classification / classify-dataset-sglang.py
davanstrien's picture
davanstrien HF Staff
sglang version
1d07414
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "sglang[all]",
# "flashinfer-python",
# "transformers",
# "torch",
# "datasets",
# "huggingface-hub[hf_transfer]",
# ]
#
# [[tool.uv.index]]
# name = "flashinfer"
# url = "https://flashinfer.ai/whl/cu121/torch2.4/"
# ///
"""
Classify text columns in Hugging Face datasets using SGLang with reasoning-aware models.
This script provides efficient GPU-based classification with optional reasoning support,
optimized for models like SmolLM3-3B that use <think> tokens for chain-of-thought.
Example:
# Fast classification without reasoning
uv run classify-dataset-sglang.py \\
--input-dataset imdb \\
--column text \\
--labels "positive,negative" \\
--output-dataset user/imdb-classified
# Complex classification with reasoning
uv run classify-dataset-sglang.py \\
--input-dataset arxiv-papers \\
--column abstract \\
--labels "reasoning_systems,agents,multimodal,robotics,other" \\
--output-dataset user/arxiv-classified \\
--reasoning
HF Jobs example:
hf jobs uv run --flavor l4x1 \\
https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\
--input-dataset user/emails \\
--column content \\
--labels "spam,ham" \\
--output-dataset user/emails-classified \\
--reasoning
"""
import argparse
import logging
import os
import sys
from typing import List, Dict, Any, Optional, Tuple
import json
import re
import torch
from datasets import load_dataset, Dataset
from huggingface_hub import HfApi, get_token
import sglang as sgl
# Default model - SmolLM3 with reasoning capabilities
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
# Minimum text length for valid classification
MIN_TEXT_LENGTH = 3
# Maximum text length (in characters) to avoid context overflow
MAX_TEXT_LENGTH = 4000
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="Classify text in HuggingFace datasets using SGLang with reasoning support",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
# Required arguments
parser.add_argument(
"--input-dataset",
type=str,
required=True,
help="Input dataset ID on Hugging Face Hub",
)
parser.add_argument(
"--column", type=str, required=True, help="Name of the text column to classify"
)
parser.add_argument(
"--labels",
type=str,
required=True,
help="Comma-separated list of classification labels (e.g., 'positive,negative')",
)
parser.add_argument(
"--output-dataset",
type=str,
required=True,
help="Output dataset ID on Hugging Face Hub",
)
# Optional arguments
parser.add_argument(
"--model",
type=str,
default=DEFAULT_MODEL,
help=f"Model to use for classification (default: {DEFAULT_MODEL})",
)
parser.add_argument(
"--reasoning",
action="store_true",
help="Enable reasoning mode (allows model to think through complex cases)",
)
parser.add_argument(
"--save-reasoning",
action="store_true",
help="Save reasoning traces to a separate column (requires --reasoning)",
)
parser.add_argument(
"--max-samples",
type=int,
default=None,
help="Maximum number of samples to process (for testing)",
)
parser.add_argument(
"--hf-token",
type=str,
default=None,
help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)",
)
parser.add_argument(
"--split",
type=str,
default="train",
help="Dataset split to process (default: train)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.1,
help="Temperature for generation (default: 0.1)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=500,
help="Maximum tokens to generate (default: 500 for reasoning, 50 for non-reasoning)",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size for processing (default: 32)",
)
parser.add_argument(
"--grammar-backend",
type=str,
default="xgrammar",
choices=["outlines", "xgrammar", "llguidance"],
help="Grammar backend for structured outputs (default: xgrammar)",
)
return parser.parse_args()
def preprocess_text(text: str) -> str:
"""Preprocess text for classification."""
if not text or not isinstance(text, str):
return ""
# Strip whitespace
text = text.strip()
# Truncate if too long
if len(text) > MAX_TEXT_LENGTH:
text = f"{text[:MAX_TEXT_LENGTH]}..."
return text
def validate_text(text: str) -> bool:
"""Check if text is valid for classification."""
return bool(text and len(text) >= MIN_TEXT_LENGTH)
def create_classification_prompt(text: str, labels: List[str], reasoning: bool) -> str:
"""Create a prompt for classification with optional reasoning mode."""
if reasoning:
system_prompt = "You are a helpful assistant that thinks step-by-step before answering."
else:
system_prompt = "You are a helpful assistant. /no_think"
user_prompt = f"""Classify this text as one of: {', '.join(labels)}
Text: {text}
Classification:"""
# Format as a conversation
return f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>\n"
def create_ebnf_grammar(labels: List[str]) -> str:
"""Create an EBNF grammar that constrains output to one of the given labels."""
