file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Computability/TMToPartrec.lean
Turing.PartrecToTM2.tr_ret_cons₁
[]
[ 1137, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1134, 1 ]
Mathlib/Data/PFun.lean
PFun.coe_comp
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_3\nγ : Type u_2\nδ : Type ?u.59817\nε : Type ?u.59820\nι : Type ?u.59823\nf✝ : α →. β\ng : β → γ\nf : α → β\nx✝¹ : α\nx✝ : γ\n⊢ x✝ ∈ ↑(g ∘ f) x✝¹ ↔ x✝ ∈ comp (↑g) (↑f) x✝¹", "tactic": "simp only [coe_val, comp_apply, Function.comp, Part.bind_some]" } ]
[ 629, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 628, 1 ]
Mathlib/Data/Complex/Exponential.lean
Real.exp_bound_div_one_sub_of_interval'
[ { "state_after": "case H\nx : ℝ\nh1 : 0 < x\nh2 : x < 1\n⊢ 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n\nx : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ exp x < 1 / (1 - x)", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\n⊢ exp x < 1 / (1 - x)", "tactic": "have H : 0 < 1 - (1 + x + x ^ 2) * (1 - x)" }, { "state_after": "no goals", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ exp x < 1 / (1 - x)", "tactic": "calc\n exp x ≤ _ := exp_bound' h1.le h2.le zero_lt_three\n _ ≤ 1 + x + x ^ 2 := by\n rw [Finset.sum, range_val]\n nth_rw 1 [← two_add_one_eq_three]\n rw [← Nat.succ_eq_add_one, Multiset.range_succ, Multiset.map_cons, Multiset.sum_cons]\n nth_rw 3 [← one_add_one_eq_two]\n rw [← Nat.succ_eq_add_one, Multiset.range_succ, Multiset.map_cons, Multiset.sum_cons]\n nth_rw 3 [← zero_add 1]\n rw [← Nat.succ_eq_add_one, Multiset.range_succ, Multiset.map_cons, Multiset.sum_cons]\n rw [Multiset.range_zero, Multiset.map_zero, Multiset.sum_zero]\n norm_num\n nlinarith\n _ < 1 / (1 - x) := by rw [lt_div_iff] <;> nlinarith" }, { "state_after": "no goals", "state_before": "case H\nx : ℝ\nh1 : 0 < x\nh2 : x < 1\n⊢ 0 < 1 - (1 + x + x ^ 2) * (1 - x)", "tactic": "calc\n 0 < x ^ 3 := by positivity\n _ = 1 - (1 + x + x ^ 2) * (1 - x) := by ring" }, { "state_after": "no goals", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\n⊢ 0 < x ^ 3", "tactic": "positivity" }, { "state_after": "no goals", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\n⊢ x ^ 3 = 1 - (1 + x + x ^ 2) * (1 - x)", "tactic": "ring" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 3)) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ ∑ m in range 3, x ^ m / ↑(Nat.factorial m) + x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤ 1 + x + x ^ 2", "tactic": "rw [Finset.sum, range_val]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range (2 + 1))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 3)) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "nth_rw 1 [← two_add_one_eq_three]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) + Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 2)) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range (2 + 1))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "rw [← Nat.succ_eq_add_one, Multiset.range_succ, Multiset.map_cons, Multiset.sum_cons]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range (1 + 1))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) + Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 2)) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "nth_rw 3 [← one_add_one_eq_two]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n (x ^ 1 / ↑(Nat.factorial 1) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 1))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range (1 + 1))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "rw [← Nat.succ_eq_add_one, Multiset.range_succ, Multiset.map_cons, Multiset.sum_cons]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n (x ^ 1 / ↑(Nat.factorial 1) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range (0 + 1)))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n (x ^ 1 / ↑(Nat.factorial 1) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 1))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "nth_rw 3 [← zero_add 1]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n (x ^ 1 / ↑(Nat.factorial 1) +\n (x ^ 0 / ↑(Nat.factorial 0) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 0)))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n (x ^ 1 / ↑(Nat.factorial 1) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range (0 + 1)))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "rw [← Nat.succ_eq_add_one, Multiset.range_succ, Multiset.map_cons, Multiset.sum_cons]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) + (x ^ 1 / ↑(Nat.factorial 1) + (x ^ 0 / ↑(Nat.factorial 0) + 0)) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) +\n (x ^ 1 / ↑(Nat.factorial 1) +\n (x ^ 0 / ↑(Nat.factorial 0) +\n Multiset.sum (Multiset.map (fun m => x ^ m / ↑(Nat.factorial m)) (Multiset.range 0)))) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "rw [Multiset.range_zero, Multiset.map_zero, Multiset.sum_zero]" }, { "state_after": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / 2 + (x + 1) + x ^ 3 * 4 / 18 ≤ 1 + x + x ^ 2", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / ↑(Nat.factorial 2) + (x ^ 1 / ↑(Nat.factorial 1) + (x ^ 0 / ↑(Nat.factorial 0) + 0)) +\n x ^ 3 * (↑3 + 1) / (↑(Nat.factorial 3) * ↑3) ≤\n 1 + x + x ^ 2", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ x ^ 2 / 2 + (x + 1) + x ^ 3 * 4 / 18 ≤ 1 + x + x ^ 2", "tactic": "nlinarith" }, { "state_after": "no goals", "state_before": "x : ℝ\nh1 : 0 < x\nh2 : x < 1\nH : 0 < 1 - (1 + x + x ^ 2) * (1 - x)\n⊢ 1 + x + x ^ 2 < 1 / (1 - x)", "tactic": "rw [lt_div_iff] <;> nlinarith" } ]
[ 1952, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1930, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.coe_mul
[]
[ 172, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/Data/Rat/NNRat.lean
NNRat.coe_injective
[]
[ 77, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 76, 11 ]
Mathlib/Algebra/Periodic.lean
Function.Periodic.eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.108782\nf g : α → β\nc c₁ c₂ x : α\ninst✝ : AddZeroClass α\nh : Periodic f c\n⊢ f c = f 0", "tactic": "simpa only [zero_add] using h 0" } ]
[ 262, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 11 ]
Mathlib/Tactic/Ring/Basic.lean
Mathlib.Tactic.Ring.mul_congr
[ { "state_after": "u : Lean.Level\nR : Type u_1\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\ninst✝ : CommSemiring R\na' b' : R\n⊢ a' * b' = a' * b'", "state_before": "u : Lean.Level\nR : Type u_1\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\ninst✝ : CommSemiring R\na a' b b' c : R\nx✝² : a = a'\nx✝¹ : b = b'\nx✝ : a' * b' = c\n⊢ a * b = c", "tactic": "subst_vars" }, { "state_after": "no goals", "state_before": "u : Lean.Level\nR : Type u_1\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\ninst✝ : CommSemiring R\na' b' : R\n⊢ a' * b' = a' * b'", "tactic": "rfl" } ]
[ 965, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 964, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
Real.le_log_iff_exp_le
[ { "state_after": "no goals", "state_before": "x y : ℝ\nhy : 0 < y\n⊢ x ≤ log y ↔ exp x ≤ y", "tactic": "rw [← exp_le_exp, exp_log hy]" } ]
[ 164, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Std/Data/String/Lemmas.lean
String.append_assoc
[]
[ 492, 37 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 491, 1 ]
Mathlib/RingTheory/Polynomial/Bernstein.lean
bernsteinPolynomial.iterate_derivative_at_0
