file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Finset/Lattice.lean
Finset.le_max
[]
[ 1211, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1210, 1 ]
Mathlib/MeasureTheory/MeasurableSpaceDef.lean
Measurable.comp
[]
[ 556, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 553, 11 ]
Mathlib/Topology/Order/Hom/Esakia.lean
PseudoEpimorphism.comp_apply
[]
[ 194, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/CategoryTheory/StructuredArrow.lean
CategoryTheory.CostructuredArrow.mk_hom_eq_self
[]
[ 312, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 311, 1 ]
Mathlib/Deprecated/Submonoid.lean
Submonoid.isSubmonoid
[ { "state_after": "no goals", "state_before": "M : Type u_1\ninst✝¹ : Monoid M\ns : Set M\nA : Type ?u.82313\ninst✝ : AddMonoid A\nt : Set A\nS : Submonoid M\n⊢ IsSubmonoid ↑S", "tactic": "refine' ⟨S.2, S.1.2⟩" } ]
[ 431, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 430, 1 ]
Std/Data/Int/Lemmas.lean
Int.add_assoc
[ { "state_after": "no goals", "state_before": "m : Nat\nb : Int\nk : Nat\n⊢ ↑m + b + ↑k = ↑m + (b + ↑k)", "tactic": "rw [Int.add_comm, ← aux1, Int.add_comm k, aux1, Int.add_comm b]" }, { "state_after": "no goals", "state_before": "a : Int\nn k : Nat\n⊢ a + ↑n + ↑k = a + (↑n + ↑k)", "tactic": "rw [Int.add_comm, Int.add_comm a, ← aux1, Int.add_comm a, Int.add_comm k]" }, { "state_after": "no goals", "state_before": "m n k : Nat\n⊢ -[m+1] + ↑n + -[k+1] = -[m+1] + (↑n + -[k+1])", "tactic": "rw [Int.add_comm, ← aux2, Int.add_comm n, ← aux2, Int.add_comm -[m+1]]" }, { "state_after": "no goals", "state_before": "m n k : Nat\n⊢ ↑m + -[n+1] + -[k+1] = ↑m + (-[n+1] + -[k+1])", "tactic": "rw [Int.add_comm, Int.add_comm m, Int.add_comm m, ← aux2, Int.add_comm -[k+1]]" }, { "state_after": "no goals", "state_before": "m n k : Nat\n⊢ -[m+1] + -[n+1] + -[k+1] = -[m+1] + (-[n+1] + -[k+1])", "tactic": "simp [add_succ, Nat.add_comm, Nat.add_left_comm, neg_ofNat_succ]" }, { "state_after": "no goals", "state_before": "x✝² x✝¹ x✝ : Int\nm n k : Nat\n⊢ ↑m + ↑n + ↑k = ↑m + (↑n + ↑k)", "tactic": "simp [Nat.add_assoc]" }, { "state_after": "no goals", "state_before": "x✝² x✝¹ x✝ : Int\nm n k : Nat\n⊢ ↑m + ↑n + -[k+1] = ↑m + (↑n + -[k+1])", "tactic": "simp [subNatNat_add]" }, { "state_after": "x✝² x✝¹ x✝ : Int\nm n k : Nat\n⊢ subNatNat k (succ (succ (m + n))) = -[m+1] + subNatNat k (succ n)", "state_before": "x✝² x✝¹ x✝ : Int\nm n k : Nat\n⊢ -[m+1] + -[n+1] + ↑k = -[m+1] + (-[n+1] + ↑k)", "tactic": "simp [add_succ]" }, { "state_after": "x✝² x✝¹ x✝ : Int\nm n k : Nat\n⊢ subNatNat k (succ (succ (m + n))) = subNatNat k (succ n + succ m)", "state_before": "x✝² x✝¹ x✝ : Int\nm n k : Nat\n⊢ subNatNat k (succ (succ (m + n))) = -[m+1] + subNatNat k (succ n)", "tactic": "rw [Int.add_comm, subNatNat_add_negSucc]" }, { "state_after": "no goals", "state_before": "x✝² x✝¹ x✝ : Int\nm n k : Nat\n⊢ subNatNat k (succ (succ (m + n))) = subNatNat k (succ n + succ m)", "tactic": "simp [add_succ, succ_add, Nat.add_comm]" } ]
[ 281, 44 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 261, 11 ]
Mathlib/Logic/Small/Basic.lean
not_small_type
[ { "state_after": "S : Type u\ne✝ : Type (max u v) ≃ S\na b : Set ((α : S) × ↑e✝.symm α)\ne :\n { fst := ↑e✝ (Set ((α : S) × ↑e✝.symm α)),\n snd := cast (_ : Set ((α : S) × ↑e✝.symm α) = ↑e✝.symm (↑e✝ (Set ((α : S) × ↑e✝.symm α)))) a } =\n { fst := ↑e✝ (Set ((α : S) × ↑e✝.symm α)),\n snd := cast (_ : Set ((α : S) × ↑e✝.symm α) = ↑e✝.symm (↑e✝ (Set ((α : S) × ↑e✝.symm α)))) b }\n⊢ a = b", "state_before": "S : Type u\ne✝ : Type (max u v) ≃ S\na b : Set ((α : S) × ↑e✝.symm α)\ne :\n (fun a =>\n { fst := Equiv.toFun e✝ (Set ((α : S) × ↑e✝.symm α)),\n snd :=\n cast (_ : Set ((α : S) × ↑e✝.symm α) = Equiv.invFun e✝ (Equiv.toFun e✝ (Set ((α : S) × ↑e✝.symm α)))) a })\n a =\n (fun a =>\n { fst := Equiv.toFun e✝ (Set ((α : S) × ↑e✝.symm α)),\n snd :=\n cast (_ : Set ((α : S) × ↑e✝.symm α) = Equiv.invFun e✝ (Equiv.toFun e✝ (Set ((α : S) × ↑e✝.symm α)))) a })\n b\n⊢ a = b", "tactic": "dsimp at e" }, { "state_after": "S : Type u\ne : Type (max u v) ≃ S\na b : Set ((α : S) × ↑e.symm α)\nh₁ : ↑e (Set ((α : S) × ↑e.symm α)) = ↑e (Set ((α : S) × ↑e.symm α))\nh₂ :\n cast (_ : Set ((α : S) × ↑e.symm α) = ↑e.symm (↑e (Set ((α : S) × ↑e.symm α)))) a =\n cast (_ : Set ((α : S) × ↑e.symm α) = ↑e.symm (↑e (Set ((α : S) × ↑e.symm α)))) b\n⊢ a = b", "state_before": "S : Type u\ne✝ : Type (max u v) ≃ S\na b : Set ((α : S) × ↑e✝.symm α)\ne :\n { fst := ↑e✝ (Set ((α : S) × ↑e✝.symm α)),\n snd := cast (_ : Set ((α : S) × ↑e✝.symm α) = ↑e✝.symm (↑e✝ (Set ((α : S) × ↑e✝.symm α)))) a } =\n { fst := ↑e✝ (Set ((α : S) × ↑e✝.symm α)),\n snd := cast (_ : Set ((α : S) × ↑e✝.symm α) = ↑e✝.symm (↑e✝ (Set ((α : S) × ↑e✝.symm α)))) b }\n⊢ a = b", "tactic": "injection e with h₁ h₂" }, { "state_after": "no goals", "state_before": "S : Type u\ne : Type (max u v) ≃ S\na b : Set ((α : S) × ↑e.symm α)\nh₁ : ↑e (Set ((α : S) × ↑e.symm α)) = ↑e (Set ((α : S) × ↑e.symm α))\nh₂ :\n cast (_ : Set ((α : S) × ↑e.symm α) = ↑e.symm (↑e (Set ((α : S) × ↑e.symm α)))) a =\n cast (_ : Set ((α : S) × ↑e.symm α) = ↑e.symm (↑e (Set ((α : S) × ↑e.symm α)))) b\n⊢ a = b", "tactic": "simpa using h₂" } ]
[ 158, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.minpoly.degree_le
[]
[ 885, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 883, 1 ]
Mathlib/Data/Int/Order/Basic.lean
Int.natAbs_eq_of_dvd_dvd
[]
[ 481, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 480, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Type.lean
Equiv.Perm.orderOf_cycleOf_dvd_orderOf
[ { "state_after": "case pos\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ↑f x = x\n⊢ orderOf (cycleOf f x) ∣ orderOf f\n\ncase neg\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ orderOf (cycleOf f x) ∣ orderOf f", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\n⊢ orderOf (cycleOf f x) ∣ orderOf f", "tactic": "by_cases hx : f x = x" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx✝ : ↑f x = x\nhx : cycleOf f x = 1\n⊢ orderOf (cycleOf f x) ∣ orderOf f", "state_before": "case pos\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ↑f x = x\n⊢ orderOf (cycleOf f x) ∣ orderOf f", "tactic": "rw [← cycleOf_eq_one_iff] at hx" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx✝ : ↑f x = x\nhx : cycleOf f x = 1\n⊢ orderOf (cycleOf f x) ∣ orderOf f", "tactic": "simp [hx]" }, { "state_after": "case neg\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ orderOf (cycleOf f x) ∈ cycleType f", "state_before": "case neg\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ orderOf (cycleOf f x) ∣ orderOf f", "tactic": "refine dvd_of_mem_cycleType ?_" }, { "state_after": "case neg\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ ∃ a, a ∈ (cycleFactorsFinset f).val ∧ (Finset.card ∘ support) a = orderOf (cycleOf f x)", "state_before": "case neg\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ orderOf (cycleOf f x) ∈ cycleType f", "tactic": "rw [cycleType, Multiset.mem_map]" }, { "state_after": "case neg.refine'_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ cycleOf f x ∈ (cycleFactorsFinset f).val\n\ncase neg.refine'_2\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ (Finset.card ∘ support) (cycleOf f x) = orderOf (cycleOf f x)", "state_before": "case neg\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ ∃ a, a ∈ (cycleFactorsFinset f).val ∧ (Finset.card ∘ support) a = orderOf (cycleOf f x)", "tactic": "refine' ⟨f.cycleOf x, _, _⟩" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ cycleOf f x ∈ (cycleFactorsFinset f).val", "tactic": "rwa [← Finset.mem_def, cycleOf_mem_cycleFactorsFinset_iff, mem_support]" }, { "state_after": "no goals", "state_before": "case neg.refine'_2\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nf : Perm α\nx : α\nhx : ¬↑f x = x\n⊢ (Finset.card ∘ support) (cycleOf f x) = orderOf (cycleOf f x)", "tactic": "simp [(isCycle_cycleOf _ hx).orderOf]" } ]
[ 194, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/CategoryTheory/Filtered.lean
CategoryTheory.IsCofiltered.inf_exists
[ { "state_after": "case empty\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\n⊢ ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ ∅ → T mX ≫ f = T mY\n\ncase insert\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nh' : (X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y)\nH' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nnmf : ¬h' ∈ H'\nh'' :\n ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T mX ≫ f = T mY\n⊢ ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ insert h' H' →\n T mX ≫ f = T mY", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\n⊢ ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H → T mX ≫ f = T mY", "tactic": "induction' H using Finset.induction with h' H' nmf h''" }, { "state_after": "case empty.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nS : C\nf : ∀ {X : C}, X ∈ O → _root_.Nonempty (S ⟶ X)\n⊢ ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ ∅ → T mX ≫ f = T mY", "state_before": "case empty\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\n⊢ ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ ∅ → T mX ≫ f = T mY", "tactic": "obtain ⟨S, f⟩ := inf_objs_exists O" }, { "state_after": "no goals", "state_before": "case empty.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nS : C\nf : ∀ {X : C}, X ∈ O → _root_.Nonempty (S ⟶ X)\n⊢ ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ ∅ → T mX ≫ f = T mY", "tactic": "refine' ⟨S, fun mX => (f mX).some, by rintro - - - - - ⟨⟩⟩" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nS : C\nf : ∀ {X : C}, X ∈ O → _root_.Nonempty (S ⟶ X)\n⊢ ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f_1 : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f_1 } } } } ∈ ∅ →\n (fun {X} mX => Nonempty.some (_ : _root_.Nonempty (S ⟶ X))) mX ≫ f_1 =\n (fun {X} mX => Nonempty.some (_ : _root_.Nonempty (S ⟶ X))) mY", "tactic": "rintro - - - - - ⟨⟩" }, { "state_after": "case insert.mk.mk.mk.mk\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nh'' :\n ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T mX ≫ f = T mY\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\n⊢ ∃ S T,\n ∀ {X_1 Y_1 : C} (mX_1 : X_1 ∈ O) (mY_1 : Y_1 ∈ O) {f_1 : X_1 ⟶ Y_1},\n { fst := X_1, snd := { fst := Y_1, snd := { fst := mX_1, snd := { fst := mY_1, snd := f_1 } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H' →\n T mX_1 ≫ f_1 = T mY_1", "state_before": "case insert\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nh' : (X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y)\nH' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nnmf : ¬h' ∈ H'\nh'' :\n ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T mX ≫ f = T mY\n⊢ ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ insert h' H' →\n T mX ≫ f = T mY", "tactic": "obtain ⟨X, Y, mX, mY, f⟩ := h'" }, { "state_after": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\n⊢ ∃ S T,\n ∀ {X_1 Y_1 : C} (mX_1 : X_1 ∈ O) (mY_1 : Y_1 ∈ O) {f_1 : X_1 ⟶ Y_1},\n { fst := X_1, snd := { fst := Y_1, snd := { fst := mX_1, snd := { fst := mY_1, snd := f_1 } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H' →\n T mX_1 ≫ f_1 = T mY_1", "state_before": "case insert.mk.mk.mk.mk\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nh'' :\n ∃ S T,\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T mX ≫ f = T mY\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\n⊢ ∃ S T,\n ∀ {X_1 Y_1 : C} (mX_1 : X_1 ∈ O) (mY_1 : Y_1 ∈ O) {f_1 : X_1 ⟶ Y_1},\n { fst := X_1, snd := { fst := Y_1, snd := { fst := mX_1, snd := { fst := mY_1, snd := f_1 } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H' →\n T mX_1 ≫ f_1 = T mY_1", "tactic": "obtain ⟨S', T', w'⟩ := h''" }, { "state_after": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\n⊢ ∀ {X_1 Y_1 : C} (mX_1 : X_1 ∈ O) (mY_1 : Y_1 ∈ O) {f_1 : X_1 ⟶ Y_1},\n { fst := X_1, snd := { fst := Y_1, snd := { fst := mX_1, snd := { fst := mY_1, snd := f_1 } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H' →\n (fun {X_2} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mX_1 ≫ f_1 =\n (fun {X_2} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY_1", "state_before": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\n⊢ ∃ S T,\n ∀ {X_1 Y_1 : C} (mX_1 : X_1 ∈ O) (mY_1 : Y_1 ∈ O) {f_1 : X_1 ⟶ Y_1},\n { fst := X_1, snd := { fst := Y_1, snd := { fst := mX_1, snd := { fst := mY_1, snd := f_1 } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H' →\n T mX_1 ≫ f_1 = T mY_1", "tactic": "refine' ⟨eq (T' mX ≫ f) (T' mY), fun mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ, _⟩" }, { "state_after": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "state_before": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\n⊢ ∀ {X_1 Y_1 : C} (mX_1 : X_1 ∈ O) (mY_1 : Y_1 ∈ O) {f_1 : X_1 ⟶ Y_1},\n { fst := X_1, snd := { fst := Y_1, snd := { fst := mX_1, snd := { fst := mY_1, snd := f_1 } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H' →\n (fun {X_2} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mX_1 ≫ f_1 =\n (fun {X_2} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY_1", "tactic": "intro X' Y' mX' mY' f' mf'" }, { "state_after": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "state_before": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "rw [Category.assoc]" }, { "state_after": "case pos\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : X = X' ∧ Y = Y'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'\n\ncase neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : ¬(X = X' ∧ Y = Y')\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "state_before": "case insert.mk.mk.mk.mk.intro.