : Type ?u.141546\nN : Type ?u.141549\nN₂ : Type ?u.141552\nι : Type ?u.141555\nV : Type ?u.141558\nV₂ : Type ?u.141561\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf✝ : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf : M →ₗ[R] M\nn : ℕ\nm : M\n⊢ ↑(f ^ n) m = (↑f^[n]) m", "tactic": "induction' n with n ih" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u_1\nR₁ : Type ?u.141510\nR₂ : Type ?u.141513\nR₃ : Type ?u.141516\nR₄ : Type ?u.141519\nS : Type ?u.141522\nK : Type ?u.141525\nK₂ : Type ?u.141528\nM : Type u_2\nM' : Type ?u.141534\nM₁ : Type ?u.141537\nM₂ : Type ?u.141540\nM₃ : Type ?u.141543\nM₄ : Type ?u.141546\nN : Type ?u.141549\nN₂ : Type ?u.141552\nι : Type ?u.141555\nV : Type ?u.141558\nV₂ : Type ?u.141561\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf✝ : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf : M →ₗ[R] M\nm : M\n⊢ ↑(f ^ Nat.zero) m = (↑f^[Nat.zero]) m", "tactic": "rfl" }, { "state_after": "case succ\nR : Type u_1\nR₁ : Type ?u.141510\nR₂ : Type ?u.141513\nR₃ : Type ?u.141516\nR₄ : Type ?u.141519\nS : Type ?u.141522\nK : Type ?u.141525\nK₂ : Type ?u.141528\nM : Type u_2\nM' : Type ?u.141534\nM₁ : Type ?u.141537\nM₂ : Type ?u.141540\nM₃ : Type ?u.141543\nM₄ : Type ?u.141546\nN : Type ?u.141549\nN₂ : Type ?u.141552\nι : Type ?u.141555\nV : Type ?u.141558\nV₂ : Type ?u.141561\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf✝ : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf : M →ₗ[R] M\nm : M\nn : ℕ\nih : ↑(f ^ n) m = (↑f^[n]) m\n⊢ ↑f ((↑f^[n]) m) = (↑f^[n]) (↑f m)", "state_before": "case succ\nR : Type u_1\nR₁ : Type ?u.141510\nR₂ : Type ?u.141513\nR₃ : Type ?u.141516\nR₄ : Type ?u.141519\nS : Type ?u.141522\nK : Type ?u.141525\nK₂ : Type ?u.141528\nM : Type u_2\nM' : Type ?u.141534\nM₁ : Type ?u.141537\nM₂ : Type ?u.141540\nM₃ : Type ?u.141543\nM₄ : Type ?u.141546\nN : Type ?u.141549\nN₂ : Type ?u.141552\nι : Type ?u.141555\nV : Type ?u.141558\nV₂ : Type ?u.141561\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf✝ : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf : M →ₗ[R] M\nm : M\nn : ℕ\nih : ↑(f ^ n) m = (↑f^[n]) m\n⊢ ↑(f ^ Nat.succ n) m = (↑f^[Nat.succ n]) m", "tactic": "simp only [Function.comp_apply, Function.iterate_succ, LinearMap.mul_apply, pow_succ, ih]" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u_1\nR₁ : Type ?u.141510\nR₂ : Type ?u.141513\nR₃ : Type ?u.141516\nR₄ : Type ?u.141519\nS : Type ?u.141522\nK : Type ?u.141525\nK₂ : Type ?u.141528\nM : Type u_2\nM' : Type ?u.141534\nM₁ : Type ?u.141537\nM₂ : Type ?u.141540\nM₃ : Type ?u.141543\nM₄ : Type ?u.141546\nN : Type ?u.141549\nN₂ : Type ?u.141552\nι : Type ?u.141555\nV : Type ?u.141558\nV₂ : Type ?u.141561\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf✝ : M →ₛₗ[σ₁₂] M₂\ng : M₂ →ₛₗ[σ₂₃] M₃\nf : M →ₗ[R] M\nm : M\nn : ℕ\nih : ↑(f ^ n) m = (↑f^[n]) m\n⊢ ↑f ((↑f^[n]) m) = (↑f^[n]) (↑f m)", "tactic": "exact (Function.Commute.iterate_self _ _ m).symm" } ]
[ 331, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Data/Finite/Basic.lean
Finite.sum_right
[]
[ 94, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/MeasureTheory/Integral/ExpDecay.lean
exp_neg_integrableOn_Ioi
[ { "state_after": "a b : ℝ\nh : 0 < b\nthis : Tendsto (fun x => -exp (-b * x) / b) atTop (𝓝 (-0 / b))\n⊢ IntegrableOn (fun x => exp (-b * x)) (Ioi a)", "state_before": "a b : ℝ\nh : 0 < b\n⊢ IntegrableOn (fun x => exp (-b * x)) (Ioi a)", "tactic": "have : Tendsto (fun x => -exp (-b * x) / b) atTop (𝓝 (-0 / b)) := by\n refine' Tendsto.div_const (Tendsto.neg _) _\n exact tendsto_exp_atBot.comp (tendsto_id.neg_const_mul_atTop (Right.neg_neg_iff.2 h))" }, { "state_after": "a b : ℝ\nh : 0 < b\nthis : Tendsto (fun x => -exp (-b * x) / b) atTop (𝓝 (-0 / b))\nx : ℝ\nx✝ : x ∈ Ici a\n⊢ HasDerivAt (fun x => -exp (-b * x) / b) (exp (-b * x)) x", "state_before": "a b : ℝ\nh : 0 < b\nthis : Tendsto (fun x => -exp (-b * x) / b) atTop (𝓝 (-0 / b))\n⊢ IntegrableOn (fun x => exp (-b * x)) (Ioi a)", "tactic": "refine' integrableOn_Ioi_deriv_of_nonneg' (fun x _ => _) (fun x _ => (exp_pos _).le) this" }, { "state_after": "no goals", "state_before": "a b : ℝ\nh : 0 < b\nthis : Tendsto (fun x => -exp (-b * x) / b) atTop (𝓝 (-0 / b))\nx : ℝ\nx✝ : x ∈ Ici a\n⊢ HasDerivAt (fun x => -exp (-b * x) / b) (exp (-b * x)) x", "tactic": "simpa [h.ne'] using ((hasDerivAt_id x).const_mul b).neg.exp.neg.div_const b" }, { "state_after": "a b : ℝ\nh : 0 < b\n⊢ Tendsto (fun x => exp (-b * x)) atTop (𝓝 0)", "state_before": "a b : ℝ\nh : 0 < b\n⊢ Tendsto (fun x => -exp (-b * x) / b) atTop (𝓝 (-0 / b))", "tactic": "refine' Tendsto.div_const (Tendsto.neg _) _" }, { "state_after": "no goals", "state_before": "a b : ℝ\nh : 0 < b\n⊢ Tendsto (fun x => exp (-b * x)) atTop (𝓝 0)", "tactic": "exact tendsto_exp_atBot.comp (tendsto_id.neg_const_mul_atTop (Right.neg_neg_iff.2 h))" } ]
[ 38, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 32, 1 ]
Mathlib/Topology/Algebra/Order/Compact.lean
ContinuousOn.exists_forall_le'
[]
[ 286, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 283, 1 ]
Mathlib/CategoryTheory/Limits/Cones.lean
CategoryTheory.Limits.CoconeMorphism.ext
