file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.bddAbove_iff_small
[]
[ 1384, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1382, 1 ]
Mathlib/GroupTheory/GroupAction/Defs.lean
IsScalarTower.of_smul_one_mul
[ { "state_after": "no goals", "state_before": "M✝ : Type ?u.29021\nN✝ : Type ?u.29024\nG : Type ?u.29027\nA : Type ?u.29030\nB : Type ?u.29033\nα : Type ?u.29036\nβ : Type ?u.29039\nγ : Type ?u.29042\nδ : Type ?u.29045\nM : Type u_1\nN : Type u_2\ninst✝¹ : Monoid N\ninst✝ : SMul M N\nh : ∀ (x : M) (y : N), x • 1 * y = x • y\nx : M\ny z : N\n⊢ (x • y) • z = x • y • z", "tactic": "rw [← h, smul_eq_mul, mul_assoc, h, smul_eq_mul]" } ]
[ 662, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 660, 1 ]
Mathlib/Algebra/Parity.lean
even_neg_two
[ { "state_after": "no goals", "state_before": "F : Type ?u.101304\nα : Type u_1\nβ : Type ?u.101310\nR : Type ?u.101313\ninst✝ : Ring α\na b : α\nn : ℕ\n⊢ Even (-2)", "tactic": "simp only [even_neg, even_two]" } ]
[ 420, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 420, 1 ]
Mathlib/Analysis/NormedSpace/MStructure.lean
IsLprojection.le_def
[]
[ 222, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 1 ]
Mathlib/Order/LocallyFinite.lean
Set.finite_Iic
[]
[ 701, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 700, 1 ]
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
Ring.eq_mul_inverse_iff_mul_eq
[ { "state_after": "no goals", "state_before": "α : Type ?u.8485\nM₀ : Type u_1\nG₀ : Type ?u.8491\nM₀' : Type ?u.8494\nG₀' : Type ?u.8497\nF : Type ?u.8500\nF' : Type ?u.8503\ninst✝ : MonoidWithZero M₀\nx y z : M₀\nh : IsUnit z\nh1 : x = y * inverse z\n⊢ x * z = y", "tactic": "rw [h1, inverse_mul_cancel_right _ _ h]" }, { "state_after": "no goals", "state_before": "α : Type ?u.8485\nM₀ : Type u_1\nG₀ : Type ?u.8491\nM₀' : Type ?u.8494\nG₀' : Type ?u.8497\nF : Type ?u.8500\nF' : Type ?u.8503\ninst✝ : MonoidWithZero M₀\nx y z : M₀\nh : IsUnit z\nh1 : x * z = y\n⊢ x = y * inverse z", "tactic": "rw [← h1, mul_inverse_cancel_right _ _ h]" } ]
[ 139, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.derivWithin_integral_of_tendsto_ae_left
[]
[ 968, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 963, 1 ]
Mathlib/Data/Set/Prod.lean
Set.univ_pi_update_univ
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.153466\ns✝ s₁ s₂ : Set ι\nt t₁ t₂ : (i : ι) → Set (α i)\ni✝ : ι\ninst✝ : DecidableEq ι\ni : ι\ns : Set (α i)\n⊢ pi univ (update (fun j => univ) i s) = eval i ⁻¹' s", "tactic": "rw [univ_pi_update i (fun j => (univ : Set (α j))) s fun j t => t, pi_univ, inter_univ, preimage]" } ]
[ 795, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 793, 1 ]
Mathlib/GroupTheory/Sylow.lean
Sylow.card_eq_multiplicity
[ { "state_after": "case intro\nG : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nP : Sylow p G\nn : ℕ\nheq : Fintype.card { x // x ∈ ↑P } = p ^ n\n⊢ Fintype.card { x // x ∈ ↑P } = p ^ ↑(Nat.factorization (Fintype.card G)) p", "state_before": "G : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nP : Sylow p G\n⊢ Fintype.card { x // x ∈ ↑P } = p ^ ↑(Nat.factorization (Fintype.card G)) p", "tactic": "obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup'" }, { "state_after": "case intro\nG : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nP : Sylow p G\nn : ℕ\nheq : Fintype.card { x // x ∈ ↑P } = p ^ n\n⊢ Fintype.card { x // x ∈ ↑P } ∣ p ^ ↑(Nat.factorization (Fintype.card G)) p", "state_before": "case intro\nG : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nP : Sylow p G\nn : ℕ\nheq : Fintype.card { x // x ∈ ↑P } = p ^ n\n⊢ Fintype.card { x // x ∈ ↑P } = p ^ ↑(Nat.factorization (Fintype.card G)) p", "tactic": "refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p))" }, { "state_after": "case intro\nG : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nP : Sylow p G\nn : ℕ\nheq : Fintype.card { x // x ∈ ↑P } = p ^ n\n⊢ Fintype.card { x // x ∈ ↑P } ∣ Fintype.card G", "state_before": "case intro\nG : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nP : Sylow p G\nn : ℕ\nheq : Fintype.card { x // x ∈ ↑P } = p ^ n\n⊢ Fintype.card { x // x ∈ ↑P } ∣ p ^ ↑(Nat.factorization (Fintype.card G)) p", "tactic": "rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq]" }, { "state_after": "no goals", "state_before": "case intro\nG : Type u\nα : Type v\nβ : Type w\ninst✝¹ : Group G\ninst✝ : Fintype G\np : ℕ\nhp : Fact (Nat.Prime p)\nP : Sylow p G\nn : ℕ\nheq : Fintype.card { x // x ∈ ↑P } = p ^ n\n⊢ Fintype.card { x // x ∈ ↑P } ∣ Fintype.card G", "tactic": "exact P.1.card_subgroup_dvd_card" } ]
[ 696, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 691, 1 ]
Mathlib/RingTheory/Congruence.lean
RingCon.coe_nat_cast
[]
[ 312, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 311, 1 ]
Mathlib/CategoryTheory/Equivalence.lean
CategoryTheory.Equivalence.cancel_unit_right
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\ne : C ≌ D\nX Y : C\nf f' : X ⟶ Y\n⊢ f ≫ (unit e).app Y = f' ≫ (unit e).app Y ↔ f = f'", "tactic": "simp only [cancel_mono]" } ]
[ 387, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 386, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.disjoint_supported_supported
[ { "state_after": "no goals", "state_before": "α : Type u_1\nM : Type u_2\nN : Type ?u.113774\nP : Type ?u.113777\nR : Type u_3\nS : Type ?u.113783\ninst✝⁷ : Semiring R\ninst✝⁶ : Semiring S\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\ninst✝³ : AddCommMonoid N\ninst✝² : Module R N\ninst✝¹ : AddCommMonoid P\ninst✝ : Module R P\ns t : Set α\nh : Disjoint s t\n⊢ supported M R s ⊓ supported M R t = ⊥", "tactic": "rw [← supported_inter, disjoint_iff_inter_eq_empty.1 h, supported_empty]" } ]
[ 315, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 313, 1 ]
Mathlib/GroupTheory/SpecificGroups/Cyclic.lean
IsSimpleGroup.prime_card
[ { "state_after": "α : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\n⊢ Nat.Prime (Fintype.card α)", "state_before": "α : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\n⊢ Nat.Prime (Fintype.card α)", "tactic": "have h0 : 0 < Fintype.card α := Fintype.card_pos_iff.2 (by infer_instance)" }, { "state_after": "case intro\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\n⊢ Nat.Prime (Fintype.card α)", "state_before": "α : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\n⊢ Nat.Prime (Fintype.card α)", "tactic": "obtain ⟨g, hg⟩ := IsCyclic.exists_generator (α := α)" }, { "state_after": "case intro\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\n⊢ 2 ≤ Fintype.card α ∧ ∀ (m : ℕ), m ∣ Fintype.card α → m = 1 ∨ m = Fintype.card α", "state_before": "case intro\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\n⊢ Nat.Prime (Fintype.card α)", "tactic": "rw [Nat.prime_def_lt'']" }, { "state_after": "case intro\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\n⊢ n = 1 ∨ n = Fintype.card α", "state_before": "case intro\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\n⊢ 2 ≤ Fintype.card α ∧ ∀ (m : ℕ), m ∣ Fintype.card α → m = 1 ∨ m = Fintype.card α", "tactic": "refine' ⟨Fintype.one_lt_card_iff_nontrivial.2 inferInstance, fun n hn => _⟩" }, { "state_after": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\n⊢ Subgroup.zpowers (g ^ n) = ⊤ → n = 1\n\ncase intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\n⊢ Subgroup.zpowers (g ^ n) = ⊥ → n = Fintype.card α", "state_before": "case intro\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\n⊢ n = 1 ∨ n = Fintype.card α", "tactic": "refine' (IsSimpleOrder.eq_bot_or_eq_top (Subgroup.zpowers (g ^ n))).symm.imp _ _" }, { "state_after": "no goals", "state_before": "α : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\n⊢ Nonempty α", "tactic": "infer_instance" }, { "state_after": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\n⊢ n = 1", "state_before": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\n⊢ Subgroup.zpowers (g ^ n) = ⊤ → n = 1", "tactic": "intro h" }, { "state_after": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = orderOf g / Nat.gcd (orderOf g) n\n⊢ n = 1", "state_before": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\n⊢ n = 1", "tactic": "have hgo := orderOf_pow (n := n) g" }, { "state_after": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo✝ : orderOf (g ^ n) = Fintype.card α / n\nhgo : Fintype.card α = Fintype.card α * n\n⊢ n = 1\n\ncase intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = Fintype.card α / n\n⊢ ∀ (x : α), x ∈ Subgroup.zpowers (g ^ n)", "state_before": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = orderOf g / Nat.gcd (orderOf g) n\n⊢ n = 1", "tactic": "rw [orderOf_eq_card_of_forall_mem_zpowers hg, Nat.gcd_eq_right_iff_dvd.1 hn,\n orderOf_eq_card_of_forall_mem_zpowers, eq_comm,\n Nat.div_eq_iff_eq_mul_left (Nat.pos_of_dvd_of_pos hn h0) hn] at hgo" }, { "state_after": "no goals", "state_before": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo✝ : orderOf (g ^ n) = Fintype.card α / n\nhgo : Fintype.card α = Fintype.card