[ { "state_after": "case pos\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : ν ≤ n\n⊢ eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\n\ncase neg\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : ¬ν ≤ n\n⊢ eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\n⊢ eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)", "tactic": "by_cases h : ν ≤ n" }, { "state_after": "case pos.zero\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν : ℕ\nh✝ : ν ≤ n✝\nn : ℕ\nh : Nat.zero ≤ n\n⊢ eval 0 ((↑derivative^[Nat.zero]) (bernsteinPolynomial R n Nat.zero)) =\n eval (↑(n - (Nat.zero - 1))) (pochhammer R Nat.zero)\n\ncase pos.succ\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\n⊢ eval 0 ((↑derivative^[Nat.succ ν]) (bernsteinPolynomial R n (Nat.succ ν))) =\n eval (↑(n - (Nat.succ ν - 1))) (pochhammer R (Nat.succ ν))", "state_before": "case pos\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : ν ≤ n\n⊢ eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)", "tactic": "induction' ν with ν ih generalizing n" }, { "state_after": "no goals", "state_before": "case pos.zero\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν : ℕ\nh✝ : ν ≤ n✝\nn : ℕ\nh : Nat.zero ≤ n\n⊢ eval 0 ((↑derivative^[Nat.zero]) (bernsteinPolynomial R n Nat.zero)) =\n eval (↑(n - (Nat.zero - 1))) (pochhammer R Nat.zero)", "tactic": "simp [eval_at_0]" }, { "state_after": "case pos.succ\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\n⊢ eval 0 ((↑derivative^[Nat.succ ν]) (bernsteinPolynomial R n (Nat.succ ν))) =\n eval (↑(n - (Nat.succ ν - 1))) (pochhammer R (Nat.succ ν))", "state_before": "case pos.succ\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\n⊢ eval 0 ((↑derivative^[Nat.succ ν]) (bernsteinPolynomial R n (Nat.succ ν))) =\n eval (↑(n - (Nat.succ ν - 1))) (pochhammer R (Nat.succ ν))", "tactic": "have h' : ν ≤ n - 1 := le_tsub_of_add_le_right h" }, { "state_after": "case pos.succ\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\n⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν)", "state_before": "case pos.succ\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\n⊢ eval 0 ((↑derivative^[Nat.succ ν]) (bernsteinPolynomial R n (Nat.succ ν))) =\n eval (↑(n - (Nat.succ ν - 1))) (pochhammer R (Nat.succ ν))", "tactic": "simp only [derivative_succ, ih (n - 1) h', iterate_derivative_succ_at_0_eq_zero,\n Nat.succ_sub_succ_eq_sub, tsub_zero, sub_zero, iterate_derivative_sub,\n iterate_derivative_nat_cast_mul, eval_one, eval_mul, eval_add, eval_sub, eval_X, eval_comp,\n eval_nat_cast, Function.comp_apply, Function.iterate_succ, pochhammer_succ_left]" }, { "state_after": "case pos.succ.inl\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν : ℕ\nh✝ : ν ≤ n✝\nn : ℕ\nih : ∀ (n : ℕ), 0 ≤ n → eval 0 ((↑derivative^[0]) (bernsteinPolynomial R n 0)) = eval (↑(n - (0 - 1))) (pochhammer R 0)\nh : Nat.succ 0 ≤ n\nh' : 0 ≤ n - 1\n⊢ ↑n * eval (↑(n - 1 - (0 - 1))) (pochhammer R 0) = ↑(n - 0) * eval (↑(n - 0) + 1) (pochhammer R 0)\n\ncase pos.succ.inr\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : ν > 0\n⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν)", "state_before": "case pos.succ\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\n⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν)", "tactic": "obtain rfl | h'' := ν.eq_zero_or_pos" }, { "state_after": "no goals", "state_before": "case pos.succ.inl\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν : ℕ\nh✝ : ν ≤ n✝\nn : ℕ\nih : ∀ (n : ℕ), 0 ≤ n → eval 0 ((↑derivative^[0]) (bernsteinPolynomial R n 0)) = eval (↑(n - (0 - 1))) (pochhammer R 0)\nh : Nat.succ 0 ≤ n\nh' : 0 ≤ n - 1\n⊢ ↑n * eval (↑(n - 1 - (0 - 1))) (pochhammer R 0) = ↑(n - 0) * eval (↑(n - 0) + 1) (pochhammer R 0)", "tactic": "simp" }, { "state_after": "case pos.succ.inr\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : ν > 0\nthis : n - 1 - (ν - 1) = n - ν\n⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν)", "state_before": "case pos.succ.inr\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : ν > 0\n⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν)", "tactic": "have : n - 1 - (ν - 1) = n - ν := by\n rw [gt_iff_lt, ← Nat.succ_le_iff] at h''\n rw [← tsub_add_eq_tsub_tsub, add_comm, tsub_add_cancel_of_le h'']" }, { "state_after": "case pos.succ.inr\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : ν > 0\nthis : n - 1 - (ν - 1) = n - ν\n⊢ ↑n * eval (↑(n - ν)) (pochhammer R ν) = (↑(n - ν) + ↑ν) * eval (↑(n - ν)) (pochhammer R ν)", "state_before": "case pos.succ.inr\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : ν > 0\nthis : n - 1 - (ν - 1) = n - ν\n⊢ ↑n * eval (↑(n - 1 - (ν - 1))) (pochhammer R ν) = ↑(n - ν) * eval (↑(n - ν) + 1) (pochhammer R ν)", "tactic": "rw [this, pochhammer_eval_succ]" }, { "state_after": "no goals", "state_before": "case pos.succ.inr\nR : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : ν > 0\nthis : n - 1 - (ν - 1) = n - ν\n⊢ ↑n * eval (↑(n - ν)) (pochhammer R ν) = (↑(n - ν) + ↑ν) * eval (↑(n - ν)) (pochhammer R ν)", "tactic": "rw_mod_cast [tsub_add_cancel_of_le (h'.trans n.pred_le)]" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : Nat.succ 0 ≤ ν\n⊢ n - 1 - (ν - 1) = n - ν", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : ν > 0\n⊢ n - 1 - (ν - 1) = n - ν", "tactic": "rw [gt_iff_lt, ← Nat.succ_le_iff] at h''" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn✝ ν✝ : ℕ\nh✝ : ν✝ ≤ n✝\nν : ℕ\nih : ∀ (n : ℕ), ν ≤ n → eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)\nn : ℕ\nh : Nat.succ ν ≤ n\nh' : ν ≤ n - 1\nh'' : Nat.succ 0 ≤ ν\n⊢ n - 1 - (ν - 1) = n - ν", "tactic": "rw [← tsub_add_eq_tsub_tsub, add_comm, tsub_add_cancel_of_le h'']" }, { "state_after": "case neg\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : n < ν\n⊢ eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)", "state_before": "case neg\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : ¬ν ≤ n\n⊢ eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)", "tactic": "simp only [not_le] at h" }, { "state_after": "case neg\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : n < ν\n⊢ eval 0 ((↑derivative^[ν]) 0) = eval (↑0) (pochhammer R ν)", "state_before": "case neg\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : n < ν\n⊢ eval 0 ((↑derivative^[ν]) (bernsteinPolynomial R n ν)) = eval (↑(n - (ν - 1))) (pochhammer R ν)", "tactic": "rw [tsub_eq_zero_iff_le.mpr (Nat.le_pred_of_lt h), eq_zero_of_lt R h]" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u_1\ninst✝ : CommRing R\nn ν : ℕ\nh : n < ν\n⊢ eval 0 ((↑derivative^[ν]) 0) = eval (↑0) (pochhammer R ν)", "tactic": "simp [pos_iff_ne_zero.mp (pos_of_gt h)]" } ]
[ 199, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 179, 1 ]
Mathlib/CategoryTheory/EqToHom.lean
CategoryTheory.comp_eqToHom_iff
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nX Y Y' : C\np : Y = Y'\nf : X ⟶ Y\ng : X ⟶ Y'\nh : f ≫ eqToHom p = g\n⊢ f = (f ≫ eqToHom p) ≫ eqToHom (_ : Y' = Y)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nX Y Y' : C\np : Y = Y'\nf : X ⟶ Y\ng : X ⟶ Y'\nh : f = g ≫ eqToHom (_ : Y' = Y)\n⊢ f ≫ eqToHom p = g", "tactic": "simp [eq_whisker h (eqToHom p)]" } ]
[ 66, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Data/List/Basic.lean
List.removeNth_insertNth
[ { "state_after": "ι : Type ?u.113196\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nl : List α\n⊢ modifyNthTail (tail ∘ cons a) n l = l", "state_before": "ι : Type ?u.113196\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nl : List α\n⊢ removeNth (insertNth n a l) n = l", "tactic": "rw [removeNth_eq_nth_tail, insertNth, modifyNthTail_modifyNthTail_same]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.113196\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\na : α\nn : ℕ\nl : List α\n⊢ modifyNthTail (tail ∘ cons a) n l = l", "tactic": "exact modifyNthTail_id _ _" } ]
[ 1618, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1616, 1 ]
Mathlib/Data/Finset/NAry.lean
Finset.Nonempty.of_image₂_left
[]
[ 131, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.neg_coe_pi
[ { "state_after": "⊢ ∃ k, -π - π = 2 * π * ↑k", "state_before": "⊢ -↑π = ↑π", "tactic": "rw [← coe_neg, angle_eq_iff_two_pi_dvd_sub]" }, { "state_after": "⊢ -π - π = 2 * π * ↑(-1)", "state_before": "⊢ ∃ k, -π - π = 2 * π * ↑k", "tactic": "use -1" }, { "state_after": "no goals", "state_before": "⊢ -π - π = 2 * π * ↑(-1)", "tactic": "simp [two_mul, sub_eq_add_neg]" } ]
[ 137, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.forall_mem_cons
[]