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "by_cases h : X = X' ∧ Y = Y'" }, { "state_after": "case pos.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "state_before": "case pos\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : X = X' ∧ Y = Y'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "rcases h with ⟨rfl, rfl⟩" }, { "state_after": "case pos\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nhf : f = f'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'\n\ncase neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nhf : ¬f = f'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "state_before": "case pos.intro\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "by_cases hf : f = f'" }, { "state_after": "case pos\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "state_before": "case pos\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nhf : f = f'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "subst hf" }, { "state_after": "no goals", "state_before": "case pos\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "apply eq_condition" }, { "state_after": "case neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nhf : ¬f = f'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "state_before": "case neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nhf : ¬f = f'\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "rw [@w' _ _ mX mY f']" }, { "state_after": "case neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : f' = f ∨ { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "state_before": "case neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nhf : ¬f = f'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "tactic": "simp only [Finset.mem_insert, PSigma.mk.injEq, heq_eq_eq, true_and] at mf'" }, { "state_after": "case neg.inl\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : f' = f\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'\n\ncase neg.inr\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "state_before": "case neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : f' = f ∨ { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "tactic": "rcases mf' with mf' | mf'" }, { "state_after": "case neg.inr\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "state_before": "case neg.inl\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : f' = f\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'\n\ncase neg.inr\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "tactic": ". exfalso\n exact hf mf'.symm" }, { "state_after": "no goals", "state_before": "case neg.inr\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "tactic": ". exact mf'" }, { "state_after": "case neg.inl.h\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : f' = f\n⊢ False", "state_before": "case neg.inl\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : f' = f\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "tactic": "exfalso" }, { "state_after": "no goals", "state_before": "case neg.inl.h\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : f' = f\n⊢ False", "tactic": "exact hf mf'.symm" }, { "state_after": "no goals", "state_before": "case neg.inr\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmX' : X ∈ O\nmY' : Y ∈ O\nf' : X ⟶ Y\nhf : ¬f = f'\nmf' : { fst := X, snd := { fst := Y, snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'\n⊢ { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f' } } } } ∈ H'", "tactic": "exact mf'" }, { "state_after": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : ¬(X = X' ∧ Y = Y')\n⊢ { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'", "state_before": "case neg\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : ¬(X = X' ∧ Y = Y')\n⊢ eqHom (T' mX ≫ f) (T' mY) ≫ T' mX' ≫ f' = (fun {X_1} mZ => eqHom (T' mX ≫ f) (T' mY) ≫ T' mZ) mY'", "tactic": "rw [@w' _ _ mX' mY' f' _]" }, { "state_after": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : ¬(X = X' ∧ Y = Y')\n⊢ { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ≠\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } }", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : ¬(X = X' ∧ Y = Y')\n⊢ { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈ H'", "tactic": "apply Finset.mem_of_mem_insert_of_ne mf'" }, { "state_after": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } =\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } }\n⊢ X = X' ∧ Y = Y'", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh : ¬(X = X' ∧ Y = Y')\n⊢ { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ≠\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } }", "tactic": "contrapose! h" }, { "state_after": "case refl\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ X = X ∧ Y = Y", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nX' Y' : C\nmX' : X' ∈ O\nmY' : Y' ∈ O\nf' : X' ⟶ Y'\nmf' :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\nh :\n { fst := X', snd := { fst := Y', snd := { fst := mX', snd := { fst := mY', snd := f' } } } } =\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } }\n⊢ X = X' ∧ Y = Y'", "tactic": "obtain ⟨rfl, h⟩ := h" }, { "state_after": "no goals", "state_before": "case refl\nC : Type u\ninst✝¹ : Category C\ninst✝ : IsCofiltered C\nO : Finset C\nH H' : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))\nX Y : C\nmX : X ∈ O\nmY : Y ∈ O\nf : X ⟶ Y\nnmf : ¬{ fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H'\nS' : C\nT' : {X : C} → X ∈ O → (S' ⟶ X)\nw' :\n ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y},\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈ H' → T' mX ≫ f = T' mY\nmf' :\n { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } ∈\n insert { fst := X, snd := { fst := Y, snd := { fst := mX, snd := { fst := mY, snd := f } } } } H'\n⊢ X = X ∧ Y = Y", "tactic": "trivial" } ]
[ 669, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 641, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
le_csSup_iff
[]
[ 476, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 474, 1 ]
Mathlib/MeasureTheory/Function/ContinuousMapDense.lean
MeasureTheory.Integrable.exists_boundedContinuous_lintegral_sub_le
[ { "state_after": "α : Type u_1\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : NormalSpace α\ninst✝³ : BorelSpace α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\nμ : Measure α\np : ℝ≥0∞\ninst✝¹ : NormedSpace ℝ E\ninst✝ : Measure.WeaklyRegular μ\nf : α → E\nε : ℝ≥0∞\nhε : ε ≠ 0\nhf : Memℒp f 1\n⊢ ∃ g, snorm (fun x => f x - ↑g x) 1 μ ≤ ε ∧ Memℒp (↑g) 1", "state_before": "α : Type u_1\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : NormalSpace α\ninst✝³ : BorelSpace α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\nμ : Measure α\np : ℝ≥0∞\ninst✝¹ : NormedSpace ℝ E\ninst✝ : Measure.WeaklyRegular μ\nf : α → E\nhf : Integrable f\nε : ℝ≥0∞\nhε : ε ≠ 0\n⊢ ∃ g, (∫⁻ (x : α), ↑‖f x - ↑g x‖₊ ∂μ) ≤ ε ∧ Integrable ↑g", "tactic": "simp only [← memℒp_one_iff_integrable, ← snorm_one_eq_lintegral_nnnorm] at hf ⊢" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁶ : MeasurableSpace α\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : NormalSpace α\ninst✝³ : BorelSpace α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\nμ : Measure α\np : ℝ≥0∞\ninst✝¹ : NormedSpace ℝ E\ninst✝ : Measure.WeaklyRegular μ\nf : α → E\nε : ℝ≥0∞\nhε : ε ≠ 0\nhf : Memℒp f 1\n⊢ ∃ g, snorm (fun x => f x - ↑g x) 1 μ ≤ ε ∧ Memℒp (↑g) 1", "tactic": "exact hf.exists_boundedContinuous_snorm_sub_le ENNReal.one_ne_top hε" } ]
[ 314, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 310, 1 ]
Mathlib/LinearAlgebra/Coevaluation.lean
contractLeft_assoc_coevaluation'
[ { "state_after": "K : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))) =\n LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)", "state_before": "K : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\n⊢ LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))) =\n LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)", "tactic": "letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)" }, { "state_after": "case H\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))) =\n LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))", "state_before": "K : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))) =\n LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)", "tactic": "apply TensorProduct.ext" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))))\n 1 =\n ↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))\n 1", "state_before": "case H\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))) =\n LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))", "tactic": "apply LinearMap.ext_ring" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ∀ (i : ↑(Basis.ofVectorSpaceIndex K V)),\n ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V))\n (LinearMap.rTensor V (coevaluation K V)))))\n 1)\n (↑(Basis.ofVectorSpace K V) i) =\n ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))\n 1)\n (↑(Basis.ofVectorSpace K V) i)", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V)))))\n 1 =\n ↑(LinearMap.compr₂ (mk K K V) (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))\n 1", "tactic": "apply (Basis.ofVectorSpace K V).ext" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V))\n (LinearMap.rTensor V (coevaluation K V)))))\n 1)\n (↑(Basis.ofVectorSpace K V) j) =\n ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))\n 1)\n (↑(Basis.ofVectorSpace K V) j)", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ∀ (i : ↑(Basis.ofVectorSpaceIndex K V)),\n ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V))\n (LinearMap.rTensor V (coevaluation K V)))))\n 1)\n (↑(Basis.ofVectorSpace K V) i) =\n ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))\n 1)\n (↑(Basis.ofVectorSpace K V) i)", "tactic": "intro j" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))))\n (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =\n ↑(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))\n (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j)", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V))\n (LinearMap.rTensor V (coevaluation K V)))))\n 1)\n (↑(Basis.ofVectorSpace K V) j) =\n ↑(↑(LinearMap.compr₂ (mk K K V)\n (LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V)))\n 1)\n (↑(Basis.ofVectorSpace K V) j)", "tactic": "rw [LinearMap.compr₂_apply, LinearMap.compr₂_apply, TensorProduct.mk_apply]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(TensorProduct.assoc K V (Module.Dual K V) V)\n (↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) =\n ↑(LinearEquiv.symm (TensorProduct.rid K V)) (↑(TensorProduct.lid K V) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.comp (LinearMap.lTensor V (contractLeft K V))\n (LinearMap.comp (↑(TensorProduct.assoc K V (Module.Dual K V) V)) (LinearMap.rTensor V (coevaluation K V))))\n (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =\n ↑(LinearMap.comp ↑(LinearEquiv.symm (TensorProduct.rid K V)) ↑(TensorProduct.lid K V))\n (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j)", "tactic": "simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(TensorProduct.assoc K V (Module.Dual K V) V)\n (↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(TensorProduct.assoc K V (Module.Dual K V) V)\n (↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) =\n ↑(LinearEquiv.symm (TensorProduct.rid K V)) (↑(TensorProduct.lid K V) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))", "tactic": "rw [lid_tmul, one_smul, rid_symm_apply]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(TensorProduct.assoc K V (Module.Dual K V) V)\n ((∑ x : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x) ⊗ₜ[K]\n ↑(Basis.ofVectorSpace K V) j)) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(TensorProduct.assoc K V (Module.Dual K V) V)\n (↑(LinearMap.rTensor V (coevaluation K V)) (1 ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j))) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (∑ i : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(TensorProduct.assoc K V (Module.Dual K V) V)\n ((↑(Basis.ofVectorSpace K V) i ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i) ⊗ₜ[K]\n ↑(Basis.ofVectorSpace K V) j)) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(TensorProduct.assoc K V (Module.Dual K V) V)\n ((∑ x : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x) ⊗ₜ[K]\n ↑(Basis.ofVectorSpace K V) j)) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "rw [TensorProduct.sum_tmul, LinearEquiv.map_sum]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (∑ x : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (∑ i : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(TensorProduct.assoc K V (Module.Dual K