α * n\n⊢ n = 1", "tactic": "exact (mul_left_cancel₀ (ne_of_gt h0) ((mul_one (Fintype.card α)).trans hgo)).symm" }, { "state_after": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = Fintype.card α / n\nx : α\n⊢ x ∈ Subgroup.zpowers (g ^ n)", "state_before": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = Fintype.card α / n\n⊢ ∀ (x : α), x ∈ Subgroup.zpowers (g ^ n)", "tactic": "intro x" }, { "state_after": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = Fintype.card α / n\nx : α\n⊢ x ∈ ⊤", "state_before": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = Fintype.card α / n\nx : α\n⊢ x ∈ Subgroup.zpowers (g ^ n)", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case intro.refine'_1\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊤\nhgo : orderOf (g ^ n) = Fintype.card α / n\nx : α\n⊢ x ∈ ⊤", "tactic": "exact Subgroup.mem_top _" }, { "state_after": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ n = Fintype.card α", "state_before": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\n⊢ Subgroup.zpowers (g ^ n) = ⊥ → n = Fintype.card α", "tactic": "intro h" }, { "state_after": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ Fintype.card α ≤ n", "state_before": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ n = Fintype.card α", "tactic": "apply le_antisymm (Nat.le_of_dvd h0 hn)" }, { "state_after": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ orderOf g ≤ n", "state_before": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ Fintype.card α ≤ n", "tactic": "rw [← orderOf_eq_card_of_forall_mem_zpowers hg]" }, { "state_after": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ g ^ n = 1", "state_before": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ orderOf g ≤ n", "tactic": "apply orderOf_le_of_pow_eq_one (Nat.pos_of_dvd_of_pos hn h0)" }, { "state_after": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ g ^ n ∈ Subgroup.zpowers (g ^ n)", "state_before": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ g ^ n = 1", "tactic": "rw [← Subgroup.mem_bot, ← h]" }, { "state_after": "no goals", "state_before": "case intro.refine'_2\nα : Type u\na : α\ninst✝² : CommGroup α\ninst✝¹ : IsSimpleGroup α\ninst✝ : Fintype α\nh0 : 0 < Fintype.card α\ng : α\nhg : ∀ (x : α), x ∈ Subgroup.zpowers g\nn : ℕ\nhn : n ∣ Fintype.card α\nh : Subgroup.zpowers (g ^ n) = ⊥\n⊢ g ^ n ∈ Subgroup.zpowers (g ^ n)", "tactic": "exact Subgroup.mem_zpowers _" } ]
[ 539, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 519, 1 ]
Mathlib/NumberTheory/PellMatiyasevic.lean
Pell.isPell_one
[ { "state_after": "no goals", "state_before": "a : ℕ\na1 : 1 < a\n⊢ az a * az a - ↑(Pell.d a1) * 1 * 1 = 1", "tactic": "simp [dz_val]" } ]
[ 227, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 226, 1 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
hasDerivWithinAt_Ioi_iff_Ici
[ { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁵ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace 𝕜 F\nE : Type w\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\ninst✝ : PartialOrder 𝕜\n⊢ HasDerivWithinAt f f' (Ioi x) x ↔ HasDerivWithinAt f f' (Ici x) x", "tactic": "rw [← Ici_diff_left, hasDerivWithinAt_diff_singleton]" } ]
[ 329, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Analysis/Normed/Group/Seminorm.lean
GroupSeminorm.apply_one
[]
[ 637, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 636, 1 ]
Mathlib/Data/Rat/Lemmas.lean
Rat.exists
[ { "state_after": "case h.e'_1\np : ℚ → Prop\nx✝ : ∃ r, p r\nr : ℚ\nhr : p r\n⊢ ↑r.num / ↑↑r.den = r", "state_before": "p : ℚ → Prop\nx✝ : ∃ r, p r\nr : ℚ\nhr : p r\n⊢ p (↑r.num / ↑↑r.den)", "tactic": "convert hr" }, { "state_after": "no goals", "state_before": "case h.e'_1\np : ℚ → Prop\nx✝ : ∃ r, p r\nr : ℚ\nhr : p r\n⊢ ↑r.num / ↑↑r.den = r", "tactic": "convert num_div_den r" } ]
[ 314, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 313, 11 ]
Mathlib/Topology/Semicontinuous.lean
upperSemicontinuousOn_iInf
[]
[ 1043, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1041, 1 ]
Mathlib/MeasureTheory/Function/SpecialFunctions/Basic.lean
Complex.measurable_im
[]
[ 83, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Order/Concept.lean
Concept.sInf_snd
[]
[ 369, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 367, 1 ]
Mathlib/LinearAlgebra/SesquilinearForm.lean
LinearMap.isAlt_iff_eq_neg_flip
[ { "state_after": "case mp\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : IsAlt B\n⊢ B = -flip B\n\ncase mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\n⊢ IsAlt B", "state_before": "R : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\n⊢ IsAlt B ↔ B = -flip B", "tactic": "constructor <;> intro h" }, { "state_after": "case mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\nx : M₁\n⊢ ↑(↑B x) x = 0", "state_before": "case mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\n⊢ IsAlt B", "tactic": "intro x" }, { "state_after": "case mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\nx : M₁\nh' : ↑(↑B x) x = ↑(↑(-flip B) x) x := congr_fun₂ h x x\n⊢ ↑(↑B x) x = 0", "state_before": "case mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\nx : M₁\n⊢ ↑(↑B x) x = 0", "tactic": "let h' := congr_fun₂ h x x" }, { "state_after": "case mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\nx : M₁\nh' : ↑(↑B x) x + ↑(↑B x) x = 0\n⊢ ↑(↑B x) x = 0", "state_before": "case mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\nx : M₁\nh' : ↑(↑B x) x = ↑(↑(-flip B) x) x := congr_fun₂ h x x\n⊢ ↑(↑B x) x = 0", "tactic": "simp only [neg_apply, flip_apply, ← add_eq_zero_iff_eq_neg] at h'" }, { "state_after": "no goals", "state_before": "case mpr\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : B = -flip B\nx : M₁\nh' : ↑(↑B x) x + ↑(↑B x) x = 0\n⊢ ↑(↑B x) x = 0", "tactic": "exact add_self_eq_zero.mp h'" }, { "state_after": "case mp.h.h\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : IsAlt B\nx✝¹ x✝ : M₁\n⊢ ↑(↑B x✝¹) x✝ = ↑(↑(-flip B) x✝¹) x✝", "state_before": "case mp\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : IsAlt B\n⊢ B = -flip B", "tactic": "ext" }, { "state_after": "case mp.h.h\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : IsAlt B\nx✝¹ x✝ : M₁\n⊢ ↑(↑B x✝¹) x✝ = -↑(↑B x✝) x✝¹", "state_before": "case mp.h.h\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : IsAlt B\nx✝¹ x✝ : M₁\n⊢ ↑(↑B x✝¹) x✝ = ↑(↑(-flip B) x✝¹) x✝", "tactic": "simp_rw [neg_apply, flip_apply]" }, { "state_after": "no goals", "state_before": "case mp.h.h\nR : Type u_1\nR₁ : Type u_2\nR₂ : Type ?u.197485\nR₃ : Type ?u.197488\nM : Type ?u.197491\nM₁ : Type u_3\nM₂ : Type ?u.197497\nMₗ₁ : Type ?u.197500\nMₗ₁' : Type ?u.197503\nMₗ₂ : Type ?u.197506\nMₗ₂' : Type ?u.197509\nK : Type ?u.197512\nK₁ : Type ?u.197515\nK₂ : Type ?u.197518\nV : Type ?u.197521\nV₁ : Type ?u.197524\nV₂ : Type ?u.197527\nn : Type ?u.197530\ninst✝⁵ : CommRing R\ninst✝⁴ : CommSemiring R₁\ninst✝³ : AddCommMonoid M₁\ninst✝² : Module R₁ M₁\nI₁ I₂ I : R₁ →+* R\nB✝ : M₁ →ₛₗ[I₁] M₁ →ₛₗ[I₂] R\ninst✝¹ : NoZeroDivisors R\ninst✝ : CharZero R\nB : M₁ →ₛₗ[I] M₁ →ₛₗ[I] R\nh : IsAlt B\nx✝¹ x✝ : M₁\n⊢ ↑(↑B x✝¹) x✝ = -↑(↑B x✝) x✝¹", "tactic": "exact (h.neg _ _).symm" } ]
[ 305, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]
Mathlib/Data/Rel.lean
Rel.mem_image
[]
[ 135, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
dist_nndist
[]
[ 309, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 309, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
IsCompact.exists_infEdist_eq_edist
[ { "state_after": "ι : Sort ?u.27190\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nhs : IsCompact s\nhne : Set.Nonempty s\nx : α\nA : Continuous fun y => edist x y\n⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y", "state_before": "ι : Sort ?u.27190\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nhs : IsCompact s\nhne : Set.Nonempty s\nx : α\n⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y", "tactic": "have A : Continuous fun y => edist x y := continuous_const.edist continuous_id" }, { "state_after": "case intro.intro\nι : Sort ?u.27190\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y✝ : α\ns t : Set α\nΦ : α → β\nhs : IsCompact s\nhne : Set.Nonempty s\nx : α\nA : Continuous fun y => edist x y\ny : α\nys : y ∈ s\nhy : ∀ (z : α), z ∈ s → edist x y ≤ edist x z\n⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y", "state_before": "ι : Sort ?u.27190\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nhs : IsCompact s\nhne : Set.Nonempty s\nx : α\nA : Continuous fun y => edist x y\n⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y", "tactic": "obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, ∀ z, z ∈ s → edist x y ≤ edist x z :=\n hs.exists_forall_le hne A.continuousOn" }, { "state_after": "no goals", "state_before": "case intro.intro\nι : Sort ?u.27190\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y✝ : α\ns t : Set α\nΦ : α → β\nhs : IsCompact s\nhne : Set.Nonempty s\nx : α\nA : Continuous fun y => edist x y\ny : α\nys : y ∈ s\nhy : ∀ (z : α), z ∈ s → edist x y ≤ edist x z\n⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y", "tactic": "exact ⟨y, ys, le_antisymm (infEdist_le_edist_of_mem ys) (by rwa [le_infEdist])⟩" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.27190\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y✝ : α\ns t : Set α\nΦ : α → β\nhs : IsCompact s\nhne : Set.Nonempty s\nx : α\nA : Continuous fun y => edist x y\ny : α\nys : y ∈ s\nhy : ∀ (z : α), z ∈ s → edist x y ≤ edist x z\n⊢ edist x y ≤ infEdist x s", "tactic": "rwa [le_infEdist]" } ]
