Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,714 Bytes
29b9759
0230867
 
 
 
 
 
29b9759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7fb2f
29b9759
 
ed7fb2f
29b9759
 
 
 
 
ed7fb2f
 
 
 
29b9759
ed7fb2f
 
 
 
 
 
 
 
 
 
 
 
0230867
ed7fb2f
 
 
 
 
 
 
 
 
 
 
 
 
0230867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7fb2f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
language:
- ko
- en
license: apache-2.0
task_categories:
- automatic-speech-recognition
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: text
    dtype: string
  - name: text_normalized
    dtype: string
  - name: text_pier_labeled
    dtype: string
  - name: cs_level
    dtype: string
  - name: cs_levels_all
    dtype: string
  - name: category
    dtype: string
  - name: loanwords
    dtype: string
  - name: sample_id
    dtype: string
  splits:
  - name: test
    num_bytes: 256512910
    num_examples: 1121
  download_size: 235090892
  dataset_size: 256512910
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
tags:
- speech
- recognition
- code-switching
---

# HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
> [Gio Paik](https://sites.google.com/view/giopaik)\*, [Yongbeom Kim](https://bayle0627.github.io/), [Soungmin Lee](https://minovermax.github.io/), [Sangmin Ahn](https://www.linkedin.com/in/sangmin-ahn-0656ab1b1/)†, and [Chanwoo Kim](https://www.linkedin.com/in/chanwkim)†, *Under Review*    
> \* Corresponding Author, † Equal Contribution

[**✨ Code**](https://github.com/ThetaOne-AI/HiKE) | [**🤗 Dataset**](https://huggingface.co/datasets/thetaone-ai/HiKE) | [**📖 Paper**](https://arxiv.org/abs/2509.24613)

## Introduction
HiKE is the first Korean-English Code-Switching (CS) Automatic Speech Recognition (ASR) benchmark composed of high-quality, natural CS data across various topics. We use **Mixed Error Rate (MER)** and **Point of Interest Error Rate (PIER)** [1] to precisely evaluate the models' CS ASR capability.

Experimental results show that all multilingual ASR models exhibit significantly higher error rates on code-switching data, and that their CS-ASR capabilities can be improved through fine-tuning.

For further details, please refer to [our paper](https://arxiv.org/abs/2509.24613).

[1] Ugan et al., [“PIER: A Novel Metric for Evaluating What Matters in Code-Switching”](https://arxiv.org/abs/2501.09512), ICASSP 2025 

### Hierarchical CS-Level Labels
To provide more fine-grained comparison of model performance on different forms of code-switching, we labeled each utterance according to the following levels:

- Word-level CS: Code-switching that occurs at the word level, typically as the substitution of a single noun or adjective.
- Phrase-level CS: Occurs when a multi-word phrase within a sentence appears in another language.
- Sentence-level CS: The alternation between languages on a sentence-by-sentence basis.

### Loanword Labels
Loanwords are words adopted from a foreign language and adapted to the phonology and orthography of the new language. For example, the Korean loanword **'버스' [bəs]** and the English word **'bus' [bʌs]** are pronounced almost identically and can be used interchangeably in a CS context. To avoid this problem, we meticulously labeled all loanwords contained in our dataset.

## Sample Usage
### Install Dependencies
```sh
git clone --recurse-submodules https://github.com/ThetaOne-AI/HiKE
cd HiKE
pip install -r requirements.txt
apt-get update && apt-get install -y ffmpeg  # install ffmpeg if needed
```

### Run Evaluation
```sh
bash scripts/evaluate_whisper.sh
# or
python src/main.py --model whisper --model_name openai/whisper-large --batch_size 8
```

The results will be saved in `./outputs`.

### Evaluate Your Model
- Implement a class that follows the `BaseASR` interface in `src/models/your_model.py`, and register it in `src/main.py`.

Create `src/models/your_model.py`:

```python
from typing import List, Dict, Any
from src.models import BaseASR


class YourModel(BaseASR):
    def __init__(self, model_name: str = "your/model-or-config"):
        self.model_name = model_name
        # TODO: load your model or client here

    def generate(self, input, batch_size: int | None = None, **kwargs) -> List[Dict[str, Any]]:
        if not isinstance(input, list):
            input = [input]
        return [{"text": your_transcribe_fn(x)} for x in input]
```

Register in `src/main.py`:

```python
elif model == "your_model":
    from models.your_model import YourModel
    asr = YourModel(model_name)
```

Run:

```sh
python src/main.py --model your_model --model_name your/model-or-name
```

## Citation
```
@misc{paik2025hike,
      title={{HiKE}: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition}, 
      author={Gio Paik and Yongbeom Kim and Soungmin Lee and Sangmin Ahn and Chanwoo Kim},
      year={2025},
      eprint={2509.24613},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.24613}, 
}
```