V) V)\n ((↑(Basis.ofVectorSpace K V) i ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) i) ⊗ₜ[K]\n ↑(Basis.ofVectorSpace K V) j)) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "simp only [assoc_tmul]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ∑ i : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(Basis.ofVectorSpace K V) i ⊗ₜ[K]\n Basis.coord (Basis.ofVectorSpace K V) i ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ↑(LinearMap.lTensor V (contractLeft K V))\n (∑ x : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] Basis.coord (Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "rw [LinearMap.map_sum]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ∑ x : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.coord (Basis.ofVectorSpace K V) x) (↑(Basis.ofVectorSpace K V) j) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ∑ i : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(LinearMap.lTensor V (contractLeft K V))\n (↑(Basis.ofVectorSpace K V) i ⊗ₜ[K]\n Basis.coord (Basis.ofVectorSpace K V) i ⊗ₜ[K] ↑(Basis.ofVectorSpace K V) j) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "simp only [LinearMap.lTensor_tmul, contractLeft_apply]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ (∑ x : ↑(Basis.ofVectorSpaceIndex K V), if j = x then ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] 1 else 0) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ ∑ x : ↑(Basis.ofVectorSpaceIndex K V),\n ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] ↑(Basis.coord (Basis.ofVectorSpace K V) x) (↑(Basis.ofVectorSpace K V) j) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite]" }, { "state_after": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ (if j ∈ Finset.univ then ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 else 0) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ (∑ x : ↑(Basis.ofVectorSpaceIndex K V), if j = x then ↑(Basis.ofVectorSpace K V) x ⊗ₜ[K] 1 else 0) =\n ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "rw [Finset.sum_ite_eq]" }, { "state_after": "no goals", "state_before": "case H.h\nK : Type u\ninst✝³ : Field K\nV : Type v\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\nthis : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V)\nj : ↑(Basis.ofVectorSpaceIndex K V)\n⊢ (if j ∈ Finset.univ then ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1 else 0) = ↑(Basis.ofVectorSpace K V) j ⊗ₜ[K] 1", "tactic": "simp only [Finset.mem_univ, if_true]" } ]
[ 99, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Std/Data/Int/Lemmas.lean
Int.neg_ofNat_succ
[]
[ 40, 81 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 40, 15 ]
Mathlib/Order/BoundedOrder.lean
isBot_iff_eq_bot
[]
[ 346, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 345, 1 ]
Mathlib/LinearAlgebra/SesquilinearForm.lean
LinearMap.span_singleton_sup_orthogonal_eq_top
[ { "state_after": "R : Type ?u.260339\nR₁ : Type ?u.260342\nR₂ : Type ?u.260345\nR₃ : Type ?u.260348\nM : Type ?u.260351\nM₁ : Type ?u.260354\nM₂ : Type ?u.260357\nMₗ₁ : Type ?u.260360\nMₗ₁' : Type ?u.260363\nMₗ₂ : Type ?u.260366\nMₗ₂' : Type ?u.260369\nK : Type u_1\nK₁ : Type ?u.260375\nK₂ : Type ?u.260378\nV : Type u_2\nV₁ : Type ?u.260384\nV₂ : Type ?u.260387\nn : Type ?u.260390\ninst✝⁵ : Field K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\ninst✝² : Field K₁\ninst✝¹ : AddCommGroup V₁\ninst✝ : Module K₁ V₁\nJ : K →+* K\nJ₁ J₁' : K₁ →+* K\nB : V →ₗ[K] V →ₗ[K] K\nx : V\nhx : ¬IsOrtho B x x\n⊢ Submodule.span K {x} ⊔ ker (↑B x) = ⊤", "state_before": "R : Type ?u.260339\nR₁ : Type ?u.260342\nR₂ : Type ?u.260345\nR₃ : Type ?u.260348\nM : Type ?u.260351\nM₁ : Type ?u.260354\nM₂ : Type ?u.260357\nMₗ₁ : Type ?u.260360\nMₗ₁' : Type ?u.260363\nMₗ₂ : Type ?u.260366\nMₗ₂' : Type ?u.260369\nK : Type u_1\nK₁ : Type ?u.260375\nK₂ : Type ?u.260378\nV : Type u_2\nV₁ : Type ?u.260384\nV₂ : Type ?u.260387\nn : Type ?u.260390\ninst✝⁵ : Field K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\ninst✝² : Field K₁\ninst✝¹ : AddCommGroup V₁\ninst✝ : Module K₁ V₁\nJ : K →+* K\nJ₁ J₁' : K₁ →+* K\nB : V →ₗ[K] V →ₗ[K] K\nx : V\nhx : ¬IsOrtho B x x\n⊢ Submodule.span K {x} ⊔ Submodule.orthogonalBilin (Submodule.span K {x}) B = ⊤", "tactic": "rw [orthogonal_span_singleton_eq_to_lin_ker]" }, { "state_after": "no goals", "state_before": "R : Type ?u.260339\nR₁ : Type ?u.260342\nR₂ : Type ?u.260345\nR₃ : Type ?u.260348\nM : Type ?u.260351\nM₁ : Type ?u.260354\nM₂ : Type ?u.260357\nMₗ₁ : Type ?u.260360\nMₗ₁' : Type ?u.260363\nMₗ₂ : Type ?u.260366\nMₗ₂' : Type ?u.260369\nK : Type u_1\nK₁ : Type ?u.260375\nK₂ : Type ?u.260378\nV : Type u_2\nV₁ : Type ?u.260384\nV₂ : Type ?u.260387\nn : Type ?u.260390\ninst✝⁵ : Field K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\ninst✝² : Field K₁\ninst✝¹ : AddCommGroup V₁\ninst✝ : Module K₁ V₁\nJ : K →+* K\nJ₁ J₁' : K₁ →+* K\nB : V →ₗ[K] V →ₗ[K] K\nx : V\nhx : ¬IsOrtho B x x\n⊢ Submodule.span K {x} ⊔ ker (↑B x) = ⊤", "tactic": "exact (B x).span_singleton_sup_ker_eq_top hx" } ]
[ 393, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 390, 1 ]
Mathlib/Analysis/SpecialFunctions/Integrals.lean
integral_sin_sq
[ { "state_after": "no goals", "state_before": "a b : ℝ\nn : ℕ\n⊢ (∫ (x : ℝ) in a..b, sin x ^ 2) = (sin a * cos a - sin b * cos b + b - a) / 2", "tactic": "field_simp [integral_sin_pow, add_sub_assoc]" } ]
[ 663, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 662, 1 ]
Mathlib/Algebra/Group/Opposite.lean
SemiconjBy.unop
[]
[ 241, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.mul_lt_mul_right'
[]
[ 1015, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1013, 21 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.re_eq_add_conj
[ { "state_after": "no goals", "state_before": "K : Type u_1\nE : Type ?u.3487608\ninst✝ : IsROrC K\nz : K\n⊢ ↑(↑re z) = (z + ↑(starRingEnd K) z) / 2", "tactic": "rw [add_conj, mul_div_cancel_left (re z : K) two_ne_zero]" } ]
[ 401, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 400, 1 ]
Mathlib/Analysis/InnerProductSpace/Projection.lean
orthogonalProjection_inner_eq_zero
[]
[ 483, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 481, 1 ]
Mathlib/Data/Dfinsupp/WellFounded.lean
Dfinsupp.lex_fibration
[ { "state_after": "case mk.mk.intro.intro\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = ↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) j\nhs : s i (↑x i) (↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) i)\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x", "state_before": "ι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\n⊢ Fibration (InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd) (Dfinsupp.Lex r s) fun x =>\n piecewise x.snd.fst x.snd.snd x.fst", "tactic": "rintro ⟨p, x₁, x₂⟩ x ⟨i, hr, hs⟩" }, { "state_after": "case mk.mk.intro.intro\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhs : s i (↑x i) (if i ∈ p then ↑x₁ i else ↑x₂ i)\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x", "state_before": "case mk.mk.intro.intro\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = ↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) j\nhs : s i (↑x i) (↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) i)\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x", "tactic": "simp_rw [piecewise_apply] at hs hr" }, { "state_after": "case mk.mk.intro.intro.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x\n\ncase mk.mk.intro.intro.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x", "state_before": "case mk.mk.intro.intro\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhs : s i (↑x i) (if i ∈ p then ↑x₁ i else ↑x₂ i)\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x", "tactic": "split_ifs at hs with hp" }, { "state_after": "case mk.mk.intro.intro.inl.refine_1\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nhj : r j i\n⊢ (if r j i then ↑x₁ j else ↑x j) = ↑x₁ j\n\ncase mk.mk.intro.intro.inl.refine_2\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\n⊢ s i (if r i i then ↑x₁ i else ↑x i) (↑x₁ i)\n\ncase mk.mk.intro.intro.inl.refine_3\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\n⊢ piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p} = x", "state_before": "case mk.mk.intro.intro.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x", "tactic": "refine ⟨⟨{ j | r j i → j ∈ p }, piecewise x₁ x { j | r j i }, x₂⟩,\n .fst ⟨i, fun j hj ↦ ?_, ?_⟩, ?_⟩ <;> simp only [piecewise_apply, Set.mem_setOf_eq]" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inl.refine_1\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nhj : r j i\n⊢ (if r j i then ↑x₁ j else ↑x j) = ↑x₁ j", "tactic": "simp only [if_pos hj]" }, { "state_after": "case mk.mk.intro.intro.inl.refine_2.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nhi : r i i\n⊢ s i (↑x₁ i) (↑x₁ i)\n\ncase mk.mk.intro.intro.inl.refine_2.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nhi : ¬r i i\n⊢ s i (↑x i) (↑x₁ i)", "state_before": "case mk.mk.intro.intro.inl.refine_2\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\n⊢ s i (if r i i then ↑x₁ i else ↑x i) (↑x₁ i)", "tactic": "split_ifs with hi" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inl.refine_2.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nhi : r i i\n⊢ s i (↑x₁ i) (↑x₁ i)", "tactic": "rwa [hr i hi, if_pos hp] at hs" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inl.refine_2.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nhi : ¬r i i\n⊢ s i (↑x i) (↑x₁ i)", "tactic": "assumption" }, { "state_after": "case mk.mk.intro.intro.inl.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\n⊢ ↑(piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p}) j = ↑x j", "state_before": "case mk.mk.intro.intro.inl.refine_3\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\n⊢ piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p} = x", "tactic": "ext1 j" }, { "state_after": "case mk.mk.intro.intro.inl.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\n⊢ (if r j i → j ∈ p then if r j i then ↑x₁ j else ↑x j else ↑x₂ j) = ↑x j", "state_before": "case mk.mk.intro.intro.inl.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\n⊢ ↑(piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p}) j = ↑x j", "tactic": "simp only [piecewise_apply, Set.mem_setOf_eq]" }, { "state_after": "case mk.mk.intro.intro.inl.refine_3.h.inl.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : r j i → j ∈ p\nh₂ : r j i\n⊢ ↑x₁ j = ↑x j\n\ncase mk.mk.intro.intro.inl.refine_3.h.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : ¬(r j i → j ∈ p)\n⊢ ↑x₂ j = ↑x j", "state_before": "case mk.mk.intro.intro.inl.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\n⊢ (if r j i → j ∈ p then if r j i then ↑x₁ j else ↑x j else ↑x₂ j) = ↑x j", "tactic": "split_ifs with h₁ h₂ <;> try rfl" }, { "state_after": "case mk.mk.intro.intro.inl.refine_3.h.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : ¬(r j i → j ∈ p)\n⊢ ↑x₂ j = ↑x j", "state_before": "case mk.mk.intro.intro.inl.refine_3.h.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : ¬(r j i → j ∈ p)\n⊢ ↑x₂ j = ↑x j", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inl.refine_3.h.inl.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : r j i → j ∈ p\nh₂ : r j i\n⊢ ↑x₁ j = ↑x j", "tactic": "rw [hr j h₂, if_pos (h₁ h₂)]" }, { "state_after": "case mk.mk.intro.intro.inl.refine_3.h.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : r j i ∧ ¬j ∈ p\n⊢ ↑x₂ j = ↑x j", "state_before": "case mk.mk.intro.intro.inl.refine_3.h.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : ¬(r j i → j ∈ p)\n⊢ ↑x₂ j = ↑x j", "tactic": "rw [not_imp] at h₁" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inl.refine_3.h.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : i ∈ p\nhs : s i (↑x i) (↑x₁ i)\nj : ι\nh₁ : r j i ∧ ¬j ∈ p\n⊢ ↑x₂ j = ↑x j", "tactic": "rw [hr j h₁.1, if_neg h₁.2]" }, { "state_after": "case mk.mk.intro.intro.inr.refine_1\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nhj : r j i\n⊢ (if r j i then ↑x₂ j else ↑x j) = ↑x₂ j\n\ncase mk.mk.intro.intro.inr.refine_2\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\n⊢ s i (if r i i then ↑x₂ i else ↑x i) (↑x₂ i)\n\ncase mk.mk.intro.intro.inr.refine_3\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\n⊢ piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p} = x", "state_before": "case mk.mk.intro.intro.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\n⊢ ∃ a',\n InvImage (GameAdd (Dfinsupp.Lex r s) (Dfinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧\n (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x", "tactic": "refine ⟨⟨{ j | r j i ∧ j ∈ p }, x₁, piecewise x₂ x { j | r j i }⟩,\n .snd ⟨i, fun j hj ↦ ?_, ?_⟩, ?_⟩ <;> simp only [piecewise_apply, Set.mem_setOf_eq]" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inr.refine_1\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nhj : r j i\n⊢ (if r j i then ↑x₂ j else ↑x j) = ↑x₂ j", "tactic": "exact if_pos hj" }, { "state_after": "case mk.mk.intro.intro.inr.refine_2.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nhi : r i i\n⊢ s i (↑x₂ i) (↑x₂ i)\n\ncase mk.mk.intro.intro.inr.refine_2.