[ 237, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 232, 1 ]
Mathlib/Data/Rat/Cast.lean
Rat.commute_cast
[]
[ 78, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/CategoryTheory/Monoidal/Rigid/Basic.lean
CategoryTheory.leftAdjointMate_comp
[ { "state_after": "C : Type u₁\ninst✝³ : Category C\ninst✝² : MonoidalCategory C\nX Y Z : C\ninst✝¹ : HasLeftDual X\ninst✝ : HasLeftDual Y\nf : X ⟶ Y\ng : ᘁX ⟶ Z\n⊢ ((λ_ ᘁY).inv ≫ (η_ (ᘁX) X ⊗ 𝟙 ᘁY) ≫ ((𝟙 ᘁX ⊗ f) ⊗ 𝟙 ᘁY) ≫ (α_ (ᘁX) Y ᘁY).hom ≫ (𝟙 ᘁX ⊗ ε_ (ᘁY) Y) ≫ (ρ_ ᘁX).hom) ≫ g =\n (λ_ ᘁY).inv ≫ (η_ (ᘁX) X ⊗ 𝟙 ᘁY) ≫ ((g ⊗ f) ⊗ 𝟙 ᘁY) ≫ (α_ Z Y ᘁY).hom ≫ (𝟙 Z ⊗ ε_ (ᘁY) Y) ≫ (ρ_ Z).hom", "state_before": "C : Type u₁\ninst✝³ : Category C\ninst✝² : MonoidalCategory C\nX Y Z : C\ninst✝¹ : HasLeftDual X\ninst✝ : HasLeftDual Y\nf : X ⟶ Y\ng : ᘁX ⟶ Z\n⊢ (ᘁf) ≫ g = (λ_ ᘁY).inv ≫ (η_ (ᘁX) X ⊗ 𝟙 ᘁY) ≫ ((g ⊗ f) ⊗ 𝟙 ᘁY) ≫ (α_ Z Y ᘁY).hom ≫ (𝟙 Z ⊗ ε_ (ᘁY) Y) ≫ (ρ_ Z).hom", "tactic": "dsimp only [leftAdjointMate]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝³ : Category C\ninst✝² : MonoidalCategory C\nX Y Z : C\ninst✝¹ : HasLeftDual X\ninst✝ : HasLeftDual Y\nf : X ⟶ Y\ng : ᘁX ⟶ Z\n⊢ ((λ_ ᘁY).inv ≫ (η_ (ᘁX) X ⊗ 𝟙 ᘁY) ≫ ((𝟙 ᘁX ⊗ f) ⊗ 𝟙 ᘁY) ≫ (α_ (ᘁX) Y ᘁY).hom ≫ (𝟙 ᘁX ⊗ ε_ (ᘁY) Y) ≫ (ρ_ ᘁX).hom) ≫ g =\n (λ_ ᘁY).inv ≫ (η_ (ᘁX) X ⊗ 𝟙 ᘁY) ≫ ((g ⊗ f) ⊗ 𝟙 ᘁY) ≫ (α_ Z Y ᘁY).hom ≫ (𝟙 Z ⊗ ε_ (ᘁY) Y) ≫ (ρ_ Z).hom", "tactic": "rw [Category.assoc, Category.assoc, associator_naturality_assoc, associator_naturality_assoc, ←\n id_tensor_comp_tensor_id _ g, Category.assoc, Category.assoc, Category.assoc, Category.assoc,\n tensor_id_comp_id_tensor_assoc, ← rightUnitor_naturality, id_tensor_comp_tensor_id_assoc]" } ]
[ 216, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Data/Nat/Parity.lean
Nat.even_add_one
[ { "state_after": "no goals", "state_before": "m n : ℕ\n⊢ Even (n + 1) ↔ ¬Even n", "tactic": "simp [even_add]" } ]
[ 125, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/Analysis/Convex/Gauge.lean
gauge_empty
[ { "state_after": "case h\n𝕜 : Type ?u.33039\nE : Type u_1\nF : Type ?u.33045\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na : ℝ\nx✝ : E\n⊢ gauge ∅ x✝ = OfNat.ofNat 0 x✝", "state_before": "𝕜 : Type ?u.33039\nE : Type u_1\nF : Type ?u.33045\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na : ℝ\n⊢ gauge ∅ = 0", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type ?u.33039\nE : Type u_1\nF : Type ?u.33045\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℝ E\ns t : Set E\na : ℝ\nx✝ : E\n⊢ gauge ∅ x✝ = OfNat.ofNat 0 x✝", "tactic": "simp only [gauge_def', Real.sInf_empty, mem_empty_iff_false, Pi.zero_apply, sep_false]" } ]
[ 123, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
MeasureTheory.measure_zero_iff_ae_nmem
[]
[ 394, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
QuadraticForm.discr_smul
[ { "state_after": "no goals", "state_before": "S : Type ?u.614314\nR : Type ?u.614317\nR₁ : Type u_1\nM : Type ?u.614323\nn : Type w\ninst✝⁵ : Fintype n\ninst✝⁴ : CommRing R₁\ninst✝³ : DecidableEq n\ninst✝² : Invertible 2\nm : Type w\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\nQ : QuadraticForm R₁ (n → R₁)\na : R₁\n⊢ discr (a • Q) = a ^ Fintype.card n * discr Q", "tactic": "simp only [discr, toMatrix'_smul, Matrix.det_smul]" } ]
[ 1035, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1034, 1 ]
Mathlib/Topology/Sheaves/Stalks.lean
TopCat.Presheaf.stalk_open_algebraMap
[]
[ 649, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 647, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.localization_away_comap_range
[ { "state_after": "R : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\n⊢ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} = ↑(basicOpen r)", "state_before": "R : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\n⊢ Set.range ↑(comap (algebraMap R S)) = ↑(basicOpen r)", "tactic": "rw [localization_comap_range S (Submonoid.powers r)]" }, { "state_after": "case h\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ x ∈ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} ↔ x ∈ ↑(basicOpen r)", "state_before": "R : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\n⊢ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} = ↑(basicOpen r)", "tactic": "ext x" }, { "state_after": "case h\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ ↔ ¬r ∈ x.asIdeal", "state_before": "case h\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ x ∈ {p | Disjoint ↑(Submonoid.powers r) ↑p.asIdeal} ↔ x ∈ ↑(basicOpen r)", "tactic": "simp only [mem_zeroLocus, basicOpen_eq_zeroLocus_compl, SetLike.mem_coe, Set.mem_setOf_eq,\n Set.singleton_subset_iff, Set.mem_compl_iff, disjoint_iff_inf_le]" }, { "state_after": "case h.mp\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ → ¬r ∈ x.asIdeal\n\ncase h.mpr\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ ¬r ∈ x.asIdeal → ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥", "state_before": "case h\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ ↔ ¬r ∈ x.asIdeal", "tactic": "constructor" }, { "state_after": "case h.mp\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\nh₁ : ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥\nh₂ : r ∈ x.asIdeal\n⊢ False", "state_before": "case h.mp\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥ → ¬r ∈ x.asIdeal", "tactic": "intro h₁ h₂" }, { "state_after": "no goals", "state_before": "case h.mp\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\nh₁ : ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥\nh₂ : r ∈ x.asIdeal\n⊢ False", "tactic": "exact h₁ ⟨Submonoid.mem_powers r, h₂⟩" }, { "state_after": "case h.mpr.intro.intro\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\nh₁ : ¬r ∈ x.asIdeal\nn : ℕ\nh₃ : (fun x x_1 => x ^ x_1) r n ∈ ↑x.asIdeal\n⊢ (fun x x_1 => x ^ x_1) r n ∈ ⊥", "state_before": "case h.mpr\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\n⊢ ¬r ∈ x.asIdeal → ↑(Submonoid.powers r) ⊓ ↑x.asIdeal ≤ ⊥", "tactic": "rintro h₁ _ ⟨⟨n, rfl⟩, h₃⟩" }, { "state_after": "no goals", "state_before": "case h.mpr.intro.intro\nR : Type u\nS✝ : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing S✝\nS : Type v\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nr : R\ninst✝ : IsLocalization.Away r S\nx : PrimeSpectrum R\nh₁ : ¬r ∈ x.asIdeal\nn : ℕ\nh₃ : (fun x x_1 => x ^ x_1) r n ∈ ↑x.asIdeal\n⊢ (fun x x_1 => x ^ x_1) r n ∈ ⊥", "tactic": "exact h₁ (x.2.mem_of_pow_mem _ h₃)" } ]
[ 887, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 877, 1 ]
Mathlib/Algebra/Algebra/Basic.lean
Algebra.algebraMap_ofSubring
[]
[ 537, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 535, 1 ]
Mathlib/CategoryTheory/Subobject/Basic.lean
CategoryTheory.Subobject.ofMkLEMk_refl
[ { "state_after": "C : Type u₁\ninst✝² : Category C\nX Y Z : C\nD : Type u₂\ninst✝¹ : Category D\nB A₁ : C\nf : A₁ ⟶ B\ninst✝ : Mono f\n⊢ ofMkLEMk f f (_ : mk f ≤ mk f) ≫ f = 𝟙 A₁ ≫ f", "state_before": "C : Type u₁\ninst✝² : Category C\nX Y Z : C\nD : Type u₂\ninst✝¹ : Category D\nB A₁ : C\nf : A₁ ⟶ B\ninst✝ : Mono f\n⊢ ofMkLEMk f f (_ : mk f ≤ mk f) = 𝟙 A₁", "tactic": "apply (cancel_mono f).mp" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nX Y Z : C\nD : Type u₂\ninst✝¹ : Category D\nB A₁ : C\nf : A₁ ⟶ B\ninst✝ : Mono f\n⊢ ofMkLEMk f f (_ : mk f ≤ mk f) ≫ f = 𝟙 A₁ ≫ f", "tactic": "simp" } ]
[ 461, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 1 ]
Mathlib/Topology/LocalExtr.lean
isLocalMaxOn_const
[]
[ 195, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/SetTheory/Ordinal/Exponential.lean
Ordinal.log_le_self
[ { "state_after": "no goals", "state_before": "b x : Ordinal\nhx : x = 0\n⊢ log b x ≤ x", "tactic": "simp only [hx, log_zero_right, Ordinal.zero_le]" }, { "state_after": "no goals", "state_before": "b x : Ordinal\nhx : ¬x = 0\nhb : ¬1 < b\n⊢ log b x ≤ x", "tactic": "simp only [log_of_not_one_lt_left hb, Ordinal.zero_le]" } ]
[ 371, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 367, 1 ]
Mathlib/CategoryTheory/Generator.lean
CategoryTheory.isCoseparator_prod_of_isCoseparator_right
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\nG H : C\ninst✝ : HasBinaryProduct G H\nhH : IsCoseparator H\n⊢ {H} ⊆ {G, H}", "tactic": "simp" } ]
[ 609, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 607, 1 ]
Mathlib/CategoryTheory/Limits/ExactFunctor.lean
CategoryTheory.RightExactFunctor.ofExact_map
[]