[ 251, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/Topology/Order/Basic.lean
IsGLB.mem_lowerBounds_of_tendsto
[]
[ 2050, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2047, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.disjoint_singleton_left
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.69965\nγ : Type ?u.69968\nf : α → β\ns t u : Finset α\na b : α\n⊢ _root_.Disjoint {a} s ↔ ¬a ∈ s", "tactic": "simp only [disjoint_left, mem_singleton, forall_eq]" } ]
[ 959, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 958, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.lift_umax
[]
[ 204, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.add_moveRight_inr
[ { "state_after": "case mk\ny : PGame\ni : RightMoves y\nα✝ β✝ : Type u_1\na✝¹ : α✝ → PGame\na✝ : β✝ → PGame\n⊢ moveRight (mk α✝ β✝ a✝¹ a✝ + y) (↑toRightMovesAdd (Sum.inr i)) = mk α✝ β✝ a✝¹ a✝ + moveRight y i", "state_before": "x y : PGame\ni : RightMoves y\n⊢ moveRight (x + y) (↑toRightMovesAdd (Sum.inr i)) = x + moveRight y i", "tactic": "cases x" }, { "state_after": "case mk.mk\nα✝¹ β✝¹ : Type u_1\na✝³ : α✝¹ → PGame\na✝² : β✝¹ → PGame\nα✝ β✝ : Type u_1\na✝¹ : α✝ → PGame\na✝ : β✝ → PGame\ni : RightMoves (mk α✝ β✝ a✝¹ a✝)\n⊢ moveRight (mk α✝¹ β✝¹ a✝³ a✝² + mk α✝ β✝ a✝¹ a✝) (↑toRightMovesAdd (Sum.inr i)) =\n mk α✝¹ β✝¹ a✝³ a✝² + moveRight (mk α✝ β✝ a✝¹ a✝) i", "state_before": "case mk\ny : PGame\ni : RightMoves y\nα✝ β✝ : Type u_1\na✝¹ : α✝ → PGame\na✝ : β✝ → PGame\n⊢ moveRight (mk α✝ β✝ a✝¹ a✝ + y) (↑toRightMovesAdd (Sum.inr i)) = mk α✝ β✝ a✝¹ a✝ + moveRight y i", "tactic": "cases y" }, { "state_after": "no goals", "state_before": "case mk.mk\nα✝¹ β✝¹ : Type u_1\na✝³ : α✝¹ → PGame\na✝² : β✝¹ → PGame\nα✝ β✝ : Type u_1\na✝¹ : α✝ → PGame\na✝ : β✝ → PGame\ni : RightMoves (mk α✝ β✝ a✝¹ a✝)\n⊢ moveRight (mk α✝¹ β✝¹ a✝³ a✝² + mk α✝ β✝ a✝¹ a✝) (↑toRightMovesAdd (Sum.inr i)) =\n mk α✝¹ β✝¹ a✝³ a✝² + moveRight (mk α✝ β✝ a✝¹ a✝) i", "tactic": "rfl" } ]
[ 1556, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1552, 1 ]
Mathlib/CategoryTheory/Monoidal/OfHasFiniteProducts.lean
CategoryTheory.monoidalOfHasFiniteCoproducts.tensorObj
[]
[ 181, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.coe_smul
[]
[ 1287, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1286, 1 ]
Mathlib/Order/SymmDiff.lean
Pi.bihimp_apply
[]
[ 871, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 869, 1 ]
Mathlib/Analysis/NormedSpace/Ray.lean
norm_injOn_ray_right
[ { "state_after": "no goals", "state_before": "E : Type ?u.122924\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx y : F\nhy : y ≠ 0\n⊢ Set.InjOn Norm.norm {x | SameRay ℝ x y}", "tactic": "simpa only [SameRay.sameRay_comm] using norm_injOn_ray_left hy" } ]
[ 73, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Data/Polynomial/Monic.lean
Polynomial.not_isUnit_X_pow_sub_one
[ { "state_after": "R✝ : Type u\nS : Type v\na b : R✝\nm n✝ : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nn : ℕ\nh : IsUnit (X ^ n - 1)\n⊢ False", "state_before": "R✝ : Type u\nS : Type v\na b : R✝\nm n✝ : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nn : ℕ\n⊢ ¬IsUnit (X ^ n - 1)", "tactic": "intro h" }, { "state_after": "case inl\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nh : IsUnit (X ^ 0 - 1)\n⊢ False\n\ncase inr\nR✝ : Type u\nS : Type v\na b : R✝\nm n✝ : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nn : ℕ\nh : IsUnit (X ^ n - 1)\nhn : n ≠ 0\n⊢ False", "state_before": "R✝ : Type u\nS : Type v\na b : R✝\nm n✝ : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nn : ℕ\nh : IsUnit (X ^ n - 1)\n⊢ False", "tactic": "rcases eq_or_ne n 0 with (rfl | hn)" }, { "state_after": "case inr\nR✝ : Type u\nS : Type v\na b : R✝\nm n✝ : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nn : ℕ\nh : IsUnit (X ^ n - 1)\nhn : n ≠ 0\n⊢ n = 0", "state_before": "case inr\nR✝ : Type u\nS : Type v\na b : R✝\nm n✝ : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nn : ℕ\nh : IsUnit (X ^ n - 1)\nhn : n ≠ 0\n⊢ False", "tactic": "apply hn" }, { "state_after": "no goals", "state_before": "case inr\nR✝ : Type u\nS : Type v\na b : R✝\nm n✝ : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nn : ℕ\nh : IsUnit (X ^ n - 1)\nhn : n ≠ 0\n⊢ n = 0", "tactic": "rw [← @natDegree_one R, ← (monic_X_pow_sub_C _ hn).eq_one_of_isUnit h, natDegree_X_pow_sub_C]" }, { "state_after": "no goals", "state_before": "case inl\nR✝ : Type u\nS : Type v\na b : R✝\nm n : ℕ\nι : Type y\ninst✝² : Ring R✝\np : R✝[X]\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Nontrivial R\nh : IsUnit (X ^ 0 - 1)\n⊢ False", "tactic": "simp at h" } ]
[ 399, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.le_succ_of_pred_le
[]
[ 342, 24 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 339, 1 ]
Mathlib/Topology/UniformSpace/Separation.lean
separated_def
[ { "state_after": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝³ : UniformSpace α✝\ninst✝² : UniformSpace β\ninst✝¹ : UniformSpace γ\nα : Type u\ninst✝ : UniformSpace α\n⊢ (∀ (a b : α), (∀ (t : Set (α × α)), t ∈ (𝓤 α).sets → (a, b) ∈ t) ↔ a = b) ↔\n ∀ (x y : α), (∀ (r : Set (α × α)), r ∈ 𝓤 α → (x, y) ∈ r) → x = y", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝³ : UniformSpace α✝\ninst✝² : UniformSpace β\ninst✝¹ : UniformSpace γ\nα : Type u\ninst✝ : UniformSpace α\n⊢ SeparatedSpace α ↔ ∀ (x y : α), (∀ (r : Set (α × α)), r ∈ 𝓤 α → (x, y) ∈ r) → x = y", "tactic": "simp only [separatedSpace_iff, Set.ext_iff, Prod.forall, mem_idRel, separationRel, mem_sInter]" }, { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝³ : UniformSpace α✝\ninst✝² : UniformSpace β\ninst✝¹ : UniformSpace γ\nα : Type u\ninst✝ : UniformSpace α\n⊢ (∀ (a b : α), (∀ (t : Set (α × α)), t ∈ (𝓤 α).sets → (a, b) ∈ t) ↔ a = b) ↔\n ∀ (x y : α), (∀ (r : Set (α × α)), r ∈ 𝓤 α → (x, y) ∈ r) → x = y", "tactic": "exact forall₂_congr fun _ _ => ⟨Iff.mp, fun h => ⟨h, fun H U hU => H ▸ refl_mem_uniformity hU⟩⟩" } ]
[ 139, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/FieldTheory/Subfield.lean
RingHom.fieldRange_eq_map
[ { "state_after": "case h\nK : Type u\nL : Type v\nM : Type w\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Field M\ng : L →+* M\nf : K →+* L\nx✝ : L\n⊢ x✝ ∈ fieldRange f ↔ x✝ ∈ Subfield.map f ⊤", "state_before": "K : Type u\nL : Type v\nM : Type w\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Field M\ng : L →+* M\nf : K →+* L\n⊢ fieldRange f = Subfield.map f ⊤", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nK : Type u\nL : Type v\nM : Type w\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Field M\ng : L →+* M\nf : K →+* L\nx✝ : L\n⊢ x✝ ∈ fieldRange f ↔ x✝ ∈ Subfield.map f ⊤", "tactic": "simp" } ]
[ 565, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 563, 1 ]
Mathlib/Algebra/MonoidAlgebra/Basic.lean
MonoidAlgebra.mul_single_one_apply
[ { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\nR : Type ?u.504877\ninst✝¹ : Semiring k\ninst✝ : MulOneClass G\nf : MonoidAlgebra k G\nr : k\nx a : G\n⊢ a * 1 = x ↔ a = x", "tactic": "rw [mul_one]" } ]
[ 558, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 556, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.PullbackCone.mono_fst_of_is_pullback_of_mono
