code
stringlengths
2.5k
6.36M
kind
stringclasses
2 values
parsed_code
stringlengths
0
404k
quality_prob
float64
0
0.98
learning_prob
float64
0.03
1
``` import pandas as pd import numpy as np df_user_log = pd.read_csv("data_set/user_behavior_time_resampled.csv") df_user_info = pd.read_csv("data_set/user_info.csv") df_vip_user = pd.read_csv("data_set/vip_user.csv") # 分别插入 click、cart、order、fav 四列,表示点击、加购物车、下单和收藏 # 规则见上面的文字描述 df_user_log["click"] = df_user_log.action_type.apply(lambda l:1 if l==0 else 0) df_user_log["cart"] = df_user_log.action_type.apply(lambda l:1 if l==1 else 0) df_user_log["order"] = df_user_log.action_type.apply(lambda l:1 if l==2 else 0) df_user_log["fav"] = df_user_log.action_type.apply(lambda l:1 if l==3 else 0) # 查看添加之后的 user_log 表 df_user_log print("click 数据分布:\n",df_user_log.click.value_counts()) print("order 数据分布:\n",df_user_log.order.value_counts()) print("fav 数据分布:\n",df_user_log.fav.value_counts()) print("cart 数据分布:\n",df_user_log.cart.value_counts()) df_clean = df_user_log[["item_id", "click", "cart", "order","fav"]] df_clean df_item = df_clean.groupby(["item_id"]).sum() df_item df_vip_user # 重命名 merchant_id 为 seller_id df_vip_user = df_vip_user.rename( columns={"merchant_id" : "seller_id"}) # 选取 seller_id和label 这连烈,斌将结果通过 seller_id 聚合,相同 seller_id 的记录的label求和 df_brand_vip_users = df_vip_user[["seller_id", "label"]].groupby("seller_id").sum() # 查看保存了店铺 vip 用户数的表的内容 df_brand_vip_users # 筛选出 seller_id 和 item_id df_seller_item_count = df_user_log[["seller_id", "item_id"]] # 按item_id 去重,因为 itemid 一样的记录,seller_id 肯定也一样,所以 seller_id没有影响 df_seller_item_count = df_seller_item_count.drop_duplicates("item_id") # 将 item_id 列赋值为 1,方便做求和 df_seller_item_count["item_id"] = 1 # 按seller_id 聚合,然后针对 item_id 列求和 df_seller_item_count = df_seller_item_count.groupby("seller_id").sum() # 将 item_id 列改为 item_count, 避免有歧义 df_seller_item_count = df_seller_item_count.rename(columns = {"item_id" : "item_count"}) # 查看结果 df_seller_item_count df_item # 从原始行为表中取出 item_id 和seller_id ,构成新表 df_brand_item_map = df_user_log[["item_id", "seller_id"]] # 按照item_id去重,去重后得到的结果就相当于是 item id 和 seller_id 的映射关系 df_brand_item_map = df_brand_item_map.drop_duplicates("item_id") # 将 df_brand_item_map 映射进 df_item, 以 item_id 为 key df_item = df_item.merge(df_brand_item_map, how="left", on="item_id") # 查看最新的商品特征表 df_item df_brand_item_map # 将店铺VIP用户特征表拼接到商品特征表中,以 seller_id 为 key df_item = df_item.merge(df_brand_vip_users,how = "left", on="seller_id") df_item # 用 0 填充缺失值 df_item["label"] = df_item["label"].fillna(0) df_item df_item.isnull().sum() df_item = df_item.dropna() df_item = df_item.merge(df_seller_item_count, how = "left", on = "seller_id") df_item df_item # 导入分割的方法 from sklearn.model_selection import train_test_split # 自变量的数据表 X = df_item.drop(columns=["order", "seller_id","item_id","label", "item_count"]) # 因变量 y = df_item["order"] # 分别切割出训练集,测试集,测试集的比例是 20% X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state=42) # 查看自变量的测试集合 X_train y X_train X_train.isnull().sum() linear_model = LinearRegression() linear_model.fit(X_train, y_train) # predict X_test 对应的 y 值 y_pred = linear_model.predict(X_test) # 用 scores 方法,查看模型自变量和因变量的相关性 print("Scores:", linear_model.score(X_test, y_test)) # 查看 predict y 和 y test的平均绝对误差 print("MAE:", mean_absolute_error(y_test, y_pred)) # 查看模型的 b 值 print("intercept:", linear_model.intercept_) # 查看模型的系数 print("coef_:", linear_model.coef_) print(linear_model.predict([[20, 0 ,3, 10, 30]])) ```
github_jupyter
import pandas as pd import numpy as np df_user_log = pd.read_csv("data_set/user_behavior_time_resampled.csv") df_user_info = pd.read_csv("data_set/user_info.csv") df_vip_user = pd.read_csv("data_set/vip_user.csv") # 分别插入 click、cart、order、fav 四列,表示点击、加购物车、下单和收藏 # 规则见上面的文字描述 df_user_log["click"] = df_user_log.action_type.apply(lambda l:1 if l==0 else 0) df_user_log["cart"] = df_user_log.action_type.apply(lambda l:1 if l==1 else 0) df_user_log["order"] = df_user_log.action_type.apply(lambda l:1 if l==2 else 0) df_user_log["fav"] = df_user_log.action_type.apply(lambda l:1 if l==3 else 0) # 查看添加之后的 user_log 表 df_user_log print("click 数据分布:\n",df_user_log.click.value_counts()) print("order 数据分布:\n",df_user_log.order.value_counts()) print("fav 数据分布:\n",df_user_log.fav.value_counts()) print("cart 数据分布:\n",df_user_log.cart.value_counts()) df_clean = df_user_log[["item_id", "click", "cart", "order","fav"]] df_clean df_item = df_clean.groupby(["item_id"]).sum() df_item df_vip_user # 重命名 merchant_id 为 seller_id df_vip_user = df_vip_user.rename( columns={"merchant_id" : "seller_id"}) # 选取 seller_id和label 这连烈,斌将结果通过 seller_id 聚合,相同 seller_id 的记录的label求和 df_brand_vip_users = df_vip_user[["seller_id", "label"]].groupby("seller_id").sum() # 查看保存了店铺 vip 用户数的表的内容 df_brand_vip_users # 筛选出 seller_id 和 item_id df_seller_item_count = df_user_log[["seller_id", "item_id"]] # 按item_id 去重,因为 itemid 一样的记录,seller_id 肯定也一样,所以 seller_id没有影响 df_seller_item_count = df_seller_item_count.drop_duplicates("item_id") # 将 item_id 列赋值为 1,方便做求和 df_seller_item_count["item_id"] = 1 # 按seller_id 聚合,然后针对 item_id 列求和 df_seller_item_count = df_seller_item_count.groupby("seller_id").sum() # 将 item_id 列改为 item_count, 避免有歧义 df_seller_item_count = df_seller_item_count.rename(columns = {"item_id" : "item_count"}) # 查看结果 df_seller_item_count df_item # 从原始行为表中取出 item_id 和seller_id ,构成新表 df_brand_item_map = df_user_log[["item_id", "seller_id"]] # 按照item_id去重,去重后得到的结果就相当于是 item id 和 seller_id 的映射关系 df_brand_item_map = df_brand_item_map.drop_duplicates("item_id") # 将 df_brand_item_map 映射进 df_item, 以 item_id 为 key df_item = df_item.merge(df_brand_item_map, how="left", on="item_id") # 查看最新的商品特征表 df_item df_brand_item_map # 将店铺VIP用户特征表拼接到商品特征表中,以 seller_id 为 key df_item = df_item.merge(df_brand_vip_users,how = "left", on="seller_id") df_item # 用 0 填充缺失值 df_item["label"] = df_item["label"].fillna(0) df_item df_item.isnull().sum() df_item = df_item.dropna() df_item = df_item.merge(df_seller_item_count, how = "left", on = "seller_id") df_item df_item # 导入分割的方法 from sklearn.model_selection import train_test_split # 自变量的数据表 X = df_item.drop(columns=["order", "seller_id","item_id","label", "item_count"]) # 因变量 y = df_item["order"] # 分别切割出训练集,测试集,测试集的比例是 20% X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state=42) # 查看自变量的测试集合 X_train y X_train X_train.isnull().sum() linear_model = LinearRegression() linear_model.fit(X_train, y_train) # predict X_test 对应的 y 值 y_pred = linear_model.predict(X_test) # 用 scores 方法,查看模型自变量和因变量的相关性 print("Scores:", linear_model.score(X_test, y_test)) # 查看 predict y 和 y test的平均绝对误差 print("MAE:", mean_absolute_error(y_test, y_pred)) # 查看模型的 b 值 print("intercept:", linear_model.intercept_) # 查看模型的系数 print("coef_:", linear_model.coef_) print(linear_model.predict([[20, 0 ,3, 10, 30]]))
0.250913
0.173708
``` # Import required libraries and dependencies import pandas as pd import hvplot.pandas from path import Path from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # Load the data into a Pandas DataFrame df_market_data = pd.read_csv( Path("Resources/crypto_market_data.csv"), index_col="coin_id") # Display sample data df_market_data.head(10) # Generate summary statistics df_market_data.describe() # Plot your data to see what's in your DataFrame df_market_data.hvplot.line( width=800, height=400, rot=90 ) # Use the `StandardScaler()` module from scikit-learn to normalize the data from the CSV file scaled_data = StandardScaler().fit_transform(df_market_data) # Create a DataFrame with the scaled data df_market_data_scaled = pd.DataFrame( scaled_data, columns=df_market_data.columns ) # Copy the crypto names from the original data df_market_data_scaled["coin_id"] = df_market_data.index # Set the coinid column as index df_market_data_scaled = df_market_data_scaled.set_index("coin_id") # Display sample data df_market_data_scaled.head() ``` --- ``` # Initialize the K-Means model with four clusters model = KMeans(n_clusters=4) # Fit the K-Means model using the scaled data model.fit(df_market_data_scaled) # Predict the clusters to group the cryptocurrencies using the scaled data crypto_clusters_k4 = model.predict(df_market_data_scaled) # View the resulting array of cluster values. print(crypto_clusters_k4) # Add a new column to the DataFrame with the predicted clusters with k=4 df_market_data_scaled["crypto_cluster_k4"] = crypto_clusters_k4 # Display sample data df_market_data_scaled.head() # Create a scatter plot using hvPlot by setting # `x="price_change_percentage_14d"` and `y="price_change_percentage_1y"`. # Group the results by the clusters using `by="crypto_cluster_k4". # Set the hover to the coin id using `hover_cols=["coin_id"]`. df_market_data_scaled.hvplot.scatter( x="price_change_percentage_14d", y="price_change_percentage_1y", by="crypto_cluster_k4", hover_cols=["coin_id"], marker=["hex", "square", "cross", "inverted_triangle", "triangle"], ) ``` --- ``` # Create a list with the number of k-values to try # Use a range from 1 to 11 k = list(range(1, 11)) # Create an empy list to store the inertia values inertia = [] # Create a for loop to compute the inertia with each possible value of k # Inside the loop: # 1. Create a KMeans model using the loop counter for the n_clusters # 2. Fit the model to the data using `df_market_data_scaled` # 3. Append the model.inertia_ to the inirtia list for i in k: model = KMeans(n_clusters=i, random_state=0) model.fit(df_market_data_scaled) inertia.append(model.inertia_) # Create a dictionary with the data to plot the Elbow curve elbow_data = { "k": k, "inertia": inertia } # Create a DataFrame with the data to plot the Elbow curve df_elbow = pd.DataFrame(elbow_data) # Plot a line chart with all the inertia values computed with # the different values of k to visually identify the optimal value for k. df_elbow.hvplot(x='k', y='inertia', title='Elbow Curve', xticks=k) ``` **Question:** What is the best value for `k`? **Answer:** Based on the elbow curve, the best value for k is 5. --- ``` # Create a PCA model instance and set `n_components=3`. pca = PCA(n_components=3) # Use the PCA model with `fit_transform` to reduce to # three principal components. market_pca_data = pca.fit_transform(df_market_data_scaled) # View the first five rows of the DataFrame. market_pca_data[:5] # Retrieve the explained variance to determine how much information # can be attributed to each principal component. pca.explained_variance_ratio_ ``` **Question** What is the total explained variance of the three principal components? **Answer** 89%. To find the total explained variance we add up the principal components, the first has 36.94% of the variance, the second has 29.17%, the third has 22.89%, which sum up to 89%. ``` # Creating a DataFrame with the PCA data df_market_data_pca = pd.DataFrame( market_pca_data, columns=["PC1", "PC2", "PC3"] ) # Copy the crypto names from the original data df_market_data_pca["coin_id"] = df_market_data.index # Set the coinid column as index df_market_data_pca = df_market_data_pca.set_index("coin_id") # Display sample data df_market_data_pca.head() # Initiate a new K-Means algorithm using the PCA DataFrame to group # the cryptocurrencies. Set the `n_clusters` parameter equal to # the best value for `k` found before. View the resulting array. # Initialize the K-Means model model = KMeans(n_clusters=5) # Fit the model model.fit(df_market_data_pca) # Predict clusters crypto_clusters_k5 = model.predict(df_market_data_pca) # View the resulting array crypto_clusters_k5 # - From the original DataFrame, add the `price_change_percentage_1y` and `price_change_percentage_14d` columns. # - Add a column with the predicted cluster values identified using a k value of 4. (The predicted cluster values were calculated in the “Cluster Cryptocurrencies with K-means” section.) # - Add a column with the predicted cluster values identified using the optimal value for k. # Add the price_change_percentage_1y column from the original data df_market_data_pca["price_change_percentage_1y"] = df_market_data["price_change_percentage_1y"] # Add the price_change_percentage_14d column from the original data df_market_data_pca["price_change_percentage_14d"] = df_market_data["price_change_percentage_14d"] # Add a new column to the DataFrame with the predicted clusters using the best value of k df_market_data_pca["crypto_cluster_k5"] = crypto_clusters_k5 # Add a new column to the DataFrame with the predicted clusters using k=4 df_market_data_pca["crypto_cluster_k4"] = crypto_clusters_k4 # Display sample data df_market_data_pca.head() ``` --- ``` # Create a scatter plot for the Crypto Clusters using k=4 data. # Use the PCA data to create a scatter plot with hvPlot by setting # x="price_change_percentage_14d" and y="price_change_percentage_1y". # Group by the clusters using `by="crypto_cluster_k4". # Set the hover colors to the coin id with `hover_cols=["coin_id"] # Create a descriptive title for the plot using the title parameter. scatter_plot_k4 = df_market_data_pca.hvplot.scatter( x="price_change_percentage_14d", y="price_change_percentage_1y", by="crypto_cluster_k4", hover_cols=["coin_id"], title='Clustered k=4 Market Data' ) scatter_plot_k4 # Create a scatter plot for the Crypto Clusters using k=5 data. # Use the PCA data to create a scatter plot with hvPlot by setting # x="price_change_percentage_14d" and y="price_change_percentage_1y". # Group by the clusters using `by="crypto_cluster_k5". # Set the hover colors to the coin id with `hover_cols=["coin_id"] # Create a descriptive title for the plot using the title parameter. scatter_plot_k5 = df_market_data_pca.hvplot.scatter( x="price_change_percentage_14d", y="price_change_percentage_1y", by="crypto_cluster_k5", hover_cols=["coin_id"], title='PCA Clustered k=5 Market Data' ) scatter_plot_k5 # Compare both scatter plots scatter_plot_k4 + scatter_plot_k5 ``` **Question:** What value of `k` seems to create the most accurate clusters to group cryptocurrencies according to their profitability? **Answer:** Based on the scatter plots, it seems like k = 4 is the most accurate to group cryptocurrencies according to their profitibility
github_jupyter
# Import required libraries and dependencies import pandas as pd import hvplot.pandas from path import Path from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # Load the data into a Pandas DataFrame df_market_data = pd.read_csv( Path("Resources/crypto_market_data.csv"), index_col="coin_id") # Display sample data df_market_data.head(10) # Generate summary statistics df_market_data.describe() # Plot your data to see what's in your DataFrame df_market_data.hvplot.line( width=800, height=400, rot=90 ) # Use the `StandardScaler()` module from scikit-learn to normalize the data from the CSV file scaled_data = StandardScaler().fit_transform(df_market_data) # Create a DataFrame with the scaled data df_market_data_scaled = pd.DataFrame( scaled_data, columns=df_market_data.columns ) # Copy the crypto names from the original data df_market_data_scaled["coin_id"] = df_market_data.index # Set the coinid column as index df_market_data_scaled = df_market_data_scaled.set_index("coin_id") # Display sample data df_market_data_scaled.head() # Initialize the K-Means model with four clusters model = KMeans(n_clusters=4) # Fit the K-Means model using the scaled data model.fit(df_market_data_scaled) # Predict the clusters to group the cryptocurrencies using the scaled data crypto_clusters_k4 = model.predict(df_market_data_scaled) # View the resulting array of cluster values. print(crypto_clusters_k4) # Add a new column to the DataFrame with the predicted clusters with k=4 df_market_data_scaled["crypto_cluster_k4"] = crypto_clusters_k4 # Display sample data df_market_data_scaled.head() # Create a scatter plot using hvPlot by setting # `x="price_change_percentage_14d"` and `y="price_change_percentage_1y"`. # Group the results by the clusters using `by="crypto_cluster_k4". # Set the hover to the coin id using `hover_cols=["coin_id"]`. df_market_data_scaled.hvplot.scatter( x="price_change_percentage_14d", y="price_change_percentage_1y", by="crypto_cluster_k4", hover_cols=["coin_id"], marker=["hex", "square", "cross", "inverted_triangle", "triangle"], ) # Create a list with the number of k-values to try # Use a range from 1 to 11 k = list(range(1, 11)) # Create an empy list to store the inertia values inertia = [] # Create a for loop to compute the inertia with each possible value of k # Inside the loop: # 1. Create a KMeans model using the loop counter for the n_clusters # 2. Fit the model to the data using `df_market_data_scaled` # 3. Append the model.inertia_ to the inirtia list for i in k: model = KMeans(n_clusters=i, random_state=0) model.fit(df_market_data_scaled) inertia.append(model.inertia_) # Create a dictionary with the data to plot the Elbow curve elbow_data = { "k": k, "inertia": inertia } # Create a DataFrame with the data to plot the Elbow curve df_elbow = pd.DataFrame(elbow_data) # Plot a line chart with all the inertia values computed with # the different values of k to visually identify the optimal value for k. df_elbow.hvplot(x='k', y='inertia', title='Elbow Curve', xticks=k) # Create a PCA model instance and set `n_components=3`. pca = PCA(n_components=3) # Use the PCA model with `fit_transform` to reduce to # three principal components. market_pca_data = pca.fit_transform(df_market_data_scaled) # View the first five rows of the DataFrame. market_pca_data[:5] # Retrieve the explained variance to determine how much information # can be attributed to each principal component. pca.explained_variance_ratio_ # Creating a DataFrame with the PCA data df_market_data_pca = pd.DataFrame( market_pca_data, columns=["PC1", "PC2", "PC3"] ) # Copy the crypto names from the original data df_market_data_pca["coin_id"] = df_market_data.index # Set the coinid column as index df_market_data_pca = df_market_data_pca.set_index("coin_id") # Display sample data df_market_data_pca.head() # Initiate a new K-Means algorithm using the PCA DataFrame to group # the cryptocurrencies. Set the `n_clusters` parameter equal to # the best value for `k` found before. View the resulting array. # Initialize the K-Means model model = KMeans(n_clusters=5) # Fit the model model.fit(df_market_data_pca) # Predict clusters crypto_clusters_k5 = model.predict(df_market_data_pca) # View the resulting array crypto_clusters_k5 # - From the original DataFrame, add the `price_change_percentage_1y` and `price_change_percentage_14d` columns. # - Add a column with the predicted cluster values identified using a k value of 4. (The predicted cluster values were calculated in the “Cluster Cryptocurrencies with K-means” section.) # - Add a column with the predicted cluster values identified using the optimal value for k. # Add the price_change_percentage_1y column from the original data df_market_data_pca["price_change_percentage_1y"] = df_market_data["price_change_percentage_1y"] # Add the price_change_percentage_14d column from the original data df_market_data_pca["price_change_percentage_14d"] = df_market_data["price_change_percentage_14d"] # Add a new column to the DataFrame with the predicted clusters using the best value of k df_market_data_pca["crypto_cluster_k5"] = crypto_clusters_k5 # Add a new column to the DataFrame with the predicted clusters using k=4 df_market_data_pca["crypto_cluster_k4"] = crypto_clusters_k4 # Display sample data df_market_data_pca.head() # Create a scatter plot for the Crypto Clusters using k=4 data. # Use the PCA data to create a scatter plot with hvPlot by setting # x="price_change_percentage_14d" and y="price_change_percentage_1y". # Group by the clusters using `by="crypto_cluster_k4". # Set the hover colors to the coin id with `hover_cols=["coin_id"] # Create a descriptive title for the plot using the title parameter. scatter_plot_k4 = df_market_data_pca.hvplot.scatter( x="price_change_percentage_14d", y="price_change_percentage_1y", by="crypto_cluster_k4", hover_cols=["coin_id"], title='Clustered k=4 Market Data' ) scatter_plot_k4 # Create a scatter plot for the Crypto Clusters using k=5 data. # Use the PCA data to create a scatter plot with hvPlot by setting # x="price_change_percentage_14d" and y="price_change_percentage_1y". # Group by the clusters using `by="crypto_cluster_k5". # Set the hover colors to the coin id with `hover_cols=["coin_id"] # Create a descriptive title for the plot using the title parameter. scatter_plot_k5 = df_market_data_pca.hvplot.scatter( x="price_change_percentage_14d", y="price_change_percentage_1y", by="crypto_cluster_k5", hover_cols=["coin_id"], title='PCA Clustered k=5 Market Data' ) scatter_plot_k5 # Compare both scatter plots scatter_plot_k4 + scatter_plot_k5
0.936759
0.906694
# P-BMP280 and T-BMP280 measures by: Widya Meiriska ``` import csv import pandas as pd import numpy as np import json import matplotlib.pyplot as plt %matplotlib inline ``` ### 1. Read Dataset #### P-BMP280-measures ``` df = pd.read_csv('../data/raw/measures/P-BMP280-measures.csv') df.head() df.tail() ``` #### T-BMP280-measures ``` df1 = pd.read_csv('../data/raw/measures/T-BMP280-measures.csv') df1.head() df1.tail() ``` ### 2. Data Investigation #### P-BMP280-measures ``` df.columns df.count() df.isnull().sum() df.dtypes df.describe() df.info() missingdf = pd.DataFrame(df.isna().sum()).rename(columns = {0: 'total'}) missingdf['percent'] = missingdf['total'] / len(df) missingdf ``` #### T-BMP280-measures ``` df1.columns df1.count() df1.isnull().sum() df1.dtypes df1.describe() df1.info() missingdf1 = pd.DataFrame(df.isna().sum()).rename(columns = {0: 'total'}) missingdf1['percent'] = missingdf['total'] / len(df) missingdf1 # Convert time column into date time format df['time'] = pd.to_datetime(df['time']) df1['time'] = pd.to_datetime(df1['time']) ``` #### No missing data and different format between data sensor P-BMP280 and T-BMP280 measures #### Merge P-BMP280-measures and T-BMP280 -measures P-BMP280 measures the pressure and T-BMP280 measures the temperature. Here I try to merge the data P-BMP280 and T-BMP280 measures, because the measurement time is almost the same ``` df.rename(columns={'sensor': 'pressure sensor','value' : 'P-BMP280'},inplace=True) df1.rename(columns={'sensor': 'temperature sensor','value' : 'T-BMP280'},inplace=True) df.head() df1.head() newdf = pd.merge(df, df1, on='time', how='outer') newdf.head() newdf.tail() newdf = newdf.reindex(columns=['time','pressure sensor','P-BMP280','temperature sensor','T-BMP280']) newdf = newdf[['time','pressure sensor','P-BMP280','temperature sensor','T-BMP280']] data = newdf.drop(["pressure sensor", "temperature sensor"], axis=1) data.head() data.tail() data.count() missingdata = pd.DataFrame(data.isna().sum()).rename(columns = {0: 'total'}) missingdata['percent'] = missingdata['total'] / len(data) missingdata ``` #### After merging the data from P-BMP280 and T-BMP280 sensor there are many missing data founded. This is maybe because the difference measurement time, so here I will try to interpolate the missing data. Fill the NaN value on humidity value with intepolate data using time ``` data.set_index('time',inplace=True) new_df = data.interpolate(method="time") new_df.tail() missingnewdf1 = pd.DataFrame(new_df.isna().sum()).rename(columns = {0: 'total'}) missingnewdf1['percent'] = missingnewdf1['total'] / len(new_df) missingnewdf1 new_df.count() new_df.describe() ``` #### After interpolate and fill the data, no more missing value and I assume the data is clean ### 3. Data Visualization ``` %matplotlib inline plt.figure(figsize=(25, 25)) plt.subplot(2,2,1) new_df['T-BMP280'].plot() plt.title('Time vs Temperature') plt.subplot(2,2,2) new_df['T-BMP280'].resample('D').mean().plot() plt.title('Time vs Temperature') %matplotlib inline plt.figure(figsize=(25, 25)) plt.subplot(2,2,1) new_df['P-BMP280'].plot() plt.title('Time vs Pressure') plt.subplot(2,2,2) new_df['P-BMP280'].resample('D').mean().plot() plt.title('Time vs Pressure') ``` #### We can see that there are some days when there is no measurement at all
github_jupyter
import csv import pandas as pd import numpy as np import json import matplotlib.pyplot as plt %matplotlib inline df = pd.read_csv('../data/raw/measures/P-BMP280-measures.csv') df.head() df.tail() df1 = pd.read_csv('../data/raw/measures/T-BMP280-measures.csv') df1.head() df1.tail() df.columns df.count() df.isnull().sum() df.dtypes df.describe() df.info() missingdf = pd.DataFrame(df.isna().sum()).rename(columns = {0: 'total'}) missingdf['percent'] = missingdf['total'] / len(df) missingdf df1.columns df1.count() df1.isnull().sum() df1.dtypes df1.describe() df1.info() missingdf1 = pd.DataFrame(df.isna().sum()).rename(columns = {0: 'total'}) missingdf1['percent'] = missingdf['total'] / len(df) missingdf1 # Convert time column into date time format df['time'] = pd.to_datetime(df['time']) df1['time'] = pd.to_datetime(df1['time']) df.rename(columns={'sensor': 'pressure sensor','value' : 'P-BMP280'},inplace=True) df1.rename(columns={'sensor': 'temperature sensor','value' : 'T-BMP280'},inplace=True) df.head() df1.head() newdf = pd.merge(df, df1, on='time', how='outer') newdf.head() newdf.tail() newdf = newdf.reindex(columns=['time','pressure sensor','P-BMP280','temperature sensor','T-BMP280']) newdf = newdf[['time','pressure sensor','P-BMP280','temperature sensor','T-BMP280']] data = newdf.drop(["pressure sensor", "temperature sensor"], axis=1) data.head() data.tail() data.count() missingdata = pd.DataFrame(data.isna().sum()).rename(columns = {0: 'total'}) missingdata['percent'] = missingdata['total'] / len(data) missingdata data.set_index('time',inplace=True) new_df = data.interpolate(method="time") new_df.tail() missingnewdf1 = pd.DataFrame(new_df.isna().sum()).rename(columns = {0: 'total'}) missingnewdf1['percent'] = missingnewdf1['total'] / len(new_df) missingnewdf1 new_df.count() new_df.describe() %matplotlib inline plt.figure(figsize=(25, 25)) plt.subplot(2,2,1) new_df['T-BMP280'].plot() plt.title('Time vs Temperature') plt.subplot(2,2,2) new_df['T-BMP280'].resample('D').mean().plot() plt.title('Time vs Temperature') %matplotlib inline plt.figure(figsize=(25, 25)) plt.subplot(2,2,1) new_df['P-BMP280'].plot() plt.title('Time vs Pressure') plt.subplot(2,2,2) new_df['P-BMP280'].resample('D').mean().plot() plt.title('Time vs Pressure')
0.436382
0.90723
# Advanced Feature Engineering in Keras **Learning Objectives** 1. Process temporal feature columns in Keras 2. Use Lambda layers to perform feature engineering on geolocation features 3. Create bucketized and crossed feature columns ## Introduction In this notebook, we use Keras to build a taxifare price prediction model and utilize feature engineering to improve the fare amount prediction for NYC taxi cab rides. Each learning objective will correspond to a __#TODO__ in the [student lab notebook](https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/courses/machine_learning/deepdive2/feature_engineering/labs/4_keras_adv_feat_eng-lab.ipynb) -- try to complete that notebook first before reviewing this solution notebook. ## Set up environment variables and load necessary libraries We will start by importing the necessary libraries for this lab. ``` # Run the chown command to change the ownership of the repository !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.1 || pip install --user tensorflow==2.1 ``` **Note:** After executing the above cell you will see the output `tensorflow==2.1.0` that is the installed version of tensorflow. You may ignore specific incompatibility errors and warnings. **Restart the kernel** (click on the reload button above). ``` # You can use any Python source file as a module by executing an import statement in some other Python source file. # The import statement combines two operations; it searches for the named module, then it binds the results of that search # to a name in the local scope. import datetime import logging import os import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow import feature_column as fc from tensorflow.keras import layers from tensorflow.keras import models # set TF error log verbosity logging.getLogger("tensorflow").setLevel(logging.ERROR) print(tf.version.VERSION) ``` ## Load taxifare dataset The Taxi Fare dataset for this lab is 106,545 rows and has been pre-processed and split for use in this lab. Note that the dataset is the same as used in the Big Query feature engineering labs. The fare_amount is the target, the continuous value we’ll train a model to predict. First, let's download the .csv data by copying the data from a cloud storage bucket. ``` # `os.makedirs()` method will create all unavailable/missing directory in the specified path. if not os.path.isdir("../data"): os.makedirs("../data") # The `gsutil cp` command allows you to copy data between the bucket and current directory. !gsutil cp gs://cloud-training-demos/feat_eng/data/*.csv ../data ``` Let's check that the files were copied correctly and look like we expect them to. ``` # `ls` shows the working directory's contents. # The `l` flag list the all files with permissions and details. !ls -l ../data/*.csv # By default `head` returns the first ten lines of each file. !head ../data/*.csv ``` ## Create an input pipeline Typically, you will use a two step process to build the pipeline. Step one is to define the columns of data; i.e., which column we're predicting for, and the default values. Step 2 is to define two functions - a function to define the features and label you want to use and a function to load the training data. Also, note that pickup_datetime is a string and we will need to handle this in our feature engineered model. ``` CSV_COLUMNS = [ 'fare_amount', 'pickup_datetime', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'key', ] LABEL_COLUMN = 'fare_amount' STRING_COLS = ['pickup_datetime'] NUMERIC_COLS = ['pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count'] DEFAULTS = [[0.0], ['na'], [0.0], [0.0], [0.0], [0.0], [0.0], ['na']] DAYS = ['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'] # A function to define features and labesl def features_and_labels(row_data): for unwanted_col in ['key']: row_data.pop(unwanted_col) label = row_data.pop(LABEL_COLUMN) return row_data, label # A utility method to create a tf.data dataset from a Pandas Dataframe def load_dataset(pattern, batch_size=1, mode='eval'): dataset = tf.data.experimental.make_csv_dataset(pattern, batch_size, CSV_COLUMNS, DEFAULTS) dataset = dataset.map(features_and_labels) # features, label if mode == 'train': dataset = dataset.shuffle(1000).repeat() # take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(1) return dataset ``` ## Create a Baseline DNN Model in Keras Now let's build the Deep Neural Network (DNN) model in Keras using the functional API. Unlike the sequential API, we will need to specify the input and hidden layers. Note that we are creating a linear regression baseline model with no feature engineering. Recall that a baseline model is a solution to a problem without applying any machine learning techniques. ``` # Build a simple Keras DNN using its Functional API def rmse(y_true, y_pred): # Root mean square error return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(): # input layer inputs = { colname: layers.Input(name=colname, shape=(), dtype='float32') for colname in NUMERIC_COLS } # feature_columns feature_columns = { colname: fc.numeric_column(colname) for colname in NUMERIC_COLS } # Constructor for DenseFeatures takes a list of numeric columns dnn_inputs = layers.DenseFeatures(feature_columns.values())(inputs) # two hidden layers of [32, 8] just in like the BQML DNN h1 = layers.Dense(32, activation='relu', name='h1')(dnn_inputs) h2 = layers.Dense(8, activation='relu', name='h2')(h1) # final output is a linear activation because this is regression output = layers.Dense(1, activation='linear', name='fare')(h2) model = models.Model(inputs, output) # compile model model.compile(optimizer='adam', loss='mse', metrics=[rmse, 'mse']) return model ``` We'll build our DNN model and inspect the model architecture. ``` model = build_dnn_model() # We can visualize the DNN using the Keras `plot_model` utility. tf.keras.utils.plot_model(model, 'dnn_model.png', show_shapes=False, rankdir='LR') ``` ## Train the model To train the model, simply call [model.fit()](https://keras.io/models/model/#fit). Note that we should really use many more NUM_TRAIN_EXAMPLES (i.e. a larger dataset). We shouldn't make assumptions about the quality of the model based on training/evaluating it on a small sample of the full data. We start by setting up the environment variables for training, creating the input pipeline datasets, and then train our baseline DNN model. ``` TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 59621 * 5 NUM_EVALS = 5 NUM_EVAL_EXAMPLES = 14906 # `load_dataset` method is used to load the dataset. trainds = load_dataset('../data/taxi-train*', TRAIN_BATCH_SIZE, 'train') evalds = load_dataset('../data/taxi-valid*', 1000, 'eval').take(NUM_EVAL_EXAMPLES//1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) # `Fit` trains the model for a fixed number of epochs history = model.fit(trainds, validation_data=evalds, epochs=NUM_EVALS, steps_per_epoch=steps_per_epoch) ``` ### Visualize the model loss curve Next, we will use matplotlib to draw the model's loss curves for training and validation. A line plot is also created showing the mean squared error loss over the training epochs for both the train (blue) and test (orange) sets. ``` # A function to define plot_curves. def plot_curves(history, metrics): nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(metrics): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history['val_{}'.format(key)]) plt.title('model {}'.format(key)) plt.ylabel(key) plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left'); plot_curves(history, ['loss', 'mse']) ``` ### Predict with the model locally To predict with Keras, you simply call [model.predict()](https://keras.io/models/model/#predict) and pass in the cab ride you want to predict the fare amount for. Next we note the fare price at this geolocation and pickup_datetime. ``` # Use the model to do prediction with `model.predict()`. model.predict({ 'pickup_longitude': tf.convert_to_tensor([-73.982683]), 'pickup_latitude': tf.convert_to_tensor([40.742104]), 'dropoff_longitude': tf.convert_to_tensor([-73.983766]), 'dropoff_latitude': tf.convert_to_tensor([40.755174]), 'passenger_count': tf.convert_to_tensor([3.0]), 'pickup_datetime': tf.convert_to_tensor(['2010-02-08 09:17:00 UTC'], dtype=tf.string), }, steps=1) ``` ## Improve Model Performance Using Feature Engineering We now improve our model's performance by creating the following feature engineering types: Temporal, Categorical, and Geolocation. ### Temporal Feature Columns We incorporate the temporal feature pickup_datetime. As noted earlier, pickup_datetime is a string and we will need to handle this within the model. First, you will include the pickup_datetime as a feature and then you will need to modify the model to handle our string feature. ``` # TODO 1a def parse_datetime(s): if type(s) is not str: s = s.numpy().decode('utf-8') return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z") # TODO 1b def get_dayofweek(s): ts = parse_datetime(s) return DAYS[ts.weekday()] # TODO 1c @tf.function def dayofweek(ts_in): return tf.map_fn( lambda s: tf.py_function(get_dayofweek, inp=[s], Tout=tf.string), ts_in) ``` ### Geolocation/Coordinate Feature Columns The pick-up/drop-off longitude and latitude data are crucial to predicting the fare amount as fare amounts in NYC taxis are largely determined by the distance traveled. As such, we need to teach the model the Euclidean distance between the pick-up and drop-off points. Recall that latitude and longitude allows us to specify any location on Earth using a set of coordinates. In our training data set, we restricted our data points to only pickups and drop offs within NYC. New York city has an approximate longitude range of -74.05 to -73.75 and a latitude range of 40.63 to 40.85. #### Computing Euclidean distance The dataset contains information regarding the pickup and drop off coordinates. However, there is no information regarding the distance between the pickup and drop off points. Therefore, we create a new feature that calculates the distance between each pair of pickup and drop off points. We can do this using the Euclidean Distance, which is the straight-line distance between any two coordinate points. ``` def euclidean(params): lon1, lat1, lon2, lat2 = params londiff = lon2 - lon1 latdiff = lat2 - lat1 return tf.sqrt(londiff*londiff + latdiff*latdiff) ``` #### Scaling latitude and longitude It is very important for numerical variables to get scaled before they are "fed" into the neural network. Here we use min-max scaling (also called normalization) on the geolocation features. Later in our model, you will see that these values are shifted and rescaled so that they end up ranging from 0 to 1. First, we create a function named 'scale_longitude', where we pass in all the longitudinal values and add 78 to each value. Note that our scaling longitude ranges from -70 to -78. Thus, the value 78 is the maximum longitudinal value. The delta or difference between -70 and -78 is 8. We add 78 to each longitudinal value and then divide by 8 to return a scaled value. ``` def scale_longitude(lon_column): return (lon_column + 78)/8. ``` Next, we create a function named 'scale_latitude', where we pass in all the latitudinal values and subtract 37 from each value. Note that our scaling longitude ranges from -37 to -45. Thus, the value 37 is the minimal latitudinal value. The delta or difference between -37 and -45 is 8. We subtract 37 from each latitudinal value and then divide by 8 to return a scaled value. ``` def scale_latitude(lat_column): return (lat_column - 37)/8. ``` ### Putting it all together We now create two new "geo" functions for our model. We create a function called "euclidean" to initialize our geolocation parameters. We then create a function called transform. The transform function passes our numerical and string column features as inputs to the model, scales geolocation features, then creates the Euclidean distance as a transformed variable with the geolocation features. Lastly, we bucketize the latitude and longitude features. ``` def transform(inputs, numeric_cols, string_cols, nbuckets): print("Inputs before features transformation: {}".format(inputs.keys())) # Pass-through columns transformed = inputs.copy() del transformed['pickup_datetime'] feature_columns = { colname: tf.feature_column.numeric_column(colname) for colname in numeric_cols } # TODO 2a # Scaling longitude from range [-70, -78] to [0, 1] for lon_col in ['pickup_longitude', 'dropoff_longitude']: transformed[lon_col] = layers.Lambda( scale_longitude, name="scale_{}".format(lon_col))(inputs[lon_col]) # TODO 2b # Scaling latitude from range [37, 45] to [0, 1] for lat_col in ['pickup_latitude', 'dropoff_latitude']: transformed[lat_col] = layers.Lambda( scale_latitude, name='scale_{}'.format(lat_col))(inputs[lat_col]) # add Euclidean distance transformed['euclidean'] = layers.Lambda( euclidean, name='euclidean')([inputs['pickup_longitude'], inputs['pickup_latitude'], inputs['dropoff_longitude'], inputs['dropoff_latitude']]) feature_columns['euclidean'] = fc.numeric_column('euclidean') # TODO 3a # create bucketized features latbuckets = np.linspace(0, 1, nbuckets).tolist() lonbuckets = np.linspace(0, 1, nbuckets).tolist() b_plat = fc.bucketized_column( feature_columns['pickup_latitude'], latbuckets) b_dlat = fc.bucketized_column( feature_columns['dropoff_latitude'], latbuckets) b_plon = fc.bucketized_column( feature_columns['pickup_longitude'], lonbuckets) b_dlon = fc.bucketized_column( feature_columns['dropoff_longitude'], lonbuckets) # TODO 3b # create crossed columns ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets) dloc = fc.crossed_column([b_dlat, b_dlon], nbuckets * nbuckets) pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4) # create embedding columns feature_columns['pickup_and_dropoff'] = fc.embedding_column(pd_pair, 100) print("Transformed features: {}".format(transformed.keys())) print("Feature columns: {}".format(feature_columns.keys())) return transformed, feature_columns ``` Next, we'll create our DNN model now with the engineered features. We'll set `NBUCKETS = 10` to specify 10 buckets when bucketizing the latitude and longitude. ``` NBUCKETS = 10 # DNN MODEL def rmse(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(): # input layer is all float except for pickup_datetime which is a string inputs = { colname: layers.Input(name=colname, shape=(), dtype='float32') for colname in NUMERIC_COLS } inputs.update({ colname: tf.keras.layers.Input(name=colname, shape=(), dtype='string') for colname in STRING_COLS }) # transforms transformed, feature_columns = transform(inputs, numeric_cols=NUMERIC_COLS, string_cols=STRING_COLS, nbuckets=NBUCKETS) dnn_inputs = layers.DenseFeatures(feature_columns.values())(transformed) # two hidden layers of [32, 8] just in like the BQML DNN h1 = layers.Dense(32, activation='relu', name='h1')(dnn_inputs) h2 = layers.Dense(8, activation='relu', name='h2')(h1) # final output is a linear activation because this is regression output = layers.Dense(1, activation='linear', name='fare')(h2) model = models.Model(inputs, output) # Compile model model.compile(optimizer='adam', loss='mse', metrics=[rmse, 'mse']) return model model = build_dnn_model() ``` Let's see how our model architecture has changed now. ``` # We can visualize the DNN using the Keras `plot_model` utility. tf.keras.utils.plot_model(model, 'dnn_model_engineered.png', show_shapes=False, rankdir='LR') # `load_dataset` method is used to load the dataset. trainds = load_dataset('../data/taxi-train*', TRAIN_BATCH_SIZE, 'train') evalds = load_dataset('../data/taxi-valid*', 1000, 'eval').take(NUM_EVAL_EXAMPLES//1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) # `Fit` trains the model for a fixed number of epochs history = model.fit(trainds, validation_data=evalds, epochs=NUM_EVALS+3, steps_per_epoch=steps_per_epoch) ``` As before, let's visualize the DNN model layers. ``` plot_curves(history, ['loss', 'mse']) ``` Let's a prediction with this new model with engineered features on the example we had above. ``` # Use the model to do prediction with `model.predict()`. model.predict({ 'pickup_longitude': tf.convert_to_tensor([-73.982683]), 'pickup_latitude': tf.convert_to_tensor([40.742104]), 'dropoff_longitude': tf.convert_to_tensor([-73.983766]), 'dropoff_latitude': tf.convert_to_tensor([40.755174]), 'passenger_count': tf.convert_to_tensor([3.0]), 'pickup_datetime': tf.convert_to_tensor(['2010-02-08 09:17:00 UTC'], dtype=tf.string), }, steps=1) ``` Below we summarize our training results comparing our baseline model with our model with engineered features. | Model | Taxi Fare | Description | |--------------------|-----------|-------------------------------------------| | Baseline | 12.29 | Baseline model - no feature engineering | | Feature Engineered | 07.28 | Feature Engineered Model | Copyright 2020 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
github_jupyter
# Run the chown command to change the ownership of the repository !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst # Ensure the right version of Tensorflow is installed. !pip freeze | grep tensorflow==2.1 || pip install --user tensorflow==2.1 # You can use any Python source file as a module by executing an import statement in some other Python source file. # The import statement combines two operations; it searches for the named module, then it binds the results of that search # to a name in the local scope. import datetime import logging import os import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow import feature_column as fc from tensorflow.keras import layers from tensorflow.keras import models # set TF error log verbosity logging.getLogger("tensorflow").setLevel(logging.ERROR) print(tf.version.VERSION) # `os.makedirs()` method will create all unavailable/missing directory in the specified path. if not os.path.isdir("../data"): os.makedirs("../data") # The `gsutil cp` command allows you to copy data between the bucket and current directory. !gsutil cp gs://cloud-training-demos/feat_eng/data/*.csv ../data # `ls` shows the working directory's contents. # The `l` flag list the all files with permissions and details. !ls -l ../data/*.csv # By default `head` returns the first ten lines of each file. !head ../data/*.csv CSV_COLUMNS = [ 'fare_amount', 'pickup_datetime', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'key', ] LABEL_COLUMN = 'fare_amount' STRING_COLS = ['pickup_datetime'] NUMERIC_COLS = ['pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count'] DEFAULTS = [[0.0], ['na'], [0.0], [0.0], [0.0], [0.0], [0.0], ['na']] DAYS = ['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'] # A function to define features and labesl def features_and_labels(row_data): for unwanted_col in ['key']: row_data.pop(unwanted_col) label = row_data.pop(LABEL_COLUMN) return row_data, label # A utility method to create a tf.data dataset from a Pandas Dataframe def load_dataset(pattern, batch_size=1, mode='eval'): dataset = tf.data.experimental.make_csv_dataset(pattern, batch_size, CSV_COLUMNS, DEFAULTS) dataset = dataset.map(features_and_labels) # features, label if mode == 'train': dataset = dataset.shuffle(1000).repeat() # take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(1) return dataset # Build a simple Keras DNN using its Functional API def rmse(y_true, y_pred): # Root mean square error return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(): # input layer inputs = { colname: layers.Input(name=colname, shape=(), dtype='float32') for colname in NUMERIC_COLS } # feature_columns feature_columns = { colname: fc.numeric_column(colname) for colname in NUMERIC_COLS } # Constructor for DenseFeatures takes a list of numeric columns dnn_inputs = layers.DenseFeatures(feature_columns.values())(inputs) # two hidden layers of [32, 8] just in like the BQML DNN h1 = layers.Dense(32, activation='relu', name='h1')(dnn_inputs) h2 = layers.Dense(8, activation='relu', name='h2')(h1) # final output is a linear activation because this is regression output = layers.Dense(1, activation='linear', name='fare')(h2) model = models.Model(inputs, output) # compile model model.compile(optimizer='adam', loss='mse', metrics=[rmse, 'mse']) return model model = build_dnn_model() # We can visualize the DNN using the Keras `plot_model` utility. tf.keras.utils.plot_model(model, 'dnn_model.png', show_shapes=False, rankdir='LR') TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 59621 * 5 NUM_EVALS = 5 NUM_EVAL_EXAMPLES = 14906 # `load_dataset` method is used to load the dataset. trainds = load_dataset('../data/taxi-train*', TRAIN_BATCH_SIZE, 'train') evalds = load_dataset('../data/taxi-valid*', 1000, 'eval').take(NUM_EVAL_EXAMPLES//1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) # `Fit` trains the model for a fixed number of epochs history = model.fit(trainds, validation_data=evalds, epochs=NUM_EVALS, steps_per_epoch=steps_per_epoch) # A function to define plot_curves. def plot_curves(history, metrics): nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(metrics): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history['val_{}'.format(key)]) plt.title('model {}'.format(key)) plt.ylabel(key) plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left'); plot_curves(history, ['loss', 'mse']) # Use the model to do prediction with `model.predict()`. model.predict({ 'pickup_longitude': tf.convert_to_tensor([-73.982683]), 'pickup_latitude': tf.convert_to_tensor([40.742104]), 'dropoff_longitude': tf.convert_to_tensor([-73.983766]), 'dropoff_latitude': tf.convert_to_tensor([40.755174]), 'passenger_count': tf.convert_to_tensor([3.0]), 'pickup_datetime': tf.convert_to_tensor(['2010-02-08 09:17:00 UTC'], dtype=tf.string), }, steps=1) # TODO 1a def parse_datetime(s): if type(s) is not str: s = s.numpy().decode('utf-8') return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z") # TODO 1b def get_dayofweek(s): ts = parse_datetime(s) return DAYS[ts.weekday()] # TODO 1c @tf.function def dayofweek(ts_in): return tf.map_fn( lambda s: tf.py_function(get_dayofweek, inp=[s], Tout=tf.string), ts_in) def euclidean(params): lon1, lat1, lon2, lat2 = params londiff = lon2 - lon1 latdiff = lat2 - lat1 return tf.sqrt(londiff*londiff + latdiff*latdiff) def scale_longitude(lon_column): return (lon_column + 78)/8. def scale_latitude(lat_column): return (lat_column - 37)/8. def transform(inputs, numeric_cols, string_cols, nbuckets): print("Inputs before features transformation: {}".format(inputs.keys())) # Pass-through columns transformed = inputs.copy() del transformed['pickup_datetime'] feature_columns = { colname: tf.feature_column.numeric_column(colname) for colname in numeric_cols } # TODO 2a # Scaling longitude from range [-70, -78] to [0, 1] for lon_col in ['pickup_longitude', 'dropoff_longitude']: transformed[lon_col] = layers.Lambda( scale_longitude, name="scale_{}".format(lon_col))(inputs[lon_col]) # TODO 2b # Scaling latitude from range [37, 45] to [0, 1] for lat_col in ['pickup_latitude', 'dropoff_latitude']: transformed[lat_col] = layers.Lambda( scale_latitude, name='scale_{}'.format(lat_col))(inputs[lat_col]) # add Euclidean distance transformed['euclidean'] = layers.Lambda( euclidean, name='euclidean')([inputs['pickup_longitude'], inputs['pickup_latitude'], inputs['dropoff_longitude'], inputs['dropoff_latitude']]) feature_columns['euclidean'] = fc.numeric_column('euclidean') # TODO 3a # create bucketized features latbuckets = np.linspace(0, 1, nbuckets).tolist() lonbuckets = np.linspace(0, 1, nbuckets).tolist() b_plat = fc.bucketized_column( feature_columns['pickup_latitude'], latbuckets) b_dlat = fc.bucketized_column( feature_columns['dropoff_latitude'], latbuckets) b_plon = fc.bucketized_column( feature_columns['pickup_longitude'], lonbuckets) b_dlon = fc.bucketized_column( feature_columns['dropoff_longitude'], lonbuckets) # TODO 3b # create crossed columns ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets) dloc = fc.crossed_column([b_dlat, b_dlon], nbuckets * nbuckets) pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4) # create embedding columns feature_columns['pickup_and_dropoff'] = fc.embedding_column(pd_pair, 100) print("Transformed features: {}".format(transformed.keys())) print("Feature columns: {}".format(feature_columns.keys())) return transformed, feature_columns NBUCKETS = 10 # DNN MODEL def rmse(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(): # input layer is all float except for pickup_datetime which is a string inputs = { colname: layers.Input(name=colname, shape=(), dtype='float32') for colname in NUMERIC_COLS } inputs.update({ colname: tf.keras.layers.Input(name=colname, shape=(), dtype='string') for colname in STRING_COLS }) # transforms transformed, feature_columns = transform(inputs, numeric_cols=NUMERIC_COLS, string_cols=STRING_COLS, nbuckets=NBUCKETS) dnn_inputs = layers.DenseFeatures(feature_columns.values())(transformed) # two hidden layers of [32, 8] just in like the BQML DNN h1 = layers.Dense(32, activation='relu', name='h1')(dnn_inputs) h2 = layers.Dense(8, activation='relu', name='h2')(h1) # final output is a linear activation because this is regression output = layers.Dense(1, activation='linear', name='fare')(h2) model = models.Model(inputs, output) # Compile model model.compile(optimizer='adam', loss='mse', metrics=[rmse, 'mse']) return model model = build_dnn_model() # We can visualize the DNN using the Keras `plot_model` utility. tf.keras.utils.plot_model(model, 'dnn_model_engineered.png', show_shapes=False, rankdir='LR') # `load_dataset` method is used to load the dataset. trainds = load_dataset('../data/taxi-train*', TRAIN_BATCH_SIZE, 'train') evalds = load_dataset('../data/taxi-valid*', 1000, 'eval').take(NUM_EVAL_EXAMPLES//1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) # `Fit` trains the model for a fixed number of epochs history = model.fit(trainds, validation_data=evalds, epochs=NUM_EVALS+3, steps_per_epoch=steps_per_epoch) plot_curves(history, ['loss', 'mse']) # Use the model to do prediction with `model.predict()`. model.predict({ 'pickup_longitude': tf.convert_to_tensor([-73.982683]), 'pickup_latitude': tf.convert_to_tensor([40.742104]), 'dropoff_longitude': tf.convert_to_tensor([-73.983766]), 'dropoff_latitude': tf.convert_to_tensor([40.755174]), 'passenger_count': tf.convert_to_tensor([3.0]), 'pickup_datetime': tf.convert_to_tensor(['2010-02-08 09:17:00 UTC'], dtype=tf.string), }, steps=1)
0.672869
0.985594
# Notebook 1 - Basic Exploration & Logistic Regression Baseline ``` %matplotlib inline import os from matplotlib import pyplot as plt import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from scipy.sparse import hstack import spacy ``` ## Data Ingestion ``` BASEDIR = '/data/datasets/kaggle/jigsaw-toxic-comment-classification-challenge' ``` Let's first inspect the training set and gather basic metrics ``` train = pd.read_csv(os.path.join(BASEDIR, 'train.csv')) train.head() lens = train.comment_text.str.len() lens.mean(), lens.std(), lens.max() lens.hist(); test = pd.read_csv(os.path.join(BASEDIR, 'test.csv')) test.head() train['comment_text'] = train['comment_text'].fillna(' ') test['comment_text'] = test['comment_text'].fillna(' ') submission = pd.read_csv(os.path.join(BASEDIR, 'sample_submission.csv')) submission.head() ``` ## Basic analysis This is a multilabel classification task, so let's check the proportion of each label: ``` for label in ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']: print(label, (train[label] == 1.0).sum() / len(train)) train[['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].corr() token_counts = CountVectorizer( strip_accents='unicode', analyzer='word', lowercase=True, ngram_range=(1,1), token_pattern=r'\w{2,}', max_features=30000) token_counts.fit(train['comment_text']) X = token_counts.fit_transform(train['comment_text']) token_freq = X.sum(axis=0).tolist()[0] token_freq[:5] token_counts_list = [(k, token_freq[v]) for k, v in token_counts.vocabulary_.items()] token_counts_list = sorted(token_counts_list, key=lambda x: x[1], reverse=True) token_counts_list[:25] token_counts_list[-25:] ``` ## Text Preprocessing ``` sample_train = train[:100] nlp = spacy.load('en', disable=['parser', 'ner', 'textcat']) def reduce_to_double_max(text): """Removes unecessary doubling/tripling/etc of characters Steps: 1. Replaces every 3+ consecutive identical chars by 2 consecutive identical chars 2. Replaces every 2+ consecutive non-word character by a single """ import re text = re.sub(r'(\w)\1{2,}', r'\1\1', text) return re.sub(r'(\W)\1+', r'\1', text) def preprocess_corpus(corpus): """Applies all preprocessing rules to the corpus""" corpus = (reduce_to_double_max(s.lower()) for s in corpus) docs = nlp.pipe(corpus, batch_size=1000, n_threads=12) return [' '.join([x.lemma_ for x in doc if x.is_alpha]) for doc in docs] sample_train['comment_text_processed'] = preprocess_corpus(sample_train['comment_text']) sample_train.head() fname_train_processed = '../data/processed/train.txt' if os.path.isfile(fname_train_processed): with open(fname_train_processed, 'r') as fin: train_processed = [line.strip() for line in fin if line] else: train_processed = preprocess_corpus(train['comment_text']) with open(fname_train_processed, 'w') as fout: for doc in train_processed: fout.write('{}\n'.format(doc)) train['comment_text_processed'] = train_processed fname_test_processed = '../data/processed/test.txt' if os.path.isfile(fname_test_processed): with open(fname_test_processed, 'r') as fin: test_processed = [line.strip() for line in fin if line] else: test_processed = preprocess_corpus(test['comment_text']) with open(fname_test_processed, 'w') as fout: for doc in test_processed: fout.write('{}\n'.format(doc)) test['comment_text_processed'] = test_processed ``` ## Train & Validation ``` class_names = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] all_text = pd.concat([train['comment_text_processed'], test['comment_text_processed']]) word_vect = TfidfVectorizer( sublinear_tf=True, strip_accents='unicode', analyzer='word', token_pattern=r'\w{2,}', ngram_range=(1,2), max_features=100000, binary=True) word_vect.fit(all_text) train_word_features = word_vect.transform(train['comment_text_processed']) test_word_features = word_vect.transform(test['comment_text_processed']) char_vect = TfidfVectorizer( sublinear_tf=True, strip_accents='unicode', analyzer='char', ngram_range=(1,4), max_features=50000) char_vect.fit(all_text) train_char_features = char_vect.transform(train['comment_text_processed']) test_char_features = char_vect.transform(test['comment_text_processed']) train_features = hstack((train_char_features, train_word_features)) test_features = hstack((test_char_features, test_word_features)) def evaluate_model(model, y_true, train_ft): cv_loss = np.mean(cross_val_score(model, train_ft, y_true, cv=3, n_jobs=4, scoring='neg_log_loss')) return cv_loss losses = [] preds = {'id': test['id']} for class_name in class_names: targets = train[class_name] model = LogisticRegression(C=4.5, solver='sag') loss = evaluate_model(model, targets, train_features) print('Avg. CV loss for class {}: {}'.format(class_name, loss)) losses.append(loss) model.fit(train_features, targets) preds[class_name] = model.predict_proba(test_features)[:, 1] print('Cumulative Avg. CV loss: {}'.format(np.mean(losses))) ``` ## Submission ``` submission = pd.DataFrame.from_dict(preds) import time submission.to_csv('../data/external/submission-{}.csv'.format(time.strftime('%Y%m%d_%H%M', time.localtime())), index=False) ```
github_jupyter
%matplotlib inline import os from matplotlib import pyplot as plt import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from scipy.sparse import hstack import spacy BASEDIR = '/data/datasets/kaggle/jigsaw-toxic-comment-classification-challenge' train = pd.read_csv(os.path.join(BASEDIR, 'train.csv')) train.head() lens = train.comment_text.str.len() lens.mean(), lens.std(), lens.max() lens.hist(); test = pd.read_csv(os.path.join(BASEDIR, 'test.csv')) test.head() train['comment_text'] = train['comment_text'].fillna(' ') test['comment_text'] = test['comment_text'].fillna(' ') submission = pd.read_csv(os.path.join(BASEDIR, 'sample_submission.csv')) submission.head() for label in ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']: print(label, (train[label] == 1.0).sum() / len(train)) train[['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].corr() token_counts = CountVectorizer( strip_accents='unicode', analyzer='word', lowercase=True, ngram_range=(1,1), token_pattern=r'\w{2,}', max_features=30000) token_counts.fit(train['comment_text']) X = token_counts.fit_transform(train['comment_text']) token_freq = X.sum(axis=0).tolist()[0] token_freq[:5] token_counts_list = [(k, token_freq[v]) for k, v in token_counts.vocabulary_.items()] token_counts_list = sorted(token_counts_list, key=lambda x: x[1], reverse=True) token_counts_list[:25] token_counts_list[-25:] sample_train = train[:100] nlp = spacy.load('en', disable=['parser', 'ner', 'textcat']) def reduce_to_double_max(text): """Removes unecessary doubling/tripling/etc of characters Steps: 1. Replaces every 3+ consecutive identical chars by 2 consecutive identical chars 2. Replaces every 2+ consecutive non-word character by a single """ import re text = re.sub(r'(\w)\1{2,}', r'\1\1', text) return re.sub(r'(\W)\1+', r'\1', text) def preprocess_corpus(corpus): """Applies all preprocessing rules to the corpus""" corpus = (reduce_to_double_max(s.lower()) for s in corpus) docs = nlp.pipe(corpus, batch_size=1000, n_threads=12) return [' '.join([x.lemma_ for x in doc if x.is_alpha]) for doc in docs] sample_train['comment_text_processed'] = preprocess_corpus(sample_train['comment_text']) sample_train.head() fname_train_processed = '../data/processed/train.txt' if os.path.isfile(fname_train_processed): with open(fname_train_processed, 'r') as fin: train_processed = [line.strip() for line in fin if line] else: train_processed = preprocess_corpus(train['comment_text']) with open(fname_train_processed, 'w') as fout: for doc in train_processed: fout.write('{}\n'.format(doc)) train['comment_text_processed'] = train_processed fname_test_processed = '../data/processed/test.txt' if os.path.isfile(fname_test_processed): with open(fname_test_processed, 'r') as fin: test_processed = [line.strip() for line in fin if line] else: test_processed = preprocess_corpus(test['comment_text']) with open(fname_test_processed, 'w') as fout: for doc in test_processed: fout.write('{}\n'.format(doc)) test['comment_text_processed'] = test_processed class_names = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] all_text = pd.concat([train['comment_text_processed'], test['comment_text_processed']]) word_vect = TfidfVectorizer( sublinear_tf=True, strip_accents='unicode', analyzer='word', token_pattern=r'\w{2,}', ngram_range=(1,2), max_features=100000, binary=True) word_vect.fit(all_text) train_word_features = word_vect.transform(train['comment_text_processed']) test_word_features = word_vect.transform(test['comment_text_processed']) char_vect = TfidfVectorizer( sublinear_tf=True, strip_accents='unicode', analyzer='char', ngram_range=(1,4), max_features=50000) char_vect.fit(all_text) train_char_features = char_vect.transform(train['comment_text_processed']) test_char_features = char_vect.transform(test['comment_text_processed']) train_features = hstack((train_char_features, train_word_features)) test_features = hstack((test_char_features, test_word_features)) def evaluate_model(model, y_true, train_ft): cv_loss = np.mean(cross_val_score(model, train_ft, y_true, cv=3, n_jobs=4, scoring='neg_log_loss')) return cv_loss losses = [] preds = {'id': test['id']} for class_name in class_names: targets = train[class_name] model = LogisticRegression(C=4.5, solver='sag') loss = evaluate_model(model, targets, train_features) print('Avg. CV loss for class {}: {}'.format(class_name, loss)) losses.append(loss) model.fit(train_features, targets) preds[class_name] = model.predict_proba(test_features)[:, 1] print('Cumulative Avg. CV loss: {}'.format(np.mean(losses))) submission = pd.DataFrame.from_dict(preds) import time submission.to_csv('../data/external/submission-{}.csv'.format(time.strftime('%Y%m%d_%H%M', time.localtime())), index=False)
0.467818
0.775987
# Exercise 2 You saw how the simple int type in Python can be used to represent a bit string. Write an ergonomic wrapper around int that can be used generically as a sequence of bits (make it iterable and implement `__getitem__()` ). Reimplement CompressedGene, using the wrapper. ``` from sys import getsizeof class BitString: """ Provides an indexable and iterable BitString with configurable width """ def __init__(self, width:int=1)->None: self.bit_string = 0 self.width = width self.item_max = (1<<self.width)-1 self.length = 0 def __getitem__(self, i:int)->int: if i>=self.length: raise IndexError('Out of bounds') return self.bit_string>>(i*self.width) & self.item_max def __setitem__(self, i:int, val:int)->None: if val>self.item_max: raise Exception(f"Value {val} has more than {self.width} bits.") if i+1>self.length: self.length = i+1 self.bit_string = self.bit_string | val<<(i*self.width) def __str__(self)->str: return f"BitString with width {self.width}: {[x for x in self]}" def __len__(self)->int: return self.length def __sizeof__(self)->int: return getsizeof(self.bit_string) bs = BitString(width=2) bs[1] = 1 bs[4] = 3 str(bs) len(bs) getsizeof(bs) for i in bs: print(f"{i}") bs[2]=4 class CompressedGeneBS: def __init__(self, gene: str) -> None: self._compress(gene) def _compress(self, gene: str) -> None: self.bit_string = BitString(width=2) i = 0 for nucleotide in gene.upper(): if nucleotide == "A": # change last two bits to 00 self.bit_string[i] = 0b00 elif nucleotide == "C": # change last two bits to 01 self.bit_string[i] = 0b01 elif nucleotide == "G": # change last two bits to 10 self.bit_string[i] = 0b10 elif nucleotide == "T": # change last two bits to 11 self.bit_string[i] = 0b11 else: raise ValueError("Invalid Nucleotide:{}".format(nucleotide)) i += 1 def decompress(self) -> str: gene: str = "" for bits in self.bit_string: if bits == 0b00: # A gene += "A" elif bits == 0b01: # C gene += "C" elif bits == 0b10: # G gene += "G" elif bits == 0b11: # T gene += "T" else: raise ValueError("Invalid bits:{}".format(bits)) return gene def __str__(self) -> str: # string representation for pretty printing return self.decompress() from sys import getsizeof original: str = "TAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATATAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATA" * 100 print("original is {} bytes".format(getsizeof(original))) compressed: CompressedGeneBS = CompressedGeneBS(original) # compress print("compressed is {} bytes".format(getsizeof(compressed.bit_string))) print(compressed) # decompress print("original and decompressed are the same: {}".format(original == compressed.decompress())) ```
github_jupyter