[ 163, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearIndependent_subtype_range
[]
[ 267, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/CategoryTheory/Monoidal/Category.lean
CategoryTheory.MonoidalCategory.tensor_left_iff
[ { "state_after": "no goals", "state_before": "C✝ : Type u\n𝒞 : Category C✝\ninst✝² : MonoidalCategory C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : MonoidalCategory C\nU V W X✝ Y✝ Z X Y : C\nf g : X ⟶ Y\n⊢ 𝟙 (𝟙_ C) ⊗ f = 𝟙 (𝟙_ C) ⊗ g ↔ f = g", "tactic": "simp" } ]
[ 271, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.of_add_of
[]
[ 328, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Order/GameAdd.lean
Prod.GameAdd.induction
[]
[ 143, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.AEFinStronglyMeasurable.exists_set_sigmaFinite
[ { "state_after": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\n⊢ ∃ t, MeasurableSet t ∧ f =ᶠ[ae (Measure.restrict μ (tᶜ))] 0 ∧ SigmaFinite (Measure.restrict μ t)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\nhf : AEFinStronglyMeasurable f μ\n⊢ ∃ t, MeasurableSet t ∧ f =ᶠ[ae (Measure.restrict μ (tᶜ))] 0 ∧ SigmaFinite (Measure.restrict μ t)", "tactic": "rcases hf with ⟨g, hg, hfg⟩" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ ∃ t, MeasurableSet t ∧ f =ᶠ[ae (Measure.restrict μ (tᶜ))] 0 ∧ SigmaFinite (Measure.restrict μ t)", "state_before": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\n⊢ ∃ t, MeasurableSet t ∧ f =ᶠ[ae (Measure.restrict μ (tᶜ))] 0 ∧ SigmaFinite (Measure.restrict μ t)", "tactic": "obtain ⟨t, ht, hgt_zero, htμ⟩ := hg.exists_set_sigmaFinite" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ f =ᶠ[ae (Measure.restrict μ (tᶜ))] 0", "state_before": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ ∃ t, MeasurableSet t ∧ f =ᶠ[ae (Measure.restrict μ (tᶜ))] 0 ∧ SigmaFinite (Measure.restrict μ t)", "tactic": "refine' ⟨t, ht, _, htμ⟩" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ (fun x => g x) =ᶠ[ae (Measure.restrict μ (tᶜ))] 0", "state_before": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ f =ᶠ[ae (Measure.restrict μ (tᶜ))] 0", "tactic": "refine' EventuallyEq.trans (ae_restrict_of_ae hfg) _" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ ∀ᵐ (x : α) ∂μ, x ∈ tᶜ → g x = OfNat.ofNat 0 x", "state_before": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ (fun x => g x) =ᶠ[ae (Measure.restrict μ (tᶜ))] 0", "tactic": "rw [EventuallyEq, ae_restrict_iff' ht.compl]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.549973\nι : Type ?u.549976\ninst✝³ : Countable ι\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : TopologicalSpace β\nf g✝ : α → β\ninst✝¹ : Zero β\ninst✝ : T2Space β\ng : α → β\nhg : FinStronglyMeasurable g μ\nhfg : f =ᶠ[ae μ] g\nt : Set α\nht : MeasurableSet t\nhgt_zero : ∀ (x : α), x ∈ tᶜ → g x = 0\nhtμ : SigmaFinite (Measure.restrict μ t)\n⊢ ∀ᵐ (x : α) ∂μ, x ∈ tᶜ → g x = OfNat.ofNat 0 x", "tactic": "exact eventually_of_forall hgt_zero" } ]
[ 1932, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1925, 1 ]
Mathlib/Algebra/Star/Subalgebra.lean
StarSubalgebra.star_self_mem_adjoin_singleton
[]
[ 456, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 455, 1 ]
Mathlib/CategoryTheory/Closed/Cartesian.lean
CategoryTheory.CartesianClosed.uncurry_natural_left
[]
[ 200, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 198, 1 ]
Mathlib/Analysis/MeanInequalitiesPow.lean
NNReal.rpow_add_rpow_le
[ { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "tactic": "have h_rpow : ∀ a : ℝ≥0, a ^ q = (a ^ p) ^ (q / p) := fun a => by\n rw [← NNReal.rpow_mul, _root_.div_eq_inv_mul, ← mul_assoc, _root_.mul_inv_cancel hp_pos.ne.symm,\n one_mul]" }, { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "tactic": "have h_rpow_add_rpow_le_add :\n ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p := by\n refine' rpow_add_rpow_le_add (a ^ p) (b ^ p) _\n rwa [one_le_div hp_pos]" }, { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (p / q) ≤ a ^ p + b ^ p", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "tactic": "rw [h_rpow a, h_rpow b, NNReal.le_rpow_one_div_iff hp_pos, ← NNReal.rpow_mul, mul_comm,\n mul_one_div]" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (p / q) ≤ a ^ p + b ^ p", "tactic": "rwa [one_div_div] at h_rpow_add_rpow_le_add" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na✝ b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\na : ℝ≥0\n⊢ a ^ q = (a ^ p) ^ (q / p)", "tactic": "rw [← NNReal.rpow_mul, _root_.div_eq_inv_mul, ← mul_assoc, _root_.mul_inv_cancel hp_pos.ne.symm,\n one_mul]" }, { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\n⊢ 1 ≤ q / p", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\n⊢ ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p", "tactic": "refine' rpow_add_rpow_le_add (a ^ p) (b ^ p) _" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0), a ^ q = (a ^ p) ^ (q / p)\n⊢ 1 ≤ q / p", "tactic": "rwa [one_le_div hp_pos]" } ]
[ 218, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Mathlib/Order/SymmDiff.lean
symmDiff_eq'
[ { "state_after": "no goals", "state_before": "ι : Type ?u.86870\nα : Type u_1\nβ : Type ?u.86876\nπ : ι → Type ?u.86881\ninst✝ : BooleanAlgebra α\na b c d : α\n⊢ a ∆ b = (a ⊔ b) ⊓ (aᶜ ⊔ bᶜ)", "tactic": "rw [symmDiff_eq_sup_sdiff_inf, sdiff_eq, compl_inf]" } ]
[ 721, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 720, 1 ]
Mathlib/Analysis/Calculus/IteratedDeriv.lean
iteratedDerivWithin_univ
[ { "state_after": "case h\n𝕜 : Type u_1\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type u_2\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type ?u.3042\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nn : ℕ\nf : 𝕜 → F\ns : Set 𝕜\nx✝ x : 𝕜\n⊢ iteratedDerivWithin n f univ x = iteratedDeriv n f x", "state_before": "𝕜 : Type u_1\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type u_2\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type ?u.3042\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nn : ℕ\nf : 𝕜 → F\ns : Set 𝕜\nx : 𝕜\n⊢ iteratedDerivWithin n f univ = iteratedDeriv n f", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type u_1\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type u_2\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type ?u.3042\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nn : ℕ\nf : 𝕜 → F\ns : Set 𝕜\nx✝ x : 𝕜\n⊢ iteratedDerivWithin n f univ x = iteratedDeriv n f x", "tactic": "rw [iteratedDerivWithin, iteratedDeriv, iteratedFDerivWithin_univ]" } ]
[ 76, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.card_le_one_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.52121\ns t : Finset α\nf : α → β\nn : ℕ\n⊢ (∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a = b) ↔ ∀ {a b : α}, a ∈ s → b ∈ s → a = b", "state_before": "α : Type u_1\nβ : Type ?u.52121\ns t : Finset α\nf : α → β\nn : ℕ\n⊢ card s ≤ 1 ↔ ∀ {a b : α}, a ∈ s → b ∈ s → a = b", "tactic": "rw [card_le_one]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.52121\ns t : Finset α\nf : α → β\nn : ℕ\n⊢ (∀ (a : α), a ∈ s → ∀ (b : α), b ∈ s → a = b) ↔ ∀ {a b : α}, a ∈ s → b ∈ s → a = b", "tactic": "tauto" } ]
[ 541, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 539, 1 ]
Mathlib/Algebra/Quaternion.lean
Quaternion.normSq_le_zero
[]
[ 1284, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1283, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Real.sin_sub_pi_div_two
[ { "state_after": "no goals", "state_before": "x : ℝ\n⊢ sin (x - π / 2) = -cos x", "tactic": "simp [sub_eq_add_neg, sin_add]" } ]
[ 448, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 448, 1 ]
Mathlib/Topology/LocalExtr.lean
IsLocalExtrOn.on_subset
[]
[ 117, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Data/Complex/Exponential.lean
Real.cos_pos_of_le_one
[ { "state_after": "case h₁.h\nx : ℝ\nhx : abs' x ≤ 1\n⊢ abs' x ^ 4 ≤ 1\n\ncase h₂.h\nx : ℝ\nhx : abs' x ≤ 1\n⊢ x ^ 2 ≤ 1", "state_before": "x : ℝ\nhx : abs' x ≤ 1\n⊢ abs' x ^ 4 * (5 / 96) + x ^ 2 / 2 ≤ 1 * (5 / 96) + 1 / 2", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "case h₁.h\nx : ℝ\nhx : abs' x ≤ 1\n⊢ abs' x ^ 4 ≤ 1", "tactic": "exact pow_le_one _ (abs_nonneg _) hx" }, { "state_after": "case h₂.h\nx : ℝ\nhx : abs' x ≤ 1\n⊢ abs' x * abs' x ≤ 1", "state_before": "case h₂.h\nx : ℝ\nhx : abs' x ≤ 1\n⊢ x ^ 2 ≤ 1", "tactic": "rw [sq, ← abs_mul_self, abs_mul]" }, { "state_after": "no goals", "state_before": "case h₂.h\nx : ℝ\nhx : abs' x ≤ 1\n⊢ abs' x * abs' x ≤ 1", "tactic": "exact mul_le_one hx (abs_nonneg _) hx" }, { "state_after": "no goals", "state_before": "x : ℝ\nhx : abs' x ≤ 1\n⊢ 1 * (5 / 96) + 1 / 2 < 1", "tactic": "norm_num" } ]
[ 1878, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1867, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.eq_div_iff