[ { "state_after": "case mk\nJ : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u₃\ninst✝¹ : Category C\nD : Type u₄\ninst✝ : Category D\nF : J ⥤ C\nc c' : Cocone F\ng : c ⟶ c'\nHom✝ : c.pt ⟶ c'.pt\nw✝ : ∀ (j : J), c.ι.app j ≫ Hom✝ = c'.ι.app j\nw : (mk Hom✝).Hom = g.Hom\n⊢ mk Hom✝ = g", "state_before": "J : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u₃\ninst✝¹ : Category C\nD : Type u₄\ninst✝ : Category D\nF : J ⥤ C\nc c' : Cocone F\nf g : c ⟶ c'\nw : f.Hom = g.Hom\n⊢ f = g", "tactic": "cases f" }, { "state_after": "case mk.mk\nJ : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u₃\ninst✝¹ : Category C\nD : Type u₄\ninst✝ : Category D\nF : J ⥤ C\nc c' : Cocone F\nHom✝¹ : c.pt ⟶ c'.pt\nw✝¹ : ∀ (j : J), c.ι.app j ≫ Hom✝¹ = c'.ι.app j\nHom✝ : c.pt ⟶ c'.pt\nw✝ : ∀ (j : J), c.ι.app j ≫ Hom✝ = c'.ι.app j\nw : (mk Hom✝¹).Hom = (mk Hom✝).Hom\n⊢ mk Hom✝¹ = mk Hom✝", "state_before": "case mk\nJ : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u₃\ninst✝¹ : Category C\nD : Type u₄\ninst✝ : Category D\nF : J ⥤ C\nc c' : Cocone F\ng : c ⟶ c'\nHom✝ : c.pt ⟶ c'.pt\nw✝ : ∀ (j : J), c.ι.app j ≫ Hom✝ = c'.ι.app j\nw : (mk Hom✝).Hom = g.Hom\n⊢ mk Hom✝ = g", "tactic": "cases g" }, { "state_after": "no goals", "state_before": "case mk.mk\nJ : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u₃\ninst✝¹ : Category C\nD : Type u₄\ninst✝ : Category D\nF : J ⥤ C\nc c' : Cocone F\nHom✝¹ : c.pt ⟶ c'.pt\nw✝¹ : ∀ (j : J), c.ι.app j ≫ Hom✝¹ = c'.ι.app j\nHom✝ : c.pt ⟶ c'.pt\nw✝ : ∀ (j : J), c.ι.app j ≫ Hom✝ = c'.ι.app j\nw : (mk Hom✝¹).Hom = (mk Hom✝).Hom\n⊢ mk Hom✝¹ = mk Hom✝", "tactic": "congr" } ]
[ 505, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 502, 1 ]
Mathlib/Data/W/Basic.lean
WType.elim_injective
[ { "state_after": "case intro\nα : Type u_2\nβ : α → Type u_3\nγ : Type u_1\nfγ : (a : α) × (β a → γ) → γ\nfγ_injective : Function.Injective fγ\na₁ : α\nf₁ f₂ : β a₁ → WType fun a => β a\nh✝ : elim γ fγ (mk a₁ f₁) = elim γ fγ (mk a₁ f₂)\nh : HEq (fun b => elim γ fγ (f₁ b)) fun b => elim γ fγ (f₂ b)\n⊢ mk a₁ f₁ = mk a₁ f₂", "state_before": "α : Type u_2\nβ : α → Type u_3\nγ : Type u_1\nfγ : (a : α) × (β a → γ) → γ\nfγ_injective : Function.Injective fγ\na₁ : α\nf₁ : β a₁ → WType fun a => β a\na₂ : α\nf₂ : β a₂ → WType fun a => β a\nh : elim γ fγ (mk a₁ f₁) = elim γ fγ (mk a₂ f₂)\n⊢ mk a₁ f₁ = mk a₂ f₂", "tactic": "obtain ⟨rfl, h⟩ := Sigma.mk.inj_iff.mp (fγ_injective h)" }, { "state_after": "case intro.e_f.h\nα : Type u_2\nβ : α → Type u_3\nγ : Type u_1\nfγ : (a : α) × (β a → γ) → γ\nfγ_injective : Function.Injective fγ\na₁ : α\nf₁ f₂ : β a₁ → WType fun a => β a\nh✝ : elim γ fγ (mk a₁ f₁) = elim γ fγ (mk a₁ f₂)\nh : HEq (fun b => elim γ fγ (f₁ b)) fun b => elim γ fγ (f₂ b)\nx : β a₁\n⊢ f₁ x = f₂ x", "state_before": "case intro\nα : Type u_2\nβ : α → Type u_3\nγ : Type u_1\nfγ : (a : α) × (β a → γ) → γ\nfγ_injective : Function.Injective fγ\na₁ : α\nf₁ f₂ : β a₁ → WType fun a => β a\nh✝ : elim γ fγ (mk a₁ f₁) = elim γ fγ (mk a₁ f₂)\nh : HEq (fun b => elim γ fγ (f₁ b)) fun b => elim γ fγ (f₂ b)\n⊢ mk a₁ f₁ = mk a₁ f₂", "tactic": "congr with x" }, { "state_after": "no goals", "state_before": "case intro.e_f.h\nα : Type u_2\nβ : α → Type u_3\nγ : Type u_1\nfγ : (a : α) × (β a → γ) → γ\nfγ_injective : Function.Injective fγ\na₁ : α\nf₁ f₂ : β a₁ → WType fun a => β a\nh✝ : elim γ fγ (mk a₁ f₁) = elim γ fγ (mk a₁ f₂)\nh : HEq (fun b => elim γ fγ (f₁ b)) fun b => elim γ fγ (f₂ b)\nx : β a₁\n⊢ f₁ x = f₂ x", "tactic": "exact elim_injective γ fγ fγ_injective (congr_fun (eq_of_heq h) x : _)" } ]
[ 101, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Data/PFun.lean
PFun.dom_prodMap
[]
[ 670, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 668, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
ofAdd_multiset_prod
[ { "state_after": "ι : Type ?u.999738\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝ : AddCommMonoid α\ns : Multiset α\n⊢ Multiset.sum s = Multiset.prod s", "state_before": "ι : Type ?u.999738\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝ : AddCommMonoid α\ns : Multiset α\n⊢ ↑ofAdd (Multiset.sum s) = Multiset.prod (Multiset.map (↑ofAdd) s)", "tactic": "simp [ofAdd]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.999738\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝ : AddCommMonoid α\ns : Multiset α\n⊢ Multiset.sum s = Multiset.prod s", "tactic": "rfl" } ]
[ 2350, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2349, 1 ]
Mathlib/Order/WellFoundedSet.lean
Set.partiallyWellOrderedOn_singleton
[]
[ 307, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 306, 1 ]
Mathlib/Combinatorics/Colex.lean
Colex.colex_lt_of_ssubset
[ { "state_after": "α : Type u_1\ninst✝ : LinearOrder α\nA B : Finset α\nh : A ⊂ B\n⊢ toColex ∅ < toColex (B \\ A)", "state_before": "α : Type u_1\ninst✝ : LinearOrder α\nA B : Finset α\nh : A ⊂ B\n⊢ toColex A < toColex B", "tactic": "rw [← sdiff_lt_sdiff_iff_lt, sdiff_eq_empty_iff_subset.2 h.1]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrder α\nA B : Finset α\nh : A ⊂ B\n⊢ toColex ∅ < toColex (B \\ A)", "tactic": "exact empty_toColex_lt (by simpa [Finset.Nonempty] using exists_of_ssubset h)" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrder α\nA B : Finset α\nh : A ⊂ B\n⊢ Finset.Nonempty (B \\ A)", "tactic": "simpa [Finset.Nonempty] using exists_of_ssubset h" } ]
[ 351, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 348, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ioi_inj
[]
[ 1124, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1123, 1 ]
Mathlib/RingTheory/Coprime/Lemmas.lean
IsCoprime.of_prod_right
[]
[ 80, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Order/Hom/CompleteLattice.lean
sInfHom.cancel_right
[]
[ 489, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 487, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.set_biUnion_singleton
[]
[ 2007, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2006, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.degree_quadratic_le
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.936788\n⊢ degree (↑C a * X ^ 2 + ↑C b * X + ↑C c) ≤ 2", "tactic": "simpa only [add_assoc] using\n degree_add_le_of_degree_le (degree_C_mul_X_pow_le 2 a)\n (le_trans degree_linear_le <| WithBot.coe_le_coe.mpr one_le_two)" } ]