[ { "state_after": "C : Type u\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nht : IsLimit t\ninst✝ : Mono g\nW : C\nh k : W ⟶ t.pt\ni : h ≫ fst t = k ≫ fst t\n⊢ h ≫ snd t = k ≫ snd t", "state_before": "C : Type u\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nW X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nht : IsLimit t\ninst✝ : Mono g\n⊢ Mono (fst t)", "tactic": "refine ⟨fun {W} h k i => IsLimit.hom_ext ht i ?_⟩" }, { "state_after": "C : Type u\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nht : IsLimit t\ninst✝ : Mono g\nW : C\nh k : W ⟶ t.pt\ni : h ≫ fst t = k ≫ fst t\n⊢ h ≫ fst t ≫ f = k ≫ fst t ≫ f", "state_before": "C : Type u\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nht : IsLimit t\ninst✝ : Mono g\nW : C\nh k : W ⟶ t.pt\ni : h ≫ fst t = k ≫ fst t\n⊢ h ≫ snd t = k ≫ snd t", "tactic": "rw [← cancel_mono g, Category.assoc, Category.assoc, ←condition]" }, { "state_after": "C : Type u\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nht : IsLimit t\ninst✝ : Mono g\nW : C\nh k : W ⟶ t.pt\ni : h ≫ fst t = k ≫ fst t\nthis : (h ≫ fst t) ≫ f = (k ≫ fst t) ≫ f\n⊢ h ≫ fst t ≫ f = k ≫ fst t ≫ f", "state_before": "C : Type u\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nht : IsLimit t\ninst✝ : Mono g\nW : C\nh k : W ⟶ t.pt\ni : h ≫ fst t = k ≫ fst t\nthis : (fun x => x ≫ f) (h ≫ fst t) = (fun x => x ≫ f) (k ≫ fst t)\n⊢ h ≫ fst t ≫ f = k ≫ fst t ≫ f", "tactic": "dsimp at this" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nht : IsLimit t\ninst✝ : Mono g\nW : C\nh k : W ⟶ t.pt\ni : h ≫ fst t = k ≫ fst t\nthis : (h ≫ fst t) ≫ f = (k ≫ fst t) ≫ f\n⊢ h ≫ fst t ≫ f = k ≫ fst t ≫ f", "tactic": "rwa [Category.assoc, Category.assoc] at this" } ]
[ 641, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 636, 1 ]
Mathlib/Data/Bool/Basic.lean
Bool.left_le_or
[ { "state_after": "no goals", "state_before": "⊢ ∀ (x y : Bool), x ≤ (x || y)", "tactic": "decide" } ]
[ 364, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 364, 1 ]
Mathlib/GroupTheory/GroupAction/Defs.lean
smul_zero
[]
[ 702, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 701, 1 ]
Mathlib/Order/RelClasses.lean
eq_or_ssubset_of_subset
[]
[ 769, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 768, 1 ]
Mathlib/Analysis/Convex/Between.lean
sbtw_iff_right_ne_and_left_mem_image_Ioi
[ { "state_after": "no goals", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.511588\nP : Type u_3\nP' : Type ?u.511594\ninst✝³ : LinearOrderedField R\ninst✝² : AddCommGroup V\ninst✝¹ : Module R V\ninst✝ : AddTorsor V P\nx y z : P\n⊢ Sbtw R x y z ↔ z ≠ y ∧ x ∈ ↑(lineMap z y) '' Set.Ioi 1", "tactic": "rw [sbtw_comm, sbtw_iff_left_ne_and_right_mem_image_Ioi]" } ]
[ 754, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 752, 1 ]
Mathlib/CategoryTheory/Adjunction/Basic.lean
CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_left
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj : CoreHomEquiv F G\nX' X : C\nY Y' : D\nf : X' ⟶ X\ng : F.obj X ⟶ Y\n⊢ F.map f ≫ g = ↑(homEquiv adj X' Y).symm (f ≫ ↑(homEquiv adj X Y) g)", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj : CoreHomEquiv F G\nX' X : C\nY Y' : D\nf : X' ⟶ X\ng : F.obj X ⟶ Y\n⊢ ↑(homEquiv adj X' Y) (F.map f ≫ g) = f ≫ ↑(homEquiv adj X Y) g", "tactic": "rw [← Equiv.eq_symm_apply]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj : CoreHomEquiv F G\nX' X : C\nY Y' : D\nf : X' ⟶ X\ng : F.obj X ⟶ Y\n⊢ F.map f ≫ g = ↑(homEquiv adj X' Y).symm (f ≫ ↑(homEquiv adj X Y) g)", "tactic": "simp" } ]
[ 287, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Computability/Partrec.lean
Computable.option_getD
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.191844\nσ : Type ?u.191847\ninst✝³ : Primcodable α\ninst✝² : Primcodable β\ninst✝¹ : Primcodable γ\ninst✝ : Primcodable σ\nf : α → Option β\ng : α → β\nhf : Computable f\nhg : Computable g\na : α\n⊢ (Option.casesOn (f a) (g a) fun b => b) = Option.getD (f a) (g a)", "tactic": "cases f a <;> rfl" } ]
[ 706, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 703, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.succ_sub_one
[]
[ 143, 55 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 143, 1 ]
Mathlib/Algebra/Ring/Idempotents.lean
IsIdempotentElem.one_sub
[ { "state_after": "no goals", "state_before": "M : Type ?u.2741\nN : Type ?u.2744\nS : Type ?u.2747\nM₀ : Type ?u.2750\nM₁ : Type ?u.2753\nR : Type u_1\nG : Type ?u.2759\nG₀ : Type ?u.2762\ninst✝⁷ : Mul M\ninst✝⁶ : Monoid N\ninst✝⁵ : Semigroup S\ninst✝⁴ : MulZeroClass M₀\ninst✝³ : MulOneClass M₁\ninst✝² : NonAssocRing R\ninst✝¹ : Group G\ninst✝ : CancelMonoidWithZero G₀\np : R\nh : IsIdempotentElem p\n⊢ IsIdempotentElem (1 - p)", "tactic": "rw [IsIdempotentElem, mul_sub, mul_one, sub_mul, one_mul, h.eq, sub_self, sub_zero]" } ]
[ 69, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Topology/Homotopy/HSpaces.lean
unitInterval.qRight_zero_right
[ { "state_after": "t : ↑I\n⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1", "state_before": "t : ↑I\n⊢ ↑(qRight (t, 0)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1", "tactic": "simp only [qRight, coe_zero, add_zero, div_one]" }, { "state_after": "case inl\nt : ↑I\nh✝ : ↑t ≤ 1 / 2\n⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 2 * ↑t\n\ncase inr\nt : ↑I\nh✝ : ¬↑t ≤ 1 / 2\n⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 1", "state_before": "t : ↑I\n⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1", "tactic": "split_ifs" }, { "state_after": "t : ↑I\nh✝ : ↑t ≤ 1 / 2\n⊢ ↑t ∈ Set.Icc 0 (1 / 2)", "state_before": "case inl\nt : ↑I\nh✝ : ↑t ≤ 1 / 2\n⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 2 * ↑t", "tactic": "rw [Set.projIcc_of_mem _ ((mul_pos_mem_iff zero_lt_two).2 _)]" }, { "state_after": "t : ↑I\nh✝ : ↑t ≤ 1 / 2\n⊢ ↑t ≤ 1 / 2", "state_before": "t : ↑I\nh✝ : ↑t ≤ 1 / 2\n⊢ ↑t ∈ Set.Icc 0 (1 / 2)", "tactic": "refine' ⟨t.2.1, _⟩" }, { "state_after": "no goals", "state_before": "t : ↑I\nh✝ : ↑t ≤ 1 / 2\n⊢ ↑t ≤ 1 / 2", "tactic": "tauto" }, { "state_after": "case inr\nt : ↑I\nh✝ : ¬↑t ≤ 1 / 2\n⊢ 1 ≤ 2 * ↑t\n\nt : ↑I\nh✝ : ¬↑t ≤ 1 / 2\n⊢ 0 < 1", "state_before": "case inr\nt : ↑I\nh✝ : ¬↑t ≤ 1 / 2\n⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 1", "tactic": "rw [(Set.projIcc_eq_right _).2]" }, { "state_after": "no goals", "state_before": "case inr\nt : ↑I\nh✝ : ¬↑t ≤ 1 / 2\n⊢ 1 ≤ 2 * ↑t", "tactic": "linarith" }, { "state_after": "no goals", "state_before": "t : ↑I\nh✝ : ¬↑t ≤ 1 / 2\n⊢ 0 < 1", "tactic": "exact zero_lt_one" } ]
[ 214, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Int.addLeft_one_isCycle
[ { "state_after": "no goals", "state_before": "ι : Type ?u.3065754\nα : Type ?u.3065757\nβ : Type ?u.3065760\ninst✝ : DecidableEq α\nn : ℤ\nx✝ : ↑(Equiv.addLeft 1) n ≠ n\n⊢ ↑(Equiv.addLeft 1 ^ n) 0 = n", "tactic": "simp" } ]
[ 1860, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1859, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.isSymm_zero
[]
[ 935, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 935, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_finset_sum'
[ { "state_after": "case empty\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s → AEMeasurable (f b)\nhf : ∀ (b : β), b ∈ ∅ → AEMeasurable (f b)\n⊢ (∫⁻ (a : α), ∑ b in ∅, f b a ∂μ) = ∑ b in ∅, ∫⁻ (a : α), f b a ∂μ\n\ncase insert\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns✝ : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s✝ → AEMeasurable (f b)\na : β\ns : Finset β\nhas : ¬a ∈ s\nih : (∀ (b : β), b ∈ s → AEMeasurable (f b)) → (∫⁻ (a : α), ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ (a : α), f b a ∂μ\nhf : ∀ (b : β), b ∈ insert a s → AEMeasurable (f b)\n⊢ (∫⁻ (a_1 : α), ∑ b in insert a s, f b a_1 ∂μ) = ∑ b in insert a s, ∫⁻ (a : α), f b a ∂μ", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns : Finset β\nf : β → α → ℝ≥0∞\nhf : ∀ (b : β), b ∈ s → AEMeasurable (f b)\n⊢ (∫⁻ (a : α), ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ (a : α), f b a ∂μ", "tactic": "induction' s using Finset.induction_on with a s has ih" }, { "state_after": "no goals", "state_before": "case empty\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s → AEMeasurable (f b)\nhf : ∀ (b : β), b ∈ ∅ → AEMeasurable (f b)\n⊢ (∫⁻ (a : α), ∑ b in ∅, f b a ∂μ) = ∑ b in ∅, ∫⁻ (a : α), f b a ∂μ", "tactic": "simp" }, { "state_after": "case insert\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns✝ : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s✝ → AEMeasurable (f b)\na : β\ns : Finset β\nhas : ¬a ∈ s\nih : (∀ (b : β), b ∈ s → AEMeasurable (f b)) → (∫⁻ (a : α), ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ (a : α), f b a ∂μ\nhf : ∀ (b : β), b ∈ insert a s → AEMeasurable (f b)\n⊢ (∫⁻ (a_1 : α), f a a_1 + ∑ b in s, f b