|
--- |
|
viewer: false |
|
tags: [uv-script, ocr, vision-language-model, document-processing] |
|
--- |
|
|
|
# OCR UV Scripts |
|
|
|
> Part of [uv-scripts](https://huggingface.co/uv-scripts) - ready-to-run ML tools powered by UV |
|
|
|
Ready-to-run OCR scripts that work with `uv run` - no setup required! |
|
|
|
## π Quick Start with HuggingFace Jobs |
|
|
|
Run OCR on any dataset without needing your own GPU: |
|
|
|
```bash |
|
# Quick test with 10 samples |
|
hf jobs uv run --flavor l4x1 \ |
|
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ |
|
your-input-dataset your-output-dataset \ |
|
--max-samples 10 |
|
``` |
|
|
|
That's it! The script will: |
|
|
|
- β
Process first 10 images from your dataset |
|
- β
Add OCR results as a new `markdown` column |
|
- β
Push the results to a new dataset |
|
- π View results at: `https://huggingface.co/datasets/[your-output-dataset]` |
|
|
|
## π Available Scripts |
|
|
|
### RolmOCR (`rolm-ocr.py`) |
|
|
|
Fast general-purpose OCR using [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR) based on Qwen2.5-VL-7B: |
|
|
|
- π **Fast extraction** - Optimized for speed and efficiency |
|
- π **Plain text output** - Clean, natural text representation |
|
- πͺ **General-purpose** - Works well on various document types |
|
- π₯ **Large context** - Handles up to 16K tokens |
|
- β‘ **Batch optimized** - Efficient processing with vLLM |
|
|
|
### Nanonets OCR (`nanonets-ocr.py`) |
|
|
|
State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) that handles: |
|
|
|
- π **LaTeX equations** - Mathematical formulas preserved |
|
- π **Tables** - Extracted as HTML format |
|
- π **Document structure** - Headers, lists, formatting maintained |
|
- πΌοΈ **Images** - Captions and descriptions included |
|
- βοΈ **Forms** - Checkboxes rendered as β/β |
|
|
|
### SmolDocling (`smoldocling-ocr.py`) |
|
|
|
Ultra-compact document understanding using [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) with only 256M parameters: |
|
|
|
- π·οΈ **DocTags format** - Efficient XML-like representation |
|
- π» **Code blocks** - Preserves indentation and syntax |
|
- π’ **Formulas** - Mathematical expressions with layout |
|
- π **Tables & charts** - Structured data extraction |
|
- π **Layout preservation** - Bounding boxes and spatial info |
|
- β‘ **Ultra-fast** - Tiny model size for quick inference |
|
|
|
### NuMarkdown (`numarkdown-ocr.py`) |
|
|
|
Advanced reasoning-based OCR using [numind/NuMarkdown-8B-Thinking](https://huggingface.co/numind/NuMarkdown-8B-Thinking) that analyzes documents before converting to markdown: |
|
|
|
- π§ **Reasoning Process** - Thinks through document layout before generation |
|
- π **Complex Tables** - Superior table extraction and formatting |
|
- π **Mathematical Formulas** - Accurate LaTeX/math notation preservation |
|
- π **Multi-column Layouts** - Handles complex document structures |
|
- β¨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking` |
|
|
|
|
|
## π New Features |
|
|
|
### Multi-Model Comparison Support |
|
|
|
All scripts now include `inference_info` tracking for comparing multiple OCR models: |
|
|
|
```bash |
|
# First model |
|
uv run rolm-ocr.py my-dataset my-dataset --max-samples 100 |
|
|
|
# Second model (appends to same dataset) |
|
uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100 |
|
|
|
# View all models used |
|
python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))" |
|
``` |
|
|
|
### Random Sampling |
|
|
|
Get representative samples with the new `--shuffle` flag: |
|
|
|
```bash |
|
# Random 50 samples instead of first 50 |
|
uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle |
|
|
|
# Reproducible random sampling |
|
uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42 |
|
``` |
|
|
|
### Automatic Dataset Cards |
|
|
|
Every OCR run now generates comprehensive dataset documentation including: |
|
- Model configuration and parameters |
|
- Processing statistics |
|
- Column descriptions |
|
- Reproduction instructions |
|
|
|
## π» Usage Examples |
|
|
|
### Run on HuggingFace Jobs (Recommended) |
|
|
|
No GPU? No problem! Run on HF infrastructure: |
|
|
|
```bash |
|
# Basic OCR job |
|
hf jobs uv run --flavor l4x1 \ |
|
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ |
|
your-input-dataset your-output-dataset |
|
|
|
|
|
# Real example with UFO dataset πΈ |
|
hf jobs uv run \ |
|
--flavor a10g-large \ |
|
--image vllm/vllm-openai:latest \ |
|
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \ |
|
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ |
|
davanstrien/ufo-ColPali \ |
|
your-username/ufo-ocr \ |
|
--image-column image \ |
|
--max-model-len 16384 \ |
|
--batch-size 128 |
|
|
|
# NuMarkdown with reasoning traces for complex documents |
|
hf jobs uv run \ |
|
--image vllm/vllm-openai:latest \ |
|
--flavor l4x4 \ |
|
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \ |
|
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \ |
|
your-input-dataset your-output-dataset \ |
|
--max-samples 50 \ |
|
--include-thinking \ |
|
--shuffle |
|
|
|
# Private dataset with custom settings |
|
hf jobs uv run --flavor l40sx1 \ |
|
-s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \ |
|
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ |
|
private-input private-output \ |
|
--private \ |
|
--batch-size 32 |
|
``` |
|
|
|
### Python API |
|
|
|
```python |
|
from huggingface_hub import run_uv_job |
|
|
|
job = run_uv_job( |
|
"https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py", |
|
args=["input-dataset", "output-dataset", "--batch-size", "16"], |
|
flavor="l4x1" |
|
) |
|
``` |
|
|
|
### Run Locally (Requires GPU) |
|
|
|
```bash |
|
# Clone and run |
|
git clone https://huggingface.co/datasets/uv-scripts/ocr |
|
cd ocr |
|
uv run nanonets-ocr.py input-dataset output-dataset |
|
|
|
# Or run directly from URL |
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ |
|
input-dataset output-dataset |
|
|
|
# RolmOCR for fast text extraction |
|
uv run rolm-ocr.py documents extracted-text |
|
uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample |
|
|
|
``` |
|
|
|
## π Works With |
|
|
|
Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting. |
|
|
|
## ποΈ Configuration Options |
|
|
|
### Common Options (All Scripts) |
|
|
|
| Option | Default | Description | |
|
| -------------------------- | ------- | ----------------------------- | |
|
| `--image-column` | `image` | Column containing images | |
|
| `--batch-size` | `32`/`16`* | Images processed together | |
|
| `--max-model-len` | `8192`/`16384`** | Max context length | |
|
| `--max-tokens` | `4096`/`8192`** | Max output tokens | |
|
| `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) | |
|
| `--split` | `train` | Dataset split to process | |
|
| `--max-samples` | None | Limit samples (for testing) | |
|
| `--private` | False | Make output dataset private | |
|
| `--shuffle` | False | Shuffle dataset before processing | |
|
| `--seed` | `42` | Random seed for shuffling | |
|
|
|
*RolmOCR uses batch size 16 |
|
**RolmOCR uses 16384/8192 |
|
|
|
### RolmOCR Specific |
|
|
|
- Output column is auto-generated from model name (e.g., `rolmocr_text`) |
|
- Use `--output-column` to override the default name |
|
|
|
π‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs) |
|
|
|
More OCR VLM Scripts coming soon! Stay tuned for updates! |
|
|