[ 1176, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1173, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.finrank_adjoin_eq_one_iff
[]
[ 740, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 739, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_const_add_Ioc
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ (fun x => a + x) ⁻¹' Ioc b c = Ioc (b - a) (c - a)", "tactic": "simp [← Ioi_inter_Iic]" } ]
[ 74, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Order/GaloisConnection.lean
GaloisInsertion.u_injective
[]
[ 530, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 529, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.eq_pow_of_mul_eq_pow
[ { "state_after": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : k = 0\n⊢ ∃ d, a = d ^ k\n\ncase neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\n⊢ ∃ d, a = d ^ k", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\n⊢ ∃ d, a = d ^ k", "tactic": "by_cases hk0 : k = 0" }, { "state_after": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : k = 0\n⊢ a = 1 ^ k", "state_before": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : k = 0\n⊢ ∃ d, a = d ^ k", "tactic": "use 1" }, { "state_after": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = 1\nhk0 : k = 0\n⊢ a = 1", "state_before": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : k = 0\n⊢ a = 1 ^ k", "tactic": "rw [hk0, pow_zero] at h⊢" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = 1\nhk0 : k = 0\n⊢ a = 1", "tactic": "apply (mul_eq_one_iff.1 h).1" }, { "state_after": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\n⊢ ∀ (p : Associates α), Irreducible p → k ∣ count p (factors a)", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\n⊢ ∃ d, a = d ^ k", "tactic": "refine' is_pow_of_dvd_count ha _" }, { "state_after": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ k ∣ count p (factors a)", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\n⊢ ∀ (p : Associates α), Irreducible p → k ∣ count p (factors a)", "tactic": "intro p hp" }, { "state_after": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ k ∣ count p (factors (a * b))", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ k ∣ count p (factors a)", "tactic": "apply dvd_count_of_dvd_count_mul hb hp hab" }, { "state_after": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ k ∣ count p (factors (c ^ k))", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ k ∣ count p (factors (a * b))", "tactic": "rw [h]" }, { "state_after": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ c ≠ 0", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ k ∣ count p (factors (c ^ k))", "tactic": "apply dvd_count_pow _ hp" }, { "state_after": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\nh : a * b = 0 ^ k\n⊢ False", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b c : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nh : a * b = c ^ k\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\n⊢ c ≠ 0", "tactic": "rintro rfl" }, { "state_after": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\nh : a * b = 0\n⊢ False", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\nh : a * b = 0 ^ k\n⊢ False", "tactic": "rw [zero_pow' _ hk0] at h" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝¹ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\ninst✝ : Nontrivial α\na b : Associates α\nha : a ≠ 0\nhb : b ≠ 0\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhk0 : ¬k = 0\np : Associates α\nhp : Irreducible p\nh : a * b = 0\n⊢ False", "tactic": "cases mul_eq_zero.mp h <;> contradiction" } ]
[ 1885, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1870, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
Ordinal.type_uLift
[ { "state_after": "α : Type u\nβ : Type ?u.103331\nγ : Type ?u.103334\nr✝ : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nr : α → α → Prop\ninst✝ : IsWellOrder α r\n⊢ (type fun x y => r x.down y.down) = lift (type r)", "state_before": "α : Type u\nβ : Type ?u.103331\nγ : Type ?u.103334\nr✝ : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nr : α → α → Prop\ninst✝ : IsWellOrder α r\n⊢ type (ULift.down ⁻¹'o r) = lift (type r)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.103331\nγ : Type ?u.103334\nr✝ : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nr : α → α → Prop\ninst✝ : IsWellOrder α r\n⊢ (type fun x y => r x.down y.down) = lift (type r)", "tactic": "rfl" } ]
[ 659, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 656, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.Infinite.not_infinitesimal
[]
[ 486, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
BoxIntegral.Box.monotone_upper
[]
[ 236, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/Data/Bool/Basic.lean
Bool.and_xor_distrib_left
[ { "state_after": "no goals", "state_before": "a b c : Bool\n⊢ (a && xor b c) = xor (a && b) (a && c)", "tactic": "cases a <;> simp" } ]
[ 294, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.replicate_left_injective
[]
[ 949, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 947, 1 ]
Mathlib/Computability/TMToPartrec.lean
Turing.PartrecToTM2.codeSupp_fix
[ { "state_after": "no goals", "state_before": "f : Code\nk : Cont'\n⊢ codeSupp (Code.fix f) k = trStmts₁ (trNormal (Code.fix f) k) ∪ codeSupp f (Cont'.fix f k)", "tactic": "simp [codeSupp, codeSupp', contSupp, Finset.union_assoc, Finset.union_left_comm,\n Finset.union_left_idem]" } ]
[ 1859, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1856, 1 ]
Mathlib/Analysis/InnerProductSpace/GramSchmidtOrtho.lean