# Escape any special characters in labels
escaped_labels = [f'"{label}"' for label in labels]
choices = ' | '.join(escaped_labels)
return f"root ::= {choices}"
def parse_reasoning_output(output: str, label: str) -> Optional[str]:
"""Extract reasoning from output if present."""
# Look for thinking tags
if "<think>" in output and "</think>" in output:
start = output.find("<think>")
end = output.find("</think>") + len("</think>")
reasoning = output[start:end]
return reasoning
return None
def classify_batch_with_sglang(
engine: sgl.Engine,
texts: List[str],
labels: List[str],
args: argparse.Namespace
) -> List[Dict[str, Any]]:
"""Classify texts using SGLang with optional reasoning."""
# Prepare prompts
prompts = []
valid_indices = []
for i, text in enumerate(texts):
processed_text = preprocess_text(text)
if validate_text(processed_text):
prompt = create_classification_prompt(processed_text, labels, args.reasoning)
prompts.append(prompt)
valid_indices.append(i)
if not prompts:
return [{"label": None, "reasoning": None} for _ in texts]
# Set max tokens based on reasoning mode
max_tokens = args.max_tokens if args.reasoning else 50
# Create EBNF grammar for label constraints
ebnf_grammar = create_ebnf_grammar(labels)
# Set up sampling parameters with EBNF constraint
sampling_params = {
"temperature": args.temperature,
"max_new_tokens": max_tokens,
"ebnf": ebnf_grammar, # This ensures output is one of the valid labels
}
try:
# Generate with structured output constraint
outputs = engine.generate(prompts, sampling_params)
# Process outputs
results = [{"label": None, "reasoning": None} for _ in texts]
for idx, output in enumerate(outputs):
original_idx = valid_indices[idx]
# The output text should be just the label due to EBNF constraint
classification = output.text.strip().strip('"') # Remove quotes if present
# Extract reasoning if present and requested
reasoning = None
if args.reasoning and args.save_reasoning:
# Get the full output including reasoning
# Note: We need to check if SGLang provides access to full output with reasoning
reasoning = parse_reasoning_output(output.text, classification)
results[original_idx] = {
"label": classification,
"reasoning": reasoning
}
return results
except Exception as e:
logger.error(f"Error during batch classification: {e}")
# Return None labels for all texts in case of error
return [{"label": None, "reasoning": None} for _ in texts]
def main():
args = parse_args()
# Validate reasoning arguments
if args.save_reasoning and not args.reasoning:
logger.error("--save-reasoning requires --reasoning to be enabled")
sys.exit(1)
# Check authentication early
logger.info("Checking authentication...")
token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token())
if not token:
logger.error("No authentication token found. Please either:")
logger.error("1. Run 'huggingface-cli login'")
logger.error("2. Set HF_TOKEN environment variable")
logger.error("3. Pass --hf-token argument")
sys.exit(1)
# Validate token by checking who we are
try:
api = HfApi(token=token)
user_info = api.whoami()
logger.info(f"Authenticated as: {user_info['name']}")
except Exception as e:
logger.error(f"Authentication failed: {e}")
logger.error("Please check your token is valid")
sys.exit(1)
# Check CUDA availability
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with GPU support or use HF Jobs.")
sys.exit(1)
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
# Parse and validate labels
labels = [label.strip() for label in args.labels.split(",")]
if len(labels) < 2:
logger.error("At least two labels are required for classification.")
sys.exit(1)
logger.info(f"Classification labels: {labels}")
# Load dataset
logger.info(f"Loading dataset: {args.input_dataset}")
try:
dataset = load_dataset(args.input_dataset, split=args.split)
# Limit samples if specified
if args.max_samples:
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
logger.info(f"Limited dataset to {len(dataset)} samples")
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
except Exception as e:
logger.error(f"Failed to load dataset: {e}")
sys.exit(1)
# Verify column exists
if args.column not in dataset.column_names:
logger.error(f"Column '{args.column}' not found in dataset.")