[ { "state_after": "no goals", "state_before": "α : Type ?u.310360\nβ : Type ?u.310363\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nha : a ≠ 0\nha' : a ≠ ⊤\nh : b = c / a\n⊢ a * b = c", "tactic": "rw [h, ENNReal.mul_div_cancel' ha ha']" }, { "state_after": "no goals", "state_before": "α : Type ?u.310360\nβ : Type ?u.310363\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nha : a ≠ 0\nha' : a ≠ ⊤\nh : a * b = c\n⊢ b = c / a", "tactic": "rw [← h, mul_div_assoc, ENNReal.mul_div_cancel' ha ha']" } ]
[ 1704, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1702, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.coe_mk'
[]
[ 428, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 427, 1 ]
Mathlib/Data/Set/Basic.lean
Disjoint.inter_right'
[]
[ 2973, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2972, 1 ]
Mathlib/Order/Ideal.lean
Order.Ideal.nonempty
[]
[ 133, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 11 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.neg_lt_zero_iff
[ { "state_after": "no goals", "state_before": "x : PGame\n⊢ -x < 0 ↔ 0 < x", "tactic": "rw [neg_lt_iff, neg_zero]" } ]
[ 1388, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1388, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Reachable.map
[]
[ 1905, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1903, 11 ]
Mathlib/Data/Finset/Lattice.lean
Finset.inf_product_left
[]
[ 432, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 430, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.map_mk
[]
[ 178, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/MeasureTheory/Integral/SetIntegral.lean
MeasureTheory.Lp_toLp_restrict_smul
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) =ᵐ[Measure.restrict μ s] ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))", "state_before": "α : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p) = c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)", "tactic": "ext1" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s,\n ↑↑(c • f) x = (c • ↑↑f) x →\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "state_before": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) =ᵐ[Measure.restrict μ s] ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))", "tactic": "refine' (ae_restrict_of_ae (Lp.coeFn_smul c f)).mp _" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s,\n ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = ↑↑f x →\n ↑↑(c • f) x = (c • ↑↑f) x →\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "state_before": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s,\n ↑↑(c • f) x = (c • ↑↑f) x →\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "tactic": "refine' (Memℒp.coeFn_toLp ((Lp.memℒp f).restrict s)).mp _" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s,\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • f) x →\n ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = ↑↑f x →\n ↑↑(c • f) x = (c • ↑↑f) x →\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "state_before": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s,\n ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = ↑↑f x →\n ↑↑(c • f) x = (c • ↑↑f) x →\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "tactic": "refine' (Memℒp.coeFn_toLp ((Lp.memℒp (c • f)).restrict s)).mp _" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\nx : α\nhx1 : ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = (c • ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))) x\nhx2 : ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • f) x\nhx3 : ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = ↑↑f x\nhx4 : ↑↑(c • f) x = (c • ↑↑f) x\n⊢ ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "state_before": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\n⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s,\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • f) x →\n ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = ↑↑f x →\n ↑↑(c • f) x = (c • ↑↑f) x →\n ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "tactic": "refine'\n (Lp.coeFn_smul c (Memℒp.toLp f ((Lp.memℒp f).restrict s))).mono fun x hx1 hx2 hx3 hx4 => _" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.322244\nE : Type ?u.322247\nF : Type u_2\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type u_3\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\nc : 𝕜\nf : { x // x ∈ Lp F p }\ns : Set α\nx : α\nhx1 : ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = (c • ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))) x\nhx2 : ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • f) x\nhx3 : ↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x = ↑↑f x\nhx4 : ↑↑(c • f) x = (c • ↑↑f) x\n⊢ ↑↑(Memℒp.toLp ↑↑(c • f) (_ : Memℒp (↑↑(c • f)) p)) x = ↑↑(c • Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)) x", "tactic": "rw [hx2, hx1, Pi.smul_apply, hx3, hx4, Pi.smul_apply]" } ]
[ 896, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 888, 1 ]
Mathlib/Topology/MetricSpace/Gluing.lean
Metric.Sum.one_le_dist_inl_inr
[]
[ 223, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/CategoryTheory/Limits/Types.lean
CategoryTheory.Limits.Types.Limit.lift_π_apply'
[]
[ 215, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Data/List/Prime.lean
mem_list_primes_of_dvd_prod
[ { "state_after": "case intro.intro\nM : Type u_1\ninst✝¹ : CancelCommMonoidWithZero M\ninst✝ : Unique Mˣ\np : M\nhp : Prime p\nL : List M\nhL : ∀ (q : M), q ∈ L → Prime q\nhpL : p ∣ prod L\nx : M\nhx1 : x ∈ L\nhx2 : p ∣ x\n⊢ p ∈ L", "state_before": "M : Type u_1\ninst✝¹ : CancelCommMonoidWithZero M\ninst✝ : Unique Mˣ\np : M\nhp : Prime p\nL : List M\nhL : ∀ (q : M), q ∈ L → Prime q\nhpL : p ∣ prod L\n⊢ p ∈ L", "tactic": "obtain ⟨x, hx1, hx2⟩ := hp.dvd_prod_iff.mp hpL" }, { "state_after": "no goals", "state_before": "case intro.intro\nM : Type u_1\ninst✝¹ : CancelCommMonoidWithZero M\ninst✝ : Unique Mˣ\np : M\nhp : Prime p\nL : List M\nhL : ∀ (q : M), q ∈ L → Prime q\nhpL : p ∣ prod L\nx : M\nhx1 : x ∈ L\nhx2 : p ∣ x\n⊢ p ∈ L", "tactic": "rwa [(prime_dvd_prime_iff_eq hp (hL x hx1)).mp hx2]" } ]
[ 58, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one
[]
[ 339, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.one_mul
[ { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : Semiring R\nm n✝ : σ →₀ ℕ\nφ ψ : MvPowerSeries σ R\nn : σ →₀ ℕ\n⊢ ↑(coeff R n) (1 * φ) = ↑(coeff R n) φ", "tactic": "simpa using coeff_add_monomial_mul 0 n φ 1" } ]
[ 270, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 11 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.QuasiMeasurePreserving.preimage_iterate_ae_eq
[ { "state_after": "case zero\nα : Type u_1\nβ : Type ?u.411803\nγ : Type ?u.411806\nδ : Type ?u.411809\nι : Type ?u.411812\nR : Type ?u.411815\nR' : Type ?u.411818\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nμa μa' : Measure α\nμb μb' : Measure β\nμc : Measure γ\nf✝ : α → β\ns : Set α\nf : α → α\nhf : QuasiMeasurePreserving f\nhs : f ⁻¹' s =ᵐ[μ] s\n⊢ f^[Nat.zero] ⁻¹' s =ᵐ[μ] s\n\ncase succ\nα : Type u_1\nβ : Type ?u.411803\nγ : Type ?u.411806\nδ : Type ?u.411809\nι : Type ?u.411812\nR : Type ?u.411815\nR' : Type ?u.411818\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nμa μa' : Measure α\nμb μb' : Measure β\nμc : Measure γ\nf✝ : α → β\ns : Set α\nf : α → α\nhf : QuasiMeasurePreserving f\nhs : f ⁻¹' s =ᵐ[μ] s\nk : ℕ\nih : f^[k] ⁻¹' s =ᵐ[μ] s\n⊢ f^[Nat.succ k] ⁻¹' s =ᵐ[μ] s", "state_before": "α : Type u_1\nβ : Type ?u.411803\nγ : Type ?u.411806\nδ : Type ?u.411809\nι : Type ?u.411812\nR : Type ?u.411815\nR' : Type ?u.411818\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nμa μa' : Measure α\nμb μb' : Measure β\nμc : Measure γ\nf✝ : α → β\ns : Set α\nf : α → α\nhf : QuasiMeasurePreserving f\nk : ℕ\nhs : f ⁻¹' s =ᵐ[μ] s\n⊢ f^[k] ⁻¹' s =ᵐ[μ] s", "tactic": "induction' k with k ih" }, { "state_after": "case succ\nα : Type u_1\nβ : Type ?u.411803\nγ : Type ?u.411806\nδ : Type ?u.411809\nι : Type ?u.411812\nR : Type ?u.411815\nR' : Type ?u.411818\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nμa μa' : Measure α\nμb μb' : Measure β\nμc : Measure γ\nf✝ : α → β\ns : Set α\nf : α → α\nhf : QuasiMeasurePreserving f\nhs : f ⁻¹' s =ᵐ[μ] s\nk : ℕ\nih : f^[k] ⁻¹' s =ᵐ[μ] s\n⊢ f ⁻¹' (f^[k] ⁻¹' s) =ᵐ[μ] s", "state_before": "case succ\nα : Type u_1\nβ : Type ?u.411803\nγ : Type ?u.411806\nδ : Type ?u.411809\nι : Type ?u.411812\nR : Type ?u.411815\nR' : Type ?u.411818\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nμa μa' : Measure α\nμb μb' : Measure β\nμc : Measure γ\nf✝ : α → β\ns : Set α\nf : α → α\nhf : QuasiMeasurePreserving f\nhs : f ⁻¹' s =ᵐ[μ] s\nk : ℕ\nih : f^[k] ⁻¹' s =ᵐ[μ] s\n⊢ f^[Nat.succ k] ⁻¹' s =ᵐ[μ] s", "tactic": "rw [iterate_succ, preimage_comp]" }, { "state_after": "no goals", "state_before": "case succ\nα : Type u_1\nβ : Type ?u.411803\nγ : Type ?u.411806\nδ : Type ?u.411809\nι : Type ?u.411812\nR : Type ?u.411815\nR' : Type ?u.411818\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nμa μa' : Measure α\nμb μb' : Measure β\nμc : Measure γ\nf✝ : α → β\ns : Set α\nf : α → α\nhf : QuasiMeasurePreserving f\nhs : f ⁻¹' s =ᵐ[μ] s\nk : ℕ\nih : f^[k] ⁻¹' s =ᵐ[μ] s\n⊢ f ⁻¹' (f^[k] ⁻¹' s) =ᵐ[μ] s", "tactic": "exact EventuallyEq.trans (hf.preimage_ae_eq ih) hs" }, { "state_after": "no goals", "state_before": "case zero\nα : Type u_1\nβ : Type ?u.411803\nγ : Type ?u.411806\nδ : Type ?u.411809\nι : Type ?u.411812\nR : Type ?u.411815\nR' : Type ?u.411818\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\nμa μa' : Measure α\nμb μb' : Measure β\nμc : Measure γ\nf✝ : α → β\ns : Set α\nf : α → α\nhf : QuasiMeasurePreserving f\nhs : f ⁻¹' s =ᵐ[μ] s\n⊢ f^[Nat.zero] ⁻¹' s =ᵐ[μ] s", "tactic": "rfl" } ]