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nhi : ¬r i i\n⊢ s i (↑x i) (↑x₂ i)", "state_before": "case mk.mk.intro.intro.inr.refine_2\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\n⊢ s i (if r i i then ↑x₂ i else ↑x i) (↑x₂ i)", "tactic": "split_ifs with hi" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inr.refine_2.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nhi : r i i\n⊢ s i (↑x₂ i) (↑x₂ i)", "tactic": "rwa [hr i hi, if_neg hp] at hs" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inr.refine_2.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nhi : ¬r i i\n⊢ s i (↑x i) (↑x₂ i)", "tactic": "assumption" }, { "state_after": "case mk.mk.intro.intro.inr.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\n⊢ ↑(piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p}) j = ↑x j", "state_before": "case mk.mk.intro.intro.inr.refine_3\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\n⊢ piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p} = x", "tactic": "ext1 j" }, { "state_after": "case mk.mk.intro.intro.inr.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\n⊢ (if r j i ∧ j ∈ p then ↑x₁ j else if r j i then ↑x₂ j else ↑x j) = ↑x j", "state_before": "case mk.mk.intro.intro.inr.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\n⊢ ↑(piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p}) j = ↑x j", "tactic": "simp only [piecewise_apply, Set.mem_setOf_eq]" }, { "state_after": "case mk.mk.intro.intro.inr.refine_3.h.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nh₁ : r j i ∧ j ∈ p\n⊢ ↑x₁ j = ↑x j\n\ncase mk.mk.intro.intro.inr.refine_3.h.inr.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nh₁ : ¬(r j i ∧ j ∈ p)\nh₂ : r j i\n⊢ ↑x₂ j = ↑x j", "state_before": "case mk.mk.intro.intro.inr.refine_3.h\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\n⊢ (if r j i ∧ j ∈ p then ↑x₁ j else if r j i then ↑x₂ j else ↑x j) = ↑x j", "tactic": "split_ifs with h₁ h₂ <;> try rfl" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inr.refine_3.h.inr.inr\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nh₁ : ¬(r j i ∧ j ∈ p)\nh₂ : ¬r j i\n⊢ ↑x j = ↑x j", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inr.refine_3.h.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nh₁ : r j i ∧ j ∈ p\n⊢ ↑x₁ j = ↑x j", "tactic": "rw [hr j h₁.1, if_pos h₁.2]" }, { "state_after": "case mk.mk.intro.intro.inr.refine_3.h.inr.inl.hnc\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nh₁ : ¬(r j i ∧ j ∈ p)\nh₂ : r j i\n⊢ ¬j ∈ p", "state_before": "case mk.mk.intro.intro.inr.refine_3.h.inr.inl\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nh₁ : ¬(r j i ∧ j ∈ p)\nh₂ : r j i\n⊢ ↑x₂ j = ↑x j", "tactic": "rw [hr j h₂, if_neg]" }, { "state_after": "no goals", "state_before": "case mk.mk.intro.intro.inr.refine_3.h.inr.inl.hnc\nι : Type u_1\nα : ι → Type u_2\ninst✝¹ : (i : ι) → Zero (α i)\nr : ι → ι → Prop\ns : (i : ι) → α i → α i → Prop\ninst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)\np : Set ι\nx₁ x₂ x : Π₀ (i : ι), α i\ni : ι\nhr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j\nhp : ¬i ∈ p\nhs : s i (↑x i) (↑x₂ i)\nj : ι\nh₁ : ¬(r j i ∧ j ∈ p)\nh₂ : r j i\n⊢ ¬j ∈ p", "tactic": "simpa [h₂] using h₁" } ]
[ 100, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.coeff_natDegree_eq_zero_of_degree_lt
[]
[ 582, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 580, 1 ]
Mathlib/Logic/Encodable/Basic.lean
Encodable.decode_unit_succ
[]
[ 157, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/CategoryTheory/Triangulated/Pretriangulated.lean
CategoryTheory.Pretriangulated.rot_of_dist_triangle
[]
[ 110, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Order/Hom/Bounded.lean
BotHom.id_apply
[]
[ 440, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.map_right_cancel
[ { "state_after": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.626659\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nx y : M\nc : { x // x ∈ S }\nh : ↑(toMap f) ↑c * ↑(toMap f) x = ↑(toMap f) ↑c * ↑(toMap f) y\n⊢ ↑(toMap f) x = ↑(toMap f) y", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.626659\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nx y : M\nc : { x // x ∈ S }\nh : ↑(toMap f) (↑c * x) = ↑(toMap f) (↑c * y)\n⊢ ↑(toMap f) x = ↑(toMap f) y", "tactic": "rw [f.toMap.map_mul, f.toMap.map_mul] at h" }, { "state_after": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.626659\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nx y : M\nc : { x // x ∈ S }\nh : ↑(toMap f) ↑c * ↑(toMap f) x = ↑(toMap f) ↑c * ↑(toMap f) y\nu : ((fun x => N) ↑c)ˣ\nhu : ↑u = ↑(toMap f) ↑c\n⊢ ↑(toMap f) x = ↑(toMap f) y", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.626659\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nx y : M\nc : { x // x ∈ S }\nh : ↑(toMap f) ↑c * ↑(toMap f) x = ↑(toMap f) ↑c * ↑(toMap f) y\n⊢ ↑(toMap f) x = ↑(toMap f) y", "tactic": "cases' f.map_units c with u hu" }, { "state_after": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.626659\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nx y : M\nc : { x // x ∈ S }\nu : ((fun x => N) ↑c)ˣ\nh : ↑u * ↑(toMap f) x = ↑u * ↑(toMap f) y\nhu : ↑u = ↑(toMap f) ↑c\n⊢ ↑(toMap f) x = ↑(toMap f) y", "state_before": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.626659\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nx y : M\nc : { x // x ∈ S }\nh : ↑(toMap f) ↑c * ↑(toMap f) x = ↑(toMap f) ↑c * ↑(toMap f) y\nu : ((fun x => N) ↑c)ˣ\nhu : ↑u = ↑(toMap f) ↑c\n⊢ ↑(toMap f) x = ↑(toMap f) y", "tactic": "rw [← hu] at h" }, { "state_after": "no goals", "state_before": "case intro\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.626659\ninst✝ : CommMonoid P\nf : LocalizationMap S N\nx y : M\nc : { x // x ∈ S }\nu : ((fun x => N) ↑c)ˣ\nh : ↑u * ↑(toMap f) x = ↑u * ↑(toMap f) y\nhu : ↑u = ↑(toMap f) ↑c\n⊢ ↑(toMap f) x = ↑(toMap f) y", "tactic": "exact (Units.mul_right_inj u).1 h" } ]
[ 686, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 681, 1 ]
Mathlib/MeasureTheory/Constructions/Pi.lean
MeasureTheory.volume_preserving_piFinTwo
[]
[ 804, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 801, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.Eventually.atTop_of_arithmetic
[ { "state_after": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nhp : ∀ (k : ℕ), k < n → ∃ a, ∀ (b : ℕ), b ≥ a → p (n * b + k)\n⊢ ∃ a, ∀ (b : ℕ), b ≥ a → p b", "state_before": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nhp : ∀ (k : ℕ), k < n → ∀ᶠ (a : ℕ) in atTop, p (n * a + k)\n⊢ ∀ᶠ (a : ℕ) in atTop, p a", "tactic": "simp only [eventually_atTop] at hp ⊢" }, { "state_after": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\n⊢ ∃ a, ∀ (b : ℕ), b ≥ a → p b", "state_before": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nhp : ∀ (k : ℕ), k < n → ∃ a, ∀ (b : ℕ), b ≥ a → p (n * b + k)\n⊢ ∃ a, ∀ (b : ℕ), b ≥ a → p b", "tactic": "choose! N hN using hp" }, { "state_after": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\n⊢ p (n * (b / n) + b % n)", "state_before": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\n⊢ p b", "tactic": "rw [← Nat.div_add_mod b n]" }, { "state_after": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\nhlt : b % n < n\n⊢ p (n * (b / n) + b % n)", "state_before": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\n⊢ p (n * (b / n) + b % n)", "tactic": "have hlt := Nat.mod_lt b hn.bot_lt" }, { "state_after": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\nhlt : b % n < n\n⊢ b / n ≥ N (b % n)", "state_before": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\nhlt : b % n < n\n⊢ p (n * (b / n) + b % n)", "tactic": "refine hN _ hlt _ ?_" }, { "state_after": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\nhlt : b % n < n\n⊢ n * N (b % n) ≤ b", "state_before": "ι : Type ?u.63705\nι' : Type ?u.63708\nα : Type ?u.63711\nβ : Type ?u.63714\nγ : Type ?u.63717\np : ℕ → Prop\nn : ℕ\nhn : n ≠ 0\nN : ℕ → ℕ\nhN : ∀ (k : ℕ), k < n → ∀ (b : ℕ), b ≥ N k → p (n * b + k)\nb : ℕ\nhb : b ≥ Finset.sup (Finset.range n) fun x => n * N x\nhlt : b % n < n\n⊢ b / n ≥ N (b % n)", "tactic": "rw [ge_iff_le, Nat.le_div_iff_mul_le hn.bot_lt, mul_comm]" } ]
[ 510, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 501, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.cosh_sub_sinh
[ { "state_after": "no goals", "state_before": "x y : ℂ\n⊢ cosh x - sinh x = exp (-x)", "tactic": "rw [← mul_right_inj' (two_ne_zero' ℂ), mul_sub, two_cosh, two_sinh, add_sub_sub_cancel, two_mul]" } ]
[ 747, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 746, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Images.lean
CategoryTheory.Limits.imageMonoIsoSource_hom_self
[ { "state_after": "C : Type u\ninst✝¹ : Category C\nX Y : C\nf : X ⟶ Y\ninst✝ : Mono f\n⊢ (imageMonoIsoSource f).hom ≫ (imageMonoIsoSource f).inv ≫ image.ι f = image.ι f", "state_before": "C : Type u\ninst✝¹ : Category C\nX Y : C\nf : X ⟶ Y\ninst✝ : Mono f\n⊢ (imageMonoIsoSource f).hom ≫ f = image.ι f", "tactic": "simp only [← imageMonoIsoSource_inv_ι f]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\nX Y : C\nf : X ⟶ Y\ninst✝ : Mono f\n⊢ (imageMonoIsoSource f).hom ≫ (imageMonoIsoSource f).inv ≫ image.ι f = image.ι f", "tactic": "rw [← Category.assoc, Iso.hom_inv_id, Category.id_comp]" } ]
[ 432, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 430, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.L1.SimpleFunc.norm_eq_sum_mul
[ { "state_after": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑‖↑(toSimpleFunc f) x‖₊ ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\n⊢ ‖f‖ = ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "rw [norm_toSimpleFunc, snorm_one_eq_lintegral_nnnorm]" }, { "state_after": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑‖↑(toSimpleFunc f) x‖₊ ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑‖↑(toSimpleFunc f) x‖₊ ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "have h_eq := SimpleFunc.map_apply (fun x => (‖x‖₊ : ℝ≥0∞)) (toSimpleFunc f)" }, { "state_after": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑‖↑(toSimpleFunc f) x‖₊ ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑‖↑(toSimpleFunc f) x‖₊ ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "dsimp only at h_eq" }, { "state_after": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) x ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑‖↑(toSimpleFunc f) x‖₊ ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "simp_rw [← h_eq]" }, { "state_after": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ∑ a in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑‖a‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {a})) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖\n\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ∀ (a : G), a ∈ SimpleFunc.range (toSimpleFunc f) → ↑‖a‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {a}) ≠ ⊤", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ENNReal.toReal (∫⁻ (x : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) x ∂μ) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "rw [SimpleFunc.lintegral_eq_lintegral, SimpleFunc.map_lintegral, ENNReal.toReal_sum]" }, { "state_after": "case e_f\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ (fun a => ENNReal.toReal (↑‖a‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {a}))) = fun x =>\n ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ∑ a in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑‖a‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {a})) =\n ∑ x in SimpleFunc.range (toSimpleFunc f), ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "congr" }, { "state_after": "case e_f.h\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\n⊢ ENNReal.toReal (↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) = ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "state_before": "case e_f\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ (fun a => ENNReal.toReal (↑‖a‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {a}))) = fun x =>\n ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "ext1 x" }, { "state_after": "no goals", "state_before": "case e_f.h\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\n⊢ ENNReal.toReal (↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) = ENNReal.toReal (↑↑μ (↑(toSimpleFunc f) ⁻¹' {x})) * ‖x‖", "tactic": "rw [ENNReal.toReal_mul, mul_comm, ← ofReal_norm_eq_coe_nnnorm,\n ENNReal.toReal_ofReal (norm_nonneg _)]" }, { "state_after": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\n⊢ ↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x}) ≠ ⊤", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\n⊢ ∀ (a : G), a ∈ SimpleFunc.range (toSimpleFunc f) → ↑‖a‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {a}) ≠ ⊤", "tactic": "intro x _" }, { "state_after": "case pos\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\nhx0 : x = 0\n⊢ ↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x}) ≠ ⊤\n\ncase neg\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\nhx0 : ¬x = 0\n⊢ ↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x}) ≠ ⊤", "state_before": "α : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\n⊢ ↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x}) ≠ ⊤", "tactic": "by_cases hx0 : x = 0" }, { "state_after": "case pos\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\nhx0 : x = 0\n⊢ ↑‖0‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {0}) ≠ ⊤", "state_before": "case pos\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\nhx0 : x = 0\n⊢ ↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x}) ≠ ⊤", "tactic": "rw [hx0]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\nhx0 : x = 0\n⊢ ↑‖0‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {0}) ≠ ⊤", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nE : Type ?u.465938\nF : Type ?u.465941\nF' : Type ?u.465944\nG : Type u_2\n𝕜 : Type ?u.465950\np : ℝ≥0∞\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : NormedAddCommGroup F'\ninst✝¹ : NormedSpace ℝ F'\ninst✝ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\nf : { x // x ∈ simpleFunc G 1 μ }\nh_eq : ∀ (a : α), ↑(SimpleFunc.map (fun x => ↑‖x‖₊) (toSimpleFunc f)) a = ↑‖↑(toSimpleFunc f) a‖₊\nx : G\na✝ : x ∈ SimpleFunc.range (toSimpleFunc f)\nhx0 : ¬x = 0\n⊢ ↑‖x‖₊ * ↑↑μ (↑(toSimpleFunc f) ⁻¹' {x}) ≠ ⊤", "tactic": "exact\n ENNReal.mul_ne_top ENNReal.coe_ne_top\n (SimpleFunc.measure_preimage_lt_top_of_integrable _ (SimpleFunc.integrable f) hx0).ne" } ]