logger.error(f"Available columns: {dataset.column_names}")
sys.exit(1)
# Extract texts
texts = dataset[args.column]
# Initialize SGLang Engine
logger.info(f"Initializing SGLang Engine with model: {args.model}")
logger.info(f"Reasoning mode: {'enabled' if args.reasoning else 'disabled (fast mode)'}")
logger.info(f"Grammar backend: {args.grammar_backend}")
try:
# Determine reasoning parser based on model
reasoning_parser = None
if "smollm3" in args.model.lower() or "qwen" in args.model.lower():
reasoning_parser = "qwen" # Uses <think> tokens
elif "deepseek-r1" in args.model.lower():
reasoning_parser = "deepseek-r1"
engine_kwargs = {
"model_path": args.model,
"trust_remote_code": True,
"dtype": "auto",
"grammar_backend": args.grammar_backend,
}
if reasoning_parser and args.reasoning:
engine_kwargs["reasoning_parser"] = reasoning_parser
logger.info(f"Using reasoning parser: {reasoning_parser}")
engine = sgl.Engine(**engine_kwargs)
logger.info("SGLang engine initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize SGLang: {e}")
sys.exit(1)
# Process in batches
logger.info(f"Starting classification with batch size {args.batch_size}...")
all_results = []
for i in range(0, len(texts), args.batch_size):
batch_end = min(i + args.batch_size, len(texts))
batch_texts = texts[i:batch_end]
logger.info(f"Processing batch {i//args.batch_size + 1}/{(len(texts) + args.batch_size - 1)//args.batch_size}")
batch_results = classify_batch_with_sglang(
engine, batch_texts, labels, args
)
all_results.extend(batch_results)
# Extract labels and reasoning
all_labels = [r["label"] for r in all_results]
all_reasoning = [r["reasoning"] for r in all_results] if args.save_reasoning else None
# Add classifications to dataset
dataset = dataset.add_column("classification", all_labels)
# Add reasoning column if requested
if args.save_reasoning and args.reasoning:
dataset = dataset.add_column("reasoning", all_reasoning)
logger.info("Added reasoning traces to dataset")
# Calculate statistics
valid_count = sum(1 for label in all_labels if label is not None)
invalid_count = len(all_labels) - valid_count
if invalid_count > 0:
logger.warning(
f"{invalid_count} texts were too short or invalid for classification"
)
# Show classification distribution
label_counts = {label: all_labels.count(label) for label in labels}
logger.info("Classification distribution:")
for label, count in label_counts.items():
percentage = count / len(all_labels) * 100 if all_labels else 0
logger.info(f" {label}: {count} ({percentage:.1f}%)")
if invalid_count > 0:
none_percentage = invalid_count / len(all_labels) * 100
logger.info(f" Invalid/Skipped: {invalid_count} ({none_percentage:.1f}%)")
# Log success rate
success_rate = (valid_count / len(all_labels) * 100) if all_labels else 0
logger.info(f"Classification success rate: {success_rate:.1f}%")
# Save to Hub
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
try:
commit_msg = f"Add classifications using {args.model} with SGLang"
if args.reasoning:
commit_msg += " (reasoning mode)"
dataset.push_to_hub(
args.output_dataset,
token=token,
commit_message=commit_msg,
)
logger.info(
f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}"
)
except Exception as e:
logger.error(f"Failed to push to Hub: {e}")
sys.exit(1)
# Clean up
engine.shutdown()
logger.info("SGLang engine shutdown complete")
if __name__ == "__main__":
if len(sys.argv) == 1:
print("Example HF Jobs commands:")
print("\n# Fast classification (no reasoning):")
print("hf jobs uv run \\")
print(" --flavor l4x1 \\")
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
print(" --input-dataset stanfordnlp/imdb \\")
print(" --column text \\")
print(" --labels 'positive,negative' \\")
print(" --output-dataset user/imdb-classified")
print("\n# Complex classification with reasoning:")
print("hf jobs uv run \\")
print(" --flavor l4x1 \\")
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
print(" --input-dataset arxiv-papers \\")
print(" --column abstract \\")
print(" --labels 'reasoning_systems,agents,multimodal,robotics,other' \\")
print(" --output-dataset user/arxiv-classified \\")
print(" --reasoning --save-reasoning")
sys.exit(0)
main()