gramSchmidt_orthogonal
[ { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\n⊢ ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\n⊢ ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "tactic": "clear h₀ a b" }, { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\n⊢ ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "tactic": "intro a b h₀" }, { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb : ι\n⊢ ∀ (a : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "tactic": "revert a" }, { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb : ι\n⊢ ∀ (x : ι),\n (∀ (y : ι), y < x → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0) →\n ∀ (a : ι), a < x → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f x) = 0", "tactic": "intro b ih a h₀" }, { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n ∑ x in Iio b,\n inner (gramSchmidt 𝕜 f x) (f b) / ↑(‖gramSchmidt 𝕜 f x‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f x) =\n 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "tactic": "simp only [gramSchmidt_def 𝕜 f b, inner_sub_right, inner_sum, orthogonalProjection_singleton,\n inner_smul_right]" }, { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n inner (gramSchmidt 𝕜 f a) (f b) / ↑(‖gramSchmidt 𝕜 f a‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) =\n 0\n\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ ∀ (b_1 : ι),\n b_1 ∈ Iio b →\n b_1 ≠ a →\n inner (gramSchmidt 𝕜 f b_1) (f b) / ↑(‖gramSchmidt 𝕜 f b_1‖ ^ 2) *\n inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b_1) =\n 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n ∑ x in Iio b,\n inner (gramSchmidt 𝕜 f x) (f b) / ↑(‖gramSchmidt 𝕜 f x‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f x) =\n 0", "tactic": "rw [Finset.sum_eq_single_of_mem a (Finset.mem_Iio.mpr h₀)]" }, { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\n⊢ inner (gramSchmidt 𝕜 f i) (f b) / ↑(‖gramSchmidt 𝕜 f i‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ ∀ (b_1 : ι),\n b_1 ∈ Iio b →\n b_1 ≠ a →\n inner (gramSchmidt 𝕜 f b_1) (f b) / ↑(‖gramSchmidt 𝕜 f b_1‖ ^ 2) *\n inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b_1) =\n 0", "tactic": "intro i hi hia" }, { "state_after": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\n⊢ (inner (gramSchmidt 𝕜 f i) (f b) = 0 ∨ ↑(‖gramSchmidt 𝕜 f i‖ ^ 2) = 0) ∨\n inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\n⊢ inner (gramSchmidt 𝕜 f i) (f b) / ↑(‖gramSchmidt 𝕜 f i‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "tactic": "simp only [mul_eq_zero, div_eq_zero_iff, inner_self_eq_zero]" }, { "state_after": "case h\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\n⊢ (inner (gramSchmidt 𝕜 f i) (f b) = 0 ∨ ↑(‖gramSchmidt 𝕜 f i‖ ^ 2) = 0) ∨\n inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "tactic": "right" }, { "state_after": "case h.inl\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\nhia₁ : i < a\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0\n\ncase h.inr\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\nhia₂ : a < i\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "state_before": "case h\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "tactic": "cases' hia.lt_or_lt with hia₁ hia₂" }, { "state_after": "case inl\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\nthis : ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\nha : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\n\ncase inr\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\nthis : ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\nhb : b < a\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\nthis : ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "tactic": "cases' h₀.lt_or_lt with ha hb" }, { "state_after": "no goals", "state_before": "case inl\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\nthis : ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\nha : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "tactic": "exact this _ _ ha" }, { "state_after": "case inr\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\nthis : ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\nhb : b < a\n⊢ inner (gramSchmidt 𝕜 f b) (gramSchmidt 𝕜 f a) = 0", "state_before": "case inr\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\nthis : ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\nhb : b < a\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0", "tactic": "rw [inner_eq_zero_symm]" }, { "state_after": "no goals", "state_before": "case inr\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\na b : ι\nh₀ : a ≠ b\nthis : ∀ (a b : ι), a < b → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f b) = 0\nhb : b < a\n⊢ inner (gramSchmidt 𝕜 f b) (gramSchmidt 𝕜 f a) = 0", "tactic": "exact this _ _ hb" }, { "state_after": "case pos\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\nh : gramSchmidt 𝕜 f a = 0\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n inner (gramSchmidt 𝕜 f a) (f b) / ↑(‖gramSchmidt 𝕜 f a‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) =\n 0\n\ncase neg\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\nh : ¬gramSchmidt 𝕜 f a = 0\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n inner (gramSchmidt 𝕜 f a) (f b) / ↑(‖gramSchmidt 𝕜 f a‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) =\n 0", "state_before": "𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n inner (gramSchmidt 𝕜 f a) (f b) / ↑(‖gramSchmidt 𝕜 f a‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) =\n 0", "tactic": "by_cases h : gramSchmidt 𝕜 f a = 0" }, { "state_after": "no goals", "state_before": "case