Datasets:
ts-learn
/

License:
Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 409, in hf_raise_for_status
                  response.raise_for_status()
                File "/usr/local/lib/python3.12/site-packages/requests/models.py", line 1026, in raise_for_status
                  raise HTTPError(http_error_msg, response=self)
              requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/92/d2/92d21981c32b55448ad2e88034cc219b193b04e40ed017df8328850dbb8e6a21/3f39a43f4c674b89094d01768b3369369b7640dbd08842c0935df265527195b3?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQLC2QXPN7%2F20260130%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20260130T160352Z&X-Amz-Expires=3600&X-Amz-Signature=380b16d579231f595fbfefc261a0e6d9998c9b4fb4b623bd0df82982d1f83d76&X-Amz-SignedHeaders=host&response-content-disposition=inline%3B%20filename%2A%3DUTF-8%27%27episode_000000.parquet%3B%20filename%3D%22episode_000000.parquet%22%3B&x-id=GetObject
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 286, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 118, in _split_generators
                  self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
                                                                           ^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pyarrow/parquet/core.py", line 2392, in read_schema
                  file = ParquetFile(
                         ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pyarrow/parquet/core.py", line 328, in __init__
                  self.reader.open(
                File "pyarrow/_parquet.pyx", line 1656, in pyarrow._parquet.ParquetReader.open
                File "pyarrow/error.pxi", line 89, in pyarrow.lib.check_status
                File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 844, in read_with_retries
                  out = read(*args, **kwargs)
                        ^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 1015, in read
                  return super().read(length)
                         ^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/fsspec/spec.py", line 1846, in read
                  out = self.cache._fetch(self.loc, self.loc + length)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/fsspec/caching.py", line 189, in _fetch
                  self.cache = self.fetcher(start, end)  # new block replaces old
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 976, in _fetch_range
                  hf_raise_for_status(r)
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 482, in hf_raise_for_status
                  raise _format(HfHubHTTPError, str(e), response) from e
              huggingface_hub.errors.HfHubHTTPError: 404 Client Error: Not Found for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/92/d2/92d21981c32b55448ad2e88034cc219b193b04e40ed017df8328850dbb8e6a21/3f39a43f4c674b89094d01768b3369369b7640dbd08842c0935df265527195b3?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQLC2QXPN7%2F20260130%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20260130T160352Z&X-Amz-Expires=3600&X-Amz-Signature=380b16d579231f595fbfefc261a0e6d9998c9b4fb4b623bd0df82982d1f83d76&X-Amz-SignedHeaders=host&response-content-disposition=inline%3B%20filename%2A%3DUTF-8%27%27episode_000000.parquet%3B%20filename%3D%22episode_000000.parquet%22%3B&x-id=GetObject
              
              <?xml version="1.0" encoding="UTF-8"?>
              <Error><Code>NoSuchKey</Code><Message>The specified key does not exist.</Message><Key>repos/92/d2/92d21981c32b55448ad2e88034cc219b193b04e40ed017df8328850dbb8e6a21/3f39a43f4c674b89094d01768b3369369b7640dbd08842c0935df265527195b3</Key><RequestId>T1FM74CKPCHQM9P2</RequestId><HostId>QXzli8dh1b1bzzpPeb1MdY94gX4fxm4OtXCOAnhhseRdLGqaJM/+5eVB1BERILQdxvH+1ZDZgolTcAJq1jQaFD/pUqlJU5jP</HostId></Error>
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 340, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 291, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

KAI0

TODO

  • The advantage label will be coming soon.

Contents

About the Dataset

  • ~134 hours real world scenarios

  • Main Tasks

    • FlattenFold
      • Single task
      • Initial state: T-shirts are randomly tossed onto the table, presenting random crumpled configurations
      • Manipulation task: Operate the robotic arm to unfold the garment, then fold it
    • HangCloth
      • Single task
      • Initial state: Hanger is randomly placed, garment is randomly positioned on the table
      • Manipulation task: Operate the robotic arm to thread the hanger through the garment, then hang it on the rod
    • TeeShirtSort
      • Garment classification and arrangement task
      • Initial state: Randomly pick a garment from the laundry basket
      • Classification: Determine whether the garment is a T-shirt or a dress shirt
      • Manipulation task:
        • If it is a T-shirt, fold the garment
        • If it is a dress shirt, expose the collar, then push it to one side of the table
  • Count of the dataset

    Task Base (episodes count/hours) DAgger (episodes count/hours) Total(episodes count/hours)
    FlattenFold 3,055/~42 hours 3,457/ ~13 Hours 6,512 /~55 hours
    HangCloth 6954/~61 hours 686/~12 hours 7640/~73 hours
    TeeShirtSort 5988/~31 hours 769/~22 hours 6757/~53 hours
    Total 15,997/~134 hours 4,912/~47 hours 20,909/~181 hours

Load the dataset

  • This dataset was created using LeRobot
  • The dataset's version is LeRobotDataset v2.1

For LeRobot version < 0.4.0

Choose the appropriate import based on your version:

Version Import Path
<= 0.1.0 from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
> 0.1.0 and < 0.4.0 from lerobot.datasets.lerobot_dataset import LeRobotDataset
# For version <= 0.1.0
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset

# For version > 0.1.0 and < 0.4.0
from lerobot.datasets.lerobot_dataset import LeRobotDataset

# Load the dataset
dataset = LeRobotDataset(repo_id='where/the/dataset/you/stored')

For LeRobot version >= 0.4.0

You need to migrate the dataset from v2.1 to v3.0 first. See the official documentation: Migrate the dataset from v2.1 to v3.0

python -m lerobot.datasets.v30.convert_dataset_v21_to_v30 --repo-id=<HF_USER/DATASET_ID>