[ 677, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 661, 1 ]
Mathlib/Analysis/LocallyConvex/Bounded.lean
NormedSpace.isVonNBounded_iff'
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_2\n𝕜' : Type ?u.254043\nE : Type u_1\nE' : Type ?u.254049\nF : Type ?u.254052\nι : Type ?u.254055\ninst✝² : NontriviallyNormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\ns : Set E\n⊢ Bornology.IsVonNBounded 𝕜 s ↔ ∃ r, ∀ (x : E), x ∈ s → ‖x‖ ≤ r", "tactic": "rw [NormedSpace.isVonNBounded_iff, ← Metric.bounded_iff_isBounded, bounded_iff_forall_norm_le]" } ]
[ 302, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 300, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.image_const_sub_Ioo
[ { "state_after": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ioo b c = Ioo (a - c) (a - b)", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\n⊢ (fun x => a - x) '' Ioo b c = Ioo (a - c) (a - b)", "tactic": "have := image_comp (fun x => a + x) fun x => -x" }, { "state_after": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ioo b c = Ioo (a - c) (a - b)", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), ((fun x => a + x) ∘ fun x => -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ioo b c = Ioo (a - c) (a - b)", "tactic": "dsimp [Function.comp] at this" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedAddCommGroup α\na b c : α\nthis : ∀ (a_1 : Set α), (fun x => a + -x) '' a_1 = (fun x => a + x) '' ((fun x => -x) '' a_1)\n⊢ (fun x => a - x) '' Ioo b c = Ioo (a - c) (a - b)", "tactic": "simp [sub_eq_add_neg, this, add_comm]" } ]
[ 365, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 363, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.continuous_ofReal
[]
[ 108, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 1 ]
Mathlib/Data/Multiset/Bind.lean
Multiset.bind_map
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_3\nγ : Type u_2\nδ : Type ?u.31281\na : α\ns t : Multiset α\nf✝ g : α → Multiset β\nm : Multiset α\nn : β → Multiset γ\nf : α → β\n⊢ bind (map f 0) n = bind 0 fun a => n (f a)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_3\nγ : Type u_2\nδ : Type ?u.31281\na : α\ns t : Multiset α\nf✝ g : α → Multiset β\nm : Multiset α\nn : β → Multiset γ\nf : α → β\n⊢ ∀ ⦃a : α⦄ {s : Multiset α},\n (bind (map f s) n = bind s fun a => n (f a)) → bind (map f (a ::ₘ s)) n = bind (a ::ₘ s) fun a => n (f a)", "tactic": "simp (config := { contextual := true })" } ]
[ 169, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/CategoryTheory/Preadditive/Generator.lean
CategoryTheory.Preadditive.isCoseparator_iff
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : Preadditive C\nG : C\nhG : IsCoseparator G\nX Y : C\nf : X ⟶ Y\nhf : ∀ (h : Y ⟶ G), f ≫ h = 0\n⊢ ∀ (h : Y ⟶ G), f ≫ h = 0 ≫ h", "tactic": "simpa only [Limits.zero_comp] using hf" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : Preadditive C\nG : C\nhG : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), (∀ (h : Y ⟶ G), f ≫ h = 0) → f = 0\nX Y : C\nf g : X ⟶ Y\nhfg : ∀ (h : Y ⟶ G), f ≫ h = g ≫ h\n⊢ ∀ (h : Y ⟶ G), (f - g) ≫ h = 0", "tactic": "simpa only [Preadditive.sub_comp, sub_eq_zero] using hfg" } ]
[ 54, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factorization_le_factorization_mul_right
[ { "state_after": "a b : ℕ\nha : a ≠ 0\n⊢ factorization b ≤ factorization (b * a)", "state_before": "a b : ℕ\nha : a ≠ 0\n⊢ factorization b ≤ factorization (a * b)", "tactic": "rw [mul_comm]" }, { "state_after": "no goals", "state_before": "a b : ℕ\nha : a ≠ 0\n⊢ factorization b ≤ factorization (b * a)", "tactic": "apply factorization_le_factorization_mul_left ha" } ]
[ 487, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 484, 1 ]
Mathlib/CategoryTheory/Category/Grpd.lean
CategoryTheory.Grpd.piIsoPi_hom_π
[ { "state_after": "J : Type u\nf : J → Grpd\nj : J\n⊢ (piLimitFan f).π.app { as := j } = Pi.eval (fun i => ↑(f i)) j", "state_before": "J : Type u\nf : J → Grpd\nj : J\n⊢ (piIsoPi J f).hom ≫ Limits.Pi.π f j = Pi.eval (fun i => ↑(f i)) j", "tactic": "simp [piIsoPi]" }, { "state_after": "no goals", "state_before": "J : Type u\nf : J → Grpd\nj : J\n⊢ (piLimitFan f).π.app { as := j } = Pi.eval (fun i => ↑(f i)) j", "tactic": "rfl" } ]
[ 158, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/MeasureTheory/Constructions/Prod/Integral.lean
MeasureTheory.integrable_prod_iff'
[ { "state_after": "case h.e'_1.a\nα : Type u_1\nα' : Type ?u.2403525\nβ : Type u_2\nβ' : Type ?u.2403531\nγ : Type ?u.2403534\nE : Type u_3\ninst✝⁷ : MeasurableSpace α\ninst✝⁶ : MeasurableSpace α'\ninst✝⁵ : MeasurableSpace β\ninst✝⁴ : MeasurableSpace β'\ninst✝³ : MeasurableSpace γ\nμ μ' : Measure α\nν ν' : Measure β\nτ : Measure γ\ninst✝² : NormedAddCommGroup E\ninst✝¹ : SigmaFinite ν\ninst✝ : SigmaFinite μ\nf : α × β → E\nh1f : AEStronglyMeasurable f (Measure.prod μ ν)\n⊢ Integrable f ↔ Integrable fun z => f (Prod.swap z)", "state_before": "α : Type u_1\nα' : Type ?u.2403525\nβ : Type u_2\nβ' : Type ?u.2403531\nγ : Type ?u.2403534\nE : Type u_3\ninst✝⁷ : MeasurableSpace α\ninst✝⁶ : MeasurableSpace α'\ninst✝⁵ : MeasurableSpace β\ninst✝⁴ : MeasurableSpace β'\ninst✝³ : MeasurableSpace γ\nμ μ' : Measure α\nν ν' : Measure β\nτ : Measure γ\ninst✝² : NormedAddCommGroup E\ninst✝¹ : SigmaFinite ν\ninst✝ : SigmaFinite μ\nf : α × β → E\nh1f : AEStronglyMeasurable f (Measure.prod μ ν)\n⊢ Integrable f ↔ (∀ᵐ (y : β) ∂ν, Integrable fun x => f (x, y)) ∧ Integrable fun y => ∫ (x : α), ‖f (x, y)‖ ∂μ", "tactic": "convert integrable_prod_iff h1f.prod_swap using 1" }, { "state_after": "no goals", "state_before": "case h.e'_1.a\nα : Type u_1\nα' : Type ?u.2403525\nβ : Type u_2\nβ' : Type ?u.2403531\nγ : Type ?u.2403534\nE : Type u_3\ninst✝⁷ : MeasurableSpace α\ninst✝⁶ : MeasurableSpace α'\ninst✝⁵ : MeasurableSpace β\ninst✝⁴ : MeasurableSpace β'\ninst✝³ : MeasurableSpace γ\nμ μ' : Measure α\nν ν' : Measure β\nτ : Measure γ\ninst✝² : NormedAddCommGroup E\ninst✝¹ : SigmaFinite ν\ninst✝ : SigmaFinite μ\nf : α × β → E\nh1f : AEStronglyMeasurable f (Measure.prod μ ν)\n⊢ Integrable f ↔ Integrable fun z => f (Prod.swap z)", "tactic": "rw [funext fun _ => Function.comp_apply.symm, integrable_swap_iff]" } ]
[ 290, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Algebra/GroupWithZero/Basic.lean
mul_left_surjective₀
[ { "state_after": "no goals", "state_before": "α : Type ?u.29573\nM₀ : Type ?u.29576\nG₀ : Type u_1\nM₀' : Type ?u.29582\nG₀' : Type ?u.29585\nF : Type ?u.29588\nF' : Type ?u.29591\ninst✝ : GroupWithZero G₀\na✝ b c a : G₀\nh : a ≠ 0\ng : G₀\n⊢ (fun g => a * g) (a⁻¹ * g) = g", "tactic": "simp [← mul_assoc, mul_inv_cancel h]" } ]
[ 425, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 424, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.eq_interpolate_iff
[ { "state_after": "case mp\nF : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nf : F[X]\nhvs : Set.InjOn v ↑s\nh : degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i\n⊢ f = ↑(interpolate s v) r\n\ncase mpr\nF : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nf : F[X]\nhvs : Set.InjOn v ↑s\nh : f = ↑(interpolate s v) r\n⊢ degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i", "state_before": "F : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nf : F[X]\nhvs : Set.InjOn v ↑s\n⊢ (degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i) ↔ f = ↑(interpolate s v) r", "tactic": "constructor <;> intro h" }, { "state_after": "no goals", "state_before": "case mp\nF : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nf : F[X]\nhvs : Set.InjOn v ↑s\nh : degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i\n⊢ f = ↑(interpolate s v) r", "tactic": "exact eq_interpolate_of_eval_eq _ hvs h.1 h.2" }, { "state_after": "case mpr\nF : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nf : F[X]\nhvs : Set.InjOn v ↑s\nh : f = ↑(interpolate s v) r\n⊢ degree (↑(interpolate s v) r) < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) (↑(interpolate s v) r) = r i", "state_before": "case mpr\nF : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nf : F[X]\nhvs : Set.InjOn v ↑s\nh : f = ↑(interpolate s v) r\n⊢ degree f < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) f = r i", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case mpr\nF : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nf : F[X]\nhvs : Set.InjOn v ↑s\nh : f = ↑(interpolate s v) r\n⊢ degree (↑(interpolate s v) r) < ↑(card s) ∧ ∀ (i : ι), i ∈ s → eval (v i) (↑(interpolate s v) r) = r i", "tactic": "exact ⟨degree_interpolate_lt _ hvs, fun _ hi => eval_interpolate_at_node _ hvs hi⟩" } ]
[ 394, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 389, 1 ]
Mathlib/Order/Bounds/Basic.lean
Monotone.mem_lowerBounds_image
[]
[ 1269, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1268, 1 ]
Mathlib/LinearAlgebra/Matrix/Symmetric.lean
Matrix.IsSymm.ext_iff
[]
[ 45, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 44, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.ker_eq_bot_of_cancel
[ { "state_after": "R : Type u_1\nR₁ : Type ?u.1573042\nR₂ : Type u_2\nR₃ : Type ?u.1573048\nR₄ : Type ?u.1573051\nS : Type ?u.1573054\nK : Type ?u.1573057\nK₂ : Type ?u.1573060\nM : Type u_3\nM' : Type ?u.1573066\nM₁ : Type ?u.1573069\nM₂ : Type u_4\nM₃ : Type ?u.1573075\nM₄ : Type ?u.1573078\nN : Type ?u.1573081\nN₂ : Type ?u.1573084\nι : Type ?u.1573087\nV : Type ?u.1573090\nV₂ : Type ?u.1573093\ninst✝⁹ : Semiring R\ninst✝⁸ : Semiring R₂\ninst✝⁷ : Semiring R₃\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : AddCommMonoid M₃\ninst✝³ : Module R M\ninst✝² : Module R₂ M₂\ninst✝¹ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nf : M →ₛₗ[τ₁₂] M₂\nh : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v\nh₁ : comp f 0 = 0\n⊢ ker f = ⊥", "state_before": "R : Type u_1\nR₁ : Type ?u.1573042\nR₂ : Type u_2\nR₃ : Type ?u.1573048\nR₄ : Type ?u.1573051\nS : Type ?u.1573054\nK : Type ?u.1573057\nK₂ : Type ?u.1573060\nM : Type u_3\nM' : Type ?u.1573066\nM₁ : Type ?u.1573069\nM₂ : Type u_4\nM₃ : Type ?u.1573075\nM₄ : Type ?u.1573078\nN : Type ?u.1573081\nN₂ : Type ?u.1573084\nι : Type ?u.1573087\nV : Type ?u.1573090\nV₂ : Type ?u.1573093\ninst✝⁹ : Semiring R\ninst✝⁸ : Semiring R₂\ninst✝⁷ : Semiring R₃\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : AddCommMonoid M₃\ninst✝³ : Module R M\ninst✝² : Module R₂ M₂\ninst✝¹ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nf : M →ₛₗ[τ₁₂] M₂\nh : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v\n⊢ ker f = ⊥", "tactic": "have h₁ : f.comp (0 : ker f →ₗ[R] M) = 0 := comp_zero _" }, { "state_after": "R : Type u_1\nR₁ : Type ?u.1573042\nR₂ : Type u_2\nR₃ : Type ?u.1573048\nR₄ : Type ?u.1573051\nS : Type ?u.1573054\nK : Type ?u.1573057\nK₂ : Type ?u.1573060\nM : Type u_3\nM' : Type ?u.1573066\nM₁ : Type ?u.1573069\nM₂ : Type u_4\nM₃ : Type ?u.1573075\nM₄ : Type ?u.1573078\nN : Type ?u.1573081\nN₂ : Type ?u.1573084\nι : Type ?u.1573087\nV : Type ?u.1573090\nV₂ : Type ?u.1573093\ninst✝⁹ : Semiring R\ninst✝⁸ : Semiring R₂\ninst✝⁷ : Semiring R₃\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : AddCommMonoid M₃\ninst✝³ : Module R M\ninst✝² : Module R₂ M₂\ninst✝¹ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nf : M →ₛₗ[τ₁₂] M₂\nh : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v\nh₁ : comp f 0 = 0\n⊢ range 0 = ⊥", "state_before": "R : Type u_1\nR₁ : Type ?u.1573042\nR₂ : Type u_2\nR₃ : Type ?u.1573048\nR₄ : Type ?u.1573051\nS : Type ?u.1573054\nK : Type ?u.1573057\nK₂ : Type ?u.1573060\nM : Type u_3\nM' : Type ?u.1573066\nM₁ : Type ?u.1573069\nM₂ : Type u_4\nM₃ : Type ?u.1573075\nM₄ : Type ?u.1573078\nN : Type ?u.1573081\nN₂ : Type ?u.1573084\nι : Type ?u.1573087\nV : Type ?u.1573090\nV₂ : Type ?u.1573093\ninst✝⁹ : Semiring R\ninst✝⁸ : Semiring R₂\ninst✝⁷ : Semiring R₃\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : AddCommMonoid M₃\ninst✝³ : Module R M\ninst✝² : Module R₂ M₂\ninst✝¹ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nf : M →ₛₗ[τ₁₂] M₂\nh : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v\nh₁ : comp f 0 = 0\n⊢ ker f = ⊥", "tactic": "rw [← Submodule.range_subtype (ker f),\n ← h 0 f.ker.subtype (Eq.trans h₁ (comp_ker_subtype f).symm)]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nR₁ : Type ?u.1573042\nR₂ : Type u_2\nR₃ : Type ?u.1573048\nR₄ : Type ?u.1573051\nS : Type ?u.1573054\nK : Type ?u.1573057\nK₂ : Type ?u.1573060\nM : Type u_3\nM' : Type ?u.1573066\nM₁ : Type ?u.1573069\nM₂ : Type u_4\nM₃ : Type ?u.1573075\nM₄ : Type ?u.1573078\nN : Type ?u.1573081\nN₂ : Type ?u.1573084\nι : Type ?u.1573087\nV : Type ?u.1573090\nV₂ : Type ?u.1573093\ninst✝⁹ : Semiring R\ninst✝⁸ : Semiring R₂\ninst✝⁷ : Semiring R₃\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : AddCommMonoid M₃\ninst✝³ : Module R M\ninst✝² : Module R₂ M₂\ninst✝¹ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nf : M →ₛₗ[τ₁₂] M₂\nh : ∀ (u v : { x // x ∈ ker f } →ₗ[R] M), comp f u = comp f v → u = v\nh₁ : comp f 0 = 0\n⊢ range 0 = ⊥", "tactic": "exact range_zero" } ]