pos\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\nh : gramSchmidt 𝕜 f a = 0\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n inner (gramSchmidt 𝕜 f a) (f b) / ↑(‖gramSchmidt 𝕜 f a‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) =\n 0", "tactic": "simp only [h, inner_zero_left, zero_div, MulZeroClass.zero_mul, sub_zero]" }, { "state_after": "case neg.h\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\nh : ¬gramSchmidt 𝕜 f a = 0\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) ≠ 0", "state_before": "case neg\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\nh : ¬gramSchmidt 𝕜 f a = 0\n⊢ inner (gramSchmidt 𝕜 f a) (f b) -\n inner (gramSchmidt 𝕜 f a) (f b) / ↑(‖gramSchmidt 𝕜 f a‖ ^ 2) * inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) =\n 0", "tactic": "rw [IsROrC.ofReal_pow, ← inner_self_eq_norm_sq_to_K, div_mul_cancel, sub_self]" }, { "state_after": "no goals", "state_before": "case neg.h\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\nh : ¬gramSchmidt 𝕜 f a = 0\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f a) ≠ 0", "tactic": "rwa [inner_self_ne_zero]" }, { "state_after": "case h.inl\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\nhia₁ : i < a\n⊢ inner (gramSchmidt 𝕜 f i) (gramSchmidt 𝕜 f a) = 0", "state_before": "case h.inl\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\nhia₁ : i < a\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "tactic": "rw [inner_eq_zero_symm]" }, { "state_after": "no goals", "state_before": "case h.inl\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\nhia₁ : i < a\n⊢ inner (gramSchmidt 𝕜 f i) (gramSchmidt 𝕜 f a) = 0", "tactic": "exact ih a h₀ i hia₁" }, { "state_after": "no goals", "state_before": "case h.inr\n𝕜 : Type u_2\nE : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : InnerProductSpace 𝕜 E\nι : Type u_1\ninst✝² : LinearOrder ι\ninst✝¹ : LocallyFiniteOrderBot ι\ninst✝ : IsWellOrder ι fun x x_1 => x < x_1\nf : ι → E\nb✝ b : ι\nih : ∀ (y : ι), y < b → ∀ (a : ι), a < y → inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f y) = 0\na : ι\nh₀ : a < b\ni : ι\nhi : i ∈ Iio b\nhia : i ≠ a\nhia₂ : a < i\n⊢ inner (gramSchmidt 𝕜 f a) (gramSchmidt 𝕜 f i) = 0", "tactic": "exact ih i (mem_Iio.1 hi) a hia₂" } ]
[ 114, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/LinearAlgebra/Matrix/Charpoly/LinearMap.lean
Matrix.Represents.eq
[]
[ 154, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/RingTheory/AlgebraicIndependent.lean
AlgHom.algebraicIndependent_iff
[]
[ 176, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/InverseDeriv.lean
Real.hasStrictDerivAt_arcsin
[]
[ 57, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Order/Filter/Prod.lean
Filter.Eventually.diag_of_prod
[ { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.9533\nγ : Type ?u.9536\nδ : Type ?u.9539\nι : Sort ?u.9542\ns✝ : Set α\nt✝ : Set β\nf✝ : Filter α\ng : Filter β\nf : Filter α\np : α × α → Prop\nh : ∀ᶠ (i : α × α) in f ×ˢ f, p i\nt : α → Prop\nht : ∀ᶠ (x : α) in f, t x\ns : α → Prop\nhs : ∀ᶠ (y : α) in f, s y\nhst : ∀ {x : α}, t x → ∀ {y : α}, s y → p (x, y)\n⊢ ∀ᶠ (i : α) in f, p (i, i)", "state_before": "α : Type u_1\nβ : Type ?u.9533\nγ : Type ?u.9536\nδ : Type ?u.9539\nι : Sort ?u.9542\ns : Set α\nt : Set β\nf✝ : Filter α\ng : Filter β\nf : Filter α\np : α × α → Prop\nh : ∀ᶠ (i : α × α) in f ×ˢ f, p i\n⊢ ∀ᶠ (i : α) in f, p (i, i)", "tactic": "obtain ⟨t, ht, s, hs, hst⟩ := eventually_prod_iff.1 h" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.9533\nγ : Type ?u.9536\nδ : Type ?u.9539\nι : Sort ?u.9542\ns✝ : Set α\nt✝ : Set β\nf✝ : Filter α\ng : Filter β\nf : Filter α\np : α × α → Prop\nh : ∀ᶠ (i : α × α) in f ×ˢ f, p i\nt : α → Prop\nht : ∀ᶠ (x : α) in f, t x\ns : α → Prop\nhs : ∀ᶠ (y : α) in f, s y\nhst : ∀ {x : α}, t x → ∀ {y : α}, s y → p (x, y)\n⊢ ∀ᶠ (i : α) in f, p (i, i)", "tactic": "apply (ht.and hs).mono fun x hx => hst hx.1 hx.2" } ]
[ 195, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
src/lean/Init/SimpLemmas.lean
eq_true
[]
[ 15, 41 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 14, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
RingHom.mem_range
[]
[ 659, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 658, 1 ]
Mathlib/LinearAlgebra/Matrix/Polynomial.lean
Polynomial.coeff_det_X_add_C_zero
[ { "state_after": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ ∑ b : Equiv.Perm n, coeff (↑sign b • ∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑b i) i) 0 =\n ∑ σ : Equiv.Perm n, ↑sign σ • ∏ i : n, B (↑σ i) i", "state_before": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ coeff (det (X • Matrix.map A ↑C + Matrix.map B ↑C)) 0 = det B", "tactic": "rw [det_apply, finset_sum_coeff, det_apply]" }, { "state_after": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ ∀ (x : Equiv.Perm n),\n x ∈ Finset.univ →\n coeff (↑sign x • ∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑x i) i) 0 = ↑sign x • ∏ i : n, B (↑x i) i", "state_before": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ ∑ b : Equiv.Perm n, coeff (↑sign b • ∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑b i) i) 0 =\n ∑ σ : Equiv.Perm n, ↑sign σ • ∏ i : n, B (↑σ i) i", "tactic": "refine' Finset.sum_congr rfl _" }, { "state_after": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ coeff (↑sign g • ∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g i) i) 0 = ↑sign g • ∏ i : n, B (↑g i) i", "state_before": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\n⊢ ∀ (x : Equiv.Perm n),\n x ∈ Finset.univ →\n coeff (↑sign x • ∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑x i) i) 0 = ↑sign x • ∏ i : n, B (↑x i) i", "tactic": "rintro g -" }, { "state_after": "case h.e'_3.h.e'_6\nn : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ ∏ i : n, B (↑g i) i = coeff (∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g i) i) 0", "state_before": "n : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ coeff (↑sign g • ∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g i) i) 0 = ↑sign g • ∏ i : n, B (↑g i) i", "tactic": "convert coeff_smul (R := α) (sign g) _ 0" }, { "state_after": "case h.e'_3.h.e'_6\nn : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ ∏ i : n, B (↑g i) i = ∏ i : n, coeff ((X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g i) i) 0", "state_before": "case h.e'_3.h.e'_6\nn : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ ∏ i : n, B (↑g i) i = coeff (∏ i : n, (X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g i) i) 0", "tactic": "rw [coeff_zero_prod]" }, { "state_after": "case h.e'_3.h.e'_6\nn : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ ∀ (x : n), x ∈ Finset.univ → B (↑g x) x = coeff ((X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g x) x) 0", "state_before": "case h.e'_3.h.e'_6\nn : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ ∏ i : n, B (↑g i) i = ∏ i : n, coeff ((X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g i) i) 0", "tactic": "refine' Finset.prod_congr rfl _" }, { "state_after": "no goals", "state_before": "case h.e'_3.h.e'_6\nn : Type u_1\nα : Type u_2\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\ninst✝ : CommRing α\nA B : Matrix n n α\ng : Equiv.Perm n\n⊢ ∀ (x : n), x ∈ Finset.univ → B (↑g x) x = coeff ((X • Matrix.map A ↑C + Matrix.map B ↑C) (↑g x) x) 0", "tactic": "simp" } ]
[ 80, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Data/Set/Image.lean
Set.preimage_compl_eq_image_compl
[]
[ 365, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/Data/Set/Ncard.lean
Set.ncard_eq_ofBijective
[ { "state_after": "α : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ Finset.card (Finite.toFinset hs) = n", "state_before": "α : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ncard s = n", "tactic": "rw [ncard_eq_toFinset_card _ hs]" }, { "state_after": "case hf\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ∀ (a : α), a ∈ Finite.toFinset hs → ∃ i h, ?f i h = a\n\ncase hf'\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ∀ (i : ℕ) (h : i < n), ?f i h ∈ Finite.toFinset hs\n\ncase f_inj\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ∀ (i j : ℕ) (hi : i < n) (hj : j < n), ?f i hi = ?f j hj → i = j\n\ncase f\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ (i : ℕ) → i < n → α", "state_before": "α : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ Finset.card (Finite.toFinset hs) = n", "tactic": "apply Finset.card_eq_of_bijective" }, { "state_after": "no goals", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ∀ (a : α), a ∈ Finite.toFinset hs → ∃ i h, ?f i h = a\n\ncase hf'\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ∀ (i : ℕ) (h : i < n), ?f i h ∈ Finite.toFinset hs\n\ncase f_inj\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ∀ (i j : ℕ) (hi : i < n) (hj : j < n), ?f i hi = ?f j hj → i = j\n\ncase f\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ (i : ℕ) → i < n → α", "tactic": "all_goals simpa" }, { "state_after": "no goals", "state_before": "case f_inj\nα : Type u_1\nβ : Type ?u.71917\ns t : Set α\na b x y : α\nf✝ : α → β\nn : ℕ\nf : (i : ℕ) → i < n → α\nhf : ∀ (a : α), a ∈ s → ∃ i h, f i h = a\nhf' : ∀ (i : ℕ) (h : i < n), f i h ∈ s\nf_inj : ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j\nhs : autoParam (Set.Finite s) _auto✝\n⊢ ∀ (i j : ℕ) (hi : i < n) (hj : j < n), f i hi = f j hj → i = j", "tactic": "simpa" } ]
[ 360, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 1 ]
Mathlib/Topology/Algebra/FilterBasis.lean
GroupFilterBasis.conj
[]
[ 118, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral
[ { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ (∫⁻ (a : α), f a ∂μ) + ε * ↑↑μ {x | f x + ε ≤ g x} ≤ ∫⁻ (a : α), g a ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\n⊢ (∫⁻ (a : α), f a ∂μ) + ε * ↑↑μ {x | f x + ε ≤ g x} ≤ ∫⁻ (a : α), g a ∂μ", "tactic": "rcases exists_measurable_le_lintegral_eq μ f with ⟨φ, hφm, hφ_le, hφ_eq⟩" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\n⊢ φ x + indicator {x | φ x + ε ≤ g x} (fun x => ε) x ≤ g x", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ (∫⁻ (a : α), f a ∂μ) + ε * ↑↑μ {x | f x + ε ≤ g x} ≤ ∫⁻ (a : α), g a ∂μ", "tactic": "calc\n (∫⁻ x, f x ∂μ) + ε * μ { x | f x + ε ≤ g x } = (∫⁻ x, φ x ∂μ) + ε * μ { x | f x + ε ≤ g x } :=\n by rw [hφ_eq]\n _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ { x | φ x + ε ≤ g x } := by\n gcongr\n exact measure_mono fun x => (add_le_add_right (hφ_le _) _).trans\n _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ := by\n rw [lintegral_add_left hφm, lintegral_indicator₀, set_lintegral_const]\n exact measurableSet_le (hφm.nullMeasurable.measurable'.add_const _) hg.nullMeasurable\n _ ≤ ∫⁻ x, g x ∂μ := lintegral_mono_ae (hle.mono fun x hx₁ => ?