from sys import getsizeof class BitString: """ Provides an indexable and iterable BitString with configurable width """ def __init__(self, width:int=1)->None: self.bit_string = 0 self.width = width self.item_max = (1<<self.width)-1 self.length = 0 def __getitem__(self, i:int)->int: if i>=self.length: raise IndexError('Out of bounds') return self.bit_string>>(i*self.width) & self.item_max def __setitem__(self, i:int, val:int)->None: if val>self.item_max: raise Exception(f"Value {val} has more than {self.width} bits.") if i+1>self.length: self.length = i+1 self.bit_string = self.bit_string | val<<(i*self.width) def __str__(self)->str: return f"BitString with width {self.width}: {[x for x in self]}" def __len__(self)->int: return self.length def __sizeof__(self)->int: return getsizeof(self.bit_string) bs = BitString(width=2) bs[1] = 1 bs[4] = 3 str(bs) len(bs) getsizeof(bs) for i in bs: print(f"{i}") bs[2]=4 class CompressedGeneBS: def __init__(self, gene: str) -> None: self._compress(gene) def _compress(self, gene: str) -> None: self.bit_string = BitString(width=2) i = 0 for nucleotide in gene.upper(): if nucleotide == "A": # change last two bits to 00 self.bit_string[i] = 0b00 elif nucleotide == "C": # change last two bits to 01 self.bit_string[i] = 0b01 elif nucleotide == "G": # change last two bits to 10 self.bit_string[i] = 0b10 elif nucleotide == "T": # change last two bits to 11 self.bit_string[i] = 0b11 else: raise ValueError("Invalid Nucleotide:{}".format(nucleotide)) i += 1 def decompress(self) -> str: gene: str = "" for bits in self.bit_string: if bits == 0b00: # A gene += "A" elif bits == 0b01: # C gene += "C" elif bits == 0b10: # G gene += "G" elif bits == 0b11: # T gene += "T" else: raise ValueError("Invalid bits:{}".format(bits)) return gene def __str__(self) -> str: # string representation for pretty printing return self.decompress() from sys import getsizeof original: str = "TAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATATAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATA" * 100 print("original is {} bytes".format(getsizeof(original))) compressed: CompressedGeneBS = CompressedGeneBS(original) # compress print("compressed is {} bytes".format(getsizeof(compressed.bit_string))) print(compressed) # decompress print("original and decompressed are the same: {}".format(original == compressed.decompress()))
0.262842
0.842992
## Import libs, set paths and load params ``` import os, glob import numpy as np import pandas as pd import sys sys.path.insert(0, "../src") import auxilary_functions as f import subprocess import csv import matplotlib.pyplot as plt cfg_file = "../src/config-ecoli.json" cfg = f.get_actual_parametrization("../src/config-ecoli.json") networks = ['fflatt'] organisms = ['ecoli'] sizes = ['500', '750'] n_trials = 10 cascades=['1'] p2=['0.5','0.7','0.9'] #0.2, 0.5, 0.8 (and 0.3?) p4=['0.5','0.7','0.9'] #0.2, 0.5, 0.8 (and 0.3?) os.chdir('../networks/') fflattdir = '../snippets/' topology_dir = os.path.join(os.getcwd(), 'fflatt_motif_depletion') #collect data for size in sizes: for cascade in cascades: for network in p2: for organism in p4: current_dir = os.path.join(topology_dir, size, cascade, network, organism) if not os.path.exists(os.path.abspath(current_dir)): print('making dirs...') os.makedirs(os.path.abspath(current_dir), exist_ok=True) print('running fflatt...') subprocess.call(['python3', fflattdir+'parameter_space_exploration.py',\ cfg_file, size, str(n_trials), current_dir, network, organism, cascade]) ``` ## Display and save z-scores ``` for size in sizes: for cascade in cascades: for network in p2: for organism in p4: current_dir = os.path.join(topology_dir, size, cascade, network, organism) for rep, file in enumerate(glob.glob(os.path.join(current_dir, '*sv'))): if not os.path.exists(os.path.join(topology_dir, 'z-scores', size+'_'+cascade+'_'+network+'_'+organism+'_'+str(rep)+'_z_score.tsv')): pandas_df_lst = [] print(rep, file) report = f.analyze_exctracted_network(cfg, file, network, rep, size, stability_motifs=True) print(report) pandas_df_lst.append(report) pandas_df_list = sum(pandas_df_lst)/len(pandas_df_lst) pandas_df_list['size'] = size pandas_df_list['p2_value'] = network pandas_df_list['p4_value'] = organism pandas_df_list['cascade_value'] = cascade pandas_df_list['rep_num'] = rep print(pandas_df_list) pandas_df_list.to_csv(os.path.join(topology_dir, 'z-scores', size+'_'+cascade+'_'+network+'_'+organism+'_'+str(rep)+'_z_score.tsv')) #df_topo ``` ## Group-by z-scores and save as table ``` zscore_stats_lst = [] zscore_stats_lst = [] for rep, file in enumerate(glob.glob(os.path.join(topology_dir, 'z-scores', '*.tsv'))): zscore_stats_df = pd.io.parsers.read_csv(file, sep=",", index_col=0, header=None, skiprows=1) zscore_stats_df['motif'] = zscore_stats_df.index zscore_stats_df.reset_index() zscore_stats_df.columns = ['counts_ori', 'counts_rand', 'sd_rand',\ 'z-score', 'p-val', 'size', 'p2', 'p4', 'cascades', 'rep_num', 'motif'] print(zscore_stats_df) zscore_stats_lst.append(zscore_stats_df) zscore_stats_df = pd.concat(zscore_stats_lst) zscore_stats_df.reset_index(drop=True, inplace=True) zscore_stats_df = zscore_stats_df[zscore_stats_df['cascades']==1] zscore_stats_df = zscore_stats_df.drop('cascades', 1) zscore_stats_df zscore_stats_df_mean = zscore_stats_df.groupby(['p2', 'p4', 'motif']).mean() zscore_stats_df_mean = zscore_stats_df_mean['z-score'].unstack() zscore_stats_df_mean = zscore_stats_df_mean.round(3) zscore_stats_df_mean zscore_stats_df_std = zscore_stats_df.groupby(['p2', 'p4', 'motif']).std() zscore_stats_df_std = zscore_stats_df_std['z-score'].unstack() zscore_stats_df_std = zscore_stats_df_std.pow(2, axis = 1).div(n_trials).round(3) zscore_stats_df_std final_table_s2 = zscore_stats_df_mean.astype(str) + u"\u00B1" + zscore_stats_df_std.astype(str) final_table_s2 final_table_s2.to_csv("s2_table_depleted_500_and_750.csv", sep="\t") ```
github_jupyter
import os, glob import numpy as np import pandas as pd import sys sys.path.insert(0, "../src") import auxilary_functions as f import subprocess import csv import matplotlib.pyplot as plt cfg_file = "../src/config-ecoli.json" cfg = f.get_actual_parametrization("../src/config-ecoli.json") networks = ['fflatt'] organisms = ['ecoli'] sizes = ['500', '750'] n_trials = 10 cascades=['1'] p2=['0.5','0.7','0.9'] #0.2, 0.5, 0.8 (and 0.3?) p4=['0.5','0.7','0.9'] #0.2, 0.5, 0.8 (and 0.3?) os.chdir('../networks/') fflattdir = '../snippets/' topology_dir = os.path.join(os.getcwd(), 'fflatt_motif_depletion') #collect data for size in sizes: for cascade in cascades: for network in p2: for organism in p4: current_dir = os.path.join(topology_dir, size, cascade, network, organism) if not os.path.exists(os.path.abspath(current_dir)): print('making dirs...') os.makedirs(os.path.abspath(current_dir), exist_ok=True) print('running fflatt...') subprocess.call(['python3', fflattdir+'parameter_space_exploration.py',\ cfg_file, size, str(n_trials), current_dir, network, organism, cascade]) for size in sizes: for cascade in cascades: for network in p2: for organism in p4: current_dir = os.path.join(topology_dir, size, cascade, network, organism) for rep, file in enumerate(glob.glob(os.path.join(current_dir, '*sv'))): if not os.path.exists(os.path.join(topology_dir, 'z-scores', size+'_'+cascade+'_'+network+'_'+organism+'_'+str(rep)+'_z_score.tsv')): pandas_df_lst = [] print(rep, file) report = f.analyze_exctracted_network(cfg, file, network, rep, size, stability_motifs=True) print(report) pandas_df_lst.append(report) pandas_df_list = sum(pandas_df_lst)/len(pandas_df_lst) pandas_df_list['size'] = size pandas_df_list['p2_value'] = network pandas_df_list['p4_value'] = organism pandas_df_list['cascade_value'] = cascade pandas_df_list['rep_num'] = rep print(pandas_df_list) pandas_df_list.to_csv(os.path.join(topology_dir, 'z-scores', size+'_'+cascade+'_'+network+'_'+organism+'_'+str(rep)+'_z_score.tsv')) #df_topo zscore_stats_lst = [] zscore_stats_lst = [] for rep, file in enumerate(glob.glob(os.path.join(topology_dir, 'z-scores', '*.tsv'))): zscore_stats_df = pd.io.parsers.read_csv(file, sep=",", index_col=0, header=None, skiprows=1) zscore_stats_df['motif'] = zscore_stats_df.index zscore_stats_df.reset_index() zscore_stats_df.columns = ['counts_ori', 'counts_rand', 'sd_rand',\ 'z-score', 'p-val', 'size', 'p2', 'p4', 'cascades', 'rep_num', 'motif'] print(zscore_stats_df) zscore_stats_lst.append(zscore_stats_df) zscore_stats_df = pd.concat(zscore_stats_lst) zscore_stats_df.reset_index(drop=True, inplace=True) zscore_stats_df = zscore_stats_df[zscore_stats_df['cascades']==1] zscore_stats_df = zscore_stats_df.drop('cascades', 1) zscore_stats_df zscore_stats_df_mean = zscore_stats_df.groupby(['p2', 'p4', 'motif']).mean() zscore_stats_df_mean = zscore_stats_df_mean['z-score'].unstack() zscore_stats_df_mean = zscore_stats_df_mean.round(3) zscore_stats_df_mean zscore_stats_df_std = zscore_stats_df.groupby(['p2', 'p4', 'motif']).std() zscore_stats_df_std = zscore_stats_df_std['z-score'].unstack() zscore_stats_df_std = zscore_stats_df_std.pow(2, axis = 1).div(n_trials).round(3) zscore_stats_df_std final_table_s2 = zscore_stats_df_mean.astype(str) + u"\u00B1" + zscore_stats_df_std.astype(str) final_table_s2 final_table_s2.to_csv("s2_table_depleted_500_and_750.csv", sep="\t")
0.098947
0.500305
# Dialysis capapcity model The dialysis model runs through a defined period (e.g. one year) and simulates the progression of patients through phases of COVID infection: negative, positive (with some requiring inpatient care) and recovered or died. The speed of progression of infection through the population may be varied (typically 3-12 months). As patients change COVID state the model seeks to place them in the appropriate unit and session, opening up COVID-positive sessions in units that allow it. COVID-positive patients do not mix with any other patients. Opening up COVID-positive sessions causes other patients to be displaced from that session, and the model seeks to reallocate them either to the same unit or, if there is no space left, to the closest alternative unit. When allocating patients to units, the following search strategy is employed. * *COVID negative*: First look for place in current unit attended. If no room there place in the closest unit (judged by estimated travel time) with available space. * *COVID-positive*: Open up sessions in units for COVID positive patients in an order specified in the input files. If a new COVID session is required, the model will displace all COVID negative patients in that session, and seek to re-allocate them according to the rules for allocating COVID negative patients. COVID-positive sessions are converted back to COVID negative sessions when they are no longer needed. * COVID-positive inpatient*: All inpatients are placed in Queen Alexandra Hospital, Portsmouth (though the model allows searching by travel time if another unit were to open to renal COVID-positive inpatients). If a new COVID session is required, the model will displace all COVID negative patients in that session, and seek to re-allocate them according to the rules for allocating COVID negative patients. * *COVID-recovered*: Treat as COVID negative. * *Unallocated patients*: If a patient cannot be allocated to any unit, the model attempts to allocate them each day. Patients, in the model, may end up being cared for at a more distant unit than their starting unit. Once every week, the model seeks to reallocate patients back to their starting unit, or closest available unit if room in their starting unit is not available. This will also compress COVID-positive patients into as few units and sessions as possible. ## Input files ### Unit capacity and use The input file *./sim/units.csv* allows definition and use of units: * *unit*: the name used in outputs. * *subunit*: units may be broken down into two or more subunits. This may be done, for example, if only a part of the unit will be made available to COVID-19 positive patients. * *Chairs*: the number of dialysis chairs available in each session. * *inpatient*: Set to 1 for hospitals that can accept COVID postive dialysis inpatients. * *Allow cov +*: a value of 1 indicates that sessions for that unit, or subunit, may be made available to COVID positive patients. * *Cov +ve order*: The order in which units open up for COVID positive dialysis out patients. * *Mon_1 thru Tues_3*: Three sessions per day on Mon/Tues (which repeat on Wed/Thurs and Fri/Sat). A 1 indicates that the session is open for booking. ### Patients The input file *./sim/units.csv* contains information on patients: * *Patient ID*: Any id of patient. * *Patient type*: Not currently used in model. * *Postcode sector*: Home postcode sector of patient. * *Site*: Site patient currently attends. * *Subunit*: Allocation of patient to subunit (if subunits use, you can simply assign them to any of them at the beginning of the model). * *Site postcode*: Postcode of dialysis unit * *COVID status*: Can be set to *positive* if patients known to be positive at the start of the model run. * *first_day*: Either *Mon* or *Tues* for patients having dialysis Mon/Wed/Fri or Tues/Thurs/Sat. * count*: set to 1 for all patients. ### Travel matrix The input file *./sim/travel_matrix.csv* contains travel times (minutes) from all patient postcode sectors to all dialysis units. We used Routino (routino.org) to obtain travel times. ## Code and example ``` import sim_replicate as sim from sim.parameters import Scenario, Uniform, Normal ``` Scenarios are defined in dictionaries as below. Multiple sceanrios may be defined and all results are saved to the *./output* folder. Parameters in the dictionary are: * *run_length*: Model run in days. * *total_proportion_people_infected*. The proportion of patients who may be infected in the model. We assume this will be limited by herd immunity (or a vaccine). * *time_to_infection*: The time from start of model run to the time patients are infected. For time to infection a normal distrubtion is used. The paramters applied are mean, standard deviation, and lower cut-off (use 0 to avoid negative values) in days. In scarios we describe as 3 months we assume that six standard deviations of the distrubution (3 either side of the mean) occur in 3 months, or 90 days, so a standard deviation of 90/6 (or 15) is used. * *time_positive*: The duration a patient is positive if they remain in outpatient dialysis. A uniform distribution is used. * *proportion_pos_requiring_inpatient*: The poportion of infected patients who will require inpatient dialysis. * *time_pos_before_inpatient*: For patients who will receive inpatient care, this is the time spent as a COVID positive outpatient before being hospitalised. A uniform distribution is used. * *time_inpatient*: The length of stay as an inpatient. A uniform distribution is used. * *mortality*: The average mortality of dialysis patients who become infected with COVID. * *random_positive_rate_at_start*: The model allows a proportion of patients to be randomly infected at the start of the model run. Define a sceanrio and the numebr of model runs below (the replicates will use all available CPU cores). ``` number_of_replications = 30 scenarios = {} scenarios['base_3_month'] = Scenario( run_length=150, total_proportion_people_infected = 0.8, time_to_infection = Normal(60, 15, 0.0), time_positive = Uniform(7, 14), proportion_pos_requiring_inpatient= 0.6, time_pos_before_inpatient = Uniform(3,7), time_inpatient = Uniform(7.0, 14.0), mortality = 0.15, random_positive_rate_at_start = 0.0 ) ``` Run the scenario. Three sets of charts will be outputed for each scenario (and saved with sceanrio names in the *./output* directory: * Numbers of patients in negative, positive outpatient, positive inpatient, recovered/died stages of COVID: * Number of patients displaced from their starting dialysis unit, and how much extra travel time there is to their unit of current care. * Numbers of patients (negative/recovered, positive outpatient, pisitive inpatient) at each dialysis unit. ``` sim.run_replications(scenarios, number_of_replications) ```
github_jupyter
import sim_replicate as sim from sim.parameters import Scenario, Uniform, Normal number_of_replications = 30 scenarios = {} scenarios['base_3_month'] = Scenario( run_length=150, total_proportion_people_infected = 0.8, time_to_infection = Normal(60, 15, 0.0), time_positive = Uniform(7, 14), proportion_pos_requiring_inpatient= 0.6, time_pos_before_inpatient = Uniform(3,7), time_inpatient = Uniform(7.0, 14.0), mortality = 0.15, random_positive_rate_at_start = 0.0 ) sim.run_replications(scenarios, number_of_replications)
0.359139
0.979056
## Adversarial Autoencoders on fMRI Images for Automatic Data Generation In this notebook and the corresponding repository, we will focus on the use of adversarial autoencoders to attack problems relating to generating a usable embedding for the space of sMRI images for the purpose of understanding psychiatric diseases. This notebook written for and executed with Python 3.5, Keras 2.1.2 and Tensorflow r1.4. ### Data Setup We will be using specifically preprocessed data for the project from ABIDE 1&2. Assuming that the instructions have been followed, we continue by selecting the 2mm dataset and . ``` import os import string import gzip nii_files = [] for dirpath, sf, files in os.walk('depi-dataset_01'): if 'anat_mni_2mm.nii.gz' in files: nii_files.append(os.path.join(dirpath, 'anat_mni_2mm.nii.gz')) for i in nii_files: decompressed_file = gzip.open(i) out_path = i.replace('/','_')[:-3] with open('depi_nii/' + out_path, 'wb') as outfile: outfile.write(decompressed_file.read()) ``` ### Data Processing Data processing for this dataset is relatively straightforward; we delete the final voxel (which is always 0) so that the dimensionality of the spatial tensor has a high GCD. ``` import nibabel as nib import numpy as np import copy import h5py import os def save_large_dataset(file_name, variable): h5f = h5py.File(file_name + '.h5', 'w') h5f.create_dataset('variable', data=variable) h5f.close() indir = 'depi_nii/' Xs = [] for root, dirs, filenames in os.walk(indir): for f in filenames: if '.nii' == f[-4:]: img = nib.load(indir + f) data = img.dataobj # Get the data object data = data[:-1,:-1,:-1] # Clean the last dimension for a high GCD (all values are 0) X = np.expand_dims(data, -1) X = X / np.max(X) X = X.astype('float32') X = np.expand_dims(X, 0) print('Shape: ', X.shape) Xs.append(X) Xa = np.vstack(Xs) save_large_dataset('Xa', Xa) ``` ### Training We will use the [keras-adversarial library](https://github.com/bstriner/keras-adversarial) to help us with our training. We use [this example](https://github.com/bstriner/keras-adversarial/blob/master/examples/example_aae_cifar10.py) as a basis. ``` import os import h5py import numpy as np import pandas as pd import matplotlib as mpl mpl.use('Agg') from keras.layers import Input, Reshape, Flatten, Lambda, Dense, Conv3D, MaxPooling3D, UpSampling3D, TimeDistributed from keras.models import Sequential, Model from keras.optimizers import Adam import keras.backend as K from keras.engine.topology import Layer from keras_adversarial.legacy import l1l2, Dense, fit, Convolution2D from keras_adversarial import AdversarialModel, fix_names, n_choice from keras_adversarial import AdversarialOptimizerSimultaneous, normal_latent_sampling from keras.layers import LeakyReLU, Activation import tensorflow as tf import numpy as np class SamplingLayer2D(Layer): def __init__(self, batch_size, n = 10, std = 1.0, **kwargs): self.n = n self.batch_size = batch_size self.std = std super(SamplingLayer2D, self).__init__(**kwargs) def build(self, input_shape): self.in_shape = input_shape choices = list(np.arange(self.n)) choice_weights = np.arange(self.n) * (2 * np.pi) / (self.n) W = np.vstack((np.cos(choice_weights), np.sin(choice_weights))).T self.W = K.variable(value=W) super(SamplingLayer2D, self).build(input_shape) def call(self, x): x = tf.tile(self.W, tf.constant([self.batch_size, 1])) y = x + K.random_normal(shape=K.shape(x), mean = 0.0, stddev=self.std) y = K.reshape(y, tf.stack((-1, 2))) y = tf.random_shuffle(y) y = y[:self.batch_size, :] y = K.reshape(y, tf.stack((-1, 2))) return y def compute_output_shape(self, input_shape): return (self.batch_size, 2) def load_large_dataset(file_name): h5f = h5py.File(file_name + '.h5','r') variable = h5f['variable'][:] h5f.close() return variable X = load_large_dataset('Xa') def model_generator(latent_dim): latent_dim_2 = 3 input_layer = Input((latent_dim,)) x = Dense(5*6*5)(input_layer) x = Reshape((5, 6, 5, 1))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = UpSampling3D((2, 2, 2))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = UpSampling3D((3, 3, 3))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = UpSampling3D((3, 3, 3))(x) #x = Conv3D(32, 5, 5, 5, activation='relu', border_mode='same')(x) #x = UpSampling3D((2, 2, 2))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = Conv3D(16, 7, 7, 7, activation='relu', border_mode='same')(x) generated = Conv3D(1, 7, 7, 7, activation='linear', border_mode='same')(x) return Model(input_layer, generated, name='decoder') def model_encoder(latent_dim, input_shape, reg=lambda: l1l2(1e-7, 0)): input_layer = Input(shape=X.shape[1:]) # Create the Input Layer x = Conv3D(8, 3, 3, 3, activation='relu', border_mode='same')(input_layer) #x = Conv3D(8, 3, 3, 3, activation='relu', border_mode='same')(x) x = MaxPooling3D((2, 2, 2), padding='same')(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) #x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = MaxPooling3D((3, 3, 3), padding='same')(x) x = Conv3D(32, 3, 3, 3, activation='relu', border_mode='same')(x) #x = Conv3D(32, 3, 3, 3, activation='relu', border_mode='same')(x) x = MaxPooling3D((3, 3, 3), padding='same')(x) x = Flatten()(x) encoded = Dense(latent_dim)(x) #mu = Dense(latent_dim, name="encoder_mu", W_regularizer=reg())(x) #log_sigma_sq = Dense(latent_dim, name="encoder_log_sigma_sq", W_regularizer=reg())(x) #encoded = Lambda(lambda mulss : mulss[0] + K.random_normal(K.shape(mulss[0])) * K.exp(mulss[1] / 2), # output_shape= (latent_dim,))([mu, log_sigma_sq]) return Model(input_layer, encoded, name="encoder") def model_discriminator(latent_dim, output_dim=1, units=256, reg=lambda: l1l2(1e-7, 1e-7)): input_layer = Input((latent_dim,)) x = Dense(512, activation = 'tanh')(input_layer) x = Dense(64, activation = 'tanh')(x) y = Dense(1, activation = 'sigmoid')(x) return Model(input_layer, y) def example_aae(path, adversarial_optimizer, latent_dim = 32): input_shape = X.shape[1:] # Specify the generator (z -> x) generator = model_generator(latent_dim) # Specify the encoder (x -> z) encoder = model_encoder(latent_dim, input_shape) # Combining the encoder and the generator, specify the autoencoder (x -> x') autoencoder = Model(encoder.inputs, generator(encoder(encoder.inputs))) # Specify the discriminator (z -> y) discriminator = model_discriminator(latent_dim) # build the AAE x = encoder.inputs[0] z = encoder(x) xpred = generator(z) zreal = SamplingLayer2D(10)(x) yreal = discriminator(zreal) yfake = discriminator(z) aae = Model(x, fix_names([xpred, yfake, yreal], ["xpred", "yfake", "yreal"])) # Generate summaries for the models generator.summary() encoder.summary() discriminator.summary() autoencoder.summary() # Build the adversarial model generative_params = generator.trainable_weights + encoder.trainable_weights model = AdversarialModel(base_model=aae, player_params=[generative_params, discriminator.trainable_weights], player_names=["generator", "discriminator"]) model.adversarial_compile(adversarial_optimizer=adversarial_optimizer, player_optimizers=[Adam(3e-4, decay=1e-4), Adam(1e-3, decay=1e-4)], loss={"yfake": "binary_crossentropy", "yreal": "binary_crossentropy", "xpred": "mean_squared_error"}, player_compile_kwargs=[{"loss_weights": {"yfake": 1e-1, "yreal": 1e-1, "xpred": 1e2}}] * 2) # Split our data into training and testing xtrain = X[:1000] xtest = X[1000:1050] # train network # generator, discriminator; pred, yfake, yreal n = xtrain.shape[0] y = [xtrain, np.ones((n,)), np.zeros((n,)), xtrain, np.zeros((n,)), np.ones((n,))] ntest = xtest.shape[0] ytest = [xtest, np.ones((ntest,)), np.zeros((ntest,)), xtest, np.zeros((ntest,)), np.ones((ntest,))] history = fit(model, x=xtrain, y=y, validation_data=(xtest, ytest), callbacks=[], nb_epoch=100, batch_size=10) # save history df = pd.DataFrame(history.history) df.to_csv(os.path.join(path, "history.csv")) # save model encoder.save(os.path.join(path, "encoder.h5")) generator.save(os.path.join(path, "generator.h5")) discriminator.save(os.path.join(path, "discriminator.h5")) example_aae("aae-smri-2", AdversarialOptimizerSimultaneous(), latent_dim=2) ``` ### Testing Here, we load up the saved models to test whether our models can produce anything visually impressive: ``` import os from keras.layers import Input, Dense, Conv3D, MaxPooling3D, UpSampling3D, Flatten, TimeDistributed, Reshape from keras.models import load_model from keras.optimizers import SGD from keras.layers import Input, Dense, Reshape, Flatten, Permute, TimeDistributed, Activation, Lambda, multiply, subtract, concatenate from keras.layers import SimpleRNN, LSTM, GRU, Conv2D, MaxPooling2D from keras.losses import kullback_leibler_divergence from keras.regularizers import L1L2, Regularizer from keras.engine.topology import Layer from keras.models import Model from keras import backend as K import tensorflow as tf import numpy as np import h5py def load_large_dataset(file_name): h5f = h5py.File(file_name + '.h5','r') variable = h5f['variable'][:] h5f.close() return variable X = load_large_dataset('Xa') latent_dim = 2 class SamplingLayer2D(Layer): def __init__(self, batch_size, n = 10, std = 1.0, **kwargs): self.n = n self.batch_size = batch_size self.std = std super(SamplingLayer2D, self).__init__(**kwargs) def build(self, input_shape): self.in_shape = input_shape choices = list(np.arange(self.n)) choice_weights = np.arange(self.n) * (2 * np.pi) / (self.n) W = np.vstack((np.cos(choice_weights), np.sin(choice_weights))).T self.W = K.variable(value=W) super(SamplingLayer2D, self).build(input_shape) def call(self, x): #x = tf.einsum('ai,jk->ajk', x, self.W) x = tf.tile(self.W, tf.constant([self.batch_size, 1])) #element_choices = tf.convert_to_tensor(self.choices) #indices = tf.multinomial(tf.log([self.weights]), self.batch_size) #y = self.W + K.random_normal(shape=K.shape(self.W), mean = 0.0, stddev=self.std) y = x + K.random_normal(shape=K.shape(x), mean = 0.0, stddev=self.std) y = K.reshape(y, tf.stack((-1, 2))) y = tf.random_shuffle(y) y = y[:self.batch_size, :] y = K.reshape(y, tf.stack((-1, 2))) return y def compute_output_shape(self, input_shape): return (self.batch_size, 2) data = np.zeros((96, 1)) i = Input(shape=data.shape[1:]) x = SamplingLayer2D(32, std=0.05)(i) sampler = Model(inputs=i, outputs=[x]) sampler.compile(optimizer='sgd', loss='mse') zsamples = sampler.predict(data, batch_size = 32) encoder = load_model('aae-smri-2/encoder.h5') generator = load_model('aae-smri-2/generator.h5') #discriminator = load_model('aae-fmri/discriminator.h5') #zsamples = np.random.normal(size=(100, latent_dim)) outs = generator.predict(zsamples, batch_size = 2) # random_generator = generator(normal_latent_sampling((X.shape[1], latent_dim,)))(input_layer) ``` Let us first show a 2D slice from the real data: ``` from matplotlib import pyplot as plt my_slice = X[0,:,:,30,0] %matplotlib inline plt.imshow(my_slice, interpolation='nearest') plt.show() ``` Let us now show an output from the trained model: ``` from matplotlib import pyplot as plt my_slice = outs[55,:,:,30,0] %matplotlib inline plt.imshow(my_slice / np.max(my_slice), interpolation='nearest') plt.show() ``` It is alive!
github_jupyter
import os import string import gzip nii_files = [] for dirpath, sf, files in os.walk('depi-dataset_01'): if 'anat_mni_2mm.nii.gz' in files: nii_files.append(os.path.join(dirpath, 'anat_mni_2mm.nii.gz')) for i in nii_files: decompressed_file = gzip.open(i) out_path = i.replace('/','_')[:-3] with open('depi_nii/' + out_path, 'wb') as outfile: outfile.write(decompressed_file.read()) import nibabel as nib import numpy as np import copy import h5py import os def save_large_dataset(file_name, variable): h5f = h5py.File(file_name + '.h5', 'w') h5f.create_dataset('variable', data=variable) h5f.close() indir = 'depi_nii/' Xs = [] for root, dirs, filenames in os.walk(indir): for f in filenames: if '.nii' == f[-4:]: img = nib.load(indir + f) data = img.dataobj # Get the data object data = data[:-1,:-1,:-1] # Clean the last dimension for a high GCD (all values are 0) X = np.expand_dims(data, -1) X = X / np.max(X) X = X.astype('float32') X = np.expand_dims(X, 0) print('Shape: ', X.shape) Xs.append(X) Xa = np.vstack(Xs) save_large_dataset('Xa', Xa) import os import h5py import numpy as np import pandas as pd import matplotlib as mpl mpl.use('Agg') from keras.layers import Input, Reshape, Flatten, Lambda, Dense, Conv3D, MaxPooling3D, UpSampling3D, TimeDistributed from keras.models import Sequential, Model from keras.optimizers import Adam import keras.backend as K from keras.engine.topology import Layer from keras_adversarial.legacy import l1l2, Dense, fit, Convolution2D from keras_adversarial import AdversarialModel, fix_names, n_choice from keras_adversarial import AdversarialOptimizerSimultaneous, normal_latent_sampling from keras.layers import LeakyReLU, Activation import tensorflow as tf import numpy as np class SamplingLayer2D(Layer): def __init__(self, batch_size, n = 10, std = 1.0, **kwargs): self.n = n self.batch_size = batch_size self.std = std super(SamplingLayer2D, self).__init__(**kwargs) def build(self, input_shape): self.in_shape = input_shape choices = list(np.arange(self.n)) choice_weights = np.arange(self.n) * (2 * np.pi) / (self.n) W = np.vstack((np.cos(choice_weights), np.sin(choice_weights))).T self.W = K.variable(value=W) super(SamplingLayer2D, self).build(input_shape) def call(self, x): x = tf.tile(self.W, tf.constant([self.batch_size, 1])) y = x + K.random_normal(shape=K.shape(x), mean = 0.0, stddev=self.std) y = K.reshape(y, tf.stack((-1, 2))) y = tf.random_shuffle(y) y = y[:self.batch_size, :] y = K.reshape(y, tf.stack((-1, 2))) return y def compute_output_shape(self, input_shape): return (self.batch_size, 2) def load_large_dataset(file_name): h5f = h5py.File(file_name + '.h5','r') variable = h5f['variable'][:] h5f.close() return variable X = load_large_dataset('Xa') def model_generator(latent_dim): latent_dim_2 = 3 input_layer = Input((latent_dim,)) x = Dense(5*6*5)(input_layer) x = Reshape((5, 6, 5, 1))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = UpSampling3D((2, 2, 2))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = UpSampling3D((3, 3, 3))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = UpSampling3D((3, 3, 3))(x) #x = Conv3D(32, 5, 5, 5, activation='relu', border_mode='same')(x) #x = UpSampling3D((2, 2, 2))(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = Conv3D(16, 7, 7, 7, activation='relu', border_mode='same')(x) generated = Conv3D(1, 7, 7, 7, activation='linear', border_mode='same')(x) return Model(input_layer, generated, name='decoder') def model_encoder(latent_dim, input_shape, reg=lambda: l1l2(1e-7, 0)): input_layer = Input(shape=X.shape[1:]) # Create the Input Layer x = Conv3D(8, 3, 3, 3, activation='relu', border_mode='same')(input_layer) #x = Conv3D(8, 3, 3, 3, activation='relu', border_mode='same')(x) x = MaxPooling3D((2, 2, 2), padding='same')(x) x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) #x = Conv3D(16, 3, 3, 3, activation='relu', border_mode='same')(x) x = MaxPooling3D((3, 3, 3), padding='same')(x) x = Conv3D(32, 3, 3, 3, activation='relu', border_mode='same')(x) #x = Conv3D(32, 3, 3, 3, activation='relu', border_mode='same')(x) x = MaxPooling3D((3, 3, 3), padding='same')(x) x = Flatten()(x) encoded = Dense(latent_dim)(x) #mu = Dense(latent_dim, name="encoder_mu", W_regularizer=reg())(x) #log_sigma_sq = Dense(latent_dim, name="encoder_log_sigma_sq", W_regularizer=reg())(x) #encoded = Lambda(lambda mulss : mulss[0] + K.random_normal(K.shape(mulss[0])) * K.exp(mulss[1] / 2), # output_shape= (latent_dim,))([mu, log_sigma_sq]) return Model(input_layer, encoded, name="encoder") def model_discriminator(latent_dim, output_dim=1, units=256, reg=lambda: l1l2(1e-7, 1e-7)): input_layer = Input((latent_dim,)) x = Dense(512, activation = 'tanh')(input_layer) x = Dense(64, activation = 'tanh')(x) y = Dense(1, activation = 'sigmoid')(x) return Model(input_layer, y) def example_aae(path, adversarial_optimizer, latent_dim = 32): input_shape = X.shape[1:] # Specify the generator (z -> x) generator = model_generator(latent_dim) # Specify the encoder (x -> z) encoder = model_encoder(latent_dim, input_shape) # Combining the encoder and the generator, specify the autoencoder (x -> x') autoencoder = Model(encoder.inputs, generator(encoder(encoder.inputs))) # Specify the discriminator (z -> y) discriminator = model_discriminator(latent_dim) # build the AAE x = encoder.inputs[0] z = encoder(x) xpred = generator(z) zreal = SamplingLayer2D(10)(x) yreal = discriminator(zreal) yfake = discriminator(z) aae = Model(x, fix_names([xpred, yfake, yreal], ["xpred", "yfake", "yreal"])) # Generate summaries for the models generator.summary() encoder.summary() discriminator.summary() autoencoder.summary() # Build the adversarial model generative_params = generator.trainable_weights + encoder.trainable_weights model = AdversarialModel(base_model=aae, player_params=[generative_params, discriminator.trainable_weights], player_names=["generator", "discriminator"]) model.adversarial_compile(adversarial_optimizer=adversarial_optimizer, player_optimizers=[Adam(3e-4, decay=1e-4), Adam(1e-3, decay=1e-4)], loss={"yfake": "binary_crossentropy", "yreal": "binary_crossentropy", "xpred": "mean_squared_error"}, player_compile_kwargs=[{"loss_weights": {"yfake": 1e-1, "yreal": 1e-1, "xpred": 1e2}}] * 2) # Split our data into training and testing xtrain = X[:1000] xtest = X[1000:1050] # train network # generator, discriminator; pred, yfake, yreal n = xtrain.shape[0] y = [xtrain, np.ones((n,)), np.zeros((n,)), xtrain, np.zeros((n,)), np.ones((n,))] ntest = xtest.shape[0] ytest = [xtest, np.ones((ntest,)), np.zeros((ntest,)), xtest, np.zeros((ntest,)), np.ones((ntest,))] history = fit(model, x=xtrain, y=y, validation_data=(xtest, ytest), callbacks=[], nb_epoch=100, batch_size=10) # save history df = pd.DataFrame(history.history) df.to_csv(os.path.join(path, "history.csv")) # save model encoder.save(os.path.join(path, "encoder.h5")) generator.save(os.path.join(path, "generator.h5")) discriminator.save(os.path.join(path, "discriminator.h5")) example_aae("aae-smri-2", AdversarialOptimizerSimultaneous(), latent_dim=2) import os from keras.layers import Input, Dense, Conv3D, MaxPooling3D, UpSampling3D, Flatten, TimeDistributed, Reshape from keras.models import load_model from keras.optimizers import SGD from keras.layers import Input, Dense, Reshape, Flatten, Permute, TimeDistributed, Activation, Lambda, multiply, subtract, concatenate from keras.layers import SimpleRNN, LSTM, GRU, Conv2D, MaxPooling2D from keras.losses import kullback_leibler_divergence from keras.regularizers import L1L2, Regularizer from keras.engine.topology import Layer from keras.models import Model from keras import backend as K import tensorflow as tf import numpy as np import h5py def load_large_dataset(file_name): h5f = h5py.File(file_name + '.h5','r') variable = h5f['variable'][:] h5f.close() return variable X = load_large_dataset('Xa') latent_dim = 2 class SamplingLayer2D(Layer): def __init__(self, batch_size, n = 10, std = 1.0, **kwargs): self.n = n self.batch_size = batch_size self.std = std super(SamplingLayer2D, self).__init__(**kwargs) def build(self, input_shape): self.in_shape = input_shape choices = list(np.arange(self.n)) choice_weights = np.arange(self.n) * (2 * np.pi) / (self.n) W = np.vstack((np.cos(choice_weights), np.sin(choice_weights))).T self.W = K.variable(value=W) super(SamplingLayer2D, self).build(input_shape) def call(self, x): #x = tf.einsum('ai,jk->ajk', x, self.W) x = tf.tile(self.W, tf.constant([self.batch_size, 1])) #element_choices = tf.convert_to_tensor(self.choices) #indices = tf.multinomial(tf.log([self.weights]), self.batch_size) #y = self.W + K.random_normal(shape=K.shape(self.W), mean = 0.0, stddev=self.std) y = x + K.random_normal(shape=K.shape(x), mean = 0.0, stddev=self.std) y = K.reshape(y, tf.stack((-1, 2))) y = tf.random_shuffle(y) y = y[:self.batch_size, :] y = K.reshape(y, tf.stack((-1, 2))) return y def compute_output_shape(self, input_shape): return (self.batch_size, 2) data = np.zeros((96, 1)) i = Input(shape=data.shape[1:]) x = SamplingLayer2D(32, std=0.05)(i) sampler = Model(inputs=i, outputs=[x]) sampler.compile(optimizer='sgd', loss='mse') zsamples = sampler.predict(data, batch_size = 32) encoder = load_model('aae-smri-2/encoder.h5') generator = load_model('aae-smri-2/generator.h5') #discriminator = load_model('aae-fmri/discriminator.h5') #zsamples = np.random.normal(size=(100, latent_dim)) outs = generator.predict(zsamples, batch_size = 2) # random_generator = generator(normal_latent_sampling((X.shape[1], latent_dim,)))(input_layer) from matplotlib import pyplot as plt my_slice = X[0,:,:,30,0] %matplotlib inline plt.imshow(my_slice, interpolation='nearest') plt.show() from matplotlib import pyplot as plt my_slice = outs[55,:,:,30,0] %matplotlib inline plt.imshow(my_slice / np.max(my_slice), interpolation='nearest') plt.show()
0.587707
0.910027
# Context aware Neural network Model ## Convert PyTorch Models to TensorFlow ``` from torch.utils.data import Dataset, DataLoader from torchvision import transforms import matplotlib.pyplot as plt import torch.optim as optim import tensorflow as tf import torch.nn as nn import numpy as np import torch import onnx import time import os import sys import cv2 from onnx_tf.backend import prepare sys.path.insert(1, '/home/ubuntu/mayub/Github/Context-Aware_Crowd_Counting-pytorch/') import cannet as cann_model MODEL_PARAM_PATH = '/home/ubuntu/mayub/Github/Context-Aware_Crowd_Counting-pytorch/cvpr2019_CAN_SHHA_353.pth' model= cann_model.CANNet() device=torch.device("cpu") model.load_state_dict(torch.load(MODEL_PARAM_PATH, map_location=torch.device('cpu'))) model.to(device) model.eval() print(model) ``` ### Preprocess the Image for CANNet model (context aware model) ``` def read_and_convert_img(image_path): img=plt.imread(image_path)/255 print(len(img.shape)) if len(img.shape)==2: # expand grayscale image to three channel. img=img[:,:,np.newaxis] img=np.concatenate((img,img,img),2) print(img.shape[0]) print(img.shape[1]) ds_rows=int(img.shape[0]//8) # Downsampling to match model size ds_cols=int(img.shape[1]//8) print(ds_rows) print(ds_cols) img = cv2.resize(img,(ds_cols*8,ds_rows*8)) print(img.shape) img=img.transpose((2,0,1)) # convert to order (channel,rows,cols) img_tensor=torch.tensor(img,dtype=torch.float) img_tensor=transforms.functional.normalize(img_tensor,mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) img_tensor=img_tensor.view(1,img_tensor.shape[0],img_tensor.shape[1],img_tensor.shape[2]) print(img.shape) print(img_tensor.shape) #img_tensor = np.expand_dims(img_tensor,axis = 0) return img_tensor ``` ### Check Input image dimentions ``` image_input= read_and_convert_img('/home/ubuntu/CrowdSourcing_Projects/CSRNet-keras/data/shanghaitech/part_A_final/test_data/images/IMG_1.jpg') ``` ### Run the Prediction on sample image to test model ``` image_input=image_input.to(device) et_dmap=model(image_input) print(et_dmap.data.sum()) ``` ### Export the model in ONNX format ``` # Export to ONNX format torch.onnx.export(model, image_input, './model_simple.onnx', input_names=['image_input'], output_names=['image_output'],operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) ``` ### Prepare the model for TensorFlow export ``` # Load ONNX model and convert to TensorFlow format model_onnx = onnx.load('./model_simple.onnx') # tf_rep = prepare(model_onnx) # Export model as .pb file #tf_rep.export_graph('./model_simple.pb') tf_rep = prepare(model_onnx,device='CPU') ``` ## FAILS !! Aten op is not implemented in ONNX ``` prepare() ```
github_jupyter
from torch.utils.data import Dataset, DataLoader from torchvision import transforms import matplotlib.pyplot as plt import torch.optim as optim import tensorflow as tf import torch.nn as nn import numpy as np import torch import onnx import time import os import sys import cv2 from onnx_tf.backend import prepare sys.path.insert(1, '/home/ubuntu/mayub/Github/Context-Aware_Crowd_Counting-pytorch/') import cannet as cann_model MODEL_PARAM_PATH = '/home/ubuntu/mayub/Github/Context-Aware_Crowd_Counting-pytorch/cvpr2019_CAN_SHHA_353.pth' model= cann_model.CANNet() device=torch.device("cpu") model.load_state_dict(torch.load(MODEL_PARAM_PATH, map_location=torch.device('cpu'))) model.to(device) model.eval() print(model) def read_and_convert_img(image_path): img=plt.imread(image_path)/255 print(len(img.shape)) if len(img.shape)==2: # expand grayscale image to three channel. img=img[:,:,np.newaxis] img=np.concatenate((img,img,img),2) print(img.shape[0]) print(img.shape[1]) ds_rows=int(img.shape[0]//8) # Downsampling to match model size ds_cols=int(img.shape[1]//8) print(ds_rows) print(ds_cols) img = cv2.resize(img,(ds_cols*8,ds_rows*8)) print(img.shape) img=img.transpose((2,0,1)) # convert to order (channel,rows,cols) img_tensor=torch.tensor(img,dtype=torch.float) img_tensor=transforms.functional.normalize(img_tensor,mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) img_tensor=img_tensor.view(1,img_tensor.shape[0],img_tensor.shape[1],img_tensor.shape[2]) print(img.shape) print(img_tensor.shape) #img_tensor = np.expand_dims(img_tensor,axis = 0) return img_tensor image_input= read_and_convert_img('/home/ubuntu/CrowdSourcing_Projects/CSRNet-keras/data/shanghaitech/part_A_final/test_data/images/IMG_1.jpg') image_input=image_input.to(device) et_dmap=model(image_input) print(et_dmap.data.sum()) # Export to ONNX format torch.onnx.export(model, image_input, './model_simple.onnx', input_names=['image_input'], output_names=['image_output'],operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) # Load ONNX model and convert to TensorFlow format model_onnx = onnx.load('./model_simple.onnx') # tf_rep = prepare(model_onnx) # Export model as .pb file #tf_rep.export_graph('./model_simple.pb') tf_rep = prepare(model_onnx,device='CPU') prepare()
0.45302
0.862178
``` from ipywidgets import interactive, interact import matplotlib.pyplot as plt import numpy as np import ipywidgets as widgets import sympy as sym import seaborn as sns import plotly.graph_objects as go from plotly.offline import init_notebook_mode, iplot from numba import jit init_notebook_mode(connected=True) jit(nopython=True, parallel=True) sns.set() ``` # Interactive partial sums of sine Zoufiné Lauer-Baré ``` class plot(): def __init__(self, preWidgetN): self.N = preWidgetN x,y,n ,k = sym.symbols('x, y,n,k', real=True) X=np.linspace(0, 10, 100) f = sym.Sum((-1)**k*(x**(2*k+1))/(sym.factorial(2*k+1)),(k,0, n)) #f = sym.Sum((-1)**k*(x**(2*k))/(sym.factorial(2*k)),(k,0, n)) #print(sym.latex(f)) f = f.subs(n, self.N.value) f = sym.lambdify(x, f) self.trace1 = go.Scatter(x=X, y=np.sin(X), mode='lines+markers', name='sin' ) self.trace2 = go.Scatter(x=X, y=f(X), mode='lines', name=r'$\sum_{k=0}^{%s} \frac{\left(-1\right)^{k} x^{2 k + 1}}{\left(2 k + 1\right)!}$' %(self.N.value) ) layout = go.Layout(template='plotly_dark', title="Partial sums of sine") self.fig = go.FigureWidget(data=[self.trace1, self.trace2], layout = layout, layout_yaxis_range=[-3 , 3], ) #self.fig.update_layout(title="Plot Title",) def sineSeries(self, change): x,y,n ,k = sym.symbols('x, y,n,k', real=True) X=np.linspace(0, 10, 100) f = sym.Sum((-1)**k*(x**(2*k+1))/(sym.factorial(2*k+1)),(k,0, n)) #f = sym.Sum((-1)**k*(x**(2*k))/(sym.factorial(2*k)),(k,0, n)) f = f.subs(n, self.N.value) f = sym.lambdify(x, f) with self.fig.batch_update(): self.fig.data[1].x = X self.fig.data[1].y = f(X) self.fig.data[1].name = r'$\sum_{k=0}^{%s} \frac{\left(-1\right)^{k} x^{2 k + 1}}{\left(2 k + 1\right)!}$' %(self.N.value) return def show(self): self.N.observe(self.sineSeries, names='value') display(self.N, self.fig) return N = widgets.IntSlider(min=0, max=20, step=1, value=0, description='partial sum order') p = plot(N) p.show() ```
github_jupyter
from ipywidgets import interactive, interact import matplotlib.pyplot as plt import numpy as np import ipywidgets as widgets import sympy as sym import seaborn as sns import plotly.graph_objects as go from plotly.offline import init_notebook_mode, iplot from numba import jit init_notebook_mode(connected=True) jit(nopython=True, parallel=True) sns.set() class plot(): def __init__(self, preWidgetN): self.N = preWidgetN x,y,n ,k = sym.symbols('x, y,n,k', real=True) X=np.linspace(0, 10, 100) f = sym.Sum((-1)**k*(x**(2*k+1))/(sym.factorial(2*k+1)),(k,0, n)) #f = sym.Sum((-1)**k*(x**(2*k))/(sym.factorial(2*k)),(k,0, n)) #print(sym.latex(f)) f = f.subs(n, self.N.value) f = sym.lambdify(x, f) self.trace1 = go.Scatter(x=X, y=np.sin(X), mode='lines+markers', name='sin' ) self.trace2 = go.Scatter(x=X, y=f(X), mode='lines', name=r'$\sum_{k=0}^{%s} \frac{\left(-1\right)^{k} x^{2 k + 1}}{\left(2 k + 1\right)!}$' %(self.N.value) ) layout = go.Layout(template='plotly_dark', title="Partial sums of sine") self.fig = go.FigureWidget(data=[self.trace1, self.trace2], layout = layout, layout_yaxis_range=[-3 , 3], ) #self.fig.update_layout(title="Plot Title",) def sineSeries(self, change): x,y,n ,k = sym.symbols('x, y,n,k', real=True) X=np.linspace(0, 10, 100) f = sym.Sum((-1)**k*(x**(2*k+1))/(sym.factorial(2*k+1)),(k,0, n)) #f = sym.Sum((-1)**k*(x**(2*k))/(sym.factorial(2*k)),(k,0, n)) f = f.subs(n, self.N.value) f = sym.lambdify(x, f) with self.fig.batch_update(): self.fig.data[1].x = X self.fig.data[1].y = f(X) self.fig.data[1].name = r'$\sum_{k=0}^{%s} \frac{\left(-1\right)^{k} x^{2 k + 1}}{\left(2 k + 1\right)!}$' %(self.N.value) return def show(self): self.N.observe(self.sineSeries, names='value') display(self.N, self.fig) return N = widgets.IntSlider(min=0, max=20, step=1, value=0, description='partial sum order') p = plot(N) p.show()
0.320396
0.713931
# 傾向スコアを用いた TV CM の視聴によるゲーム利用傾向の変化の分析 ``` import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt plt.style.use('seaborn-darkgrid') %config InlineBackend.figure_format = 'retina' %load_ext autoreload %autoreload 2 from pycalf import metrics from pycalf import visualize from pycalf import propensity ``` まずはじめに、サンプルデータを取得する。 ``` # Download from https://raw.githubusercontent.com/iwanami-datascience/vol3/master/kato%26hoshino/q_data_x.csv df = pd.read_csv('sample/q_data_x.csv') df.head() ``` 傾向スコアを求めるために、共変量・結果変数・介入変数を定義します。 ``` # Define variables required for inference. covariate_cols = [ 'TVwatch_day', 'age', 'sex', 'marry_dummy', 'child_dummy', 'inc', 'pmoney', 'area_kanto', 'area_tokai', 'area_keihanshin', 'job_dummy1', 'job_dummy2', 'job_dummy3', 'job_dummy4', 'job_dummy5', 'job_dummy6', 'job_dummy7', 'fam_str_dummy1', 'fam_str_dummy2', 'fam_str_dummy3', 'fam_str_dummy4' ] outcome_cols = ['gamecount', 'gamedummy', 'gamesecond'] treatment_col = 'cm_dummy' ``` 傾向スコアを求めるモデルにはロジスティック回帰を用いるので、共変量をスケーリングします。 そして、IPWを用いたモデルを定義します。 ``` # Set Values from dataframe. X = df[covariate_cols] y = df[outcome_cols] treatment = df[treatment_col].astype(bool).to_numpy() # Scaling Raw Data. scaler = preprocessing.MinMaxScaler() scaled_X = scaler.fit_transform(X) # Define IPW Class. learner = LogisticRegression(solver='lbfgs', max_iter=1000, random_state=42) model = propensity.IPW(learner) # Fit model. model.fit(scaled_X, treatment) ``` ### 効果量dを用いた共変量の調整の様子を確認 IPW によって、共変量のばらつきが調整されたのかを効果量dを用いて確認する。 ``` ate_weight = model.get_weight(treatment, mode='ate') es = metrics.EffectSize() es.fit(X, treatment, weight=ate_weight) es.transform() visualize.plot_effect_size(X, treatment, weight=ate_weight, ascending=True) ``` ### AUC と 傾向スコアの分布の可視化 ここでは、AUC と 介入有無別の傾向スコアの分布を可視化する。 AUC は、0.7 以上であることが好ましいとされる。 参考:https://www.jstage.jst.go.jp/article/tenrikiyo/19/2/19_19-008/_pdf 介入有無別の傾向スコアの分布は、ある程度重なりが有りながら介入有無別の分布が別れているので傾向スコアによる調整が行えるように見える。 ``` print('F1 Score: ', metrics.f1_score(treatment, model.get_score(), threshold='auto')) visualize.plot_roc_curve(treatment, model.get_score()) visualize.plot_probability_distribution(treatment, model.get_score()) ``` ### 平均処置効果(ATE: Average Treated Effect) IPW による調整後の介入効果 ``` outcome = model.estimate_effect(treatment, y.to_numpy(), mode='ate') pd.DataFrame(outcome, index=['Z0', 'Z1', 'ATE'], columns=y.columns.tolist()).T outcome_name = 'gamesecond' z0, z1, treat_effect = model.estimate_effect(treatment, y[outcome_name].to_numpy(), mode='ate') visualize.plot_treatment_effect(outcome_name, z0, z1, treat_effect.round()) ``` ### 属性変数を用いた介入効果の推定 ``` # Attribute Effect treatment_col = 'cm_dummy' y = 'gamesecond' features = [ 'child_dummy', 'area_kanto', 'area_keihan', 'area_tokai', 'area_keihanshin', 'T', 'F1', 'F2', 'F3', 'M1', 'M2', 'M3' ] attr_effect = metrics.AttributeEffect() attr_effect.fit(df[features], df[treatment_col], df[y], weight=model.get_weight('ate')) result = attr_effect.transform() display(result) attr_effect.plot_lift_values() ```
github_jupyter
import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt plt.style.use('seaborn-darkgrid') %config InlineBackend.figure_format = 'retina' %load_ext autoreload %autoreload 2 from pycalf import metrics from pycalf import visualize from pycalf import propensity # Download from https://raw.githubusercontent.com/iwanami-datascience/vol3/master/kato%26hoshino/q_data_x.csv df = pd.read_csv('sample/q_data_x.csv') df.head() # Define variables required for inference. covariate_cols = [ 'TVwatch_day', 'age', 'sex', 'marry_dummy', 'child_dummy', 'inc', 'pmoney', 'area_kanto', 'area_tokai', 'area_keihanshin', 'job_dummy1', 'job_dummy2', 'job_dummy3', 'job_dummy4', 'job_dummy5', 'job_dummy6', 'job_dummy7', 'fam_str_dummy1', 'fam_str_dummy2', 'fam_str_dummy3', 'fam_str_dummy4' ] outcome_cols = ['gamecount', 'gamedummy', 'gamesecond'] treatment_col = 'cm_dummy' # Set Values from dataframe. X = df[covariate_cols] y = df[outcome_cols] treatment = df[treatment_col].astype(bool).to_numpy() # Scaling Raw Data. scaler = preprocessing.MinMaxScaler() scaled_X = scaler.fit_transform(X) # Define IPW Class. learner = LogisticRegression(solver='lbfgs', max_iter=1000, random_state=42) model = propensity.IPW(learner) # Fit model. model.fit(scaled_X, treatment) ate_weight = model.get_weight(treatment, mode='ate') es = metrics.EffectSize() es.fit(X, treatment, weight=ate_weight) es.transform() visualize.plot_effect_size(X, treatment, weight=ate_weight, ascending=True) print('F1 Score: ', metrics.f1_score(treatment, model.get_score(), threshold='auto')) visualize.plot_roc_curve(treatment, model.get_score()) visualize.plot_probability_distribution(treatment, model.get_score()) outcome = model.estimate_effect(treatment, y.to_numpy(), mode='ate') pd.DataFrame(outcome, index=['Z0', 'Z1', 'ATE'], columns=y.columns.tolist()).T outcome_name = 'gamesecond' z0, z1, treat_effect = model.estimate_effect(treatment, y[outcome_name].to_numpy(), mode='ate') visualize.plot_treatment_effect(outcome_name, z0, z1, treat_effect.round()) # Attribute Effect treatment_col = 'cm_dummy' y = 'gamesecond' features = [ 'child_dummy', 'area_kanto', 'area_keihan', 'area_tokai', 'area_keihanshin', 'T', 'F1', 'F2', 'F3', 'M1', 'M2', 'M3' ] attr_effect = metrics.AttributeEffect() attr_effect.fit(df[features], df[treatment_col], df[y], weight=model.get_weight('ate')) result = attr_effect.transform() display(result) attr_effect.plot_lift_values()
0.705176
0.878105
``` import glob import gzip import itertools import matplotlib.pyplot as plt import numpy as np import pandas as pd import os from scipy import stats import sys from Bio.Seq import Seq from collections import Counter import plotly.express as px import plotly.graph_objects as go import plotly.offline as offline from plotly.subplots import make_subplots import seaborn as sns import matrix_transform import visualize %matplotlib inline sns.set(font="Arial") sns.set_theme(style="ticks") colors = ['#D81B60', '#1E88E5', '#FFC107', '#31B547'] sns.set_palette(sns.color_palette(colors)) folder = 'Data/combined_raw_counts/' empty = [] for residue in range(306): path_dir = folder + "res" + str(residue+1) + ".csv" test = pd.read_csv(path_dir) test['gc_mean'] = (test['gc1']+test['gc2'])/2 test['glu_mean'] = (test['glu1']+test['glu2'])/2 test['gal_mean'] = (test['gal1']+test['gal2'])/2 test['grl_mean'] = (test['grl1']+test['grl2'])/2 test = test.loc[test['glu1']!=test['glu1'].max()] corr_df = test.corr() empty.append([residue+1, corr_df['gal_mean'].loc['glu_mean'], corr_df['gal_mean'].loc['grl_mean'], corr_df['gal_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['grl_mean'], corr_df['gc_mean'].loc['grl_mean'], ]) empty_df = pd.DataFrame(empty) empty_df.columns = ['residue','gal:glu', 'gal:grl', 'gal:gc', 'glu:gc', 'glu:grl', 'gc:grl'] empty_df.to_csv('CSVs/correlations_per_res.csv') bins = np.linspace(-1, 1, 20) plt.hist([empty_df['gal:glu'][0:140].append(empty_df['gal:glu'][149:242]), empty_df['gal:glu'][242:].append(empty_df['gal:glu'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(0, 1, 20) plt.hist([empty_df['gal:gc'][0:140].append(empty_df['gal:gc'][149:242]), empty_df['gal:gc'][242:].append(empty_df['gal:gc'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(-1, 1, 20) plt.hist([empty_df['gal:grl'][0:140].append(empty_df['gal:grl'][149:242]), empty_df['gal:grl'][242:].append(empty_df['gal:grl'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(0, 1, 20) plt.hist([empty_df['glu:grl'][0:140].append(empty_df['glu:grl'][149:242]), empty_df['glu:grl'][242:].append(empty_df['glu:grl'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(0, 1, 20) plt.hist([empty_df['glu:gc'][0:140].append(empty_df['glu:gc'][149:242]), empty_df['glu:gc'][242:].append(empty_df['glu:gc'][140:149])], bins, label=['x', 'y']) plt.show() ``` ### Percent wildtype ``` raw_count_folder = 'Data/combined_raw_count_foldchange/' all_percentages = [] for x in range(1,307): file = 'res' + str(x) + '.csv' files = pd.read_csv(raw_count_folder+file, index_col = 0) percentages = [] for col in ['glu1_counts', 'gal1_counts', 'gc1_counts', 'grl1_counts', 'glu2_counts', 'gal2_counts', 'gc2_counts', 'grl2_counts']: percentages.append(files[col].max()) all_percentages.append(percentages) percentage_wt = pd.DataFrame(all_percentages) percentage_wt.columns = ('glu1', 'gal1', 'gc1', 'grl1', 'glu2', 'gal2', 'gc2', 'grl2') ``` ## Percent stop codon ``` raw_count_folder = 'Data/combined_raw_count_foldchange/' cols = ['glu1_counts', 'gal1_counts', 'gc1_counts', 'grl1_counts', 'glu2_counts', 'gal2_counts', 'gc2_counts', 'grl2_counts'] all_percentages = [] for x in range(1,307): file = 'res' + str(x) + '.csv' files = pd.read_csv(raw_count_folder+file, index_col = 0) stop_sum = files[files['site_2'].apply(lambda x: Seq(x).translate())=='*'][cols].sum() col_sum = files[cols].sum() all_percentages.append(list(stop_sum)) number_stop = pd.DataFrame(all_percentages) number_stop.columns = ('glu1', 'gal1', 'gc1', 'grl1', 'glu2', 'gal2', 'gc2', 'grl2') files[files['glu1_counts'] == files['glu1_counts'].max()]['glu1_counts']/\ files[files['glu1_counts'] == files['glu1_counts'].max()]['gal1_counts'] ``` ### No synonymous codings ``` folder = 'Data/combined_raw_counts/' empty = [] for residue in range(306): path_dir = folder + "res" + str(residue+1) + ".csv" test = pd.read_csv(path_dir) test['gc_mean'] = (test['gc1']+test['gc2'])/2 test['glu_mean'] = (test['glu1']+test['glu2'])/2 test['gal_mean'] = (test['gal1']+test['gal2'])/2 test['grl_mean'] = (test['grl1']+test['grl2'])/2 test = test.loc[test['glu1']!=test['glu1'].max()] corr_df = test.corr() empty.append([residue+1, corr_df['gal_mean'].loc['glu_mean'], corr_df['gal_mean'].loc['grl_mean'], corr_df['gal_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['grl_mean'], corr_df['gc_mean'].loc['grl_mean'], ]) ```
github_jupyter
import glob import gzip import itertools import matplotlib.pyplot as plt import numpy as np import pandas as pd import os from scipy import stats import sys from Bio.Seq import Seq from collections import Counter import plotly.express as px import plotly.graph_objects as go import plotly.offline as offline from plotly.subplots import make_subplots import seaborn as sns import matrix_transform import visualize %matplotlib inline sns.set(font="Arial") sns.set_theme(style="ticks") colors = ['#D81B60', '#1E88E5', '#FFC107', '#31B547'] sns.set_palette(sns.color_palette(colors)) folder = 'Data/combined_raw_counts/' empty = [] for residue in range(306): path_dir = folder + "res" + str(residue+1) + ".csv" test = pd.read_csv(path_dir) test['gc_mean'] = (test['gc1']+test['gc2'])/2 test['glu_mean'] = (test['glu1']+test['glu2'])/2 test['gal_mean'] = (test['gal1']+test['gal2'])/2 test['grl_mean'] = (test['grl1']+test['grl2'])/2 test = test.loc[test['glu1']!=test['glu1'].max()] corr_df = test.corr() empty.append([residue+1, corr_df['gal_mean'].loc['glu_mean'], corr_df['gal_mean'].loc['grl_mean'], corr_df['gal_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['grl_mean'], corr_df['gc_mean'].loc['grl_mean'], ]) empty_df = pd.DataFrame(empty) empty_df.columns = ['residue','gal:glu', 'gal:grl', 'gal:gc', 'glu:gc', 'glu:grl', 'gc:grl'] empty_df.to_csv('CSVs/correlations_per_res.csv') bins = np.linspace(-1, 1, 20) plt.hist([empty_df['gal:glu'][0:140].append(empty_df['gal:glu'][149:242]), empty_df['gal:glu'][242:].append(empty_df['gal:glu'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(0, 1, 20) plt.hist([empty_df['gal:gc'][0:140].append(empty_df['gal:gc'][149:242]), empty_df['gal:gc'][242:].append(empty_df['gal:gc'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(-1, 1, 20) plt.hist([empty_df['gal:grl'][0:140].append(empty_df['gal:grl'][149:242]), empty_df['gal:grl'][242:].append(empty_df['gal:grl'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(0, 1, 20) plt.hist([empty_df['glu:grl'][0:140].append(empty_df['glu:grl'][149:242]), empty_df['glu:grl'][242:].append(empty_df['glu:grl'][140:149])], bins, label=['x', 'y']) plt.show() bins = np.linspace(0, 1, 20) plt.hist([empty_df['glu:gc'][0:140].append(empty_df['glu:gc'][149:242]), empty_df['glu:gc'][242:].append(empty_df['glu:gc'][140:149])], bins, label=['x', 'y']) plt.show() raw_count_folder = 'Data/combined_raw_count_foldchange/' all_percentages = [] for x in range(1,307): file = 'res' + str(x) + '.csv' files = pd.read_csv(raw_count_folder+file, index_col = 0) percentages = [] for col in ['glu1_counts', 'gal1_counts', 'gc1_counts', 'grl1_counts', 'glu2_counts', 'gal2_counts', 'gc2_counts', 'grl2_counts']: percentages.append(files[col].max()) all_percentages.append(percentages) percentage_wt = pd.DataFrame(all_percentages) percentage_wt.columns = ('glu1', 'gal1', 'gc1', 'grl1', 'glu2', 'gal2', 'gc2', 'grl2') raw_count_folder = 'Data/combined_raw_count_foldchange/' cols = ['glu1_counts', 'gal1_counts', 'gc1_counts', 'grl1_counts', 'glu2_counts', 'gal2_counts', 'gc2_counts', 'grl2_counts'] all_percentages = [] for x in range(1,307): file = 'res' + str(x) + '.csv' files = pd.read_csv(raw_count_folder+file, index_col = 0) stop_sum = files[files['site_2'].apply(lambda x: Seq(x).translate())=='*'][cols].sum() col_sum = files[cols].sum() all_percentages.append(list(stop_sum)) number_stop = pd.DataFrame(all_percentages) number_stop.columns = ('glu1', 'gal1', 'gc1', 'grl1', 'glu2', 'gal2', 'gc2', 'grl2') files[files['glu1_counts'] == files['glu1_counts'].max()]['glu1_counts']/\ files[files['glu1_counts'] == files['glu1_counts'].max()]['gal1_counts'] folder = 'Data/combined_raw_counts/' empty = [] for residue in range(306): path_dir = folder + "res" + str(residue+1) + ".csv" test = pd.read_csv(path_dir) test['gc_mean'] = (test['gc1']+test['gc2'])/2 test['glu_mean'] = (test['glu1']+test['glu2'])/2 test['gal_mean'] = (test['gal1']+test['gal2'])/2 test['grl_mean'] = (test['grl1']+test['grl2'])/2 test = test.loc[test['glu1']!=test['glu1'].max()] corr_df = test.corr() empty.append([residue+1, corr_df['gal_mean'].loc['glu_mean'], corr_df['gal_mean'].loc['grl_mean'], corr_df['gal_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['gc_mean'], corr_df['glu_mean'].loc['grl_mean'], corr_df['gc_mean'].loc['grl_mean'], ])
0.105193
0.512937
# Scroll down to get to the interesting tables... # Construct list of properties of widgets "Properties" here is one of: + `keys` + `traits()` + `class_own_traits()` Common (i.e. uninteresting) properties are filtered out. The dependency on astropy is for their Table. Replace it with pandas if you want... ``` import itertools from ipywidgets import * from IPython.display import display from traitlets import TraitError from astropy.table import Table, Column ``` # Function definitions ## Calculate "interesting" properties ``` def properties(widget, omit=None, source=None): """ Return a list of widget properties for a widget instance, omitting common properties. Parameters ---------- widget : ipywidgets.Widget instance The widget for which the list of preoperties is desired. omit : list, optional List of properties to omit in the return value. Default is ``['layout', 'style', 'msg_throttle']``, and for `source='traits' is extended to add ``['keys', 'comm']``. source : str, one of 'keys', 'traits', 'class_own_traits', 'style_keys' optional Source of property list for widget. Default is ``'keys'``. """ if source is None: source = 'keys' valid_sources = ('keys', 'traits', 'class_own_traits', 'style_keys') if source not in valid_sources: raise ValueError('source must be one of {}'.format(', '.join(valid_sources))) if omit is None: omit = ['layout', 'style', 'msg_throttle'] if source == 'keys': props = widget.keys elif source == 'traits': props = widget.traits() omit.extend(['keys', 'comm']) elif source == 'class_own_traits': props = widget.class_own_traits() elif source == 'style_keys': props = widget.style.keys props = [k for k in props if not k.startswith('_')] return [k for k in props if k not in omit] ``` ## Create a table (cross-tab style) for which properties are available for which widgets This is the only place astropy.table.Table is used, so delete if you want to. ``` def table_for_keys(keys, keys_info, source): unique_keys = set() for k in keys: unique_keys.update(keys_info[k]) unique_keys = sorted(unique_keys) string_it = lambda x: 'X' if x else '' colnames = ['Property ({})'.format(source)] + keys columns = [Column(name=colnames[0], data=unique_keys)] for c in colnames[1:]: column = Column(name=c, data=[string_it(k in key_dict[c]) for k in unique_keys]) columns.append(column) return Table(columns) ``` ## List of widget objects... ``` widget_list = [ IntSlider, FloatSlider, IntRangeSlider, FloatRangeSlider, IntProgress, FloatProgress, BoundedIntText, BoundedFloatText, IntText, FloatText, ToggleButton, Checkbox, Valid, Dropdown, RadioButtons, Select, SelectionSlider, SelectionRangeSlider, ToggleButtons, SelectMultiple, Text, Textarea, Label, HTML, HTMLMath, Image, Button, Play, DatePicker, ColorPicker, Box, HBox, VBox, Accordion, Tab ] ``` ## ...and their names ``` names = [wd.__name__ for wd in widget_list] ``` ## Figure out the properties for each widget The `try`/`except` below is to catch a couple of classes that *require* that `options` be passed on intialization. ``` property_source = 'keys' all_keys = [] for widget_class in widget_list: try: keys = properties(widget_class(), source=property_source) except TraitError as e: keys = properties(widget_class(options=(2,10)), source=property_source) finally: all_keys.append(keys) ``` Probably should have used a dict from the beginning... ``` key_dict = {k: v for k, v in zip(names, all_keys)} ``` ## Define a few groups of widgets by widget interface type This makes for nicer (i.e. more compact and readable) tables later on. ``` sliders = [k for k in key_dict.keys() if 'Slider' in k] buttons = [k for k in key_dict.keys() if 'Button' in k] containers = ['Box', 'VBox', 'HBox', 'Accordion', 'Tab'] texts = [k for k in names if 'text' in k or 'Text' in k] + [k for k in names if 'HTML' in k] + ['Label'] progress = [k for k in names if 'Progress' in k] selects = ['Dropdown', 'Select', 'SelectMultiple'] all_so_far = sliders + buttons + texts + containers + progress + selects others = [k for k in names if k not in all_so_far] slider_keys = set() ``` # Tables of keys (synced properties) ## Sliders ``` table_for_keys(sliders, key_dict, source=property_source) ``` ## Buttons ``` table_for_keys(buttons, key_dict, source=property_source) ``` ## Containers ``` table_for_keys(containers, key_dict, source=property_source) ``` ## Text ``` table_for_keys(texts, key_dict, source=property_source) ``` ## Progress bars ``` table_for_keys(progress, key_dict, source=property_source) ``` # Select widgets ``` table_for_keys(selects, key_dict, source=property_source) ``` ## Everything else ``` table_for_keys(others, key_dict, source=property_source) ``` ## Style keys ``` property_source = 'style_keys' style_keys = [] for widget_class in widget_list: try: keys = properties(widget_class(), source=property_source) except TraitError as e: keys = properties(widget_class(options=(2,10)), source=property_source) except AttributeError: keys='' finally: style_keys.append(keys) for w, s in zip(names, style_keys): print('{} has style keys: {}'.format(w, ', '.join(s))) ```
github_jupyter