[ 1713, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1708, 1 ]
Mathlib/MeasureTheory/Function/LpSpace.lean
ContinuousLinearMap.smul_compLpL
[ { "state_after": "case h\nα : Type u_5\nE : Type u_4\nF : Type u_2\nG : Type ?u.7594842\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : MeasureTheory.Measure α\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ng : E → F\nc✝ : ℝ≥0\n𝕜 : Type u_3\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 F\ninst✝⁴ : Fact (1 ≤ p)\n𝕜' : Type u_1\ninst✝³ : NormedRing 𝕜'\ninst✝² : Module 𝕜' F\ninst✝¹ : BoundedSMul 𝕜' F\ninst✝ : SMulCommClass 𝕜 𝕜' F\nc : 𝕜'\nL : E →L[𝕜] F\nf : { x // x ∈ Lp E p }\n⊢ ↑(compLpL p μ (c • L)) f = ↑(c • compLpL p μ L) f", "state_before": "α : Type u_5\nE : Type u_4\nF : Type u_2\nG : Type ?u.7594842\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : MeasureTheory.Measure α\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ng : E → F\nc✝ : ℝ≥0\n𝕜 : Type u_3\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 F\ninst✝⁴ : Fact (1 ≤ p)\n𝕜' : Type u_1\ninst✝³ : NormedRing 𝕜'\ninst✝² : Module 𝕜' F\ninst✝¹ : BoundedSMul 𝕜' F\ninst✝ : SMulCommClass 𝕜 𝕜' F\nc : 𝕜'\nL : E →L[𝕜] F\n⊢ compLpL p μ (c • L) = c • compLpL p μ L", "tactic": "ext1 f" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_5\nE : Type u_4\nF : Type u_2\nG : Type ?u.7594842\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : MeasureTheory.Measure α\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedAddCommGroup G\ng : E → F\nc✝ : ℝ≥0\n𝕜 : Type u_3\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : NormedSpace 𝕜 F\ninst✝⁴ : Fact (1 ≤ p)\n𝕜' : Type u_1\ninst✝³ : NormedRing 𝕜'\ninst✝² : Module 𝕜' F\ninst✝¹ : BoundedSMul 𝕜' F\ninst✝ : SMulCommClass 𝕜 𝕜' F\nc : 𝕜'\nL : E →L[𝕜] F\nf : { x // x ∈ Lp E p }\n⊢ ↑(compLpL p μ (c • L)) f = ↑(c • compLpL p μ L) f", "tactic": "exact smul_compLp c L f" } ]
[ 1057, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1055, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.disjoint_cycleFactorsFinset
[ { "state_after": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\n⊢ _root_.Disjoint (cycleFactorsFinset f) (cycleFactorsFinset g)", "state_before": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh : Disjoint f g\n⊢ _root_.Disjoint (cycleFactorsFinset f) (cycleFactorsFinset g)", "tactic": "rw [disjoint_iff_disjoint_support] at h" }, { "state_after": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\n⊢ ∀ ⦃a : Perm α⦄, a ∈ cycleFactorsFinset f → ¬a ∈ cycleFactorsFinset g", "state_before": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\n⊢ _root_.Disjoint (cycleFactorsFinset f) (cycleFactorsFinset g)", "tactic": "rw [Finset.disjoint_left]" }, { "state_after": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhx : x ∈ cycleFactorsFinset f\nhy : x ∈ cycleFactorsFinset g\n⊢ False", "state_before": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\n⊢ ∀ ⦃a : Perm α⦄, a ∈ cycleFactorsFinset f → ¬a ∈ cycleFactorsFinset g", "tactic": "intro x hx hy" }, { "state_after": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhx : IsCycle x ∧ ∀ (a : α), ↑x a ≠ a → ↑x a = ↑f a\nhy : IsCycle x ∧ ∀ (a : α), ↑x a ≠ a → ↑x a = ↑g a\n⊢ False", "state_before": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhx : x ∈ cycleFactorsFinset f\nhy : x ∈ cycleFactorsFinset g\n⊢ False", "tactic": "simp only [mem_cycleFactorsFinset_iff, mem_support] at hx hy" }, { "state_after": "case intro.intro.intro.intro\nι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhf : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑f a\na : α\nha : ↑x a ≠ a\nhg : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑g a\n⊢ False", "state_before": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhx : IsCycle x ∧ ∀ (a : α), ↑x a ≠ a → ↑x a = ↑f a\nhy : IsCycle x ∧ ∀ (a : α), ↑x a ≠ a → ↑x a = ↑g a\n⊢ False", "tactic": "obtain ⟨⟨⟨a, ha, -⟩, hf⟩, -, hg⟩ := hx, hy" }, { "state_after": "case intro.intro.intro.intro\nι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhf : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑f a\na : α\nha : ↑x a ≠ a\nhg : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑g a\nthis : a ∈ ⊥\n⊢ False", "state_before": "case intro.intro.intro.intro\nι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhf : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑f a\na : α\nha : ↑x a ≠ a\nhg : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑g a\n⊢ False", "tactic": "have := h.le_bot (by simp [ha, ← hf a ha, ← hg a ha] : a ∈ f.support ∩ g.support)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhf : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑f a\na : α\nha : ↑x a ≠ a\nhg : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑g a\nthis : a ∈ ⊥\n⊢ False", "tactic": "tauto" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2757665\nα : Type u_1\nβ : Type ?u.2757671\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ f g : Perm α\nh✝ : Disjoint f g\nh : _root_.Disjoint (support f) (support g)\nx : Perm α\nhf : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑f a\na : α\nha : ↑x a ≠ a\nhg : ∀ (a : α), ↑x a ≠ a → ↑x a = ↑g a\n⊢ a ∈ support f ∩ support g", "tactic": "simp [ha, ← hf a ha, ← hg a ha]" } ]
[ 1485, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1477, 1 ]
Mathlib/Init/Data/Nat/Lemmas.lean
Nat.one_lt_bit0
[ { "state_after": "no goals", "state_before": "h : 0 ≠ 0\n⊢ 1 < bit0 0", "tactic": "contradiction" }, { "state_after": "n : ℕ\nx✝ : succ n ≠ 0\n⊢ 1 < succ (succ (bit0 n))", "state_before": "n : ℕ\nx✝ : succ n ≠ 0\n⊢ 1 < bit0 (succ n)", "tactic": "rw [Nat.bit0_succ_eq]" }, { "state_after": "case a\nn : ℕ\nx✝ : succ n ≠ 0\n⊢ 0 < bit0 n + 1", "state_before": "n : ℕ\nx✝ : succ n ≠ 0\n⊢ 1 < succ (succ (bit0 n))", "tactic": "apply succ_lt_succ" }, { "state_after": "no goals", "state_before": "case a\nn : ℕ\nx✝ : succ n ≠ 0\n⊢ 0 < bit0 n + 1", "tactic": "apply zero_lt_succ" } ]
[ 174, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 11 ]
Mathlib/Topology/Basic.lean
all_mem_nhds
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\na : α\ns s₁ s₂ t : Set α\np p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\nx : α\nP : Set α → Prop\nhP : ∀ (s t : Set α), s ⊆ t → P s → P t\n⊢ (∀ (i : Set α), x ∈ i ∧ IsOpen i → P i) ↔ ∀ (s : Set α), IsOpen s → x ∈ s → P s", "tactic": "simp only [@and_comm (x ∈ _), and_imp]" } ]
[ 1017, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1015, 1 ]
Mathlib/Deprecated/Group.lean
IsMonoidHom.inv
[]
[ 185, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/LinearAlgebra/Multilinear/TensorProduct.lean
MultilinearMap.domCoprod'_apply
[]
[ 87, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.monomial_def
[ { "state_after": "σ : Type u_1\nR : Type u_2\ninst✝¹ : Semiring R\ninst✝ : DecidableEq σ\nn : σ →₀ ℕ\n⊢ LinearMap.stdBasis R (fun x => R) n = LinearMap.stdBasis R (fun x => R) n", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝¹ : Semiring R\ninst✝ : DecidableEq σ\nn : σ →₀ ℕ\n⊢ monomial R n = LinearMap.stdBasis R (fun x => R) n", "tactic": "rw [monomial]" }, { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝¹ : Semiring R\ninst✝ : DecidableEq σ\nn : σ →₀ ℕ\n⊢ LinearMap.stdBasis R (fun x => R) n = LinearMap.stdBasis R (fun x => R) n", "tactic": "convert rfl" } ]
[ 150, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Order/SuccPred/Basic.lean
Order.succ_eq_succ_iff_of_not_isMax
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : PartialOrder α\ninst✝ : SuccOrder α\na b : α\nha : ¬IsMax a\nhb : ¬IsMax b\n⊢ succ a = succ b ↔ a = b", "tactic": "rw [eq_iff_le_not_lt, eq_iff_le_not_lt, succ_le_succ_iff_of_not_isMax ha hb,\n succ_lt_succ_iff_of_not_isMax ha hb]" } ]
[ 414, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 411, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_le_left
[]
[ 155, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/Algebra/RingQuot.lean
RingQuot.add_quot
[ { "state_after": "R : Type u₁\ninst✝³ : Semiring R\nS : Type u₂\ninst✝² : CommSemiring S\nA : Type u₃\ninst✝¹ : Semiring A\ninst✝ : Algebra S A\nr : R → R → Prop\na b : R\n⊢ RingQuot.add r { toQuot := Quot.mk (Rel r) a } { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a + b) }", "state_before": "R : Type u₁\ninst✝³ : Semiring R\nS : Type u₂\ninst✝² : CommSemiring S\nA : Type u₃\ninst✝¹ : Semiring A\ninst✝ : Algebra S A\nr : R → R → Prop\na b : R\n⊢ { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a + b) }", "tactic": "show add r _ _ = _" }, { "state_after": "R : Type u₁\ninst✝³ : Semiring R\nS : Type u₂\ninst✝² : CommSemiring S\nA : Type u₃\ninst✝¹ : Semiring A\ninst✝ : Algebra S A\nr : R → R → Prop\na b : R\n⊢ (match { toQuot := Quot.mk (Rel r) a }, { toQuot := Quot.mk (Rel r) b } with\n | { toQuot := a }, { toQuot := b } =>\n {\n toQuot :=\n Quot.map₂ (fun x x_1 => x + x_1) (_ : ∀ ⦃a b c : R⦄, Rel r b c → Rel r (a + b) (a + c))\n (_ : ∀ ⦃a b c : R⦄, Rel r a b → Rel r (a + c) (b + c)) a b }) =\n { toQuot := Quot.mk (Rel r) (a + b) }", "state_before": "R : Type u₁\ninst✝³ : Semiring R\nS : Type u₂\ninst✝² : CommSemiring S\nA : Type u₃\ninst✝¹ : Semiring A\ninst✝ : Algebra S A\nr : R → R → Prop\na b : R\n⊢ RingQuot.add r { toQuot := Quot.mk (Rel r) a } { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a + b) }", "tactic": "rw [add_def]" }, { "state_after": "no goals", "state_before": "R : Type u₁\ninst✝³ : Semiring R\nS : Type u₂\ninst✝² : CommSemiring S\nA : Type u₃\ninst✝¹ : Semiring A\ninst✝ : Algebra S A\nr : R → R → Prop\na b : R\n⊢ (match { toQuot := Quot.mk (Rel r) a }, { toQuot := Quot.mk (Rel r) b } with\n | { toQuot := a }, { toQuot := b } =>\n {\n toQuot :=\n Quot.map₂ (fun x x_1 => x + x_1) (_ : ∀ ⦃a b c : R⦄, Rel r b c → Rel r (a + b) (a + c))\n (_ : ∀ ⦃a b c : R⦄, Rel r a b → Rel r (a + c) (b + c)) a b }) =\n { toQuot := Quot.mk (Rel r) (a + b) }", "tactic": "rfl" } ]
[ 239, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.sub_apply
[]
[ 338, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/AlgebraicTopology/SimplexCategory.lean
SimplexCategory.len_le_of_epi
[ { "state_after": "x y : SimplexCategory\nf : x ⟶ y\nhyp_f_epi : Epi f\n⊢ len y ≤ len x", "state_before": "x y : SimplexCategory\nf : x ⟶ y\n⊢ Epi f → len y ≤ len x", "tactic": "intro hyp_f_epi" }, { "state_after": "x y : SimplexCategory\nf : x ⟶ y\nhyp_f_epi : Epi f\nf_surj : Function.Surjective ↑(Hom.toOrderHom f)\n⊢ len y ≤ len x", "state_before": "x y : SimplexCategory\nf : x ⟶ y\nhyp_f_epi : Epi f\n⊢ len y ≤ len x", "tactic": "have f_surj : Function.Surjective f.toOrderHom.toFun := epi_iff_surjective.1 hyp_f_epi" }, { "state_after": "no goals", "state_before": "x y : SimplexCategory\nf : x ⟶ y\nhyp_f_epi : Epi f\nf_surj : Function.Surjective ↑(Hom.toOrderHom f)\n⊢ len y ≤ len x", "tactic": "simpa using Fintype.card_le_of_surjective f.toOrderHom.toFun f_surj" } ]
[ 512, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 509, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.equiv_def₃
[ { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nh : f ≈ g\nε : α\nε0 : 0 < ε\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abv (↑(f - g) j) < ε / 2 ∧ ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\nj : ℕ\nij : j ≥ i\nk : ℕ\njk : k ≥ j\nh₁ : abv (↑(f - g) j) < ε / 2\nh₂ : ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\n⊢ abv (↑f k - ↑g j) < ε", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nh : f ≈ g\nε : α\nε0 : 0 < ε\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abv (↑(f - g) j) < ε / 2 ∧ ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\nj : ℕ\nij : j ≥ i\nk : ℕ\njk : k ≥ j\n⊢ abv (↑f k - ↑g j) < ε", "tactic": "let ⟨h₁, h₂⟩ := H _ ij" }, { "state_after": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nh : f ≈ g\nε : α\nε0 : 0 < ε\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abv (↑(f - g) j) < ε / 2 ∧ ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\nj : ℕ\nij : j ≥ i\nk : ℕ\njk : k ≥ j\nh₁ : abv (↑(f - g) j) < ε / 2\nh₂ : ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\nthis : abv (↑f j - ↑g j + (↑f k - ↑f j)) < ε / 2 + ε / 2\n⊢ abv (↑f k - ↑g j) < ε", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nh : f ≈ g\nε : α\nε0 : 0 < ε\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abv (↑(f - g) j) < ε / 2 ∧ ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\nj : ℕ\nij : j ≥ i\nk : ℕ\njk : k ≥ j\nh₁ : abv (↑(f - g) j) < ε / 2\nh₂ : ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\n⊢ abv (↑f k - ↑g j) < ε", "tactic": "have := lt_of_le_of_lt (abv_add abv (f j - g j) _) (add_lt_add h₁ (h₂ _ jk))" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nh : f ≈ g\nε : α\nε0 : 0 < ε\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → abv (↑(f - g) j) < ε / 2 ∧ ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\nj : ℕ\nij : j ≥ i\nk : ℕ\njk : k ≥ j\nh₁ : abv (↑(f - g) j) < ε / 2\nh₂ : ∀ (k : ℕ), k ≥ j → abv (↑f k - ↑f j) < ε / 2\nthis : abv (↑f j - ↑g j + (↑f k - ↑f j)) < ε / 2 + ε / 2\n⊢ abv (↑f k - ↑g j) < ε", "tactic": "rwa [sub_add_sub_cancel', add_halves] at this" } ]