_)" }, { "state_after": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\n⊢ (φ x + if x ∈ {x | φ x + ε ≤ g x} then ε else 0) ≤ g x", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\n⊢ φ x + indicator {x | φ x + ε ≤ g x} (fun x => ε) x ≤ g x", "tactic": "simp only [indicator_apply]" }, { "state_after": "case intro.intro.intro.inl\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\nhx₂ : x ∈ {x | φ x + ε ≤ g x}\n⊢ φ x + ε ≤ g x\n\ncase intro.intro.intro.inr\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\nhx₂ : ¬x ∈ {x | φ x + ε ≤ g x}\n⊢ φ x + 0 ≤ g x", "state_before": "case intro.intro.intro\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\n⊢ (φ x + if x ∈ {x | φ x + ε ≤ g x} then ε else 0) ≤ g x", "tactic": "split_ifs with hx₂" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.inl\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\nhx₂ : x ∈ {x | φ x + ε ≤ g x}\n⊢ φ x + ε ≤ g x\n\ncase intro.intro.intro.inr\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\nx : α\nhx₁ : f x ≤ g x\nhx₂ : ¬x ∈ {x | φ x + ε ≤ g x}\n⊢ φ x + 0 ≤ g x", "tactic": "exacts [hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ (∫⁻ (x : α), f x ∂μ) + ε * ↑↑μ {x | f x + ε ≤ g x} = (∫⁻ (x : α), φ x ∂μ) + ε * ↑↑μ {x | f x + ε ≤ g x}", "tactic": "rw [hφ_eq]" }, { "state_after": "case bc.bc\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ ↑↑μ {x | f x + ε ≤ g x} ≤ ↑↑μ {x | φ x + ε ≤ g x}", "state_before": "α : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ (∫⁻ (x : α), φ x ∂μ) + ε * ↑↑μ {x | f x + ε ≤ g x} ≤ (∫⁻ (x : α), φ x ∂μ) + ε * ↑↑μ {x | φ x + ε ≤ g x}", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "case bc.bc\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ ↑↑μ {x | f x + ε ≤ g x} ≤ ↑↑μ {x | φ x + ε ≤ g x}", "tactic": "exact measure_mono fun x => (add_le_add_right (hφ_le _) _).trans" }, { "state_after": "case hs\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ NullMeasurableSet {x | φ x + ε ≤ g x}", "state_before": "α : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ (∫⁻ (x : α), φ x ∂μ) + ε * ↑↑μ {x | φ x + ε ≤ g x} = ∫⁻ (x : α), φ x + indicator {x | φ x + ε ≤ g x} (fun x => ε) x ∂μ", "tactic": "rw [lintegral_add_left hφm, lintegral_indicator₀, set_lintegral_const]" }, { "state_after": "no goals", "state_before": "case hs\nα : Type u_1\nβ : Type ?u.953853\nγ : Type ?u.953856\nδ : Type ?u.953859\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhle : f ≤ᵐ[μ] g\nhg : AEMeasurable g\nε : ℝ≥0∞\nφ : α → ℝ≥0∞\nhφm : Measurable φ\nhφ_le : φ ≤ f\nhφ_eq : (∫⁻ (a : α), f a ∂μ) = ∫⁻ (a : α), φ a ∂μ\n⊢ NullMeasurableSet {x | φ x + ε ≤ g x}", "tactic": "exact measurableSet_le (hφm.nullMeasurable.measurable'.add_const _) hg.nullMeasurable" } ]
[ 822, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 807, 1 ]
Mathlib/Algebra/Order/Module.lean
smul_le_smul_iff_of_neg
[ { "state_after": "k : Type u_1\nM : Type u_2\nN : Type ?u.89573\ninst✝³ : LinearOrderedField k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhc : c < 0\n⊢ -c • b ≤ -c • a ↔ b ≤ a", "state_before": "k : Type u_1\nM : Type u_2\nN : Type ?u.89573\ninst✝³ : LinearOrderedField k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhc : c < 0\n⊢ c • a ≤ c • b ↔ b ≤ a", "tactic": "rw [← neg_neg c, neg_smul, neg_smul (-c), neg_le_neg_iff]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nM : Type u_2\nN : Type ?u.89573\ninst✝³ : LinearOrderedField k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhc : c < 0\n⊢ -c • b ≤ -c • a ↔ b ≤ a", "tactic": "exact smul_le_smul_iff_of_pos (neg_pos_of_neg hc)" } ]
[ 163, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Data/Num/Lemmas.lean
Num.cast_ofZNum
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\nn : ZNum\n⊢ ↑(ofZNum n) = ↑(toNat ↑n)", "tactic": "rw [← cast_to_nat, ofZNum_toNat]" } ]
[ 1307, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1306, 1 ]
Mathlib/Algebra/CubicDiscriminant.lean
Cubic.coeff_eq_zero
[]
[ 101, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.zero_lt_one
[]
[ 1882, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1881, 11 ]
Std/Data/Int/Lemmas.lean
Int.lt_of_add_lt_add_left
[ { "state_after": "a b c : Int\nh : a + b < a + c\nthis : -a + (a + b) < -a + (a + c)\n⊢ b < c", "state_before": "a b c : Int\nh : a + b < a + c\n⊢ b < c", "tactic": "have : -a + (a + b) < -a + (a + c) := Int.add_lt_add_left h _" }, { "state_after": "a b c : Int\nh : a + b < a + c\nthis : b < c\n⊢ b < c", "state_before": "a b c : Int\nh : a + b < a + c\nthis : -a + (a + b) < -a + (a + c)\n⊢ b < c", "tactic": "simp [Int.neg_add_cancel_left] at this" }, { "state_after": "no goals", "state_before": "a b c : Int\nh : a + b < a + c\nthis : b < c\n⊢ b < c", "tactic": "assumption" } ]
[ 771, 13 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 768, 11 ]
Mathlib/Data/Int/Cast/Lemmas.lean
toLex_intCast
[]
[ 409, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/Data/Int/ConditionallyCompleteOrder.lean
Int.csInf_of_not_bdd_below
[ { "state_after": "no goals", "state_before": "s : Set ℤ\nh : ¬BddBelow s\n⊢ ¬(Set.Nonempty s ∧ BddBelow s)", "tactic": "simp [h]" } ]
[ 96, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/CategoryTheory/Yoneda.lean
CategoryTheory.yonedaSectionsSmall_hom
[]
[ 416, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 414, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_hom₂
[ { "state_after": "no goals", "state_before": "ι : Type u_3\nα : Type u_4\nβ : Type u_1\nγ : Type u_2\ninst✝² : CommMonoid α\ns✝ t : Multiset α\na : α\nm : Multiset ι\nf✝ g : ι → α\ninst✝¹ : CommMonoid β\ninst✝ : CommMonoid γ\ns : Multiset ι\nf : α → β → γ\nhf : ∀ (a b : α) (c d : β), f (a * b) (c * d) = f a c * f b d\nhf' : f 1 1 = 1\nf₁ : ι → α\nf₂ : ι → β\nl : List ι\n⊢ prod (map (fun i => f (f₁ i) (f₂ i)) (Quotient.mk (List.isSetoid ι) l)) =\n f (prod (map f₁ (Quotient.mk (List.isSetoid ι) l))) (prod (map f₂ (Quotient.mk (List.isSetoid ι) l)))", "tactic": "simp only [l.prod_hom₂ f hf hf', quot_mk_to_coe, coe_map, coe_prod]" } ]
[ 178, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_insert
