ocr / README.md
davanstrien's picture
davanstrien HF Staff
Add NuMarkdown to README with HF Jobs example
7165fc4
---
viewer: false
tags: [uv-script, ocr, vision-language-model, document-processing]
---
# OCR UV Scripts
> Part of [uv-scripts](https://huggingface.co/uv-scripts) - ready-to-run ML tools powered by UV
Ready-to-run OCR scripts that work with `uv run` - no setup required!
## πŸš€ Quick Start with HuggingFace Jobs
Run OCR on any dataset without needing your own GPU:
```bash
# Quick test with 10 samples
hf jobs uv run --flavor l4x1 \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset \
--max-samples 10
```
That's it! The script will:
- βœ… Process first 10 images from your dataset
- βœ… Add OCR results as a new `markdown` column
- βœ… Push the results to a new dataset
- πŸ“Š View results at: `https://huggingface.co/datasets/[your-output-dataset]`
## πŸ“‹ Available Scripts
### RolmOCR (`rolm-ocr.py`)
Fast general-purpose OCR using [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR) based on Qwen2.5-VL-7B:
- πŸš€ **Fast extraction** - Optimized for speed and efficiency
- πŸ“„ **Plain text output** - Clean, natural text representation
- πŸ’ͺ **General-purpose** - Works well on various document types
- πŸ”₯ **Large context** - Handles up to 16K tokens
- ⚑ **Batch optimized** - Efficient processing with vLLM
### Nanonets OCR (`nanonets-ocr.py`)
State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) that handles:
- πŸ“ **LaTeX equations** - Mathematical formulas preserved
- πŸ“Š **Tables** - Extracted as HTML format
- πŸ“ **Document structure** - Headers, lists, formatting maintained
- πŸ–ΌοΈ **Images** - Captions and descriptions included
- β˜‘οΈ **Forms** - Checkboxes rendered as ☐/β˜‘
### SmolDocling (`smoldocling-ocr.py`)
Ultra-compact document understanding using [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) with only 256M parameters:
- 🏷️ **DocTags format** - Efficient XML-like representation
- πŸ’» **Code blocks** - Preserves indentation and syntax
- πŸ”’ **Formulas** - Mathematical expressions with layout
- πŸ“Š **Tables & charts** - Structured data extraction
- πŸ“ **Layout preservation** - Bounding boxes and spatial info
- ⚑ **Ultra-fast** - Tiny model size for quick inference
### NuMarkdown (`numarkdown-ocr.py`)
Advanced reasoning-based OCR using [numind/NuMarkdown-8B-Thinking](https://huggingface.co/numind/NuMarkdown-8B-Thinking) that analyzes documents before converting to markdown:
- 🧠 **Reasoning Process** - Thinks through document layout before generation
- πŸ“Š **Complex Tables** - Superior table extraction and formatting
- πŸ“ **Mathematical Formulas** - Accurate LaTeX/math notation preservation
- πŸ” **Multi-column Layouts** - Handles complex document structures
- ✨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking`
## πŸ†• New Features
### Multi-Model Comparison Support
All scripts now include `inference_info` tracking for comparing multiple OCR models:
```bash
# First model
uv run rolm-ocr.py my-dataset my-dataset --max-samples 100
# Second model (appends to same dataset)
uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100
# View all models used
python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))"
```
### Random Sampling
Get representative samples with the new `--shuffle` flag:
```bash
# Random 50 samples instead of first 50
uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle
# Reproducible random sampling
uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42
```
### Automatic Dataset Cards
Every OCR run now generates comprehensive dataset documentation including:
- Model configuration and parameters
- Processing statistics
- Column descriptions
- Reproduction instructions
## πŸ’» Usage Examples
### Run on HuggingFace Jobs (Recommended)
No GPU? No problem! Run on HF infrastructure:
```bash
# Basic OCR job
hf jobs uv run --flavor l4x1 \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset
# Real example with UFO dataset πŸ›Έ
hf jobs uv run \
--flavor a10g-large \
--image vllm/vllm-openai:latest \
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
davanstrien/ufo-ColPali \
your-username/ufo-ocr \
--image-column image \
--max-model-len 16384 \
--batch-size 128
# NuMarkdown with reasoning traces for complex documents
hf jobs uv run \
--image vllm/vllm-openai:latest \
--flavor l4x4 \
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \
your-input-dataset your-output-dataset \
--max-samples 50 \
--include-thinking \
--shuffle
# Private dataset with custom settings
hf jobs uv run --flavor l40sx1 \
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
private-input private-output \
--private \
--batch-size 32
```
### Python API
```python
from huggingface_hub import run_uv_job
job = run_uv_job(
"https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
args=["input-dataset", "output-dataset", "--batch-size", "16"],
flavor="l4x1"
)
```
### Run Locally (Requires GPU)
```bash
# Clone and run
git clone https://huggingface.co/datasets/uv-scripts/ocr
cd ocr
uv run nanonets-ocr.py input-dataset output-dataset
# Or run directly from URL
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
input-dataset output-dataset
# RolmOCR for fast text extraction
uv run rolm-ocr.py documents extracted-text
uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample
```
## πŸ“ Works With
Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting.
## πŸŽ›οΈ Configuration Options
### Common Options (All Scripts)
| Option | Default | Description |
| -------------------------- | ------- | ----------------------------- |
| `--image-column` | `image` | Column containing images |
| `--batch-size` | `32`/`16`* | Images processed together |
| `--max-model-len` | `8192`/`16384`** | Max context length |
| `--max-tokens` | `4096`/`8192`** | Max output tokens |
| `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) |
| `--split` | `train` | Dataset split to process |
| `--max-samples` | None | Limit samples (for testing) |
| `--private` | False | Make output dataset private |
| `--shuffle` | False | Shuffle dataset before processing |
| `--seed` | `42` | Random seed for shuffling |
*RolmOCR uses batch size 16
**RolmOCR uses 16384/8192
### RolmOCR Specific
- Output column is auto-generated from model name (e.g., `rolmocr_text`)
- Use `--output-column` to override the default name
πŸ’‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)
More OCR VLM Scripts coming soon! Stay tuned for updates!