a_1 ∂μ) = (∫⁻ (a_1 : α), f a a_1 ∂μ) + ∑ b in s, ∫⁻ (a : α), f b a ∂μ", "state_before": "case insert\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns✝ : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s✝ → AEMeasurable (f b)\na : β\ns : Finset β\nhas : ¬a ∈ s\nih : (∀ (b : β), b ∈ s → AEMeasurable (f b)) → (∫⁻ (a : α), ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ (a : α), f b a ∂μ\nhf : ∀ (b : β), b ∈ insert a s → AEMeasurable (f b)\n⊢ (∫⁻ (a_1 : α), ∑ b in insert a s, f b a_1 ∂μ) = ∑ b in insert a s, ∫⁻ (a : α), f b a ∂μ", "tactic": "simp only [Finset.sum_insert has]" }, { "state_after": "case insert\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns✝ : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s✝ → AEMeasurable (f b)\na : β\ns : Finset β\nhas : ¬a ∈ s\nih : (∀ (b : β), b ∈ s → AEMeasurable (f b)) → (∫⁻ (a : α), ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ (a : α), f b a ∂μ\nhf : AEMeasurable (f a) ∧ ∀ (x : β), x ∈ s → AEMeasurable (f x)\n⊢ (∫⁻ (a_1 : α), f a a_1 + ∑ b in s, f b a_1 ∂μ) = (∫⁻ (a_1 : α), f a a_1 ∂μ) + ∑ b in s, ∫⁻ (a : α), f b a ∂μ", "state_before": "case insert\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns✝ : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s✝ → AEMeasurable (f b)\na : β\ns : Finset β\nhas : ¬a ∈ s\nih : (∀ (b : β), b ∈ s → AEMeasurable (f b)) → (∫⁻ (a : α), ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ (a : α), f b a ∂μ\nhf : ∀ (b : β), b ∈ insert a s → AEMeasurable (f b)\n⊢ (∫⁻ (a_1 : α), f a a_1 + ∑ b in s, f b a_1 ∂μ) = (∫⁻ (a_1 : α), f a a_1 ∂μ) + ∑ b in s, ∫⁻ (a : α), f b a ∂μ", "tactic": "rw [Finset.forall_mem_insert] at hf" }, { "state_after": "no goals", "state_before": "case insert\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.929424\nδ : Type ?u.929427\nm : MeasurableSpace α\nμ ν : Measure α\ns✝ : Finset β\nf : β → α → ℝ≥0∞\nhf✝ : ∀ (b : β), b ∈ s✝ → AEMeasurable (f b)\na : β\ns : Finset β\nhas : ¬a ∈ s\nih : (∀ (b : β), b ∈ s → AEMeasurable (f b)) → (∫⁻ (a : α), ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ (a : α), f b a ∂μ\nhf : AEMeasurable (f a) ∧ ∀ (x : β), x ∈ s → AEMeasurable (f x)\n⊢ (∫⁻ (a_1 : α), f a a_1 + ∑ b in s, f b a_1 ∂μ) = (∫⁻ (a_1 : α), f a a_1 ∂μ) + ∑ b in s, ∫⁻ (a : α), f b a ∂μ", "tactic": "rw [lintegral_add_left' hf.1, ih hf.2]" } ]
[ 670, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 663, 1 ]
Std/Data/Option/Lemmas.lean
Option.forall
[]
[ 18, 70 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 17, 11 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.inv_two_add_inv_two
[ { "state_after": "no goals", "state_before": "α : Type ?u.312605\nβ : Type ?u.312608\na b c d : ℝ≥0∞\nr p q : ℝ≥0\n⊢ 2⁻¹ + 2⁻¹ = 1", "tactic": "rw [← two_mul, ← div_eq_mul_inv, ENNReal.div_self two_ne_zero two_ne_top]" } ]
[ 1720, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1719, 1 ]
Mathlib/Order/Filter/Pointwise.lean
IsUnit.filter
[]
[ 724, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 723, 11 ]
Mathlib/Algebra/CubicDiscriminant.lean
Cubic.d_eq_three_roots
[ { "state_after": "no goals", "state_before": "R : Type ?u.1111262\nS : Type ?u.1111265\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\nh3 : roots (map φ P) = {x, y, z}\n⊢ ↑φ P.d = ↑φ P.a * -(x * y * z)", "tactic": "injection eq_sum_three_roots ha h3" } ]
[ 554, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 552, 1 ]
Mathlib/LinearAlgebra/FreeModule/Rank.lean
rank_directSum
[ { "state_after": "R : Type u\nM✝ : Type v\nN : Type w\ninst✝¹⁰ : Ring R\ninst✝⁹ : StrongRankCondition R\ninst✝⁸ : AddCommGroup M✝\ninst✝⁷ : Module R M✝\ninst✝⁶ : Module.Free R M✝\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : Module.Free R N\nι : Type v\nM : ι → Type w\ninst✝² : (i : ι) → AddCommGroup (M i)\ninst✝¹ : (i : ι) → Module R (M i)\ninst✝ : ∀ (i : ι), Module.Free R (M i)\nB : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i)\n⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)", "state_before": "R : Type u\nM✝ : Type v\nN : Type w\ninst✝¹⁰ : Ring R\ninst✝⁹ : StrongRankCondition R\ninst✝⁸ : AddCommGroup M✝\ninst✝⁷ : Module R M✝\ninst✝⁶ : Module.Free R M✝\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : Module.Free R N\nι : Type v\nM : ι → Type w\ninst✝² : (i : ι) → AddCommGroup (M i)\ninst✝¹ : (i : ι) → Module R (M i)\ninst✝ : ∀ (i : ι), Module.Free R (M i)\n⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)", "tactic": "let B i := chooseBasis R (M i)" }, { "state_after": "R : Type u\nM✝ : Type v\nN : Type w\ninst✝¹⁰ : Ring R\ninst✝⁹ : StrongRankCondition R\ninst✝⁸ : AddCommGroup M✝\ninst✝⁷ : Module R M✝\ninst✝⁶ : Module.Free R M✝\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : Module.Free R N\nι : Type v\nM : ι → Type w\ninst✝² : (i : ι) → AddCommGroup (M i)\ninst✝¹ : (i : ι) → Module R (M i)\ninst✝ : ∀ (i : ι), Module.Free R (M i)\nB : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i)\nb : Basis ((i : ι) × ChooseBasisIndex R (M i)) R (⨁ (i : ι), M i) := Dfinsupp.basis fun i => B i\n⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)", "state_before": "R : Type u\nM✝ : Type v\nN : Type w\ninst✝¹⁰ : Ring R\ninst✝⁹ : StrongRankCondition R\ninst✝⁸ : AddCommGroup M✝\ninst✝⁷ : Module R M✝\ninst✝⁶ : Module.Free R M✝\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : Module.Free R N\nι : Type v\nM : ι → Type w\ninst✝² : (i : ι) → AddCommGroup (M i)\ninst✝¹ : (i : ι) → Module R (M i)\ninst✝ : ∀ (i : ι), Module.Free R (M i)\nB : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i)\n⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)", "tactic": "let b : Basis _ R (⨁ i, M i) := Dfinsupp.basis fun i => B i" }, { "state_after": "no goals", "state_before": "R : Type u\nM✝ : Type v\nN : Type w\ninst✝¹⁰ : Ring R\ninst✝⁹ : StrongRankCondition R\ninst✝⁸ : AddCommGroup M✝\ninst✝⁷ : Module R M✝\ninst✝⁶ : Module.Free R M✝\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R N\ninst✝³ : Module.Free R N\nι : Type v\nM : ι → Type w\ninst✝² : (i : ι) → AddCommGroup (M i)\ninst✝¹ : (i : ι) → Module R (M i)\ninst✝ : ∀ (i : ι), Module.Free R (M i)\nB : (i : ι) → Basis (ChooseBasisIndex R (M i)) R (M i) := fun i => chooseBasis R (M i)\nb : Basis ((i : ι) × ChooseBasisIndex R (M i)) R (⨁ (i : ι), M i) := Dfinsupp.basis fun i => B i\n⊢ Module.rank R (⨁ (i : ι), M i) = sum fun i => Module.rank R (M i)", "tactic": "simp [← b.mk_eq_rank'', fun i => (B i).mk_eq_rank'']" } ]
[ 70, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
IntervalIntegrable.mono_set_ae
[]
[ 208, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/LinearAlgebra/PiTensorProduct.lean
PiTensorProduct.ext
[ { "state_after": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\n⊢ ∀ (x : ⨂[R] (i : ι), s i), ↑φ₁ x = ↑φ₂ x", "state_before": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\n⊢ φ₁ = φ₂", "tactic": "refine' LinearMap.ext _" }, { "state_after": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\n⊢ ∀ {r : R} {f : (i : ι) → s i}, ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f)", "state_before": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\n⊢ ∀ (x : ⨂[R] (i : ι), s i), ↑φ₁ x = ↑φ₂ x", "tactic": "refine' fun z ↦\n PiTensorProduct.induction_on' z _ fun {x y} hx hy ↦ by rw [φ₁.map_add, φ₂.map_add, hx, hy]" }, { "state_after": "no goals", "state_before": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz x y : ⨂[R] (i : ι), s i\nhx : ↑φ₁ x = ↑φ₂ x\nhy : ↑φ₁ y = ↑φ₂ y\n⊢ ↑φ₁ (x + y) = ↑φ₂ (x + y)", "tactic": "rw [φ₁.map_add, φ₂.map_add, hx, hy]" }, { "state_after": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\nr : R\nf : (i : ι) → s i\n⊢ ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f)", "state_before": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\n⊢ ∀ {r : R} {f : (i : ι) → s i}, ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f)", "tactic": "intro r f" }, { "state_after": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\nr : R\nf : (i : ι) → s i\n⊢ r • ↑φ₁ (↑(tprod R) f) = r • ↑φ₂ (↑(tprod R) f)", "state_before": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\nr : R\nf : (i : ι) → s i\n⊢ ↑φ₁ (tprodCoeff R r f) = ↑φ₂ (tprodCoeff R r f)", "tactic": "rw [tprodCoeff_eq_smul_tprod, φ₁.map_smul, φ₂.map_smul]" }, { "state_after": "case h\nι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\nr : R\nf : (i : ι) → s i\n⊢ ↑φ₁ (↑(tprod R) f) = ↑φ₂ (↑(tprod R) f)", "state_before": "ι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\nr : R\nf : (i : ι) → s i\n⊢ r • ↑φ₁ (↑(tprod R) f) = r • ↑φ₂ (↑(tprod R) f)", "tactic": "apply _root_.congr_arg" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_3\nι₂ : Type ?u.234224\nι₃ : Type ?u.234227\nR : Type u_1\ninst✝⁷ : CommSemiring R\nR₁ : Type ?u.234236\nR₂ : Type ?u.234239\ns : ι → Type u_2\ninst✝⁶ : (i : ι) → AddCommMonoid (s i)\ninst✝⁵ : (i : ι) → Module R (s i)\nM : Type ?u.234429\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nE : Type u_4\ninst✝² : AddCommMonoid E\ninst✝¹ : Module R E\nF : Type ?u.234697\ninst✝ : AddCommMonoid F\nφ₁ φ₂ : (⨂[R] (i : ι), s i) →ₗ[R] E\nH : LinearMap.compMultilinearMap φ₁ (tprod R) = LinearMap.compMultilinearMap φ₂ (tprod R)\nz : ⨂[R] (i : ι), s i\nr : R\nf : (i : ι) → s i\n⊢ ↑φ₁ (↑(tprod R) f) = ↑φ₂ (↑(tprod R) f)", "tactic": "exact MultilinearMap.congr_fun H f" } ]
[ 348, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 340, 1 ]
Mathlib/Analysis/LocallyConvex/ContinuousOfBounded.lean
LinearMap.clmOfExistsBoundedImage_coe
[]
[ 81, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Continuity.lean
ContinuousWithinAt.rpow_const
[]
[ 313, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 311, 8 ]
Mathlib/Order/Atoms.lean
isAtomic_of_isCoatomic_of_complementedLattice_of_isModular
[]
[ 876, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 874, 1 ]
Mathlib/Data/PNat/Xgcd.lean
PNat.XgcdType.finish_isReduced
[ { "state_after": "u : XgcdType\n⊢ (finish u).ap = (finish u).bp", "state_before": "u : XgcdType\n⊢ IsReduced (finish u)", "tactic": "dsimp [IsReduced]" }, { "state_after": "no goals", "state_before": "u : XgcdType\n⊢ (finish u).ap = (finish u).bp", "tactic": "rfl" } ]
[ 280, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 278, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
squeeze_one_norm'
[]
[ 1058, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1055, 1 ]
Mathlib/Topology/Instances/Matrix.lean
HasSum.matrix_transpose
[]
[ 296, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 294, 1 ]
Mathlib/Algebra/Lie/Basic.lean
LieHom.coe_mk
[]
[ 406, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/Algebra/Order/Hom/Monoid.lean
OrderMonoidWithZeroHom.toMonoidWithZeroHom_injective
[ { "state_after": "no goals", "state_before": "F : Type ?u.124488\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.124497\nδ : Type ?u.124500\ninst✝⁷ : Preorder α\ninst✝⁶ : Preorder β\ninst✝⁵ : Preorder γ\ninst✝⁴ : Preorder δ\ninst✝³ : MulZeroOneClass α\ninst✝² : MulZeroOneClass β\ninst✝¹ : MulZeroOneClass γ\ninst✝ : MulZeroOneClass δ\nf✝ g✝ f g : α →*₀o β\nh : f.toMonoidWithZeroHom = g.toMonoidWithZeroHom\n⊢ ∀ (a : α), ↑f a = ↑g a", "tactic": "convert FunLike.ext_iff.1 h using 0" } ]
[ 641, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 640, 1 ]
Mathlib/GroupTheory/EckmannHilton.lean
EckmannHilton.mul_assoc
[ { "state_after": "no goals", "state_before": "X : Type u\nm₁ m₂ : X → X → X\ne₁ e₂ : X\nh₁ : IsUnital m₁ e₁\nh₂ : IsUnital m₂ e₂\ndistrib : ∀ (a b c d : X), m₁ (m₂ a b) (m₂ c d) = m₂ (m₁ a c) (m₁ b d)\na b c : X\n⊢ m₂ (m₂ a b) c = m₂ a (m₂ b c)", "tactic": "simpa [mul h₁ h₂ distrib, h₂.left_id, h₂.right_id] using distrib a b e₂ c" } ]
[ 89, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Order/Filter/Prod.lean
Filter.map_const_principal_coprod_map_id_principal
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.65740\nβ✝ : Type ?u.65743\nγ : Type ?u.65746\nδ : Type ?u.65749\nι✝ : Sort ?u.65752\nf : Filter α✝\ng : Filter β✝\nα : Type u_1\nβ : Type u_2\nι : Type u_3\na : α\nb : β\ni : ι\n⊢ Filter.coprod (map (fun x => b) (𝓟 {a})) (map id (𝓟 {i})) = 𝓟 ({b} ×ˢ univ ∪ univ ×ˢ {i})", "tactic": "simp only [map_principal, Filter.coprod, comap_principal, sup_principal, image_singleton,\n image_id, prod_univ, univ_prod, id]" } ]
[ 542, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 538, 1 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.tendsto_atBot
[]
[ 547, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 544, 11 ]
Mathlib/Combinatorics/Additive/Etransform.lean
Finset.mulEtransformRight.fst_mul_snd_subset
[ { "state_after": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Group α\ne : α\nx : Finset α × Finset α\n⊢ op e • x.fst * e⁻¹ • x.snd ⊆ x.fst * x.snd", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Group α\ne : α\nx : Finset α × Finset α\n⊢ (mulEtransformRight e x).fst * (mulEtransformRight e x).snd ⊆ x.fst * x.snd", "tactic": "refine' union_mul_inter_subset_union.trans (union_subset Subset.rfl _)" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : Group α\ne : α\nx : Finset α × Finset α\n⊢ op e • x.fst * e⁻¹ • x.snd ⊆ x.fst * x.snd", "tactic": "rw [op_smul_finset_mul_eq_mul_smul_finset, smul_inv_smul]" } ]
[ 156, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Ordered.lean
lineMap_le_map_iff_slope_le_slope
[]
[ 288, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/Algebra/Module/Basic.lean
inv_int_cast_smul_comm
[]
[ 538, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 535, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.mul_dvd_mul_left
[]
[ 687, 37 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 686, 11 ]
Mathlib/Analysis/NormedSpace/Basic.lean
interior_sphere'
[ { "state_after": "no goals", "state_before": "α : Type ?u.309886\nβ : Type ?u.309889\nγ : Type ?u.309892\nι : Type ?u.309895\ninst✝⁶ : NormedField α\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace α E\nF : Type ?u.309988\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace α F\ninst✝¹ : NormedSpace ℝ E\ninst✝ : Nontrivial E\nx : E\nr : ℝ\n⊢ interior (sphere x r) = ∅", "tactic": "rw [← frontier_closedBall' x, interior_frontier isClosed_ball]" } ]
[ 397, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 396, 1 ]
Mathlib/Order/Hom/CompleteLattice.lean
CompleteLatticeHom.setPreimage_comp
[]
[ 940, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 938, 1 ]
Mathlib/Data/Nat/Prime.lean
Nat.minFac_eq_one_iff
[ { "state_after": "case mp\nn : ℕ\n⊢ minFac n = 1 → n = 1\n\ncase mpr\nn : ℕ\n⊢ n = 1 → minFac n = 1", "state_before": "n : ℕ\n⊢ minFac n = 1 ↔ n = 1", "tactic": "constructor" }, { "state_after": "case mp\nn : ℕ\nh : minFac n = 1\n⊢ n = 1", "state_before": "case mp\nn : ℕ\n⊢ minFac n = 1 → n = 1", "tactic": "intro h" }, { "state_after": "case mp\nn : ℕ\nh : minFac n = 1\nhn : ¬n = 1\n⊢ False", "state_before": "case mp\nn : ℕ\nh : minFac n = 1\n⊢ n = 1", "tactic": "by_contra hn" }, { "state_after": "case mp\nn : ℕ\nh : minFac n = 1\nhn : ¬n = 1\nthis : Prime (minFac n)\n⊢ False", "state_before": "case mp\nn : ℕ\nh : minFac n = 1\nhn : ¬n = 1\n⊢ False", "tactic": "have := minFac_prime hn" }, { "state_after": "case mp\nn : ℕ\nh : minFac n = 1\nhn : ¬n = 1\nthis : Prime 1\n⊢ False", "state_before": "case mp\nn : ℕ\nh : minFac n = 1\nhn : ¬n = 1\nthis : Prime (minFac n)\n⊢ False", "tactic": "rw [h] at this" }, { "state_after": "no goals", "state_before": "case mp\nn : ℕ\nh : minFac n = 1\nhn : ¬n = 1\nthis : Prime 1\n⊢ False", "tactic": "exact not_prime_one this" }, { "state_after": "case mpr\n\n⊢ minFac 1 = 1", "state_before": "case mpr\nn : ℕ\n⊢ n = 1 → minFac n = 1", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "case mpr\n\n⊢ minFac 1 = 1", "tactic": "rfl" } ]
[ 429, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 421, 1 ]
Mathlib/Analysis/Convex/StrictConvexSpace.lean
StrictConvexSpace.ofPairwiseSphereNormNeTwo
[]
[ 141, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Data/Nat/Dist.lean
Nat.dist_tri_left'