import itertools from ipywidgets import * from IPython.display import display from traitlets import TraitError from astropy.table import Table, Column def properties(widget, omit=None, source=None): """ Return a list of widget properties for a widget instance, omitting common properties. Parameters ---------- widget : ipywidgets.Widget instance The widget for which the list of preoperties is desired. omit : list, optional List of properties to omit in the return value. Default is ``['layout', 'style', 'msg_throttle']``, and for `source='traits' is extended to add ``['keys', 'comm']``. source : str, one of 'keys', 'traits', 'class_own_traits', 'style_keys' optional Source of property list for widget. Default is ``'keys'``. """ if source is None: source = 'keys' valid_sources = ('keys', 'traits', 'class_own_traits', 'style_keys') if source not in valid_sources: raise ValueError('source must be one of {}'.format(', '.join(valid_sources))) if omit is None: omit = ['layout', 'style', 'msg_throttle'] if source == 'keys': props = widget.keys elif source == 'traits': props = widget.traits() omit.extend(['keys', 'comm']) elif source == 'class_own_traits': props = widget.class_own_traits() elif source == 'style_keys': props = widget.style.keys props = [k for k in props if not k.startswith('_')] return [k for k in props if k not in omit] def table_for_keys(keys, keys_info, source): unique_keys = set() for k in keys: unique_keys.update(keys_info[k]) unique_keys = sorted(unique_keys) string_it = lambda x: 'X' if x else '' colnames = ['Property ({})'.format(source)] + keys columns = [Column(name=colnames[0], data=unique_keys)] for c in colnames[1:]: column = Column(name=c, data=[string_it(k in key_dict[c]) for k in unique_keys]) columns.append(column) return Table(columns) widget_list = [ IntSlider, FloatSlider, IntRangeSlider, FloatRangeSlider, IntProgress, FloatProgress, BoundedIntText, BoundedFloatText, IntText, FloatText, ToggleButton, Checkbox, Valid, Dropdown, RadioButtons, Select, SelectionSlider, SelectionRangeSlider, ToggleButtons, SelectMultiple, Text, Textarea, Label, HTML, HTMLMath, Image, Button, Play, DatePicker, ColorPicker, Box, HBox, VBox, Accordion, Tab ] names = [wd.__name__ for wd in widget_list] property_source = 'keys' all_keys = [] for widget_class in widget_list: try: keys = properties(widget_class(), source=property_source) except TraitError as e: keys = properties(widget_class(options=(2,10)), source=property_source) finally: all_keys.append(keys) key_dict = {k: v for k, v in zip(names, all_keys)} sliders = [k for k in key_dict.keys() if 'Slider' in k] buttons = [k for k in key_dict.keys() if 'Button' in k] containers = ['Box', 'VBox', 'HBox', 'Accordion', 'Tab'] texts = [k for k in names if 'text' in k or 'Text' in k] + [k for k in names if 'HTML' in k] + ['Label'] progress = [k for k in names if 'Progress' in k] selects = ['Dropdown', 'Select', 'SelectMultiple'] all_so_far = sliders + buttons + texts + containers + progress + selects others = [k for k in names if k not in all_so_far] slider_keys = set() table_for_keys(sliders, key_dict, source=property_source) table_for_keys(buttons, key_dict, source=property_source) table_for_keys(containers, key_dict, source=property_source) table_for_keys(texts, key_dict, source=property_source) table_for_keys(progress, key_dict, source=property_source) table_for_keys(selects, key_dict, source=property_source) table_for_keys(others, key_dict, source=property_source) property_source = 'style_keys' style_keys = [] for widget_class in widget_list: try: keys = properties(widget_class(), source=property_source) except TraitError as e: keys = properties(widget_class(options=(2,10)), source=property_source) except AttributeError: keys='' finally: style_keys.append(keys) for w, s in zip(names, style_keys): print('{} has style keys: {}'.format(w, ', '.join(s)))
0.6508
0.835215
``` import yahoo_fin.stock_info as si import pandas as pd %matplotlib inline dow_jones_tickers = si.tickers_dow() prices = list(map(si.get_live_price, dow_jones_tickers)) for ticker in dow_jones_tickers: si.get_data(ticker)['close'].plot('line') import yahoo_fin.stock_info as si dow_table = pd.DataFrame([si.tickers_dow(), list(map(si.get_live_price, si.tickers_dow()))]) dow_table = dow_table.transpose() dow_table.columns = ['Company', 'Price'] dow_table # Extracted from https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average company_names = [ '3M', 'American Express', 'Apple', 'Boeing', 'Caterpillar', 'Chevron', 'Cisco Systems', 'Coca-Cola', 'Dow Inc.', 'ExxonMobil', 'Goldman Sachs', 'The Home Depot', 'IBM', 'Intel', 'Johnson & Johnson', 'JPMorgan Chase', 'McDonald\'s', 'Merck & Company', 'Microsoft', 'Nike', 'Pfizer', 'Procter & Gamble', 'Travelers', 'UnitedHealth Group', 'United Technologies', 'Verizon', 'Visa', 'Walmart', 'Walgreens Boots Alliance', 'Walt Disney', ] symbol = [ 'MMM', 'AXP', 'AAPL', 'BA', 'CAT', 'CVX', 'CSCO', 'KO', 'DOW', 'XOM', 'GS', 'HD', 'IBM', 'INTC', 'JNJ', 'JPM', 'MCD', 'MRK', 'MSFT', 'NKE', 'PFE', 'PG', 'TRV', 'UNH', 'UTX', 'VZ', 'V', 'WMT', 'WBA', 'DIS', ] industry = [ 'Conglomerate', 'Financial services', 'Information technologies', 'Aerospace and defense', 'Construction and mining equipment', 'Oil & gas', 'Information technologies', 'Food', 'Chemical industry', 'Oil & gas', 'Financial services', 'Retail', 'Information technologies', 'Information technologies', 'Pharmaceuticals', 'Financial services', 'Food', 'Pharmaceuticals', 'Information technologies', 'Apparel', 'Pharmaceuticals', 'Consumer goods', 'Insurance', 'Managed health care', 'Conglomerate', 'Telecommunication', 'Financial services', 'Retail', 'Retail', 'Broadcasting and entertainment' ] ticker2name = {k:v for k,v in zip(symbol, company_names) } ticker2industry = {k:v for k,v in zip(symbol, industry) } powers = {'T': 10 ** 12, 'B': 10 ** 9, 'M': 10 ** 6} def f(s): try: power = s[-1] return float(s[:-1]) * powers[power] except TypeError: return s def get_stats(ticker): stats = si.get_stats(ticker) values = list(stats['Value']) atb = list(stats['Attribute']) return values, atb def create_dow_table(index): tickers = si.tickers_dow() table = pd.DataFrame(columns=['Company', 'Price'] + get_stats(tickers[0])[1], index=tickers) table['Company'] = tickers table['Price'] = list(map(si.get_live_price, table['Company'])) table[table.columns.drop(['Company', 'Price'])] = list(map(lambda x: get_stats(x)[0], table['Company'])) return table dow = create_dow_table('dow') dow['Cap'] = dow['Market Cap (intraday) 5'].apply(f) dow.index = dow['Company'].apply(lambda x: ticker2name[x]) dow['Industry'] = dow['Company'].apply(lambda x: ticker2industry[x]) dow dow.plot.pie(y='Cap', figsize=(20,20)) dow[['Industry', 'Cap']].groupby('Industry').agg('sum').plot.pie(y='Cap', figsize=(20,20), title='Dow Jones') ```
github_jupyter
import yahoo_fin.stock_info as si import pandas as pd %matplotlib inline dow_jones_tickers = si.tickers_dow() prices = list(map(si.get_live_price, dow_jones_tickers)) for ticker in dow_jones_tickers: si.get_data(ticker)['close'].plot('line') import yahoo_fin.stock_info as si dow_table = pd.DataFrame([si.tickers_dow(), list(map(si.get_live_price, si.tickers_dow()))]) dow_table = dow_table.transpose() dow_table.columns = ['Company', 'Price'] dow_table # Extracted from https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average company_names = [ '3M', 'American Express', 'Apple', 'Boeing', 'Caterpillar', 'Chevron', 'Cisco Systems', 'Coca-Cola', 'Dow Inc.', 'ExxonMobil', 'Goldman Sachs', 'The Home Depot', 'IBM', 'Intel', 'Johnson & Johnson', 'JPMorgan Chase', 'McDonald\'s', 'Merck & Company', 'Microsoft', 'Nike', 'Pfizer', 'Procter & Gamble', 'Travelers', 'UnitedHealth Group', 'United Technologies', 'Verizon', 'Visa', 'Walmart', 'Walgreens Boots Alliance', 'Walt Disney', ] symbol = [ 'MMM', 'AXP', 'AAPL', 'BA', 'CAT', 'CVX', 'CSCO', 'KO', 'DOW', 'XOM', 'GS', 'HD', 'IBM', 'INTC', 'JNJ', 'JPM', 'MCD', 'MRK', 'MSFT', 'NKE', 'PFE', 'PG', 'TRV', 'UNH', 'UTX', 'VZ', 'V', 'WMT', 'WBA', 'DIS', ] industry = [ 'Conglomerate', 'Financial services', 'Information technologies', 'Aerospace and defense', 'Construction and mining equipment', 'Oil & gas', 'Information technologies', 'Food', 'Chemical industry', 'Oil & gas', 'Financial services', 'Retail', 'Information technologies', 'Information technologies', 'Pharmaceuticals', 'Financial services', 'Food', 'Pharmaceuticals', 'Information technologies', 'Apparel', 'Pharmaceuticals', 'Consumer goods', 'Insurance', 'Managed health care', 'Conglomerate', 'Telecommunication', 'Financial services', 'Retail', 'Retail', 'Broadcasting and entertainment' ] ticker2name = {k:v for k,v in zip(symbol, company_names) } ticker2industry = {k:v for k,v in zip(symbol, industry) } powers = {'T': 10 ** 12, 'B': 10 ** 9, 'M': 10 ** 6} def f(s): try: power = s[-1] return float(s[:-1]) * powers[power] except TypeError: return s def get_stats(ticker): stats = si.get_stats(ticker) values = list(stats['Value']) atb = list(stats['Attribute']) return values, atb def create_dow_table(index): tickers = si.tickers_dow() table = pd.DataFrame(columns=['Company', 'Price'] + get_stats(tickers[0])[1], index=tickers) table['Company'] = tickers table['Price'] = list(map(si.get_live_price, table['Company'])) table[table.columns.drop(['Company', 'Price'])] = list(map(lambda x: get_stats(x)[0], table['Company'])) return table dow = create_dow_table('dow') dow['Cap'] = dow['Market Cap (intraday) 5'].apply(f) dow.index = dow['Company'].apply(lambda x: ticker2name[x]) dow['Industry'] = dow['Company'].apply(lambda x: ticker2industry[x]) dow dow.plot.pie(y='Cap', figsize=(20,20)) dow[['Industry', 'Cap']].groupby('Industry').agg('sum').plot.pie(y='Cap', figsize=(20,20), title='Dow Jones')
0.34632
0.54577
# Lab 01: Introduction to PyTorch ``` # For Google Colaboratory import sys, os if 'google.colab' in sys.modules: from google.colab import drive drive.mount('/content/gdrive') file_name = 'pytorch_introduction.ipynb' import subprocess path_to_file = subprocess.check_output('find . -type f -name ' + str(file_name), shell=True).decode("utf-8") print(path_to_file) path_to_file = path_to_file.replace(file_name,"").replace('\n',"") os.chdir(path_to_file) !pwd import torch ``` ### PyTorch Tensors ### Construct a vector of 3 elements ``` x=torch.Tensor( [5.3 , 2.1 , -3.1 ] ) print(x) ``` ### Construct a 2 x 2 matrix ``` A=torch.Tensor( [ [5.3,2.1] , [0.2,2.1] ] ) print(A) ``` ### Construct a random 10 x 2 matrix ``` A=torch.rand(10,2) print(A) ``` ### Construct a 10 x 2 matrix filled with zeros ``` A=torch.zeros(10,2) print(A) ``` ### Construct a 5 x 2 x 2 random Tensor ``` B = torch.rand(5,2,2) print(B) B.size() B.dim() B.type() ``` ### Size and Dimension of a Tensor #### A 3-dimensional Tensor ``` A=torch.rand(3,2,2) print(A) print( A.dim() ) print( A.size() ) print( A.size(0) ) ``` #### A 2-dimensional Tensor ``` B=torch.rand(3,5) print(B) print( B.dim() ) print( B.size() ) print( B.size(0) ) print( B.size(1) ) ``` #### A 1-dimensional Tensor ``` x=torch.rand(7) print(x) print( x.dim() ) print( x.size() ) ``` ### Adding and multiplying tensors ``` A=torch.rand(2,2) B=torch.rand(2,2) C=2*B D=A+C E=A*B print(A) print('') print(B) print('') print(C) print('') print(C) print('') print(E) ``` ### Floats versus integers ``` x=torch.Tensor([1.2 , 2.5]) print(x) print(x.type()) y=torch.LongTensor([5,6]) print(y) print(y.type()) y=y.float() print(y) print(y.type()) x=x.long() print(x) print(x.type()) ``` ### Other functions ``` x=torch.arange(10) print(x) print(x.type()) x=torch.randperm(10) print(x) print(x.type()) x=torch.arange(10).long() print(x) print(x.type()) ``` ### Tips Check tensor sizes for algebra computations like multiplication torch.mm(X1,X2) with X1.size(), X2.size() Check tensor type for data manipulations with X.type() ### Reshaping a tensor ``` x=torch.arange(10) print(x) print( x.view(2,5) ) print( x.view(5,2) ) ``` ### Note that the original tensor x was NOT modified ``` print(x) ``` ### To make the change permanent you need to create a new tensor ``` y=x.view(5,2) print(x) print('') print(y) ``` ### Slicing a tensor ``` print( y ) print( y[0] ) print( y[1] ) v = y[2] print(v) ``` ### Extract row 1 (included) to row 4 (excluded) ``` print(y) print( y[1:4] ) idx = 1 n=3 print( y[idx:idx+n] ) ``` ### Let check the sizes after slicing ``` print(y) z= y[1:1+3] print(z) print('') print('dimension=',z.dim()) print(z.size()) v=y[1] print(v) print('') print('dimension=',v.dim()) print(v.size()) ``` ### Acessing the entries of a Tensor ``` print(y) print(y) a=y[4,0] print(a) # a is a scalar, not a tensor print(a.dim()) print(a.size()) ``` ### A matrix is 2-dimensional Tensor ### A row of a matrix is a 1-dimensional Tensor ### An entry of a matrix is a 0-dimensional Tensor ### 0-dimensional Tensor are scalar! ### If we want to convert a 0-dimensional Tensor into python number, we need to use item() ``` b=a.item() print(a) print(type(a)) print(b) print(type(b)) ```
github_jupyter
# For Google Colaboratory import sys, os if 'google.colab' in sys.modules: from google.colab import drive drive.mount('/content/gdrive') file_name = 'pytorch_introduction.ipynb' import subprocess path_to_file = subprocess.check_output('find . -type f -name ' + str(file_name), shell=True).decode("utf-8") print(path_to_file) path_to_file = path_to_file.replace(file_name,"").replace('\n',"") os.chdir(path_to_file) !pwd import torch x=torch.Tensor( [5.3 , 2.1 , -3.1 ] ) print(x) A=torch.Tensor( [ [5.3,2.1] , [0.2,2.1] ] ) print(A) A=torch.rand(10,2) print(A) A=torch.zeros(10,2) print(A) B = torch.rand(5,2,2) print(B) B.size() B.dim() B.type() A=torch.rand(3,2,2) print(A) print( A.dim() ) print( A.size() ) print( A.size(0) ) B=torch.rand(3,5) print(B) print( B.dim() ) print( B.size() ) print( B.size(0) ) print( B.size(1) ) x=torch.rand(7) print(x) print( x.dim() ) print( x.size() ) A=torch.rand(2,2) B=torch.rand(2,2) C=2*B D=A+C E=A*B print(A) print('') print(B) print('') print(C) print('') print(C) print('') print(E) x=torch.Tensor([1.2 , 2.5]) print(x) print(x.type()) y=torch.LongTensor([5,6]) print(y) print(y.type()) y=y.float() print(y) print(y.type()) x=x.long() print(x) print(x.type()) x=torch.arange(10) print(x) print(x.type()) x=torch.randperm(10) print(x) print(x.type()) x=torch.arange(10).long() print(x) print(x.type()) x=torch.arange(10) print(x) print( x.view(2,5) ) print( x.view(5,2) ) print(x) y=x.view(5,2) print(x) print('') print(y) print( y ) print( y[0] ) print( y[1] ) v = y[2] print(v) print(y) print( y[1:4] ) idx = 1 n=3 print( y[idx:idx+n] ) print(y) z= y[1:1+3] print(z) print('') print('dimension=',z.dim()) print(z.size()) v=y[1] print(v) print('') print('dimension=',v.dim()) print(v.size()) print(y) print(y) a=y[4,0] print(a) # a is a scalar, not a tensor print(a.dim()) print(a.size()) b=a.item() print(a) print(type(a)) print(b) print(type(b))
0.216012
0.916185
<a href="https://colab.research.google.com/github/datadynamo/aiconf_sj_2019_pytorch/blob/master/05_Transfer_Learning_Tutorial.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` %matplotlib inline ``` ``` # This is formatted as code ``` This notebook is acopy from https://pytorch.org/tutorials/_downloads/transfer_learning_tutorial.ipynb Modifications have been made to accomadate Google Colab data attachment --------------------------------- Transfer Learning Tutorial ========================== **Author**: `Sasank Chilamkurthy <https://chsasank.github.io>`_ In this tutorial, you will learn how to train your network using transfer learning. You can read more about the transfer learning at `cs231n notes <http://cs231n.github.io/transfer-learning/>`__ Quoting these notes, In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest. These two major transfer learning scenarios look as follows: - **Finetuning the convnet**: Instead of random initializaion, we initialize the network with a pretrained network, like the one that is trained on imagenet 1000 dataset. Rest of the training looks as usual. - **ConvNet as fixed feature extractor**: Here, we will freeze the weights for all of the network except that of the final fully connected layer. This last fully connected layer is replaced with a new one with random weights and only this layer is trained. ``` # License: BSD # Author: Sasank Chilamkurthy from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy plt.ion() # interactive mode ``` Load Data --------- We will use torchvision and torch.utils.data packages for loading the data. The problem we're going to solve today is to train a model to classify **ants** and **bees**. We have about 120 training images each for ants and bees. There are 75 validation images for each class. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well. This dataset is a very small subset of imagenet. .. Note :: Download the data from `here <https://download.pytorch.org/tutorial/hymenoptera_data.zip>`_ and extract it to the current directory. ``` !gsutil cp gs://pytorchtutorial/hymenoptera_data.zip /tmp/hymenoptera_data.zip !unzip /tmp/hymenoptera_data.zip # Data augmentation and normalization for training # Just normalization for validation data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ``` Visualize a few images ^^^^^^^^^^^^^^^^^^^^^^ Let's visualize a few training images so as to understand the data augmentations. ``` def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) ``` Training the model ------------------ Now, let's write a general function to train a model. Here, we will illustrate: - Scheduling the learning rate - Saving the best model In the following, parameter ``scheduler`` is an LR scheduler object from ``torch.optim.lr_scheduler``. ``` def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model ``` Visualizing the model predictions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Generic function to display predictions for a few images ``` def visualize_model(model, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) ``` Finetuning the convnet ---------------------- Load a pretrained model and reset final fully connected layer. ``` model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) ``` Train and evaluate ^^^^^^^^^^^^^^^^^^ It should take around 15-25 min on CPU. On GPU though, it takes less than a minute. ``` model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=2) visualize_model(model_ft) ``` ConvNet as fixed feature extractor ---------------------------------- Here, we need to freeze all the network except the final layer. We need to set ``requires_grad == False`` to freeze the parameters so that the gradients are not computed in ``backward()``. You can read more about this in the documentation `here <http://pytorch.org/docs/notes/autograd.html#excluding-subgraphs-from-backward>`__. ``` model_conv = torchvision.models.resnet18(pretrained=True) for param in model_conv.parameters(): param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as # opoosed to before. optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1) ``` Train and evaluate ^^^^^^^^^^^^^^^^^^ On CPU this will take about half the time compared to previous scenario. This is expected as gradients don't need to be computed for most of the network. However, forward does need to be computed. ``` model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=2) visualize_model(model_conv) plt.ioff() plt.show() ```
github_jupyter
%matplotlib inline # This is formatted as code # License: BSD # Author: Sasank Chilamkurthy from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy plt.ion() # interactive mode !gsutil cp gs://pytorchtutorial/hymenoptera_data.zip /tmp/hymenoptera_data.zip !unzip /tmp/hymenoptera_data.zip # Data augmentation and normalization for training # Just normalization for validation data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model def visualize_model(model, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=2) visualize_model(model_ft) model_conv = torchvision.models.resnet18(pretrained=True) for param in model_conv.parameters(): param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as # opoosed to before. optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1) model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=2) visualize_model(model_conv) plt.ioff() plt.show()
0.883676
0.989879
# 02 - Detect Model Bias Let's first import our dataset and pre-process it: ``` import pandas as pd # Load dataset into dataframe loan_dataset = pd.read_csv("../datasets/loan.csv") loan_dataset.head() # Prepare categorical and numeric features categorical_features = ["sex", "rent", "minority", "ZIP", "occupation"] numeric_features = [ "education", "age", "income", "loan_size", "payment_timing", "year", "job_stability" ] for cat in categorical_features: loan_dataset[cat] = loan_dataset[cat].astype("object") ``` We first need to define which variable is going to be our __outcome variable__ (the one we want to predict), and which are going to be our __sensitive features__ (those that the modeler should take into account when evaluating the fairness of the data or algorithm). ``` # Define outcome variable: pred = "default" # Define sensitive features: sensitive_features = ["minority", "sex"] ``` Let's know get our data into the right format to be the input of a machine learning algorithms in scikit-learn: ``` # Define X and y X = loan_dataset.copy().drop([pred], axis=1) y = (loan_dataset.copy()[pred] != f"{pred}-no").astype(int).values ``` We can now run a __logistic regression__ to predict our outcome variable: ``` from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder # Create preprocessor of features numeric_transformer = Pipeline(steps=[ ('scaler', StandardScaler())] ) categorical_transformer = OneHotEncoder(handle_unknown='ignore') preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features) ] ) # Create pipeline clf = Pipeline( steps=[ ('preprocessor', preprocessor), ('classifier', LogisticRegression()) ] ) # Split into train and test dataset X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=42 ) # Train classifier clf.fit(X_train, y_train) ``` Let's use our models to make predictions on the whole dataset: ``` # Predict y_pred = clf.predict(X) print(f"Example of the first twenty predictions: {y_pred[:20]}") ``` # Quality of service harm Let's inspect how the accuracy of the model changes for the different __sensitive subpopulations__ defined by the __sensitive features__: ``` from fairlearn.metrics import MetricFrame from sklearn.metrics import recall_score, precision_score # Break precision and recall for different subpopulations for sf in sensitive_features: grouped_metric = MetricFrame( {"precision": precision_score, "recall": recall_score}, y, y_pred, sensitive_features=loan_dataset["minority"] ) grouped_metric_df = grouped_metric.by_group display(grouped_metric_df) print(f"Overall precision and recall:") display(pd.DataFrame(grouped_metric.overall, columns=["Overall accuracy"])) ``` # Quality of allocation harm Let's know inspect which values of `default` get predicted for each sensitive subpopulation. We will print the propotion that was assigned to each label: ``` for sf in sensitive_features: print(f"Sensitive feature: {sf}") pred_grouped = pd.DataFrame({f"{sf}": loan_dataset[sf], "y_pred": y_pred, "y_true": y}) pred_vals = pred_grouped.groupby(sf).sum().values / loan_dataset[sf].value_counts().values pred_grouped = pd.DataFrame(pred_vals, columns=[f"{pred}_predicted", f"{pred}_true"]) display(pred_grouped) ```
github_jupyter
import pandas as pd # Load dataset into dataframe loan_dataset = pd.read_csv("../datasets/loan.csv") loan_dataset.head() # Prepare categorical and numeric features categorical_features = ["sex", "rent", "minority", "ZIP", "occupation"] numeric_features = [ "education", "age", "income", "loan_size", "payment_timing", "year", "job_stability" ] for cat in categorical_features: loan_dataset[cat] = loan_dataset[cat].astype("object") # Define outcome variable: pred = "default" # Define sensitive features: sensitive_features = ["minority", "sex"] # Define X and y X = loan_dataset.copy().drop([pred], axis=1) y = (loan_dataset.copy()[pred] != f"{pred}-no").astype(int).values from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder # Create preprocessor of features numeric_transformer = Pipeline(steps=[ ('scaler', StandardScaler())] ) categorical_transformer = OneHotEncoder(handle_unknown='ignore') preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features) ] ) # Create pipeline clf = Pipeline( steps=[ ('preprocessor', preprocessor), ('classifier', LogisticRegression()) ] ) # Split into train and test dataset X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=42 ) # Train classifier clf.fit(X_train, y_train) # Predict y_pred = clf.predict(X) print(f"Example of the first twenty predictions: {y_pred[:20]}") from fairlearn.metrics import MetricFrame from sklearn.metrics import recall_score, precision_score # Break precision and recall for different subpopulations for sf in sensitive_features: grouped_metric = MetricFrame( {"precision": precision_score, "recall": recall_score}, y, y_pred, sensitive_features=loan_dataset["minority"] ) grouped_metric_df = grouped_metric.by_group display(grouped_metric_df) print(f"Overall precision and recall:") display(pd.DataFrame(grouped_metric.overall, columns=["Overall accuracy"])) for sf in sensitive_features: print(f"Sensitive feature: {sf}") pred_grouped = pd.DataFrame({f"{sf}": loan_dataset[sf], "y_pred": y_pred, "y_true": y}) pred_vals = pred_grouped.groupby(sf).sum().values / loan_dataset[sf].value_counts().values pred_grouped = pd.DataFrame(pred_vals, columns=[f"{pred}_predicted", f"{pred}_true"]) display(pred_grouped)
0.829492
0.975739
``` import pandas as pd import numpy as np import datetime as dt # Files to load jan2021 = "Data/2021/JC-202101-citibike-tripdata.csv" feb2021 = "Data/2021/JC-202102-citibike-tripdata.csv" mar2021 = "Data/2021/JC-202103-citibike-tripdata.csv" apr2021 = "Data/2021/JC-202104-citibike-tripdata.csv" may2021 = "Data/2021/JC-202105-citibike-tripdata.csv" jun2021 = "Data/2021/JC-202106-citibike-tripdata.csv" jul2021 = "Data/2021/JC-202107-citibike-tripdata.csv" aug2021 = "Data/2021/JC-202108-citibike-tripdata.csv" sep2021 = "Data/2021/JC-202109-citibike-tripdata.csv" oct2021 = "Data/2021/JC-202110-citibike-tripdata.csv" # read csv files jan2021_df = pd.read_csv(jan2021) feb2021_df = pd.read_csv(feb2021) mar2021_df = pd.read_csv(mar2021) apr2021_df = pd.read_csv(apr2021) may2021_df = pd.read_csv(may2021) jun2021_df = pd.read_csv(jun2021) jul2021_df = pd.read_csv(jul2021) aug2021_df = pd.read_csv(aug2021) sep2021_df = pd.read_csv(sep2021) oct2021_df = pd.read_csv(oct2021) jan2021_df.count() # Convert All DateTimes to "%Y-%m-%d %H:%M:%S" Format jan2021_df["starttime"] = pd.to_datetime(jan2021_df["starttime"]) jan2021_df["stoptime"] = pd.to_datetime(jan2021_df["stoptime"]) # Dropped these columns because they were not included in the most recent data in 2021 Clean_jan2021_df = jan2021_df.drop(columns=['birth year', 'gender', 'bikeid']) Clean_jan2021_df # made all usertypes the same binary options because the data changd in 2021 removing some fields # and changing the values of some existing fields Clean_jan2021_df['usertype'].replace('Subscriber','member',inplace = True) Clean_jan2021_df['usertype'].replace('Customer','casual',inplace = True) Clean_jan2021_df.head() Clean_jan2021_df.count() feb2021_df.count() feb2021_df ``` # The dataset changed some binary choices and removed some columns between January to February ``` oct2021_df # combine like months in 2021 dataframes into a single datafram febthruoct_df = feb2021_df.append([mar2021_df, apr2021_df, may2021_df, jun2021_df, jul2021_df, aug2021_df, sep2021_df, oct2021_df], ignore_index=True) febthruoct_df.head() febthruoct_df.count() # Convert All DateTimes to "%Y-%m-%d %H:%M:%S" Format febthruoct_df["started_at"] = pd.to_datetime(febthruoct_df["started_at"]) febthruoct_df["ended_at"] = pd.to_datetime(febthruoct_df["ended_at"]) Clean_jan2021_df.count() # caclulate trip durration since it was field that was removed. # the result is in seconds, which match the 2019 and 2020 data febthruoct_df["tripduration"] = febthruoct_df["ended_at"]- febthruoct_df["started_at"] #converted trip duration to minutes for better analysis febthruoct_df["tripduration"] = febthruoct_df["tripduration"]/np.timedelta64(1,'s') febthruoct_df_reorder = febthruoct_df[['ride_id','rideable_type','tripduration','started_at','ended_at','start_station_id','start_station_name','start_lat','start_lng','end_station_id','end_station_name','end_lat','end_lng','member_casual']] febthruoct_df_reorder.count() #renamed columns to match the other dataframes febthruoct_df_reorder_rename = febthruoct_df_reorder.rename(columns={"started_at": "starttime", "ended_at": "stoptime", "start_station_id": "start station id", "start_station_name": "start station name", "start_lat": "start station latitude", "start_lng": "start station longitude", "end_station_id": "end station id", "end_station_name": "end station name", "end_lat": "end station latitude", "end_lng": "end station longitude", "member_casual": "usertype", }) febthruoct_df_reorder_rename # found the longest trip duration febthruoct_df_reorder_rename['tripduration'].max() # dropped columns that didn't match the 2019 and 2020 data Drop_febthruoct_df_reorder_rename = febthruoct_df_reorder_rename.drop(columns=['ride_id', 'rideable_type','start station id', 'end station id']) Drop_febthruoct_df_reorder_rename.count() Clean_jan2021_df.count() Drop_febthruoct_df_reorder_rename.head() #dropped any rows that could have a null value Clean_febthruoct_df_reorder_rename = Drop_febthruoct_df_reorder_rename.dropna() Clean_febthruoct_df_reorder_rename.count() #Combined clean data into one 2021 dataset for analysis Clean_BikeData_2021_df = Clean_jan2021_df.append([Clean_febthruoct_df_reorder_rename]) Clean_BikeData_2021_df.head() Clean_BikeData_2021_df.count() # Export dataframe to csv for analysis Clean_BikeData_2021_df.to_csv("Source/Clean_BikeData_2021_df.csv", index=False, header=True) ```
github_jupyter
import pandas as pd import numpy as np import datetime as dt # Files to load jan2021 = "Data/2021/JC-202101-citibike-tripdata.csv" feb2021 = "Data/2021/JC-202102-citibike-tripdata.csv" mar2021 = "Data/2021/JC-202103-citibike-tripdata.csv" apr2021 = "Data/2021/JC-202104-citibike-tripdata.csv" may2021 = "Data/2021/JC-202105-citibike-tripdata.csv" jun2021 = "Data/2021/JC-202106-citibike-tripdata.csv" jul2021 = "Data/2021/JC-202107-citibike-tripdata.csv" aug2021 = "Data/2021/JC-202108-citibike-tripdata.csv" sep2021 = "Data/2021/JC-202109-citibike-tripdata.csv" oct2021 = "Data/2021/JC-202110-citibike-tripdata.csv" # read csv files jan2021_df = pd.read_csv(jan2021) feb2021_df = pd.read_csv(feb2021) mar2021_df = pd.read_csv(mar2021) apr2021_df = pd.read_csv(apr2021) may2021_df = pd.read_csv(may2021) jun2021_df = pd.read_csv(jun2021) jul2021_df = pd.read_csv(jul2021) aug2021_df = pd.read_csv(aug2021) sep2021_df = pd.read_csv(sep2021) oct2021_df = pd.read_csv(oct2021) jan2021_df.count() # Convert All DateTimes to "%Y-%m-%d %H:%M:%S" Format jan2021_df["starttime"] = pd.to_datetime(jan2021_df["starttime"]) jan2021_df["stoptime"] = pd.to_datetime(jan2021_df["stoptime"]) # Dropped these columns because they were not included in the most recent data in 2021 Clean_jan2021_df = jan2021_df.drop(columns=['birth year', 'gender', 'bikeid']) Clean_jan2021_df # made all usertypes the same binary options because the data changd in 2021 removing some fields # and changing the values of some existing fields Clean_jan2021_df['usertype'].replace('Subscriber','member',inplace = True) Clean_jan2021_df['usertype'].replace('Customer','casual',inplace = True) Clean_jan2021_df.head() Clean_jan2021_df.count() feb2021_df.count() feb2021_df oct2021_df # combine like months in 2021 dataframes into a single datafram febthruoct_df = feb2021_df.append([mar2021_df, apr2021_df, may2021_df, jun2021_df, jul2021_df, aug2021_df, sep2021_df, oct2021_df], ignore_index=True) febthruoct_df.head() febthruoct_df.count() # Convert All DateTimes to "%Y-%m-%d %H:%M:%S" Format febthruoct_df["started_at"] = pd.to_datetime(febthruoct_df["started_at"]) febthruoct_df["ended_at"] = pd.to_datetime(febthruoct_df["ended_at"]) Clean_jan2021_df.count() # caclulate trip durration since it was field that was removed. # the result is in seconds, which match the 2019 and 2020 data febthruoct_df["tripduration"] = febthruoct_df["ended_at"]- febthruoct_df["started_at"] #converted trip duration to minutes for better analysis febthruoct_df["tripduration"] = febthruoct_df["tripduration"]/np.timedelta64(1,'s') febthruoct_df_reorder = febthruoct_df[['ride_id','rideable_type','tripduration','started_at','ended_at','start_station_id','start_station_name','start_lat','start_lng','end_station_id','end_station_name','end_lat','end_lng','member_casual']] febthruoct_df_reorder.count() #renamed columns to match the other dataframes febthruoct_df_reorder_rename = febthruoct_df_reorder.rename(columns={"started_at": "starttime", "ended_at": "stoptime", "start_station_id": "start station id", "start_station_name": "start station name", "start_lat": "start station latitude", "start_lng": "start station longitude", "end_station_id": "end station id", "end_station_name": "end station name", "end_lat": "end station latitude", "end_lng": "end station longitude", "member_casual": "usertype", }) febthruoct_df_reorder_rename # found the longest trip duration febthruoct_df_reorder_rename['tripduration'].max() # dropped columns that didn't match the 2019 and 2020 data Drop_febthruoct_df_reorder_rename = febthruoct_df_reorder_rename.drop(columns=['ride_id', 'rideable_type','start station id', 'end station id']) Drop_febthruoct_df_reorder_rename.count() Clean_jan2021_df.count() Drop_febthruoct_df_reorder_rename.head() #dropped any rows that could have a null value Clean_febthruoct_df_reorder_rename = Drop_febthruoct_df_reorder_rename.dropna() Clean_febthruoct_df_reorder_rename.count() #Combined clean data into one 2021 dataset for analysis Clean_BikeData_2021_df = Clean_jan2021_df.append([Clean_febthruoct_df_reorder_rename]) Clean_BikeData_2021_df.head() Clean_BikeData_2021_df.count() # Export dataframe to csv for analysis Clean_BikeData_2021_df.to_csv("Source/Clean_BikeData_2021_df.csv", index=False, header=True)
0.297776
0.41739
<a href="https://colab.research.google.com/github/Danielajanb/Linear-Algebra_2nd-Sem/blob/main/Assignment_10.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ## Laboratory 10 : Linear Combination and Vector Spaces Now that you have a fundamental knowledge about linear combination, we'll try to visualize it using scientific programming. ### Objectives At the end of this activity you will be able to: 1. Be familiar with representing linear combinations in the 2-dimensional plane. 2. Visualize spans using vector fields in Python. 3. Perform vector fields operations using scientific programming. ## Discussion ``` import numpy as np import matplotlib.pyplot as plt %matplotlib inline ``` ## Linear Combination It is said that a linear combination is the combination of linear scaling and addition of a vector its bases/components We will try to visualize the vectors and their linear combinations by plotting a sample of real number values for the scalars for the vectors. Let's first try the vectors below: $$X = \begin{bmatrix} 2\\4 \\\end{bmatrix} , Y = \begin{bmatrix} 3\\6 \\\end{bmatrix} $$ ``` vectX = np.array([2,4]) vectY = np.array([3,6]) ``` #### Span of single vectors As discussed in the lecture, the span of individual vectors can be represented by a line span. Let's take vector $X$ as an example. $$X = c\cdot \begin{bmatrix} 2\\4 \\\end{bmatrix} $$ ``` c = np.arange(-11,10,0.15) plt.scatter(c*vectX[0],c*vectX[1], color='green') plt.xlim(-11,11) plt.ylim(-11,11) plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() ``` $$Y = c\cdot \begin{bmatrix} 3\\6 \\\end{bmatrix} $$ ``` c = np.arange(-20,4,0.16) plt.scatter(c*vectY[0],c*vectY[1], color='blue') plt.xlim(-18,18) plt.ylim(-18,18) plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() ``` ### Span of a linear combination of vectors So what if we are to plot the span of a linear combination of vectors? We can visualize as a plane on the 2-dimensional coordinate system. Let's take the span of the linear combination below: $$S = \begin{Bmatrix} c_1 \cdot\begin{bmatrix} -1\\0 \\\end{bmatrix}, c_2 \cdot \begin{bmatrix} 1\\-1 \\\end{bmatrix}\end{Bmatrix} $$ ``` vectA = np.array([-1,0]) vectB = np.array([1,-1]) R = np.arange(-16,10,0.84) c1, c2 = np.meshgrid(R,R) vectR = vectA + vectB spanRx = c1*vectA[0] + c2*vectB[0] spanRy = c1*vectA[1] + c2*vectB[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75, color='magenta') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() vectP = np.array([2,4]) vectQ = np.array([3,6]) R = np.arange(-25,13,1) c1, c2 = np.meshgrid(R,R) vectR = vectP + vectQ spanRx = c1*vectP[0] + c2*vectQ[0] spanRy = c1*vectP[1] + c2*vectQ[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75, color='pink') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() ``` Take note that if vectors are seen to be as a 2-dimensional span we can say it has a Rank of 2 or $\mathbb{R}^2$. But if the span of the linear combination of vectors are seen to be like a line, they are said to be <b> linearly dependent </b> and they have a rank of 1 or $\mathbb{R}^1$. ### Task 1 Try different linear combinations using different scalar values. In your methodology discuss the different functions that you have used, the linear equation and vector form of the linear combination, and the flowchart for declaring and displaying linear combinations. Please make sure that your flowchart has only few words and not putting the entire code as it is bad practice. In your results, display and discuss the linear combination visualization you made. You should use the cells below for displaying the equation markdows using LaTeX and your code. $$ Z= 5x \\ M= 2x + 4y\\ $$ $$ Z = \begin{bmatrix} 5\end{bmatrix} , M = \begin{bmatrix} 2 \\ 4\end{bmatrix} $$ $$ Z = \begin{bmatrix} 5\end{bmatrix} , M = \begin{bmatrix} 2 & 4\end{bmatrix} $$ ``` vectZ = np.array([4,8]) vectM = np.array([9,-36]) R = np.arange(-18,7,1) c1, c2 = np.meshgrid(R,R) vectR = vectZ + vectM spanRx = c1*vectZ[0] + c2*vectM[0] spanRy = c1*vectZ[1] + c2*vectM[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75, color='purple') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() ``` For your conclusion synthesize the concept and application of the laboratory. Briefly discuss what you have learn and achieved in this activity. At the end of your conclusion try to answer the question : "How can you apply the concept of linear combination in engineering or real-life situations?". Linear functions is a combination of statistics and solving. It applies in real life situation such as computing your monthly income and monthly savings. Assume that toy sales increase linearly month after month, you can use the formula for linear regression. You can also make graphs that makes it easier to understand. Distance and rate problems, pricing problems, calculating dimensions, and combining varying percentages of solutions are all instances of real-life linear equations. For example, calculating the cost of a blouse on sale for $100 and marked down by 50% before the sale.
github_jupyter
import numpy as np import matplotlib.pyplot as plt %matplotlib inline vectX = np.array([2,4]) vectY = np.array([3,6]) c = np.arange(-11,10,0.15) plt.scatter(c*vectX[0],c*vectX[1], color='green') plt.xlim(-11,11) plt.ylim(-11,11) plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() c = np.arange(-20,4,0.16) plt.scatter(c*vectY[0],c*vectY[1], color='blue') plt.xlim(-18,18) plt.ylim(-18,18) plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() vectA = np.array([-1,0]) vectB = np.array([1,-1]) R = np.arange(-16,10,0.84) c1, c2 = np.meshgrid(R,R) vectR = vectA + vectB spanRx = c1*vectA[0] + c2*vectB[0] spanRy = c1*vectA[1] + c2*vectB[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75, color='magenta') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() vectP = np.array([2,4]) vectQ = np.array([3,6]) R = np.arange(-25,13,1) c1, c2 = np.meshgrid(R,R) vectR = vectP + vectQ spanRx = c1*vectP[0] + c2*vectQ[0] spanRy = c1*vectP[1] + c2*vectQ[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75, color='pink') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show() vectZ = np.array([4,8]) vectM = np.array([9,-36]) R = np.arange(-18,7,1) c1, c2 = np.meshgrid(R,R) vectR = vectZ + vectM spanRx = c1*vectZ[0] + c2*vectM[0] spanRy = c1*vectZ[1] + c2*vectM[1] ##plt.scatter(R*vectA[0],R*vectA[1]) ##plt.scatter(R*vectB[0],R*vectB[1]) plt.scatter(spanRx,spanRy, s=5, alpha=0.75, color='purple') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.grid() plt.show()
0.447219
0.987351
# pomegranate / sklearn Naive Bayes comparison authors: <br> Nicholas Farn (nicholasfarn@gmail.com) <br> Jacob Schreiber (jmschreiber91@gmail.com) <a href="https://github.com/scikit-learn/scikit-learn">sklearn</a> is a very popular machine learning package for Python which implements a wide variety of classical machine learning algorithms. In this notebook we benchmark the Naive Bayes implementations in pomegranate and compare it to the implementation in sklearn. ``` %pylab inline import seaborn, time seaborn.set_style('whitegrid') from sklearn.naive_bayes import GaussianNB from pomegranate import * ``` Lets first define a function which will create a dataset to train on. We want to be able to test a range of datasets, from very small to very large, to see which implementation is faster. We also want a function which will take in the models and evaluate them. Lets define both of those now. ``` def create_dataset(n_samples, n_dim, n_classes): """Create a random dataset with n_samples in each class.""" X = numpy.concatenate([numpy.random.randn(n_samples, n_dim) + i for i in range(n_classes)]) y = numpy.concatenate([numpy.zeros(n_samples) + i for i in range(n_classes)]) return X, y def plot(fit, predict, skl_error, pom_error, sizes, xlabel): """Plot the results.""" idx = numpy.arange(fit.shape[1]) plt.figure(figsize=(14, 4)) plt.plot(fit.mean(axis=0), c='c', label="Fitting") plt.plot(predict.mean(axis=0), c='m', label="Prediction") plt.plot([0, fit.shape[1]], [1, 1], c='k', label="Baseline") plt.fill_between(idx, fit.min(axis=0), fit.max(axis=0), color='c', alpha=0.3) plt.fill_between(idx, predict.min(axis=0), predict.max(axis=0), color='m', alpha=0.3) plt.xticks(idx, sizes, rotation=65, fontsize=14) plt.xlabel('{}'.format(xlabel), fontsize=14) plt.ylabel('pomegranate is x times faster', fontsize=14) plt.legend(fontsize=12, loc=4) plt.show() plt.figure(figsize=(14, 4)) plt.plot(1 - skl_error.mean(axis=0), alpha=0.5, c='c', label="sklearn accuracy") plt.plot(1 - pom_error.mean(axis=0), alpha=0.5, c='m', label="pomegranate accuracy") plt.fill_between(idx, 1-skl_error.min(axis=0), 1-skl_error.max(axis=0), color='c', alpha=0.3) plt.fill_between(idx, 1-pom_error.min(axis=0), 1-pom_error.max(axis=0), color='m', alpha=0.3) plt.xticks(idx, sizes, rotation=65, fontsize=14) plt.xlabel('{}'.format(xlabel), fontsize=14) plt.ylabel('Accuracy', fontsize=14) plt.legend(fontsize=14) plt.show() ``` Lets look first at single dimension Gaussian datasets. We'll look at how many times faster pomegranate is, which means that values > 1 show pomegranate is faster and < 1 show pomegranate is slower. Lets also look at the accuracy of both algorithms. They should have the same accuracy since they implement the same algorithm. ``` sizes = numpy.around(numpy.exp(numpy.arange(8, 16))).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(size, 1, 2) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "samples per component") ``` It looks as if pomegranate is approximately the same speed for training small models but that the prediction time can be a lot faster in pomegranate than in sklearn. Now let's take a look at how speeds change as we increase the number of classes that need to be predicted rather than phrasing all of the comparisons on binary classification. ``` sizes = numpy.arange(2, 21).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(50000 // size, 1, size) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "number of classes") ``` It looks like, again, pomegranate is around the same speed as sklearn for fitting models, but that it is consistently much faster to make predictions. ``` X, y = create_dataset(50000, 1, 2) skl = GaussianNB() skl.fit(X, y) pom = NaiveBayes.from_samples(NormalDistribution, X, y) %timeit skl.predict(X) %timeit pom.predict(X) ``` This does show that pomegranate is faster at making predictions but that both are so fast that potentially it doesn't really matter. While it's good to start off by looking at naive Bayes' models defined on single features, the more common setting is one where you have many features. Let's look take a look at the relative speeds on larger number of examples when there are 5 features rather than a single one. ``` sizes = numpy.around(numpy.exp(numpy.arange(8, 16))).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(size, 5, 2) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "samples per component") ``` It looks like pomegranate can be around twice as fast at fitting multivariate Gaussian Naive Bayes models than sklearn when there is more than one feature. Finally lets show an increasing number of dimensions with a fixed set of 10 classes and 50,000 samples per class. ``` sizes = numpy.arange(5, 101, 5).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(50000, size, 2) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "dimensions") ``` Looks like pomegranate is consistently faster than sklearn at fitting the model but conveges to be approximately the same speed at making predictions in the high dimensional setting. Their accuracies remain identical indicating that the two are learning the same model. ## Out of Core Training Lastly, both pomegranate and sklearn allow for out of core training by fitting on chunks of a dataset. pomegranate does this by calculating summary statistics on the dataset which are enough to allow for exact parameter updates to be done. sklearn implements this using the `model.partial_fit(X, y)` API call, whereas pomegranate uses `model.summarize(X, y)` followed by `model.from_summaries()` to update the internal parameters. Lets compare how long each method takes to train on 25 batches of increasing sizes and the accuracy of both methods. ``` sizes = numpy.around( numpy.exp( numpy.arange(8, 16) ) ).astype('int') n, m = sizes.shape[0], 20 skl_time, pom_time = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): skl = GaussianNB() pom = NaiveBayes([IndependentComponentsDistribution([NormalDistribution(0, 1) for i in range(5)]), IndependentComponentsDistribution([NormalDistribution(0, 1) for i in range(5)])]) for l in range(5): X, y = create_dataset(size, 5, 2) tic = time.time() skl.partial_fit(X, y, classes=[0, 1]) skl_time[i, j] += time.time() - tic tic = time.time() pom.summarize( X, y ) pom_time[i, j] += time.time() - tic tic = time.time() pom.from_summaries() pom_time[i, j] += time.time() - tic skl_predictions = skl.predict( X ) pom_predictions = pom.predict( X ) skl_error[i, j] = ( y != skl_predictions ).mean() pom_error[i, j] = ( y != pom_predictions ).mean() fit = skl_time / pom_time idx = numpy.arange(fit.shape[1]) plt.figure( figsize=(14, 4)) plt.plot( fit.mean(axis=0), c='c', label="Fitting") plt.plot( [0, fit.shape[1]], [1, 1], c='k', label="Baseline" ) plt.fill_between( idx, fit.min(axis=0), fit.max(axis=0), color='c', alpha=0.3 ) plt.xticks(idx, sizes, rotation=65, fontsize=14) plt.xlabel('{}'.format(xlabel), fontsize=14) plt.ylabel('pomegranate is x times faster', fontsize=14) plt.legend(fontsize=12, loc=4) plt.show() plt.figure( figsize=(14, 4)) plt.plot( 1 - skl_error.mean(axis=0), alpha=0.5, c='c', label="sklearn accuracy" ) plt.plot( 1 - pom_error.mean(axis=0), alpha=0.5, c='m', label="pomegranate accuracy" ) plt.fill_between( idx, 1-skl_error.min(axis=0), 1-skl_error.max(axis=0), color='c', alpha=0.3 ) plt.fill_between( idx, 1-pom_error.min(axis=0), 1-pom_error.max(axis=0), color='m', alpha=0.3 ) plt.xticks( idx, sizes, rotation=65, fontsize=14) plt.xlabel('Batch Size', fontsize=14) plt.ylabel('Accuracy', fontsize=14) plt.legend(fontsize=14) plt.show() ``` pomegranate seems to be much faster at doing out-of-core training. The out of core API of calculating sufficient statistics using `summarize` and then updating the model parameters using `from_summaries` extends to all models in pomegranate. In this notebook we compared an intersection of the features that pomegranate and sklearn offer. pomegranate allows you to use Naive Bayes with any distribution or model object which has an exposed `log_probability` and `fit` method. This allows you to do things such as compare hidden Markov models to each other, or compare a hidden Markov model to a Markov Chain to see which one models the data better. We hope this has been useful to you! If you're interested in using pomegranate, you can get it using `pip install pomegranate` or by checking out the <a href="https://github.com/jmschrei/pomegranate">github repo.</a>
github_jupyter
%pylab inline import seaborn, time seaborn.set_style('whitegrid') from sklearn.naive_bayes import GaussianNB from pomegranate import * def create_dataset(n_samples, n_dim, n_classes): """Create a random dataset with n_samples in each class.""" X = numpy.concatenate([numpy.random.randn(n_samples, n_dim) + i for i in range(n_classes)]) y = numpy.concatenate([numpy.zeros(n_samples) + i for i in range(n_classes)]) return X, y def plot(fit, predict, skl_error, pom_error, sizes, xlabel): """Plot the results.""" idx = numpy.arange(fit.shape[1]) plt.figure(figsize=(14, 4)) plt.plot(fit.mean(axis=0), c='c', label="Fitting") plt.plot(predict.mean(axis=0), c='m', label="Prediction") plt.plot([0, fit.shape[1]], [1, 1], c='k', label="Baseline") plt.fill_between(idx, fit.min(axis=0), fit.max(axis=0), color='c', alpha=0.3) plt.fill_between(idx, predict.min(axis=0), predict.max(axis=0), color='m', alpha=0.3) plt.xticks(idx, sizes, rotation=65, fontsize=14) plt.xlabel('{}'.format(xlabel), fontsize=14) plt.ylabel('pomegranate is x times faster', fontsize=14) plt.legend(fontsize=12, loc=4) plt.show() plt.figure(figsize=(14, 4)) plt.plot(1 - skl_error.mean(axis=0), alpha=0.5, c='c', label="sklearn accuracy") plt.plot(1 - pom_error.mean(axis=0), alpha=0.5, c='m', label="pomegranate accuracy") plt.fill_between(idx, 1-skl_error.min(axis=0), 1-skl_error.max(axis=0), color='c', alpha=0.3) plt.fill_between(idx, 1-pom_error.min(axis=0), 1-pom_error.max(axis=0), color='m', alpha=0.3) plt.xticks(idx, sizes, rotation=65, fontsize=14) plt.xlabel('{}'.format(xlabel), fontsize=14) plt.ylabel('Accuracy', fontsize=14) plt.legend(fontsize=14) plt.show() sizes = numpy.around(numpy.exp(numpy.arange(8, 16))).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(size, 1, 2) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "samples per component") sizes = numpy.arange(2, 21).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(50000 // size, 1, size) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "number of classes") X, y = create_dataset(50000, 1, 2) skl = GaussianNB() skl.fit(X, y) pom = NaiveBayes.from_samples(NormalDistribution, X, y) %timeit skl.predict(X) %timeit pom.predict(X) sizes = numpy.around(numpy.exp(numpy.arange(8, 16))).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(size, 5, 2) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "samples per component") sizes = numpy.arange(5, 101, 5).astype('int') n, m = sizes.shape[0], 20 skl_predict, pom_predict = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_fit, pom_fit = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): X, y = create_dataset(50000, size, 2) # bench fit times tic = time.time() skl = GaussianNB() skl.fit(X, y) skl_fit[i, j] = time.time() - tic tic = time.time() pom = NaiveBayes.from_samples(NormalDistribution, X, y) pom_fit[i, j] = time.time() - tic # bench predict times tic = time.time() skl_predictions = skl.predict(X) skl_predict[i, j] = time.time() - tic tic = time.time() pom_predictions = pom.predict(X) pom_predict[i, j] = time.time() - tic # check number wrong skl_e = (y != skl_predictions).mean() pom_e = (y != pom_predictions).mean() skl_error[i, j] = min(skl_e, 1-skl_e) pom_error[i, j] = min(pom_e, 1-pom_e) fit = skl_fit / pom_fit predict = skl_predict / pom_predict plot(fit, predict, skl_error, pom_error, sizes, "dimensions") sizes = numpy.around( numpy.exp( numpy.arange(8, 16) ) ).astype('int') n, m = sizes.shape[0], 20 skl_time, pom_time = numpy.zeros((m, n)), numpy.zeros((m, n)) skl_error, pom_error = numpy.zeros((m, n)), numpy.zeros((m, n)) for i in range(m): for j, size in enumerate(sizes): skl = GaussianNB() pom = NaiveBayes([IndependentComponentsDistribution([NormalDistribution(0, 1) for i in range(5)]), IndependentComponentsDistribution([NormalDistribution(0, 1) for i in range(5)])]) for l in range(5): X, y = create_dataset(size, 5, 2) tic = time.time() skl.partial_fit(X, y, classes=[0, 1]) skl_time[i, j] += time.time() - tic tic = time.time() pom.summarize( X, y ) pom_time[i, j] += time.time() - tic tic = time.time() pom.from_summaries() pom_time[i, j] += time.time() - tic skl_predictions = skl.predict( X ) pom_predictions = pom.predict( X ) skl_error[i, j] = ( y != skl_predictions ).mean() pom_error[i, j] = ( y != pom_predictions ).mean() fit = skl_time / pom_time idx = numpy.arange(fit.shape[1]) plt.figure( figsize=(14, 4)) plt.plot( fit.mean(axis=0), c='c', label="Fitting") plt.plot( [0, fit.shape[1]], [1, 1], c='k', label="Baseline" ) plt.fill_between( idx, fit.min(axis=0), fit.max(axis=0), color='c', alpha=0.3 ) plt.xticks(idx, sizes, rotation=65, fontsize=14) plt.xlabel('{}'.format(xlabel), fontsize=14) plt.ylabel('pomegranate is x times faster', fontsize=14) plt.legend(fontsize=12, loc=4) plt.show() plt.figure( figsize=(14, 4)) plt.plot( 1 - skl_error.mean(axis=0), alpha=0.5, c='c', label="sklearn accuracy" ) plt.plot( 1 - pom_error.mean(axis=0), alpha=0.5, c='m', label="pomegranate accuracy" ) plt.fill_between( idx, 1-skl_error.min(axis=0), 1-skl_error.max(axis=0), color='c', alpha=0.3 ) plt.fill_between( idx, 1-pom_error.min(axis=0), 1-pom_error.max(axis=0), color='m', alpha=0.3 ) plt.xticks( idx, sizes, rotation=65, fontsize=14) plt.xlabel('Batch Size', fontsize=14) plt.ylabel('Accuracy', fontsize=14) plt.legend(fontsize=14) plt.show()
0.760295
0.933975
# Features Scores ``` # Library import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import math import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") import fix_yahoo_finance as yf yf.pdr_override() stock_name = 'AMD' start = '2018-01-01' end = '2018-09-14' df = yf.download(stock_name, start, end) df = df.reset_index() df.head() df.columns df.columns = ['Adj_Close' if x=='Adj Close' else x for x in df.columns] df.head() ``` # Simple Single Linear Regression ``` # Use one feature import statsmodels.api as sm from statsmodels.formula.api import ols from statsmodels.sandbox.regression.predstd import wls_prediction_std stock_model = ols("Adj_Close ~ Open", data=df).fit() stock_model.summary() fig = plt.figure(figsize=(15,8)) fig = sm.graphics.plot_regress_exog(stock_model, "Open", fig=fig) # predictor variable (X) and dependent variable (y) X = df[['Open']] y = df[['Adj_Close']] plt.figure(figsize=(12,8)) plt.plot(X, y, 'ro') plt.show() # Plot Stock Charts _, confidence_interval_lower, confidence_interval_upper = wls_prediction_std(stock_model) fig, ax = plt.subplots(figsize=(10,7)) ax.plot(X, y, 'bo', label="data") # Plot trend line ax.plot(X, stock_model.fittedvalues, 'g--.', label="OLS") # Plot upper and lower confidence interval ax.plot(X, confidence_interval_upper, 'r--') ax.plot(X, confidence_interval_lower, 'r--') # Plot title, grid, and legend ax.set_title('Simple Linear Regression') ax.grid() ax.legend(loc='best') model = LinearRegression() model.fit(X, y) a = model.coef_ * X + model.intercept_ a plt.figure(figsize=(12,8)) plt.plot(X, y, 'ro', X, a) axes = plt.gca() # axes.set_ylim([0, 30]) plt.show() ``` # Multiple Linear Regression ``` # Multi Features stock_models = ols("Adj_Close ~ Open + High + Low + Volume", data=df).fit() stock_models.summary() fig = plt.figure(figsize=(20,12)) fig = sm.graphics.plot_partregress_grid(stock_models, fig=fig) # 2nd order polynomial from sklearn.preprocessing import PolynomialFeatures X = df[['High', 'Low']] y = df[['Adj_Close']] poly_2 = PolynomialFeatures(degree=2) X = poly_2.fit_transform(X) model2 = LinearRegression() model2.fit(X, y) model2.coef_ model2.score(X, y) # 2nd order polynomial X = df[['Open', 'Low']] y = df[['Adj_Close']] poly_2 = PolynomialFeatures(degree=2) X = poly_2.fit_transform(X) model2 = LinearRegression() model2.fit(X, y) model2.coef_ model2.score(X, y) # 2nd order polynomial X = df[['Open', 'High']] y = df[['Adj_Close']] poly_2 = PolynomialFeatures(degree=2) X = poly_2.fit_transform(X) model2 = LinearRegression() model2.fit(X, y) model2.coef_ model2.score(X, y) from sklearn.preprocessing import PolynomialFeatures X = df[['Open', 'High']].values y = df[['Adj_Close']].values X = np.array(X) y = np.array(y) poly = PolynomialFeatures(degree=2) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) print(X.shape) print(y.shape) X = X[:,:-1] X.shape # Slicing with [:, :-1] will give you a 2-dimensional array (including all rows and all columns excluding the last column). # Slicing with [:, 1] will give you a 1-dimensional array (including all rows from the second column). # To make this array also 2-dimensional use [:, 1:2] or [:, 1].reshape(-1, 1) or [:, 1][:, None] instead of [:, 1]. This will make x and y comparable. # An alternative to making both arrays 2-dimensional is making them both one dimensional. # For this one would do [:, 0] (instead of [:, :1]) for selecting the first column and [:, 1] for selecting the second column. # Plotting the data for Plynomial Regression regressor=LinearRegression() regressor.fit(X,y) plt.scatter(X,y, color='red') plt.plot(X,poly_regression.predict(poly_features)) plt.title("Polynomial Regression with degree 2") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # Plotting the Linear Regression plt.scatter(X,y, color='red') plt.plot(X,regressor.predict(X)) plt.title("Linear Regression") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # 3rd order polynomial X = df[['Open', 'High', 'Low']] y = df[['Adj_Close']] poly_3 = PolynomialFeatures(degree=3) X = poly_3.fit_transform(X) model3 = LinearRegression() model3.fit(X, y) model3.coef_ model3.score(X, y) X = df[['Open', 'High', 'Low']].values y = df[['Adj_Close']].values poly = PolynomialFeatures(degree=3) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) X = X[:,:-2] X.shape # Plotting the data for Plynomial Regression plt.scatter(X,y, color='red') plt.plot(X,poly_regression.predict(poly_features)) plt.title("Polynomial Regression with degree 3") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # Plotting the Linear Regression plt.scatter(X,y, color='red') plt.plot(X,regressor.predict(X)) plt.title("Linear Regression") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # 4th order polynomial X = df[['Open', 'High', 'Low', 'Volume']] y = df[['Adj_Close']] poly_4 = PolynomialFeatures(degree=4) X = poly_4.fit_transform(X) model4 = LinearRegression() model4.fit(X, y) model4.coef_ model4.score(X, y) X = df[['Open', 'High', 'Low', 'Volume']].values y = df[['Adj_Close']].values poly = PolynomialFeatures(degree=4) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) X = X[:,:-3] X.shape # Plotting the data for Plynomial Regression plt.scatter(X,y, color='red') plt.plot(X,poly_regression.predict(poly_features)) poly = PolynomialFeatures(degree=4) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) # Plotting the Linear Regression plt.scatter(X,y, color='red') plt.plot(X,regressor.predict(X)) plt.title("Linear Regression") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() ```
github_jupyter
# Library import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import math import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") import fix_yahoo_finance as yf yf.pdr_override() stock_name = 'AMD' start = '2018-01-01' end = '2018-09-14' df = yf.download(stock_name, start, end) df = df.reset_index() df.head() df.columns df.columns = ['Adj_Close' if x=='Adj Close' else x for x in df.columns] df.head() # Use one feature import statsmodels.api as sm from statsmodels.formula.api import ols from statsmodels.sandbox.regression.predstd import wls_prediction_std stock_model = ols("Adj_Close ~ Open", data=df).fit() stock_model.summary() fig = plt.figure(figsize=(15,8)) fig = sm.graphics.plot_regress_exog(stock_model, "Open", fig=fig) # predictor variable (X) and dependent variable (y) X = df[['Open']] y = df[['Adj_Close']] plt.figure(figsize=(12,8)) plt.plot(X, y, 'ro') plt.show() # Plot Stock Charts _, confidence_interval_lower, confidence_interval_upper = wls_prediction_std(stock_model) fig, ax = plt.subplots(figsize=(10,7)) ax.plot(X, y, 'bo', label="data") # Plot trend line ax.plot(X, stock_model.fittedvalues, 'g--.', label="OLS") # Plot upper and lower confidence interval ax.plot(X, confidence_interval_upper, 'r--') ax.plot(X, confidence_interval_lower, 'r--') # Plot title, grid, and legend ax.set_title('Simple Linear Regression') ax.grid() ax.legend(loc='best') model = LinearRegression() model.fit(X, y) a = model.coef_ * X + model.intercept_ a plt.figure(figsize=(12,8)) plt.plot(X, y, 'ro', X, a) axes = plt.gca() # axes.set_ylim([0, 30]) plt.show() # Multi Features stock_models = ols("Adj_Close ~ Open + High + Low + Volume", data=df).fit() stock_models.summary() fig = plt.figure(figsize=(20,12)) fig = sm.graphics.plot_partregress_grid(stock_models, fig=fig) # 2nd order polynomial from sklearn.preprocessing import PolynomialFeatures X = df[['High', 'Low']] y = df[['Adj_Close']] poly_2 = PolynomialFeatures(degree=2) X = poly_2.fit_transform(X) model2 = LinearRegression() model2.fit(X, y) model2.coef_ model2.score(X, y) # 2nd order polynomial X = df[['Open', 'Low']] y = df[['Adj_Close']] poly_2 = PolynomialFeatures(degree=2) X = poly_2.fit_transform(X) model2 = LinearRegression() model2.fit(X, y) model2.coef_ model2.score(X, y) # 2nd order polynomial X = df[['Open', 'High']] y = df[['Adj_Close']] poly_2 = PolynomialFeatures(degree=2) X = poly_2.fit_transform(X) model2 = LinearRegression() model2.fit(X, y) model2.coef_ model2.score(X, y) from sklearn.preprocessing import PolynomialFeatures X = df[['Open', 'High']].values y = df[['Adj_Close']].values X = np.array(X) y = np.array(y) poly = PolynomialFeatures(degree=2) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) print(X.shape) print(y.shape) X = X[:,:-1] X.shape # Slicing with [:, :-1] will give you a 2-dimensional array (including all rows and all columns excluding the last column). # Slicing with [:, 1] will give you a 1-dimensional array (including all rows from the second column). # To make this array also 2-dimensional use [:, 1:2] or [:, 1].reshape(-1, 1) or [:, 1][:, None] instead of [:, 1]. This will make x and y comparable. # An alternative to making both arrays 2-dimensional is making them both one dimensional. # For this one would do [:, 0] (instead of [:, :1]) for selecting the first column and [:, 1] for selecting the second column. # Plotting the data for Plynomial Regression regressor=LinearRegression() regressor.fit(X,y) plt.scatter(X,y, color='red') plt.plot(X,poly_regression.predict(poly_features)) plt.title("Polynomial Regression with degree 2") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # Plotting the Linear Regression plt.scatter(X,y, color='red') plt.plot(X,regressor.predict(X)) plt.title("Linear Regression") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # 3rd order polynomial X = df[['Open', 'High', 'Low']] y = df[['Adj_Close']] poly_3 = PolynomialFeatures(degree=3) X = poly_3.fit_transform(X) model3 = LinearRegression() model3.fit(X, y) model3.coef_ model3.score(X, y) X = df[['Open', 'High', 'Low']].values y = df[['Adj_Close']].values poly = PolynomialFeatures(degree=3) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) X = X[:,:-2] X.shape # Plotting the data for Plynomial Regression plt.scatter(X,y, color='red') plt.plot(X,poly_regression.predict(poly_features)) plt.title("Polynomial Regression with degree 3") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # Plotting the Linear Regression plt.scatter(X,y, color='red') plt.plot(X,regressor.predict(X)) plt.title("Linear Regression") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show() # 4th order polynomial X = df[['Open', 'High', 'Low', 'Volume']] y = df[['Adj_Close']] poly_4 = PolynomialFeatures(degree=4) X = poly_4.fit_transform(X) model4 = LinearRegression() model4.fit(X, y) model4.coef_ model4.score(X, y) X = df[['Open', 'High', 'Low', 'Volume']].values y = df[['Adj_Close']].values poly = PolynomialFeatures(degree=4) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) X = X[:,:-3] X.shape # Plotting the data for Plynomial Regression plt.scatter(X,y, color='red') plt.plot(X,poly_regression.predict(poly_features)) poly = PolynomialFeatures(degree=4) poly_features = poly.fit_transform(X) poly.fit(X,y) poly_regression = LinearRegression() poly_regression.fit(poly_features,y) # Plotting the Linear Regression plt.scatter(X,y, color='red') plt.plot(X,regressor.predict(X)) plt.title("Linear Regression") plt.xlabel("Stock Features") plt.ylabel("Stock Prices") plt.show()
0.743447