[ { "state_after": "α : Type u_1\nβ : Type ?u.1731961\nγ : Type ?u.1731964\nδ : Type ?u.1731967\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝ : MeasurableSingletonClass α\na : α\ns : Set α\nh : ¬a ∈ s\nf : α → ℝ≥0∞\n⊢ Disjoint s {a}", "state_before": "α : Type u_1\nβ : Type ?u.1731961\nγ : Type ?u.1731964\nδ : Type ?u.1731967\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝ : MeasurableSingletonClass α\na : α\ns : Set α\nh : ¬a ∈ s\nf : α → ℝ≥0∞\n⊢ (∫⁻ (x : α) in insert a s, f x ∂μ) = f a * ↑↑μ {a} + ∫⁻ (x : α) in s, f x ∂μ", "tactic": "rw [← union_singleton, lintegral_union (measurableSet_singleton a), lintegral_singleton,\n add_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1731961\nγ : Type ?u.1731964\nδ : Type ?u.1731967\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝ : MeasurableSingletonClass α\na : α\ns : Set α\nh : ¬a ∈ s\nf : α → ℝ≥0∞\n⊢ Disjoint s {a}", "tactic": "rwa [disjoint_singleton_right]" } ]
[ 1474, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1470, 1 ]
Std/Data/PairingHeap.lean
Std.PairingHeapImp.Heap.size_tail?_lt
[ { "state_after": "α : Type u_1\nle : α → α → Bool\ns' s : Heap α\n⊢ Option.map (fun x => x.snd) (deleteMin le s) = some s' → size s' < size s", "state_before": "α : Type u_1\nle : α → α → Bool\ns' s : Heap α\n⊢ tail? le s = some s' → size s' < size s", "tactic": "simp only [Heap.tail?]" }, { "state_after": "α : Type u_1\nle : α → α → Bool\ns' s : Heap α\neq : Option.map (fun x => x.snd) (deleteMin le s) = some s'\n⊢ size s' < size s", "state_before": "α : Type u_1\nle : α → α → Bool\ns' s : Heap α\n⊢ Option.map (fun x => x.snd) (deleteMin le s) = some s' → size s' < size s", "tactic": "intro eq" }, { "state_after": "no goals", "state_before": "α : Type u_1\nle : α → α → Bool\ns' s : Heap α\neq : Option.map (fun x => x.snd) (deleteMin le s) = some s'\n⊢ size s' < size s", "tactic": "match eq₂ : s.deleteMin le, eq with\n| some (a, tl), rfl => exact size_deleteMin_lt eq₂" }, { "state_after": "no goals", "state_before": "α : Type u_1\nle : α → α → Bool\ns' s : Heap α\neq : Option.map (fun x => x.snd) (deleteMin le s) = some s'\na : α\ntl : Heap α\neq₂ : deleteMin le s = some (a, tl)\n⊢ size ((fun x => x.snd) (a, tl)) < size s", "tactic": "exact size_deleteMin_lt eq₂" } ]
[ 163, 53 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 159, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.mul_equiv_zero
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\ng f : CauSeq β abv\nhf : f ≈ 0\nthis : LimZero (f - 0)\n⊢ LimZero f", "tactic": "simpa" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\ng f : CauSeq β abv\nhf : f ≈ 0\nthis✝ : LimZero (f - 0)\nthis : LimZero (g * f)\n⊢ LimZero (g * f - 0)", "tactic": "simpa" } ]
[ 531, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 528, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.exists_update_iff
[ { "state_after": "α : Sort u\nβ : α → Sort v\nα' : Sort w\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq α'\nf✝ g : (a : α) → β a\na✝ : α\nb✝ : β a✝\nf : (a : α) → β a\na : α\nb : β a\np : (a : α) → β a → Prop\n⊢ ¬(¬p a b ∧ ∀ (x : α), x ≠ a → ¬p x (f x)) ↔ p a b ∨ ∃ x x_1, p x (f x)", "state_before": "α : Sort u\nβ : α → Sort v\nα' : Sort w\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq α'\nf✝ g : (a : α) → β a\na✝ : α\nb✝ : β a✝\nf : (a : α) → β a\na : α\nb : β a\np : (a : α) → β a → Prop\n⊢ (∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ x x_1, p x (f x)", "tactic": "rw [← not_forall_not, forall_update_iff f fun a b ↦ ¬p a b]" }, { "state_after": "no goals", "state_before": "α : Sort u\nβ : α → Sort v\nα' : Sort w\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq α'\nf✝ g : (a : α) → β a\na✝ : α\nb✝ : β a✝\nf : (a : α) → β a\na : α\nb : β a\np : (a : α) → β a → Prop\n⊢ ¬(¬p a b ∧ ∀ (x : α), x ≠ a → ¬p x (f x)) ↔ p a b ∨ ∃ x x_1, p x (f x)", "tactic": "simp [-not_and, not_and_or]" } ]
[ 591, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 588, 1 ]
Mathlib/Data/Semiquot.lean
Semiquot.ext_s
[ { "state_after": "α : Type u_1\nβ : Type ?u.885\nq₁ q₂ : Semiquot α\nh : q₁.s = q₂.s\n⊢ q₁ = q₂", "state_before": "α : Type u_1\nβ : Type ?u.885\nq₁ q₂ : Semiquot α\n⊢ q₁ = q₂ ↔ q₁.s = q₂.s", "tactic": "refine' ⟨congr_arg _, fun h => _⟩" }, { "state_after": "case mk'\nα : Type u_1\nβ : Type ?u.885\nq₂ : Semiquot α\ns✝ : Set α\nv₁ : Trunc ↑s✝\nh : { s := s✝, val := v₁ }.s = q₂.s\n⊢ { s := s✝, val := v₁ } = q₂", "state_before": "α : Type u_1\nβ : Type ?u.885\nq₁ q₂ : Semiquot α\nh : q₁.s = q₂.s\n⊢ q₁ = q₂", "tactic": "cases' q₁ with _ v₁" }, { "state_after": "case mk'.mk'\nα : Type u_1\nβ : Type ?u.885\ns✝¹ : Set α\nv₁ : Trunc ↑s✝¹\ns✝ : Set α\nv₂ : Trunc ↑s✝\nh : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s\n⊢ { s := s✝¹, val := v₁ } = { s := s✝, val := v₂ }", "state_before": "case mk'\nα : Type u_1\nβ : Type ?u.885\nq₂ : Semiquot α\ns✝ : Set α\nv₁ : Trunc ↑s✝\nh : { s := s✝, val := v₁ }.s = q₂.s\n⊢ { s := s✝, val := v₁ } = q₂", "tactic": "cases' q₂ with _ v₂" }, { "state_after": "case mk'.mk'.h.e_3\nα : Type u_1\nβ : Type ?u.885\ns✝¹ : Set α\nv₁ : Trunc ↑s✝¹\ns✝ : Set α\nv₂ : Trunc ↑s✝\nh : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s\n⊢ HEq v₁ v₂", "state_before": "case mk'.mk'\nα : Type u_1\nβ : Type ?u.885\ns✝¹ : Set α\nv₁ : Trunc ↑s✝¹\ns✝ : Set α\nv₂ : Trunc ↑s✝\nh : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s\n⊢ { s := s✝¹, val := v₁ } = { s := s✝, val := v₂ }", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case mk'.mk'.h.e_3\nα : Type u_1\nβ : Type ?u.885\ns✝¹ : Set α\nv₁ : Trunc ↑s✝¹\ns✝ : Set α\nv₂ : Trunc ↑s✝\nh : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s\n⊢ HEq v₁ v₂", "tactic": "exact Subsingleton.helim (congrArg Trunc (congrArg Set.Elem h)) v₁ v₂" } ]
[ 53, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]