[ { "state_after": "n m : ℕ\n⊢ n ≤ dist m n + m", "state_before": "n m : ℕ\n⊢ n ≤ dist n m + m", "tactic": "rw [dist_comm]" }, { "state_after": "no goals", "state_before": "n m : ℕ\n⊢ n ≤ dist m n + m", "tactic": "apply dist_tri_left" } ]
[ 64, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.bsup_le_iff
[ { "state_after": "α : Type ?u.309348\nβ : Type ?u.309351\nγ : Type ?u.309354\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal\na : Ordinal\nh : ∀ (i : (Quotient.out o).α), familyOfBFamily o f i ≤ a\ni : Ordinal\nhi : i < o\n⊢ familyOfBFamily o f (enum (fun x x_1 => x < x_1) i (_ : i < type fun x x_1 => x < x_1)) ≤ a", "state_before": "α : Type ?u.309348\nβ : Type ?u.309351\nγ : Type ?u.309354\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal\na : Ordinal\nh : ∀ (i : (Quotient.out o).α), familyOfBFamily o f i ≤ a\ni : Ordinal\nhi : i < o\n⊢ f i hi ≤ a", "tactic": "rw [← familyOfBFamily_enum o f]" }, { "state_after": "no goals", "state_before": "α : Type ?u.309348\nβ : Type ?u.309351\nγ : Type ?u.309354\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal\na : Ordinal\nh : ∀ (i : (Quotient.out o).α), familyOfBFamily o f i ≤ a\ni : Ordinal\nhi : i < o\n⊢ familyOfBFamily o f (enum (fun x x_1 => x < x_1) i (_ : i < type fun x x_1 => x < x_1)) ≤ a", "tactic": "exact h _" } ]
[ 1492, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1488, 1 ]
Mathlib/Data/Vector/Zip.lean
Vector.prod_mul_prod_eq_prod_zipWith
[]
[ 54, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 51, 1 ]
Mathlib/Analysis/SpecialFunctions/Integrals.lean
intervalIntegral.intervalIntegrable_zpow
[]
[ 63, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/Algebra/Ring/BooleanRing.lean
RingHom.asBoolAlg_id
[]
[ 371, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 370, 1 ]
Mathlib/Algebra/Hom/Aut.lean
MulAut.one_apply
[]
[ 98, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Analysis/Convex/Gauge.lean
interior_subset_gauge_lt_one
[ { "state_after": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\n⊢ interior s ⊆ {x | gauge s x < 1}", "tactic": "intro x hx" }, { "state_after": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "let f : ℝ → E := fun t => t • x" }, { "state_after": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "have hf : Continuous f := by continuity" }, { "state_after": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "let s' := f ⁻¹' interior s" }, { "state_after": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "have hs' : IsOpen s' := hf.isOpen_preimage _ isOpen_interior" }, { "state_after": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "have one_mem : (1 : ℝ) ∈ s' := by simpa only [Set.mem_preimage, one_smul]" }, { "state_after": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Metric.closedBall 1 ε ⊆ s'\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "obtain ⟨ε, hε₀, hε⟩ := (Metric.nhds_basis_closedBall.1 _).1 (isOpen_iff_mem_nhds.1 hs' 1 one_mem)" }, { "state_after": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Metric.closedBall 1 ε ⊆ s'\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "rw [Real.closedBall_eq_Icc] at hε" }, { "state_after": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "have hε₁ : 0 < 1 + ε := hε₀.trans (lt_one_add ε)" }, { "state_after": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\nthis : (1 + ε)⁻¹ < 1\n⊢ x ∈ {x | gauge s x < 1}", "state_before": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "have : (1 + ε)⁻¹ < 1 := by\n rw [inv_lt_one_iff]\n right\n linarith" }, { "state_after": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\nthis : (1 + ε)⁻¹ < 1\n⊢ x ∈ (1 + ε)⁻¹ • s", "state_before": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\nthis : (1 + ε)⁻¹ < 1\n⊢ x ∈ {x | gauge s x < 1}", "tactic": "refine' (gauge_le_of_mem (inv_nonneg.2 hε₁.le) _).trans_lt this" }, { "state_after": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\nthis : (1 + ε)⁻¹ < 1\n⊢ (1 + ε) • x ∈ s", "state_before": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\nthis : (1 + ε)⁻¹ < 1\n⊢ x ∈ (1 + ε)⁻¹ • s", "tactic": "rw [mem_inv_smul_set_iff₀ hε₁.ne']" }, { "state_after": "no goals", "state_before": "case intro.intro\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\nthis : (1 + ε)⁻¹ < 1\n⊢ (1 + ε) • x ∈ s", "tactic": "exact\n interior_subset\n (hε ⟨(sub_le_self _ hε₀.le).trans ((le_add_iff_nonneg_right _).2 hε₀.le), le_rfl⟩)" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\n⊢ Continuous f", "tactic": "continuity" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\n⊢ 1 ∈ s'", "tactic": "simpa only [Set.mem_preimage, one_smul]" }, { "state_after": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\n⊢ 1 + ε ≤ 0 ∨ 1 < 1 + ε", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\n⊢ (1 + ε)⁻¹ < 1", "tactic": "rw [inv_lt_one_iff]" }, { "state_after": "case h\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\n⊢ 1 < 1 + ε", "state_before": "𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\n⊢ 1 + ε ≤ 0 ∨ 1 < 1 + ε", "tactic": "right" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type ?u.178960\nE : Type u_1\nF : Type ?u.178966\ninst✝³ : AddCommGroup E\ninst✝² : Module ℝ E\ns✝ t : Set E\na : ℝ\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousSMul ℝ E\ns : Set E\nx : E\nhx : x ∈ interior s\nf : ℝ → E := fun t => t • x\nhf : Continuous f\ns' : Set ℝ := f ⁻¹' interior s\nhs' : IsOpen s'\none_mem : 1 ∈ s'\nε : ℝ\nhε₀ : 0 < ε\nhε : Icc (1 - ε) (1 + ε) ⊆ s'\nhε₁ : 0 < 1 + ε\n⊢ 1 < 1 + ε", "tactic": "linarith" } ]
[ 351, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.sub
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.223355\nE : Type ?u.223358\nF : Type u_3\nG : Type ?u.223364\nE' : Type u_2\nF' : Type ?u.223370\nG' : Type ?u.223373\nE'' : Type ?u.223376\nF'' : Type ?u.223379\nG'' : Type ?u.223382\nR : Type ?u.223385\nR' : Type ?u.223388\n𝕜 : Type ?u.223391\n𝕜' : Type ?u.223394\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nf₁ f₂ : α → E'\ng₁ g₂ : α → F'\nh₁ : IsBigOWith c₁ l f₁ g\nh₂ : IsBigOWith c₂ l f₂ g\n⊢ IsBigOWith (c₁ + c₂) l (fun x => f₁ x - f₂ x) g", "tactic": "simpa only [sub_eq_add_neg] using h₁.add h₂.neg_left" } ]
[ 1106, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1104, 1 ]
Mathlib/Order/CompleteLattice.lean
le_iInf
[]
[ 821, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 820, 1 ]
Mathlib/MeasureTheory/Group/FundamentalDomain.lean
MeasureTheory.IsFundamentalDomain.measure_fundamentalInterior
[]
[ 677, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 676, 1 ]
Mathlib/Algebra/Hom/Equiv/Basic.lean
MulHom.toMulEquiv_apply
[]
[ 745, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 742, 1 ]
Mathlib/Algebra/Ring/Commute.lean
Commute.bit1_left
[]
[ 68, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 67, 1 ]
Std/Data/List/Lemmas.lean
List.erase_sublist
[]
[ 1075, 41 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1074, 1 ]
Std/Data/List/Lemmas.lean
List.set_comm
[ { "state_after": "no goals", "state_before": "α : Type u_1\na b : α\nx✝² x✝¹ : Nat\nx✝ : x✝² ≠ x✝¹\n⊢ set (set [] x✝² a) x✝¹ b = set (set [] x✝¹ b) x✝² a", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\na b : α\nn : Nat\nhead✝ : α\ntail✝ : List α\nx✝ : n + 1 ≠ 0\n⊢ set (set (head✝ :: tail✝) (n + 1) a) 0 b = set (set (head✝ :: tail✝) 0 b) (n + 1) a", "tactic": "simp [set]" }, { "state_after": "no goals", "state_before": "α : Type u_1\na b : α\nm : Nat\nhead✝ : α\ntail✝ : List α\nx✝ : 0 ≠ m + 1\n⊢ set (set (head✝ :: tail✝) 0 a) (m + 1) b = set (set (head✝ :: tail✝) (m + 1) b) 0 a", "tactic": "simp [set]" } ]
[ 828, 69 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 822, 1 ]
Mathlib/Algebra/Lie/Solvable.lean
LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map