0.852506
``` import cv2 import os def load_images_from_folder(folder): images = [] for filename in os.listdir(folder): img1 = cv2.imread(os.path.join(folder,filename)) img = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) if img is not None: images.append(img) return images im_daisy = load_images_from_folder('data/flower_photos/daisy') im_tulips = load_images_from_folder('data/flower_photos/tulips') import matplotlib.pyplot as plt import numpy as np % matplotlib inline print(len(im_daisy)) samples_per_row = 5 num_rows = 2 # Function to visualize some of the images of our dataset fig, axis = plt.subplots(num_rows,samples_per_row,figsize=(15,5)) #fig.axis('off') n_train = len(im_daisy) for row in axis: for col in row: idx = np.random.randint(0, n_train) col.imshow(im_daisy[idx]) col.axis('off') print(len(im_tulips)) samples_per_row = 5 num_rows = 2 # Function to visualize some of the images of our dataset fig, axis = plt.subplots(num_rows,samples_per_row,figsize=(15,5)) #fig.axis('off') n_train = len(im_tulips) for row in axis: for col in row: idx = np.random.randint(0, n_train) col.imshow(im_tulips[idx]) col.axis('off') import os SUBMIT_ARGS = "--packages databricks:spark-deep-learning:1.3.0-spark2.4-s_2.11 pyspark-shell" os.environ["PYSPARK_SUBMIT_ARGS"] = SUBMIT_ARGS from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("ImageClassification") \ .config("spark.executor.memory", "70g") \ .config("spark.driver.memory", "50g") \ .config("spark.memory.offHeap.enabled",True) \ .config("spark.memory.offHeap.size","16g") \ .getOrCreate() import pyspark.sql.functions as f import sparkdl as dl from pyspark.ml.image import ImageSchema from sparkdl.image import imageIO dftulips = ImageSchema.readImages('data/flower_photos/tulips').withColumn('label', f.lit(0)) dfdaisy = ImageSchema.readImages('data/flower_photos/daisy').withColumn('label', f.lit(1)) dfdaisy.show(5) dftulips.show(5) trainDFdaisy, testDFdaisy = dfdaisy.randomSplit([0.70,0.30], seed = 123) trainDFtulips, testDFtulips = dftulips.randomSplit([0.70,0.30], seed = 122) trainDF = trainDFdaisy.unionAll(trainDFtulips) testDF = testDFdaisy.unionAll(testDFtulips) #trainDF = trainDF.repartition(100) #required when dataset is large #testDF = testDF.repartition(100) from pyspark.ml.classification import LogisticRegression from pyspark.ml import Pipeline vectorizer = dl.DeepImageFeaturizer(inputCol="image", outputCol="features", modelName="InceptionV3") logreg = LogisticRegression(maxIter=20, labelCol="label") pipeline = Pipeline(stages=[vectorizer, logreg]) pipeline_model = pipeline.fit(trainDF) predictDF = pipeline_model.transform(testDF) #predict on test dataset predictDF.select('prediction', 'label').show(n = testDF.toPandas().shape[0], truncate=False) predictDF.crosstab('prediction', 'label').show() from pyspark.ml.evaluation import MulticlassClassificationEvaluator scoring = predictDF.select("prediction", "label") accuracy_score = MulticlassClassificationEvaluator(metricName="accuracy") rate = accuracy_score.evaluate(scoring)*100 print("accuracy: {}%" .format(round(rate,2))) ```
github_jupyter
import cv2 import os def load_images_from_folder(folder): images = [] for filename in os.listdir(folder): img1 = cv2.imread(os.path.join(folder,filename)) img = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) if img is not None: images.append(img) return images im_daisy = load_images_from_folder('data/flower_photos/daisy') im_tulips = load_images_from_folder('data/flower_photos/tulips') import matplotlib.pyplot as plt import numpy as np % matplotlib inline print(len(im_daisy)) samples_per_row = 5 num_rows = 2 # Function to visualize some of the images of our dataset fig, axis = plt.subplots(num_rows,samples_per_row,figsize=(15,5)) #fig.axis('off') n_train = len(im_daisy) for row in axis: for col in row: idx = np.random.randint(0, n_train) col.imshow(im_daisy[idx]) col.axis('off') print(len(im_tulips)) samples_per_row = 5 num_rows = 2 # Function to visualize some of the images of our dataset fig, axis = plt.subplots(num_rows,samples_per_row,figsize=(15,5)) #fig.axis('off') n_train = len(im_tulips) for row in axis: for col in row: idx = np.random.randint(0, n_train) col.imshow(im_tulips[idx]) col.axis('off') import os SUBMIT_ARGS = "--packages databricks:spark-deep-learning:1.3.0-spark2.4-s_2.11 pyspark-shell" os.environ["PYSPARK_SUBMIT_ARGS"] = SUBMIT_ARGS from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("ImageClassification") \ .config("spark.executor.memory", "70g") \ .config("spark.driver.memory", "50g") \ .config("spark.memory.offHeap.enabled",True) \ .config("spark.memory.offHeap.size","16g") \ .getOrCreate() import pyspark.sql.functions as f import sparkdl as dl from pyspark.ml.image import ImageSchema from sparkdl.image import imageIO dftulips = ImageSchema.readImages('data/flower_photos/tulips').withColumn('label', f.lit(0)) dfdaisy = ImageSchema.readImages('data/flower_photos/daisy').withColumn('label', f.lit(1)) dfdaisy.show(5) dftulips.show(5) trainDFdaisy, testDFdaisy = dfdaisy.randomSplit([0.70,0.30], seed = 123) trainDFtulips, testDFtulips = dftulips.randomSplit([0.70,0.30], seed = 122) trainDF = trainDFdaisy.unionAll(trainDFtulips) testDF = testDFdaisy.unionAll(testDFtulips) #trainDF = trainDF.repartition(100) #required when dataset is large #testDF = testDF.repartition(100) from pyspark.ml.classification import LogisticRegression from pyspark.ml import Pipeline vectorizer = dl.DeepImageFeaturizer(inputCol="image", outputCol="features", modelName="InceptionV3") logreg = LogisticRegression(maxIter=20, labelCol="label") pipeline = Pipeline(stages=[vectorizer, logreg]) pipeline_model = pipeline.fit(trainDF) predictDF = pipeline_model.transform(testDF) #predict on test dataset predictDF.select('prediction', 'label').show(n = testDF.toPandas().shape[0], truncate=False) predictDF.crosstab('prediction', 'label').show() from pyspark.ml.evaluation import MulticlassClassificationEvaluator scoring = predictDF.select("prediction", "label") accuracy_score = MulticlassClassificationEvaluator(metricName="accuracy") rate = accuracy_score.evaluate(scoring)*100 print("accuracy: {}%" .format(round(rate,2)))
0.547222
0.588002
``` import os os.chdir('../../..') import numpy as np import matplotlib.pyplot as plt from ai import cs import torch from databases.joint_sets import MuPoTSJoints from databases.datasets import PersonStackedMuPoTsDataset, Mpi3dTestDataset from util.misc import load from util.viz import * from util.pose import remove_root from training.torch_tools import * from training.preprocess import get_postprocessor, SaveableCompose, MeanNormalize3D from training.loaders import UnchunkedGenerator from scripts.eval import load_model def joint2bone(nd): cj = get_cjs() return nd[:, cj[:, 0], :] - nd[:, cj[:, 1], :] def bone2joint(pred_bx, pred_by, pred_bz, root): cj = get_cjs() cj_index = [2, 1, 0, 5, 4, 3, 9, 8, 12, 11, 10, 15, 14, 13, 7, 6] ordered_cj = cj[cj_index, :] pred_bxyz = np.stack((pred_bx, pred_by, pred_bz), axis=-1) res = np.zeros((root.shape[0], 17, 3)) res[:, 14, :] = root for (a, b), i in zip(ordered_cj, cj_index): res[:, a, :] = res[:, b, :] + pred_bxyz[:, i, :] return res def get_cjs(): connected_joints = MuPoTSJoints().LIMBGRAPH return np.array(connected_joints) def get_rtp(nd): diff = joint2bone(nd) r, t, p = cs.cart2sp(diff[:, :, 0], diff[:, :, 1], diff[:, :, 2]) return r, t, p def get_lengths(nd): r, _, _ = get_rtp(nd) return r def get_xyz(r, t, p, root): pred_bx, pred_by, pred_bz = cs.sp2cart(r, t, p) return bone2joint(pred_bx, pred_by, pred_bz, root) model_dir = '../models/4b1006aa968a47139217c9e7ac31e52f/' config, model = load_model(model_dir) def get_dataset(config): data = PersonStackedMuPoTsDataset( config["pose2d_type"], config.get("pose3d_scaling", "normal"), pose_validity="all", ) # data = Mpi3dTestDataset( # config["pose2d_type"], # config.get("pose3d_scaling", "normal"), # eval_frames_only=True, # ) return data dataset = get_dataset(config) params_path = f"{model_dir}/preprocess_params.pkl" transform = SaveableCompose.from_file(params_path, dataset, globals()) dataset.transform = transform assert isinstance(transform.transforms[1].normalizer, MeanNormalize3D) normalizer3d = transform.transforms[1].normalizer post_process_func = get_postprocessor(config, dataset, normalizer3d) augment = True pad = (model.receptive_field() - 1) // 2 generator = UnchunkedGenerator(dataset, pad, augment) seqs = sorted(np.unique(dataset.index.seq)) data_3d_mm = {} preprocessed3d = {} for seq in seqs: inds = np.where(dataset.index.seq == seq)[0] batch = dataset.get_samples(inds, False) preprocessed3d[seq] = batch["pose3d"][batch["valid_pose"]] data_3d_mm[seq] = dataset.poses3d[inds][batch["valid_pose"]] # break bl = {} root = {} org_pose3d = {} for seq in seqs: inds = np.where(dataset.index.seq == seq)[0] batch = dataset.get_samples(inds, False) bl[seq] = batch["length"][batch["valid_pose"]] root[seq] = batch["root"][batch["valid_pose"]] org_pose3d[seq] = batch["org_pose3d"][batch["valid_pose"]] # break _dgt = {} seqs = sorted(np.unique(dataset.index.seq)) for seq in seqs: inds = np.where(dataset.index.seq == seq)[0] batch = dataset.get_samples(inds, False) mgt = dataset.poses3d[inds][batch["valid_pose"]] _dgt[seq] = mgt _dpred = {} raw_preds = {} losses = {} with torch.no_grad(): for i, (pose2d, valid) in enumerate(generator): seq = seqs[i] pred3d = ( model(torch.from_numpy(pose2d).cuda()).detach().cpu().numpy() ) raw_preds[seq] = pred3d.copy() # .cpu().numpy() valid = valid[0] # pred_bo_np = pred3d[0][valid].reshape([-1, 2, 16]) # if orient_norm is None: # pass # elif orient_norm == "_1_1": # pred_bo_np *= np.pi # elif orient_norm == "0_1": # pred_bo_np = (pred_bo_np * 2 * np.pi) - np.pi # else: # raise Exception( # f"Not supported oreitation norm: {self.orient_norm}" # ) # pred_bo = torch.from_numpy(pred_bo_np).to("cuda") # orient_pred3d = ( # orient2pose( # pred_bo, # # torch.from_numpy(self.bo[seq]).to("cuda"), # torch.from_numpy(bl[seq]).to("cuda"), # torch.from_numpy(root[seq]).to("cuda"), # ) # .cpu() # .numpy() # ) # preds[seq] = orient_pred3d pred_real_pose = post_process_func(pred3d[0], seq) if augment: pred_real_pose_aug = post_process_func(pred3d[1], seq) pred_real_pose_aug[:, :, 0] *= -1 pred_real_pose_aug = dataset.pose3d_jointset.flip( pred_real_pose_aug ) pred_real_pose = (pred_real_pose + pred_real_pose_aug) / 2 mpred = pred_real_pose[valid] _dpred[seq] = mpred _ = eval_results(_dgt, _dpred, MuPoTSJoints()) dgt = {} dpred = {} for seq in seqs: mgt = _dgt[seq] mpred = _dpred[seq] gt_r = get_lengths(mgt) r, t, p = get_rtp(mpred) mpred = get_xyz(gt_r, t, p, mgt[:, 14, :]) dgt[seq] = mgt dpred[seq] = mpred _ = eval_results(dgt, dpred, MuPoTSJoints()) dgt = {} dpred = {} for seq in seqs: mgt = _dgt[seq] mpred = _dpred[seq] gt_r = get_lengths(mgt) diff = joint2bone(mpred) dx = diff[:, :, 0] dy = diff[:, :, 1] dz = diff[:, :, 2] adj_dz = np.sign(diff[:, :, 2]) * np.sqrt(np.maximum((gt_r**2) - (dx**2) - (dy**2), 0)) mpred = bone2joint(dx, dy, adj_dz, mgt[:, 14, :]) dgt[seq] = mgt dpred[seq] = mpred _ = eval_results(dgt, dpred, MuPoTSJoints()) for i in range(3): i *= 10 show3Dpose(np.array([mgt[i, ], mpred[i, ]]), MuPoTSJoints(), invert_vertical=True) plt.show() print(eval_results({'0': mgt[i:i+1, ]}, {'0': mpred[i:i+1]}, MuPoTSJoints(), verbose=False)[0]['0']) ```
github_jupyter
import os os.chdir('../../..') import numpy as np import matplotlib.pyplot as plt from ai import cs import torch from databases.joint_sets import MuPoTSJoints from databases.datasets import PersonStackedMuPoTsDataset, Mpi3dTestDataset from util.misc import load from util.viz import * from util.pose import remove_root from training.torch_tools import * from training.preprocess import get_postprocessor, SaveableCompose, MeanNormalize3D from training.loaders import UnchunkedGenerator from scripts.eval import load_model def joint2bone(nd): cj = get_cjs() return nd[:, cj[:, 0], :] - nd[:, cj[:, 1], :] def bone2joint(pred_bx, pred_by, pred_bz, root): cj = get_cjs() cj_index = [2, 1, 0, 5, 4, 3, 9, 8, 12, 11, 10, 15, 14, 13, 7, 6] ordered_cj = cj[cj_index, :] pred_bxyz = np.stack((pred_bx, pred_by, pred_bz), axis=-1) res = np.zeros((root.shape[0], 17, 3)) res[:, 14, :] = root for (a, b), i in zip(ordered_cj, cj_index): res[:, a, :] = res[:, b, :] + pred_bxyz[:, i, :] return res def get_cjs(): connected_joints = MuPoTSJoints().LIMBGRAPH return np.array(connected_joints) def get_rtp(nd): diff = joint2bone(nd) r, t, p = cs.cart2sp(diff[:, :, 0], diff[:, :, 1], diff[:, :, 2]) return r, t, p def get_lengths(nd): r, _, _ = get_rtp(nd) return r def get_xyz(r, t, p, root): pred_bx, pred_by, pred_bz = cs.sp2cart(r, t, p) return bone2joint(pred_bx, pred_by, pred_bz, root) model_dir = '../models/4b1006aa968a47139217c9e7ac31e52f/' config, model = load_model(model_dir) def get_dataset(config): data = PersonStackedMuPoTsDataset( config["pose2d_type"], config.get("pose3d_scaling", "normal"), pose_validity="all", ) # data = Mpi3dTestDataset( # config["pose2d_type"], # config.get("pose3d_scaling", "normal"), # eval_frames_only=True, # ) return data dataset = get_dataset(config) params_path = f"{model_dir}/preprocess_params.pkl" transform = SaveableCompose.from_file(params_path, dataset, globals()) dataset.transform = transform assert isinstance(transform.transforms[1].normalizer, MeanNormalize3D) normalizer3d = transform.transforms[1].normalizer post_process_func = get_postprocessor(config, dataset, normalizer3d) augment = True pad = (model.receptive_field() - 1) // 2 generator = UnchunkedGenerator(dataset, pad, augment) seqs = sorted(np.unique(dataset.index.seq)) data_3d_mm = {} preprocessed3d = {} for seq in seqs: inds = np.where(dataset.index.seq == seq)[0] batch = dataset.get_samples(inds, False) preprocessed3d[seq] = batch["pose3d"][batch["valid_pose"]] data_3d_mm[seq] = dataset.poses3d[inds][batch["valid_pose"]] # break bl = {} root = {} org_pose3d = {} for seq in seqs: inds = np.where(dataset.index.seq == seq)[0] batch = dataset.get_samples(inds, False) bl[seq] = batch["length"][batch["valid_pose"]] root[seq] = batch["root"][batch["valid_pose"]] org_pose3d[seq] = batch["org_pose3d"][batch["valid_pose"]] # break _dgt = {} seqs = sorted(np.unique(dataset.index.seq)) for seq in seqs: inds = np.where(dataset.index.seq == seq)[0] batch = dataset.get_samples(inds, False) mgt = dataset.poses3d[inds][batch["valid_pose"]] _dgt[seq] = mgt _dpred = {} raw_preds = {} losses = {} with torch.no_grad(): for i, (pose2d, valid) in enumerate(generator): seq = seqs[i] pred3d = ( model(torch.from_numpy(pose2d).cuda()).detach().cpu().numpy() ) raw_preds[seq] = pred3d.copy() # .cpu().numpy() valid = valid[0] # pred_bo_np = pred3d[0][valid].reshape([-1, 2, 16]) # if orient_norm is None: # pass # elif orient_norm == "_1_1": # pred_bo_np *= np.pi # elif orient_norm == "0_1": # pred_bo_np = (pred_bo_np * 2 * np.pi) - np.pi # else: # raise Exception( # f"Not supported oreitation norm: {self.orient_norm}" # ) # pred_bo = torch.from_numpy(pred_bo_np).to("cuda") # orient_pred3d = ( # orient2pose( # pred_bo, # # torch.from_numpy(self.bo[seq]).to("cuda"), # torch.from_numpy(bl[seq]).to("cuda"), # torch.from_numpy(root[seq]).to("cuda"), # ) # .cpu() # .numpy() # ) # preds[seq] = orient_pred3d pred_real_pose = post_process_func(pred3d[0], seq) if augment: pred_real_pose_aug = post_process_func(pred3d[1], seq) pred_real_pose_aug[:, :, 0] *= -1 pred_real_pose_aug = dataset.pose3d_jointset.flip( pred_real_pose_aug ) pred_real_pose = (pred_real_pose + pred_real_pose_aug) / 2 mpred = pred_real_pose[valid] _dpred[seq] = mpred _ = eval_results(_dgt, _dpred, MuPoTSJoints()) dgt = {} dpred = {} for seq in seqs: mgt = _dgt[seq] mpred = _dpred[seq] gt_r = get_lengths(mgt) r, t, p = get_rtp(mpred) mpred = get_xyz(gt_r, t, p, mgt[:, 14, :]) dgt[seq] = mgt dpred[seq] = mpred _ = eval_results(dgt, dpred, MuPoTSJoints()) dgt = {} dpred = {} for seq in seqs: mgt = _dgt[seq] mpred = _dpred[seq] gt_r = get_lengths(mgt) diff = joint2bone(mpred) dx = diff[:, :, 0] dy = diff[:, :, 1] dz = diff[:, :, 2] adj_dz = np.sign(diff[:, :, 2]) * np.sqrt(np.maximum((gt_r**2) - (dx**2) - (dy**2), 0)) mpred = bone2joint(dx, dy, adj_dz, mgt[:, 14, :]) dgt[seq] = mgt dpred[seq] = mpred _ = eval_results(dgt, dpred, MuPoTSJoints()) for i in range(3): i *= 10 show3Dpose(np.array([mgt[i, ], mpred[i, ]]), MuPoTSJoints(), invert_vertical=True) plt.show() print(eval_results({'0': mgt[i:i+1, ]}, {'0': mpred[i:i+1]}, MuPoTSJoints(), verbose=False)[0]['0'])
0.460289
0.537709
# Lesson 1 Exercise 2: Creating a Table with Apache Cassandra <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Cassandra_logo.svg/1200px-Cassandra_logo.svg.png" width="250" height="250"> ### Walk through the basics of Apache Cassandra. Complete the following tasks:<li> Create a table in Apache Cassandra, <li> Insert rows of data,<li> Run a simple SQL query to validate the information. <br> `#####` denotes where the code needs to be completed. Note: __Do not__ click the blue Preview button in the lower taskbar #### Import Apache Cassandra python package ``` import cassandra ``` ### Create a connection to the database ``` from cassandra.cluster import Cluster try: cluster = Cluster(['127.0.0.1']) #If you have a locally installed Apache Cassandra instance session = cluster.connect() except Exception as e: print(e) ``` ### TO-DO: Create a keyspace to do the work in ``` ## TO-DO: Create the keyspace try: session.execute(""" CREATE KEYSPACE IF NOT EXISTS natan WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 }""" ) except Exception as e: print(e) ``` ### TO-DO: Connect to the Keyspace ``` ## To-Do: Add in the keyspace you created try: session.set_keyspace('natan') except Exception as e: print(e) ``` ### Create a Song Library that contains a list of songs, including the song name, artist name, year, album it was from, and if it was a single. `song_title artist_name year album_name single` ### TO-DO: You need to create a table to be able to run the following query: `select * from songs WHERE year=1970 AND artist_name="The Beatles"` ``` ## TO-DO: Complete the query below query = "CREATE TABLE IF NOT EXISTS songs " query = query + "(song_title text, artist_name text, year int, album_name text, single text, PRIMARY KEY (year, artist_name))" try: session.execute(query) except Exception as e: print(e) ``` ### TO-DO: Insert the following two rows in your table `First Row: "Across The Universe", "The Beatles", "1970", "False", "Let It Be"` `Second Row: "The Beatles", "Think For Yourself", "False", "1965", "Rubber Soul"` ``` ## Add in query and then run the insert statement query = "INSERT INTO songs (song_title, artist_name, year, album_name, single)" query = query + " VALUES (%s, %s, %s, %s, %s)" try: session.execute(query, ("Across The Universe", "The Beatles", 1970, "False", "Let It Be")) except Exception as e: print(e) try: session.execute(query, ("The Beatles", "Think For Yourself", 1965, "False", "Rubber Soul")) except Exception as e: print(e) ``` ### TO-DO: Validate your data was inserted into the table. ``` ## TO-DO: Complete and then run the select statement to validate the data was inserted into the table query = 'SELECT * FROM songs' try: rows = session.execute(query) except Exception as e: print(e) for row in rows: print (row.year, row.album_name, row.artist_name) ``` ### TO-DO: Validate the Data Model with the original query. `select * from songs WHERE YEAR=1970 AND artist_name="The Beatles"` ``` ##TO-DO: Complete the select statement to run the query query = "select * from songs where year=1970 and artist_name='The Beatles'" try: rows = session.execute(query) except Exception as e: print(e) for row in rows: print (row.year, row.album_name, row.artist_name) ``` ### And Finally close the session and cluster connection ``` session.shutdown() cluster.shutdown() ```
github_jupyter
import cassandra from cassandra.cluster import Cluster try: cluster = Cluster(['127.0.0.1']) #If you have a locally installed Apache Cassandra instance session = cluster.connect() except Exception as e: print(e) ## TO-DO: Create the keyspace try: session.execute(""" CREATE KEYSPACE IF NOT EXISTS natan WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 }""" ) except Exception as e: print(e) ## To-Do: Add in the keyspace you created try: session.set_keyspace('natan') except Exception as e: print(e) ## TO-DO: Complete the query below query = "CREATE TABLE IF NOT EXISTS songs " query = query + "(song_title text, artist_name text, year int, album_name text, single text, PRIMARY KEY (year, artist_name))" try: session.execute(query) except Exception as e: print(e) ## Add in query and then run the insert statement query = "INSERT INTO songs (song_title, artist_name, year, album_name, single)" query = query + " VALUES (%s, %s, %s, %s, %s)" try: session.execute(query, ("Across The Universe", "The Beatles", 1970, "False", "Let It Be")) except Exception as e: print(e) try: session.execute(query, ("The Beatles", "Think For Yourself", 1965, "False", "Rubber Soul")) except Exception as e: print(e) ## TO-DO: Complete and then run the select statement to validate the data was inserted into the table query = 'SELECT * FROM songs' try: rows = session.execute(query) except Exception as e: print(e) for row in rows: print (row.year, row.album_name, row.artist_name) ##TO-DO: Complete the select statement to run the query query = "select * from songs where year=1970 and artist_name='The Beatles'" try: rows = session.execute(query) except Exception as e: print(e) for row in rows: print (row.year, row.album_name, row.artist_name) session.shutdown() cluster.shutdown()
0.259263
0.942929
<a href="https://colab.research.google.com/github/Benjamindavid03/MachineLearningLab/blob/main/Bagging_in_Classification.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # Bagging Classifier A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making an ensemble out of it. Each base classifier is trained in parallel with a training set which is generated by randomly drawing, with replacement, N examples(or data) from the original training dataset – where N is the size of the original training set. Training set for each of the base classifiers is independent of each other. Many of the original data may be repeated in the resulting training set while others may be left out. Bagging reduces overfitting (variance) by averaging or voting, however, this leads to an increase in bias, which is compensated by the reduction in variance though. ## How Bagging works on training dataset ? How bagging works on an imaginary training dataset is shown below. Since Bagging resamples the original training dataset with replacement, some instance(or data) may be present multiple times while others are left out. The algorithm for the classifier generation and classification is given below </p> <img src= "https://media.geeksforgeeks.org/wp-content/uploads/20190515171714/cb7feb7c-d065-4da7-bea6-5f6017038059.png"/> <code> <b>Classifier generation:</b><br/> Let N be the size of the training set.<br/> for each of t iterations:<br/> sample N instances with replacement from the original training set.<br> apply the learning algorithm to the sample.<br/> store the resulting classifier.<br/> <b>Classification:</b></br> for each of the t classifiers: </br> predict class of instance using classifier.</br> return class that was predicted most often.</br> </code> ``` from sklearn import model_selection from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier import pandas as pd # load the data iris = load_iris() X = iris.data[:, :4] Y = iris.target seed = 2 kfold = model_selection.KFold(n_splits = 3,random_state = seed, shuffle= True) # initialize the base classifier base_cls = DecisionTreeClassifier() # no. of base classifier num_trees = 500 # bagging classifier model = BaggingClassifier(base_estimator = base_cls, n_estimators = num_trees, random_state = seed) results = model_selection.cross_val_score(model, X, Y, cv = kfold) print("accuracy :") print(results.mean()) ```
github_jupyter
from sklearn import model_selection from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier import pandas as pd # load the data iris = load_iris() X = iris.data[:, :4] Y = iris.target seed = 2 kfold = model_selection.KFold(n_splits = 3,random_state = seed, shuffle= True) # initialize the base classifier base_cls = DecisionTreeClassifier() # no. of base classifier num_trees = 500 # bagging classifier model = BaggingClassifier(base_estimator = base_cls, n_estimators = num_trees, random_state = seed) results = model_selection.cross_val_score(model, X, Y, cv = kfold) print("accuracy :") print(results.mean())
0.677154
0.983327
``` import pandas as pd from sklearn.utils import shuffle from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error ``` ## Data Processing ``` df = pd.read_csv('./trips_BGMM.csv') df.info() # get df per cluster res = pd.DataFrame(columns=['Cluster']) dfs = {} for c in range(df['Cluster'].max()+1): # cluster c res.loc[c, 'Cluster'] = c df_cur = df[df['Cluster'] == c].drop(columns=['Cluster', 'Year', 'Month', 'Day']) # get dummies for time dummies = pd.get_dummies(df_cur['Time'], prefix='Time') df_cur.drop(columns=['Time'], inplace=True) df_cur = pd.concat([df_cur, dummies], axis=1) dfs[c] = df_cur ``` ## Ridge Regression ``` from sklearn.linear_model import Ridge # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('ridge', Ridge())]) # set grid search params = {'ridge__alpha': [0, 1, 5, 10, 50, 100, 500, 1000]} ridge_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Ridge Regression'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model ridge_search.fit(X_train, Y_train) print('Best params: {}'.format(ridge_search.best_params_)) # predict Y_pred = ridge_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = ridge_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Ridge Regression'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) ``` ## LASSO Regression ``` from sklearn.linear_model import Lasso # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('lasso', Lasso())]) # set grid search params = {'lasso__alpha': [1, 5, 10, 50, 100, 500, 1000]} lasso_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['LASSO Regression'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model lasso_search.fit(X_train, Y_train) print('Best params: {}'.format(lasso_search.best_params_)) # predict Y_pred = lasso_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = lasso_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'LASSO Regression'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) ``` ## AdaBoost Regression ``` from sklearn.ensemble import AdaBoostRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('ada', AdaBoostRegressor())]) # set grid search params = {'ada__n_estimators': [10, 50, 100], 'ada__learning_rate' : [0.01, 0.05, 0.1, 0.5], 'ada__loss' : ['linear', 'square', 'exponential']} ada_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['AdaBoost Regression'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model ada_search.fit(X_train, Y_train) print('Best params: {}'.format(ada_search.best_params_)) # predict Y_pred = ada_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = ada_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'AdaBoost Regression'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) ``` ## KNN ``` from sklearn.neighbors import KNeighborsRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('knn', KNeighborsRegressor())]) # set grid search params = {'knn__n_neighbors': [3, 5, 11, 19, 23, 29], 'knn__weights': ['uniform', 'distance'], 'knn__metric': ['euclidean', 'manhattan']} knn_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['KNN'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model knn_search.fit(X_train, Y_train) print('Best params: {}'.format(knn_search.best_params_)) # predict Y_pred = knn_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = knn_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'KNN'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) ``` ## Decision Tree ``` from sklearn.tree import DecisionTreeRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('tree', DecisionTreeRegressor())]) # set grid search params = {'tree__max_depth': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]} tree_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Decision Tree'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model tree_search.fit(X_train, Y_train) print('Best params: {}'.format(tree_search.best_params_)) # predict Y_pred = tree_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = tree_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Decision Tree'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) ``` ## Random Forest ``` from sklearn.ensemble import RandomForestRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('rf', RandomForestRegressor())]) # set grid search params = {'rf__n_estimators': [10, 50, 100, 500], 'rf__max_features': ['auto', 'log2', 'sqrt']} rf_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Random Forest'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model rf_search.fit(X_train, Y_train) print('Best params: {}'.format(rf_search.best_params_)) # predict Y_pred = rf_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = rf_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Random Forest'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) ``` ## Xgboost ``` import xgboost as xgb # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('xgb', xgb.XGBRegressor())]) # set grid search params = {'xgb__min_child_weight': [1, 5, 10], 'xgb__gamma': [0.5, 1, 1.5], 'xgb__subsample': [0.6, 0.8, 1.0], 'xgb__colsample_bytree': [0.6, 0.8, 1.0], 'xgb__max_depth': [3, 4, 5]} xgb_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Xgboost'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model xgb_search.fit(X_train, Y_train) print('Best params: {}'.format(xgb_search.best_params_)) # predict Y_pred = xgb_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = xgb_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Xgboost'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) ```
github_jupyter
import pandas as pd from sklearn.utils import shuffle from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error df = pd.read_csv('./trips_BGMM.csv') df.info() # get df per cluster res = pd.DataFrame(columns=['Cluster']) dfs = {} for c in range(df['Cluster'].max()+1): # cluster c res.loc[c, 'Cluster'] = c df_cur = df[df['Cluster'] == c].drop(columns=['Cluster', 'Year', 'Month', 'Day']) # get dummies for time dummies = pd.get_dummies(df_cur['Time'], prefix='Time') df_cur.drop(columns=['Time'], inplace=True) df_cur = pd.concat([df_cur, dummies], axis=1) dfs[c] = df_cur from sklearn.linear_model import Ridge # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('ridge', Ridge())]) # set grid search params = {'ridge__alpha': [0, 1, 5, 10, 50, 100, 500, 1000]} ridge_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Ridge Regression'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model ridge_search.fit(X_train, Y_train) print('Best params: {}'.format(ridge_search.best_params_)) # predict Y_pred = ridge_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = ridge_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Ridge Regression'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) from sklearn.linear_model import Lasso # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('lasso', Lasso())]) # set grid search params = {'lasso__alpha': [1, 5, 10, 50, 100, 500, 1000]} lasso_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['LASSO Regression'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model lasso_search.fit(X_train, Y_train) print('Best params: {}'.format(lasso_search.best_params_)) # predict Y_pred = lasso_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = lasso_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'LASSO Regression'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) from sklearn.ensemble import AdaBoostRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('ada', AdaBoostRegressor())]) # set grid search params = {'ada__n_estimators': [10, 50, 100], 'ada__learning_rate' : [0.01, 0.05, 0.1, 0.5], 'ada__loss' : ['linear', 'square', 'exponential']} ada_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['AdaBoost Regression'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model ada_search.fit(X_train, Y_train) print('Best params: {}'.format(ada_search.best_params_)) # predict Y_pred = ada_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = ada_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'AdaBoost Regression'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) from sklearn.neighbors import KNeighborsRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('knn', KNeighborsRegressor())]) # set grid search params = {'knn__n_neighbors': [3, 5, 11, 19, 23, 29], 'knn__weights': ['uniform', 'distance'], 'knn__metric': ['euclidean', 'manhattan']} knn_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['KNN'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model knn_search.fit(X_train, Y_train) print('Best params: {}'.format(knn_search.best_params_)) # predict Y_pred = knn_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = knn_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'KNN'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) from sklearn.tree import DecisionTreeRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('tree', DecisionTreeRegressor())]) # set grid search params = {'tree__max_depth': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]} tree_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Decision Tree'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model tree_search.fit(X_train, Y_train) print('Best params: {}'.format(tree_search.best_params_)) # predict Y_pred = tree_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = tree_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Decision Tree'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) from sklearn.ensemble import RandomForestRegressor # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('rf', RandomForestRegressor())]) # set grid search params = {'rf__n_estimators': [10, 50, 100, 500], 'rf__max_features': ['auto', 'log2', 'sqrt']} rf_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Random Forest'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model rf_search.fit(X_train, Y_train) print('Best params: {}'.format(rf_search.best_params_)) # predict Y_pred = rf_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = rf_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Random Forest'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False) import xgboost as xgb # set pipeline pipeline = Pipeline([('scaler', StandardScaler()), ('xgb', xgb.XGBRegressor())]) # set grid search params = {'xgb__min_child_weight': [1, 5, 10], 'xgb__gamma': [0.5, 1, 1.5], 'xgb__subsample': [0.6, 0.8, 1.0], 'xgb__colsample_bytree': [0.6, 0.8, 1.0], 'xgb__max_depth': [3, 4, 5]} xgb_search = GridSearchCV(pipeline, params, cv=3, verbose=2, n_jobs=-1) res['Xgboost'] = 0 for c in dfs: print('For cluster {}:'.format(c)) # train test split df_train, df_val = train_test_split(dfs[c], test_size=0.2, random_state=1207) # get X Y X_train = df_train.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_train = df_train['Checkin per Hour'] - df_train['Checkout per Hour'] X_val = df_val.drop(columns=['Checkin per Hour', 'Checkout per Hour']) Y_val = df_val['Checkin per Hour'] - df_val['Checkout per Hour'] # shuffle X_train, Y_train = shuffle(X_train, Y_train, random_state=1207) # train model xgb_search.fit(X_train, Y_train) print('Best params: {}'.format(xgb_search.best_params_)) # predict Y_pred = xgb_search.predict(X_val) mse = mean_squared_error(Y_val, Y_pred) print('MSE: {}'.format(mse)) r2 = xgb_search.score(X_val, Y_val) print('R^2: {}'.format(r2)) res.loc[c, 'Xgboost'] = r2 print() # save csv res.to_csv('./pred_res.csv', index=False)
0.500244
0.72812
# Logistic Regression Customer Churn A marketing agency has many customers that use their service to produce ads for the client/customer websites. They've noticed that they have quite a bit of churn in clients. They basically randomly assign account managers right now, but want you to create a machine learning model that will help predict which customers will churn (stop buying their service) so that they can correctly assign the customers most at risk to churn an account manager. Luckily they have some historical data, can you help them out? Create a classification algorithm that will help classify whether or not a customer churned. Then the company can test this against incoming data for future customers to predict which customers will churn and assign them an account manager. The data is saved as customer_churn.csv. Here are the fields and their definitions: Name : Name of the latest contact at Company Age: Customer Age Total_Purchase: Total Ads Purchased Account_Manager: Binary 0=No manager, 1= Account manager assigned Years: Totaly Years as a customer Num_sites: Number of websites that use the service. Onboard_date: Date that the name of the latest contact was onboarded Location: Client HQ Address Company: Name of Client Company Once you've created the model and evaluated it, test out the model on some new data (you can think of this almost like a hold-out set) that your client has provided, saved under new_customers.csv. The client wants to know which customers are most likely to churn given this data (they don't have the label yet). ``` import findspark findspark.init('/home/eissa/spark-2.3.1-bin-hadoop2.7') from pyspark.sql import SparkSession # Create Session spark = SparkSession.builder.appName('logregconsult').getOrCreate() # Load Data data = spark.read.csv('customer_churn.csv',inferSchema=True, header=True) data.printSchema() data.describe().show() data.columns !pip install numpy from pyspark.ml.feature import VectorAssembler # Create Feature Vector assembler = VectorAssembler(inputCols=['Age', 'Total_Purchase', 'Account_Manager', 'Years', 'Num_Sites'],outputCol='features') output = assembler.transform(data) output.select('Features').show() final_data = output.select('features','churn') ``` ### Test Train Split ``` train_churn,test_churn = final_data.randomSplit([0.7,0.3]) ``` ### Fit the model ``` from pyspark.ml.classification import LogisticRegression lr_churn = LogisticRegression(labelCol='churn') fitted_churn_model = lr_churn.fit(train_churn) training_sum = fitted_churn_model.summary training_sum.predictions.show() training_sum.predictions.describe().show() ``` ### Evaluate results ``` from pyspark.ml.evaluation import BinaryClassificationEvaluator pred_and_labels = fitted_churn_model.evaluate(test_churn) pred_and_labels.predictions.show() ``` ### Using AUC ``` churn_eval = BinaryClassificationEvaluator(rawPredictionCol='prediction', labelCol='churn') auc = churn_eval.evaluate(pred_and_labels.predictions) auc ``` ### Predict on brand new unlabeled data ``` final_lr_model = lr_churn.fit(final_data) new_customers = spark.read.csv('new_customers.csv',inferSchema=True, header=True) new_customers.printSchema() test_new_customers = assembler.transform(new_customers) test_new_customers.printSchema() final_results = final_lr_model.transform(test_new_customers) final_results.select('Company','prediction').show() ```
github_jupyter
import findspark findspark.init('/home/eissa/spark-2.3.1-bin-hadoop2.7') from pyspark.sql import SparkSession # Create Session spark = SparkSession.builder.appName('logregconsult').getOrCreate() # Load Data data = spark.read.csv('customer_churn.csv',inferSchema=True, header=True) data.printSchema() data.describe().show() data.columns !pip install numpy from pyspark.ml.feature import VectorAssembler # Create Feature Vector assembler = VectorAssembler(inputCols=['Age', 'Total_Purchase', 'Account_Manager', 'Years', 'Num_Sites'],outputCol='features') output = assembler.transform(data) output.select('Features').show() final_data = output.select('features','churn') train_churn,test_churn = final_data.randomSplit([0.7,0.3]) from pyspark.ml.classification import LogisticRegression lr_churn = LogisticRegression(labelCol='churn') fitted_churn_model = lr_churn.fit(train_churn) training_sum = fitted_churn_model.summary training_sum.predictions.show() training_sum.predictions.describe().show() from pyspark.ml.evaluation import BinaryClassificationEvaluator pred_and_labels = fitted_churn_model.evaluate(test_churn) pred_and_labels.predictions.show() churn_eval = BinaryClassificationEvaluator(rawPredictionCol='prediction', labelCol='churn') auc = churn_eval.evaluate(pred_and_labels.predictions) auc final_lr_model = lr_churn.fit(final_data) new_customers = spark.read.csv('new_customers.csv',inferSchema=True, header=True) new_customers.printSchema() test_new_customers = assembler.transform(new_customers) test_new_customers.printSchema() final_results = final_lr_model.transform(test_new_customers) final_results.select('Company','prediction').show()
0.723407
0.938969
``` #!pip install --user Fiona-1.8.6-cp37-cp37m-win_amd64.whl #!pip install --user Shapely-1.6.4.post2-cp37-cp37m-win_amd64.whl #!pip install --user GDAL-2.4.1-cp37-cp37m-win_amd64.whl from libfunc import * # xosrm.RequestConfig.host = "127.0.0.1:5000" xosrm.RequestConfig.host = "52.236.141.167:8080" ''' Расчет пробега на каждый день недели для точек в заданом порядке Необходимо указать путь к файлу с расписанием и координаты точки отправления и прибытия Расписание НЕ ДОЛЖНО содержать ТТ Новый для КПК Вывод: таблица расстояний ''' schedule_data_route = open_excel_file( file_path='C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Odessa\\Расписания\\Бреславська Валерія Володимирівна.xls') # Словарь с точками разбитый по интервалам и дням недели full_dict_route = schedule(schedule_data_route) data = calc_dist(full_dict_route) # Отображение таблицы расстояний display(df_first(data)) display(df_second(data)) ''' Расчет TRIP_ROUTE (Жадный алгоритм) Расчет пробега на каждый день недели для точек с оптимальной последовательностью Необходимо указать путь к файлу с расписанием Расписание ДОЛЖНО содержать Новый для КПК первой точкой на день с минимальным индесом (0 или 1) Вывод: таблица дистанций ''' file_path='C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Тоба пробег.xls' schedule_data_trip = open_excel_file(file_path) short_file_name = file_path.split('\\')[-1].split('.')[0] # Словарь с точками разбитый по интервалам и дням недели full_dict_trip = schedule(schedule_data_trip) # вызов функции data = calc_trips(full_dict_trip) # Запись файл excel write_to_excel(data, short_file_name) # Отображение таблиц display(df_first(data[0])) display(df_second(data[0])) ''' Расчет оптимальных пробегов для всех расписаний в папке На вход: путь к папке с файлами расписаний Вывод: таблицы с пробегами по каждому дню ''' # Путь к папке с расписаниями path = 'C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Vinnitsa2\\' # Вызов функции calc_folder(path) from libfunc import * # xosrm.RequestConfig.host = "127.0.0.1:5000" xosrm.RequestConfig.host = "52.236.141.167:8080" path = 'C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Просчет пробегов по ПГ\\Исходники\\Одесса.xlsx' data = pd.read_excel(path) unique_val = data['ФИО ТП'].unique() writer = pd.ExcelWriter('Одесса - расчетные маршруты.xlsx', engine = 'xlsxwriter') empty_table = pd.DataFrame() empty_table.to_excel(writer, sheet_name = 'Пробег', index=False) for index, psr in enumerate(unique_val): print(psr + ' START') psr_schedule = data[data['ФИО ТП']==psr] full_dict_route = schedule(psr_schedule) result = calc_trips(full_dict_route) write_to_excel2(writer, result, psr, index) print(psr + ' FINISHED') worksheet = writer.sheets['Пробег'] for col in range(0, 17, 5): worksheet.write(2, 1 + col, 'ПН') worksheet.write(2, 2 + col, 'ВТ') worksheet.write(2, 3 + col, 'СР') worksheet.write(2, 4 + col, 'ЧТ') worksheet.write(2, 5 + col, 'ПТ') # Merge 3 cells. worksheet.merge_range('B1:K1', 'Первая половина месяца') worksheet.merge_range('L1:U1', 'Вторая половина месяца') worksheet.merge_range('B2:F2', 'Не четная неделя') worksheet.merge_range('G2:K2', 'Четная неделя') worksheet.merge_range('L2:P2', 'Не четная неделя') worksheet.merge_range('Q2:U2', 'Четная неделя') writer.save() writer.close() print('Файл создан') ```
github_jupyter
#!pip install --user Fiona-1.8.6-cp37-cp37m-win_amd64.whl #!pip install --user Shapely-1.6.4.post2-cp37-cp37m-win_amd64.whl #!pip install --user GDAL-2.4.1-cp37-cp37m-win_amd64.whl from libfunc import * # xosrm.RequestConfig.host = "127.0.0.1:5000" xosrm.RequestConfig.host = "52.236.141.167:8080" ''' Расчет пробега на каждый день недели для точек в заданом порядке Необходимо указать путь к файлу с расписанием и координаты точки отправления и прибытия Расписание НЕ ДОЛЖНО содержать ТТ Новый для КПК Вывод: таблица расстояний ''' schedule_data_route = open_excel_file( file_path='C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Odessa\\Расписания\\Бреславська Валерія Володимирівна.xls') # Словарь с точками разбитый по интервалам и дням недели full_dict_route = schedule(schedule_data_route) data = calc_dist(full_dict_route) # Отображение таблицы расстояний display(df_first(data)) display(df_second(data)) ''' Расчет TRIP_ROUTE (Жадный алгоритм) Расчет пробега на каждый день недели для точек с оптимальной последовательностью Необходимо указать путь к файлу с расписанием Расписание ДОЛЖНО содержать Новый для КПК первой точкой на день с минимальным индесом (0 или 1) Вывод: таблица дистанций ''' file_path='C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Тоба пробег.xls' schedule_data_trip = open_excel_file(file_path) short_file_name = file_path.split('\\')[-1].split('.')[0] # Словарь с точками разбитый по интервалам и дням недели full_dict_trip = schedule(schedule_data_trip) # вызов функции data = calc_trips(full_dict_trip) # Запись файл excel write_to_excel(data, short_file_name) # Отображение таблиц display(df_first(data[0])) display(df_second(data[0])) ''' Расчет оптимальных пробегов для всех расписаний в папке На вход: путь к папке с файлами расписаний Вывод: таблицы с пробегами по каждому дню ''' # Путь к папке с расписаниями path = 'C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Vinnitsa2\\' # Вызов функции calc_folder(path) from libfunc import * # xosrm.RequestConfig.host = "127.0.0.1:5000" xosrm.RequestConfig.host = "52.236.141.167:8080" path = 'C:\\Users\\andre\\OneDrive\\Рабочий стол\\sav\\Просчет пробегов по ПГ\\Исходники\\Одесса.xlsx' data = pd.read_excel(path) unique_val = data['ФИО ТП'].unique() writer = pd.ExcelWriter('Одесса - расчетные маршруты.xlsx', engine = 'xlsxwriter') empty_table = pd.DataFrame() empty_table.to_excel(writer, sheet_name = 'Пробег', index=False) for index, psr in enumerate(unique_val): print(psr + ' START') psr_schedule = data[data['ФИО ТП']==psr] full_dict_route = schedule(psr_schedule) result = calc_trips(full_dict_route) write_to_excel2(writer, result, psr, index) print(psr + ' FINISHED') worksheet = writer.sheets['Пробег'] for col in range(0, 17, 5): worksheet.write(2, 1 + col, 'ПН') worksheet.write(2, 2 + col, 'ВТ') worksheet.write(2, 3 + col, 'СР') worksheet.write(2, 4 + col, 'ЧТ') worksheet.write(2, 5 + col, 'ПТ') # Merge 3 cells. worksheet.merge_range('B1:K1', 'Первая половина месяца') worksheet.merge_range('L1:U1', 'Вторая половина месяца') worksheet.merge_range('B2:F2', 'Не четная неделя') worksheet.merge_range('G2:K2', 'Четная неделя') worksheet.merge_range('L2:P2', 'Не четная неделя') worksheet.merge_range('Q2:U2', 'Четная неделя') writer.save() writer.close() print('Файл создан')
0.107754
0.252591
# Example 9.3: Dual Cycle (Cold-Air-Standard) *John F. Maddox, Ph.D., P.E.<br> University of Kentucky - Paducah Campus<br> ME 321: Engineering Thermodynamics II<br>* ## Problem Statement A Dual cycle with intake conditions of $300\ \text{K}$ and $1\ \text{bar}$ has a compression ratio of $10$, a maximum pressure of $50\ \text{bar}$ and a maximum temperature of $2000\ \text{K}$. Using a **cold-air-standard analysis**, find the cutoff ratio, net work output (kJ/kg), heat input, and cycle efficiency * (a) $p$-$v$ diagram * (b) $T$-$s$ diagram * (c) $T$,$p$ at each state * (d) $r_c$ * (e) $q_{in}$ * (f) $w_{net}$ * (g) $\eta_{th}$ * (h) $\text{MEP}$ ## Solution __[Video Explanation](https://uky.yuja.com/V/Video?v=3074248&node=10465176&a=1136783553&autoplay=1)__ ### Python Initialization We'll start by importing the libraries we will use for our analysis and initializing dictionaries to hold the properties we will be usings. ``` from kilojoule.templates.kSI_K import * air = idealgas.Properties('Air',unit_system='kSI_K') ``` ### Given Parameters We now define variables to hold our known values. ``` T[1] = Quantity(300,'K') # Inlet Temperature p[1] = Quantity(1,'bar') # Inlet pressure r = Quantity(10,'') # Compression ratio p_max = Quantity(50,'bar')# Max pressure T_max = Quantity(2000,'K')# Max Temperature Summary(); ``` ### Assumptions - Cold-air-standard Analysis - Ideal gas - Constant specific heat (evaluated at $25^\circ\text{C}$) - Maximum pressure occurs at states 3 and 4 - Maximum temperature occurs at state 4 - Negligible changes in kinetic energy - Negligible changes in potential energy ``` %%showcalc # Ideal Gas R = air.R # Constant thermal properties evaluated at room temperature T_room = Quantity(25,'degC') c_v = air.Cv(T=T_room) c_p = air.Cp(T=T_room) k = air.k(T=T_room) # Maximum temperature and pressure p[3] = p_max p[4] = p_max T[4] = T_max ``` #### (c) $T$ and $p$ ``` #%%showcalc # 1-2) Isentropy compression: Isentropic Ideal Gas Relations T[2] = T[1]*r**(k-1) p[2] = p[1]*r**k # 2-3) Constant volume heat addition: Ideal Gas law at both states T[3] = T[2]*p[3]/p[2] # 3-4) Constant pressure heat addition: We already know $T_4$ and $p_4$ # 4-5) Isentropic Expansion: Isentropic Ideal Gas Relations v[1] = R*T[1]/p[1] v[5] = v[1] v[4] = R*T[4]/p[4] T[5] = T[4]*(v[4]/v[5])**(k-1) p[5] = R*T[5]/v[5] Calculations() states.display(); ``` #### (b) Cut-off ratio ``` %%showcalc v[3] = R*T[3]/p[3] r_c = v[4]/v[3] ``` #### (c) Heat input ``` %%showcalc # 1st Law 2$\to$3 q_2_to_3 = c_v*(T[3]-T[2]) # 1st Law 3$\to$4 q_3_to_4 = c_p*(T[4]-T[3]) # Total heat input q_in = q_2_to_3 + q_3_to_4 ``` #### (d) $w_{net}$ ``` %%showcalc # 1st Law 5$\to$1 q_5_to_1 = c_v*(T[1]-T[5]) q_out = -q_5_to_1 # 1st Law Full Cycle w_net = q_in-q_out ``` #### (e) $\eta_{th}$ ``` %%showcalc # Thermal efficiency eta_th = w_net/q_in ``` #### (f) MEP ``` %%showcalc # Mean Effective Pressure v_max = v[1] v[2] = v[3] v_min = v[2] MEP = w_net/(v_max-v_min) ``` ### Plotting *Note: The plotting library uses the property tables to draw the process paths, which inherently assumes variable specific heat (i.e. real-fluid or air-standard assumptions). If the library is used to draw process paths between states that were obtained using constant specific heat (cold-air-standard assumptions) there will be inconsistencies between the state points and the process paths.* In order to plot the paths of the cycle on the $p$-$v$ diagram and states on the $T$-$s$ diagram, we need discrete values for the specifc enthalpy and entropy at each state rather than just the changes in properties we calculated above. To do this we can pick an arbritrary value for the enthalpy and entropy at any state, then caclulate the enthalpy and entropy at the rest of the states relative to the reference point. For this case, we will look up the properties from the tables for state 1 and use that as our starting point. #### (a) $p$-$v$ Note: the isentropic lines do not line up exactly with the states in this diagram because the entropies were calculated for variable specific heat, but all other properties were calculated using the cold-air-standard assumptions (constant specific heat). ``` from math import log # Add entropy to the property table states.add_property('s',units='kJ/kg/K') s = states.dict['s'] pv = air.pv_diagram() s[1] = air.s(T=T[1],p=p[1]) for i in [2,3,4,5]: #s[i] = s[1] + c_p*log(T[i]/T[1]) - R*log(p[i]/p[1]) s[i] = air.s(T=T[i],p=p[i]) # plot each state on the p,v diagram and calculate the entropy at each state for i in range(1,6): pv.plot_state(states[i],label_loc='north east') # plot the process paths pv.plot_process(states[1],states[2],path='isentropic') pv.plot_process(states[2],states[3],path='isochoric') pv.plot_process(states[3],states[4],path='isobaric') pv.plot_process(states[4],states[5],path='isentropic') pv.plot_process(states[5],states[1],path='isochoric'); ``` #### (b) $T$-$s$ diagram **Note: the isentropic lines are not vertical in this diagram because the entropies were calculated for variable specific heat**, but all other properties were calculated using the cold-air-standard assumptions (constant specific heat). Therefore the errors resulting from the constant specific heat assumption are evident in the skewed shape of the cycle on the $T$-$s$ diagram. ``` Ts = air.Ts_diagram() for i in range(1,6): Ts.plot_state(states[i],label_loc='north east') Ts.plot_process(states[1],states[2],label='incorrect trend',path='isentropic') Ts.plot_process(states[2],states[3],path='isochoric') Ts.plot_process(states[3],states[4],path='isobaric') Ts.plot_process(states[4],states[5],label='incorrect trend',path='isentropic') Ts.plot_process(states[5],states[1],path='isochoric'); Summary(); Summary(['r_c','q_in','w_net','eta_th','MEP']); ```
github_jupyter
from kilojoule.templates.kSI_K import * air = idealgas.Properties('Air',unit_system='kSI_K') T[1] = Quantity(300,'K') # Inlet Temperature p[1] = Quantity(1,'bar') # Inlet pressure r = Quantity(10,'') # Compression ratio p_max = Quantity(50,'bar')# Max pressure T_max = Quantity(2000,'K')# Max Temperature Summary(); %%showcalc # Ideal Gas R = air.R # Constant thermal properties evaluated at room temperature T_room = Quantity(25,'degC') c_v = air.Cv(T=T_room) c_p = air.Cp(T=T_room) k = air.k(T=T_room) # Maximum temperature and pressure p[3] = p_max p[4] = p_max T[4] = T_max #%%showcalc # 1-2) Isentropy compression: Isentropic Ideal Gas Relations T[2] = T[1]*r**(k-1) p[2] = p[1]*r**k # 2-3) Constant volume heat addition: Ideal Gas law at both states T[3] = T[2]*p[3]/p[2] # 3-4) Constant pressure heat addition: We already know $T_4$ and $p_4$ # 4-5) Isentropic Expansion: Isentropic Ideal Gas Relations v[1] = R*T[1]/p[1] v[5] = v[1] v[4] = R*T[4]/p[4] T[5] = T[4]*(v[4]/v[5])**(k-1) p[5] = R*T[5]/v[5] Calculations() states.display(); %%showcalc v[3] = R*T[3]/p[3] r_c = v[4]/v[3] %%showcalc # 1st Law 2$\to$3 q_2_to_3 = c_v*(T[3]-T[2]) # 1st Law 3$\to$4 q_3_to_4 = c_p*(T[4]-T[3]) # Total heat input q_in = q_2_to_3 + q_3_to_4 %%showcalc # 1st Law 5$\to$1 q_5_to_1 = c_v*(T[1]-T[5]) q_out = -q_5_to_1 # 1st Law Full Cycle w_net = q_in-q_out %%showcalc # Thermal efficiency eta_th = w_net/q_in %%showcalc # Mean Effective Pressure v_max = v[1] v[2] = v[3] v_min = v[2] MEP = w_net/(v_max-v_min) from math import log # Add entropy to the property table states.add_property('s',units='kJ/kg/K') s = states.dict['s'] pv = air.pv_diagram() s[1] = air.s(T=T[1],p=p[1]) for i in [2,3,4,5]: #s[i] = s[1] + c_p*log(T[i]/T[1]) - R*log(p[i]/p[1]) s[i] = air.s(T=T[i],p=p[i]) # plot each state on the p,v diagram and calculate the entropy at each state for i in range(1,6): pv.plot_state(states[i],label_loc='north east') # plot the process paths pv.plot_process(states[1],states[2],path='isentropic') pv.plot_process(states[2],states[3],path='isochoric') pv.plot_process(states[3],states[4],path='isobaric') pv.plot_process(states[4],states[5],path='isentropic') pv.plot_process(states[5],states[1],path='isochoric'); Ts = air.Ts_diagram() for i in range(1,6): Ts.plot_state(states[i],label_loc='north east') Ts.plot_process(states[1],states[2],label='incorrect trend',path='isentropic') Ts.plot_process(states[2],states[3],path='isochoric') Ts.plot_process(states[3],states[4],path='isobaric') Ts.plot_process(states[4],states[5],label='incorrect trend',path='isentropic') Ts.plot_process(states[5],states[1],path='isochoric'); Summary(); Summary(['r_c','q_in','w_net','eta_th','MEP']);
0.507568
0.953665
# 3. Calculations -- Hydrological cycle ``` '''Import packages for loading data, analysing, and plotting''' import xarray as xr import matplotlib.pyplot as plt import numpy as np import pandas as pd import xesmf as xe %matplotlib inline import cartopy import cartopy.crs as ccrs import matplotlib from netCDF4 import Dataset from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy.ma as ma import math import xlrd import os import matplotlib.colors as colors import seaborn as sns import scipy from sklearn.metrics import mean_squared_error from matplotlib.projections import PolarAxes import mpl_toolkits.axisartist.floating_axes as FA import mpl_toolkits.axisartist.grid_finder as GF pmip_v4='PMIP4' pmip_v3='PMIP3' pmip={} pmip['PMIP4']=['AWI-CM-1-1-LR', 'CESM2', 'EC-EARTH-3-3', 'FGOALS-f3-L', 'FGOALS-g3', 'GISS-E2-1-G', 'HadGEM3-GC31', 'IPSL-CM6A-LR', 'MIROC-ES2L', 'MPI-ESM1-2-LR', 'MRI-ESM2-0', 'NESM3', 'NorESM1-F', 'NorESM2', 'UofT-CCSM-4'] pmip['PMIP3']=['BCC-CSM1-1', 'CCSM4', 'CNRM-CM5', 'CSIRO-Mk3L-1-2', 'CSIRO-Mk3-6-0', 'EC-EARTH-2-2', 'FGOALS-g2', 'FGOALS-s2', 'GISS-E2-R', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'KCM1-2-2', 'MIROC-ESM', 'MPI-ESM-P', 'MRI-CGCM3'] #No change needs here '''Define calculating functions''' #This function will get all available experiment names def experimentlist(): exps=[] file_path = "data" for dirpaths, dirnames, filenames in os.walk(file_path): for d in dirnames: exps.append(d) return exps #This function will get all available model names in the experiment def modellist(experiment_name): models=[] file_path = "data/%s" %(experiment_name) for dirpaths, dirnames, filenames in os.walk(file_path): for f in filenames: mname=f.split("_")[0] models.append(mname) return models #This function will get all available filenames in the experiment def filenamelist(experiment_name): filenames=[] file_path = "data/%s" %(experiment_name) for dirpaths, dirnames, files in os.walk(file_path): for f in files: ff='data/%s/%s'%(experiment_name,f) filenames.append(ff) return filenames #This function will identify models in the ensemble def identify_ensemble_members(variable_name,experiment_name): datadir="data/%s" %(experiment_name) ensemble_members=!scripts/find_experiment_ensemble_members.bash {experiment_name} {variable_name} {datadir} return ensemble_members #This function will list excat model name def extract_model_name(filename): file_no_path=filename.rpartition("/") file_strings=file_no_path[2].partition("_") model_name=file_strings[0] return model_name def ensemble_members_dict(variable_name,experiment_name): ens_mems=identify_ensemble_members(variable_name,experiment_name) ens_mems_dict={extract_model_name(ens_mems[0]):ens_mems[0]} for mem in ens_mems[1:]: ens_mems_dict[extract_model_name(mem)]=mem return ens_mems_dict #This function will calculate the ensemble average def ensemble_mean(pmip_v): n=0 average=0 grid_1x1= xr.Dataset({'lat': (['lat'], np.arange(-89.5, 90., 1.0)), 'lon': (['lon'], np.arange(-0, 360, 1.0))}) gcm_dict=ensemble_members_dict(variable_name,experiment_name) for gcm in gcm_dict: if gcm in pmip[pmip_v]: this_file=xr.open_dataset(gcm_dict.get(gcm),decode_times=False) this_var=this_file[variable_name] this_regridder=xe.Regridder(this_file,grid_1x1,'bilinear', reuse_weights=True,periodic=True) var_1x1=this_regridder(this_var) average=(n*average+var_1x1)/(n+1) n=n+1 ensemble_ave_r=np.zeros((180,360)) for r in range(180): for c in range(360): ensemble_ave_r[r][c]=average[r][c-180] return ensemble_ave_r #This function will calculate the difference between experiment and piControl for each model, #and then calculate the ensemble average of the differences def ensemble_mean_diffence(pmip_v,experiment_name,variable_name): model_list=[] n=0 average=0 A_dict=ensemble_members_dict(variable_name,experiment_name) B_dict=ensemble_members_dict(variable_name,'piControl') grid_1x1= xr.Dataset({'lat': (['lat'], np.arange(-89.5, 90., 1.0)), 'lon': (['lon'], np.arange(0, 360., 1.0))}) for gcm in A_dict: if gcm in B_dict: if gcm in pmip[pmip_v]: model_list.append(gcm) expt_a_file=xr.open_dataset(A_dict.get(gcm),decode_times=False) expt_a=expt_a_file[variable_name] expt_b_file=xr.open_dataset(B_dict.get(gcm),decode_times=False) expt_b=expt_b_file[variable_name] diff=expt_a-expt_b this_regridder=xe.Regridder(expt_a_file,grid_1x1,'bilinear', reuse_weights=True,periodic=True) diff_1x1=this_regridder(diff) average=(n*average+diff_1x1)/(n+1) n=n+1 ensemble_diff_r=np.zeros((180,360)) for r in range(180): for c in range(360): ensemble_diff_r[r][c]=average[r][c-180] f3='model_lists/%s_%s_%s_ave_modellist.csv' %(experiment_name,variable_name,pmip_v) modellist=pd.DataFrame(model_list) modellist.to_csv(f3) return ensemble_diff_r #This function will calculate the difference between experiment and piControl for each model, #and then calculate the ensemble stddev of the differences def ensemble_stddev(pmip_v,experiment_name,variable_name): model_list=[] dataset=[] A_dict=ensemble_members_dict(variable_name,experiment_name) B_dict=ensemble_members_dict(variable_name,'piControl') grid_1x1= xr.Dataset({'lat': (['lat'], np.arange(-89.5, 90., 1.0)), 'lon': (['lon'], np.arange(0, 360., 1.0))}) for gcm in A_dict: if gcm in B_dict: if gcm in pmip[pmip_v]: model_list.append(gcm) expt_a_file=xr.open_dataset(A_dict.get(gcm),decode_times=False) expt_a=expt_a_file[variable_name] expt_b_file=xr.open_dataset(B_dict.get(gcm),decode_times=False) expt_b=expt_b_file[variable_name] diff=expt_a-expt_b this_regridder=xe.Regridder(expt_a_file,grid_1x1,'bilinear', reuse_weights=True,periodic=True) diff_1x1=this_regridder(diff) dataset.append(diff_1x1) data=np.array(dataset) std=np.std(data,axis=0) stddev_diff_r=np.zeros((180,360)) for r in range(180): for c in range(360): stddev_diff_r[r][c]=std[r][c-180] f3='model_lists/%s_%s_%s_std_modellist.csv' %(experiment_name,variable_name,pmip_v) modellist=pd.DataFrame(model_list) modellist.to_csv(f3) return stddev_diff_r #This fuction will plot Robinson projected Geo2D map for averaged precipitation rate in mm/day def pr_ave_plot(data4,data3,data_diff,experiment_name,variable_name): cmap=plt.get_cmap('BrBG') projection = ccrs.Robinson() transform=ccrs.PlateCarree() clim=[-1,1] bounds = np.linspace(-1, 1, 11) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) fig, axs = plt.subplots(nrows=3,ncols=1,figsize=(10, 18), subplot_kw={'projection': ccrs.Robinson()}) ax1=axs[0] ax2=axs[1] ax3=axs[2] ax1.set_title('PMIP4/CMIP6 ') ax1.coastlines() ax1.gridlines() fig1=ax1.imshow(data4, transform=transform,cmap=cmap,clim=clim,norm=norm) ax2.set_title('PMIP3/CMIP5') ax2.coastlines() ax2.gridlines() fig2=ax2.imshow(data3, transform=transform,cmap=cmap,clim=clim,norm=norm) ax3.set_title('PMIP4-PMIP3') ax3.coastlines() ax3.gridlines() fig3=ax3.imshow(data_diff, transform=transform,cmap=cmap,clim=clim,norm=norm) cax,kw = matplotlib.colorbar.make_axes([ax for ax in axs.flat],location='bottom',pad=0.05,shrink=0.5) plt.colorbar(fig3, cax=cax, **kw,extend='both') figname='figs/%s_%s_ave.png' %(experiment_name,variable_name) plt.savefig(figname) #Same as above but for uncertainty, i.e. stddev def pr_std_plot(data4,data3,experiment_name,variable_name): cmap=plt.get_cmap('YlGn') clim=[0,1.5] bounds = np.linspace(0, 1.5, 11) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) fig, axs = plt.subplots(nrows=2,ncols=1,figsize=(10, 12), subplot_kw={'projection': ccrs.Robinson()}) ax1=axs[0] ax2=axs[1] title= 'PMIP4' ax1.set_title(title) ax1.coastlines() ax1.gridlines() fig1=ax1.imshow(data4, transform=ccrs.PlateCarree(),cmap=cmap,clim=clim,norm=norm) title= 'PMIP3' ax2.set_title(title) ax2.coastlines() ax2.gridlines() fig2=ax2.imshow(data3, transform=ccrs.PlateCarree(),cmap=cmap,clim=clim,norm=norm) cax,kw = matplotlib.colorbar.make_axes([ax for ax in axs.flat],location='bottom',pad=0.05,shrink=0.5) plt.colorbar(fig2, cax=cax, **kw,extend='max') figname='figs/%s_%s_std.png' %(experiment_name,variable_name) plt.savefig(figname) ``` # DJF precip ``` experiment_name='midHolocene-cal-adj' variable_name='pr_spatialmean_djf' djfpr_ensemble_ave_v3=ensemble_mean_diffence(pmip_v3,experiment_name,variable_name) djfpr_ensemble_std_v3=ensemble_stddev(pmip_v3,experiment_name,variable_name) #PMIP4 djfpr_ensemble_ave_v4=ensemble_mean_diffence(pmip_v4,experiment_name,variable_name) djfpr_ensemble_std_v4=ensemble_stddev(pmip_v4,experiment_name,variable_name) #diff djfpr_ensemble_diff=djfpr_ensemble_ave_v4-djfpr_ensemble_ave_v3 pr_ave_plot(djfpr_ensemble_ave_v4,djfpr_ensemble_ave_v3,djfpr_ensemble_diff,experiment_name,variable_name) pr_std_plot(djfpr_ensemble_std_v4,djfpr_ensemble_std_v3,experiment_name,variable_name) d=Dataset('plotting_data/PMIP4_MH_Ensembles_pr_djf.nc','a') d.variables['pr_djf_ave_v4'][:]=djfpr_ensemble_ave_v4 d.variables['pr_djf_std_v4'][:]=djfpr_ensemble_std_v4 d.variables['pr_djf_ave_v3'][:]=djfpr_ensemble_ave_v3 d.variables['pr_djf_std_v3'][:]=djfpr_ensemble_std_v3 d.variables['pr_djf_ave_diff'][:]=djfpr_ensemble_diff d.close() ``` # JJA precip ``` experiment_name='midHolocene-cal-adj' variable_name='pr_spatialmean_jja' jjapr_ensemble_ave_v3=ensemble_mean_diffence(pmip_v3,experiment_name,variable_name) jjapr_ensemble_std_v3=ensemble_stddev(pmip_v3,experiment_name,variable_name) #PMIP4 jjapr_ensemble_ave_v4=ensemble_mean_diffence(pmip_v4,experiment_name,variable_name) jjapr_ensemble_std_v4=ensemble_stddev(pmip_v4,experiment_name,variable_name) #diff jjapr_ensemble_diff=jjapr_ensemble_ave_v4-jjapr_ensemble_ave_v3 pr_ave_plot(jjapr_ensemble_ave_v4,jjapr_ensemble_ave_v3,jjapr_ensemble_diff,experiment_name,variable_name) pr_std_plot(jjapr_ensemble_std_v4,jjapr_ensemble_std_v3,experiment_name,variable_name) d=Dataset('plotting_data/PMIP4_MH_Ensembles_pr_jja.nc','a') d.variables['pr_jja_ave_v4'][:]=jjapr_ensemble_ave_v4 d.variables['pr_jja_std_v4'][:]=jjapr_ensemble_std_v4 d.variables['pr_jja_ave_v3'][:]=jjapr_ensemble_ave_v3 d.variables['pr_jja_std_v3'][:]=jjapr_ensemble_std_v3 d.variables['pr_jja_ave_diff'][:]=jjapr_ensemble_diff d.close() ```
github_jupyter