[ 2529, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2525, 1 ]
Mathlib/Topology/MetricSpace/IsometricSMul.lean
edist_div_right
[ { "state_after": "no goals", "state_before": "M : Type u\nG : Type v\nX : Type w\ninst✝⁶ : PseudoEMetricSpace X\ninst✝⁵ : Group G\ninst✝⁴ : MulAction G X\ninst✝³ : IsometricSMul G X\ninst✝² : DivInvMonoid M\ninst✝¹ : PseudoEMetricSpace M\ninst✝ : IsometricSMul Mᵐᵒᵖ M\na b c : M\n⊢ edist (a / c) (b / c) = edist a b", "tactic": "simp only [div_eq_mul_inv, edist_mul_right]" } ]
[ 124, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/LinearAlgebra/Dual.lean
Subspace.dualAnnihilator_inf_eq
[ { "state_after": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\n⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\n⊢ dualAnnihilator (W ⊓ W') = dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "refine' le_antisymm _ (sup_dualAnnihilator_le_inf W W')" }, { "state_after": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\n⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\n⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "let F : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := (Submodule.mkQ W).prod (Submodule.mkQ W')" }, { "state_after": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\n⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\n⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "have : LinearMap.ker F = W ⊓ W' := by simp only [LinearMap.ker_prod, ker_mkQ]" }, { "state_after": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\n⊢ LinearMap.range (LinearMap.dualMap F) ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\n⊢ dualAnnihilator (W ⊓ W') ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "rw [← this, ← LinearMap.range_dualMap_eq_dualAnnihilator_ker]" }, { "state_after": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nφ : Dual K V₁\n⊢ φ ∈ LinearMap.range (LinearMap.dualMap F) → φ ∈ dualAnnihilator W ⊔ dualAnnihilator W'", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\n⊢ LinearMap.range (LinearMap.dualMap F) ≤ dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "intro φ" }, { "state_after": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nφ : Dual K V₁\n⊢ (∃ y, ↑(LinearMap.dualMap F) y = φ) → φ ∈ dualAnnihilator W ⊔ dualAnnihilator W'", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nφ : Dual K V₁\n⊢ φ ∈ LinearMap.range (LinearMap.dualMap F) → φ ∈ dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "rw [LinearMap.mem_range]" }, { "state_after": "case intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nx : Dual K ((V₁ ⧸ W) × V₁ ⧸ W')\n⊢ ↑(LinearMap.dualMap F) x ∈ dualAnnihilator W ⊔ dualAnnihilator W'", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nφ : Dual K V₁\n⊢ (∃ y, ↑(LinearMap.dualMap F) y = φ) → φ ∈ dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "rintro ⟨x, rfl⟩" }, { "state_after": "case intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nx : Dual K ((V₁ ⧸ W) × V₁ ⧸ W')\n⊢ ∃ y, y ∈ dualAnnihilator W ∧ ∃ z, z ∈ dualAnnihilator W' ∧ y + z = ↑(LinearMap.dualMap F) x", "state_before": "case intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nx : Dual K ((V₁ ⧸ W) × V₁ ⧸ W')\n⊢ ↑(LinearMap.dualMap F) x ∈ dualAnnihilator W ⊔ dualAnnihilator W'", "tactic": "rw [Submodule.mem_sup]" }, { "state_after": "case intro.intro.mk\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\na : Dual K (V₁ ⧸ W)\nb : Dual K (V₁ ⧸ W')\n⊢ ∃ y,\n y ∈ dualAnnihilator W ∧\n ∃ z,\n z ∈ dualAnnihilator W' ∧ y + z = ↑(LinearMap.dualMap F) (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W')) (a, b))", "state_before": "case intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nx : Dual K ((V₁ ⧸ W) × V₁ ⧸ W')\n⊢ ∃ y, y ∈ dualAnnihilator W ∧ ∃ z, z ∈ dualAnnihilator W' ∧ y + z = ↑(LinearMap.dualMap F) x", "tactic": "obtain ⟨⟨a, b⟩, rfl⟩ := (dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W')).surjective x" }, { "state_after": "case intro.intro.mk.intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nb : Dual K (V₁ ⧸ W')\na' : { x // x ∈ dualAnnihilator W }\n⊢ ∃ y,\n y ∈ dualAnnihilator W ∧\n ∃ z,\n z ∈ dualAnnihilator W' ∧\n y + z =\n ↑(LinearMap.dualMap F)\n (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))\n (↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a', b))", "state_before": "case intro.intro.mk\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\na : Dual K (V₁ ⧸ W)\nb : Dual K (V₁ ⧸ W')\n⊢ ∃ y,\n y ∈ dualAnnihilator W ∧\n ∃ z,\n z ∈ dualAnnihilator W' ∧ y + z = ↑(LinearMap.dualMap F) (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W')) (a, b))", "tactic": "obtain ⟨a', rfl⟩ := (dualQuotEquivDualAnnihilator W).symm.surjective a" }, { "state_after": "case intro.intro.mk.intro.intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\na' : { x // x ∈ dualAnnihilator W }\nb' : { x // x ∈ dualAnnihilator W' }\n⊢ ∃ y,\n y ∈ dualAnnihilator W ∧\n ∃ z,\n z ∈ dualAnnihilator W' ∧\n y + z =\n ↑(LinearMap.dualMap F)\n (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))\n (↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a',\n ↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W')) b'))", "state_before": "case intro.intro.mk.intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\nb : Dual K (V₁ ⧸ W')\na' : { x // x ∈ dualAnnihilator W }\n⊢ ∃ y,\n y ∈ dualAnnihilator W ∧\n ∃ z,\n z ∈ dualAnnihilator W' ∧\n y + z =\n ↑(LinearMap.dualMap F)\n (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))\n (↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a', b))", "tactic": "obtain ⟨b', rfl⟩ := (dualQuotEquivDualAnnihilator W').symm.surjective b" }, { "state_after": "case intro.intro.mk.intro.intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\na' : { x // x ∈ dualAnnihilator W }\nb' : { x // x ∈ dualAnnihilator W' }\n⊢ ↑a' + ↑b' =\n ↑(LinearMap.dualMap F)\n (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))\n (↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a',\n ↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W')) b'))", "state_before": "case intro.intro.mk.intro.intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\na' : { x // x ∈ dualAnnihilator W }\nb' : { x // x ∈ dualAnnihilator W' }\n⊢ ∃ y,\n y ∈ dualAnnihilator W ∧\n ∃ z,\n z ∈ dualAnnihilator W' ∧\n y + z =\n ↑(LinearMap.dualMap F)\n (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))\n (↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a',\n ↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W')) b'))", "tactic": "use a', a'.property, b', b'.property" }, { "state_after": "no goals", "state_before": "case intro.intro.mk.intro.intro\nK : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\nthis : LinearMap.ker F = W ⊓ W'\na' : { x // x ∈ dualAnnihilator W }\nb' : { x // x ∈ dualAnnihilator W' }\n⊢ ↑a' + ↑b' =\n ↑(LinearMap.dualMap F)\n (↑(dualProdDualEquivDual K (V₁ ⧸ W) (V₁ ⧸ W'))\n (↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W)) a',\n ↑(LinearEquiv.symm (dualQuotEquivDualAnnihilator W')) b'))", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "K : Type u\ninst✝⁴ : Field K\nV₁ : Type v'\nV₂ : Type v''\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V₂\ninst✝ : Module K V₂\nW W' : Subspace K V₁\nF : V₁ →ₗ[K] (V₁ ⧸ W) × V₁ ⧸ W' := LinearMap.prod (mkQ W) (mkQ W')\n⊢ LinearMap.ker F = W ⊓ W'", "tactic": "simp only [LinearMap.ker_prod, ker_mkQ]" } ]
[ 1430, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1415, 1 ]
Mathlib/Order/Bounds/OrderIso.lean
OrderIso.isLUB_image'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\nf : α ≃o β\ns : Set α\nx : α\n⊢ IsLUB (↑f '' s) (↑f x) ↔ IsLUB s x", "tactic": "rw [isLUB_image, f.symm_apply_apply]" } ]
[ 42, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 41, 1 ]
src/lean/Init/Data/Nat/Log2.lean
Nat.log2_le_self