[ 491, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 486, 1 ]
Mathlib/RingTheory/GradedAlgebra/Basic.lean
DirectSum.decompose_mul_add_right
[]
[ 163, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Algebra/CovariantAndContravariant.lean
Antitone.covariant_of_const
[]
[ 275, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/Algebra/Order/Nonneg/Ring.lean
Nonneg.mk_eq_zero
[]
[ 122, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/Topology/Separation.lean
exists_mem_nhds_isClosed_subset
[ { "state_after": "α : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\ninst✝ : RegularSpace α\na✝ : α\ns✝ : Set α\na : α\ns : Set α\nh : s ∈ 𝓝 a\nh' : RegularSpace α ↔ ∀ (a : α) (s : Set α), s ∈ 𝓝 a → ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s\n⊢ ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s", "state_before": "α : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\ninst✝ : RegularSpace α\na✝ : α\ns✝ : Set α\na : α\ns : Set α\nh : s ∈ 𝓝 a\n⊢ ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s", "tactic": "have h' := (regularSpace_TFAE α).out 0 3" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\ninst✝ : RegularSpace α\na✝ : α\ns✝ : Set α\na : α\ns : Set α\nh : s ∈ 𝓝 a\nh' : RegularSpace α ↔ ∀ (a : α) (s : Set α), s ∈ 𝓝 a → ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s\n⊢ ∃ t, t ∈ 𝓝 a ∧ IsClosed t ∧ t ⊆ s", "tactic": "exact h'.mp ‹_› _ _ h" } ]
[ 1534, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1531, 1 ]
Mathlib/Algebra/BigOperators/Order.lean
Finset.prod_fiberwise_le_prod_of_one_le_prod_fiber'
[]
[ 247, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/RingTheory/Valuation/Basic.lean
AddValuation.of_apply
[]
[ 644, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 644, 1 ]
Mathlib/GroupTheory/Perm/Support.lean
Equiv.Perm.card_support_eq_two
[ { "state_after": "case mp\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\n⊢ IsSwap f\n\ncase mpr\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : IsSwap f\n⊢ card (support f) = 2", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\n⊢ card (support f) = 2 ↔ IsSwap f", "tactic": "constructor <;> intro h" }, { "state_after": "case mp.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx : α\nt : Finset α\nhmem : ¬x ∈ t\nhins : insert x t = support f\nht : card t = 1\n⊢ IsSwap f", "state_before": "case mp\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\n⊢ IsSwap f", "tactic": "obtain ⟨x, t, hmem, hins, ht⟩ := card_eq_succ.1 h" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x ∈ {y}\nhins : {x, y} = support f\nht : card {y} = 1\n⊢ IsSwap f", "state_before": "case mp.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx : α\nt : Finset α\nhmem : ¬x ∈ t\nhins : insert x t = support f\nht : card t = 1\n⊢ IsSwap f", "tactic": "obtain ⟨y, rfl⟩ := card_eq_one.1 ht" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\n⊢ IsSwap f", "state_before": "case mp.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x ∈ {y}\nhins : {x, y} = support f\nht : card {y} = 1\n⊢ IsSwap f", "tactic": "rw [mem_singleton] at hmem" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\n⊢ f = swap x y", "state_before": "case mp.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\n⊢ IsSwap f", "tactic": "refine' ⟨x, y, hmem, _⟩" }, { "state_after": "case mp.intro.intro.intro.intro.intro.H\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\n⊢ ↑f a = ↑(swap x y) a", "state_before": "case mp.intro.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\n⊢ f = swap x y", "tactic": "ext a" }, { "state_after": "case mp.intro.intro.intro.intro.intro.H\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\n⊢ ↑f a = ↑(swap x y) a", "state_before": "case mp.intro.intro.intro.intro.intro.H\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\n⊢ ↑f a = ↑(swap x y) a", "tactic": "have key : ∀ b, f b ≠ b ↔ _ := fun b => by rw [← mem_support, ← hins, mem_insert, mem_singleton]" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ↑f a = a\n⊢ ↑f a = ↑(swap x y) a\n\ncase neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ¬↑f a = a\n⊢ ↑f a = ↑(swap x y) a", "state_before": "case mp.intro.intro.intro.intro.intro.H\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\n⊢ ↑f a = ↑(swap x y) a", "tactic": "by_cases ha : f a = a" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na b : α\n⊢ ↑f b ≠ b ↔ ?m.185118 b", "tactic": "rw [← mem_support, ← hins, mem_insert, mem_singleton]" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ↑f a = a\nha' : ¬a = x ∧ ¬a = y\n⊢ ↑f a = ↑(swap x y) a", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ↑f a = a\n⊢ ↑f a = ↑(swap x y) a", "tactic": "have ha' := not_or.mp (mt (key a).mpr (not_not.mpr ha))" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ↑f a = a\nha' : ¬a = x ∧ ¬a = y\n⊢ ↑f a = ↑(swap x y) a", "tactic": "rw [ha, swap_apply_of_ne_of_ne ha'.1 ha'.2]" }, { "state_after": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ¬↑f a = a\nha' : ↑f a = x ∨ ↑f a = y\n⊢ ↑f a = ↑(swap x y) a", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ¬↑f a = a\n⊢ ↑f a = ↑(swap x y) a", "tactic": "have ha' := (key (f a)).mp (mt f.apply_eq_iff_eq.mp ha)" }, { "state_after": "case neg.inl\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\ny : α\nht : card {y} = 1\na : α\nha : ¬↑f a = a\nhmem : ¬a = y\nhins : {a, y} = support f\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = a ∨ b = y\nha' : ↑f a = a ∨ ↑f a = y\n⊢ ↑f a = ↑(swap a y) a\n\ncase neg.inr\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx a : α\nha : ¬↑f a = a\nhmem : ¬x = a\nhins : {x, a} = support f\nht : card {a} = 1\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = a\nha' : ↑f a = x ∨ ↑f a = a\n⊢ ↑f a = ↑(swap x a) a", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx y : α\nhmem : ¬x = y\nhins : {x, y} = support f\nht : card {y} = 1\na : α\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = y\nha : ¬↑f a = a\nha' : ↑f a = x ∨ ↑f a = y\n⊢ ↑f a = ↑(swap x y) a", "tactic": "obtain rfl | rfl := (key a).mp ha" }, { "state_after": "no goals", "state_before": "case neg.inl\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\ny : α\nht : card {y} = 1\na : α\nha : ¬↑f a = a\nhmem : ¬a = y\nhins : {a, y} = support f\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = a ∨ b = y\nha' : ↑f a = a ∨ ↑f a = y\n⊢ ↑f a = ↑(swap a y) a", "tactic": "rw [Or.resolve_left ha' ha, swap_apply_left]" }, { "state_after": "no goals", "state_before": "case neg.inr\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : card (support f) = 2\nx a : α\nha : ¬↑f a = a\nhmem : ¬x = a\nhins : {x, a} = support f\nht : card {a} = 1\nkey : ∀ (b : α), ↑f b ≠ b ↔ b = x ∨ b = a\nha' : ↑f a = x ∨ ↑f a = a\n⊢ ↑f a = ↑(swap x a) a", "tactic": "rw [Or.resolve_right ha' ha, swap_apply_right]" }, { "state_after": "case mpr.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf g : Perm α\nx y : α\nhxy : x ≠ y\n⊢ card (support (swap x y)) = 2", "state_before": "case mpr\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g f : Perm α\nh : IsSwap f\n⊢ card (support f) = 2", "tactic": "obtain ⟨x, y, hxy, rfl⟩ := h" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf g : Perm α\nx y : α\nhxy : x ≠ y\n⊢ card (support (swap x y)) = 2", "tactic": "exact card_support_swap hxy" } ]
[ 637, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 621, 1 ]
Mathlib/MeasureTheory/Integral/Bochner.lean
MeasureTheory.set_integral_eq_subtype
[ { "state_after": "α✝ : Type ?u.1476210\nE : Type u_2\nF : Type ?u.1476216\n𝕜 : Type ?u.1476219\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α✝ → E\nm : MeasurableSpace α✝\nμ : Measure α✝\nX : Type ?u.1478910\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nν : Measure α✝\nα : Type u_1\ninst✝ : MeasureSpace α\ns : Set α\nhs : MeasurableSet s\nf : α → E\n⊢ (∫ (x : α), f x ∂Measure.map Subtype.val (Measure.comap Subtype.val volume)) = ∫ (x : ↑s), f ↑x", "state_before": "α✝ : Type ?u.1476210\nE : Type u_2\nF : Type ?u.1476216\n𝕜 : Type ?u.1476219\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α✝ → E\nm : MeasurableSpace α✝\nμ : Measure α✝\nX : Type ?u.1478910\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nν : Measure α✝\nα : Type u_1\ninst✝ : MeasureSpace α\ns : Set α\nhs : MeasurableSet s\nf : α → E\n⊢ (∫ (x : α) in s, f x) = ∫ (x : ↑s), f ↑x", "tactic": "rw [← map_comap_subtype_coe hs]" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.1476210\nE : Type u_2\nF : Type ?u.1476216\n𝕜 : Type ?u.1476219\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α✝ → E\nm : MeasurableSpace α✝\nμ : Measure α✝\nX : Type ?u.1478910\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nν : Measure α✝\nα : Type u_1\ninst✝ : MeasureSpace α\ns : Set α\nhs : MeasurableSet s\nf : α → E\n⊢ (∫ (x : α), f x ∂Measure.map Subtype.val (Measure.comap Subtype.val volume)) = ∫ (x : ↑s), f ↑x", "tactic": "exact (MeasurableEmbedding.subtype_coe hs).integral_map _" } ]
[ 1581, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1577, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.conj_bit1
[]
[ 369, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/Algebra/BigOperators/Finsupp.lean
Finsupp.prod_embDomain
[ { "state_after": "α : Type u_3\nι : Type ?u.531151\nγ : Type ?u.531154\nA : Type ?u.531157\nB : Type ?u.531160\nC : Type ?u.531163\ninst✝⁴ : AddCommMonoid A\ninst✝³ : AddCommMonoid B\ninst✝² : AddCommMonoid C\nt : ι → A → C\nh0 : ∀ (i : ι), t i 0 = 0\nh1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y\ns : Finset α\nf✝ : α → ι →₀ A\ni : ι\ng✝ : ι →₀ A\nk : ι → A → γ → B\nx : γ\nβ : Type u_4\nM : Type u_1\nM' : Type ?u.534299\nN : Type u_2\nP : Type ?u.534305\nG : Type ?u.534308\nH : Type ?u.534311\nR : Type ?u.534314\nS : Type ?u.534317\ninst✝¹ : Zero M\ninst✝ : CommMonoid N\nv : α →₀ M\nf : α ↪ β\ng : β → M → N\n⊢ ∏ x in v.support, g (↑f x) (↑(embDomain f v) (↑f x)) = ∏ a in v.support, g (↑f a) (↑v a)", "state_before": "α : Type u_3\nι : Type ?u.531151\nγ : Type ?u.531154\nA : Type ?u.531157\nB : Type ?u.531160\nC : Type ?u.531163\ninst✝⁴ : AddCommMonoid A\ninst✝³ : AddCommMonoid B\ninst✝² : AddCommMonoid C\nt : ι → A → C\nh0 : ∀ (i : ι), t i 0 = 0\nh1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y\ns : Finset α\nf✝ : α → ι →₀ A\ni : ι\ng✝ : ι →₀ A\nk : ι → A → γ → B\nx : γ\nβ : Type u_4\nM : Type u_1\nM' : Type ?u.534299\nN : Type u_2\nP : Type ?u.534305\nG : Type ?u.534308\nH : Type ?u.534311\nR : Type ?u.534314\nS : Type ?u.534317\ninst✝¹ : Zero M\ninst✝ : CommMonoid N\nv : α →₀ M\nf : α ↪ β\ng : β → M → N\n⊢ prod (embDomain f v) g = prod v fun a b => g (↑f a) b", "tactic": "rw [prod, prod, support_embDomain, Finset.prod_map]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nι : Type ?u.531151\nγ : Type ?u.531154\nA : Type ?u.531157\nB : Type ?u.531160\nC : Type ?u.531163\ninst✝⁴ : AddCommMonoid A\ninst✝³ : AddCommMonoid B\ninst✝² : AddCommMonoid C\nt : ι → A → C\nh0 : ∀ (i : ι), t i 0 = 0\nh1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y\ns : Finset α\nf✝ : α → ι →₀ A\ni : ι\ng✝ : ι →₀ A\nk : ι → A → γ → B\nx : γ\nβ : Type u_4\nM : Type u_1\nM' : Type ?u.534299\nN : Type u_2\nP : Type ?u.534305\nG : Type ?u.534308\nH : Type ?u.534311\nR : Type ?u.534314\nS : Type ?u.534317\ninst✝¹ : Zero M\ninst✝ : CommMonoid N\nv : α →₀ M\nf : α ↪ β\ng : β → M → N\n⊢ ∏ x in v.support, g (↑f x) (↑(embDomain f v) (↑f x)) = ∏ a in v.support, g (↑f a) (↑v a)", "tactic": "simp_rw [embDomain_apply]" } ]
[ 517, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 514, 1 ]
Mathlib/Data/Analysis/Topology.lean
Ctop.Realizer.ofEquiv_σ
[]
[ 203, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/RingTheory/PowerBasis.lean
PowerBasis.dim_pos
[]
[ 127, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 126, 1 ]
src/lean/Init/SimpLemmas.lean
Bool.true_or
[ { "state_after": "no goals", "state_before": "b : Bool\n⊢ (true || b) = true", "tactic": "cases b <;> rfl" } ]
[ 105, 83 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 105, 9 ]
Mathlib/Combinatorics/Colex.lean
Colex.sdiff_le_sdiff_iff_le
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrder α\nA B : Finset α\n⊢ toColex (A \\ B) ≤ toColex (B \\ A) ↔ toColex A ≤ toColex B", "tactic": "rw [le_iff_le_iff_lt_iff_lt, sdiff_lt_sdiff_iff_lt]" } ]
[ 334, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
inner_smul_real_left