'''Import packages for loading data, analysing, and plotting''' import xarray as xr import matplotlib.pyplot as plt import numpy as np import pandas as pd import xesmf as xe %matplotlib inline import cartopy import cartopy.crs as ccrs import matplotlib from netCDF4 import Dataset from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy.ma as ma import math import xlrd import os import matplotlib.colors as colors import seaborn as sns import scipy from sklearn.metrics import mean_squared_error from matplotlib.projections import PolarAxes import mpl_toolkits.axisartist.floating_axes as FA import mpl_toolkits.axisartist.grid_finder as GF pmip_v4='PMIP4' pmip_v3='PMIP3' pmip={} pmip['PMIP4']=['AWI-CM-1-1-LR', 'CESM2', 'EC-EARTH-3-3', 'FGOALS-f3-L', 'FGOALS-g3', 'GISS-E2-1-G', 'HadGEM3-GC31', 'IPSL-CM6A-LR', 'MIROC-ES2L', 'MPI-ESM1-2-LR', 'MRI-ESM2-0', 'NESM3', 'NorESM1-F', 'NorESM2', 'UofT-CCSM-4'] pmip['PMIP3']=['BCC-CSM1-1', 'CCSM4', 'CNRM-CM5', 'CSIRO-Mk3L-1-2', 'CSIRO-Mk3-6-0', 'EC-EARTH-2-2', 'FGOALS-g2', 'FGOALS-s2', 'GISS-E2-R', 'HadGEM2-CC', 'HadGEM2-ES', 'IPSL-CM5A-LR', 'KCM1-2-2', 'MIROC-ESM', 'MPI-ESM-P', 'MRI-CGCM3'] #No change needs here '''Define calculating functions''' #This function will get all available experiment names def experimentlist(): exps=[] file_path = "data" for dirpaths, dirnames, filenames in os.walk(file_path): for d in dirnames: exps.append(d) return exps #This function will get all available model names in the experiment def modellist(experiment_name): models=[] file_path = "data/%s" %(experiment_name) for dirpaths, dirnames, filenames in os.walk(file_path): for f in filenames: mname=f.split("_")[0] models.append(mname) return models #This function will get all available filenames in the experiment def filenamelist(experiment_name): filenames=[] file_path = "data/%s" %(experiment_name) for dirpaths, dirnames, files in os.walk(file_path): for f in files: ff='data/%s/%s'%(experiment_name,f) filenames.append(ff) return filenames #This function will identify models in the ensemble def identify_ensemble_members(variable_name,experiment_name): datadir="data/%s" %(experiment_name) ensemble_members=!scripts/find_experiment_ensemble_members.bash {experiment_name} {variable_name} {datadir} return ensemble_members #This function will list excat model name def extract_model_name(filename): file_no_path=filename.rpartition("/") file_strings=file_no_path[2].partition("_") model_name=file_strings[0] return model_name def ensemble_members_dict(variable_name,experiment_name): ens_mems=identify_ensemble_members(variable_name,experiment_name) ens_mems_dict={extract_model_name(ens_mems[0]):ens_mems[0]} for mem in ens_mems[1:]: ens_mems_dict[extract_model_name(mem)]=mem return ens_mems_dict #This function will calculate the ensemble average def ensemble_mean(pmip_v): n=0 average=0 grid_1x1= xr.Dataset({'lat': (['lat'], np.arange(-89.5, 90., 1.0)), 'lon': (['lon'], np.arange(-0, 360, 1.0))}) gcm_dict=ensemble_members_dict(variable_name,experiment_name) for gcm in gcm_dict: if gcm in pmip[pmip_v]: this_file=xr.open_dataset(gcm_dict.get(gcm),decode_times=False) this_var=this_file[variable_name] this_regridder=xe.Regridder(this_file,grid_1x1,'bilinear', reuse_weights=True,periodic=True) var_1x1=this_regridder(this_var) average=(n*average+var_1x1)/(n+1) n=n+1 ensemble_ave_r=np.zeros((180,360)) for r in range(180): for c in range(360): ensemble_ave_r[r][c]=average[r][c-180] return ensemble_ave_r #This function will calculate the difference between experiment and piControl for each model, #and then calculate the ensemble average of the differences def ensemble_mean_diffence(pmip_v,experiment_name,variable_name): model_list=[] n=0 average=0 A_dict=ensemble_members_dict(variable_name,experiment_name) B_dict=ensemble_members_dict(variable_name,'piControl') grid_1x1= xr.Dataset({'lat': (['lat'], np.arange(-89.5, 90., 1.0)), 'lon': (['lon'], np.arange(0, 360., 1.0))}) for gcm in A_dict: if gcm in B_dict: if gcm in pmip[pmip_v]: model_list.append(gcm) expt_a_file=xr.open_dataset(A_dict.get(gcm),decode_times=False) expt_a=expt_a_file[variable_name] expt_b_file=xr.open_dataset(B_dict.get(gcm),decode_times=False) expt_b=expt_b_file[variable_name] diff=expt_a-expt_b this_regridder=xe.Regridder(expt_a_file,grid_1x1,'bilinear', reuse_weights=True,periodic=True) diff_1x1=this_regridder(diff) average=(n*average+diff_1x1)/(n+1) n=n+1 ensemble_diff_r=np.zeros((180,360)) for r in range(180): for c in range(360): ensemble_diff_r[r][c]=average[r][c-180] f3='model_lists/%s_%s_%s_ave_modellist.csv' %(experiment_name,variable_name,pmip_v) modellist=pd.DataFrame(model_list) modellist.to_csv(f3) return ensemble_diff_r #This function will calculate the difference between experiment and piControl for each model, #and then calculate the ensemble stddev of the differences def ensemble_stddev(pmip_v,experiment_name,variable_name): model_list=[] dataset=[] A_dict=ensemble_members_dict(variable_name,experiment_name) B_dict=ensemble_members_dict(variable_name,'piControl') grid_1x1= xr.Dataset({'lat': (['lat'], np.arange(-89.5, 90., 1.0)), 'lon': (['lon'], np.arange(0, 360., 1.0))}) for gcm in A_dict: if gcm in B_dict: if gcm in pmip[pmip_v]: model_list.append(gcm) expt_a_file=xr.open_dataset(A_dict.get(gcm),decode_times=False) expt_a=expt_a_file[variable_name] expt_b_file=xr.open_dataset(B_dict.get(gcm),decode_times=False) expt_b=expt_b_file[variable_name] diff=expt_a-expt_b this_regridder=xe.Regridder(expt_a_file,grid_1x1,'bilinear', reuse_weights=True,periodic=True) diff_1x1=this_regridder(diff) dataset.append(diff_1x1) data=np.array(dataset) std=np.std(data,axis=0) stddev_diff_r=np.zeros((180,360)) for r in range(180): for c in range(360): stddev_diff_r[r][c]=std[r][c-180] f3='model_lists/%s_%s_%s_std_modellist.csv' %(experiment_name,variable_name,pmip_v) modellist=pd.DataFrame(model_list) modellist.to_csv(f3) return stddev_diff_r #This fuction will plot Robinson projected Geo2D map for averaged precipitation rate in mm/day def pr_ave_plot(data4,data3,data_diff,experiment_name,variable_name): cmap=plt.get_cmap('BrBG') projection = ccrs.Robinson() transform=ccrs.PlateCarree() clim=[-1,1] bounds = np.linspace(-1, 1, 11) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) fig, axs = plt.subplots(nrows=3,ncols=1,figsize=(10, 18), subplot_kw={'projection': ccrs.Robinson()}) ax1=axs[0] ax2=axs[1] ax3=axs[2] ax1.set_title('PMIP4/CMIP6 ') ax1.coastlines() ax1.gridlines() fig1=ax1.imshow(data4, transform=transform,cmap=cmap,clim=clim,norm=norm) ax2.set_title('PMIP3/CMIP5') ax2.coastlines() ax2.gridlines() fig2=ax2.imshow(data3, transform=transform,cmap=cmap,clim=clim,norm=norm) ax3.set_title('PMIP4-PMIP3') ax3.coastlines() ax3.gridlines() fig3=ax3.imshow(data_diff, transform=transform,cmap=cmap,clim=clim,norm=norm) cax,kw = matplotlib.colorbar.make_axes([ax for ax in axs.flat],location='bottom',pad=0.05,shrink=0.5) plt.colorbar(fig3, cax=cax, **kw,extend='both') figname='figs/%s_%s_ave.png' %(experiment_name,variable_name) plt.savefig(figname) #Same as above but for uncertainty, i.e. stddev def pr_std_plot(data4,data3,experiment_name,variable_name): cmap=plt.get_cmap('YlGn') clim=[0,1.5] bounds = np.linspace(0, 1.5, 11) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) fig, axs = plt.subplots(nrows=2,ncols=1,figsize=(10, 12), subplot_kw={'projection': ccrs.Robinson()}) ax1=axs[0] ax2=axs[1] title= 'PMIP4' ax1.set_title(title) ax1.coastlines() ax1.gridlines() fig1=ax1.imshow(data4, transform=ccrs.PlateCarree(),cmap=cmap,clim=clim,norm=norm) title= 'PMIP3' ax2.set_title(title) ax2.coastlines() ax2.gridlines() fig2=ax2.imshow(data3, transform=ccrs.PlateCarree(),cmap=cmap,clim=clim,norm=norm) cax,kw = matplotlib.colorbar.make_axes([ax for ax in axs.flat],location='bottom',pad=0.05,shrink=0.5) plt.colorbar(fig2, cax=cax, **kw,extend='max') figname='figs/%s_%s_std.png' %(experiment_name,variable_name) plt.savefig(figname) experiment_name='midHolocene-cal-adj' variable_name='pr_spatialmean_djf' djfpr_ensemble_ave_v3=ensemble_mean_diffence(pmip_v3,experiment_name,variable_name) djfpr_ensemble_std_v3=ensemble_stddev(pmip_v3,experiment_name,variable_name) #PMIP4 djfpr_ensemble_ave_v4=ensemble_mean_diffence(pmip_v4,experiment_name,variable_name) djfpr_ensemble_std_v4=ensemble_stddev(pmip_v4,experiment_name,variable_name) #diff djfpr_ensemble_diff=djfpr_ensemble_ave_v4-djfpr_ensemble_ave_v3 pr_ave_plot(djfpr_ensemble_ave_v4,djfpr_ensemble_ave_v3,djfpr_ensemble_diff,experiment_name,variable_name) pr_std_plot(djfpr_ensemble_std_v4,djfpr_ensemble_std_v3,experiment_name,variable_name) d=Dataset('plotting_data/PMIP4_MH_Ensembles_pr_djf.nc','a') d.variables['pr_djf_ave_v4'][:]=djfpr_ensemble_ave_v4 d.variables['pr_djf_std_v4'][:]=djfpr_ensemble_std_v4 d.variables['pr_djf_ave_v3'][:]=djfpr_ensemble_ave_v3 d.variables['pr_djf_std_v3'][:]=djfpr_ensemble_std_v3 d.variables['pr_djf_ave_diff'][:]=djfpr_ensemble_diff d.close() experiment_name='midHolocene-cal-adj' variable_name='pr_spatialmean_jja' jjapr_ensemble_ave_v3=ensemble_mean_diffence(pmip_v3,experiment_name,variable_name) jjapr_ensemble_std_v3=ensemble_stddev(pmip_v3,experiment_name,variable_name) #PMIP4 jjapr_ensemble_ave_v4=ensemble_mean_diffence(pmip_v4,experiment_name,variable_name) jjapr_ensemble_std_v4=ensemble_stddev(pmip_v4,experiment_name,variable_name) #diff jjapr_ensemble_diff=jjapr_ensemble_ave_v4-jjapr_ensemble_ave_v3 pr_ave_plot(jjapr_ensemble_ave_v4,jjapr_ensemble_ave_v3,jjapr_ensemble_diff,experiment_name,variable_name) pr_std_plot(jjapr_ensemble_std_v4,jjapr_ensemble_std_v3,experiment_name,variable_name) d=Dataset('plotting_data/PMIP4_MH_Ensembles_pr_jja.nc','a') d.variables['pr_jja_ave_v4'][:]=jjapr_ensemble_ave_v4 d.variables['pr_jja_std_v4'][:]=jjapr_ensemble_std_v4 d.variables['pr_jja_ave_v3'][:]=jjapr_ensemble_ave_v3 d.variables['pr_jja_std_v3'][:]=jjapr_ensemble_std_v3 d.variables['pr_jja_ave_diff'][:]=jjapr_ensemble_diff d.close()
0.31384
0.705252
``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import os from functools import reduce df = pd.read_csv(os.path.join('..', 'data.csv'), sep=',') df.head() inputRotations = ['inputR1', 'inputR2', 'inputR3'] inputTranslations = ['inputT1', 'inputT2', 'inputT3'] inputs = inputRotations + inputTranslations outputRotations = ['outputR1', 'outputR2', 'outputR3'] outputTranslations = ['outputT1', 'outputR2', 'outputT3'] outputs = outputRotations + outputTranslations inRot = [df[col] for col in inputRotations] inTrans = [df[col] for col in inputTranslations] inAny = inRot + inTrans outRot = [df[col] for col in outputRotations] outTrans = [df[col] for col in outputTranslations] outAny = outRot + outTrans ``` # Total Number of Output Rotations depending on ... ``` totalInputs = reduce((lambda x, y: x + y), inAny) totalOutputRotations = reduce((lambda x, y: x + y), outRot) plt.plot(totalInputs, totalOutputRotations, 'ro') plt.xlabel('totalInputs') plt.ylabel('totalOutputRotations') plt.show() totalInputTranslations = reduce((lambda x, y: x + y), inTrans) totalOutputRotations = reduce((lambda x, y: x + y), outRot) plt.plot(totalInputTranslations, totalOutputRotations, 'ro') plt.xlabel('totalInputTranslations') plt.ylabel('totalOutputRotations') plt.show() totalInputRotations = reduce((lambda x, y: x + y), inRot) totalOutputRotations = reduce((lambda x, y: x + y), outRot) plt.plot(totalInputRotations, totalOutputRotations, 'ro') plt.xlabel('totalInputRotations') plt.ylabel('totalOutputRotations') plt.show() ``` # Total Number of Output Translations depending on ... ``` totalInputs = reduce((lambda x, y: x + y), inAny) totalOutputTranslations = reduce((lambda x, y: x + y), outTrans) plt.plot(totalInputs, totalOutputTranslations, 'ro') plt.xlabel('totalInputs') plt.ylabel('totalOutputTranslation') plt.show() totalInputTranslations = reduce((lambda x, y: x + y), inTrans) totalOutputTranslations = reduce((lambda x, y: x + y), outTrans) plt.plot(totalInputTranslations, totalOutputTranslations, 'ro') plt.xlabel('totalInputTranslations') plt.ylabel('totalOutputTranslation') plt.show() totalInputRotations = reduce((lambda x, y: x + y), inRot) totalOutputTranslations = reduce((lambda x, y: x + y), outTrans) plt.plot(totalInputRotations, totalOutputTranslations, 'ro') plt.xlabel('totalInputRotations') plt.ylabel('totalOutputTranslation') plt.show() ``` # Total Number of Outputs depending on ... ``` totalInputs = reduce((lambda x, y: x + y), inAny) totalOutputs = reduce((lambda x, y: x + y), outAny) plt.plot(totalInputs, totalOutputs, 'ro') plt.xlabel('totalInputs') plt.ylabel('totalOutputs') plt.show() totalInputTranslations = reduce((lambda x, y: x + y), inTrans) totalOutputs = reduce((lambda x, y: x + y), outAny) plt.plot(totalInputTranslations, totalOutputs, 'ro') plt.xlabel('totalInputTranslations') plt.ylabel('totalOutputs') plt.show() totalInputRotations = reduce((lambda x, y: x + y), inRot) totalOutputs = reduce((lambda x, y: x + y), outAny) plt.plot(totalInputRotations, totalOutputs, 'ro') plt.xlabel('totalInputRotations') plt.ylabel('totalOutputs') plt.show() ``` # Misc. ``` totalOutputs = reduce((lambda x, y: x + y), outAny).sort_values() plt.plot(df['id'], totalOutputs, 'ro') plt.xlabel('Mechanism ID') plt.ylabel('totalOutputs') plt.show() totalInputs = reduce((lambda x, y: x + y), inAny).sort_values() plt.plot(df['id'], totalInputs, 'ro') plt.xlabel('Mechanism ID') plt.ylabel('totalInputs') plt.show() #inRot commonRotations = [a * b for a,b in zip(inRot, outRot)] commonRotations #commonRotations plt.plot(["x", "y", "z"], commonRotations, 'ro') plt.xlabel('rotation axis') plt.ylabel('input and output rotation in common') plt.show() plt.plot(df['transmission'].sort_values(), df['id'], 'ro') plt.xlabel('Transmission') plt.ylabel('Mechanism ID') plt.show() plt.plot(df['id'], df['inputR1'], 'ro') plt.xlabel('Mechanism ID') plt.ylabel('Input Rotation on X axis') plt.show() ``` # Current Dev
github_jupyter
import pandas as pd import numpy as np import matplotlib.pyplot as plt import os from functools import reduce df = pd.read_csv(os.path.join('..', 'data.csv'), sep=',') df.head() inputRotations = ['inputR1', 'inputR2', 'inputR3'] inputTranslations = ['inputT1', 'inputT2', 'inputT3'] inputs = inputRotations + inputTranslations outputRotations = ['outputR1', 'outputR2', 'outputR3'] outputTranslations = ['outputT1', 'outputR2', 'outputT3'] outputs = outputRotations + outputTranslations inRot = [df[col] for col in inputRotations] inTrans = [df[col] for col in inputTranslations] inAny = inRot + inTrans outRot = [df[col] for col in outputRotations] outTrans = [df[col] for col in outputTranslations] outAny = outRot + outTrans totalInputs = reduce((lambda x, y: x + y), inAny) totalOutputRotations = reduce((lambda x, y: x + y), outRot) plt.plot(totalInputs, totalOutputRotations, 'ro') plt.xlabel('totalInputs') plt.ylabel('totalOutputRotations') plt.show() totalInputTranslations = reduce((lambda x, y: x + y), inTrans) totalOutputRotations = reduce((lambda x, y: x + y), outRot) plt.plot(totalInputTranslations, totalOutputRotations, 'ro') plt.xlabel('totalInputTranslations') plt.ylabel('totalOutputRotations') plt.show() totalInputRotations = reduce((lambda x, y: x + y), inRot) totalOutputRotations = reduce((lambda x, y: x + y), outRot) plt.plot(totalInputRotations, totalOutputRotations, 'ro') plt.xlabel('totalInputRotations') plt.ylabel('totalOutputRotations') plt.show() totalInputs = reduce((lambda x, y: x + y), inAny) totalOutputTranslations = reduce((lambda x, y: x + y), outTrans) plt.plot(totalInputs, totalOutputTranslations, 'ro') plt.xlabel('totalInputs') plt.ylabel('totalOutputTranslation') plt.show() totalInputTranslations = reduce((lambda x, y: x + y), inTrans) totalOutputTranslations = reduce((lambda x, y: x + y), outTrans) plt.plot(totalInputTranslations, totalOutputTranslations, 'ro') plt.xlabel('totalInputTranslations') plt.ylabel('totalOutputTranslation') plt.show() totalInputRotations = reduce((lambda x, y: x + y), inRot) totalOutputTranslations = reduce((lambda x, y: x + y), outTrans) plt.plot(totalInputRotations, totalOutputTranslations, 'ro') plt.xlabel('totalInputRotations') plt.ylabel('totalOutputTranslation') plt.show() totalInputs = reduce((lambda x, y: x + y), inAny) totalOutputs = reduce((lambda x, y: x + y), outAny) plt.plot(totalInputs, totalOutputs, 'ro') plt.xlabel('totalInputs') plt.ylabel('totalOutputs') plt.show() totalInputTranslations = reduce((lambda x, y: x + y), inTrans) totalOutputs = reduce((lambda x, y: x + y), outAny) plt.plot(totalInputTranslations, totalOutputs, 'ro') plt.xlabel('totalInputTranslations') plt.ylabel('totalOutputs') plt.show() totalInputRotations = reduce((lambda x, y: x + y), inRot) totalOutputs = reduce((lambda x, y: x + y), outAny) plt.plot(totalInputRotations, totalOutputs, 'ro') plt.xlabel('totalInputRotations') plt.ylabel('totalOutputs') plt.show() totalOutputs = reduce((lambda x, y: x + y), outAny).sort_values() plt.plot(df['id'], totalOutputs, 'ro') plt.xlabel('Mechanism ID') plt.ylabel('totalOutputs') plt.show() totalInputs = reduce((lambda x, y: x + y), inAny).sort_values() plt.plot(df['id'], totalInputs, 'ro') plt.xlabel('Mechanism ID') plt.ylabel('totalInputs') plt.show() #inRot commonRotations = [a * b for a,b in zip(inRot, outRot)] commonRotations #commonRotations plt.plot(["x", "y", "z"], commonRotations, 'ro') plt.xlabel('rotation axis') plt.ylabel('input and output rotation in common') plt.show() plt.plot(df['transmission'].sort_values(), df['id'], 'ro') plt.xlabel('Transmission') plt.ylabel('Mechanism ID') plt.show() plt.plot(df['id'], df['inputR1'], 'ro') plt.xlabel('Mechanism ID') plt.ylabel('Input Rotation on X axis') plt.show()
0.467089
0.726911
# Quiz 2 For Penn State student, access quiz [here](https://psu.instructure.com/courses/2177217/quizzes/4421196) ``` import ipywidgets as widgets ``` ## Question 1 Consider $f(x,y)=e^{x^2+y^2}$ , compute the Hessian matrix and determine whether $f(x,y)$ is a convex function. ```{dropdown} Show answer Answer: Hessian matrix is $$ e^{x^2+y^2} \begin{bmatrix} 4x^2+2&4xy\\ 4xy&4y^2+2 \end{bmatrix} $$ $f(x,y)$ is not a convex function ``` ## Question 2 Given any $w\in R^n,\:b\in R,\:$ consider the multivariable function $f(\boldsymbol x)=e^{\boldsymbol w\cdot \boldsymbol x+b}$  Whether $f(\boldsymbol x)$ is a convex function? ```{dropdown} Show answer Answer: Yes ``` ## Question 3 Consider $f(x,y)=x^2.$ Whether $f(x,y)$ is a $\lambda-$ strongly convex function? ```{dropdown} Show answer Answer: No ``` ## Question 4 Consider $$ f\left( \begin{matrix} x\\ y \end{matrix} \right)=x^2+y^2 $$ Given initial guess  $$ \left( \begin{matrix} x^0\\ y^0 \end{matrix} \right) = \left( \begin{matrix} 1\\ 2 \end{matrix} \right), \eta=\frac14 $$ , compute two steps of the gradient  descent method for $f(x,y)$: $$ \left( \begin{matrix} x^{k+1}\\ y^{k+1} \end{matrix} \right) = \left( \begin{matrix} x^k\\ y^k \end{matrix} \right) - \eta \nabla f\left( \begin{matrix} x^k\\ y^k \end{matrix} \right), k=0, 1. $$ ```{dropdown} Show answer Answer: $\frac{1}{4},\frac{1}{2}$ ``` ## Question 5 Suppose a point $x$ is drawn at random uniformly from the square $[-1,1]\times[-1,1].$ Let  $$ \boldsymbol v= \left( \begin{matrix} 1\\ 1 \end{matrix} \right) $$ and consider the random variable $\mathcal X_{\boldsymbol v} ={\boldsymbol x} \cdot {\boldsymbol v}$.  What are $\mathbb{E} [\mathcal X_{\boldsymbol v}]$ and  $\big(\mathbb{V}[ \mathcal X_{\boldsymbol v}]\big)^2$. ```{dropdown} Show answer Answer: Unavailable ``` ## Question 6 ``` def model(100,10): return nn.Linear(100,10) ``` What are the sizes of W and b of the model? ```{dropdown} Show answer Answer: Size of W: torch.Size([10, 100]), Size of b: torch.Size([10]) ``` ## Question 7 Load MNIST dataset with batch_size=100 as follows ``` trainset = torchvision.datasets.MNIST(root='./data', train= True, download=True,transform=torchvision.transforms.ToTensor()) trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True) for i, (images, labels) in enumerate(trainloader): ``` What are the sizes of variable images and labels? ```{dropdown} Show answer Answer: Size of images: torch.Size([100, 1, 28, 28]), Size of labels: torch.Size([100]) ``` ## Question 8 In the training process of MNIST dataset with mini-batch stochastic gradient descent(SGD) method, if we set bath_size = 600, how many iterations (or SGD steps) are there in one epoch? ```{dropdown} Show answer Answer: 100 ``` ## Question 9 What is the output of the following code? ``` sequence = torch.tensor(([[4,2,3],[1,5,6],[0,7,2]])) maxvalue, index = torch.max(sequence, 1) print(maxvalue,',',index) ``` ```{dropdown} Show answer Answer: tensor([4, 6, 7]) , tensor([0, 2, 1]) ``` ## Question 10 What is the output of the following code? ``` num_correct = 0 labels = torch.tensor([1,2,3,4,0,0,0]) predicted = torch.tensor([0,2,3,4,1,2,0]) num_correct += (predicted == labels).sum() print(num_correct) ``` ```{dropdown} Show answer Answer: tensor([4, 7, 6]) , tensor([0, 2, 1]) ```
github_jupyter
import ipywidgets as widgets ## Question 2 Given any $w\in R^n,\:b\in R,\:$ consider the multivariable function $f(\boldsymbol x)=e^{\boldsymbol w\cdot \boldsymbol x+b}$  Whether $f(\boldsymbol x)$ is a convex function? ## Question 3 Consider $f(x,y)=x^2.$ Whether $f(x,y)$ is a $\lambda-$ strongly convex function? ## Question 4 Consider $$ f\left( \begin{matrix} x\\ y \end{matrix} \right)=x^2+y^2 $$ Given initial guess  $$ \left( \begin{matrix} x^0\\ y^0 \end{matrix} \right) = \left( \begin{matrix} 1\\ 2 \end{matrix} \right), \eta=\frac14 $$ , compute two steps of the gradient  descent method for $f(x,y)$: $$ \left( \begin{matrix} x^{k+1}\\ y^{k+1} \end{matrix} \right) = \left( \begin{matrix} x^k\\ y^k \end{matrix} \right) - \eta \nabla f\left( \begin{matrix} x^k\\ y^k \end{matrix} \right), k=0, 1. $$ ## Question 5 Suppose a point $x$ is drawn at random uniformly from the square $[-1,1]\times[-1,1].$ Let  $$ \boldsymbol v= \left( \begin{matrix} 1\\ 1 \end{matrix} \right) $$ and consider the random variable $\mathcal X_{\boldsymbol v} ={\boldsymbol x} \cdot {\boldsymbol v}$.  What are $\mathbb{E} [\mathcal X_{\boldsymbol v}]$ and  $\big(\mathbb{V}[ \mathcal X_{\boldsymbol v}]\big)^2$. ## Question 6 What are the sizes of W and b of the model? ## Question 7 Load MNIST dataset with batch_size=100 as follows What are the sizes of variable images and labels? ## Question 8 In the training process of MNIST dataset with mini-batch stochastic gradient descent(SGD) method, if we set bath_size = 600, how many iterations (or SGD steps) are there in one epoch? ## Question 9 What is the output of the following code? ## Question 10 What is the output of the following code?
0.566498
0.991456
# CS636 Final Project ### group member: Chinghao Sun, Tianqi Xu, Haotian Yin, Chen Ye ### Predict Future Sales * https://www.kaggle.com/c/competitive-data-science-predict-future-sales/data Goals 1. We are not competing with other teams on kaggle 2. This project is a playground to practice the knowledge of this class and prepare for the final exam. 3. Group project, 1-4 people per team 4. You can use R or Python 5. Build one prediction model using the ML algorithms of this course 6. Evaluate your prediction model 7. Try different ways to improve your model and show the improvements. 8. Submit code and results in Jupyter and HTML formats on canvas # Importing all the required libraries at once so that they can systematically be used when required ``` import numpy as np import pandas as pd import datetime import warnings warnings.simplefilter("ignore") # ignore all the warning messages but show the errors sales_train = pd.read_csv('sales_train.csv') shops = pd.read_csv('shops.csv') items = pd.read_csv('items.csv') item_categories = pd.read_csv('item_categories.csv') test = pd.read_csv('test.csv') submission = pd.read_csv('sample_submission.csv') ``` # Load all the necessary files for data ``` sales_train.head() # shop_id with shop sales_shop = sales_train.merge(shops, on = 'shop_id') # item_id with items sales_shop_items = sales_shop.merge(items, on = 'item_id') sales_shop_items_itmcat = sales_shop_items.merge(item_categories, on ='item_category_id') sales_train.shape test.head() # item_id with items,sales_train # ID with submission submission.head() shops.head() items.head() item_categories.head() df= sales_shop_items_itmcat df.shape sales_train.columns sales_train.head() ``` ## Preprocessing data ### Feature selection from data by analysis the problem Based on the test data, the only features test data give is shop_id and item_id. In training data set, two more features are given. dat_block_num is the number of month. This information is included in the item of feature date. item_price is given in training data, but not given in test data. By looking at the training data, we find that the price of items decreases by date. This is just a simple model, and it is not quite straight to predict item_cnt by predicting price.So in this model, we do not consider the effect of price time series. shop_id also indicates shop_name. Because the name is in Russian and we cannot judge the popularity of shop by its name, so we do not use shop name in our model. ``` sales_train.drop(['date_block_num','item_price'], axis=1, inplace=True) sales_train['date'] = pd.to_datetime(sales_train['date'], dayfirst=True) sales_train['date'] = sales_train['date'].apply(lambda x: x.strftime('%Y-%m')) sales_train.columns sales_train.head() ``` ### Grouping dataset “sales_train” by month.: Since prediction of October 2015 is asked, each month’s overall data will be needed. ### columns of “shop_id” and “item_id” are needed: to dataset “test”, in order to identify the forecasting for the work later. ``` df = sales_train.groupby(['date','shop_id','item_id']).sum() df_train = df.pivot_table(index=['shop_id','item_id'], columns='date', values='item_cnt_day', fill_value=0) df_train.reset_index(inplace=True) df_train.head() ``` ## Applying model on data Obviously, the data is a time series. What we want to do is predicting value of time k+1 by values from the first k time. ``` df_test = pd.merge(test, df_train, on=['shop_id','item_id'], how='left') df_test.drop(['ID', '2013-01'], axis=1, inplace=True) df_test = df_test.fillna(0) df_test.head() ``` ### We use MultiLinear Regression to deal with the time series ``` from sklearn.linear_model import LinearRegression from sklearn import neighbors, preprocessing, model_selection y = df_train['2015-10'].values X= df_train.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) regressor = LinearRegression() regressor.fit(X_train, y_train) #training the algorithm ``` ### result and its evaluation ``` y_pred = regressor.predict(X_test) y_pred from sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) ``` ### How to improve the model? First R-squared Error is -0.5611 How to improve the model? Multilinear Regression is an outlier sensitive model. Getting rid of outliers by z-score probable can be a solution. ``` from sklearn.preprocessing import StandardScaler df_train_z=df_train.drop(['shop_id','item_id'],axis=1) df_train_z.head() df = StandardScaler().fit_transform(df_train_z.values) cols = df_train_z.columns df= pd.DataFrame(df,columns = cols) df['shop_id']=df_train['shop_id'] df['item_id']=df_train['item_id'] df = df[df.values<=3] y = df['2015-10'].values X= df.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) regressor = LinearRegression() regressor.fit(X_train, y_train) #training the algorithm y_pred = regressor.predict(X_test) # y_pred from sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) ``` However, the Filter method by Scaling works on the improvement even is not incredibly efficient. ## improvement attempt 2: Decision Tree ``` from sklearn.tree import DecisionTreeRegressor dt = DecisionTreeRegressor() y = df_train['2015-10'].values X= df_train.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) dt.fit(X_train, y_train) y_pred = dt.predict(X_test) dt.feature_importances_ print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) from sklearn.tree import DecisionTreeRegressor dt = DecisionTreeRegressor() y = df['2015-10'].values X= df.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) dt.fit(X_train, y_train) y_pred = dt.predict(X_test) dt.feature_importances_ print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) ``` The improvement is more efficient on the DecisionTreeRegressor model. DecisionTreeRegressor model improved from R square 0.1077 to 0.99. The overfitting should be concerned on this high R square. ## improvement attempt 3: Random Forest ``` from sklearn.ensemble import RandomForestRegressor df = sales_train.groupby(['date','shop_id','item_id']).sum() df_train = df.pivot_table(index=['shop_id','item_id'], columns='date', values='item_cnt_day', fill_value=0) df_train.reset_index(inplace=True) RFR = RandomForestRegressor(n_estimators = 100) y = df_train['2015-10'].values X= df_train.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.3,random_state=101) RFR.fit(X_train, y_train) y_pred = dt.predict(X_test) RFR.feature_importances_ print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) ``` We also think of adding item_category as another feature. However, the improvement in result is not quite obvious. So we stick to our attempt on the Decision Tree. # Evaluation of Model Because the huge differences of R-square of DecisionTreeRegressor on running multiple times. Cross validation should be a better evaluation. ``` seed = 1 kfold = model_selection.KFold(n_splits=10) model = dt results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring='accuracy') print('Accuracy -val set: %.2f%% (%.2f)' % (results.mean()*100, results.std())) ```
github_jupyter
import numpy as np import pandas as pd import datetime import warnings warnings.simplefilter("ignore") # ignore all the warning messages but show the errors sales_train = pd.read_csv('sales_train.csv') shops = pd.read_csv('shops.csv') items = pd.read_csv('items.csv') item_categories = pd.read_csv('item_categories.csv') test = pd.read_csv('test.csv') submission = pd.read_csv('sample_submission.csv') sales_train.head() # shop_id with shop sales_shop = sales_train.merge(shops, on = 'shop_id') # item_id with items sales_shop_items = sales_shop.merge(items, on = 'item_id') sales_shop_items_itmcat = sales_shop_items.merge(item_categories, on ='item_category_id') sales_train.shape test.head() # item_id with items,sales_train # ID with submission submission.head() shops.head() items.head() item_categories.head() df= sales_shop_items_itmcat df.shape sales_train.columns sales_train.head() sales_train.drop(['date_block_num','item_price'], axis=1, inplace=True) sales_train['date'] = pd.to_datetime(sales_train['date'], dayfirst=True) sales_train['date'] = sales_train['date'].apply(lambda x: x.strftime('%Y-%m')) sales_train.columns sales_train.head() df = sales_train.groupby(['date','shop_id','item_id']).sum() df_train = df.pivot_table(index=['shop_id','item_id'], columns='date', values='item_cnt_day', fill_value=0) df_train.reset_index(inplace=True) df_train.head() df_test = pd.merge(test, df_train, on=['shop_id','item_id'], how='left') df_test.drop(['ID', '2013-01'], axis=1, inplace=True) df_test = df_test.fillna(0) df_test.head() from sklearn.linear_model import LinearRegression from sklearn import neighbors, preprocessing, model_selection y = df_train['2015-10'].values X= df_train.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) regressor = LinearRegression() regressor.fit(X_train, y_train) #training the algorithm y_pred = regressor.predict(X_test) y_pred from sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) from sklearn.preprocessing import StandardScaler df_train_z=df_train.drop(['shop_id','item_id'],axis=1) df_train_z.head() df = StandardScaler().fit_transform(df_train_z.values) cols = df_train_z.columns df= pd.DataFrame(df,columns = cols) df['shop_id']=df_train['shop_id'] df['item_id']=df_train['item_id'] df = df[df.values<=3] y = df['2015-10'].values X= df.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) regressor = LinearRegression() regressor.fit(X_train, y_train) #training the algorithm y_pred = regressor.predict(X_test) # y_pred from sklearn import metrics print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) from sklearn.tree import DecisionTreeRegressor dt = DecisionTreeRegressor() y = df_train['2015-10'].values X= df_train.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) dt.fit(X_train, y_train) y_pred = dt.predict(X_test) dt.feature_importances_ print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) from sklearn.tree import DecisionTreeRegressor dt = DecisionTreeRegressor() y = df['2015-10'].values X= df.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2) dt.fit(X_train, y_train) y_pred = dt.predict(X_test) dt.feature_importances_ print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) from sklearn.ensemble import RandomForestRegressor df = sales_train.groupby(['date','shop_id','item_id']).sum() df_train = df.pivot_table(index=['shop_id','item_id'], columns='date', values='item_cnt_day', fill_value=0) df_train.reset_index(inplace=True) RFR = RandomForestRegressor(n_estimators = 100) y = df_train['2015-10'].values X= df_train.drop(['2015-10'], axis = 1) X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.3,random_state=101) RFR.fit(X_train, y_train) y_pred = dt.predict(X_test) RFR.feature_importances_ print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) print('R-squared Error:', metrics.r2_score(y_test, y_pred)) seed = 1 kfold = model_selection.KFold(n_splits=10) model = dt results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring='accuracy') print('Accuracy -val set: %.2f%% (%.2f)' % (results.mean()*100, results.std()))
0.538255
0.826046
# DAT257x: Reinforcement Learning Explained ## Lab 6: Function Approximation ### Exercise 6.1: Q-Learning Agent with Linear Function Approximation ``` import numpy as np import sys if "../" not in sys.path: sys.path.append("../") from lib.envs.simple_rooms import SimpleRoomsEnv from lib.simulation import Experiment class Agent(object): def __init__(self, actions): self.actions = actions self.num_actions = len(actions) def act(self, state): raise NotImplementedError class QLearningFAAgent(Agent): def __init__(self, actions, obs_size, epsilon=0.01, alpha=0.5, gamma=1): super(QLearningFAAgent, self).__init__(actions) ## TODO 1 ## Initialize thetas here ## In addition, initialize the value of epsilon, alpha and gamma def featureExtractor(self, state, action): feature = None actionindex = np.zeros(self.num_actions, dtype=np.int) actionindex[action] = 1 feature = np.concatenate([actionindex[i] * state for i in self.actions]) return feature def act(self, state): ## epsilon greedy policy if np.random.random() < self.epsilon: i = np.random.randint(0,len(self.actions)) else: #q = [np.sum(self.theta.transpose() * self.featureExtractor(state, a)) for a in self.actions] ## TODO 2 q = 0 # replace 0 with the correct calculation here if q.count(max(q)) > 1: best = [i for i in range(len(self.actions)) if q[i] == max(q)] i = np.random.choice(best) else: i = q.index(max(q)) action = self.actions[i] return action def learn(self, state1, action1, reward, state2, done): """ Q-learning with FA theta <- theta + alpha * td_delta * f(s,a) where td_delta = reward + gamma * max(Q(s') - Q(s,a)) Q(s,a) = thetas * f(s,a) max(Q(s')) = max( [ thetas * f(s'a) for a in all actions] ) """ ## TODO 3 ## Implement the q-learning update here maxqnew = 0 # replace 0 with the correct calculation oldv = 0 # replace 0 with the correct calculation td_target = reward + self.gamma * maxqnew td_delta = td_target - oldv self.theta += self.alpha * 0 # replace 0 with the correct calculation interactive = True %matplotlib nbagg env = SimpleRoomsEnv() agent = QLearningFAAgent(range(env.action_space.n),16) experiment = Experiment(env, agent) experiment.run_qlearning(10, interactive) interactive = False %matplotlib inline env = SimpleRoomsEnv() agent = QLearningFAAgent(range(env.action_space.n),16) experiment = Experiment(env, agent) experiment.run_qlearning(50, interactive) ```
github_jupyter
import numpy as np import sys if "../" not in sys.path: sys.path.append("../") from lib.envs.simple_rooms import SimpleRoomsEnv from lib.simulation import Experiment class Agent(object): def __init__(self, actions): self.actions = actions self.num_actions = len(actions) def act(self, state): raise NotImplementedError class QLearningFAAgent(Agent): def __init__(self, actions, obs_size, epsilon=0.01, alpha=0.5, gamma=1): super(QLearningFAAgent, self).__init__(actions) ## TODO 1 ## Initialize thetas here ## In addition, initialize the value of epsilon, alpha and gamma def featureExtractor(self, state, action): feature = None actionindex = np.zeros(self.num_actions, dtype=np.int) actionindex[action] = 1 feature = np.concatenate([actionindex[i] * state for i in self.actions]) return feature def act(self, state): ## epsilon greedy policy if np.random.random() < self.epsilon: i = np.random.randint(0,len(self.actions)) else: #q = [np.sum(self.theta.transpose() * self.featureExtractor(state, a)) for a in self.actions] ## TODO 2 q = 0 # replace 0 with the correct calculation here if q.count(max(q)) > 1: best = [i for i in range(len(self.actions)) if q[i] == max(q)] i = np.random.choice(best) else: i = q.index(max(q)) action = self.actions[i] return action def learn(self, state1, action1, reward, state2, done): """ Q-learning with FA theta <- theta + alpha * td_delta * f(s,a) where td_delta = reward + gamma * max(Q(s') - Q(s,a)) Q(s,a) = thetas * f(s,a) max(Q(s')) = max( [ thetas * f(s'a) for a in all actions] ) """ ## TODO 3 ## Implement the q-learning update here maxqnew = 0 # replace 0 with the correct calculation oldv = 0 # replace 0 with the correct calculation td_target = reward + self.gamma * maxqnew td_delta = td_target - oldv self.theta += self.alpha * 0 # replace 0 with the correct calculation interactive = True %matplotlib nbagg env = SimpleRoomsEnv() agent = QLearningFAAgent(range(env.action_space.n),16) experiment = Experiment(env, agent) experiment.run_qlearning(10, interactive) interactive = False %matplotlib inline env = SimpleRoomsEnv() agent = QLearningFAAgent(range(env.action_space.n),16) experiment = Experiment(env, agent) experiment.run_qlearning(50, interactive)
0.215846
0.91114
# Basics of molecular graph MolecularGraph.jl version: 0.10.0 This tutorial includes following fundamental operations of molecular graph. - Concept of molecular object - Iterate over graph elements - Count atom nodes and bond edges - Neighbors/adjacencies/incidences - Edit molecular graph - Subgraph view ``` using Pkg Pkg.activate("..") using MolecularGraph # Demo molecule with atom indices mol = smilestomol("Clc4cc2c(C(/c1ncccc1CC2)=C3/CCNCC3)cc4") canvas = SvgCanvas() draw2d!(canvas, mol) drawatomindex!(canvas, mol) molsvg = tosvg(canvas, 300, 300) display("image/svg+xml", molsvg) ``` ## Concept of molecule object `GraphMol{Atom,Bond}` is a general purpose molecule type often used in MolecularGraph.jl. You can find the definition of it in `src/model/molgraph.jl` ```julia struct GraphMol{A<:Atom,B<:Bond} <: OrderedGraph neighbormap::Vector{Dict{Int,Int}} edges::Vector{Tuple{Int,Int}} nodeattrs::Vector{A} edgeattrs::Vector{B} cache::Dict{Symbol,Any} attributes::Dict{Symbol,Any} end ``` GraphMol is a simple graph model with molecule attributes. The graph is represented by `neighbormap` field (size N vector of adjacency dict {edge => node}) and `edges` field (size E vector of tuples (node1, node2)), where N is the number of nodes and E is the number of edges. This model assumes node and edge indices are consecutive, so implicitly indices of `neighbormap`and `edges` vectors correspond to node and edge indices, respectively. `nodeattrs` field is a size N vector of node attibute objects that have subtype of `Atom`. `Atom` is typically immutable and have atom property values such as atom symbol, charge number, mass number, and etc. `edgeattrs` fiels is a size E vector of edge attiblute objects that have subtype of `Bond`. `Bond` is also typically immutable and have bond property values such as bond order number and stereochemistry flags. `cache` is caches of calculated descriptors described later. `attributes` is attributes of the molecule itself. Typically, SDFile optional fields like `> <compound_name>` will be stored in this field. ## Iterate over graph elements Calling `GraphMol.nodeattrs` and `GraphMol.edgeattrs` directly is not recommended. Use `nodeattrs(mol)` and `edgeattrs(mol)` interfaces to iterate over elements. Most of graph related functions are in `Graph` submodule. You can write `using MolecularGraph.Graph` to call these functions conveniently. ``` using MolecularGraph.Graph println("Atoms:") for (i, atom) in enumerate(nodeattrs(mol)) print("($(i), $(atom.symbol)), ") end println() println("Bonds:") for (i, bond) in enumerate(edgeattrs(mol)) print("($(i), $(bond.order)), ") end ``` ## Count atom nodes and bond edges `Graph.nodecount` and `Graph.edgecount` counts the number of graph elements. Note that these do not include atoms not described in the graph (e.g. Implicit hydrogen). ``` ncnt = nodecount(mol) ecnt = edgecount(mol) println("Nodes: $(ncnt)") println("Edges: $(ecnt)") ``` ## Neighbors/adjacencies/incidences `neighbors(mol, atom1)` returns dict of (`edge` => `atom2`) that means `atom2` is connected to `atom1` through `edge`. This is just an aliase of `mol.neighbormap[atom1]` indeed. `adjacencies(mol, atom1)` returns a set of adjacent (= connected by edge) nodes. `incidences(mol, atom2)` returns a set of incident (= connecting) edges. These methods generate new sets, therefore are safe for destructive operations like `setdiff!` but a bit more costful than `neighbors`. ``` neighbors(mol, 2) adjacencies(mol, 2) incidences(mol, 2) ``` ## Edit molecular graph In MolecularGraph.jl, methods to edit molecules manually are often less accessible intentionally. These method can change molecule objects unexpectedly and will cause serious adverce effect that can affect consistency and reproducibility of your analysis workflow. In many cases, following alternative methods would suffice. - Methods in `src/preprocessing.jl`for general cheminformatics operations (see Preprocessing tutorial) - `removehydrogens`/`addhydrogens` -> deal with implicit/explicit hydrogens - `extractlargestcomponent` -> desaltation and dehydration - Standardization of notation in protonation and resonance structure - Extract substructures by `nodesubgraph` and `edgesubgraph` described below ### Graph topology There are some methods that directly manipulate graph topology in the graph interface API (e.g. `addnode!`, `addedge!`, `unlinknodes` and `unlinkedges`), but are not recommended to use because insertion and deletion of graph elements are computationally expensive in our molecular graph model based on vectors. ### Attributes of graph elements Note that types belongs to `Atom` and `Bond` are typically immutable. There are some methods to edit attributes like `setcharge(atom)` and `setorder(bond)` that actually do not change the objects themselves but return new Atom and Bond with attributes editted. `setnodeattr!(mol, i, atom)` and `setedgeattr!(mol, i, edge)` are interfaces to replace the attribute object at the position i of `mol.nodeattr`/`mol.edgeattr` by the new atom/edge. Accordingly, code to edit an atom attribute would be like as shown below. ``` mol2 = clone(mol) # I want to use the original mol later newatom = setcharge(nodeattr(mol2, 8), 1) setnodeattr!(mol2, 8, newatom) molsvg = drawsvg(mol2, 300, 300) display("image/svg+xml", molsvg) ``` ## Subgraph view `SubgraphView` consists of the original graph, node set and edge set, and behaves as almost same as `GraphMol ` object that is substructure of the original graph derived from the node and edge sets. `nodesubgraph(mol, nodeset)` returns `SubgraphView` object that represents node-induced substructure of `mol` induced from `nodeset`. `edgesubgraph(mol, edgeset)` returns edge-induced `SubgraphView` similarily. As SubgraphView refers molecule attributes and calculated descriptors of the original molecule, many descriptor calculation methods (and even structure drawing) can be applied to it without problems. ``` subg = nodesubgraph(mol, Set(7:12)) ncnt = nodecount(subg) ecnt = edgecount(subg) adj7 = adjacencies(subg, 7) println("Nodes: $(ncnt)") println("Edges: $(ecnt)") println("Adjacecies of atom 7: $(adj7)") molsvg = drawsvg(subg, 300, 300) display("image/svg+xml", molsvg) ``` SubgraphView can be nested. But frequent subgraphing can affect performance. If you want to mine subgraph space deeply, it is recommended to instanciate it as GraphMol by `graphmol(subg)`. ``` subgsubg = nodesubgraph(subg, Set(7:9)) molsvg = drawsvg(subgsubg, 300, 300) display("image/svg+xml", molsvg) graphmol(subgsubg) ```
github_jupyter
using Pkg Pkg.activate("..") using MolecularGraph # Demo molecule with atom indices mol = smilestomol("Clc4cc2c(C(/c1ncccc1CC2)=C3/CCNCC3)cc4") canvas = SvgCanvas() draw2d!(canvas, mol) drawatomindex!(canvas, mol) molsvg = tosvg(canvas, 300, 300) display("image/svg+xml", molsvg) struct GraphMol{A<:Atom,B<:Bond} <: OrderedGraph neighbormap::Vector{Dict{Int,Int}} edges::Vector{Tuple{Int,Int}} nodeattrs::Vector{A} edgeattrs::Vector{B} cache::Dict{Symbol,Any} attributes::Dict{Symbol,Any} end using MolecularGraph.Graph println("Atoms:") for (i, atom) in enumerate(nodeattrs(mol)) print("($(i), $(atom.symbol)), ") end println() println("Bonds:") for (i, bond) in enumerate(edgeattrs(mol)) print("($(i), $(bond.order)), ") end ncnt = nodecount(mol) ecnt = edgecount(mol) println("Nodes: $(ncnt)") println("Edges: $(ecnt)") neighbors(mol, 2) adjacencies(mol, 2) incidences(mol, 2) mol2 = clone(mol) # I want to use the original mol later newatom = setcharge(nodeattr(mol2, 8), 1) setnodeattr!(mol2, 8, newatom) molsvg = drawsvg(mol2, 300, 300) display("image/svg+xml", molsvg) subg = nodesubgraph(mol, Set(7:12)) ncnt = nodecount(subg) ecnt = edgecount(subg) adj7 = adjacencies(subg, 7) println("Nodes: $(ncnt)") println("Edges: $(ecnt)") println("Adjacecies of atom 7: $(adj7)") molsvg = drawsvg(subg, 300, 300) display("image/svg+xml", molsvg) subgsubg = nodesubgraph(subg, Set(7:9)) molsvg = drawsvg(subgsubg, 300, 300) display("image/svg+xml", molsvg) graphmol(subgsubg)
0.33372
0.985426
<a href="https://colab.research.google.com/github/derzhavin3016/CompMath/blob/master/Lab1/Lab1.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # Домашняя лабораторная работа №1 по вычислительной математике ### Державин Андрей, Б01-909 группа ``` import numpy as np from matplotlib import pyplot as plt import sympy as sp ``` ## Объявляем некоторые вспомогательные константы - символ х - для работы sympy - машинное $\varepsilon$ - массив $h$ ``` # Some constants x_s = sp.symbols('x') eps = np.finfo(float).eps def get_h(n): return 2 / 2 ** (n) n_arr = np.arange(1, 21) h_arr = get_h(n_arr) ``` ## Выводим формулы для погрешностей методов ### Метод 1 $$ \frac{f(x + h) - f(x)}{h} \approx f'(x) + f''(x)\frac{h}{2} \Rightarrow \Delta_m = f''(x)\frac{h}{2} $$ Полная погрешность: $$ \Delta = \boxed{\frac{2\varepsilon}{h} + f''(x)\frac{h}{2}} $$ ### Метод 2 $$ \frac{f(x + h) - f(x)}{h} \approx f'(x) + f''(x)\frac{h}{2} \Rightarrow \Delta_m = f''(x)\frac{h}{2} $$ Полная погрешность: $$ \Delta = \boxed{\frac{2\varepsilon}{h} + f''(x)\frac{h}{2}} $$ ### Метод 3 $$ \frac{f(x + h) - f(x-h)}{2h} \approx f'(x) + f'''(x)\frac{h^2}{6} \Rightarrow \Delta_m = f'''(x)\frac{h^2}{6} $$ Полная погрешность: $$ \Delta = \boxed{\frac{\varepsilon}{h} + f'''(x)\frac{h^2}{6}} $$ ### Метод 4 $$ \frac{4}{3} \frac{f(x + h) - f(x - h)}{2h} - \frac{1}{3} \frac{f(x + 2h) - f(x - 2h)}{4h} \approx \frac{4}{3} \left( f'(x) + f^{(5)}(x) \cdot h^4 / 120 \right) - \frac{1}{3} \left( f'(x) + f^{(5)}(x) \cdot 16h^4 / 120 \right) \Rightarrow $$$$ \Delta_{m} = f^{(5)}(x) \cdot \frac{h^4}{3\cdot 120} \left(4-16 \right) = -f^{(5)}(x) \cdot \frac{h^4}{30} $$ Полная погрешность: $$ \Delta = \frac{4\varepsilon}{3h} - \frac{1\varepsilon}{6h} -f^{(5)}(x) \cdot \frac{h^4}{30} = \boxed{\frac{3}{2}\frac{\varepsilon}{h} -f^{(5)}(x) \cdot \frac{h^4}{30}} $$ ### Метод 5 $$ \frac{3}{2} \frac{f(x + h) - f(x - h)}{2h} - \frac{3}{5} \frac{f(x + 2h) - f(x - 2h)}{4h}+ \frac{1}{10} \frac{f(x + 3h) - f(x - 3h)}{6h} \approx \frac{3}{2} \left( f'(x) + f^{(7)}(x) \cdot \frac{h^6}{5040} \right) - \frac{3}{5} \left( f'(x) + f^{(7)}(x) \cdot 64\frac{h^6}{5040} \right) + \frac{1}{10} \left( f'(x) + f^{(7)}(x) \cdot 729\frac{h^6}{5040} \right) \Rightarrow $$$$ \Delta_{m} = f^{(7)}(x) \cdot \frac{h^6}{10 \cdot 5040} \left(15 - 384 +729\right) = f^{(7)}(x) \cdot \frac{h^6}{140} $$ Полная погрешность: $$ \Delta = \frac{3\varepsilon}{2h} + \frac{3\varepsilon}{10h} + \frac{\varepsilon}{30h} +f^{(7)}(x) \cdot \frac{h^6}{140} = \boxed{\frac{11}{6}\frac{\varepsilon}{h} + f^{(7)}(x) \cdot \frac{h^6}{140}} $$ ## Реализуем полученные погрешности в функциях - Функции являются функциями из `sympy`, каждой функции погрешности передается такая функция, точка, а также шаг. ``` def err_1(f, x, h): return sp.diff(f, x_s, 2).subs(x_s, x).doit() * h / 2 + 2 * eps / h def err_2(f, x, h): return 2 * eps / h - sp.diff(f, x_s, 2).subs(x_s, x).doit() * h / 2 def err_3(f, x, h): return eps / h + sp.diff(f, x_s, 3).subs(x_s, x) * h * h / 6 def err_4(f, x, h): delta_round = 4 / 3 * eps / h + 1 / 3 * eps / (2 * h) meth_delta = - sp.diff(f, x_s, 5).subs(x_s, x) * h * h * h * h / 30 return delta_round + meth_delta def err_5(f, x, h): delta_round = 1.5 * eps / h + 0.6 * eps / (2 * h) + 0.1 * eps / (3 * h) meth_delta = sp.diff(f, x_s, 7).subs(x_s, x) * h * h * h * h * h * h / 140 return delta_round + meth_delta err_func_list = [err_1, err_2, err_3, err_4, err_5] ``` ## Массив для исследуемых функций ``` funcs_list = [ sp.sin(x_s ** 2), sp.cos(sp.sin(x_s)), sp.exp(sp.sin(sp.cos(x_s))), sp.log(x_s + 3), (x_s + 3) ** 0.5 ] ``` ## Реализуем класс, представляющий метод - Класс хранит в себе функцию ошибки, получаемую в конструкторе, имеет один метод: 1. `plot` - строит требуемый график для функции `f` в точке `x`, в качестве функции ошибки используется функция, полученная в конструкторе ``` class Method: # func : func(x) # err : err(f, x, h) def __init__(self, err): self.__err = err def plot(self, f, x): apply_x = lambda h: self.__err(f, x, h) delta_arr = abs(apply_x(h_arr)) plt.loglog(h_arr, delta_arr, label = f'Method #{self.__err.__name__[-1]}') ``` ## Реализуем функцию, для более удобного построения графиков Данная функция принимает на вход символьную (`sympy`) функцию `func` и точку `x` (в которой считать производную), после чего строит на одном рисунке графики зависимости шага от погрешности для каждой функции ошибки. ``` def run_method(func, x = np.pi / 4): for err in err_func_list: meth = Method(err) meth.plot(func, x) plt.legend() plt.title(f"f(x) = {str(func)}") plt.show() ``` ## Запустим написанную функцию для каждой из требуемых функций, и получим графики ``` run_method(funcs_list[0]) run_method(funcs_list[1]) run_method(funcs_list[2]) run_method(funcs_list[3]) run_method(funcs_list[4]) ```
github_jupyter
import numpy as np from matplotlib import pyplot as plt import sympy as sp # Some constants x_s = sp.symbols('x') eps = np.finfo(float).eps def get_h(n): return 2 / 2 ** (n) n_arr = np.arange(1, 21) h_arr = get_h(n_arr) def err_1(f, x, h): return sp.diff(f, x_s, 2).subs(x_s, x).doit() * h / 2 + 2 * eps / h def err_2(f, x, h): return 2 * eps / h - sp.diff(f, x_s, 2).subs(x_s, x).doit() * h / 2 def err_3(f, x, h): return eps / h + sp.diff(f, x_s, 3).subs(x_s, x) * h * h / 6 def err_4(f, x, h): delta_round = 4 / 3 * eps / h + 1 / 3 * eps / (2 * h) meth_delta = - sp.diff(f, x_s, 5).subs(x_s, x) * h * h * h * h / 30 return delta_round + meth_delta def err_5(f, x, h): delta_round = 1.5 * eps / h + 0.6 * eps / (2 * h) + 0.1 * eps / (3 * h) meth_delta = sp.diff(f, x_s, 7).subs(x_s, x) * h * h * h * h * h * h / 140 return delta_round + meth_delta err_func_list = [err_1, err_2, err_3, err_4, err_5] funcs_list = [ sp.sin(x_s ** 2), sp.cos(sp.sin(x_s)), sp.exp(sp.sin(sp.cos(x_s))), sp.log(x_s + 3), (x_s + 3) ** 0.5 ] class Method: # func : func(x) # err : err(f, x, h) def __init__(self, err): self.__err = err def plot(self, f, x): apply_x = lambda h: self.__err(f, x, h) delta_arr = abs(apply_x(h_arr)) plt.loglog(h_arr, delta_arr, label = f'Method #{self.__err.__name__[-1]}') def run_method(func, x = np.pi / 4): for err in err_func_list: meth = Method(err) meth.plot(func, x) plt.legend() plt.title(f"f(x) = {str(func)}") plt.show() run_method(funcs_list[0]) run_method(funcs_list[1]) run_method(funcs_list[2]) run_method(funcs_list[3]) run_method(funcs_list[4])
0.453504
0.99128
# Train your first neural network: basic classification This guide trains a neural network model to **classify images of clothing, like sneakers and shirts**. This guide uses [tf.keras](https://www.tensorflow.org/guide/keras), a high-level API to build and train models in TensorFlow. ``` # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ``` ## Import the Fashion MNIST dataset This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels) We will use 60,000 images to train the network and 10,000 images to evaluate how accurately the network learned to classify images. https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz Put the four compressed files in the `~/.keras/datasets/fashion-mnist` directory after manual download. ``` fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ``` Loading the dataset returns four NumPy arrays: * The `train_images` and `train_labels` arrays are the *training set*—the data the model uses to learn. * The model is tested against the *test set*, the `test_images`, and `test_labels` arrays. **The images are 28x28 NumPy arrays**, with pixel values ranging between 0 and 255. The *labels* are an array of integers, ranging from 0 to 9. These correspond to the *class* of clothing the image represents: <table> <tr> <th>Label</th> <th>Class</th> </tr> <tr> <td>0</td> <td>T-shirt/top</td> </tr> <tr> <td>1</td> <td>Trouser</td> </tr> <tr> <td>2</td> <td>Pullover</td> </tr> <tr> <td>3</td> <td>Dress</td> </tr> <tr> <td>4</td> <td>Coat</td> </tr> <tr> <td>5</td> <td>Sandal</td> </tr> <tr> <td>6</td> <td>Shirt</td> </tr> <tr> <td>7</td> <td>Sneaker</td> </tr> <tr> <td>8</td> <td>Bag</td> </tr> <tr> <td>9</td> <td>Ankle boot</td> </tr> </table> Each image is mapped to a single label. Since the *class names* are not included with the dataset, store them here to use later when plotting the images: ``` class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ``` ## Explore the data Let's explore the format of the dataset before training the model. The following shows there are 60,000 images in the training set, with each image represented as 28 x 28 pixels: ``` train_images.shape ``` Likewise, there are 60,000 labels in the training set: ``` len(train_labels) ``` Each label is an integer between 0 and 9: ``` train_labels ``` There are 10,000 images in the test set. Again, each image is represented as 28 x 28 pixels: ``` test_images.shape ``` And the test set contains 10,000 images labels: ``` len(test_labels) ``` ## Preprocess the data The data must be preprocessed before training the network. If you inspect the first image in the training set, you will see that the pixel values fall in the range of 0 to 255: ``` plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) ``` We **scale these values to a range of 0 to 1** before feeding to the neural network model. For this, cast the datatype of the image components **from an integer to a float, and divide by 255**. Here's the function to preprocess the images: It's important that the *training set* and the *testing set* are preprocessed in the same way: ``` train_images = train_images / 255.0 test_images = test_images / 255.0 ``` Display the first 25 images from the *training set* and display the class name below each image. Verify that the data is in the correct format and we're ready to build and train the network. ``` plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) ``` ## Build the model Building the neural network requires configuring the layers of the model, then compiling the model. ### Setup the layers The basic building block of a neural network is the *layer*. Layers extract representations from the data fed into them. And, hopefully, these representations are more meaningful for the problem at hand. Most of deep learning consists of chaining together simple layers. Most layers, like `tf.keras.layers.Dense`, have parameters that are learned during training. ``` model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) ``` The first layer in this network, `tf.keras.layers.Flatten`, transforms the format of the images from a 2d-array (of 28 by 28 pixels), **to a 1d-array** of 28 * 28 = 784 pixels. Think of this layer as unstacking rows of pixels in the image and lining them up. This layer has no parameters to learn; it only reformats the data. After the pixels are flattened, the network consists of a sequence of two `tf.keras.layers.Dense` layers. These are densely-connected, or fully-connected, neural layers. The first `Dense` layer has 128 nodes (or neurons). The second (and last) layer is a 10-node **softmax** layer—**this returns an array of 10 probability scores that sum to 1**. Each node contains a score that indicates the probability that the current image belongs to one of the 10 classes. ### Compile the model Before the model is ready for training, it needs a few more settings. These are added during the model's *compile* step: * **Loss function** —This measures how accurate the model is during training. We want to minimize this function to "steer" the model in the right direction. * **Optimizer** —This is how the model is updated based on the data it sees and its loss function. * **Metrics** —Used to monitor the training and testing steps. The following example uses *accuracy*, the fraction of the images that are correctly classified. ``` model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) ``` ## Train the model Training the neural network model requires the following steps: 1. Feed the training data to the model—in this example, the `train_images` and `train_labels` arrays. 2. The model learns to associate images and labels. 3. We ask the model to make predictions about a test set—in this example, the `test_images` array. We verify that the predictions match the labels from the `test_labels` array. To start training, call the `model.fit` method—the model is "fit" to the training data: ``` model.fit(train_images, train_labels, epochs=5) ``` As the model trains, the loss and accuracy metrics are displayed. This model reaches an accuracy of about 0.88 (or 88%) on the training data. ## Evaluate accuracy Next, compare how the model performs on the test dataset: ``` test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ``` It turns out, the accuracy on the test dataset is a little less than the accuracy on the training dataset. This gap between training accuracy and test accuracy is an example of *overfitting*. Overfitting is when a machine learning model performs worse on new data than on their training data. ## Make predictions With the model trained, we can use it to make predictions about some images. ``` predictions = model.predict(test_images) ``` Here, the model has predicted the label for each image in the testing set. Let's take a look at the first prediction: ``` predictions[0] ``` **A prediction is an array** of 10 numbers. These describe the "confidence" of the model that the image corresponds to each of the 10 different articles of clothing. We can see which label has the highest confidence value: ``` np.argmax(predictions[0]) ``` So the model is most confident that this image is an ankle boot, or `class_names[9]`. And we can check the test label to see this is correct: ``` test_labels[0] ``` We can graph this to look at the full set of 10 channels ``` def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ``` Let's look at the 0th image, predictions, and prediction array. ``` i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) ``` Let's plot several images with their predictions. Correct prediction labels are blue and incorrect prediction labels are red. The number gives the percent (out of 100) for the predicted label. Note that it can be wrong even when very confident. ``` # Plot the first X test images, their predicted label, and the true label # Color correct predictions in blue, incorrect predictions in red num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) ``` Finally, use the trained model to make a prediction about a single image. ``` # Grab an image from the test dataset img = test_images[0] print(img.shape) ``` `tf.keras` models are optimized to make predictions on a *batch*, or collection, of examples at once. So even though we're using a single image, we need to add it to a list: ``` # Add the image to a batch where it's the only member. img = (np.expand_dims(img,0)) print(img.shape) ``` Now predict the image: ``` predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ``` `model.predict` returns a list of lists, one for each image in the batch of data. Grab the predictions for our (only) image in the batch: ``` np.argmax(predictions_single[0]) ``` And, as before, the model predicts a label of 9.