[ { "state_after": "n : Nat\n⊢ (if n ≥ 2 then log2 (n / 2) + 1 else 0) ≤ n", "state_before": "n : Nat\n⊢ log2 n ≤ n", "tactic": "unfold Nat.log2" }, { "state_after": "case inl\nn : Nat\nh✝ : n ≥ 2\n⊢ log2 (n / 2) + 1 ≤ n\n\ncase inr\nn : Nat\nh✝ : ¬n ≥ 2\n⊢ 0 ≤ n", "state_before": "n : Nat\n⊢ (if n ≥ 2 then log2 (n / 2) + 1 else 0) ≤ n", "tactic": "split" }, { "state_after": "no goals", "state_before": "case inl\nn : Nat\nh✝ : n ≥ 2\n⊢ log2 (n / 2) + 1 ≤ n", "tactic": "next h =>\nhave := log2_le_self (n / 2)\nexact Nat.lt_of_le_of_lt this (Nat.div_lt_self (Nat.le_of_lt h) (by decide))" }, { "state_after": "n : Nat\nh : n ≥ 2\nthis : log2 (n / 2) ≤ n / 2\n⊢ log2 (n / 2) + 1 ≤ n", "state_before": "n : Nat\nh : n ≥ 2\n⊢ log2 (n / 2) + 1 ≤ n", "tactic": "have := log2_le_self (n / 2)" }, { "state_after": "no goals", "state_before": "n : Nat\nh : n ≥ 2\nthis : log2 (n / 2) ≤ n / 2\n⊢ log2 (n / 2) + 1 ≤ n", "tactic": "exact Nat.lt_of_le_of_lt this (Nat.div_lt_self (Nat.le_of_lt h) (by decide))" }, { "state_after": "no goals", "state_before": "n : Nat\nh : n ≥ 2\nthis : log2 (n / 2) ≤ n / 2\n⊢ 1 < 2", "tactic": "decide" }, { "state_after": "no goals", "state_before": "case inr\nn : Nat\nh✝ : ¬n ≥ 2\n⊢ 0 ≤ n", "tactic": "apply Nat.zero_le" }, { "state_after": "no goals", "state_before": "n : Nat\na✝ : ∀ (y : Nat), (invImage (fun a => sizeOf a) instWellFoundedRelation).1 y n → log2 y ≤ y\nh✝ : n ≥ 2\n⊢ (invImage (fun a => sizeOf a) instWellFoundedRelation).1 (n / 2) n", "tactic": "exact Nat.log2_terminates _ ‹_›" } ]
[ 37, 46 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 31, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.coeff_erase
[ { "state_after": "case ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn i : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff (erase n { toFinsupp := toFinsupp✝ }) i = if i = n then 0 else coeff { toFinsupp := toFinsupp✝ } i", "state_before": "R : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np✝ q p : R[X]\nn i : ℕ\n⊢ coeff (erase n p) i = if i = n then 0 else coeff p i", "tactic": "rcases p with ⟨⟩" }, { "state_after": "case ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn i : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ ↑(Finsupp.erase n toFinsupp✝) i = if i = n then 0 else ↑toFinsupp✝ i", "state_before": "case ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn i : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ coeff (erase n { toFinsupp := toFinsupp✝ }) i = if i = n then 0 else coeff { toFinsupp := toFinsupp✝ } i", "tactic": "simp only [erase_def, coeff]" }, { "state_after": "no goals", "state_before": "case ofFinsupp\nR : Type u\na b : R\nm n✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\nn i : ℕ\ntoFinsupp✝ : AddMonoidAlgebra R ℕ\n⊢ ↑(Finsupp.erase n toFinsupp✝) i = if i = n then 0 else ↑toFinsupp✝ i", "tactic": "exact ite_congr rfl (fun _ => rfl) (fun _ => rfl)" } ]
[ 1052, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1047, 1 ]
Mathlib/SetTheory/Cardinal/Continuum.lean
Cardinal.continuum_add_aleph0
[]
[ 132, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/NumberTheory/PellMatiyasevic.lean
Pell.yn_ge_n
[]
[ 429, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 426, 1 ]
Mathlib/SetTheory/Ordinal/Principal.lean
Ordinal.nfp_le_of_principal
[]
[ 89, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
comp_comp_symm_mem_uniformity_sets
[ { "state_after": "case intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\n⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\n⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s", "tactic": "rcases comp_symm_mem_uniformity_sets hs with ⟨w, w_in, _, w_sub⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\nt : Set (α × α)\nt_in : t ∈ 𝓤 α\nt_symm : SymmetricRel t\nt_sub : t ○ t ⊆ w\n⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s", "state_before": "case intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\n⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s", "tactic": "rcases comp_symm_mem_uniformity_sets w_in with ⟨t, t_in, t_symm, t_sub⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\nt : Set (α × α)\nt_in : t ∈ 𝓤 α\nt_symm : SymmetricRel t\nt_sub : t ○ t ⊆ w\n⊢ t ○ t ○ t ⊆ s", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\nt : Set (α × α)\nt_in : t ∈ 𝓤 α\nt_symm : SymmetricRel t\nt_sub : t ○ t ⊆ w\n⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s", "tactic": "use t, t_in, t_symm" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\nt : Set (α × α)\nt_in : t ∈ 𝓤 α\nt_symm : SymmetricRel t\nt_sub : t ○ t ⊆ w\nthis : t ⊆ t ○ t\n⊢ t ○ t ○ t ⊆ s", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\nt : Set (α × α)\nt_in : t ∈ 𝓤 α\nt_symm : SymmetricRel t\nt_sub : t ○ t ⊆ w\n⊢ t ○ t ○ t ⊆ s", "tactic": "have : t ⊆ t ○ t := subset_comp_self_of_mem_uniformity t_in" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.53210\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nw : Set (α × α)\nw_in : w ∈ 𝓤 α\nleft✝ : SymmetricRel w\nw_sub : w ○ w ⊆ s\nt : Set (α × α)\nt_in : t ∈ 𝓤 α\nt_symm : SymmetricRel t\nt_sub : t ○ t ⊆ w\nthis : t ⊆ t ○ t\n⊢ t ○ t ○ t ⊆ s", "tactic": "calc\n t ○ t ○ t ⊆ w ○ t := compRel_mono t_sub Subset.rfl\n _ ⊆ w ○ (t ○ t) := compRel_mono Subset.rfl this\n _ ⊆ w ○ w := compRel_mono Subset.rfl t_sub\n _ ⊆ s := w_sub" } ]
[ 604, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 593, 1 ]
Mathlib/GroupTheory/GroupAction/Group.lean
MulAction.injective₀
[]
[ 229, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 11 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.valid'_nil
[]
[ 1060, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1059, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.Eventually.exists
[]
[ 1300, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1298, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.degree_sum_le
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type u_1\ns : Finset ι\nf : ι → R[X]\n⊢ degree (∑ i in ∅, f i) ≤ sup ∅ fun b => degree (f b)", "tactic": "simp only [sum_empty, sup_empty, degree_zero, le_refl]" }, { "state_after": "R : Type u\nS : Type v\na✝ b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type u_1\ns✝ : Finset ι\nf : ι → R[X]\na : ι\ns : Finset ι\nhas : ¬a ∈ s\nih : degree (∑ i in s, f i) ≤ sup s fun b => degree (f b)\n⊢ degree (f a + ∑ x in s, f x) ≤ max (degree (f a)) (degree (∑ i in s, f i))", "state_before": "R : Type u\nS : Type v\na✝ b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type u_1\ns✝ : Finset ι\nf : ι → R[X]\na : ι\ns : Finset ι\nhas : ¬a ∈ s\nih : degree (∑ i in s, f i) ≤ sup s fun b => degree (f b)\n⊢ degree (∑ i in insert a s, f i) ≤ max (degree (f a)) (degree (∑ i in s, f i))", "tactic": "rw [sum_insert has]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na✝ b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type u_1\ns✝ : Finset ι\nf : ι → R[X]\na : ι\ns : Finset ι\nhas : ¬a ∈ s\nih : degree (∑ i in s, f i) ≤ sup s fun b => degree (f b)\n⊢ degree (f a + ∑ x in s, f x) ≤ max (degree (f a)) (degree (∑ i in s, f i))", "tactic": "exact degree_add_le _ _" }, { "state_after": "R : Type u\nS : Type v\na✝ b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type u_1\ns✝ : Finset ι\nf : ι → R[X]\na : ι\ns : Finset ι\nhas : ¬a ∈ s\nih : degree (∑ i in s, f i) ≤ sup s fun b => degree (f b)\n⊢ max (degree (f a)) (degree (∑ i in s, f i)) ≤ max (degree (f a)) (sup s fun b => degree (f b))", "state_before": "R : Type u\nS : Type v\na✝ b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type u_1\ns✝ : Finset ι\nf : ι → R[X]\na : ι\ns : Finset ι\nhas : ¬a ∈ s\nih : degree (∑ i in s, f i) ≤ sup s fun b => degree (f b)\n⊢ max (degree (f a)) (degree (∑ i in s, f i)) ≤ sup (insert a s) fun b => degree (f b)", "tactic": "rw [sup_insert, sup_eq_max]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na✝ b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type u_1\ns✝ : Finset ι\nf : ι → R[X]\na : ι\ns : Finset ι\nhas : ¬a ∈ s\nih : degree (∑ i in s, f i) ≤ sup s fun b => degree (f b)\n⊢ max (degree (f a)) (degree (∑ i in s, f i)) ≤ max (degree (f a)) (sup s fun b => degree (f b))", "tactic": "exact max_le_max le_rfl ih" } ]
[ 762, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 755, 1 ]
Mathlib/Data/Nat/Bits.lean
Nat.bodd_bit0
[]
[ 47, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/Order/Hom/Lattice.lean
BoundedLatticeHom.coe_comp_sup_hom
[]
[ 1322, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1320, 1 ]
Mathlib/GroupTheory/Index.lean
Subgroup.relindex_inf_ne_zero
[ { "state_after": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\nhK : relindex K L ≠ 0\nhH : relindex H (K ⊓ L) ≠ 0\n⊢ relindex (H ⊓ K) L ≠ 0", "state_before": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\nhH : relindex H L ≠ 0\nhK : relindex K L ≠ 0\n⊢ relindex (H ⊓ K) L ≠ 0", "tactic": "replace hH : H.relindex (K ⊓ L) ≠ 0 := mt (relindex_eq_zero_of_le_right inf_le_right) hH" }, { "state_after": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\nhK : relindex (K ⊓ L) L ≠ 0\nhH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0\n⊢ relindex (H ⊓ K ⊓ L) L ≠ 0", "state_before": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\nhK : relindex K L ≠ 0\nhH : relindex H (K ⊓ L) ≠ 0\n⊢ relindex (H ⊓ K) L ≠ 0", "tactic": "rw [← inf_relindex_right] at hH hK⊢" }, { "state_after": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\nhK : relindex (K ⊓ L) L ≠ 0\nhH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0\n⊢ relindex (H ⊓ (K ⊓ L)) L ≠ 0", "state_before": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\nhK : relindex (K ⊓ L) L ≠ 0\nhH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0\n⊢ relindex (H ⊓ K ⊓ L) L ≠ 0", "tactic": "rw [inf_assoc]" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝ : Group G\nH K L : Subgroup G\nhK : relindex (K ⊓ L) L ≠ 0\nhH : relindex (H ⊓ (K ⊓ L)) (K ⊓ L) ≠ 0\n⊢ relindex (H ⊓ (K ⊓ L)) L ≠ 0", "tactic": "exact relindex_ne_zero_trans hH hK" } ]