Download the Dataset

Python Script

from huggingface_hub import hf_hub_download, snapshot_download
from datasets import load_dataset

# Download a single file
hf_hub_download(
    repo_id="OpenDriveLab-org/kai0", 
    filename="episodes.jsonl",
    subfolder="meta",
    repo_type="dataset",
    local_dir="where/you/want/to/save"
)

# Download a specific folder
snapshot_download(
    repo_id="OpenDriveLab-org/kai0", 
    local_dir="/where/you/want/to/save",
    repo_type="dataset",
    allow_patterns=["data/*"]
)

# Load the entire dataset
dataset = load_dataset("OpenDriveLab-org/kai0") 

Terminal (CLI)

# Download a single file
hf download OpenDriveLab-org/kai0 \
    --include "meta/info.json" \
    --repo-type dataset \
    --local-dir "/where/you/want/to/save"

# Download a specific folder
hf download OpenDriveLab-org/kai0 \
    --repo-type dataset \
    --include "meta/*" \
    --local-dir "/where/you/want/to/save"

# Download the entire dataset
hf download OpenDriveLab-org/kai0 \
    --repo-type dataset \
    --local-dir "/where/you/want/to/save"

Dataset Structure

Folder hierarchy

Under each task directory, data is partitioned into two subsets: base and dagger.

  • base contains original demonstration trajectories of robotic arm manipulation for garment arrangement tasks.
  • dagger
    contains on-policy recovery trajectories collected via iterative DAgger, designed to populate failure recovery modes absent in static demonstrations.
Kai0-data/
β”œβ”€β”€ FlattenFold/
β”‚   β”œβ”€β”€ base/
β”‚   β”‚   β”œβ”€β”€ data/
β”‚   β”‚   β”‚   β”œβ”€β”€ chunk-000/
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000000.parquet
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000001.parquet
β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”œβ”€β”€ videos/
β”‚   β”‚   β”‚   β”œβ”€β”€ chunk-000/
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ observation.images.hand_left/
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000000.mp4
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000001.mp4
β”‚   β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ observation.images.hand_right/
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000000.mp4
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000001.mp4
β”‚   β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ observation.images.top_head/
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000000.mp4
β”‚   β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ episode_000001.mp4
β”‚   β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   └── meta/
β”‚   β”‚       β”œβ”€β”€ info.json
β”‚   β”‚       β”œβ”€β”€ episodes.jsonl
β”‚   β”‚       β”œβ”€β”€ tasks.jsonl
β”‚   β”‚       └── episodes_stats.jsonl
β”‚   └── dagger/
β”œβ”€β”€ HangCloth/
β”‚   β”œβ”€β”€ base/
β”‚   └── dagger/
β”œβ”€β”€ TeeShirtSort/
β”‚   β”œβ”€β”€ base/
β”‚   └── dagger/
└── README.md

Details

info.json

the basic struct of the info.json

{
    "codebase_version": "v2.1",
    "robot_type": "agilex",
    "total_episodes": ...,  # the total episodes in the dataset
    "total_frames": ...,    # The total number of video frames in any single camera perspective
    "total_tasks": ...,     # Total number of tasks
    "total_videos": ...,    # The total number of videos from all camera perspectives in the dataset
    "total_chunks": ...,    # The number of chunks in the dataset
    "chunks_size": ...,     # The max number of episodes in a chunk
    "fps": ...,             # Video frame rate per second
    "splits": {             # how to split the dataset
        "train": ...       
    },
    "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
    "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
    "features": {
        "observation.images.top_head": {   # the camera perspective
            "dtype": "video",
            "shape": [
                480,
                640,
                3
            ],
            "names": [
                "height",
                "width",
                "channel"
            ],
            "info": {
                "video.height": 480,
                "video.width": 640,
                "video.codec": "av1",
                "video.pix_fmt": "yuv420p",
                "video.is_depth_map": false,
                "video.fps": 30,
                "video.channels": 3,
                "has_audio": false
            }
        },
        "observation.images.hand_left": {   # the camera perspective
            ...
        },
        "observation.images.hand_right": {   # the camera perspective
            ...
        },
        "observation.state": {
            "dtype": "float32",
            "shape": [
                14
            ],
            "names": null
        },
        "action": {
            "dtype": "float32",
            "shape": [
                14
            ],
            "names": null
        },
        "timestamp": {
            "dtype": "float32",
            "shape": [
                1
            ],
            "names": null
        },
        "frame_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "episode_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        },
        "task_index": {
            "dtype": "int64",
            "shape": [
                1
            ],
            "names": null
        }
    }
}

Parquet file format

Field Name shape Meaning
observation.state [N, 14] left [:, :6], right [:, 7:13], joint angle
left[:, 6], right [:, 13] , gripper open range
action [N, 14] left [:, :6], right [:, 7:13], joint angle
left[:, 6], right [:, 13] , gripper open range
timestamp [N, 1] Time elapsed since the start of the episode (in seconds)
frame_index [N, 1] Index of this frame within the current episode (0-indexed)
episode_index [N, 1] Index of the episode this frame belongs to
index [N, 1] Global unique index across all frames in the dataset
task_index [N, 1] Index identifying the task type being performed

tasks.jsonl

Contains task language prompts (natural language instructions) that specify the manipulation task to be performed. Each entry maps a task_index to its corresponding task description, which can be used for language-conditioned policy training.

License and Citation

All the data and code within this repo are under . Please consider citing our project if it helps your research.

@misc{,
  title={},
  author={},
  howpublished={\url{}},
  year={}
}
Downloads last month
13