github_jupyter
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] train_images.shape len(train_labels) train_labels test_images.shape len(test_labels) plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) train_images = train_images / 255.0 test_images = test_images / 255.0 plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) predictions = model.predict(test_images) predictions[0] np.argmax(predictions[0]) test_labels[0] def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) # Plot the first X test images, their predicted label, and the true label # Color correct predictions in blue, incorrect predictions in red num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) # Grab an image from the test dataset img = test_images[0] print(img.shape) # Add the image to a batch where it's the only member. img = (np.expand_dims(img,0)) print(img.shape) predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) np.argmax(predictions_single[0])
0.85115
0.994724
``` import pandas as pd import numpy as np import re import matplotlib.pyplot as plt import seaborn as sns train=pd.read_csv("train.csv") test=pd.read_csv("test.csv") full_data = [train, test] train['Name_length'] = train['Name'].apply(len) test['Name_length'] = test['Name'].apply(len) train['Has_Cabin'] = train["Cabin"].apply(lambda x: 0 if type(x) == float else 1) test['Has_Cabin'] = test["Cabin"].apply(lambda x: 0 if type(x) == float else 1) for dataset in full_data: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 for dataset in full_data: dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 for dataset in full_data: dataset['Embarked'] = dataset['Embarked'].fillna('S') for dataset in full_data: dataset['Age'] = dataset['Age'].fillna(dataset['Age'].mean()) def get_title(name): title_search = re.search(' ([A-Za-z]+)\.', name) if title_search: return title_search.group(1) return "" for dataset in full_data: dataset['Title'] = dataset['Name'].apply(get_title) for dataset in full_data: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') for dataset in full_data: title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) dataset.head() dataset=dataset.drop(columns=['Name','Cabin','Sex','Embarked','Ticket','Fare','Age']) colormap = plt.cm.RdBu plt.figure(figsize=(14,12)) plt.title('Pearson Correlation of Features', y=1.05, size=15) sns.heatmap(train.corr(),linewidths=0.1,vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True) train=train.drop(columns=['Name','Cabin','Sex','Embarked','Ticket','Fare','Age'],axis=1) train.head() train.isnull().sum() test=test.drop(columns=['Name','Cabin','Sex','Embarked','Ticket','Fare','Age']) test.head() test.isnull().sum() features=['Pclass', 'SibSp', 'Parch', 'Name_length', 'Has_Cabin', 'FamilySize', 'IsAlone', 'Title'] X=train[features] y=train['Survived'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) X_train.head() from sklearn.ensemble import RandomForestClassifier from sklearn import metrics from sklearn.metrics import mean_absolute_error from sklearn.metrics import classification_report, confusion_matrix model = RandomForestClassifier(n_estimators=1000, min_samples_leaf=10, random_state=1) model.fit(X_train, y_train) predictions = model.predict(X_test) print("Random Forrest Accuracy:",metrics.accuracy_score(y_test, predictions)) print("Mean Absoulte Error:", mean_absolute_error(predictions, y_test)) print("Classification Report:\n", classification_report(y_test, predictions)) print("Confusion Matrix:") df = pd.DataFrame( confusion_matrix(y_test, predictions), index = [['actual', 'actual'], ['0','1']], columns = [['predicted', 'predicted'], ['0','1']]) print(df) pred_Test_Set = model.predict(test[features]) pred_Test_Set.size test['Survived'] = pred_Test_Set togo=['PassengerId','Survived'] testfinal=test[togo] testfinal.to_csv('TitanicFinal.csv',index=False) ``` END
github_jupyter
import pandas as pd import numpy as np import re import matplotlib.pyplot as plt import seaborn as sns train=pd.read_csv("train.csv") test=pd.read_csv("test.csv") full_data = [train, test] train['Name_length'] = train['Name'].apply(len) test['Name_length'] = test['Name'].apply(len) train['Has_Cabin'] = train["Cabin"].apply(lambda x: 0 if type(x) == float else 1) test['Has_Cabin'] = test["Cabin"].apply(lambda x: 0 if type(x) == float else 1) for dataset in full_data: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 for dataset in full_data: dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 for dataset in full_data: dataset['Embarked'] = dataset['Embarked'].fillna('S') for dataset in full_data: dataset['Age'] = dataset['Age'].fillna(dataset['Age'].mean()) def get_title(name): title_search = re.search(' ([A-Za-z]+)\.', name) if title_search: return title_search.group(1) return "" for dataset in full_data: dataset['Title'] = dataset['Name'].apply(get_title) for dataset in full_data: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') for dataset in full_data: title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) dataset.head() dataset=dataset.drop(columns=['Name','Cabin','Sex','Embarked','Ticket','Fare','Age']) colormap = plt.cm.RdBu plt.figure(figsize=(14,12)) plt.title('Pearson Correlation of Features', y=1.05, size=15) sns.heatmap(train.corr(),linewidths=0.1,vmax=1.0, square=True, cmap=colormap, linecolor='white', annot=True) train=train.drop(columns=['Name','Cabin','Sex','Embarked','Ticket','Fare','Age'],axis=1) train.head() train.isnull().sum() test=test.drop(columns=['Name','Cabin','Sex','Embarked','Ticket','Fare','Age']) test.head() test.isnull().sum() features=['Pclass', 'SibSp', 'Parch', 'Name_length', 'Has_Cabin', 'FamilySize', 'IsAlone', 'Title'] X=train[features] y=train['Survived'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) X_train.head() from sklearn.ensemble import RandomForestClassifier from sklearn import metrics from sklearn.metrics import mean_absolute_error from sklearn.metrics import classification_report, confusion_matrix model = RandomForestClassifier(n_estimators=1000, min_samples_leaf=10, random_state=1) model.fit(X_train, y_train) predictions = model.predict(X_test) print("Random Forrest Accuracy:",metrics.accuracy_score(y_test, predictions)) print("Mean Absoulte Error:", mean_absolute_error(predictions, y_test)) print("Classification Report:\n", classification_report(y_test, predictions)) print("Confusion Matrix:") df = pd.DataFrame( confusion_matrix(y_test, predictions), index = [['actual', 'actual'], ['0','1']], columns = [['predicted', 'predicted'], ['0','1']]) print(df) pred_Test_Set = model.predict(test[features]) pred_Test_Set.size test['Survived'] = pred_Test_Set togo=['PassengerId','Survived'] testfinal=test[togo] testfinal.to_csv('TitanicFinal.csv',index=False)
0.399109
0.46642
# Lib ``` import os import pandas as pd import numpy as np import datetime as dt from lifelines import KaplanMeierFitter from lifelines.plotting import add_at_risk_counts import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline ``` # Load data ``` fname_schema = "SCHEMA_21JAN2021_31AUG2021.parquet" obito_pares = "PAREADOS_COM_INTERVALOS_OBITO_6.parquet" hospital_pares = "PAREADOS_COM_INTERVALOS_HOSPITAL_6.parquet" #surv_obito = "SURVIVAL_CORONAVAC_D1D2_OBITO_1.parquet" #surv_hospital = "SURVIVAL_CORONAVAC_D1D2_HOSPITAL_1.parquet" vaccine = "CORONAVAC" data_folder = os.path.join("..", "output", "data") pareado_folder = os.path.join("..", "output", "PAREAMENTO", vaccine) fschema = pd.read_parquet(os.path.join(data_folder, fname_schema)) obito_df = pd.read_parquet(os.path.join(pareado_folder, obito_pares)) obito_df pares = pd.read_parquet(os.path.join(pareado_folder, "EVENTOS_PAREADOS_1.parquet")) condition = (pares["TIPO"]=="CASO") & (pd.notna(pares["DATA HOSPITALIZACAO"]) & (pares["PAREADO"]==True)) pares[condition] condition = (pares["TIPO"]=="CONTROLE") & (pd.notna(pares["DATA HOSPITALIZACAO"]) & (pares["PAREADO"]==True)) pares[condition] 1335/1868 fsurv = obito.fsurvival caso = fsurv[fsurv["TIPO"]=="CASO"] controle = fsurv[fsurv["TIPO"]=="CONTROLE"] caso.sample(n=10, replace=True) ``` ## Lifelines tests ``` %run ../ve_estimate.py fschema.columns 1-(241/342) fschema_astra = fschema[fschema["VACINA APLICADA"]=="ASTRAZENECA"] fschema_cor = fschema[fschema["VACINA APLICADA"]=="CORONAVAC"] fschema_pfizer = fschema[fschema["VACINA APLICADA"]=="PFIZER"] fschema_astra["DATA OBITO"].notnull().sum() fschema_cor["DATA OBITO"].notnull().sum() fschema_pfizer["DATA OBITO"].notnull().sum() vacinad fschema_astra["IDADE"].hist() sub = fschema[fschema["CPF"].isin(hospital.sub_data["D2"]["CASO"]["CPF"])] sub[pd.notna(sub["DATA HOSPITALIZACAO"])][["SITUACAO VACINEJA", "STATUS VACINACAO DURANTE COORTE"]] 212/433 df5 = pd.read_parquet(os.path.join(pareado_folder, "SURVIVAL", "SURVIVAL_CORONAVAC_D1D2_HOSPITAL_3.parquet")) df6 = pd.read_parquet(os.path.join(pareado_folder, "SURVIVAL", "SURVIVAL_CORONAVAC_D1D2_HOSPITAL_6.parquet")) df6["E - D2 HOSPITAL"].sum() df5["E - D2 HOSPITAL"].sum() obt = fschema[pd.notna(fschema["DATA OBITO"])] obt["MESANO"] = obt["DATA OBITO"].apply(lambda x: f'{x.year}{x.month}') obt["MESANO"].value_counts() fschema[pd.notna(fschema["DATA UTI"])]["VACINA APLICADA"].value_counts() fschema["GRUPO PRIORITARIO"].value_counts() vacinados = pd.read_parquet(os.path.join("..", "..", "..", "data", "PARQUET_TRANSFORMED", "VACINADOS.parquet")) lst = ["PROFISSIONAL DE SAUDE", "TRABALHADOR DA SAUDE"] vac_saude = vacinados[vacinados["grupo prioritario(VACINADOS)"].isin(lst)] fsaude = fschema[fschema["CPF"].isin(vac_saude["cpf(VACINADOS)"])] fsaude[pd.notna(fsaude["DATA HOSPITALIZACAO"])]["DATA HOSPITALIZACAO"] vacinados.columns fschema["UTI"].value_counts() fschema_uti = fschema[pd.notna(fschema["UTI"])] s = fschema_uti[fschema_uti["UTI"].str.contains("SIM")][["DT_ENTUTI", "DATA D1", "DATA D2"]] s.apply(lambda x: "NAO VACINADO" if x["DT_ENTUTI"]<x["DATA D1"] and x["DT_ENTUTI"]<x["DATA D2"] else ( "D1" if x["DT_ENTUTI"]>x["DATA D1"] and x["DT_ENTUTI"]<x["DATA D2"])) s.info() s["ENTUTI"] = s["DT_ENTUTI"].apply(lambda x: x.split(";")) s["ENTUTI"] = s["ENTUTI"].apply(lambda x: [pd.to_datetime(xx) for xx in x]) def f(x): for xx in x: if pd.notna(xx): return xx s["ENTUTI"] = s["ENTUTI"].apply(f) s["ENTUTI"] s["STATUS"] = s.apply(lambda x: "NAO VACINADO" if x["ENTUTI"]<x["DATA D1"] and x["ENTUTI"]<x["DATA D2"] else ("D1" if x["ENTUTI"]>x["DATA D1"] and x["ENTUTI"]<x["DATA D2"] else ("D2" if x["ENTUTI"]>x["DATA D1"] and x["ENTUTI"]>x["DATA D2"] else "D1")), axis=1) s["STATUS"].value_counts() fschema["DT_ENTUTI"] = fschema["DT_ENTUTI"].apply(lambda x: [pd.to_datetime(xx) for xx in x.split(";")] if pd.notna(x) else np.nan) fschema[pd.notna(fschema["DT_ENTUTI"])]["DT_ENTUTI"] fschema["DT_ENTUTI"] = fschema["DT_ENTUTI"].apply(lambda x: x if not np.all(pd.isna(x)) else np.nan) def new_hospitalization_date(x, cohort): ''' ''' if not np.any(pd.notna(x)): return np.nan x = np.sort([xx for xx in x if pd.notna(xx)]) condition = (x>=cohort[0]) & (x<=cohort[1]) if x[condition].shape[0]>0: return x[condition][0] else: return np.nan cohort = (dt.datetime(2021, 1, 21), dt.datetime(2021, 8, 31)) fschema["DATA UTI"] = fschema["DT_ENTUTI"].apply(lambda x: new_hospitalization_date(x, cohort)) fschema[pd.notna(fschema["DATA UTI"])]["DATA UTI"] fschema["BAIRRO"].value_counts() ```
github_jupyter
import os import pandas as pd import numpy as np import datetime as dt from lifelines import KaplanMeierFitter from lifelines.plotting import add_at_risk_counts import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline fname_schema = "SCHEMA_21JAN2021_31AUG2021.parquet" obito_pares = "PAREADOS_COM_INTERVALOS_OBITO_6.parquet" hospital_pares = "PAREADOS_COM_INTERVALOS_HOSPITAL_6.parquet" #surv_obito = "SURVIVAL_CORONAVAC_D1D2_OBITO_1.parquet" #surv_hospital = "SURVIVAL_CORONAVAC_D1D2_HOSPITAL_1.parquet" vaccine = "CORONAVAC" data_folder = os.path.join("..", "output", "data") pareado_folder = os.path.join("..", "output", "PAREAMENTO", vaccine) fschema = pd.read_parquet(os.path.join(data_folder, fname_schema)) obito_df = pd.read_parquet(os.path.join(pareado_folder, obito_pares)) obito_df pares = pd.read_parquet(os.path.join(pareado_folder, "EVENTOS_PAREADOS_1.parquet")) condition = (pares["TIPO"]=="CASO") & (pd.notna(pares["DATA HOSPITALIZACAO"]) & (pares["PAREADO"]==True)) pares[condition] condition = (pares["TIPO"]=="CONTROLE") & (pd.notna(pares["DATA HOSPITALIZACAO"]) & (pares["PAREADO"]==True)) pares[condition] 1335/1868 fsurv = obito.fsurvival caso = fsurv[fsurv["TIPO"]=="CASO"] controle = fsurv[fsurv["TIPO"]=="CONTROLE"] caso.sample(n=10, replace=True) %run ../ve_estimate.py fschema.columns 1-(241/342) fschema_astra = fschema[fschema["VACINA APLICADA"]=="ASTRAZENECA"] fschema_cor = fschema[fschema["VACINA APLICADA"]=="CORONAVAC"] fschema_pfizer = fschema[fschema["VACINA APLICADA"]=="PFIZER"] fschema_astra["DATA OBITO"].notnull().sum() fschema_cor["DATA OBITO"].notnull().sum() fschema_pfizer["DATA OBITO"].notnull().sum() vacinad fschema_astra["IDADE"].hist() sub = fschema[fschema["CPF"].isin(hospital.sub_data["D2"]["CASO"]["CPF"])] sub[pd.notna(sub["DATA HOSPITALIZACAO"])][["SITUACAO VACINEJA", "STATUS VACINACAO DURANTE COORTE"]] 212/433 df5 = pd.read_parquet(os.path.join(pareado_folder, "SURVIVAL", "SURVIVAL_CORONAVAC_D1D2_HOSPITAL_3.parquet")) df6 = pd.read_parquet(os.path.join(pareado_folder, "SURVIVAL", "SURVIVAL_CORONAVAC_D1D2_HOSPITAL_6.parquet")) df6["E - D2 HOSPITAL"].sum() df5["E - D2 HOSPITAL"].sum() obt = fschema[pd.notna(fschema["DATA OBITO"])] obt["MESANO"] = obt["DATA OBITO"].apply(lambda x: f'{x.year}{x.month}') obt["MESANO"].value_counts() fschema[pd.notna(fschema["DATA UTI"])]["VACINA APLICADA"].value_counts() fschema["GRUPO PRIORITARIO"].value_counts() vacinados = pd.read_parquet(os.path.join("..", "..", "..", "data", "PARQUET_TRANSFORMED", "VACINADOS.parquet")) lst = ["PROFISSIONAL DE SAUDE", "TRABALHADOR DA SAUDE"] vac_saude = vacinados[vacinados["grupo prioritario(VACINADOS)"].isin(lst)] fsaude = fschema[fschema["CPF"].isin(vac_saude["cpf(VACINADOS)"])] fsaude[pd.notna(fsaude["DATA HOSPITALIZACAO"])]["DATA HOSPITALIZACAO"] vacinados.columns fschema["UTI"].value_counts() fschema_uti = fschema[pd.notna(fschema["UTI"])] s = fschema_uti[fschema_uti["UTI"].str.contains("SIM")][["DT_ENTUTI", "DATA D1", "DATA D2"]] s.apply(lambda x: "NAO VACINADO" if x["DT_ENTUTI"]<x["DATA D1"] and x["DT_ENTUTI"]<x["DATA D2"] else ( "D1" if x["DT_ENTUTI"]>x["DATA D1"] and x["DT_ENTUTI"]<x["DATA D2"])) s.info() s["ENTUTI"] = s["DT_ENTUTI"].apply(lambda x: x.split(";")) s["ENTUTI"] = s["ENTUTI"].apply(lambda x: [pd.to_datetime(xx) for xx in x]) def f(x): for xx in x: if pd.notna(xx): return xx s["ENTUTI"] = s["ENTUTI"].apply(f) s["ENTUTI"] s["STATUS"] = s.apply(lambda x: "NAO VACINADO" if x["ENTUTI"]<x["DATA D1"] and x["ENTUTI"]<x["DATA D2"] else ("D1" if x["ENTUTI"]>x["DATA D1"] and x["ENTUTI"]<x["DATA D2"] else ("D2" if x["ENTUTI"]>x["DATA D1"] and x["ENTUTI"]>x["DATA D2"] else "D1")), axis=1) s["STATUS"].value_counts() fschema["DT_ENTUTI"] = fschema["DT_ENTUTI"].apply(lambda x: [pd.to_datetime(xx) for xx in x.split(";")] if pd.notna(x) else np.nan) fschema[pd.notna(fschema["DT_ENTUTI"])]["DT_ENTUTI"] fschema["DT_ENTUTI"] = fschema["DT_ENTUTI"].apply(lambda x: x if not np.all(pd.isna(x)) else np.nan) def new_hospitalization_date(x, cohort): ''' ''' if not np.any(pd.notna(x)): return np.nan x = np.sort([xx for xx in x if pd.notna(xx)]) condition = (x>=cohort[0]) & (x<=cohort[1]) if x[condition].shape[0]>0: return x[condition][0] else: return np.nan cohort = (dt.datetime(2021, 1, 21), dt.datetime(2021, 8, 31)) fschema["DATA UTI"] = fschema["DT_ENTUTI"].apply(lambda x: new_hospitalization_date(x, cohort)) fschema[pd.notna(fschema["DATA UTI"])]["DATA UTI"] fschema["BAIRRO"].value_counts()
0.104557
0.52074
# Scrapping Youtube Data with Youtube API ## Setup ### Library ``` import configparser from googleapiclient.discovery import build import pandas as pd ``` ### Important Variables ``` config_file = 'youtube.ini' config = configparser.ConfigParser() config.read(config_file) API_KEY = config['youtube']['api_key'] basic_file = 'hololive.xlsx' df_basic = pd.read_excel(basic_file) channels = df_basic['channel_id'] ``` ### Request to Youtube API ``` service_name = 'youtube' service_version = 'v3' youtube = build(serviceName=service_name, version=service_version, developerKey=API_KEY) ``` ### Request Channels Info ``` request = youtube.channels().list( part = "id,snippet,contentDetails,statistics", id = ','.join(channels) ) response = request.execute() ``` ### Select Data from Response ``` all_data = [] for respon in response['items']: data = dict( channel_id = respon['id'], channel_name = respon['snippet']['title'], subscribers = respon['statistics']['subscriberCount'], views = respon['statistics']['viewCount'], total_videos = respon['statistics']['videoCount'], playlist_id =respon['contentDetails']['relatedPlaylists']['uploads'] ) all_data.append(data) df_holo = pd.DataFrame(all_data) df_holo.head() ``` ### Merge Basic Info Data with Scrapped Data from Youtube ``` df = pd.merge(df_basic, df_holo, on="channel_id") # Change the data type to numeric df['subscribers'] = pd.to_numeric(df['subscribers']) df['views'] = pd.to_numeric(df['views']) df['total_videos'] = pd.to_numeric(df['total_videos']) df.head() ``` ### Request Video ID ``` def get_video_ids(youtube, playlist_id): request = youtube.playlistItems().list( part='contentDetails', playlistId = playlist_id, maxResults = 50) response = request.execute() video_ids = [item['contentDetails']['videoId'] for item in response['items']] next_page_token = response.get('nextPageToken') more_pages = True while more_pages: if next_page_token is None: more_pages = False else: request = youtube.playlistItems().list( part='contentDetails', playlistId = playlist_id, maxResults = 50, pageToken = next_page_token) response = request.execute() for i in range(len(response['items'])): video_ids.append(response['items'][i]['contentDetails']['videoId']) next_page_token = response.get('nextPageToken') return video_ids vid_ids = [get_video_ids(youtube, playlist) for playlist in df['playlist_id']] ``` ### Request Video Info ``` def get_video_details(youtube, playlistid, video_ids, list_stats = []): all_video_stats = list_stats for i in range(0, len(video_ids), 50): request = youtube.videos().list( part='id,contentDetails,snippet,statistics', id=','.join(video_ids[i:i+50])) response = request.execute() for video in response['items']: video_stats = dict(channel_id = playlistid, video_id = video['id'], title = video['snippet']['title'], published_date = video['snippet']['publishedAt'], duration = video['contentDetails']['duration'], views = video['statistics']['viewCount'], comments = video['statistics'].get('commentCount'), likes = video['statistics'].get('likeCount'), dislikes = video['statistics'].get('dislikeCount')) all_video_stats.append(video_stats) return all_video_stats data_list =[] for i in range(len(vid_ids)): data_list = get_video_details(youtube, df.iloc[i]['channel_id'], vid_ids[i], data_list) df_videos = pd.DataFrame(data_list) df_videos df_videos.isna().sum() df_videos.to_csv('hololive_videos.csv', index=False) df_videos2 = pd.read_csv('hololive_videos.csv') df_videos2.dtypes df_videos2['published_date'] = pd.to_datetime(df_videos2['published_date']) df_videos2.to_csv('hololive_videos.csv', index=False) ``` ### Most Watched Videos ``` df_videos2.loc[df_videos2['views'] == df_videos2['views'].max()] ```
github_jupyter
import configparser from googleapiclient.discovery import build import pandas as pd config_file = 'youtube.ini' config = configparser.ConfigParser() config.read(config_file) API_KEY = config['youtube']['api_key'] basic_file = 'hololive.xlsx' df_basic = pd.read_excel(basic_file) channels = df_basic['channel_id'] service_name = 'youtube' service_version = 'v3' youtube = build(serviceName=service_name, version=service_version, developerKey=API_KEY) request = youtube.channels().list( part = "id,snippet,contentDetails,statistics", id = ','.join(channels) ) response = request.execute() all_data = [] for respon in response['items']: data = dict( channel_id = respon['id'], channel_name = respon['snippet']['title'], subscribers = respon['statistics']['subscriberCount'], views = respon['statistics']['viewCount'], total_videos = respon['statistics']['videoCount'], playlist_id =respon['contentDetails']['relatedPlaylists']['uploads'] ) all_data.append(data) df_holo = pd.DataFrame(all_data) df_holo.head() df = pd.merge(df_basic, df_holo, on="channel_id") # Change the data type to numeric df['subscribers'] = pd.to_numeric(df['subscribers']) df['views'] = pd.to_numeric(df['views']) df['total_videos'] = pd.to_numeric(df['total_videos']) df.head() def get_video_ids(youtube, playlist_id): request = youtube.playlistItems().list( part='contentDetails', playlistId = playlist_id, maxResults = 50) response = request.execute() video_ids = [item['contentDetails']['videoId'] for item in response['items']] next_page_token = response.get('nextPageToken') more_pages = True while more_pages: if next_page_token is None: more_pages = False else: request = youtube.playlistItems().list( part='contentDetails', playlistId = playlist_id, maxResults = 50, pageToken = next_page_token) response = request.execute() for i in range(len(response['items'])): video_ids.append(response['items'][i]['contentDetails']['videoId']) next_page_token = response.get('nextPageToken') return video_ids vid_ids = [get_video_ids(youtube, playlist) for playlist in df['playlist_id']] def get_video_details(youtube, playlistid, video_ids, list_stats = []): all_video_stats = list_stats for i in range(0, len(video_ids), 50): request = youtube.videos().list( part='id,contentDetails,snippet,statistics', id=','.join(video_ids[i:i+50])) response = request.execute() for video in response['items']: video_stats = dict(channel_id = playlistid, video_id = video['id'], title = video['snippet']['title'], published_date = video['snippet']['publishedAt'], duration = video['contentDetails']['duration'], views = video['statistics']['viewCount'], comments = video['statistics'].get('commentCount'), likes = video['statistics'].get('likeCount'), dislikes = video['statistics'].get('dislikeCount')) all_video_stats.append(video_stats) return all_video_stats data_list =[] for i in range(len(vid_ids)): data_list = get_video_details(youtube, df.iloc[i]['channel_id'], vid_ids[i], data_list) df_videos = pd.DataFrame(data_list) df_videos df_videos.isna().sum() df_videos.to_csv('hololive_videos.csv', index=False) df_videos2 = pd.read_csv('hololive_videos.csv') df_videos2.dtypes df_videos2['published_date'] = pd.to_datetime(df_videos2['published_date']) df_videos2.to_csv('hololive_videos.csv', index=False) df_videos2.loc[df_videos2['views'] == df_videos2['views'].max()]
0.183009
0.506897
# Lecture 5: Exercise Solutions ## Exercise 2: Sets Write a function that finds the overlap of two sets and prints them. Initialize two sets, e.g., with values {13, 25, 37, 45, 13} and {14, 25, 38, 8, 45} and call this function with them. The manual way to do this: ``` def overlap(set1, set2): set_overlap = [] for k in set1: if k in set2: set_overlap.append(k) print (set_overlap) set1 = {13, 25, 37, 45, 13} set2 = {14, 25, 38, 8, 45} overlap(set1, set2) ``` The better way, knowing about the methods the set provides: ``` def intersection(set1, set2): print(set1.intersection(set2)) intersection(set1, set2) ``` ## Exercise 3: Dictionaries * Create a dictionary with two-letter codes of two US states and the full names, e.g., UT: Utah, NY: New York * After initially creating the dictionary, add two more states to the dictionary. * Create a second dictionary that maps the state codes to an array ofities in that state, e.g., UT: [Salt Lake City, Ogden, Provo, St.George]. * Write a function that takes a state code and prints the full name of the state and lists the cities in that state. ``` states = {"UT":"Utah", "NY":"New York"} states["CA"] = "California" states["MA"] = "Massachusetts" cities = {"UT":["Salt Lake City", "Ogden", "Provo", "St. George"], "NY":["Albany", "New York City", "Buffalo"]} def print_state_info(code): if code in states and code in cities: print (states[code] + ": "+ str(cities[code])) else: print ("No information for state code " + code) print_state_info("UT") print_state_info("NY") print_state_info("WA") ``` ## Exercise 5: Pandas Series Create a new pandas series with the lists given below that contain NFL team names and the number of Super Bowl titles they won. Use the names as indices, the wins as the data. * Once the list is created, sort the series alphabetically by index. * Print an overview of the statistical properties of the series. What's the mean number of wins? * Filter out all teams that have won less than four Super Bowl titles * A football team has 45 players. Update the series so that instead of the number of titles, it reflects the number of Super Bowl rings given to the players. * Assume that each ring costs USD 30,000. Update the series so that it contains a string of the dollar amount including the \$ sign. For the Steelers, for example, this would correspond to: ``` Pittsburgh Steelers $ 8100000 ``` ``` teams = ["New England Patriots", "Pittsburgh Steelers", "Dallas Cowboys", "San Francisco 49ers", "Green Bay Packers", "New York Giants", "Denver Broncos", "Oakland/Los Angeles Raiders", "Washington Redskins", "Miami Dolphins", "Baltimore/Indianapolis Colts", "Baltimore Ravens"] wins = [6,6,5,5,4,4,3,3,3,2,2,2] import pandas as pd winning_teams = pd.Series(wins, name="Superbowl-winning NFL Teams", index=teams) winning_teams winning_teams.sort_index() winning_teams.describe() winning_teams[winning_teams > 3] rings = winning_teams * 45 rings def to_dollar(rings): return "$ " + str(rings * 30000) rings.map(to_dollar) ```
github_jupyter
def overlap(set1, set2): set_overlap = [] for k in set1: if k in set2: set_overlap.append(k) print (set_overlap) set1 = {13, 25, 37, 45, 13} set2 = {14, 25, 38, 8, 45} overlap(set1, set2) def intersection(set1, set2): print(set1.intersection(set2)) intersection(set1, set2) states = {"UT":"Utah", "NY":"New York"} states["CA"] = "California" states["MA"] = "Massachusetts" cities = {"UT":["Salt Lake City", "Ogden", "Provo", "St. George"], "NY":["Albany", "New York City", "Buffalo"]} def print_state_info(code): if code in states and code in cities: print (states[code] + ": "+ str(cities[code])) else: print ("No information for state code " + code) print_state_info("UT") print_state_info("NY") print_state_info("WA") Pittsburgh Steelers $ 8100000 ```
0.186132
0.973544
``` import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.dates as mdates from datetime import date from datetime import datetime import numpy as np from summer.utils import ref_times_to_dti from autumn.tools.inputs.demography.queries import get_population_by_agegroup from autumn.models.sm_sir.detection import create_cdr_function from autumn.tools.utils.utils import apply_moving_average from autumn.tools.curve.scale_up import scale_up_function from autumn.tools.project import get_project from autumn.settings import Region, Models from autumn.models.covid_19.constants import AGEGROUP_STRATA, GOOGLE_MOBILITY_LOCATIONS from autumn.settings.constants import COVID_BASE_DATETIME from autumn.models.sm_sir.mixing_matrix.macrodistancing import weight_mobility_data, get_mobility_data from autumn.tools.plots.utils import REF_DATE from autumn.tools import inputs from autumn.tools.inputs.database import get_input_db from autumn.tools.utils.display import pretty_print from autumn.tools.inputs.social_mixing.build_synthetic_matrices import build_synthetic_matrices from autumn.models.covid_19.detection import get_testing_numbers_for_region plt.style.use('ggplot') age_integers = [int(group) for group in AGEGROUP_STRATA] model = Models.SM_SIR region = Region.BHUTAN project = get_project(model, region, reload=True) base_params = project.param_set.baseline ``` # Population ``` fig, ax = plt.subplots(1, 1, figsize=(10, 6)) age_groups = base_params["age_groups"] total_pops = inputs.get_population_by_agegroup( age_groups, base_params["country"]["iso3"], None, # "FDMN", year=base_params["population"]["year"] ) print(f"total modelled population of {region} is: {round(sum(total_pops) / 1e3, 3)} thousand") ax.bar(age_groups, total_pops, width=4) ax.set_title(region) ax.set_ylabel("population") ax.set_xlabel("starting age of age bracket") fig.suptitle("population distribution by age") ``` # Mobility ``` print(f"Whether mobility effects are turned on: {base_params['is_dynamic_mixing_matrix']}") times y_upper = 2. # Collate data together input_db = get_input_db() mob_df = get_mobility_data("BTN", region=False,base_date = COVID_BASE_DATETIME )[0] times = mob_df["date"].to_list() google_mob_df = weight_mobility_data(mob_df, project.param_set.baseline["mobility"]["google_mobility_locations"]) # Get plots ready mob_fig, mob_axes = plt.subplots(1, 2, figsize=(12, 6)) plot_left_date = date(2020, 1, 1) plot_right_date = times[-1] # Not sure why this is necessary # Plot raw mobility data ax = mob_axes[0] for mobility_domain in GOOGLE_MOBILITY_LOCATIONS: ax.plot(times, mob_df[mobility_domain], label=mobility_domain) ax.set_ylim((0., y_upper)) ax.tick_params(axis="x", labelrotation=45) ax.set_title("raw Google mobility domains") ax.legend(loc="upper right") ax.set_xlim(left=plot_left_date, right=plot_right_date) # Plot processed mobility data ax = mob_axes[1] for location in list(project.param_set.baseline["mobility"]["google_mobility_locations"].keys()): ax.plot(times, google_mob_df[location], label=location) ax.tick_params(axis="x", labelrotation=45) ax.set_ylim((0., y_upper)) ax.legend(loc="upper left") ax.set_title("mobility as implemented in the model") mob_fig.tight_layout(w_pad=1.5, h_pad=3.5) ax.set_xlim(left=plot_left_date, right=plot_right_date) ``` # Mixing matrix ``` print(f"Modelled country: {project.param_set.baseline['country']['iso3']}") print(f"Modelled sub-region: {project.param_set.baseline['population']['region']}") print(f"Proxy country: {project.param_set.baseline['ref_mixing_iso3']}") print("Always age-adjusted under SM-SIR code") agegroup_types = { "base age groups": AGEGROUP_STRATA, "modelled age groups": project.param_set.baseline["age_groups"], } for title, agegroups in agegroup_types.items(): mixing_matrix = build_synthetic_matrices( project.param_set.baseline["country"]["iso3"], project.param_set.baseline["ref_mixing_iso3"], agegroups, True, project.param_set.baseline["population"]["region"] ) fig = plt.figure(figsize=(12, 8)) positions = [1, 2, 3, 5, 6] for i_loc, location in zip(positions, mixing_matrix.keys()): ax = fig.add_subplot(2, 3, i_loc) ax.imshow( np.flipud(np.transpose(mixing_matrix[location])), cmap=cm.hot, vmin=0, vmax=mixing_matrix[location].max(), origin="lower" ) ax.set_title(location.replace("_", " ")) ax.set_xticks([]) ax.set_yticks([]) fig.suptitle(title) ``` # Case detection ``` testing_params = project.param_set.baseline["testing_to_detection"] print("Parameter values are: ") pretty_print(testing_params) # Get the CDR function of tests cdr_from_tests_func = create_cdr_function( testing_params["assumed_tests_parameter"], testing_params["assumed_cdr_parameter"], ) # Get the denominator population testing_pops = get_population_by_agegroup( project.param_set.baseline["age_groups"], project.param_set.baseline["country"]["iso3"], project.param_set.baseline["population"]["region"] ) # Process the data test_times, test_values = get_testing_numbers_for_region("BTN","Bhutan") test_dates = ref_times_to_dti(COVID_BASE_DATETIME, [int(time) for time in test_times]) per_capita_tests = [i_tests / sum(testing_pops) for i_tests in test_values] dummy_tests = np.linspace(0, max(per_capita_tests), 200) if testing_params["assumed_tests_parameter"]: smoothed_per_capita_tests = apply_moving_average( per_capita_tests, testing_params["smoothing_period"] ) else: smoothed_per_capita_tests = per_capita_tests cdr_function_of_time = scale_up_function( test_times, [cdr_from_tests_func(test_rate) for test_rate in smoothed_per_capita_tests], smoothness=0.2, method=4, bound_low=0., ) # Plot fig, axes = plt.subplots(2, 2, figsize=(12, 8)) fig.tight_layout(w_pad=1.5, h_pad=5) def sort_axis_dates(ax): axis.tick_params(axis="x", labelrotation=45) #axis.set_xlim(left=plot_left_date, right=plot_right_date) # Plot daily number of tests axis = axes[0, 0] axis.plot(test_dates, test_values, marker="o") axis.set_title("daily testing numbers") sort_axis_dates(axis) # Plot daily number of tests axis = axes[0, 1] axis.plot(test_dates, per_capita_tests, label="raw") axis.plot(test_dates, smoothed_per_capita_tests, label="smoothed") axis.set_title("daily per capita testing rate") sort_axis_dates(axis) axis.legend() # Plot relationship of daily tests to CDR proportion axis = axes[1, 0] axis.plot(dummy_tests, cdr_from_tests_func(dummy_tests)) axis.scatter(per_capita_tests, [cdr_from_tests_func(i_tests) for i_tests in per_capita_tests], color="r") axis.set_ylabel("case detection proportion") axis.set_xlabel("per capita testing rate") axis.set_title("daily per capita tests to CDR relationship") axis.set_ylim(top=1.) # Plot CDR values axis = axes[1, 1] multiplier = 1e2 axis.scatter(test_dates, [cdr_from_tests_func(i_test_rate) * multiplier for i_test_rate in smoothed_per_capita_tests], color="r") axis.plot(test_dates, [cdr_function_of_time(time) * multiplier for time in test_times]) axis.set_title("Final case detection rate") axis.set_ylabel("percentage") sort_axis_dates(axis) fig.tight_layout() ```
github_jupyter
import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.dates as mdates from datetime import date from datetime import datetime import numpy as np from summer.utils import ref_times_to_dti from autumn.tools.inputs.demography.queries import get_population_by_agegroup from autumn.models.sm_sir.detection import create_cdr_function from autumn.tools.utils.utils import apply_moving_average from autumn.tools.curve.scale_up import scale_up_function from autumn.tools.project import get_project from autumn.settings import Region, Models from autumn.models.covid_19.constants import AGEGROUP_STRATA, GOOGLE_MOBILITY_LOCATIONS from autumn.settings.constants import COVID_BASE_DATETIME from autumn.models.sm_sir.mixing_matrix.macrodistancing import weight_mobility_data, get_mobility_data from autumn.tools.plots.utils import REF_DATE from autumn.tools import inputs from autumn.tools.inputs.database import get_input_db from autumn.tools.utils.display import pretty_print from autumn.tools.inputs.social_mixing.build_synthetic_matrices import build_synthetic_matrices from autumn.models.covid_19.detection import get_testing_numbers_for_region plt.style.use('ggplot') age_integers = [int(group) for group in AGEGROUP_STRATA] model = Models.SM_SIR region = Region.BHUTAN project = get_project(model, region, reload=True) base_params = project.param_set.baseline fig, ax = plt.subplots(1, 1, figsize=(10, 6)) age_groups = base_params["age_groups"] total_pops = inputs.get_population_by_agegroup( age_groups, base_params["country"]["iso3"], None, # "FDMN", year=base_params["population"]["year"] ) print(f"total modelled population of {region} is: {round(sum(total_pops) / 1e3, 3)} thousand") ax.bar(age_groups, total_pops, width=4) ax.set_title(region) ax.set_ylabel("population") ax.set_xlabel("starting age of age bracket") fig.suptitle("population distribution by age") print(f"Whether mobility effects are turned on: {base_params['is_dynamic_mixing_matrix']}") times y_upper = 2. # Collate data together input_db = get_input_db() mob_df = get_mobility_data("BTN", region=False,base_date = COVID_BASE_DATETIME )[0] times = mob_df["date"].to_list() google_mob_df = weight_mobility_data(mob_df, project.param_set.baseline["mobility"]["google_mobility_locations"]) # Get plots ready mob_fig, mob_axes = plt.subplots(1, 2, figsize=(12, 6)) plot_left_date = date(2020, 1, 1) plot_right_date = times[-1] # Not sure why this is necessary # Plot raw mobility data ax = mob_axes[0] for mobility_domain in GOOGLE_MOBILITY_LOCATIONS: ax.plot(times, mob_df[mobility_domain], label=mobility_domain) ax.set_ylim((0., y_upper)) ax.tick_params(axis="x", labelrotation=45) ax.set_title("raw Google mobility domains") ax.legend(loc="upper right") ax.set_xlim(left=plot_left_date, right=plot_right_date) # Plot processed mobility data ax = mob_axes[1] for location in list(project.param_set.baseline["mobility"]["google_mobility_locations"].keys()): ax.plot(times, google_mob_df[location], label=location) ax.tick_params(axis="x", labelrotation=45) ax.set_ylim((0., y_upper)) ax.legend(loc="upper left") ax.set_title("mobility as implemented in the model") mob_fig.tight_layout(w_pad=1.5, h_pad=3.5) ax.set_xlim(left=plot_left_date, right=plot_right_date) print(f"Modelled country: {project.param_set.baseline['country']['iso3']}") print(f"Modelled sub-region: {project.param_set.baseline['population']['region']}") print(f"Proxy country: {project.param_set.baseline['ref_mixing_iso3']}") print("Always age-adjusted under SM-SIR code") agegroup_types = { "base age groups": AGEGROUP_STRATA, "modelled age groups": project.param_set.baseline["age_groups"], } for title, agegroups in agegroup_types.items(): mixing_matrix = build_synthetic_matrices( project.param_set.baseline["country"]["iso3"], project.param_set.baseline["ref_mixing_iso3"], agegroups, True, project.param_set.baseline["population"]["region"] ) fig = plt.figure(figsize=(12, 8)) positions = [1, 2, 3, 5, 6] for i_loc, location in zip(positions, mixing_matrix.keys()): ax = fig.add_subplot(2, 3, i_loc) ax.imshow( np.flipud(np.transpose(mixing_matrix[location])), cmap=cm.hot, vmin=0, vmax=mixing_matrix[location].max(), origin="lower" ) ax.set_title(location.replace("_", " ")) ax.set_xticks([]) ax.set_yticks([]) fig.suptitle(title) testing_params = project.param_set.baseline["testing_to_detection"] print("Parameter values are: ") pretty_print(testing_params) # Get the CDR function of tests cdr_from_tests_func = create_cdr_function( testing_params["assumed_tests_parameter"], testing_params["assumed_cdr_parameter"], ) # Get the denominator population testing_pops = get_population_by_agegroup( project.param_set.baseline["age_groups"], project.param_set.baseline["country"]["iso3"], project.param_set.baseline["population"]["region"] ) # Process the data test_times, test_values = get_testing_numbers_for_region("BTN","Bhutan") test_dates = ref_times_to_dti(COVID_BASE_DATETIME, [int(time) for time in test_times]) per_capita_tests = [i_tests / sum(testing_pops) for i_tests in test_values] dummy_tests = np.linspace(0, max(per_capita_tests), 200) if testing_params["assumed_tests_parameter"]: smoothed_per_capita_tests = apply_moving_average( per_capita_tests, testing_params["smoothing_period"] ) else: smoothed_per_capita_tests = per_capita_tests cdr_function_of_time = scale_up_function( test_times, [cdr_from_tests_func(test_rate) for test_rate in smoothed_per_capita_tests], smoothness=0.2, method=4, bound_low=0., ) # Plot fig, axes = plt.subplots(2, 2, figsize=(12, 8)) fig.tight_layout(w_pad=1.5, h_pad=5) def sort_axis_dates(ax): axis.tick_params(axis="x", labelrotation=45) #axis.set_xlim(left=plot_left_date, right=plot_right_date) # Plot daily number of tests axis = axes[0, 0] axis.plot(test_dates, test_values, marker="o") axis.set_title("daily testing numbers") sort_axis_dates(axis) # Plot daily number of tests axis = axes[0, 1] axis.plot(test_dates, per_capita_tests, label="raw") axis.plot(test_dates, smoothed_per_capita_tests, label="smoothed") axis.set_title("daily per capita testing rate") sort_axis_dates(axis) axis.legend() # Plot relationship of daily tests to CDR proportion axis = axes[1, 0] axis.plot(dummy_tests, cdr_from_tests_func(dummy_tests)) axis.scatter(per_capita_tests, [cdr_from_tests_func(i_tests) for i_tests in per_capita_tests], color="r") axis.set_ylabel("case detection proportion") axis.set_xlabel("per capita testing rate") axis.set_title("daily per capita tests to CDR relationship") axis.set_ylim(top=1.) # Plot CDR values axis = axes[1, 1] multiplier = 1e2 axis.scatter(test_dates, [cdr_from_tests_func(i_test_rate) * multiplier for i_test_rate in smoothed_per_capita_tests], color="r") axis.plot(test_dates, [cdr_function_of_time(time) * multiplier for time in test_times]) axis.set_title("Final case detection rate") axis.set_ylabel("percentage") sort_axis_dates(axis) fig.tight_layout()
0.591487
0.693625
<a href="https://colab.research.google.com/github/lvisdd/object_detection_tutorial/blob/master/DeepLab_Demo.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # [Tensorflow Object Detection API](https://github.com/tensorflow/models/tree/master/research/object_detection) ``` !git clone https://github.com/tensorflow/models.git ``` # COCO API installation ``` !git clone https://github.com/cocodataset/cocoapi.git %cd cocoapi/PythonAPI !make !cp -r pycocotools /content/models/research/ ``` # Protobuf Compilation ``` %cd /content/models/research/ !protoc object_detection/protos/*.proto --python_out=. ``` # Add Libraries to PYTHONPATH ``` %cd /content/models/research/ %env PYTHONPATH=/env/python:/content/models/research:/content/models/research/slim:/content/models/research/object_detection %env ``` # Testing the Installation ``` !python object_detection/builders/model_builder_test.py %cd /content/models/research/object_detection ``` # [DeepLab: Deep Labelling for Semantic Image Segmentation](https://github.com/tensorflow/models/tree/master/research/deeplab) ## Import Libraries ``` import os from io import BytesIO import tarfile import tempfile from six.moves import urllib from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image import tensorflow as tf ``` ## Import helper methods These methods help us perform the following tasks: * Load the latest version of the pretrained DeepLab model * Load the colormap from the PASCAL VOC dataset * Adds colors to various labels, such as "pink" for people, "green" for bicycle and more * Visualize an image, and add an overlay of colors on various regions ``` class DeepLabModel(object): """Class to load deeplab model and run inference.""" INPUT_TENSOR_NAME = 'ImageTensor:0' OUTPUT_TENSOR_NAME = 'SemanticPredictions:0' INPUT_SIZE = 513 FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): """Creates and loads pretrained deeplab model.""" self.graph = tf.Graph() graph_def = None # Extract frozen graph from tar archive. tar_file = tarfile.open(tarball_path) for tar_info in tar_file.getmembers(): if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name): file_handle = tar_file.extractfile(tar_info) graph_def = tf.GraphDef.FromString(file_handle.read()) break tar_file.close() if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image): """Runs inference on a single image. Args: image: A PIL.Image object, raw input image. Returns: resized_image: RGB image resized from original input image. seg_map: Segmentation map of `resized_image`. """ width, height = image.size resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height) target_size = (int(resize_ratio * width), int(resize_ratio * height)) resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS) batch_seg_map = self.sess.run( self.OUTPUT_TENSOR_NAME, feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] return resized_image, seg_map def create_pascal_label_colormap(): """Creates a label colormap used in PASCAL VOC segmentation benchmark. Returns: A Colormap for visualizing segmentation results. """ colormap = np.zeros((256, 3), dtype=int) ind = np.arange(256, dtype=int) for shift in reversed(range(8)): for channel in range(3): colormap[:, channel] |= ((ind >> channel) & 1) << shift ind >>= 3 return colormap def label_to_color_image(label): """Adds color defined by the dataset colormap to the label. Args: label: A 2D array with integer type, storing the segmentation label. Returns: result: A 2D array with floating type. The element of the array is the color indexed by the corresponding element in the input label to the PASCAL color map. Raises: ValueError: If label is not of rank 2 or its value is larger than color map maximum entry. """ if label.ndim != 2: raise ValueError('Expect 2-D input label') colormap = create_pascal_label_colormap() if np.max(label) >= len(colormap): raise ValueError('label value too large.') return colormap[label] def vis_segmentation(image, seg_map): """Visualizes input image, segmentation map and overlay view.""" plt.figure(figsize=(15, 5)) grid_spec = gridspec.GridSpec(1, 4, width_ratios=[6, 6, 6, 1]) plt.subplot(grid_spec[0]) plt.imshow(image) plt.axis('off') plt.title('input image') plt.subplot(grid_spec[1]) seg_image = label_to_color_image(seg_map).astype(np.uint8) plt.imshow(seg_image) plt.axis('off') plt.title('segmentation map') plt.subplot(grid_spec[2]) plt.imshow(image) plt.imshow(seg_image, alpha=0.7) plt.axis('off') plt.title('segmentation overlay') unique_labels = np.unique(seg_map) ax = plt.subplot(grid_spec[3]) plt.imshow( FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation='nearest') ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0) plt.grid('off') plt.show() LABEL_NAMES = np.asarray([ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tv' ]) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) ``` ## Select a pretrained model We have trained the DeepLab model using various backbone networks. Select one from the MODEL_NAME list. ``` MODEL_NAME = 'mobilenetv2_coco_voctrainaug' # @param ['mobilenetv2_coco_voctrainaug', 'mobilenetv2_coco_voctrainval', 'xception_coco_voctrainaug', 'xception_coco_voctrainval'] _DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/' _MODEL_URLS = { 'mobilenetv2_coco_voctrainaug': 'deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz', 'mobilenetv2_coco_voctrainval': 'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz', 'xception_coco_voctrainaug': 'deeplabv3_pascal_train_aug_2018_01_04.tar.gz', 'xception_coco_voctrainval': 'deeplabv3_pascal_trainval_2018_01_04.tar.gz', } _TARBALL_NAME = 'deeplab_model.tar.gz' model_dir = tempfile.mkdtemp() tf.gfile.MakeDirs(model_dir) download_path = os.path.join(model_dir, _TARBALL_NAME) print('downloading model, this might take a while...') urllib.request.urlretrieve(_DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME], download_path) print('download completed! loading DeepLab model...') MODEL = DeepLabModel(download_path) print('model loaded successfully!') ``` ## Run on sample images Select one of sample images (leave `IMAGE_URL` empty) or feed any internet image url for inference. Note that this colab uses single scale inference for fast computation, so the results may slightly differ from the visualizations in the [README](https://github.com/tensorflow/models/blob/master/research/deeplab/README.md) file, which uses multi-scale and left-right flipped inputs. ``` SAMPLE_IMAGE = 'image1' # @param ['image1', 'image2', 'image3'] IMAGE_URL = '' #@param {type:"string"} _SAMPLE_URL = ('https://github.com/tensorflow/models/blob/master/research/' 'deeplab/g3doc/img/%s.jpg?raw=true') def run_visualization(url): """Inferences DeepLab model and visualizes result.""" try: f = urllib.request.urlopen(url) jpeg_str = f.read() original_im = Image.open(BytesIO(jpeg_str)) except IOError: print('Cannot retrieve image. Please check url: ' + url) return print('running deeplab on image %s...' % url) resized_im, seg_map = MODEL.run(original_im) vis_segmentation(resized_im, seg_map) image_url = IMAGE_URL or _SAMPLE_URL % SAMPLE_IMAGE run_visualization(image_url) ```
github_jupyter
!git clone https://github.com/tensorflow/models.git !git clone https://github.com/cocodataset/cocoapi.git %cd cocoapi/PythonAPI !make !cp -r pycocotools /content/models/research/ %cd /content/models/research/ !protoc object_detection/protos/*.proto --python_out=. %cd /content/models/research/ %env PYTHONPATH=/env/python:/content/models/research:/content/models/research/slim:/content/models/research/object_detection %env !python object_detection/builders/model_builder_test.py %cd /content/models/research/object_detection import os from io import BytesIO import tarfile import tempfile from six.moves import urllib from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image import tensorflow as tf class DeepLabModel(object): """Class to load deeplab model and run inference.""" INPUT_TENSOR_NAME = 'ImageTensor:0' OUTPUT_TENSOR_NAME = 'SemanticPredictions:0' INPUT_SIZE = 513 FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): """Creates and loads pretrained deeplab model.""" self.graph = tf.Graph() graph_def = None # Extract frozen graph from tar archive. tar_file = tarfile.open(tarball_path) for tar_info in tar_file.getmembers(): if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name): file_handle = tar_file.extractfile(tar_info) graph_def = tf.GraphDef.FromString(file_handle.read()) break tar_file.close() if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image): """Runs inference on a single image. Args: image: A PIL.Image object, raw input image. Returns: resized_image: RGB image resized from original input image. seg_map: Segmentation map of `resized_image`. """ width, height = image.size resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height) target_size = (int(resize_ratio * width), int(resize_ratio * height)) resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS) batch_seg_map = self.sess.run( self.OUTPUT_TENSOR_NAME, feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] return resized_image, seg_map def create_pascal_label_colormap(): """Creates a label colormap used in PASCAL VOC segmentation benchmark. Returns: A Colormap for visualizing segmentation results. """ colormap = np.zeros((256, 3), dtype=int) ind = np.arange(256, dtype=int) for shift in reversed(range(8)): for channel in range(3): colormap[:, channel] |= ((ind >> channel) & 1) << shift ind >>= 3 return colormap def label_to_color_image(label): """Adds color defined by the dataset colormap to the label. Args: label: A 2D array with integer type, storing the segmentation label. Returns: result: A 2D array with floating type. The element of the array is the color indexed by the corresponding element in the input label to the PASCAL color map. Raises: ValueError: If label is not of rank 2 or its value is larger than color map maximum entry. """ if label.ndim != 2: raise ValueError('Expect 2-D input label') colormap = create_pascal_label_colormap() if np.max(label) >= len(colormap): raise ValueError('label value too large.') return colormap[label] def vis_segmentation(image, seg_map): """Visualizes input image, segmentation map and overlay view.""" plt.figure(figsize=(15, 5)) grid_spec = gridspec.GridSpec(1, 4, width_ratios=[6, 6, 6, 1]) plt.subplot(grid_spec[0]) plt.imshow(image) plt.axis('off') plt.title('input image') plt.subplot(grid_spec[1]) seg_image = label_to_color_image(seg_map).astype(np.uint8) plt.imshow(seg_image) plt.axis('off') plt.title('segmentation map') plt.subplot(grid_spec[2]) plt.imshow(image) plt.imshow(seg_image, alpha=0.7) plt.axis('off') plt.title('segmentation overlay') unique_labels = np.unique(seg_map) ax = plt.subplot(grid_spec[3]) plt.imshow( FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation='nearest') ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0) plt.grid('off') plt.show() LABEL_NAMES = np.asarray([ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tv' ]) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) MODEL_NAME = 'mobilenetv2_coco_voctrainaug' # @param ['mobilenetv2_coco_voctrainaug', 'mobilenetv2_coco_voctrainval', 'xception_coco_voctrainaug', 'xception_coco_voctrainval'] _DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/' _MODEL_URLS = { 'mobilenetv2_coco_voctrainaug': 'deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz', 'mobilenetv2_coco_voctrainval': 'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz', 'xception_coco_voctrainaug': 'deeplabv3_pascal_train_aug_2018_01_04.tar.gz', 'xception_coco_voctrainval': 'deeplabv3_pascal_trainval_2018_01_04.tar.gz', } _TARBALL_NAME = 'deeplab_model.tar.gz' model_dir = tempfile.mkdtemp() tf.gfile.MakeDirs(model_dir) download_path = os.path.join(model_dir, _TARBALL_NAME) print('downloading model, this might take a while...') urllib.request.urlretrieve(_DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME], download_path) print('download completed! loading DeepLab model...') MODEL = DeepLabModel(download_path) print('model loaded successfully!') SAMPLE_IMAGE = 'image1' # @param ['image1', 'image2', 'image3'] IMAGE_URL = '' #@param {type:"string"} _SAMPLE_URL = ('https://github.com/tensorflow/models/blob/master/research/' 'deeplab/g3doc/img/%s.jpg?raw=true') def run_visualization(url): """Inferences DeepLab model and visualizes result.""" try: f = urllib.request.urlopen(url) jpeg_str = f.read() original_im = Image.open(BytesIO(jpeg_str)) except IOError: print('Cannot retrieve image. Please check url: ' + url) return print('running deeplab on image %s...' % url) resized_im, seg_map = MODEL.run(original_im) vis_segmentation(resized_im, seg_map) image_url = IMAGE_URL or _SAMPLE_URL % SAMPLE_IMAGE run_visualization(image_url)
0.858407
0.926835
# Algorithm_note 동전거슬러주기 문제 ``` n = 1260 count=0 coin_types=[500,100,50,10] for x in coin_types: count+=n//x n%=x print('지금의 n값은 {%d}입니다.'%n) print(count) ``` 위 코드를 보면 화폐의 종류만큼 반복 수행해야 한다. 따라서 화폐의 종류가 K개라고 할 떄 위 소스 코드의 시간 복잡도는 O(K)이다. 참고로 시간 복잡도에서 거슬러 주어야 할 돈 N은 찾아볼 수 없는 것을 알 수 있다. 즉, 이 알고리즘의 시간 복잡도는 동전의 총 종류에만 영향을 받고, 거슬러 줘야 하는 금액의 크기와는 무관하다 ## 큰 수의 법칙 (그리디) ``` # 큰 수의 법칙 n, m, k = map(int,input().split()) # n은 배열수, m은 총 더하기 길이, k는 한 숫자가 연속가능한 수 data = list(map(int, input().split())) data.sort() first = data[-1] second = data[-2] result=0 # 최종 값 저장하기 위해서 while True: for x in range(k): # 가장 큰 숫자 k번 더하기 if m==0: break result+=first m-=1 if m==0: break result+=second # 두 번째 숫자 한번 더하기 m-=1 print(result) ``` 이 문제는 일단 입력값 중에서 가장 큰 수와 두 번째 큰 수만 저장하면 된다. 연속으로 더할 수 있는 횟수는 최대 K번이므로 가장 큰 수를 K번 더하고 두 번째로 큰 수를 한 번 더하는 연산을 반복하면 된다.' but, 이 문제는 M이 10,100 이하이므로 이 방식으로도 문제를 해결할 수 있지만, M의 크기가 100억 이상처럼 커진다면 시간 초과 판정을 받을 것이다. 간단한 수학적 아이디어를 이용해 더 효율적으로 문제를 해결해보자. 예를 들어 N이 5이고 입력값이 다음과 같이 주어졌다고 가정하자. 이 문제를 풀려면 가장 먼저 반복되는 수열에 대해서 파악해야 한다. 가자장 큰 수와 두 번째로 큰 수가 더해질 떄는 특정한 수열 형태로 일정하게 반복해서 더해지는 특징이 있다. 위의 예시에서는 수열 {6,6,6,5}가 반복된다. 그렇다면 반복되는 수열의 길이는 어떻게 될까? 바로 (K+1)로 위의 예시에서는 4가 된다. 따라서 M을 (K+1)로 나눈 몫이 수열이 반복되는 횟수가 된다. 다시 여기에 K를 곱해주면 가장 큰 수가 등장하는 횟수가 된다. 이때 M이 (K+1)로 나누어떨어지지 않는 경우도 고려해야 한다. 그럴 때는 M을 (K+1)로 나눈 나머지만큼 가장 큰 수가 추가로 더해지므로 이를 고려해주어야 한다. 즉, '가장 큰 수가 더해지는 횟수'는 다음과 같다. int(M/(K+1)) * K+M%(K+1) 결과적으로 위의 식을 이용하여 가장 큰 수가 더해지는 횟수를 구한 다음, 이를 이용해 두 번째로 큰 수가 더해지는 횟수까지 구할 수 있는 것이다. 이를 토대로 파이썬을 이용해 답안을 작성하면 다음과 같다. ``` n,m,k = map(int, input().split()) data=list(map(int,input().split())) data.sort() first=data[-1] second=data[-2] # 가장 큰 수가 더해지는 횟수 계산 count =int(m/(k+1))*k count+=m%(k+1) result=0 result+=(count)*first result+=(m-count) * second print(result) ``` ## 숫자 카드 게임(그리디) 아이디어 : 각 행마다 가장 작은 수를 찾은 뒤에 그 수 중에서 가장 큰 수를 찾는 게임 ``` # 낮은 것 중에서 가장 높은 것. m,n = map(int,input().split()) for i in range(m): data = map(int,input().split()) mini = min(data) result = max(result,mini) print(result) ``` 1이 될 때 까지 방법1 1. N에서 1을 뺀다. 2. N을 K로 나눈다. ``` # 혼자 도전해본 풀이: 정답 n,k = map(int,input().split()) count=0 while n!=1: if n%k==0: n=n/k count+=1 else: n=n-1 count+=1 print(count) # 책에서 나온 답 n, k = map(int,input().split()) result =0 # N이 K이상이라면 K로 계속 나누기 while n>=k: #N이 K로 나누어 떨어지지 않는다면 N에서 1씩 빼기 while n%k!=0: n-=1 result+=1 # K로 나누기 n//=k result+=1 #마지막으로 남는 수에 대하여 1씩 빼기 while n>1: n-=1 result +=1 print(result) ``` ## 상하 좌우 문제 (구현,시뮬레이션) 명령에 따라서 차례대로 이동시킨다는 점에서 시뮬레이션 유형이다. ``` 1,2+3,4 # 내가 해봤던 풀이, 모르겠다. 3,4가 나와야하는데 2,4가 나왔다. n = int(input()) mov = list(map(str,input().split())) init_1=1 init_2=1 for i in mov: elif i == 'r': init_2+=1 elif i == 'l': init_2-=1 elif i == 'u': init_1-=1 else: init_1+=1 print((init_1,init_2)) # 문제 해설 n = int(input()) x,y = 1,1 plans = input().split() move_type=['L','R','U','D'] dx = [0,0,-1,1] dy = [-1,1,0,0] for plan in plans: for i in range(len(move_type)): if plan == move_type[i]: nx = x+dx[i] ny = y+dy[i] if nx<1 or ny<1 or nx>n or ny>n: continue x,y =nx,ny print(x,y) ``` ## 시각(완전 탐색) 완전 탐색 알고리즘은 가능한 경우의 수를 모두 검사해보는 탐색 방법이다. 일반적으로 완전 탐색 알고리즘은 비효율적인 시간 복잡도를 가지고 있으므로 데잍터 개수가 큰 경우에 정상적으로 동작하지 않을 수 있다. 그래서 일반적으로 알고리즘 문제를 풀 떄는 확인(탐색 해야 할 전체 데이터의 개수가 100만개 이하일 때완전 탐색을 사용하면 적절하다. ``` n = int(input()) count=0 for i in range(n+1): for j in range(60): for k in range(60): if '3' in str(i)+str(j)+str(k): #문자열 자료형으로 변환하여 탐색 count+=1 print(count) ``` ## 왕실의 나이트 ### 많이 취약하다. 복습 많이 하자. ``` int(ord('a'))-int(ord('a'))+1 input_data = input() row =int(input_data[1]) column = int(ord(input_data[0]))-int(ord('a'))+1 steps =[(-2,-1),(-1,-2),(1,-2),(2,-1),(2,1),(1,2),(-1,2),(-2,1)] result=0 for step in steps: # 이동하고자 하는 위치 확인 next_row =row+step[0] next_columns=column+step[1] # 해당 위치로 이동이 가능하다면 카운트 증가 if next_row>=1 and next_row<=8 and next_columns>=1 and next_columns<=8: result+=1 print(result) # ord — ord(c)는 문자의 유니코드 값을 돌려주는 함수이다. ``` ### 게임 개발 (시뮬레이션) 전형적인 시뮬레이션 문제이다. 삼성전자 공채 코딩 테스트에서 자주 출제되는 대표적인 유형이기도 하다. 별도의 알고리즘이 필요하기보다는 문제에서 요구하는 내용을 오류 없이 성실하게 구현만 한다면 풀 수 있다는게 특징. 반복적 숙달이 필요하다. #### 테크닉 : 일반적으로 방향을 설정해서 이동하는 문제 유형에서는 dx,dy라는 별도의 리스트를 만들어 방향을 정하는 것이 효과적이다. ``` n,m = map(int, input().split()) # 방문한 위치를 저장하기 위한 맵을 생성하여 0으로 초기화 d=[[0] * m for _ in range(n)] # _는? 그냥 반복을 위해 존재. 실제론 안쓰이기 때문에 # 현재 캐릭터의 X좌표, Y좌표, 방향을 입력받기 x,y ,direction = map(int, input().split()) # 북쪽:0,동쪽:1,남쪽:2,서쪽:3 d[x][y] =1 # 현재 좌표 방문 처리, 1로 저장해서 구분하는 듯 하다. d # n,m = map(int, input().split()) # 방문한 위치를 저장하기 위한 맵을 생성하여 0으로 초기화. 이건 별개다. d=[[0] * m for _ in range(n)] # _는? 그냥 반복을 위해 존재. 실제론 안쓰이기 때문에 # 현재 캐릭터의 X좌표, Y좌표, 방향을 입력받기 x,y ,direction = map(int, input().split()) # 북쪽:0,동쪽:1,남쪽:2,서쪽:3 d[x][y] =1 # 현재 좌표 방문 처리, 1로 저장해서 구분하는 듯 하다. # 전체 맵 정보를 입력받기 array=[] for i in range(n): array.append(list(map(int,input().split()))) # 북 ,동 ,남 ,서 방향 정의 dx = [-1,0,1,0] dy = [0,1,0,-1] # 왼쪽으로 회전. 이동이 아니라 딱 회전만이다. def turn_left(): global direction direction -=1 if direction == -1: # 0에서 -1를 했을 경우 direction=3 # 시뮬레이션 시작 count = 1 turn_time =0 while True: # 왼쪽으로 회전. turn_left() nx= x+dx[direction] ny= y+dy[direction] #회전한 이후 정면에 가보지 않은 칸이 존재하는 경우 이동 # 이건 다녀온 적이 있는지, # 이건 바다인지 육지인지. 0이면 육지다.이동가능 if d[nx][ny]==0 and array[nx][ny]==0: d[nx][ny]=1 # 다녀갔다는 값으로 저장 x=nx y=ny count+=1 turn_time=0 continue else: turn_time +=1 # 네 방향 모두 갈 수 없는 경우 if turn_time ==4: nx= x-dx[direction] ny= y-dy[direction] # 뒤로 갈 수 있다면 이동하기 if array[nx][ny] ==0: x=nx y=ny # 뒤가 바다로 막혀있는 경우 else: break turn_time=0 #정답 출력 print(count) n,m = map(int,input().split()) a,b,direction = map(int,input().split()) # 방문한 위치 만들기 ,리스트 컴프리헨션 # 다녀갔는지 확인용 d= [[0]*m for _ in range(n)] d[x][y]=1 # 현재 위치 및 다녀간 곳 체크 # 전체 맵 입력받기 array=[] for i in range(n): array.append(list(map(int,input().split()))) dx =[-1,0,1,0] dy =[0,1,0,-1] def turn_left(): global direction direction -=1 if direction==-1: direction=3 # 시뮬레이션 시작 count =1 turn_time =0 while True: # 왼쪽으로 회전 turn_left() nx= x+dx[direction] ny= y+dy[direction] if d[nx][ny]==0 and array[nx][ny] ==0: d[nx][ny] =1 x=nx y=ny count+= 1 turn_time=0 # 돌지않음 continue # 회전한 이후 정면에 가보지 않은 칸이 없거나 바다인 경우 else: turn_time+=1 # 다른 방향으로 # 네 방향 모두 갈 수 없는 경우 if turn_time ==4: nx=x-dx[direction] ny=y-dy[direction] # 뒤로 갈 수 있다면 이동 if array[nx][ny] ==0: x=nx y=ny else: break turn_time=0 # 정답 print(count) ```
github_jupyter