[ 425, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 420, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.eqOnSource_refl
[]
[ 829, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 828, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
RingHom.map_multiset_sum
[]
[ 259, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 11 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.filter_single_neg
[ { "state_after": "no goals", "state_before": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝¹ : (i : ι) → Zero (β i)\ns : Finset ι\nx✝ : (i : ↑↑s) → β ↑i\ni✝ : ι\np : ι → Prop\ninst✝ : DecidablePred p\ni : ι\nx : β i\nh : ¬p i\n⊢ filter p (single i x) = 0", "tactic": "rw [filter_single, if_neg h]" } ]
[ 716, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 715, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Prod.lean
DifferentiableOn.snd
[]
[ 312, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 310, 11 ]
Mathlib/Algebra/Support.lean
Function.support_one
[]
[ 310, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 309, 1 ]
Mathlib/Algebra/MonoidAlgebra/Basic.lean
MonoidAlgebra.single_mul_single
[ { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.365398\ninst✝¹ : Semiring k\ninst✝ : Mul G\na₁ a₂ : G\nb₁ b₂ : k\n⊢ (sum (single a₂ b₂) fun a₂ b₂ => single (a₁ * a₂) (0 * b₂)) = 0", "tactic": "simp only [zero_mul, single_zero, sum_zero]" }, { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.365398\ninst✝¹ : Semiring k\ninst✝ : Mul G\na₁ a₂ : G\nb₁ b₂ : k\n⊢ single (a₁ * a₂) (b₁ * 0) = 0", "tactic": "rw [mul_zero, single_zero]" } ]
[ 461, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 458, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Real.tendsto_cos_neg_pi_div_two
[ { "state_after": "case h1\n\n⊢ Tendsto cos (𝓝[Ioi (-(π / 2))] (-(π / 2))) (𝓝 0)\n\ncase h2\n\n⊢ ∀ᶠ (x : ℝ) in 𝓝[Ioi (-(π / 2))] (-(π / 2)), cos x ∈ Ioi 0", "state_before": "⊢ Tendsto cos (𝓝[Ioi (-(π / 2))] (-(π / 2))) (𝓝[Ioi 0] 0)", "tactic": "apply tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within" }, { "state_after": "case h.e'_5.h.e'_3\n\n⊢ 0 = cos (-(π / 2))", "state_before": "case h1\n\n⊢ Tendsto cos (𝓝[Ioi (-(π / 2))] (-(π / 2))) (𝓝 0)", "tactic": "convert continuous_cos.continuousWithinAt.tendsto" }, { "state_after": "no goals", "state_before": "case h.e'_5.h.e'_3\n\n⊢ 0 = cos (-(π / 2))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case h2\n\n⊢ ∀ᶠ (x : ℝ) in 𝓝[Ioi (-(π / 2))] (-(π / 2)), cos x ∈ Ioi 0", "tactic": "filter_upwards [Ioo_mem_nhdsWithin_Ioi\n (left_mem_Ico.mpr (neg_lt_self pi_div_two_pos))]with x hx using cos_pos_of_mem_Ioo hx" } ]
[ 1087, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1082, 1 ]
Mathlib/Analysis/Seminorm.lean
Seminorm.smul_apply
[]
[ 182, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 1 ]
Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean
Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree
[ { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) +\n ∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i =\n 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx : ↑(aeval x) f = 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "tactic": "rw [aeval_def, Polynomial.eval₂_eq_eval_map, eval_eq_sum_range, range_add_one,\n sum_insert not_mem_range_self, sum_range, (hmo.map (algebraMap R S)).coeff_natDegree,\n one_mul] at hx" }, { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) +\n ∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i =\n 0\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "tactic": "replace hx := eq_neg_of_add_eq_zero_left hx" }, { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\nthis : ∀ (n : ℕ), n < natDegree f → p ∣ coeff f n\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "tactic": "have : ∀ n < f.natDegree, p ∣ f.coeff n := by\n intro n hn\n refine' mem_span_singleton.1 (by simpa using hf.mem hn)" }, { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\nφ : ℕ → R\nhφ : ∀ (n : ℕ), n < natDegree f → coeff f n = p * φ n\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\nthis : ∀ (n : ℕ), n < natDegree f → p ∣ coeff f n\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "tactic": "choose! φ hφ using this" }, { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nφ : ℕ → R\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)),\n ↑(algebraMap R S) p * (↑(algebraMap R S) (φ ↑i) * x ^ ↑i)\nhφ : ∀ (n : ℕ), n < natDegree f → coeff f n = p * φ n\n⊢ ∃ y,\n y ∈ adjoin R {x} ∧\n ↑(algebraMap R S) p * y =\n ↑(algebraMap R S) p *\n (-1 * ∑ x_1 : Fin (natDegree (Polynomial.map (algebraMap R S) f)), ↑(algebraMap R S) (φ ↑x_1) * x ^ ↑x_1)", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nφ : ℕ → R\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)),\n ↑(algebraMap R S) p * (↑(algebraMap R S) (φ ↑i) * x ^ ↑i)\nhφ : ∀ (n : ℕ), n < natDegree f → coeff f n = p * φ n\n⊢ ∃ y, y ∈ adjoin R {x} ∧ ↑(algebraMap R S) p * y = x ^ natDegree (Polynomial.map (algebraMap R S) f)", "tactic": "rw [hx, ← mul_sum, neg_eq_neg_one_mul, ← mul_assoc (-1 : S), mul_comm (-1 : S), mul_assoc]" }, { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nφ : ℕ → R\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)),\n ↑(algebraMap R S) p * (↑(algebraMap R S) (φ ↑i) * x ^ ↑i)\nhφ : ∀ (n : ℕ), n < natDegree f → coeff f n = p * φ n\n⊢ -1 * ∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), ↑(algebraMap R S) (φ ↑i) * x ^ ↑i ∈ adjoin R {x}", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nφ : ℕ → R\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)),\n ↑(algebraMap R S) p * (↑(algebraMap R S) (φ ↑i) * x ^ ↑i)\nhφ : ∀ (n : ℕ), n < natDegree f → coeff f n = p * φ n\n⊢ ∃ y,\n y ∈ adjoin R {x} ∧\n ↑(algebraMap R S) p * y =\n ↑(algebraMap R S) p *\n (-1 * ∑ x_1 : Fin (natDegree (Polynomial.map (algebraMap R S) f)), ↑(algebraMap R S) (φ ↑x_1) * x ^ ↑x_1)", "tactic": "refine'\n ⟨-1 * ∑ i : Fin (f.map (algebraMap R S)).natDegree, (algebraMap R S) (φ i.1) * x ^ i.1, _, rfl⟩" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nφ : ℕ → R\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)),\n ↑(algebraMap R S) p * (↑(algebraMap R S) (φ ↑i) * x ^ ↑i)\nhφ : ∀ (n : ℕ), n < natDegree f → coeff f n = p * φ n\n⊢ -1 * ∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), ↑(algebraMap R S) (φ ↑i) * x ^ ↑i ∈ adjoin R {x}", "tactic": "exact\n Subalgebra.mul_mem _ (Subalgebra.neg_mem _ (Subalgebra.one_mem _))\n (Subalgebra.sum_mem _ fun i _ =>\n Subalgebra.mul_mem _ (Subalgebra.algebraMap_mem _ _)\n (Subalgebra.pow_mem _ (subset_adjoin (Set.mem_singleton x)) _))" }, { "state_after": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\nn : ℕ\nhn : n < natDegree f\n⊢ p ∣ coeff f n", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\n⊢ ∀ (n : ℕ), n < natDegree f → p ∣ coeff f n", "tactic": "intro n hn" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\nn : ℕ\nhn : n < natDegree f\n⊢ p ∣ coeff f n", "tactic": "refine' mem_span_singleton.1 (by simpa using hf.mem hn)" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommRing R\n𝓟 : Ideal R\nf : R[X]\nhf✝ : IsWeaklyEisensteinAt f 𝓟\nS : Type v\ninst✝¹ : CommRing S\ninst✝ : Algebra R S\np : R\nx : S\nhmo : Monic f\nhf : IsWeaklyEisensteinAt f (Submodule.span R {p})\nhx :\n x ^ natDegree (Polynomial.map (algebraMap R S) f) =\n -∑ i : Fin (natDegree (Polynomial.map (algebraMap R S) f)), coeff (Polynomial.map (algebraMap R S) f) ↑i * x ^ ↑i\nn : ℕ\nhn : n < natDegree f\n⊢ coeff f n ∈ span {p}", "tactic": "simpa using hf.mem hn" } ]
[ 112, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.nat_cast_eq_nat_cast_iff'
[]
[ 471, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 470, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.eventually_principal
[]
[ 1232, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1231, 1 ]
Mathlib/Algebra/Group/TypeTags.lean
toMul_sub
[]
[ 347, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 346, 1 ]
Mathlib/Data/Nat/Log.lean
Nat.clog_monotone
[]
[ 350, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 350, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
AntitoneOn.inv
[]
[ 1305, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1304, 1 ]
Mathlib/SetTheory/Ordinal/Exponential.lean
Ordinal.log_def
[ { "state_after": "no goals", "state_before": "b : Ordinal\nh : 1 < b\nx : Ordinal\n⊢ log b x = pred (sInf {o | x < b ^ o})", "tactic": "simp only [log, dif_pos h]" } ]
[ 267, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.card_erase_lt_of_mem
[]
[ 146, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]