[ { "state_after": "R : Type u\nL : Type v\nM : Type w\nL' : Type w₁\ninst✝⁴ : CommRing R\ninst✝³ : LieRing L\ninst✝² : LieAlgebra R L\ninst✝¹ : LieRing L'\ninst✝ : LieAlgebra R L'\nI J : LieIdeal R L\nf : L' →ₗ⁅R⁆ L\nk : ℕ\n⊢ derivedSeriesOfIdeal R L k I ≤ I", "state_before": "R : Type u\nL : Type v\nM : Type w\nL' : Type w₁\ninst✝⁴ : CommRing R\ninst✝³ : LieRing L\ninst✝² : LieAlgebra R L\ninst✝¹ : LieRing L'\ninst✝ : LieAlgebra R L'\nI J : LieIdeal R L\nf : L' →ₗ⁅R⁆ L\nk : ℕ\n⊢ map (incl I) (derivedSeries R { x // x ∈ ↑I } k) = derivedSeriesOfIdeal R L k I", "tactic": "rw [derivedSeries_eq_derivedSeriesOfIdeal_comap, map_comap_incl, inf_eq_right]" }, { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nM : Type w\nL' : Type w₁\ninst✝⁴ : CommRing R\ninst✝³ : LieRing L\ninst✝² : LieAlgebra R L\ninst✝¹ : LieRing L'\ninst✝ : LieAlgebra R L'\nI J : LieIdeal R L\nf : L' →ₗ⁅R⁆ L\nk : ℕ\n⊢ derivedSeriesOfIdeal R L k I ≤ I", "tactic": "apply derivedSeriesOfIdeal_le_self" } ]
[ 166, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/LinearAlgebra/StdBasis.lean
LinearMap.stdBasis_eq_single
[]
[ 163, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Linear.lean
ContinuousLinearMap.hasStrictFDerivAt
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.13611\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.13706\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx✝¹ : E\ns t : Set E\nL L₁ L₂ : Filter E\nx✝ : E\nx : E × E\n⊢ 0 = ↑e x.fst - ↑e x.snd - ↑e (x.fst - x.snd)", "tactic": "simp only [e.map_sub, sub_self]" } ]
[ 66, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 11 ]
Mathlib/Data/Int/GCD.lean
Int.coe_nat_gcd
[]
[ 185, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 11 ]
Mathlib/Data/Rat/Cast.lean
MonoidWithZeroHom.ext_rat'
[ { "state_after": "F : Type u_2\nι : Type ?u.82971\nα : Type ?u.82974\nβ : Type ?u.82977\nM₀ : Type u_1\ninst✝¹ : MonoidWithZero M₀\ninst✝ : MonoidWithZeroHomClass F ℚ M₀\nf g : F\nh : ∀ (m : ℤ), ↑f ↑m = ↑g ↑m\nr : ℚ\n⊢ ↑f ↑↑r.den = ↑g ↑↑r.den", "state_before": "F : Type u_2\nι : Type ?u.82971\nα : Type ?u.82974\nβ : Type ?u.82977\nM₀ : Type u_1\ninst✝¹ : MonoidWithZero M₀\ninst✝ : MonoidWithZeroHomClass F ℚ M₀\nf g : F\nh : ∀ (m : ℤ), ↑f ↑m = ↑g ↑m\nr : ℚ\n⊢ ↑f r = ↑g r", "tactic": "rw [← r.num_div_den, div_eq_mul_inv, map_mul, map_mul, h, ← Int.cast_ofNat,\n eq_on_inv₀ f g]" }, { "state_after": "no goals", "state_before": "F : Type u_2\nι : Type ?u.82971\nα : Type ?u.82974\nβ : Type ?u.82977\nM₀ : Type u_1\ninst✝¹ : MonoidWithZero M₀\ninst✝ : MonoidWithZeroHomClass F ℚ M₀\nf g : F\nh : ∀ (m : ℤ), ↑f ↑m = ↑g ↑m\nr : ℚ\n⊢ ↑f ↑↑r.den = ↑g ↑↑r.den", "tactic": "apply h" } ]
[ 457, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 453, 1 ]
Mathlib/Topology/MetricSpace/Antilipschitz.lean
AntilipschitzWith.closedEmbedding
[]
[ 200, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.semiconjBy_iff_semiconj
[]
[ 274, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 272, 1 ]
Mathlib/LinearAlgebra/Basic.lean
Submodule.map_sup_comap_of_surjective
[]
[ 911, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 909, 1 ]
Mathlib/FieldTheory/RatFunc.lean
RatFunc.mk_one
[]
[ 830, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 829, 1 ]
Mathlib/RingTheory/DedekindDomain/Dvr.lean
IsLocalization.AtPrime.isDedekindDomain
[]
[ 117, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Order/Filter/Extr.lean
IsMaxFilter.sub
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝ : OrderedAddCommGroup β\nf g : α → β\na : α\ns : Set α\nl : Filter α\nhf : IsMaxFilter f l a\nhg : IsMinFilter g l a\n⊢ IsMaxFilter (fun x => f x - g x) l a", "tactic": "simpa only [sub_eq_add_neg] using hf.add hg.neg" } ]
[ 511, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 510, 1 ]
Mathlib/Algebra/Order/Monoid/Lemmas.lean
MulLECancellable.Injective
[]
[ 1604, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1602, 11 ]
Mathlib/Analysis/Analytic/Basic.lean
HasFPowerSeriesOnBall.eventually_hasSum
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.445837\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → F\np pf pg : FormalMultilinearSeries 𝕜 E F\nx : E\nr r' : ℝ≥0∞\nhf : HasFPowerSeriesOnBall f p x r\n⊢ ∀ᶠ (y : E) in 𝓝 0, HasSum (fun n => ↑(p n) fun x => y) (f (x + y))", "tactic": "filter_upwards [EMetric.ball_mem_nhds (0 : E) hf.r_pos]using fun _ => hf.hasSum" } ]
[ 486, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 484, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.mapRange_finset_sum
[]
[ 244, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 242, 1 ]
Mathlib/Analysis/NormedSpace/Exponential.lean
invOf_exp_of_mem_ball
[ { "state_after": "𝕂 : Type u_1\n𝔸 : Type u_2\n𝔹 : Type ?u.124210\ninst✝⁷ : NontriviallyNormedField 𝕂\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedRing 𝔹\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : NormedAlgebra 𝕂 𝔹\ninst✝² : CompleteSpace 𝔸\ninst✝¹ : CharZero 𝕂\nx : 𝔸\nhx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\ninst✝ : Invertible (exp 𝕂 x)\nthis : Invertible (exp 𝕂 x) := invertibleExpOfMemBall hx\n⊢ ⅟(exp 𝕂 x) = exp 𝕂 (-x)", "state_before": "𝕂 : Type u_1\n𝔸 : Type u_2\n𝔹 : Type ?u.124210\ninst✝⁷ : NontriviallyNormedField 𝕂\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedRing 𝔹\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : NormedAlgebra 𝕂 𝔹\ninst✝² : CompleteSpace 𝔸\ninst✝¹ : CharZero 𝕂\nx : 𝔸\nhx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\ninst✝ : Invertible (exp 𝕂 x)\n⊢ ⅟(exp 𝕂 x) = exp 𝕂 (-x)", "tactic": "letI := invertibleExpOfMemBall hx" }, { "state_after": "no goals", "state_before": "𝕂 : Type u_1\n𝔸 : Type u_2\n𝔹 : Type ?u.124210\ninst✝⁷ : NontriviallyNormedField 𝕂\ninst✝⁶ : NormedRing 𝔸\ninst✝⁵ : NormedRing 𝔹\ninst✝⁴ : NormedAlgebra 𝕂 𝔸\ninst✝³ : NormedAlgebra 𝕂 𝔹\ninst✝² : CompleteSpace 𝔸\ninst✝¹ : CharZero 𝕂\nx : 𝔸\nhx : x ∈ EMetric.ball 0 (FormalMultilinearSeries.radius (expSeries 𝕂 𝔸))\ninst✝ : Invertible (exp 𝕂 x)\nthis : Invertible (exp 𝕂 x) := invertibleExpOfMemBall hx\n⊢ ⅟(exp 𝕂 x) = exp 𝕂 (-x)", "tactic": "convert(rfl : ⅟ (exp 𝕂 x) = _)" } ]
[ 309, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 307, 1 ]
Mathlib/LinearAlgebra/Prod.lean
LinearMap.fst_apply
[]
[ 79, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/FieldTheory/Minpoly/Basic.lean
minpoly.monic
[ { "state_after": "A : Type u_1\nB : Type u_2\nB' : Type ?u.2178\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ Monic\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0)", "state_before": "A : Type u_1\nB : Type u_2\nB' : Type ?u.2178\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ Monic (minpoly A x)", "tactic": "delta minpoly" }, { "state_after": "A : Type u_1\nB : Type u_2\nB' : Type ?u.2178\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ Monic\n (WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx)", "state_before": "A : Type u_1\nB : Type u_2\nB' : Type ?u.2178\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ Monic\n (if hx : IsIntegral A x then\n WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx\n else 0)", "tactic": "rw [dif_pos hx]" }, { "state_after": "no goals", "state_before": "A : Type u_1\nB : Type u_2\nB' : Type ?u.2178\ninst✝⁴ : CommRing A\ninst✝³ : Ring B\ninst✝² : Ring B'\ninst✝¹ : Algebra A B\ninst✝ : Algebra A B'\nx : B\nhx : IsIntegral A x\n⊢ Monic\n (WellFounded.min (_ : WellFounded fun p q => degree p < degree q)\n (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx)", "tactic": "exact (degree_lt_wf.min_mem _ hx).1" } ]
[ 58, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Data/Option/Basic.lean
Option.pmap_map
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_3\nγ : Type u_1\nδ : Type ?u.7286\np : α → Prop\nf : (a : α) → p a → β\nx✝ : Option α\ng : γ → α\nx : Option γ\nH : ∀ (a : α), a ∈ Option.map g x → p a\n⊢ pmap f (Option.map g x) H = pmap (fun a h => f (g a) h) x (_ : ∀ (a : γ), a ∈ x → p (g a))", "tactic": "cases x <;> simp only [map_none', map_some', pmap]" } ]
[ 185, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/FieldTheory/Separable.lean
isSeparable_tower_top_of_isSeparable
[]
[ 544, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 542, 1 ]