n = 1260 count=0 coin_types=[500,100,50,10] for x in coin_types: count+=n//x n%=x print('지금의 n값은 {%d}입니다.'%n) print(count) # 큰 수의 법칙 n, m, k = map(int,input().split()) # n은 배열수, m은 총 더하기 길이, k는 한 숫자가 연속가능한 수 data = list(map(int, input().split())) data.sort() first = data[-1] second = data[-2] result=0 # 최종 값 저장하기 위해서 while True: for x in range(k): # 가장 큰 숫자 k번 더하기 if m==0: break result+=first m-=1 if m==0: break result+=second # 두 번째 숫자 한번 더하기 m-=1 print(result) n,m,k = map(int, input().split()) data=list(map(int,input().split())) data.sort() first=data[-1] second=data[-2] # 가장 큰 수가 더해지는 횟수 계산 count =int(m/(k+1))*k count+=m%(k+1) result=0 result+=(count)*first result+=(m-count) * second print(result) # 낮은 것 중에서 가장 높은 것. m,n = map(int,input().split()) for i in range(m): data = map(int,input().split()) mini = min(data) result = max(result,mini) print(result) # 혼자 도전해본 풀이: 정답 n,k = map(int,input().split()) count=0 while n!=1: if n%k==0: n=n/k count+=1 else: n=n-1 count+=1 print(count) # 책에서 나온 답 n, k = map(int,input().split()) result =0 # N이 K이상이라면 K로 계속 나누기 while n>=k: #N이 K로 나누어 떨어지지 않는다면 N에서 1씩 빼기 while n%k!=0: n-=1 result+=1 # K로 나누기 n//=k result+=1 #마지막으로 남는 수에 대하여 1씩 빼기 while n>1: n-=1 result +=1 print(result) 1,2+3,4 # 내가 해봤던 풀이, 모르겠다. 3,4가 나와야하는데 2,4가 나왔다. n = int(input()) mov = list(map(str,input().split())) init_1=1 init_2=1 for i in mov: elif i == 'r': init_2+=1 elif i == 'l': init_2-=1 elif i == 'u': init_1-=1 else: init_1+=1 print((init_1,init_2)) # 문제 해설 n = int(input()) x,y = 1,1 plans = input().split() move_type=['L','R','U','D'] dx = [0,0,-1,1] dy = [-1,1,0,0] for plan in plans: for i in range(len(move_type)): if plan == move_type[i]: nx = x+dx[i] ny = y+dy[i] if nx<1 or ny<1 or nx>n or ny>n: continue x,y =nx,ny print(x,y) n = int(input()) count=0 for i in range(n+1): for j in range(60): for k in range(60): if '3' in str(i)+str(j)+str(k): #문자열 자료형으로 변환하여 탐색 count+=1 print(count) int(ord('a'))-int(ord('a'))+1 input_data = input() row =int(input_data[1]) column = int(ord(input_data[0]))-int(ord('a'))+1 steps =[(-2,-1),(-1,-2),(1,-2),(2,-1),(2,1),(1,2),(-1,2),(-2,1)] result=0 for step in steps: # 이동하고자 하는 위치 확인 next_row =row+step[0] next_columns=column+step[1] # 해당 위치로 이동이 가능하다면 카운트 증가 if next_row>=1 and next_row<=8 and next_columns>=1 and next_columns<=8: result+=1 print(result) # ord — ord(c)는 문자의 유니코드 값을 돌려주는 함수이다. n,m = map(int, input().split()) # 방문한 위치를 저장하기 위한 맵을 생성하여 0으로 초기화 d=[[0] * m for _ in range(n)] # _는? 그냥 반복을 위해 존재. 실제론 안쓰이기 때문에 # 현재 캐릭터의 X좌표, Y좌표, 방향을 입력받기 x,y ,direction = map(int, input().split()) # 북쪽:0,동쪽:1,남쪽:2,서쪽:3 d[x][y] =1 # 현재 좌표 방문 처리, 1로 저장해서 구분하는 듯 하다. d # n,m = map(int, input().split()) # 방문한 위치를 저장하기 위한 맵을 생성하여 0으로 초기화. 이건 별개다. d=[[0] * m for _ in range(n)] # _는? 그냥 반복을 위해 존재. 실제론 안쓰이기 때문에 # 현재 캐릭터의 X좌표, Y좌표, 방향을 입력받기 x,y ,direction = map(int, input().split()) # 북쪽:0,동쪽:1,남쪽:2,서쪽:3 d[x][y] =1 # 현재 좌표 방문 처리, 1로 저장해서 구분하는 듯 하다. # 전체 맵 정보를 입력받기 array=[] for i in range(n): array.append(list(map(int,input().split()))) # 북 ,동 ,남 ,서 방향 정의 dx = [-1,0,1,0] dy = [0,1,0,-1] # 왼쪽으로 회전. 이동이 아니라 딱 회전만이다. def turn_left(): global direction direction -=1 if direction == -1: # 0에서 -1를 했을 경우 direction=3 # 시뮬레이션 시작 count = 1 turn_time =0 while True: # 왼쪽으로 회전. turn_left() nx= x+dx[direction] ny= y+dy[direction] #회전한 이후 정면에 가보지 않은 칸이 존재하는 경우 이동 # 이건 다녀온 적이 있는지, # 이건 바다인지 육지인지. 0이면 육지다.이동가능 if d[nx][ny]==0 and array[nx][ny]==0: d[nx][ny]=1 # 다녀갔다는 값으로 저장 x=nx y=ny count+=1 turn_time=0 continue else: turn_time +=1 # 네 방향 모두 갈 수 없는 경우 if turn_time ==4: nx= x-dx[direction] ny= y-dy[direction] # 뒤로 갈 수 있다면 이동하기 if array[nx][ny] ==0: x=nx y=ny # 뒤가 바다로 막혀있는 경우 else: break turn_time=0 #정답 출력 print(count) n,m = map(int,input().split()) a,b,direction = map(int,input().split()) # 방문한 위치 만들기 ,리스트 컴프리헨션 # 다녀갔는지 확인용 d= [[0]*m for _ in range(n)] d[x][y]=1 # 현재 위치 및 다녀간 곳 체크 # 전체 맵 입력받기 array=[] for i in range(n): array.append(list(map(int,input().split()))) dx =[-1,0,1,0] dy =[0,1,0,-1] def turn_left(): global direction direction -=1 if direction==-1: direction=3 # 시뮬레이션 시작 count =1 turn_time =0 while True: # 왼쪽으로 회전 turn_left() nx= x+dx[direction] ny= y+dy[direction] if d[nx][ny]==0 and array[nx][ny] ==0: d[nx][ny] =1 x=nx y=ny count+= 1 turn_time=0 # 돌지않음 continue # 회전한 이후 정면에 가보지 않은 칸이 없거나 바다인 경우 else: turn_time+=1 # 다른 방향으로 # 네 방향 모두 갈 수 없는 경우 if turn_time ==4: nx=x-dx[direction] ny=y-dy[direction] # 뒤로 갈 수 있다면 이동 if array[nx][ny] ==0: x=nx y=ny else: break turn_time=0 # 정답 print(count)
0.069621
0.938407
# License Plate Detection with OpenCV In this project we demonstrate how to use OpenCV only, with traditional computer vision approaches, to perform License Plate Detection (LPD). We follow two approaches: 1- __Morphology based approach__: where only morphological transforms are used, along with some rules to detect the LP. 2- __Charater based approach__: in addition to basic morphological approaches, basic char detection, also based on morphology, is used as an extra characteristic of the LP. Further, the problem of Licence Plate Recognition (LPR), by recognizing the number and digits written, can be addressed by the second approach. In both approaches, we load HD videos (1080p). Due to the camera position, this is the most effective resolution to detect LP patterns. In both approaches we merge car detection, using background subtraction, to narrow the search space. For more details, please see [full documentation](doc/DOC.md), and the executable example [notebook](doc/LPD.ipynb) # Pre-requisites You need to install the packages in `requirements.txt`: `pip install -r requirements.txt` # How to run? You can run over a video, or single image as follows: ## Video input You can call the `process_video` as follows: ``` from video import process_video from char import detect_LP video_file = 'dat/detection_test.mp4' video_output_file = 'dat/char_LP_detection.mp4' process_video(video_file, video_output_file, detect_LP_fn=detect_LP) ``` Note that, you can choose the approach by importing `detect_LP` from char or morpho You can also do the same from the command line: ``` !python main.py --video_file dat/detection_test.mp4 --video_output_file dat/cars_detection.mp4 --detect_LP_fn 1 ``` ![git](imgs/LPD_char_with_cars.gif) ## Single image You can use the `char.detect_LP` or `morpho.detect_LP` ``` import cv2 from utils import plot_img from char import detect_LP_char img = cv2.imread("imgs/char_frame_180_car_no_lp1.png") plot_img(img) detected_img, LPs = detect_LP_char(img) plot_img(detected_img) ``` You can further debug, and calibrate the rules via the internal functions `char.detect_LP_char` or `char.detect_LP_morpho` ``` import cv2 from utils import plot_img from morpho import detect_LP_morpho img = cv2.imread("imgs/char_frame_180_car_no_lp1.png") plot_img(img) detected_img, LPs = detect_LP_morpho(cv2.resize(img, (500,500)), L_min=35, L_max=60, W_min=55, W_max=90, debug=True) plot_img(detected_img) ``` # References - https://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/ - https://sod.pixlab.io/articles/license-plate-detection.html - https://github.com/MicrocontrollersAndMore/OpenCV_3_License_Plate_Recognition_Python.git
github_jupyter
from video import process_video from char import detect_LP video_file = 'dat/detection_test.mp4' video_output_file = 'dat/char_LP_detection.mp4' process_video(video_file, video_output_file, detect_LP_fn=detect_LP) !python main.py --video_file dat/detection_test.mp4 --video_output_file dat/cars_detection.mp4 --detect_LP_fn 1 import cv2 from utils import plot_img from char import detect_LP_char img = cv2.imread("imgs/char_frame_180_car_no_lp1.png") plot_img(img) detected_img, LPs = detect_LP_char(img) plot_img(detected_img) import cv2 from utils import plot_img from morpho import detect_LP_morpho img = cv2.imread("imgs/char_frame_180_car_no_lp1.png") plot_img(img) detected_img, LPs = detect_LP_morpho(cv2.resize(img, (500,500)), L_min=35, L_max=60, W_min=55, W_max=90, debug=True) plot_img(detected_img)
0.430866
0.933431
``` %load_ext autoreload %autoreload 2 %matplotlib notebook import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../notebooks_publications/') import bluranalysis as analysis # plt.style.use('deblur') ``` # DNF and SNR Bounds For any illumination sequence with exactly $N$ pulses (or more generally, with total illumination $\sum_{i=1}^n v_i = N)$, we will have (assuming the illumination power of a single pulse is normalized to $1$) a signal-to-noise ratio (SNR) of $$SNR = \frac{\bar{i}_0 N}{f \sqrt{\sigma_{\text{gray}}^2 + \sigma_d^2 N}}\:,$$ where $\bar{i}_0$ is the average intensity of the object, $\sigma_{\text{gray}}$ is the signal-independent part of the noise, and $\sigma_d$ is the weight on the signal-dependent part of the noise. We define the (normalized) deconvolution noise factor (DNF) $f$ as $$f = \sqrt{\frac{1}{m} \sum_{i=1}^m \frac{\sigma_1^2}{\sigma_i^2}}\:,$$ where $\sigma_1,...,\sigma_m$ are the ordered singular values of the blur operation $A$. Since $A$ is a convolutional operator with kernel $b=\sum_{j=1}^n v_j \delta_j$, the singular values are given by the power spectrum $\{|(Fb)_i|^2\}_{i=1}^m$. The $v_i$ are illumination values and the $\delta_i$ are the positions. In this notebook, I discuss 1. a *lower bound* on the DNF, which translates to an *upper bound* on the SNR, i.e. the *best* we could ever do. 2. an *upper bound* on the DNF, which translates into a *lower bound* on the SNR, i.e. the *worst* we can expect to do. This is somewhat less important to our story. # Lower Bound on DNF Lemma: We have that $ f^2 \geq \frac{N^2}{\frac{1}{m}\sum_{i=1}^m \sigma_i^2}$. *Proof*: Starting with $f^2 = \sigma_1^2\cdot \frac{1}{m} \sum_{i=1}^m \frac{1}{\sigma_i^2}$, note that $\frac{1}{m} \sum_{i=1}^m \frac{1}{\sigma_i^2}$ is the reciporocal of the *harmonic mean* of $\{\sigma_1^2,...,\sigma_m^2\}$. Since the harmonic mean is always less than the *arithmetic mean* [1], we have that $$ \frac{1}{m} \sum_{i=1}^m \frac{1}{\sigma_i^2}\geq \frac{1}{\frac{1}{m}\sum_{i=1}^m \sigma_i^2}\:. $$ Then the result follows by the observation that $\sigma_1$ is the DC component of the signal, which is $\sum_{i=1}^n v_i = N$. [1] e.g. https://sites.math.washington.edu/~dumitriu/Inequalities ## From Power Spectrum Average to Illumination Power (Parseval's) Lemma: We have the following relationship between average squared singular value and illumination values, $\frac{1}{m}\sum_{i=1}^m \sigma_i^2 = \sum_{j=1}^n v_j^2$. *Proof*: Since the singular values are given by the vector $Fb = F\sum_{j=1}^n v_j \delta_j$, the average squared singular values is given by the inner product $$\frac{1}{m} \sum_{i=1}^m \sigma_i^2 = \frac{1}{m} (Fb)^H Fb = \frac{1}{m} \sum_{j=1}^n \sum_{\ell=1}^n v_jv_\ell \delta_j^H F^H F\delta_\ell = \sum_{j=1}^n v_j^2 $$ where the final simplification comes from noting that $F^H F = mI$ (since we use un-normalized DFT matrices) and $\delta_j^H\delta_\ell = \mathbf{1}\{j=\ell\}$. TODO: should we be more careful about DFT scaling in various definitions? ``` # A numerical validation of the above lemma def check_equiv(n_pulses, kernel_length, padding_size=0, generation='binary'): kernel = np.zeros(kernel_length+padding_size) if generation == 'binary': indicies = np.random.choice(kernel_length, size=n_pulses, replace=False) kernel[indicies] = 1.0 else: kernel[0:kernel_length] = np.random.uniform(0,1, size=kernel_length) x_fft = np.fft.fft(kernel) sigma_x = np.abs(x_fft)**2 return np.abs(np.sum(kernel**2)-np.mean(sigma_x)) for n_pulses in range(10,100): kernel_length = 200; padding_size = kernel_length assert check_equiv(n_pulses, kernel_length, padding_size, 'binary') < 1e-10 assert check_equiv(n_pulses, kernel_length, padding_size, 'uniform') < 1e-10 print("All assertions passed") ``` # Upper Bound on SNR Proposition: For $\sum_{i=1}^n v_i = N$, we have that $f\geq\sqrt{N}$, i.e. the DNF grows at a rate of at least $\sqrt{N}$. Corrolary: For any fixed $N$, the best achievable SNR is $$SNR \leq \frac{\bar{i}_0 \sqrt{N}}{\sqrt{\sigma_{\text{gray}}^2 + \sigma_d^2 N}}\:.$$ *Proof*: Using the previous two lemmas, we have that $ f^2 \geq \frac{N^2}{\sum_{j=1}^n v_j^2}$. Next, notice the fact that $$\max_{v\in[0,1]^n} \sum_{j=1}^nv_j^2~:~ \sum_{j=1}^n v_j=N$$ is achieved for binary $v$ and has the maximum value $N$ (for integer valued $N$). This gives $f^2\geq N$ which yields the result. ### Importance of $\sigma_\text{gray}$ The above corrollary shows an *upper bound* on SNR that increases with ${N}$. However, if $\sigma_{\text{gray}}^2\ll \sigma_d^2 $, the SNR will not increase with $N$, and in fact its maximum value, $$SNR \leq \frac{\bar{i}_0 \sqrt{N}}{\sqrt{\sigma_d^2 N}} = \frac{\bar{i}_0}{\sigma_d}$$ is achieved by strobed illumination (i.e. $N=1$). In other words, when $\sigma_\text{gray}$ is small, strobed will be optimal. If $\sigma_\text{gray}$ is larger, then the upper bound suggests that the SNR will improve with ${N}$. However, since it is only an upper bound, it is not sufficient. To actually show that there are settings under which SNR improves with ${N}$, we need to show a *lower bound* that increases with $N$. # Upper Bound on DNF Lemma: We have the bound $$ f^2 \leq \frac{1}{m} + \frac{m-1}{m}\frac{N^2}{\sigma_m^2}\:.$$ *Proof*: Starting with $f^2 = \frac{1}{m} \sum_{i=1}^m \frac{\sigma_1^2}{\sigma_i^2}$, note that $\frac{\sigma_1^2}{\sigma_i^2} \leq \frac{\sigma_1^2}{\sigma_m^2}$ for all $i$. Plugging in this bound for $i=1,...,m-1$, we see that $$f^2 \leq \frac{1}{m} + \frac{1}{m}\frac{N^2}{\sigma_m^2}\cdot (m-1)\:,$$ where we use that $\sigma_1$ is the DC component of the signal. # Thoughts on Lower Bound on SNR To make statement about a lower bound on SNR, we need to have an upper bound on $f$, which requires a lower bound on $\sigma_m^2$ (as per the above lemma). Of course, one lower bound would be zero, but this gives a vacuous result. If we could show that $\sigma_m^2\geq c N^{2p}$ for some $0<p<1$, we could show that $f\leq CN^{1-p}$ (for some $C$), which would mean $SNR \geq \frac{\bar{i}_0 N^{p}}{C \sqrt{\sigma_{\text{gray}}^2 + \sigma_d^2 N}}$. This lower bound shows that there is a regime (where $N$ is small enough) in which the SNR increases with $N$.
github_jupyter
%load_ext autoreload %autoreload 2 %matplotlib notebook import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../notebooks_publications/') import bluranalysis as analysis # plt.style.use('deblur') # A numerical validation of the above lemma def check_equiv(n_pulses, kernel_length, padding_size=0, generation='binary'): kernel = np.zeros(kernel_length+padding_size) if generation == 'binary': indicies = np.random.choice(kernel_length, size=n_pulses, replace=False) kernel[indicies] = 1.0 else: kernel[0:kernel_length] = np.random.uniform(0,1, size=kernel_length) x_fft = np.fft.fft(kernel) sigma_x = np.abs(x_fft)**2 return np.abs(np.sum(kernel**2)-np.mean(sigma_x)) for n_pulses in range(10,100): kernel_length = 200; padding_size = kernel_length assert check_equiv(n_pulses, kernel_length, padding_size, 'binary') < 1e-10 assert check_equiv(n_pulses, kernel_length, padding_size, 'uniform') < 1e-10 print("All assertions passed")
0.338842
0.989192
## Inference for ResNet 50 using ONNX Runtime This example demonstrates how to load an image classification model from the [ONNX model zoo](https://github.com/onnx/models) and confirm its accuracy based on included test data. ``` import numpy as np # we're going to use numpy to process input and output data import onnxruntime # to inference ONNX models, we use the ONNX Runtime import onnx from onnx import numpy_helper import urllib.request import json import time # display images in notebook import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont %matplotlib inline onnx_model_url = "https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.tar.gz" imagenet_labels_url = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json" # retrieve our model from the ONNX model zoo urllib.request.urlretrieve(onnx_model_url, filename="resnet50v2.tar.gz") urllib.request.urlretrieve(imagenet_labels_url, filename="imagenet-simple-labels.json") !tar xvzf resnet50v2.tar.gz --warning=no-unknown-keyword ``` ### Load sample inputs and outputs ``` test_data_dir = 'resnet50v2/test_data_set' test_data_num = 3 import glob import os # Load inputs inputs = [] for i in range(test_data_num): input_file = os.path.join(test_data_dir + '_{}'.format(i), 'input_0.pb') tensor = onnx.TensorProto() with open(input_file, 'rb') as f: tensor.ParseFromString(f.read()) inputs.append(numpy_helper.to_array(tensor)) print('Loaded {} inputs successfully.'.format(test_data_num)) # Load reference outputs ref_outputs = [] for i in range(test_data_num): output_file = os.path.join(test_data_dir + '_{}'.format(i), 'output_0.pb') tensor = onnx.TensorProto() with open(output_file, 'rb') as f: tensor.ParseFromString(f.read()) ref_outputs.append(numpy_helper.to_array(tensor)) print('Loaded {} reference outputs successfully.'.format(test_data_num)) ``` ### Inference using ONNX Runtime ``` # Run the model on the backend session = onnxruntime.InferenceSession('resnet50v2/resnet50v2.onnx', None) # get the name of the first input of the model input_name = session.get_inputs()[0].name print('Input Name:', input_name) %%time outputs = [session.run([], {input_name: inputs[i]})[0] for i in range(test_data_num)] print('Predicted {} results.'.format(len(outputs))) # Compare the results with reference outputs up to 4 decimal places for ref_o, o in zip(ref_outputs, outputs): np.testing.assert_almost_equal(ref_o, o, 4) print('ONNX Runtime outputs are similar to reference outputs!') ``` ### Classify sample images using our inference session **Input**: A 224 x 224 pixel image that contains an object **Task**: Identify the content of input images **Output**: Class prediction for input image ``` def load_labels(path): with open(path) as f: data = json.load(f) return np.asarray(data) def preprocess(input_data): # convert the input data into the float32 input img_data = input_data.astype('float32') #normalize mean_vec = np.array([0.485, 0.456, 0.406]) stddev_vec = np.array([0.229, 0.224, 0.225]) norm_img_data = np.zeros(img_data.shape).astype('float32') for i in range(img_data.shape[0]): norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i] #add batch channel norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') return norm_img_data def softmax(x): x = x.reshape(-1) e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def postprocess(result): return softmax(np.array(result)).tolist() labels = load_labels('imagenet-simple-labels.json') image = Image.open('images/dog.jpg') # image = Image.open('images/plane.jpg') print("Image size: ", image.size) plt.axis('off') display_image = plt.imshow(image) image_data = np.array(image).transpose(2, 0, 1) input_data = preprocess(image_data) start = time.time() raw_result = session.run([], {input_name: input_data}) end = time.time() res = postprocess(raw_result) inference_time = np.round((end - start) * 1000, 2) idx = np.argmax(res) print('========================================') print('Final top prediction is: ' + labels[idx]) print('========================================') print('========================================') print('Inference time: ' + str(inference_time) + " ms") print('========================================') sort_idx = np.flip(np.squeeze(np.argsort(res))) print('============ Top 5 labels are: ============================') print(labels[sort_idx[:5]]) print('===========================================================') plt.axis('off') display_image = plt.imshow(image) ```
github_jupyter
import numpy as np # we're going to use numpy to process input and output data import onnxruntime # to inference ONNX models, we use the ONNX Runtime import onnx from onnx import numpy_helper import urllib.request import json import time # display images in notebook import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont %matplotlib inline onnx_model_url = "https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.tar.gz" imagenet_labels_url = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json" # retrieve our model from the ONNX model zoo urllib.request.urlretrieve(onnx_model_url, filename="resnet50v2.tar.gz") urllib.request.urlretrieve(imagenet_labels_url, filename="imagenet-simple-labels.json") !tar xvzf resnet50v2.tar.gz --warning=no-unknown-keyword test_data_dir = 'resnet50v2/test_data_set' test_data_num = 3 import glob import os # Load inputs inputs = [] for i in range(test_data_num): input_file = os.path.join(test_data_dir + '_{}'.format(i), 'input_0.pb') tensor = onnx.TensorProto() with open(input_file, 'rb') as f: tensor.ParseFromString(f.read()) inputs.append(numpy_helper.to_array(tensor)) print('Loaded {} inputs successfully.'.format(test_data_num)) # Load reference outputs ref_outputs = [] for i in range(test_data_num): output_file = os.path.join(test_data_dir + '_{}'.format(i), 'output_0.pb') tensor = onnx.TensorProto() with open(output_file, 'rb') as f: tensor.ParseFromString(f.read()) ref_outputs.append(numpy_helper.to_array(tensor)) print('Loaded {} reference outputs successfully.'.format(test_data_num)) # Run the model on the backend session = onnxruntime.InferenceSession('resnet50v2/resnet50v2.onnx', None) # get the name of the first input of the model input_name = session.get_inputs()[0].name print('Input Name:', input_name) %%time outputs = [session.run([], {input_name: inputs[i]})[0] for i in range(test_data_num)] print('Predicted {} results.'.format(len(outputs))) # Compare the results with reference outputs up to 4 decimal places for ref_o, o in zip(ref_outputs, outputs): np.testing.assert_almost_equal(ref_o, o, 4) print('ONNX Runtime outputs are similar to reference outputs!') def load_labels(path): with open(path) as f: data = json.load(f) return np.asarray(data) def preprocess(input_data): # convert the input data into the float32 input img_data = input_data.astype('float32') #normalize mean_vec = np.array([0.485, 0.456, 0.406]) stddev_vec = np.array([0.229, 0.224, 0.225]) norm_img_data = np.zeros(img_data.shape).astype('float32') for i in range(img_data.shape[0]): norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i] #add batch channel norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') return norm_img_data def softmax(x): x = x.reshape(-1) e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def postprocess(result): return softmax(np.array(result)).tolist() labels = load_labels('imagenet-simple-labels.json') image = Image.open('images/dog.jpg') # image = Image.open('images/plane.jpg') print("Image size: ", image.size) plt.axis('off') display_image = plt.imshow(image) image_data = np.array(image).transpose(2, 0, 1) input_data = preprocess(image_data) start = time.time() raw_result = session.run([], {input_name: input_data}) end = time.time() res = postprocess(raw_result) inference_time = np.round((end - start) * 1000, 2) idx = np.argmax(res) print('========================================') print('Final top prediction is: ' + labels[idx]) print('========================================') print('========================================') print('Inference time: ' + str(inference_time) + " ms") print('========================================') sort_idx = np.flip(np.squeeze(np.argsort(res))) print('============ Top 5 labels are: ============================') print(labels[sort_idx[:5]]) print('===========================================================') plt.axis('off') display_image = plt.imshow(image)
0.623492
0.895933
# Run-Length Encoding Run-length encoding is a simple method for compressing data that contains long sequences of repeated characters. In this compression algorithm: 1. A standalone character will be unchanged. E.g `"a"` $\rightarrow$ `["a"]`. 2. A run of a character, `c`, repeated `N` times will be compressed to `["c", "c", N]`. E.g. `"bbbb"` $\rightarrow$ `['b', 'b', 4]`. These two rules are all that you need to perform run-length encoding. Let's look at a few examples of run-length-encoding: - `"abcd"` $\rightarrow$ `['a', 'b', 'c', 'd']` - `"abbbba"` $\rightarrow$ `['a', 'b', 'b', 4, 'a']` - `"aaaabbcccd"` $\rightarrow$ `['a', 'a', 4, 'b', 'b', 2, 'c', 'c', 3, 'd']` - `""` $\rightarrow$ `[]` - `"1"` $\rightarrow$ `["1"]` The decompression algorithm, run-length decoding, simply reverses this process: - `['q', 'a', 'a', 4, 'b', 'b', 2, 'c', 'c', 3, 'd']` $\rightarrow$ `'qaaaabbcccd'` Here, you will implement a run-length encoding and decoding algorithms. As indicated above, the run-length encoding algorithm should be able to accept a string and return a list with the appropriate string/integer entries, according to the encoding. The decoding algorithm need be able to accept a list with an encoded sequence, and return the decoded string. You should be able to test both of your algorithms by feeding them into one another: ```python >>> decoder(encoder("Wooooow!!!!! I'm totally getting compressed")) "Wooooow!!!!! I'm totally getting compressed" ``` ``` # make sure to execute this cell so that your function is defined # you must re-run this cell any time you make a change to this function def run_length_encoder(in_string): string = in_string if string == '': rle = [] return rle i = 0 count = 0 letter = string[i] rle = [] while i <= len(string) - 1: while string[i] == letter: i += 1 count +=1 if i > len(string) - 1: break if count == 1: rle.append(letter) else: rle.append(letter) rle.append(letter) rle.append(count) if i > len(string) - 1: break letter = string[i] count = 0 return rle # Execute this cell to grade your work from bwsi_grader.python.run_length_encoding import encoder_grader encoder_grader(run_length_encoder) # make sure to execute this cell so that your function is defined # you must re-run this cell any time you make a change to this function def run_length_decoder(in_list): if in_list == []: s = '' return s rld = "" for c in in_list: if isinstance(c, str): rld += c else: index = len(rld) - 1 for i in range(c-2): rld += rld[index] return rld # Execute this cell to grade your work from bwsi_grader.python.run_length_encoding import decoder_grader decoder_grader(run_length_decoder) ```
github_jupyter
>>> decoder(encoder("Wooooow!!!!! I'm totally getting compressed")) "Wooooow!!!!! I'm totally getting compressed" # make sure to execute this cell so that your function is defined # you must re-run this cell any time you make a change to this function def run_length_encoder(in_string): string = in_string if string == '': rle = [] return rle i = 0 count = 0 letter = string[i] rle = [] while i <= len(string) - 1: while string[i] == letter: i += 1 count +=1 if i > len(string) - 1: break if count == 1: rle.append(letter) else: rle.append(letter) rle.append(letter) rle.append(count) if i > len(string) - 1: break letter = string[i] count = 0 return rle # Execute this cell to grade your work from bwsi_grader.python.run_length_encoding import encoder_grader encoder_grader(run_length_encoder) # make sure to execute this cell so that your function is defined # you must re-run this cell any time you make a change to this function def run_length_decoder(in_list): if in_list == []: s = '' return s rld = "" for c in in_list: if isinstance(c, str): rld += c else: index = len(rld) - 1 for i in range(c-2): rld += rld[index] return rld # Execute this cell to grade your work from bwsi_grader.python.run_length_encoding import decoder_grader decoder_grader(run_length_decoder)
0.301156
0.89996
# HashTag Recommendation based on user's post Importing required libraries ``` import pandas as pd import seaborn as sns %matplotlib inline import numpy as np from gensim.models import Word2Vec import warnings warnings.filterwarnings('ignore') from nltk.tokenize import TweetTokenizer import glob import nltk import string import re import pprint from nltk.corpus import stopwords from nltk.tokenize import word_tokenize ``` Reading all the csv files to create a corpus ``` allFiles = glob.glob("Data/*/*.csv", recursive=True) frame = pd.DataFrame() # To store filenames filenames = [] for file_ in allFiles: df = pd.read_csv(file_, encoding = "ISO-8859-1") filenames.append(file_.split("\\")[-1:][0].split(".")[0]) # print(df.head()) frame = pd.concat([frame,df[df.columns[1]]]) print(allFiles) ``` Converting the corpus to lower case ``` def preprocessing(frame): frame = frame.apply(lambda x: x.astype(str).str.lower()) frame = frame.apply(lambda x: x.astype(str).str.replace('b\'','')) frame = frame.apply(lambda x: x.astype(str).str.replace('b\"','')) return frame frame = preprocessing(frame) print(frame.head()) ``` Function to build stopwords to remove them ``` def build_stopwords(): stop_words = (stopwords.words('english')) list_remove = ['.','/','b\'','b\"','xe2','x80','xa6','x99t','x99s','x87','xb4','xaa','x9a','x9b','x93','xb2','x8c','x9c','xb5','xab'] stop_words = stop_words + word_tokenize(string.punctuation) + list_remove return stop_words # print(stop_words) ``` Removing stop words and building a corpus ``` corpus = [] tknzr = TweetTokenizer () stop_words = build_stopwords() for row in frame[frame.columns[0]]: # print (row) # tweet = [] # tweet.append( ) # print (tweet) # Removing urls which can be noise row = re.sub(r'https?:\/\/.*[\r\n]*', '', row) word_tokens = tknzr.tokenize(row) # Removing stop words filtered_sentence = [w for w in word_tokens if not w in stop_words] corpus.append(filtered_sentence) print (corpus[:10]) ``` Building a word2vec model ``` import timeit start_time = timeit.default_timer() model = Word2Vec(corpus, size=1000, window=3, min_count=1, workers=4) elapsed = timeit.default_timer() - start_time print(elapsed) ``` To validate the results from model ``` print('Number of words in vocab = ' + str(len(model.wv.vocab))) # print('Similarity between woman and man = ' + str(model.wv.similarity('man', 'trump'))) # # pprint.pprint(model.most_similar("support")) ``` Input by user to recommend hashtags ``` input = 'man utd victory fa cup cup win tottenham football' # input = 'tonight is the book reading sunday holiday night' ''' This function takes input post from the user and suggests hashtags which he can most likely relate his post with It recommends hashtags based on current trending topics and post content, not just with the meaning of words but also the context of the words is taken into consideration ''' def getHashTagSuggestion(input): # Tokenizing the input input = word_tokenize(input) # Getting a list of hashtags from the data collected file_inputs = {} for file in filenames: file = '#' + file.lower() file_inputs[file.lower()] = file # Iterating to find similaity between each words of input and all hashtags scores_out = [] for out in file_inputs.keys(): list_out = [] if(out in model.wv.vocab): for word in input: # print(word) # print(out) if(word in model.wv.vocab): # pprint.pprint(word) list_out.append(model.similarity(word,out)) # print(model.similarity(word,out)) if(len(list_out) > 0): scores_out.append((out,sum(list_out) / float(len(list_out)))) # Returns sorted order of hashtag suggestion score scores_out = sorted(scores_out, key=lambda tup: tup[1],reverse = True) return scores_out print (file_inputs) model.similarity('utd','#facup') # scores_out = [] ``` Displaying top HashTags related to user's post ``` HashTagSuggestion = [] suggestions = getHashTagSuggestion(input) for out_tuple in suggestions[:5]: HashTagSuggestion.append(file_inputs[out_tuple[0]]) pprint.pprint (HashTagSuggestion) ``` Defining a HashTag - These words define what a particular HastTag means ``` defining_words = model.most_similar("#book",topn = 10) pprint.pprint ([x[0] for x in defining_words[:10]]) print(model.wv.vocab) ``` The MIT License (MIT) Copyright (c) 2016-2017 Rohan Jahagirdar, Sai Nikhil Dogiparty Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
github_jupyter
import pandas as pd import seaborn as sns %matplotlib inline import numpy as np from gensim.models import Word2Vec import warnings warnings.filterwarnings('ignore') from nltk.tokenize import TweetTokenizer import glob import nltk import string import re import pprint from nltk.corpus import stopwords from nltk.tokenize import word_tokenize allFiles = glob.glob("Data/*/*.csv", recursive=True) frame = pd.DataFrame() # To store filenames filenames = [] for file_ in allFiles: df = pd.read_csv(file_, encoding = "ISO-8859-1") filenames.append(file_.split("\\")[-1:][0].split(".")[0]) # print(df.head()) frame = pd.concat([frame,df[df.columns[1]]]) print(allFiles) def preprocessing(frame): frame = frame.apply(lambda x: x.astype(str).str.lower()) frame = frame.apply(lambda x: x.astype(str).str.replace('b\'','')) frame = frame.apply(lambda x: x.astype(str).str.replace('b\"','')) return frame frame = preprocessing(frame) print(frame.head()) def build_stopwords(): stop_words = (stopwords.words('english')) list_remove = ['.','/','b\'','b\"','xe2','x80','xa6','x99t','x99s','x87','xb4','xaa','x9a','x9b','x93','xb2','x8c','x9c','xb5','xab'] stop_words = stop_words + word_tokenize(string.punctuation) + list_remove return stop_words # print(stop_words) corpus = [] tknzr = TweetTokenizer () stop_words = build_stopwords() for row in frame[frame.columns[0]]: # print (row) # tweet = [] # tweet.append( ) # print (tweet) # Removing urls which can be noise row = re.sub(r'https?:\/\/.*[\r\n]*', '', row) word_tokens = tknzr.tokenize(row) # Removing stop words filtered_sentence = [w for w in word_tokens if not w in stop_words] corpus.append(filtered_sentence) print (corpus[:10]) import timeit start_time = timeit.default_timer() model = Word2Vec(corpus, size=1000, window=3, min_count=1, workers=4) elapsed = timeit.default_timer() - start_time print(elapsed) print('Number of words in vocab = ' + str(len(model.wv.vocab))) # print('Similarity between woman and man = ' + str(model.wv.similarity('man', 'trump'))) # # pprint.pprint(model.most_similar("support")) input = 'man utd victory fa cup cup win tottenham football' # input = 'tonight is the book reading sunday holiday night' ''' This function takes input post from the user and suggests hashtags which he can most likely relate his post with It recommends hashtags based on current trending topics and post content, not just with the meaning of words but also the context of the words is taken into consideration ''' def getHashTagSuggestion(input): # Tokenizing the input input = word_tokenize(input) # Getting a list of hashtags from the data collected file_inputs = {} for file in filenames: file = '#' + file.lower() file_inputs[file.lower()] = file # Iterating to find similaity between each words of input and all hashtags scores_out = [] for out in file_inputs.keys(): list_out = [] if(out in model.wv.vocab): for word in input: # print(word) # print(out) if(word in model.wv.vocab): # pprint.pprint(word) list_out.append(model.similarity(word,out)) # print(model.similarity(word,out)) if(len(list_out) > 0): scores_out.append((out,sum(list_out) / float(len(list_out)))) # Returns sorted order of hashtag suggestion score scores_out = sorted(scores_out, key=lambda tup: tup[1],reverse = True) return scores_out print (file_inputs) model.similarity('utd','#facup') # scores_out = [] HashTagSuggestion = [] suggestions = getHashTagSuggestion(input) for out_tuple in suggestions[:5]: HashTagSuggestion.append(file_inputs[out_tuple[0]]) pprint.pprint (HashTagSuggestion) defining_words = model.most_similar("#book",topn = 10) pprint.pprint ([x[0] for x in defining_words[:10]]) print(model.wv.vocab)
0.189296
0.584271
## Web Scraping ``` import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt import numpy as np import requests import datetime content = requests.get( "http://web.mta.info/developers/turnstile.html").content.decode("utf-8") # Convert the main page contents to soup soup = BeautifulSoup(content, 'lxml') # WEB SCRAPER content = requests.get( "http://web.mta.info/developers/turnstile.html").content.decode("utf-8") # Convert the main page contents to soup soup = BeautifulSoup(content, 'lxml') LOCATION = 'C:/Users/Harpreet Gaur/Desktop/Turnstile_Analysis' # ex: '/home/tom/Documents/turnstile/Data/' a_tags = soup.select('div.span-84.last > a') date_list = [] files_names = [] # looping through all the <a> tag elements for a_tag in a_tags: # Convert the inner text of the a tag to a datetime object d = datetime.datetime.strptime(a_tag.text.strip(), "%A, %B %d, %Y") # put the formatted date in the array if it is in the year of 2013 if d.year == 2013: date_list.append(d.strftime("%y%m%d")) # append + format the datetime object to string # loop the date list for dl in date_list: # get the file link from the date url = "http://web.mta.info/developers/data/nyct/turnstile/turnstile_{}.txt".format(dl) # Getting the file's content print("Processing URL: " + url) content = requests.get(url).content.decode("utf-8") # Save the content in to a csv file print("Converting to CSV...") # Save to file in the data folder f = open("./turnstile_{}.csv".format(dl), "w") # Replace the \r escape character that's adding an extra line between each record f.write(content.replace("\r", "")) f.close() print("Finished " + dl + "!\n") #All files_names = ['turnstile_130105.csv', 'turnstile_130112.csv', 'turnstile_130119.csv' , 'turnstile_130126.csv' , 'turnstile_130202.csv' , 'turnstile_130209.csv' ,'turnstile_130216.csv' ,'turnstile_130223.csv' ,'turnstile_130302.csv' , 'turnstile_130309.csv' ,'turnstile_130316.csv' ,'turnstile_130323.csv' ,'turnstile_130330.csv' ,'turnstile_130406.csv' , 'turnstile_130413.csv' ,'turnstile_130420.csv' ,'turnstile_130427.csv' ,'turnstile_130504.csv' ,'turnstile_130511.csv' , 'turnstile_130518.csv' ,'turnstile_130525.csv' ,'turnstile_130601.csv' ,'turnstile_130608.csv' ,'turnstile_130615.csv' , 'turnstile_130622.csv' ,'turnstile_130629.csv' ,'turnstile_130706.csv' ,'turnstile_130713.csv' ,'turnstile_130720.csv' , 'turnstile_130727.csv' ,'turnstile_130803.csv' ,'turnstile_130810.csv' ,'turnstile_130817.csv' ,'turnstile_130824.csv' , 'turnstile_130831.csv' ,'turnstile_130907.csv' ,'turnstile_130914.csv' ,'turnstile_130921.csv' ,'turnstile_130928.csv' , 'turnstile_131005.csv' ,'turnstile_131012.csv' ,'turnstile_131019.csv' ,'turnstile_131026.csv' , 'turnstile_131102.csv' ,'turnstile_131109.csv' ,'turnstile_131116.csv' ,'turnstile_131123.csv' , 'turnstile_131130.csv' ,'turnstile_131207.csv' ,'turnstile_131214.csv' ,'turnstile_131221.csv' , 'turnstile_131228.csv' ] columns = ['C/A','UNIT','SCP','DATE1','TIME1','DESC1','ENTRIES1','EXITS1','DATE2','TIME2','DESC2','ENTRIES2','EXITS2','DATE3','TIME3','DESC3','ENTRIES3','EXITS3','DATE4','TIME4','DESC4','ENTRIES4','EXITS4','DATE5','TIME5','DESC5','ENTRIES5','EXITS5','DATE6','TIME6','DESC6','ENTRIES6','EXITS6','DATE7','TIME7','DESC7','ENTRIES7','EXITS7','DATE8','TIME8','DESC8','ENTRIES8','EXITS8'] ``` ## Further Data-Cleaning ``` station_loc = LOCATION+'/Remote-Booth-Station.csv' # location of the Remote-Booth-Station.csv file in local machine station_csv = pd.read_csv(station_loc) LOCATION = 'C:/Users/Harpreet Gaur/Desktop/Turnstile_Analysis/' def assign_station(df, station_csv): station=[] station_csv = station_csv.dropna() for i in range(len(df)): unit = df.UNIT.values[i] ca = df['C/A'].values[i] a = station_csv[(station_csv['Remote']==unit) & (station_csv['Booth']==ca)] if not a.empty: station.append(a.Station.values[0]) else: station.append(np.NaN) df['Station'] = station return df def remove_recovr_aud(): for i in range(len(files_names)): data = pd.read_csv(LOCATION + files_names[i], names=columns) data_fnames = assign_station(data, station_csv) data_fname_new = data_fnames[(data_fnames['DESC1'] != 'RECOVR AUD') & (data_fnames['DESC2'] != 'RECOVR AUD') & (data_fnames['DESC3'] != 'RECOVR AUD') & (data_fnames['DESC4'] != 'RECOVR AUD') & (data_fnames['DESC5'] != 'RECOVR AUD') & (data_fnames['DESC6'] != 'RECOVR AUD') & (data_fnames['DESC7'] != 'RECOVR AUD') & (data_fnames['DESC8'] != 'RECOVR AUD')] data_fname_new.to_csv(LOCATION + files_names[i]) remove_recovr_aud() ``` ## Which station has the most number of units? ``` def station_list(): asd_ = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) asd = asd_.drop(columns='Unnamed: 0') sum_ = asd.groupby(['Station']).UNIT.unique() stations = list(sum_.keys()) unique = [] for i in range(len(sum_)): unique.append(len(sum_[i])) return stations[unique.index(max(unique))] print('The station that has the most number of units is: ' + str(station_list())) ``` ## What is the total number of entries & exits across the subway system for February 1, 2013? ``` feb = pd.read_csv(LOCATION + 'turnstile_130202.csv') def exits(df, day): exits_ = [] station_ = [] stations = list(df['Station'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['Station'] == stations[j]] exits_stat = [] for i in range(2, len(df_temp)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): # This loop is because not every 1 of Feb starts at the same hours. They start between 00:00:00 and 04:00:00, so we have to loop for this values to get the right one of the row. if df_temp['DATE%s' % k_0].values[i] == day and df_temp['TIME%s' % k_0].values[i] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: # Here we start in the first hour of Feb 1, and sum the next values until we get to another date. kf = range(k+1, 9) ki = range(1, k+1) lst = [df['EXITS%s' % l][i] for l in kf if df['EXITS%s' % l][i]!=0] + [df['EXITS%s' % l][i+1] for l in ki if df['EXITS%s' % l][i+1]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS%s' % (k-1)][i]) # The '- len(lst)*df['EXITS%s' % (k-1)][i]' is to substract the cumulative part. offset.append(df['EXITS%s' % (k-1)][i]) break elif k == 1: lst = [df['EXITS%s' % l][i] for l in range(1, 9) if df['EXITS%s' % l][i]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS8'][i-1]) offset.append(df['EXITS8'][i]) break exits_.append(sum(exits_stat)) station_.append(stations[j]) exits = [] station = [] for i in range(len(exits_)): if abs(exits_[i]) < 10000000: exits.append(exits_[i]) station.append(station_[i]) return exits, offset, station # The 'entries' function is the same as the 'exit' but changing EXITS%s --> ENTRIES%s def entries(df, day): entries_ = [] station_ = [] stations = list(df['Station'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['Station'] == stations[j]] entries_stat = [] indxs = list(df_temp.index) for i in range(len(indxs)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): if df_temp.loc[indxs[i], 'DATE%s' % k_0] == day and df_temp.loc[indxs[i], 'TIME%s' % k_0] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: kf = range(k+1, 9) ki = range(1, k+1) lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in kf if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0] + [df_temp.loc[indxs[i+1], 'ENTRIES%s' % l] for l in ki if df_temp.loc[indxs[i+1], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) offset.append(df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) break elif k == 1: lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in range(1, 9) if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i-1], 'ENTRIES8']) offset.append(df_temp.loc[indxs[i], 'ENTRIES8']) break entries_.append(sum(entries_stat)) station_.append(stations[j]) entries = [] station = [] for i in range(len(entries_)): if abs(entries_[i]) < 10000000: entries.append(entries_[i]) station.append(station_[i]) return entries, offset, station entries_01, entries_31, stations_ent = entries(feb, '02-01-13') exits_01, exits_31, stations_ex = exits(feb, '02-01-13') print('Total number of entries for Febraury 1: ' + str(sum(entries_01))) print('Total number of exits for Febraury 1: ' + str(sum(exits_01))) ``` ## Let’s define the busy-ness as sum of entry & exit count. What station was the busiest on February 1, 2013? What turnstile was the busiest on that date? ``` business = [entries_01[i] + exits_01[i] for i in range(len(entries_01))] ind = business.index(max(business)) print('The bussiest station on 1 Feb was: ' + str(stations_ent[ind])) feb = pd.read_csv(LOCATION + 'turnstile_130202.csv') def exits(df, day): exits_ = [] station_ = [] stations = list(df['SCP'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['SCP'] == stations[j]] exits_stat = [] for i in range(2, len(df_temp)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): if df_temp['DATE%s' % k_0].values[i] == day and df_temp['TIME%s' % k_0].values[i] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: kf = range(k+1, 9) ki = range(1, k+1) lst = [df['EXITS%s' % l][i] for l in kf if df['EXITS%s' % l][i]!=0] + [df['EXITS%s' % l][i+1] for l in ki if df['EXITS%s' % l][i+1]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS%s' % (k-1)][i]) offset.append(df['EXITS%s' % (k-1)][i]) break elif k == 1: lst = [df['EXITS%s' % l][i] for l in range(1, 9) if df['EXITS%s' % l][i]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS8'][i-1]) offset.append(df['EXITS8'][i]) break exits_.append(sum(exits_stat)) station_.append(stations[j]) exits = [] station = [] for i in range(len(exits_)): if abs(exits_[i]) < 10000000: exits.append(exits_[i]) station.append(station_[i]) return exits, offset, station def entries(df, day): entries_ = [] station_ = [] stations = list(df['SCP'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['SCP'] == stations[j]] entries_stat = [] indxs = list(df_temp.index) for i in range(len(indxs)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): if df_temp.loc[indxs[i], 'DATE%s' % k_0] == day and df_temp.loc[indxs[i], 'TIME%s' % k_0] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: kf = range(k+1, 9) ki = range(1, k+1) lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in kf if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0] + [df_temp.loc[indxs[i+1], 'ENTRIES%s' % l] for l in ki if df_temp.loc[indxs[i+1], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) offset.append(df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) break elif k == 1: lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in range(1, 9) if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i-1], 'ENTRIES8']) offset.append(df_temp.loc[indxs[i], 'ENTRIES8']) break entries_.append(sum(entries_stat)) station_.append(stations[j]) entries = [] station = [] for i in range(len(entries_)): if abs(entries_[i]) < 10000000: entries.append(entries_[i]) station.append(station_[i]) return entries, offset, station entries_01, entries_31, stations_ent = entries(feb, '02-01-13') exits_01, exits_31, stations_ex = exits(feb, '02-01-13') business = [entries_01[i] + exits_01[i] for i in range(len(entries_01))] ind = business.index(max(business)) print('The bussiest turnstile on 1 Feb was: ' + str(stations_ent[ind])) ``` ### Usefull functions to be used later on ``` def total_entries(data): df = data.copy() indexs = list(df.index) for i in range(len(indexs)): for k in range(1,9): # Iterate over the columns if not np.isnan(df.loc[indexs[i], 'ENTRIES%s' % (k)]): # If the corresponding cell is not empty: if k>1: # If it's not the first cell: point = df.at[indexs[i], 'ENTRIES%s' % (k)] - df.at[indexs[i], 'ENTRIES%s' % (k-1)] # substract the cumulative part if point > 0 and point < 100000: #If the substracion is nos an outlier: df.at[indexs[i], 'ENTRIES%s' % (k)] = point # Replace the cell by the value without the cumulative part else: # If it was an outlier, replace it by 0 df.at[indexs[i], 'ENTRIES%s' % (k)] = 0 elif k == 1 and indexs[i] == indexs[i-1]+1: try: point = df.at[indexs[i], 'ENTRIES1'] - df.at[indexs[i-1], 'ENTRIES8'] if point < 100000 and point > 0 : df.at[indexs[i], 'ENTRIES1'] = point else: df.at[indexs[i], 'ENTRIES1'] = 0 except KeyError: continue return df # The same as the funtion before, but with the exits def total_exits(data): df = data.copy() indexs = list(df.index) for i in range(len(indexs)): for k in range(1,9): if not np.isnan(df.loc[indexs[i], 'ENTRIES%s' % (k)]): if k>1: point = df.at[indexs[i], 'EXITS%s' % (k)] - df.at[indexs[i], 'EXITS%s' % (k-1)] if point > 0 and point < 100000: df.at[indexs[i], 'EXITS%s' % (k)] = point else: df.at[indexs[i], 'EXITS%s' % (k)] = 0 elif k == 1 and indexs[i] == indexs[i-1]+1 : try: point = df.at[indexs[i], 'EXITS1'] - df.at[indexs[i-1], 'EXITS8'] if point < 100000 and point > 0 : df.at[indexs[i], 'EXITS1'] = point else: df.at[indexs[i], 'EXITS1'] = 0 except KeyError: continue return df def filter_(df): # This is a filter for the outliers. My criterion was that if a value (tipically of entries or exits) was bigger than 1000000, then I would replace it by the next value. for i in range(len(df)): if abs(df[i]) > 1000000: df[i] = df[i+1] return df ``` ## What stations have seen the most usage growth/decline in 2013? We define the growth (decline) of usage in a station as the ratio between the mean of the 3 first (last) weeks with the 3 last (first). If the growth is >5, then that station is included in the most growth usage. If the decline is <1, then that station is included in the most decline usage. ``` def usage_station(): data_ = pd.concat([pd.read_csv(LOCATION + files_names[i] ) for i in range(len(files_names))], ignore_index=True) data_ = data_.drop(columns='Unnamed: 0') stations = list(data_['Station'].unique()) business = [] for j in range(len(stations)): data = data_[data_.Station == stations[j]] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business.append([suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))]) return business, stations business, stations = usage_station() growth = [] decline = [] for i in range(len(business)): if len(business[i]) > 7: initial = np.mean(business[i][0:3]) final = np.mean(business[i][-4:-1]) if initial/final > 5 and final != 0: growth.append(stations[i]) elif final/initial > 2 and initial != 0: decline.append(stations[i]) print('/////') print('The stations that have seen the most usage growth in 2013 are: ' + str(growth)) print('/////') print('The stations that have seen the most usage decline in 2013 are: ' + str(decline)) print('/////') ``` ## What dates are the least busy? Could you identify days on which stations were not operating at full capacity or closed entirely? ### Busy days ``` def busy_days(): data = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business = [suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))] mean = np.mean(business) std = np.std(business) least_use = [] for i in range(len(business)): if business[i] < mean - std: least_use.append(suma_ent.keys()[i]) return print('Least busy days: ' + str(least_use)) def closed_days(): data = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) data = data.drop(columns='Unnamed: 0') stations = list(data.Station.unique()) for j in range(len(stations)): data = data[data.Station == stations[j]] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business = [suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))] mean = np.mean(business) least_use = [] cero_use = [] for i in range(len(business)): if business[i] < 0.05*mean: least_use.append(suma_ent.keys()[i]) if business[i] == 0.0: cero_use.append(suma_ent.keys()[i]) return print('Station not operating at full capacity days: ' + str(least_use)), print('Station closed entirely days: ' + str(set(cero_use))) print('/////') busy_days() print('/////') ``` ### Closed Days ``` def closed_days(): data = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) data = data.drop(columns='Unnamed: 0') stations = list(data.Station.unique()) least_use = [] cero_use = [] for j in range(len(stations)): data = data[data.Station == stations[j]] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business = [suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))] mean = np.mean(business) for i in range(len(business)): if business[i] < 0.1*mean: least_use.append(suma_ent.keys()[i]) if business[i] == 0.0: cero_use.append(suma_ent.keys()[i]) return print('Station not operating at full capacity days: ' + str(least_use)), print('\n') , print('Station closed entirely days: ' + str(set(cero_use))) print('/////') closed_days() print('/////') ``` ## Plots ### Daily row count ``` plt.rcParams['figure.dpi'] = 100 Q_1 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv', 'turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv' , 'turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv'])) def plot_1(): data = pd.concat([pd.read_csv(LOCATION + Q_1[i] ) for i in range(len(Q_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = total_entries(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() plt.figure(1) suma_ent.plot(label='Total riders') plt.xlabel('Dates') plt.ylabel('Counts') plt.legend() plt.grid() plot_1() ``` ### Plot the daily total number of entries & exits across the system for Q1 2013. ``` Q_1 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv', 'turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv' , 'turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv'])) def plot_2(): data = pd.concat([pd.read_csv(LOCATION + Q_1[i]) for i in range(len(Q_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() plt.figure(1) suma_ent.plot(label='Total entries') suma_ex.plot(label='Total exits') plt.xlabel('Dates') plt.ylabel('Counts') plt.legend() plt.grid() plot_2() ``` ### Plot the mean and standard deviation of the daily total number of entries & exits for each month in Q1 2013 for station 34 ST-PENN STA. ``` Q_1_3 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv'])) Q_1_2 = list(reversed(['turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv'])) Q_1_1 = list(reversed(['turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv',])) plt.rcParams['figure.dpi'] = 100 def plot_3(): lst = [Q_1_1, Q_1_2, Q_1_3] lst_str = ['Jan', 'Feb', 'March'] plt.figure(1) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_entries(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ent = filter_(suma_ent) plt.plot(j, np.mean(suma_ent.values), 'ro') plt.errorbar(j, np.mean(suma_ent.values), yerr=np.std(suma_ent.values), ecolor='r') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Counts') plt.legend(['Total entries']) plt.grid() plt.title('Entries') plt.figure(2) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_exits(data) suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() suma_ex = filter_(suma_ex) plt.plot(j, np.mean(suma_ex.values), 'go') plt.errorbar(j, np.mean(suma_ex.values), yerr=np.std(suma_ent.values), ecolor='g') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Counts') plt.legend(['Total exits']) plt.grid() plt.title('Exits') plot_3() ``` ### Plot 25/50/75 percentile of the daily total number of entries & exits for each month in Q1 2013 for station 34 ST-PENN STA. ``` import matplotlib.patches as mpatches Q_1_3 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv'])) Q_1_2 = list(reversed(['turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv'])) Q_1_1 = list(reversed(['turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv',])) percents = [25, 50, 75] def plot_4(): lst = [Q_1_1, Q_1_2, Q_1_3] lst_str = ['Jan', 'Feb', 'March'] plt.figure(1) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ent = filter_(suma_ent) plt.plot(j, np.percentile(suma_ent.values, 25), 'ro') plt.plot(j, np.percentile(suma_ent.values, 50), 'go') plt.plot(j, np.percentile(suma_ent.values, 75), 'bo') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Percentiles') red_patch = mpatches.Patch(color='red', label='Total entries - 25') green_patch = mpatches.Patch(color='green', label='Total entries - 50') blue_patch = mpatches.Patch(color='blue', label='Total entries - 75') plt.legend(handles=[red_patch, green_patch, blue_patch]) plt.title('Entries') plt.grid() plt.figure(2) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_entries(data) data = total_exits(data) suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() suma_ex = filter_(suma_ex) plt.plot(j, np.percentile(suma_ex.values, 25), 'ro') plt.plot(j, np.percentile(suma_ex.values, 50), 'go') plt.plot(j, np.percentile(suma_ex.values, 75), 'bo') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Percentiles') red_patch = mpatches.Patch(color='red', label='Total entries - 25') green_patch = mpatches.Patch(color='green', label='Total entries - 50') blue_patch = mpatches.Patch(color='blue', label='Total entries - 75') plt.legend(handles=[red_patch, green_patch, blue_patch]) plt.title('Exits') plt.grid() plot_4() ```
github_jupyter