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1383018\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : E\nr : ℝ\n⊢ ↑r * inner x y = ↑(algebraMap ℝ 𝕜) r * inner x y", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1383018\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : E\nr : ℝ\n⊢ inner (↑r • x) y = r • inner x y", "tactic": "rw [inner_smul_left, conj_ofReal, Algebra.smul_def]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1383018\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : E\nr : ℝ\n⊢ ↑r * inner x y = ↑(algebraMap ℝ 𝕜) r * inner x y", "tactic": "rfl" } ]
[ 485, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 483, 1 ]
Mathlib/Data/List/Func.lean
List.Func.get_neg
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : AddGroup α\nk : ℕ\nas : List α\n⊢ get k (map (fun a => -a) as) = -get k as", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : AddGroup α\nk : ℕ\nas : List α\n⊢ get k (neg as) = -get k as", "tactic": "unfold neg" }, { "state_after": "case a\nα : Type u\nβ : Type v\nγ : Type w\ninst✝ : AddGroup α\nk : ℕ\nas : List α\n⊢ -default = default", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝ : AddGroup α\nk : ℕ\nas : List α\n⊢ get k (map (fun a => -a) as) = -get k as", "tactic": "rw [@get_map' α α ⟨0⟩ ⟨0⟩]" }, { "state_after": "no goals", "state_before": "case a\nα : Type u\nβ : Type v\nγ : Type w\ninst✝ : AddGroup α\nk : ℕ\nas : List α\n⊢ -default = default", "tactic": "apply neg_zero" } ]
[ 266, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.add_equiv_add
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf1 f2 g1 g2 : CauSeq β abv\nhf : f1 ≈ f2\nhg : g1 ≈ g2\n⊢ f1 + g1 ≈ f2 + g2", "tactic": "simpa only [← add_sub_add_comm] using add_limZero hf hg" } ]
[ 475, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 474, 1 ]
Mathlib/Data/Stream/Init.lean
Stream'.head_iterate
[]
[ 270, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.map_bot
[]
[ 2165, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2165, 9 ]
Mathlib/Topology/MetricSpace/Basic.lean
dist_pi_def
[]
[ 1992, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1991, 1 ]
Mathlib/Order/RelClasses.lean
IsOrderConnected.neg_trans
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nr✝ : α → α → Prop\ns : β → β → Prop\nr : α → α → Prop\ninst✝ : IsOrderConnected α r\na b c : α\nh₁ : ¬r a b\nh₂ : ¬r b c\n⊢ ¬(r a b ∨ r b c)", "tactic": "simp [h₁, h₂]" } ]
[ 249, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 247, 1 ]
Mathlib/Topology/MetricSpace/Completion.lean
UniformSpace.Completion.dist_triangle
[ { "state_after": "case refine'_1\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\n⊢ IsClosed {x | dist x.fst x.snd.snd ≤ dist x.fst x.snd.fst + dist x.snd.fst x.snd.snd}\n\ncase refine'_2\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\n⊢ ∀ (a b c : α), dist (↑α a) (↑α c) ≤ dist (↑α a) (↑α b) + dist (↑α b) (↑α c)", "state_before": "α : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\n⊢ dist x z ≤ dist x y + dist y z", "tactic": "refine' induction_on₃ x y z _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\n⊢ IsClosed {x | dist x.fst x.snd.snd ≤ dist x.fst x.snd.fst + dist x.snd.fst x.snd.snd}", "tactic": "refine' isClosed_le _ (Continuous.add _ _) <;>\n apply_rules [Completion.continuous_dist, Continuous.fst, Continuous.snd, continuous_id]" }, { "state_after": "case refine'_2\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\na b c : α\n⊢ dist (↑α a) (↑α c) ≤ dist (↑α a) (↑α b) + dist (↑α b) (↑α c)", "state_before": "case refine'_2\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\n⊢ ∀ (a b c : α), dist (↑α a) (↑α c) ≤ dist (↑α a) (↑α b) + dist (↑α b) (↑α c)", "tactic": "intro a b c" }, { "state_after": "case refine'_2\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\na b c : α\n⊢ dist a c ≤ dist a b + dist b c", "state_before": "case refine'_2\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\na b c : α\n⊢ dist (↑α a) (↑α c) ≤ dist (↑α a) (↑α b) + dist (↑α b) (↑α c)", "tactic": "rw [Completion.dist_eq, Completion.dist_eq, Completion.dist_eq]" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u\nβ : Type v\ninst✝ : PseudoMetricSpace α\nx y z : Completion α\na b c : α\n⊢ dist a c ≤ dist a b + dist b c", "tactic": "exact dist_triangle a b c" } ]
[ 84, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 11 ]
Mathlib/Order/Filter/Basic.lean
Filter.forall_mem_nonempty_iff_neBot
[]
[ 768, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 766, 1 ]
Mathlib/Algebra/Hom/GroupAction.lean
DistribMulActionHom.ext_ring_iff
[]
[ 405, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 404, 1 ]
Mathlib/Algebra/Algebra/Tower.lean
IsScalarTower.coe_toAlgHom
[]
[ 130, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/Data/Nat/Bits.lean
Nat.bit_add'
[]
[ 99, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/CategoryTheory/Elements.lean
CategoryTheory.CategoryOfElements.to_comma_map_right
[]
[ 153, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/Data/List/Perm.lean
List.perm_singleton
[]
[ 210, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Analysis/NormedSpace/MazurUlam.lean
IsometryEquiv.toRealLinearIsometryEquiv_symm_apply
[]
[ 145, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Order/Monotone/Monovary.lean
monovary_toDual_left
[]
[ 249, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/Data/PNat/Basic.lean
PNat.div_add_mod'
[ { "state_after": "m k : ℕ+\n⊢ ↑k * div m k + ↑(mod m k) = ↑m", "state_before": "m k : ℕ+\n⊢ div m k * ↑k + ↑(mod m k) = ↑m", "tactic": "rw [mul_comm]" }, { "state_after": "no goals", "state_before": "m k : ℕ+\n⊢ ↑k * div m k + ↑(mod m k) = ↑m", "tactic": "exact div_add_mod _ _" } ]
[ 376, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 374, 1 ]
Mathlib/Order/MinMax.lean
max_cases
[]
[ 170, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
RingEquiv.ofLeftInverseS_apply
[]
[ 1295, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1293, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.mk_smul
[ { "state_after": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : Monoid γ\ninst✝¹ : (i : ι) → AddMonoid (β i)\ninst✝ : (i : ι) → DistribMulAction γ (β i)\ns : Finset ι\nc : γ\nx : (i : ↑↑s) → β ↑i\ni : ι\n⊢ (if H : i ∈ s then (c • x) { val := i, property := H } else 0) =\n c • if H : i ∈ s then x { val := i, property := H } else 0", "state_before": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : Monoid γ\ninst✝¹ : (i : ι) → AddMonoid (β i)\ninst✝ : (i : ι) → DistribMulAction γ (β i)\ns : Finset ι\nc : γ\nx : (i : ↑↑s) → β ↑i\ni : ι\n⊢ ↑(mk s (c • x)) i = ↑(c • mk s x) i", "tactic": "simp only [smul_apply, mk_apply]" }, { "state_after": "no goals", "state_before": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝² : Monoid γ\ninst✝¹ : (i : ι) → AddMonoid (β i)\ninst✝ : (i : ι) → DistribMulAction γ (β i)\ns : Finset ι\nc : γ\nx : (i : ↑↑s) → β ↑i\ni : ι\n⊢ (if H : i ∈ s then (c • x) { val := i, property := H } else 0) =\n c • if H : i ∈ s then x { val := i, property := H } else 0", "tactic": "split_ifs <;> [rfl; rw [smul_zero]]" } ]
[ 1074, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1072, 1 ]
Mathlib/RingTheory/Nakayama.lean
Submodule.smul_sup_eq_smul_sup_of_le_smul_of_le_jacobson
[ { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\n⊢ N ⊔ I • N' = N ⊔ J • N'", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\n⊢ N ⊔ I • N' = N ⊔ J • N'", "tactic": "have hNN' : N ⊔ N' = N ⊔ I • N' :=\n le_antisymm hNN (sup_le_sup_left (Submodule.smul_le.2 fun _ _ _ => Submodule.smul_mem _ _) _)" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\n⊢ N ⊔ I • N' = N ⊔ J • N'", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\n⊢ N ⊔ I • N' = N ⊔ J • N'", "tactic": "have h_comap := Submodule.comap_injective_of_surjective (LinearMap.range_eq_top.1 N.range_mkQ)" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\nthis : map (mkQ N) (I • N') = map (mkQ N) N'\n⊢ N ⊔ I • N' = N ⊔ J • N'", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\n⊢ N ⊔ I • N' = N ⊔ J • N'", "tactic": "have : (I • N').map N.mkQ = N'.map N.mkQ := by\n rw [← h_comap.eq_iff]\n simpa [comap_map_eq, sup_comm, eq_comm] using hNN'" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\nthis✝ : map (mkQ N) (I • N') = map (mkQ N) N'\nthis : map (mkQ N) N' = J • map (mkQ N) N'\n⊢ N ⊔ I • N' = N ⊔ J • N'", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\nthis : map (mkQ N) (I • N') = map (mkQ N) N'\n⊢ N ⊔ I • N' = N ⊔ J • N'", "tactic": "have :=\n @Submodule.eq_smul_of_le_smul_of_le_jacobson _ _ _ _ _ I J (N'.map N.mkQ) (hN'.map _)\n (by rw [← map_smul'', this]) hIJ" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\nthis✝ : map (mkQ N) (I • N') = map (mkQ N) N'\nthis : N ⊔ I • N' = J • N' ⊔ N\n⊢ N ⊔ I • N' = N ⊔ J • N'", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\nthis✝ : map (mkQ N) (I • N') = map (mkQ N) N'\nthis : map (mkQ N) N' = J • map (mkQ N) N'\n⊢ N ⊔ I • N' = N ⊔ J • N'", "tactic": "rw [← map_smul'', ← h_comap.eq_iff, comap_map_eq, comap_map_eq, Submodule.ker_mkQ, sup_comm,\n hNN'] at this" }, { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\nthis✝ : map (mkQ N) (I • N') = map (mkQ N) N'\nthis : N ⊔ I • N' = J • N' ⊔ N\n⊢ N ⊔ I • N' = N ⊔ J • N'", "tactic": "rw [this, sup_comm]" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\n⊢ comap (mkQ N) (map (mkQ N) (I • N')) = comap (mkQ N) (map (mkQ N) N')", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\n⊢ map (mkQ N) (I • N') = map (mkQ N) N'", "tactic": "rw [← h_comap.eq_iff]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\n⊢ comap (mkQ N) (map (mkQ N) (I • N')) = comap (mkQ N) (map (mkQ N) N')", "tactic": "simpa [comap_map_eq, sup_comm, eq_comm] using hNN'" }, { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommRing R\ninst✝¹ : AddCommGroup M\ninst✝ : Module R M\nI J : Ideal R\nN N' : Submodule R M\nhN' : FG N'\nhIJ : I ≤ jacobson J\nhNN : N ⊔ N' ≤ N ⊔ I • N'\nhNN' : N ⊔ N' = N ⊔ I • N'\nh_comap : Function.Injective (comap (mkQ N))\nthis : map (mkQ N) (I • N') = map (mkQ N) N'\n⊢ map (mkQ N) N' ≤ I • map (mkQ N) N'", "tactic": "rw [← map_smul'', this]" } ]
[ 92, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.map_mono
[]
[ 1322, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1321, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.biprod.inlCokernelCofork_π
[]
[ 1715, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1714, 1 ]
Mathlib/CategoryTheory/Limits/HasLimits.lean
CategoryTheory.Limits.HasColimit.isoOfNatIso_ι_hom
[]
[ 914, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 912, 1 ]
Mathlib/Combinatorics/Young/SemistandardTableau.lean
Ssyt.col_weak
[ { "state_after": "case inl\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 = i2\n⊢ ↑T i1 j ≤ ↑T i2 j\n\ncase inr\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 < i2\n⊢ ↑T i1 j ≤ ↑T i2 j", "state_before": "μ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\n⊢ ↑T i1 j ≤ ↑T i2 j", "tactic": "cases' eq_or_lt_of_le hi with h h" }, { "state_after": "case inr\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 < i2\n⊢ ↑T i1 j ≤ ↑T i2 j", "state_before": "case inl\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 = i2\n⊢ ↑T i1 j ≤ ↑T i2 j\n\ncase inr\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 < i2\n⊢ ↑T i1 j ≤ ↑T i2 j", "tactic": ". rw [h]" }, { "state_after": "no goals", "state_before": "case inr\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 < i2\n⊢ ↑T i1 j ≤ ↑T i2 j", "tactic": ". exact le_of_lt (T.col_strict h cell)" }, { "state_after": "no goals", "state_before": "case inl\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 = i2\n⊢ ↑T i1 j ≤ ↑T i2 j", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case inr\nμ : YoungDiagram\nT : Ssyt μ\ni1 i2 j : ℕ\nhi : i1 ≤ i2\ncell : (i2, j) ∈ μ\nh : i1 < i2\n⊢ ↑T i1 j ≤ ↑T i2 j", "tactic": "exact le_of_lt (T.col_strict h cell)" } ]
[ 139, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Data/Nat/Squarefree.lean
Nat.sq_mul_squarefree
[ { "state_after": "case zero\n\n⊢ ∃ a b, b ^ 2 * a = zero ∧ Squarefree a\n\ncase succ\nn : ℕ\n⊢ ∃ a b, b ^ 2 * a = succ n ∧ Squarefree a", "state_before": "n : ℕ\n⊢ ∃ a b, b ^ 2 * a = n ∧ Squarefree a", "tactic": "cases' n with n" }, { "state_after": "no goals", "state_before": "case zero\n\n⊢ ∃ a b, b ^ 2 * a = zero ∧ Squarefree a", "tactic": "exact ⟨1, 0, by simp, squarefree_one⟩" }, { "state_after": "no goals", "state_before": "⊢ 0 ^ 2 * 1 = zero", "tactic": "simp" }, { "state_after": "case succ.intro.intro.intro.intro.intro\nn a b : ℕ\nh₁ : b ^ 2 * a = succ n\nh₂ : Squarefree a\n⊢ ∃ a b, b ^ 2 * a = succ n ∧ Squarefree a", "state_before": "case succ\nn : ℕ\n⊢ ∃ a b, b ^ 2 * a = succ n ∧ Squarefree a", "tactic": "obtain ⟨a, b, -, -, h₁, h₂⟩ := sq_mul_squarefree_of_pos (succ_pos n)" }, { "state_after": "no goals", "state_before": "case succ.intro.intro.intro.intro.intro\nn a b : ℕ\nh₁ : b ^ 2 * a = succ n\nh₂ : Squarefree a\n⊢ ∃ a b, b ^ 2 * a = succ n ∧ Squarefree a", "tactic": "exact ⟨a, b, h₁, h₂⟩" } ]
[ 365, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/Data/Real/Cardinality.lean
Cardinal.mk_Icc_real
[]
[ 285, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]