import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt import numpy as np import requests import datetime content = requests.get( "http://web.mta.info/developers/turnstile.html").content.decode("utf-8") # Convert the main page contents to soup soup = BeautifulSoup(content, 'lxml') # WEB SCRAPER content = requests.get( "http://web.mta.info/developers/turnstile.html").content.decode("utf-8") # Convert the main page contents to soup soup = BeautifulSoup(content, 'lxml') LOCATION = 'C:/Users/Harpreet Gaur/Desktop/Turnstile_Analysis' # ex: '/home/tom/Documents/turnstile/Data/' a_tags = soup.select('div.span-84.last > a') date_list = [] files_names = [] # looping through all the <a> tag elements for a_tag in a_tags: # Convert the inner text of the a tag to a datetime object d = datetime.datetime.strptime(a_tag.text.strip(), "%A, %B %d, %Y") # put the formatted date in the array if it is in the year of 2013 if d.year == 2013: date_list.append(d.strftime("%y%m%d")) # append + format the datetime object to string # loop the date list for dl in date_list: # get the file link from the date url = "http://web.mta.info/developers/data/nyct/turnstile/turnstile_{}.txt".format(dl) # Getting the file's content print("Processing URL: " + url) content = requests.get(url).content.decode("utf-8") # Save the content in to a csv file print("Converting to CSV...") # Save to file in the data folder f = open("./turnstile_{}.csv".format(dl), "w") # Replace the \r escape character that's adding an extra line between each record f.write(content.replace("\r", "")) f.close() print("Finished " + dl + "!\n") #All files_names = ['turnstile_130105.csv', 'turnstile_130112.csv', 'turnstile_130119.csv' , 'turnstile_130126.csv' , 'turnstile_130202.csv' , 'turnstile_130209.csv' ,'turnstile_130216.csv' ,'turnstile_130223.csv' ,'turnstile_130302.csv' , 'turnstile_130309.csv' ,'turnstile_130316.csv' ,'turnstile_130323.csv' ,'turnstile_130330.csv' ,'turnstile_130406.csv' , 'turnstile_130413.csv' ,'turnstile_130420.csv' ,'turnstile_130427.csv' ,'turnstile_130504.csv' ,'turnstile_130511.csv' , 'turnstile_130518.csv' ,'turnstile_130525.csv' ,'turnstile_130601.csv' ,'turnstile_130608.csv' ,'turnstile_130615.csv' , 'turnstile_130622.csv' ,'turnstile_130629.csv' ,'turnstile_130706.csv' ,'turnstile_130713.csv' ,'turnstile_130720.csv' , 'turnstile_130727.csv' ,'turnstile_130803.csv' ,'turnstile_130810.csv' ,'turnstile_130817.csv' ,'turnstile_130824.csv' , 'turnstile_130831.csv' ,'turnstile_130907.csv' ,'turnstile_130914.csv' ,'turnstile_130921.csv' ,'turnstile_130928.csv' , 'turnstile_131005.csv' ,'turnstile_131012.csv' ,'turnstile_131019.csv' ,'turnstile_131026.csv' , 'turnstile_131102.csv' ,'turnstile_131109.csv' ,'turnstile_131116.csv' ,'turnstile_131123.csv' , 'turnstile_131130.csv' ,'turnstile_131207.csv' ,'turnstile_131214.csv' ,'turnstile_131221.csv' , 'turnstile_131228.csv' ] columns = ['C/A','UNIT','SCP','DATE1','TIME1','DESC1','ENTRIES1','EXITS1','DATE2','TIME2','DESC2','ENTRIES2','EXITS2','DATE3','TIME3','DESC3','ENTRIES3','EXITS3','DATE4','TIME4','DESC4','ENTRIES4','EXITS4','DATE5','TIME5','DESC5','ENTRIES5','EXITS5','DATE6','TIME6','DESC6','ENTRIES6','EXITS6','DATE7','TIME7','DESC7','ENTRIES7','EXITS7','DATE8','TIME8','DESC8','ENTRIES8','EXITS8'] station_loc = LOCATION+'/Remote-Booth-Station.csv' # location of the Remote-Booth-Station.csv file in local machine station_csv = pd.read_csv(station_loc) LOCATION = 'C:/Users/Harpreet Gaur/Desktop/Turnstile_Analysis/' def assign_station(df, station_csv): station=[] station_csv = station_csv.dropna() for i in range(len(df)): unit = df.UNIT.values[i] ca = df['C/A'].values[i] a = station_csv[(station_csv['Remote']==unit) & (station_csv['Booth']==ca)] if not a.empty: station.append(a.Station.values[0]) else: station.append(np.NaN) df['Station'] = station return df def remove_recovr_aud(): for i in range(len(files_names)): data = pd.read_csv(LOCATION + files_names[i], names=columns) data_fnames = assign_station(data, station_csv) data_fname_new = data_fnames[(data_fnames['DESC1'] != 'RECOVR AUD') & (data_fnames['DESC2'] != 'RECOVR AUD') & (data_fnames['DESC3'] != 'RECOVR AUD') & (data_fnames['DESC4'] != 'RECOVR AUD') & (data_fnames['DESC5'] != 'RECOVR AUD') & (data_fnames['DESC6'] != 'RECOVR AUD') & (data_fnames['DESC7'] != 'RECOVR AUD') & (data_fnames['DESC8'] != 'RECOVR AUD')] data_fname_new.to_csv(LOCATION + files_names[i]) remove_recovr_aud() def station_list(): asd_ = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) asd = asd_.drop(columns='Unnamed: 0') sum_ = asd.groupby(['Station']).UNIT.unique() stations = list(sum_.keys()) unique = [] for i in range(len(sum_)): unique.append(len(sum_[i])) return stations[unique.index(max(unique))] print('The station that has the most number of units is: ' + str(station_list())) feb = pd.read_csv(LOCATION + 'turnstile_130202.csv') def exits(df, day): exits_ = [] station_ = [] stations = list(df['Station'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['Station'] == stations[j]] exits_stat = [] for i in range(2, len(df_temp)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): # This loop is because not every 1 of Feb starts at the same hours. They start between 00:00:00 and 04:00:00, so we have to loop for this values to get the right one of the row. if df_temp['DATE%s' % k_0].values[i] == day and df_temp['TIME%s' % k_0].values[i] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: # Here we start in the first hour of Feb 1, and sum the next values until we get to another date. kf = range(k+1, 9) ki = range(1, k+1) lst = [df['EXITS%s' % l][i] for l in kf if df['EXITS%s' % l][i]!=0] + [df['EXITS%s' % l][i+1] for l in ki if df['EXITS%s' % l][i+1]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS%s' % (k-1)][i]) # The '- len(lst)*df['EXITS%s' % (k-1)][i]' is to substract the cumulative part. offset.append(df['EXITS%s' % (k-1)][i]) break elif k == 1: lst = [df['EXITS%s' % l][i] for l in range(1, 9) if df['EXITS%s' % l][i]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS8'][i-1]) offset.append(df['EXITS8'][i]) break exits_.append(sum(exits_stat)) station_.append(stations[j]) exits = [] station = [] for i in range(len(exits_)): if abs(exits_[i]) < 10000000: exits.append(exits_[i]) station.append(station_[i]) return exits, offset, station # The 'entries' function is the same as the 'exit' but changing EXITS%s --> ENTRIES%s def entries(df, day): entries_ = [] station_ = [] stations = list(df['Station'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['Station'] == stations[j]] entries_stat = [] indxs = list(df_temp.index) for i in range(len(indxs)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): if df_temp.loc[indxs[i], 'DATE%s' % k_0] == day and df_temp.loc[indxs[i], 'TIME%s' % k_0] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: kf = range(k+1, 9) ki = range(1, k+1) lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in kf if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0] + [df_temp.loc[indxs[i+1], 'ENTRIES%s' % l] for l in ki if df_temp.loc[indxs[i+1], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) offset.append(df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) break elif k == 1: lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in range(1, 9) if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i-1], 'ENTRIES8']) offset.append(df_temp.loc[indxs[i], 'ENTRIES8']) break entries_.append(sum(entries_stat)) station_.append(stations[j]) entries = [] station = [] for i in range(len(entries_)): if abs(entries_[i]) < 10000000: entries.append(entries_[i]) station.append(station_[i]) return entries, offset, station entries_01, entries_31, stations_ent = entries(feb, '02-01-13') exits_01, exits_31, stations_ex = exits(feb, '02-01-13') print('Total number of entries for Febraury 1: ' + str(sum(entries_01))) print('Total number of exits for Febraury 1: ' + str(sum(exits_01))) business = [entries_01[i] + exits_01[i] for i in range(len(entries_01))] ind = business.index(max(business)) print('The bussiest station on 1 Feb was: ' + str(stations_ent[ind])) feb = pd.read_csv(LOCATION + 'turnstile_130202.csv') def exits(df, day): exits_ = [] station_ = [] stations = list(df['SCP'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['SCP'] == stations[j]] exits_stat = [] for i in range(2, len(df_temp)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): if df_temp['DATE%s' % k_0].values[i] == day and df_temp['TIME%s' % k_0].values[i] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: kf = range(k+1, 9) ki = range(1, k+1) lst = [df['EXITS%s' % l][i] for l in kf if df['EXITS%s' % l][i]!=0] + [df['EXITS%s' % l][i+1] for l in ki if df['EXITS%s' % l][i+1]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS%s' % (k-1)][i]) offset.append(df['EXITS%s' % (k-1)][i]) break elif k == 1: lst = [df['EXITS%s' % l][i] for l in range(1, 9) if df['EXITS%s' % l][i]!=0 or df['EXITS%s' % l][i]!=np.nan] exits_stat.append(sum(lst) - len(lst)*df['EXITS8'][i-1]) offset.append(df['EXITS8'][i]) break exits_.append(sum(exits_stat)) station_.append(stations[j]) exits = [] station = [] for i in range(len(exits_)): if abs(exits_[i]) < 10000000: exits.append(exits_[i]) station.append(station_[i]) return exits, offset, station def entries(df, day): entries_ = [] station_ = [] stations = list(df['SCP'].unique()) hours = ['0'+str(i)+':00:00' for i in range(0, 4)] offset = [] for j in range(len(stations)): df_temp = df[df['SCP'] == stations[j]] entries_stat = [] indxs = list(df_temp.index) for i in range(len(indxs)-1): k = np.nan for k_0 in range(1,9): for m in range(len(hours)): if df_temp.loc[indxs[i], 'DATE%s' % k_0] == day and df_temp.loc[indxs[i], 'TIME%s' % k_0] == hours[m]: k = k_0 break if not np.isnan(k): if k>1: kf = range(k+1, 9) ki = range(1, k+1) lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in kf if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0] + [df_temp.loc[indxs[i+1], 'ENTRIES%s' % l] for l in ki if df_temp.loc[indxs[i+1], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) offset.append(df_temp.loc[indxs[i], 'ENTRIES%s' % (k-1)]) break elif k == 1: lst = [df_temp.loc[indxs[i], 'ENTRIES%s' % l] for l in range(1, 9) if df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=0 or df_temp.loc[indxs[i], 'ENTRIES%s' % l]!=np.nan] entries_stat.append(sum(lst) - len(lst)*df_temp.loc[indxs[i-1], 'ENTRIES8']) offset.append(df_temp.loc[indxs[i], 'ENTRIES8']) break entries_.append(sum(entries_stat)) station_.append(stations[j]) entries = [] station = [] for i in range(len(entries_)): if abs(entries_[i]) < 10000000: entries.append(entries_[i]) station.append(station_[i]) return entries, offset, station entries_01, entries_31, stations_ent = entries(feb, '02-01-13') exits_01, exits_31, stations_ex = exits(feb, '02-01-13') business = [entries_01[i] + exits_01[i] for i in range(len(entries_01))] ind = business.index(max(business)) print('The bussiest turnstile on 1 Feb was: ' + str(stations_ent[ind])) def total_entries(data): df = data.copy() indexs = list(df.index) for i in range(len(indexs)): for k in range(1,9): # Iterate over the columns if not np.isnan(df.loc[indexs[i], 'ENTRIES%s' % (k)]): # If the corresponding cell is not empty: if k>1: # If it's not the first cell: point = df.at[indexs[i], 'ENTRIES%s' % (k)] - df.at[indexs[i], 'ENTRIES%s' % (k-1)] # substract the cumulative part if point > 0 and point < 100000: #If the substracion is nos an outlier: df.at[indexs[i], 'ENTRIES%s' % (k)] = point # Replace the cell by the value without the cumulative part else: # If it was an outlier, replace it by 0 df.at[indexs[i], 'ENTRIES%s' % (k)] = 0 elif k == 1 and indexs[i] == indexs[i-1]+1: try: point = df.at[indexs[i], 'ENTRIES1'] - df.at[indexs[i-1], 'ENTRIES8'] if point < 100000 and point > 0 : df.at[indexs[i], 'ENTRIES1'] = point else: df.at[indexs[i], 'ENTRIES1'] = 0 except KeyError: continue return df # The same as the funtion before, but with the exits def total_exits(data): df = data.copy() indexs = list(df.index) for i in range(len(indexs)): for k in range(1,9): if not np.isnan(df.loc[indexs[i], 'ENTRIES%s' % (k)]): if k>1: point = df.at[indexs[i], 'EXITS%s' % (k)] - df.at[indexs[i], 'EXITS%s' % (k-1)] if point > 0 and point < 100000: df.at[indexs[i], 'EXITS%s' % (k)] = point else: df.at[indexs[i], 'EXITS%s' % (k)] = 0 elif k == 1 and indexs[i] == indexs[i-1]+1 : try: point = df.at[indexs[i], 'EXITS1'] - df.at[indexs[i-1], 'EXITS8'] if point < 100000 and point > 0 : df.at[indexs[i], 'EXITS1'] = point else: df.at[indexs[i], 'EXITS1'] = 0 except KeyError: continue return df def filter_(df): # This is a filter for the outliers. My criterion was that if a value (tipically of entries or exits) was bigger than 1000000, then I would replace it by the next value. for i in range(len(df)): if abs(df[i]) > 1000000: df[i] = df[i+1] return df def usage_station(): data_ = pd.concat([pd.read_csv(LOCATION + files_names[i] ) for i in range(len(files_names))], ignore_index=True) data_ = data_.drop(columns='Unnamed: 0') stations = list(data_['Station'].unique()) business = [] for j in range(len(stations)): data = data_[data_.Station == stations[j]] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business.append([suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))]) return business, stations business, stations = usage_station() growth = [] decline = [] for i in range(len(business)): if len(business[i]) > 7: initial = np.mean(business[i][0:3]) final = np.mean(business[i][-4:-1]) if initial/final > 5 and final != 0: growth.append(stations[i]) elif final/initial > 2 and initial != 0: decline.append(stations[i]) print('/////') print('The stations that have seen the most usage growth in 2013 are: ' + str(growth)) print('/////') print('The stations that have seen the most usage decline in 2013 are: ' + str(decline)) print('/////') def busy_days(): data = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business = [suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))] mean = np.mean(business) std = np.std(business) least_use = [] for i in range(len(business)): if business[i] < mean - std: least_use.append(suma_ent.keys()[i]) return print('Least busy days: ' + str(least_use)) def closed_days(): data = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) data = data.drop(columns='Unnamed: 0') stations = list(data.Station.unique()) for j in range(len(stations)): data = data[data.Station == stations[j]] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business = [suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))] mean = np.mean(business) least_use = [] cero_use = [] for i in range(len(business)): if business[i] < 0.05*mean: least_use.append(suma_ent.keys()[i]) if business[i] == 0.0: cero_use.append(suma_ent.keys()[i]) return print('Station not operating at full capacity days: ' + str(least_use)), print('Station closed entirely days: ' + str(set(cero_use))) print('/////') busy_days() print('/////') def closed_days(): data = pd.concat([pd.read_csv(LOCATION + files_names[i]) for i in range(len(files_names))], ignore_index=True) data = data.drop(columns='Unnamed: 0') stations = list(data.Station.unique()) least_use = [] cero_use = [] for j in range(len(stations)): data = data[data.Station == stations[j]] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() business = [suma_ent[i] + suma_ex[i] for i in range(len(suma_ent))] mean = np.mean(business) for i in range(len(business)): if business[i] < 0.1*mean: least_use.append(suma_ent.keys()[i]) if business[i] == 0.0: cero_use.append(suma_ent.keys()[i]) return print('Station not operating at full capacity days: ' + str(least_use)), print('\n') , print('Station closed entirely days: ' + str(set(cero_use))) print('/////') closed_days() print('/////') plt.rcParams['figure.dpi'] = 100 Q_1 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv', 'turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv' , 'turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv'])) def plot_1(): data = pd.concat([pd.read_csv(LOCATION + Q_1[i] ) for i in range(len(Q_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = total_entries(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() plt.figure(1) suma_ent.plot(label='Total riders') plt.xlabel('Dates') plt.ylabel('Counts') plt.legend() plt.grid() plot_1() Q_1 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv', 'turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv' , 'turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv'])) def plot_2(): data = pd.concat([pd.read_csv(LOCATION + Q_1[i]) for i in range(len(Q_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() plt.figure(1) suma_ent.plot(label='Total entries') suma_ex.plot(label='Total exits') plt.xlabel('Dates') plt.ylabel('Counts') plt.legend() plt.grid() plot_2() Q_1_3 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv'])) Q_1_2 = list(reversed(['turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv'])) Q_1_1 = list(reversed(['turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv',])) plt.rcParams['figure.dpi'] = 100 def plot_3(): lst = [Q_1_1, Q_1_2, Q_1_3] lst_str = ['Jan', 'Feb', 'March'] plt.figure(1) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_entries(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ent = filter_(suma_ent) plt.plot(j, np.mean(suma_ent.values), 'ro') plt.errorbar(j, np.mean(suma_ent.values), yerr=np.std(suma_ent.values), ecolor='r') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Counts') plt.legend(['Total entries']) plt.grid() plt.title('Entries') plt.figure(2) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_exits(data) suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() suma_ex = filter_(suma_ex) plt.plot(j, np.mean(suma_ex.values), 'go') plt.errorbar(j, np.mean(suma_ex.values), yerr=np.std(suma_ent.values), ecolor='g') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Counts') plt.legend(['Total exits']) plt.grid() plt.title('Exits') plot_3() import matplotlib.patches as mpatches Q_1_3 = list(reversed(['turnstile_130330.csv', 'turnstile_130323.csv' , 'turnstile_130316.csv' ,'turnstile_130309.csv' , 'turnstile_130302.csv'])) Q_1_2 = list(reversed(['turnstile_130223.csv' , 'turnstile_130216.csv' , 'turnstile_130209.csv' , 'turnstile_130202.csv'])) Q_1_1 = list(reversed(['turnstile_130126.csv' , 'turnstile_130119.csv' , 'turnstile_130112.csv', 'turnstile_130105.csv',])) percents = [25, 50, 75] def plot_4(): lst = [Q_1_1, Q_1_2, Q_1_3] lst_str = ['Jan', 'Feb', 'March'] plt.figure(1) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_entries(data) data = total_exits(data) suma_ent = data.groupby(['DATE1']).ENTRIES1.sum() + data.groupby(['DATE1']).ENTRIES2.sum() + data.groupby(['DATE1']).ENTRIES3.sum() + data.groupby(['DATE1']).ENTRIES4.sum() + data.groupby(['DATE1']).ENTRIES5.sum() + data.groupby(['DATE1']).ENTRIES6.sum() + data.groupby(['DATE1']).ENTRIES7.sum() + data.groupby(['DATE1']).ENTRIES8.sum() suma_ent = filter_(suma_ent) plt.plot(j, np.percentile(suma_ent.values, 25), 'ro') plt.plot(j, np.percentile(suma_ent.values, 50), 'go') plt.plot(j, np.percentile(suma_ent.values, 75), 'bo') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Percentiles') red_patch = mpatches.Patch(color='red', label='Total entries - 25') green_patch = mpatches.Patch(color='green', label='Total entries - 50') blue_patch = mpatches.Patch(color='blue', label='Total entries - 75') plt.legend(handles=[red_patch, green_patch, blue_patch]) plt.title('Entries') plt.grid() plt.figure(2) for j in range(len(lst)): data = pd.concat([pd.read_csv(LOCATION + lst[j][i], parse_dates=['DATE%s' % k for k in range(1, 9)], infer_datetime_format=True) for i in range(len(Q_1_1))], ignore_index=True) data = data.drop(columns='Unnamed: 0') data = data[data['Station'] == '34 ST-PENN STA'] data = total_entries(data) data = total_exits(data) suma_ex = data.groupby(['DATE1']).EXITS1.sum() + data.groupby(['DATE1']).EXITS2.sum() + data.groupby(['DATE1']).EXITS3.sum() + data.groupby(['DATE1']).EXITS4.sum() + data.groupby(['DATE1']).EXITS5.sum() + data.groupby(['DATE1']).EXITS6.sum() + data.groupby(['DATE1']).EXITS7.sum() + data.groupby(['DATE1']).EXITS8.sum() suma_ex = filter_(suma_ex) plt.plot(j, np.percentile(suma_ex.values, 25), 'ro') plt.plot(j, np.percentile(suma_ex.values, 50), 'go') plt.plot(j, np.percentile(suma_ex.values, 75), 'bo') plt.xticks(range(len(lst)), lst_str) plt.xlabel('Dates') plt.ylabel('Percentiles') red_patch = mpatches.Patch(color='red', label='Total entries - 25') green_patch = mpatches.Patch(color='green', label='Total entries - 50') blue_patch = mpatches.Patch(color='blue', label='Total entries - 75') plt.legend(handles=[red_patch, green_patch, blue_patch]) plt.title('Exits') plt.grid() plot_4()
0.104044
0.26736
<a href="https://colab.research.google.com/github/ezzatmostafa96/Action-Recognition-in-Real-Time/blob/master/19_5_tsn_r50.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` ! git clone https://github.com/Tessellate-Imaging/Monk_Object_Detection.git ! cd Monk_Object_Detection/18_mmaction/installation && cat requirements.txt | xargs -n 1 -L 1 pip install -vvvv ! pip install pillow==6.0.0 # Restart runtime ! cd Monk_Object_Detection/18_mmaction/lib/ && pip install -vvvv -e . ! pip uninstall -y mmcv ! cd Monk_Object_Detection/18_mmaction/lib/mmcv && MMCV_WITH_OPS=1 pip install -vvvv -e . # Restart runtime ! mkdir Dataset ! mkdir Dataset/Videos !mkdir Anomaly from distutils.dir_util import copy_tree # copy subdirectory example fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-1/Arrest" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-1/Assault" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-2/Burglary" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) !mkdir Normal fromDirectory = "/content/drive/MyDrive/Training-Normal-Videos-Part-1" toDirectory = "/content/Normal" copy_tree(fromDirectory, toDirectory) fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-3/Robbery" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) import os from random import sample files = os.listdir('/content/Normal') for file in sample(files,63): os.remove('/content/Normal/' + file) print("Class Anomaly: {}".format(len(os.listdir("/content/Anomaly")))) print("Class Normal: {}".format(len(os.listdir("/content/Normal")))) classes = ["Anomaly", "Normal"] f = open("Dataset/classes.txt", 'w'); for i in range(len(classes)): f.write(classes[i] + "\n"); f.close(); import os from tqdm import tqdm combined = []; !mkdir All !mv /content/Anomaly /content/All !mv /content/Normal /content/All folder_name = "/content/All/" class_name = "Anomaly"; folder_name += class_name + "/"; vid_list = os.listdir(folder_name); for i in tqdm(range(len(vid_list))): os.system("cp " + folder_name + vid_list[i] + " Dataset/Videos/") wr = vid_list[i] + " " + str(classes.index(class_name)) combined.append(wr) folder_name = "/content/All/" class_name = "Normal"; folder_name += class_name + "/"; vid_list = os.listdir(folder_name); for i in tqdm(range(len(vid_list))): os.system("cp " + folder_name + vid_list[i] + " Dataset/Videos/") wr = vid_list[i] + " " + str(classes.index(class_name)) combined.append(wr) import random random.shuffle(combined) train_list = combined[:100]; val_list = combined[100:]; f = open("Dataset/train.txt", 'w') for i in range(len(train_list)): f.write(train_list[i] + "\n"); f.close(); f = open("Dataset/val.txt", 'w') for i in range(len(val_list)): f.write(val_list[i] + "\n"); f.close(); import os import sys sys.path.append("Monk_Object_Detection/18_mmaction/lib"); from train_engine import Detector_Videos gtf = Detector_Videos(); video_dir = 'Dataset/Videos/'; anno_file = 'Dataset/train.txt'; classes_list_file = 'Dataset/classes.txt'; gtf.Train_Video_Dataset(video_dir, anno_file, classes_list_file); video_dir = 'Dataset/Videos/'; anno_file = 'Dataset/val.txt'; gtf.Val_Video_Dataset(video_dir, anno_file); gtf.Dataset_Params(batch_size=8, num_workers=4) gtf.List_Models(); gtf.Model_Params(model_name="tsn_r50", gpu_devices=[0]) gtf.Hyper_Params(lr=0.001, momentum=0.9, weight_decay=0.0001) gtf.Training_Params(num_epochs=100, val_interval=10) gtf.Train(); from infer_engine import Infer_Videos import os import sys sys.path.append("Monk_Object_Detection/18_mmaction/lib"); gtf = Infer_Videos(); gtf.Dataset_Params('/content/Dataset/classes.txt'); config_file = "/content/work_dirs/config.py" checkpoint_file = "/content/work_dirs/latest.pth" gtf.Model_Params(config_file, checkpoint_file, use_gpu=True) !wget https://www.dropbox.com/sh/75v5ehq4cdg5g5g/AABqY-3fJSmSMafFIlJXRE-9a/Anomaly-Videos-Part-4.zip?dl=0 !unzip /content/Anomaly-Videos-Part-4.zip?dl=0 !rm -r /content/Anomaly-Videos-Part-4.zip?dl=0 import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Shoplifting'): gtf.Predict('/content/Anomaly-Videos-Part-4/Shoplifting/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Stealing'): gtf.Predict('/content/Anomaly-Videos-Part-4/Stealing/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Vandalism'): gtf.Predict('/content/Anomaly-Videos-Part-4/Vandalism/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') import os for filename in os.listdir('/content/drive/MyDrive/Training-Normal-Videos-Part-1'): gtf.Predict('/content/drive/MyDrive/Training-Normal-Videos-Part-1/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') video_path = '/content/Anomaly-Videos-Part-4/Shoplifting/Shoplifting001_x264.mp4' gtf.Predict(video_path)[0][0] results results[0][0] import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Vandalism'): r = gtf.Predict('/content/Anomaly-Videos-Part-4/Vandalism/'+filename)[0][0] print(r[0]+'ddd') print('--------------------------------------------------------') ```
github_jupyter
! git clone https://github.com/Tessellate-Imaging/Monk_Object_Detection.git ! cd Monk_Object_Detection/18_mmaction/installation && cat requirements.txt | xargs -n 1 -L 1 pip install -vvvv ! pip install pillow==6.0.0 # Restart runtime ! cd Monk_Object_Detection/18_mmaction/lib/ && pip install -vvvv -e . ! pip uninstall -y mmcv ! cd Monk_Object_Detection/18_mmaction/lib/mmcv && MMCV_WITH_OPS=1 pip install -vvvv -e . # Restart runtime ! mkdir Dataset ! mkdir Dataset/Videos !mkdir Anomaly from distutils.dir_util import copy_tree # copy subdirectory example fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-1/Arrest" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-1/Assault" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-2/Burglary" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) !mkdir Normal fromDirectory = "/content/drive/MyDrive/Training-Normal-Videos-Part-1" toDirectory = "/content/Normal" copy_tree(fromDirectory, toDirectory) fromDirectory = "/content/drive/MyDrive/Anomaly-Videos-Part-3/Robbery" toDirectory = "/content/Anomaly" copy_tree(fromDirectory, toDirectory) import os from random import sample files = os.listdir('/content/Normal') for file in sample(files,63): os.remove('/content/Normal/' + file) print("Class Anomaly: {}".format(len(os.listdir("/content/Anomaly")))) print("Class Normal: {}".format(len(os.listdir("/content/Normal")))) classes = ["Anomaly", "Normal"] f = open("Dataset/classes.txt", 'w'); for i in range(len(classes)): f.write(classes[i] + "\n"); f.close(); import os from tqdm import tqdm combined = []; !mkdir All !mv /content/Anomaly /content/All !mv /content/Normal /content/All folder_name = "/content/All/" class_name = "Anomaly"; folder_name += class_name + "/"; vid_list = os.listdir(folder_name); for i in tqdm(range(len(vid_list))): os.system("cp " + folder_name + vid_list[i] + " Dataset/Videos/") wr = vid_list[i] + " " + str(classes.index(class_name)) combined.append(wr) folder_name = "/content/All/" class_name = "Normal"; folder_name += class_name + "/"; vid_list = os.listdir(folder_name); for i in tqdm(range(len(vid_list))): os.system("cp " + folder_name + vid_list[i] + " Dataset/Videos/") wr = vid_list[i] + " " + str(classes.index(class_name)) combined.append(wr) import random random.shuffle(combined) train_list = combined[:100]; val_list = combined[100:]; f = open("Dataset/train.txt", 'w') for i in range(len(train_list)): f.write(train_list[i] + "\n"); f.close(); f = open("Dataset/val.txt", 'w') for i in range(len(val_list)): f.write(val_list[i] + "\n"); f.close(); import os import sys sys.path.append("Monk_Object_Detection/18_mmaction/lib"); from train_engine import Detector_Videos gtf = Detector_Videos(); video_dir = 'Dataset/Videos/'; anno_file = 'Dataset/train.txt'; classes_list_file = 'Dataset/classes.txt'; gtf.Train_Video_Dataset(video_dir, anno_file, classes_list_file); video_dir = 'Dataset/Videos/'; anno_file = 'Dataset/val.txt'; gtf.Val_Video_Dataset(video_dir, anno_file); gtf.Dataset_Params(batch_size=8, num_workers=4) gtf.List_Models(); gtf.Model_Params(model_name="tsn_r50", gpu_devices=[0]) gtf.Hyper_Params(lr=0.001, momentum=0.9, weight_decay=0.0001) gtf.Training_Params(num_epochs=100, val_interval=10) gtf.Train(); from infer_engine import Infer_Videos import os import sys sys.path.append("Monk_Object_Detection/18_mmaction/lib"); gtf = Infer_Videos(); gtf.Dataset_Params('/content/Dataset/classes.txt'); config_file = "/content/work_dirs/config.py" checkpoint_file = "/content/work_dirs/latest.pth" gtf.Model_Params(config_file, checkpoint_file, use_gpu=True) !wget https://www.dropbox.com/sh/75v5ehq4cdg5g5g/AABqY-3fJSmSMafFIlJXRE-9a/Anomaly-Videos-Part-4.zip?dl=0 !unzip /content/Anomaly-Videos-Part-4.zip?dl=0 !rm -r /content/Anomaly-Videos-Part-4.zip?dl=0 import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Shoplifting'): gtf.Predict('/content/Anomaly-Videos-Part-4/Shoplifting/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Stealing'): gtf.Predict('/content/Anomaly-Videos-Part-4/Stealing/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Vandalism'): gtf.Predict('/content/Anomaly-Videos-Part-4/Vandalism/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') import os for filename in os.listdir('/content/drive/MyDrive/Training-Normal-Videos-Part-1'): gtf.Predict('/content/drive/MyDrive/Training-Normal-Videos-Part-1/'+filename) print(r[0]+'ddd') print('--------------------------------------------------------') video_path = '/content/Anomaly-Videos-Part-4/Shoplifting/Shoplifting001_x264.mp4' gtf.Predict(video_path)[0][0] results results[0][0] import os for filename in os.listdir('/content/Anomaly-Videos-Part-4/Vandalism'): r = gtf.Predict('/content/Anomaly-Videos-Part-4/Vandalism/'+filename)[0][0] print(r[0]+'ddd') print('--------------------------------------------------------')
0.133232
0.553928
[View in Colaboratory](https://colab.research.google.com/github/davidkant/mai/blob/master/tutorial/4_2_Markov_Chains.ipynb) # 4.2 Markov Chains So how can we do better? Remember, music is a temporal art, and often the order in which things happens is meaningful. The answer: ***conditional probability.*** Conditional probability quantifies the likelihood that an outcome will occur *given that another outcome has already ocurred*. Conditional probability expresses the concept of contingency and is used to describe random processes that depend on something. With music, we often use conditional probability to express the realtionships between the future and past. A ***Markov chain*** is a probability system in which the likelihood of *future* outcomes is determined by *past* outcomes. It's a tool for working with conditional probability, and, in this notebook, we'll use Markov chains to model sequence of musical events. Markov chains have two improtant features: the ***order*** which determines how far back past events affect future likelihoods, and the ***transition matrix*** which is a data structure that represents the system of conditional probabilitles. Note: Markov chains are implements in the `mai` package, so this notebook is mostly about how to use it. ## Setup ``` # install external libraries !pip install -q git+https://github.com/davidkant/mai#egg=mai; !pip install -q pretty_midi !pip install -q pyfluidsynth !apt-get -qq update !apt-get -qq install -y libfluidsynth1 # imports import mai import random import matplotlib.pyplot as plt ``` ## Learn a transition table from data We are going to learn a markov chain transition matrix from an example sequence. Our first example is a short sequence of numbers: ``` # make some dummy music music = [60, 62, 64, 65, 67] ``` First, we have to create a new markov chain to keep track of our data — this is the variable `mark`. Then we learn the transition table by calling the function `train` and passing our example musical sequence `music` as an argument. ``` # create a new markov chain mark = mai.markov.Markov() # learn a new table from data mark.train(music, order=1) ``` View the transition table --- is this what you expected? The transition table counts the number of times we transition from each state to the next. For each entry of the table, the transition is to the left of the colon and the count is to the right. For instance, `((60,), 62): 1,` means the sequence transitions from the state `60` to the state `62` once. ``` # view the transition table mark.transitions ``` ## Generate a new musical sequence from the trained Markov model This is the fun part. Once we have learned a Markov transition matrix, we can generate new sequences from it! The first thing we must do is set an initial state, otherwise the Markov chain wouldn't know where to start, then call the function `choose` to choose the next state according to the transition table. ``` # set initial state mark.state = (60,) # next choice mark.choose() ``` You can continue to call choose as many times as you wish... until you get an error!!! NOTE: in the following cell we omit the line of code that sets the initial state because we do not want to resent our initial state each time. ``` # next choice mark.choose() ``` If you call `choose` too many times on this particular transition table you eventually get the error: `LookupError: Current state not found in transition table`. The problem is we eventually transition *to* the state `67` but there is no entry in the transition table that tells us where to go *from* state `67`. This is because state `67` is the last number in the sequence that we learned from. ## Now let's try a few other sequences ### Example Sequence #2 What's different about this sequence? Here we add one additional value to our training sequence in order to avoid the error above. We create a loop where the sequence begins and ends on the same value, `60`. ``` # sequence to train on music = [60, 62, 64, 65, 67, 60] # create a new markov chain mark = mai.markov.Markov() # learn a new table from data mark.train(music, order=1) # view the transition table mark.transitions ``` Set the initial state ``` # set initial state mark.state = (60,) ``` Now choose repeatedly. You should **not** get an error this time. What happens instead? ``` # next choice mark.choose() ``` Generate a sequence of 12 choices and plot it. The original sequence is in blue and the new sequence is in green. How do they compare? The new sequence is an exact copy of the original just repeated. ``` # plot original and new plt.figure(figsize=(8,3)) plt.plot(music) plt.plot([mark.choose() for x in range(12)]) plt.show() ``` ### Example Sequence #3 Example sequence #2 loops the same sequence over and over and over again. It is deterministic because there is only one option for each previous state to transition to. How would you change the training sequence such that there are multiple optoins for at least one state? ``` # training sequence that is not deterministic music = [60, 62, 64, 65, 67, 60, 67] # create a new markov chain mark = mai.markov.Markov() # learn a new table from data mark.train(music, order=1) # view the transition table mark.transitions # set initial state mark.state = (60,) # next choice mark.choose() ``` Generate a new sequence of 12 choices and plot it. The original sequence is in blue and the new sequence is in green. How do they compare? The new sequence is not (necessarily) an exact copy of the original, but more like cut up and rearranged segments of the original. ``` # plot original and new plt.figure(figsize=(8,3)) plt.plot(music) plt.plot([mark.choose() for x in range(12)]) plt.show() ``` Hopefully these simple sequence are helping your intuition develop, but let's move onto music now...
github_jupyter
# install external libraries !pip install -q git+https://github.com/davidkant/mai#egg=mai; !pip install -q pretty_midi !pip install -q pyfluidsynth !apt-get -qq update !apt-get -qq install -y libfluidsynth1 # imports import mai import random import matplotlib.pyplot as plt # make some dummy music music = [60, 62, 64, 65, 67] # create a new markov chain mark = mai.markov.Markov() # learn a new table from data mark.train(music, order=1) # view the transition table mark.transitions # set initial state mark.state = (60,) # next choice mark.choose() # next choice mark.choose() # sequence to train on music = [60, 62, 64, 65, 67, 60] # create a new markov chain mark = mai.markov.Markov() # learn a new table from data mark.train(music, order=1) # view the transition table mark.transitions # set initial state mark.state = (60,) # next choice mark.choose() # plot original and new plt.figure(figsize=(8,3)) plt.plot(music) plt.plot([mark.choose() for x in range(12)]) plt.show() # training sequence that is not deterministic music = [60, 62, 64, 65, 67, 60, 67] # create a new markov chain mark = mai.markov.Markov() # learn a new table from data mark.train(music, order=1) # view the transition table mark.transitions # set initial state mark.state = (60,) # next choice mark.choose() # plot original and new plt.figure(figsize=(8,3)) plt.plot(music) plt.plot([mark.choose() for x in range(12)]) plt.show()
0.490236
0.989013
# Gaia DR2 variability catalogs ### Part I: What's in them? gully May 2, 2018 ``` # %load /Users/obsidian/Desktop/defaults.py import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'retina' ! du -hs ../data/dr2/Gaia/gdr2/vari_classifier_result/csv df0 = pd.read_csv('../data/dr2/Gaia/gdr2/vari_classifier_result/csv/VariClassifierResult_0.csv.gz') df0.shape df0.head() ``` The catalog is not too long. We can just read in all the files and concatenate them ``` import glob fns = glob.glob('../data/dr2/Gaia/gdr2/vari_classifier_result/csv/VariClassifierResult_*.csv.gz') n_files = len(fns) df_classifier = pd.DataFrame() ``` This step only takes 1 second: ``` for i, fn in enumerate(fns): df_i = pd.read_csv(fn) df_classifier = df_classifier.append(df_i, ignore_index=True) df_classifier.shape ``` Ok, we have 363,969 classifications of variable stars, which matches exactly with the number presented in Table 1 of [Brown et al. 2018](https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/201833051). What are the categories? ``` df_classifier.best_class_name.value_counts() ``` Section 7.3.3 of the [Gaia DR2 Documentation](http://gea.esac.esa.int/archive/documentation/GDR2/Data_analysis/chap_cu7var/ssec_cu7var_sos_allsky/ssec_cu7var_allsky_proc.html) lists the classification code definition. > The training set included objects of the classes targeted for publication in Gaia DR2 (listed in bold) as well as other types to reduce the contamination of the published classification results. The full list of object classes, with labels (used in the rest of this section) and corresponding descriptions, follows below. 20. **RRAB**: Fundamental-mode RR Lyrae stars. 16. **MIRA**: Long period variable stars of the o (omicron) Ceti type (Mira). 28. **SR**: Long period variable stars of the semiregular type. 21. **RRC**: First-overtone RR Lyrae stars. 10. **DSCT**: δ Scuti-type stars. 27. **SXPHE**: SX Phoenicis-type stars. 7. **CEP**: Classical (δ) Cepheids. 29. **T2CEP**: Type-II Cepheids. 22. **RRD**: Double-mode RR Lyrae stars. 1. **ACEP**: Anomalous Cepheids. 4. **ARRD**: Anomalous double-mode RR Lyrae stars. The stars I'm interested in are not automatically classified, but are used in *training* the classifier that labels these stars. That's too bad, I'd like to see the lightcurves for these classes: 2. ACV: α2 Canum Venaticorum-type stars. 8. CONSTANT: Objects whose variations (or absence thereof) are consistent with those of constant sources (Section 7.2.3). 11. ECL: Eclipsing binary stars. 13. FLARES: Magnetically active stars displaying flares. 19. ROT: Rotation modulation in solar-like stars due to magnetic activity (spots). 23. RS: RS Canum Venaticorum-type stars. 24. SOLARLIKE: Stars with solar-like variability induced by magnetic activity (flares, spots, and rotational modulation). Oh well, looks like these desired classifications may ellude us for now. What's the deal with the classifier name column? Section 7.3.1 of the Documentation explains: > The results of this classification can be found in the Gaia DR2 archive in the classification table associated with the `nTransits:2+` classifier, although subsequent filtering [...] increased the minimum number of FoV transits to five ``` df_classifier.classifier_name.value_counts() ``` They all have the same entry, so let's drop this column. ``` df_classifier.drop(columns='classifier_name', inplace=True) ``` What is the distribution of best class scores? ``` df_classifier.best_class_score.hist(bins=20) plt.xlim(1, 0) plt.xlabel('Best Class Score') plt.ylabel('$N$') ``` Many sources have best class scores close to 1. How do the classifications break down by Class? ``` df_summary = df_classifier.groupby('best_class_name').best_class_score.describe() df_summary.style.format({key: "{:.0%}" for key in ['mean', 'std', 'min', '25%', '50%', '75%', 'max']}) ``` Comparing the classification score between types might not be trivial, depending on what assumptions are made in the classifier (the prior probabilities vary drastically). For example, if you made a classifier that guessed `MIRA_SR`, you would be right 41% of the time. Finding annomalous Cepheids is a needle-in-a-haystack problem. ``` df_summary['parent_fraction'] = df_summary['count']/df_summary['count'].sum() df_summary.style.format({key: "{:.0%}" for key in ['mean', 'std', 'min', '25%', '50%', '75%', 'max']} ).format({'parent_fraction': "{:.2%}"}) ``` The next thing we could do is match the Gaia `Source ID` with the main catalog to get RA and DEC values to then cross-match with Kepler/K2.
github_jupyter
# %load /Users/obsidian/Desktop/defaults.py import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'retina' ! du -hs ../data/dr2/Gaia/gdr2/vari_classifier_result/csv df0 = pd.read_csv('../data/dr2/Gaia/gdr2/vari_classifier_result/csv/VariClassifierResult_0.csv.gz') df0.shape df0.head() import glob fns = glob.glob('../data/dr2/Gaia/gdr2/vari_classifier_result/csv/VariClassifierResult_*.csv.gz') n_files = len(fns) df_classifier = pd.DataFrame() for i, fn in enumerate(fns): df_i = pd.read_csv(fn) df_classifier = df_classifier.append(df_i, ignore_index=True) df_classifier.shape df_classifier.best_class_name.value_counts() df_classifier.classifier_name.value_counts() df_classifier.drop(columns='classifier_name', inplace=True) df_classifier.best_class_score.hist(bins=20) plt.xlim(1, 0) plt.xlabel('Best Class Score') plt.ylabel('$N$') df_summary = df_classifier.groupby('best_class_name').best_class_score.describe() df_summary.style.format({key: "{:.0%}" for key in ['mean', 'std', 'min', '25%', '50%', '75%', 'max']}) df_summary['parent_fraction'] = df_summary['count']/df_summary['count'].sum() df_summary.style.format({key: "{:.0%}" for key in ['mean', 'std', 'min', '25%', '50%', '75%', 'max']} ).format({'parent_fraction': "{:.2%}"})
0.276202
0.892609
``` import lightgbm as lgb import sklearn from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.metrics import log_loss,confusion_matrix,classification_report,roc_curve,auc,accuracy_score,roc_auc_score from sklearn.model_selection import StratifiedKFold # Onehot encoding from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from scipy import sparse import gc import os import random def seed_everything(seed: int = 42): random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) #torch.manual_seed(seed) #torch.cuda.manual_seed(seed) #torch.backends.cudnn.deterministic = True #torch.backends.cudnn.benchmark = False seed_everything() ''' !mkdir input/ %cd input/ !wget https://archive.ics.uci.edu/ml/machine-learning-databases/00359/NewsAggregatorDataset.zip !unzip NewsAggregatorDataset.zip ''' # 読込時のエラー回避のためダブルクォーテーションをシングルクォーテーションに置換 #!sed -e 's/"/'\''/g' ./input/newsCorpora.csv > ./input/newsCorpora_re.csv #%cd .. # データの読込 df = pd.read_csv('./input/newsCorpora_re.csv', header=None, sep='\t', names=['ID', 'TITLE', 'URL', 'PUBLISHER', 'CATEGORY', 'STORY', 'HOSTNAME', 'TIMESTAMP']) # データの抽出 df = df.loc[df['PUBLISHER'].isin(['Reuters', 'Huffington Post', 'Businessweek', 'Contactmusic.com', 'Daily Mail']), ['TITLE', 'CATEGORY']] df.head() # データの分割 df_train, df_valid_test = train_test_split(df, test_size=0.2, shuffle=True, random_state=123, stratify=df['CATEGORY']) df_valid, df_test = train_test_split(df_valid_test, test_size=0.5, shuffle=True, random_state=123, stratify=df_valid_test['CATEGORY']) df_train.reset_index(drop=True, inplace=True) df_valid.reset_index(drop=True, inplace=True) df_test.reset_index(drop=True, inplace=True) print(df_train.head()) vect_word = TfidfVectorizer(max_features=20000, lowercase=True, analyzer='word', stop_words= None,ngram_range=(1,3),dtype=np.float32) vect_char = TfidfVectorizer(max_features=40000, lowercase=True, analyzer='char', stop_words=None,ngram_range=(3,6),dtype=np.float32) # Word ngram vector tr_vect = vect_word.fit_transform(df_train['TITLE']) vl_vect = vect_word.transform(df_valid['TITLE']) ts_vect = vect_word.transform(df_test['TITLE']) # Character n gram vector tr_vect_char = vect_char.fit_transform(df_train['TITLE']) vl_vect_char = vect_char.transform(df_valid['TITLE']) ts_vect_char = vect_char.transform(df_test['TITLE']) gc.collect() tr_vect.shape X = sparse.hstack([tr_vect, tr_vect_char]) x_val = sparse.hstack([vl_vect, vl_vect_char]) x_test = sparse.hstack([ts_vect, ts_vect_char]) le = LabelEncoder() y_tr = le.fit_transform(df_train['CATEGORY'].values) y_vl = le.transform(df_valid['CATEGORY'].values) y_te = le.transform(df_test['CATEGORY'].values) svd = TruncatedSVD(n_components=300, random_state=42) X = svd.fit_transform(tr_vect) x_val = svd.transform(vl_vect) x_test = svd.transform(ts_vect) X.shape y_vl.shape y_tr.shape model = lgb.LGBMClassifier() model.fit(X, y_tr) # 検証データを予測する y_pred = model.predict_proba(x_val) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print(accuracy) print(roc_auc_score(y_vl, y_pred, multi_class='ovo')) print(log_loss(y_vl, y_pred)) # 評価データを予測する y_pred = model.predict_proba(x_test) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print(accuracy) print(roc_auc_score(y_te, y_pred, multi_class='ovo')) print(log_loss(y_te, y_pred)) ``` # Gensim ``` !pip freeze > requirements.lock import gensim.downloader as api wv = api.load('word2vec-google-news-300') class SWEM(): """ Simple Word-Embeddingbased Models (SWEM) https://arxiv.org/abs/1805.09843v1 """ def __init__(self, w2v, tokenizer, oov_initialize_range=(-0.01, 0.01)): self.w2v = w2v self.tokenizer = tokenizer self.vocab = set(self.w2v.vocab.keys()) self.embedding_dim = self.w2v.vector_size self.oov_initialize_range = oov_initialize_range if self.oov_initialize_range[0] > self.oov_initialize_range[1]: raise ValueError("Specify valid initialize range: " f"[{self.oov_initialize_range[0]}, {self.oov_initialize_range[1]}]") def get_word_embeddings(self, text): np.random.seed(abs(hash(text)) % (10 ** 8)) vectors = [] for word in self.tokenizer(text): if word in self.vocab: vectors.append(self.w2v[word]) else: vectors.append(np.random.uniform(self.oov_initialize_range[0], self.oov_initialize_range[1], self.embedding_dim)) return np.array(vectors) def average_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.mean(word_embeddings, axis=0) def max_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.max(word_embeddings, axis=0) def concat_average_max_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.r_[np.mean(word_embeddings, axis=0), np.max(word_embeddings, axis=0)] def hierarchical_pooling(self, text, n): word_embeddings = self.get_word_embeddings(text) text_len = word_embeddings.shape[0] if n > text_len: raise ValueError(f"window size must be less than text length / window_size:{n} text_length:{text_len}") window_average_pooling_vec = [np.mean(word_embeddings[i:i + n], axis=0) for i in range(text_len - n + 1)] return np.max(window_average_pooling_vec, axis=0) from gensim.models import KeyedVectors from spacy.tokenizer import Tokenizer from spacy.lang.en import English nlp = English() swem = SWEM(wv, nlp.tokenizer) # Word ngram vector tr_vect = np.array([swem.average_pooling(text) for text in df_train['TITLE'].tolist()]) vl_vect = np.array([swem.average_pooling(text) for text in df_valid['TITLE'].tolist()]) ts_vect = np.array([swem.average_pooling(text) for text in df_test['TITLE'].tolist()]) tr_vect.shape y_tr.shape pd.Series(y_tr).value_counts() model = lgb.LGBMClassifier() model.fit(tr_vect, y_tr) # 検証データを予測する y_pred = model.predict_proba(vl_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_vl, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_vl, y_pred))) # 評価データを予測する y_pred = model.predict_proba(ts_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_te, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_te, y_pred))) ``` # GloVe ``` # GloVeダウンロード !wget https://nlp.stanford.edu/data/glove.6B.zip !unzip glove.6B.zip EMBEDDING_FILE='./glove.6B.300d.txt' # Read the glove word vectors (space delimited strings) into a dictionary from word->vector. def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32') embeddings_index = dict(get_coefs(*o.strip().split()) for o in open(EMBEDDING_FILE)) from keras.preprocessing.text import Tokenizer embedding_dict={} with open(EMBEDDING_FILE,'r') as f: for line in f: values=line.split() word=values[0] vectors=np.asarray(values[1:],'float32') embedding_dict[word]=vectors f.close() class SWEM_Glove(): """ Simple Word-Embeddingbased Models (SWEM) https://arxiv.org/abs/1805.09843v1 """ def __init__(self, dic, tokenizer, oov_initialize_range=(-0.01, 0.01)): self.tokenizer = tokenizer self.dic = dic self.embedding_dim = self.dic['a'].shape[0] self.oov_initialize_range = oov_initialize_range if self.oov_initialize_range[0] > self.oov_initialize_range[1]: raise ValueError("Specify valid initialize range: " f"[{self.oov_initialize_range[0]}, {self.oov_initialize_range[1]}]") def get_word_embeddings(self, text): np.random.seed(abs(hash(text)) % (10 ** 8)) vectors = [] for word in text.split(): if word in self.dic: vectors.append(self.dic[word]) else: vectors.append(np.random.uniform(self.oov_initialize_range[0], self.oov_initialize_range[1], self.embedding_dim)) return np.array(vectors) def average_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.mean(word_embeddings, axis=0) swem = SWEM_Glove(embedding_dict, tokenizer) # Word ngram vector tr_vect = np.array([swem.average_pooling(text) for text in df_train['TITLE'].tolist()]) vl_vect = np.array([swem.average_pooling(text) for text in df_valid['TITLE'].tolist()]) ts_vect = np.array([swem.average_pooling(text) for text in df_test['TITLE'].tolist()]) model = lgb.LGBMClassifier() model.fit(tr_vect, y_tr) # 検証データを予測する y_pred = model.predict_proba(vl_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_vl, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_vl, y_pred))) # 評価データを予測する y_pred = model.predict_proba(ts_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_te, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_te, y_pred))) ``` # FastText ``` from gensim.models import FastText import fasttext !ls input/ #model2 = FastText.load_fasttext_format('cc.en.300.bin') FASTTEXT_MODEL_BIN = "input/cc.en.300.bin" #this works ft_model = fasttext.load_model(FASTTEXT_MODEL_BIN) ft_model.get_word_vector("additional").shape from keras.preprocessing.text import Tokenizer tokenizer = Tokenizer() class SWEM_FastText(): """ Simple Word-Embeddingbased Models (SWEM) https://arxiv.org/abs/1805.09843v1 """ def __init__(self, dic, tokenizer, oov_initialize_range=(-0.01, 0.01)): self.tokenizer = tokenizer self.dic = dic self.embedding_dim = self.dic['a'].shape[0] self.oov_initialize_range = oov_initialize_range if self.oov_initialize_range[0] > self.oov_initialize_range[1]: raise ValueError("Specify valid initialize range: " f"[{self.oov_initialize_range[0]}, {self.oov_initialize_range[1]}]") def get_word_embeddings(self, text): np.random.seed(abs(hash(text)) % (10 ** 8)) vectors = [] for word in text.split(): if word in self.dic: vectors.append(self.dic[word]) else: vectors.append(np.random.uniform(self.oov_initialize_range[0], self.oov_initialize_range[1], self.embedding_dim)) return np.array(vectors) def average_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.mean(word_embeddings, axis=0) swem = SWEM_FastText(ft_model, tokenizer) # Word ngram vector tr_vect = np.array([swem.average_pooling(text) for text in df_train['TITLE'].tolist()]) vl_vect = np.array([swem.average_pooling(text) for text in df_valid['TITLE'].tolist()]) ts_vect = np.array([swem.average_pooling(text) for text in df_test['TITLE'].tolist()]) le = LabelEncoder() y_tr = le.fit_transform(df_train['CATEGORY'].values) y_vl = le.transform(df_valid['CATEGORY'].values) y_te = le.transform(df_test['CATEGORY'].values) model = lgb.LGBMClassifier() model.fit(tr_vect, y_tr) # 検証データを予測する y_pred = model.predict_proba(vl_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_vl, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_vl, y_pred))) # 評価データを予測する y_pred = model.predict_proba(ts_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_te, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_te, y_pred))) ```
github_jupyter
import lightgbm as lgb import sklearn from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.metrics import log_loss,confusion_matrix,classification_report,roc_curve,auc,accuracy_score,roc_auc_score from sklearn.model_selection import StratifiedKFold # Onehot encoding from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from scipy import sparse import gc import os import random def seed_everything(seed: int = 42): random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) #torch.manual_seed(seed) #torch.cuda.manual_seed(seed) #torch.backends.cudnn.deterministic = True #torch.backends.cudnn.benchmark = False seed_everything() ''' !mkdir input/ %cd input/ !wget https://archive.ics.uci.edu/ml/machine-learning-databases/00359/NewsAggregatorDataset.zip !unzip NewsAggregatorDataset.zip ''' # 読込時のエラー回避のためダブルクォーテーションをシングルクォーテーションに置換 #!sed -e 's/"/'\''/g' ./input/newsCorpora.csv > ./input/newsCorpora_re.csv #%cd .. # データの読込 df = pd.read_csv('./input/newsCorpora_re.csv', header=None, sep='\t', names=['ID', 'TITLE', 'URL', 'PUBLISHER', 'CATEGORY', 'STORY', 'HOSTNAME', 'TIMESTAMP']) # データの抽出 df = df.loc[df['PUBLISHER'].isin(['Reuters', 'Huffington Post', 'Businessweek', 'Contactmusic.com', 'Daily Mail']), ['TITLE', 'CATEGORY']] df.head() # データの分割 df_train, df_valid_test = train_test_split(df, test_size=0.2, shuffle=True, random_state=123, stratify=df['CATEGORY']) df_valid, df_test = train_test_split(df_valid_test, test_size=0.5, shuffle=True, random_state=123, stratify=df_valid_test['CATEGORY']) df_train.reset_index(drop=True, inplace=True) df_valid.reset_index(drop=True, inplace=True) df_test.reset_index(drop=True, inplace=True) print(df_train.head()) vect_word = TfidfVectorizer(max_features=20000, lowercase=True, analyzer='word', stop_words= None,ngram_range=(1,3),dtype=np.float32) vect_char = TfidfVectorizer(max_features=40000, lowercase=True, analyzer='char', stop_words=None,ngram_range=(3,6),dtype=np.float32) # Word ngram vector tr_vect = vect_word.fit_transform(df_train['TITLE']) vl_vect = vect_word.transform(df_valid['TITLE']) ts_vect = vect_word.transform(df_test['TITLE']) # Character n gram vector tr_vect_char = vect_char.fit_transform(df_train['TITLE']) vl_vect_char = vect_char.transform(df_valid['TITLE']) ts_vect_char = vect_char.transform(df_test['TITLE']) gc.collect() tr_vect.shape X = sparse.hstack([tr_vect, tr_vect_char]) x_val = sparse.hstack([vl_vect, vl_vect_char]) x_test = sparse.hstack([ts_vect, ts_vect_char]) le = LabelEncoder() y_tr = le.fit_transform(df_train['CATEGORY'].values) y_vl = le.transform(df_valid['CATEGORY'].values) y_te = le.transform(df_test['CATEGORY'].values) svd = TruncatedSVD(n_components=300, random_state=42) X = svd.fit_transform(tr_vect) x_val = svd.transform(vl_vect) x_test = svd.transform(ts_vect) X.shape y_vl.shape y_tr.shape model = lgb.LGBMClassifier() model.fit(X, y_tr) # 検証データを予測する y_pred = model.predict_proba(x_val) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print(accuracy) print(roc_auc_score(y_vl, y_pred, multi_class='ovo')) print(log_loss(y_vl, y_pred)) # 評価データを予測する y_pred = model.predict_proba(x_test) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print(accuracy) print(roc_auc_score(y_te, y_pred, multi_class='ovo')) print(log_loss(y_te, y_pred)) !pip freeze > requirements.lock import gensim.downloader as api wv = api.load('word2vec-google-news-300') class SWEM(): """ Simple Word-Embeddingbased Models (SWEM) https://arxiv.org/abs/1805.09843v1 """ def __init__(self, w2v, tokenizer, oov_initialize_range=(-0.01, 0.01)): self.w2v = w2v self.tokenizer = tokenizer self.vocab = set(self.w2v.vocab.keys()) self.embedding_dim = self.w2v.vector_size self.oov_initialize_range = oov_initialize_range if self.oov_initialize_range[0] > self.oov_initialize_range[1]: raise ValueError("Specify valid initialize range: " f"[{self.oov_initialize_range[0]}, {self.oov_initialize_range[1]}]") def get_word_embeddings(self, text): np.random.seed(abs(hash(text)) % (10 ** 8)) vectors = [] for word in self.tokenizer(text): if word in self.vocab: vectors.append(self.w2v[word]) else: vectors.append(np.random.uniform(self.oov_initialize_range[0], self.oov_initialize_range[1], self.embedding_dim)) return np.array(vectors) def average_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.mean(word_embeddings, axis=0) def max_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.max(word_embeddings, axis=0) def concat_average_max_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.r_[np.mean(word_embeddings, axis=0), np.max(word_embeddings, axis=0)] def hierarchical_pooling(self, text, n): word_embeddings = self.get_word_embeddings(text) text_len = word_embeddings.shape[0] if n > text_len: raise ValueError(f"window size must be less than text length / window_size:{n} text_length:{text_len}") window_average_pooling_vec = [np.mean(word_embeddings[i:i + n], axis=0) for i in range(text_len - n + 1)] return np.max(window_average_pooling_vec, axis=0) from gensim.models import KeyedVectors from spacy.tokenizer import Tokenizer from spacy.lang.en import English nlp = English() swem = SWEM(wv, nlp.tokenizer) # Word ngram vector tr_vect = np.array([swem.average_pooling(text) for text in df_train['TITLE'].tolist()]) vl_vect = np.array([swem.average_pooling(text) for text in df_valid['TITLE'].tolist()]) ts_vect = np.array([swem.average_pooling(text) for text in df_test['TITLE'].tolist()]) tr_vect.shape y_tr.shape pd.Series(y_tr).value_counts() model = lgb.LGBMClassifier() model.fit(tr_vect, y_tr) # 検証データを予測する y_pred = model.predict_proba(vl_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_vl, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_vl, y_pred))) # 評価データを予測する y_pred = model.predict_proba(ts_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_te, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_te, y_pred))) # GloVeダウンロード !wget https://nlp.stanford.edu/data/glove.6B.zip !unzip glove.6B.zip EMBEDDING_FILE='./glove.6B.300d.txt' # Read the glove word vectors (space delimited strings) into a dictionary from word->vector. def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32') embeddings_index = dict(get_coefs(*o.strip().split()) for o in open(EMBEDDING_FILE)) from keras.preprocessing.text import Tokenizer embedding_dict={} with open(EMBEDDING_FILE,'r') as f: for line in f: values=line.split() word=values[0] vectors=np.asarray(values[1:],'float32') embedding_dict[word]=vectors f.close() class SWEM_Glove(): """ Simple Word-Embeddingbased Models (SWEM) https://arxiv.org/abs/1805.09843v1 """ def __init__(self, dic, tokenizer, oov_initialize_range=(-0.01, 0.01)): self.tokenizer = tokenizer self.dic = dic self.embedding_dim = self.dic['a'].shape[0] self.oov_initialize_range = oov_initialize_range if self.oov_initialize_range[0] > self.oov_initialize_range[1]: raise ValueError("Specify valid initialize range: " f"[{self.oov_initialize_range[0]}, {self.oov_initialize_range[1]}]") def get_word_embeddings(self, text): np.random.seed(abs(hash(text)) % (10 ** 8)) vectors = [] for word in text.split(): if word in self.dic: vectors.append(self.dic[word]) else: vectors.append(np.random.uniform(self.oov_initialize_range[0], self.oov_initialize_range[1], self.embedding_dim)) return np.array(vectors) def average_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.mean(word_embeddings, axis=0) swem = SWEM_Glove(embedding_dict, tokenizer) # Word ngram vector tr_vect = np.array([swem.average_pooling(text) for text in df_train['TITLE'].tolist()]) vl_vect = np.array([swem.average_pooling(text) for text in df_valid['TITLE'].tolist()]) ts_vect = np.array([swem.average_pooling(text) for text in df_test['TITLE'].tolist()]) model = lgb.LGBMClassifier() model.fit(tr_vect, y_tr) # 検証データを予測する y_pred = model.predict_proba(vl_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_vl, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_vl, y_pred))) # 評価データを予測する y_pred = model.predict_proba(ts_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_te, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_te, y_pred))) from gensim.models import FastText import fasttext !ls input/ #model2 = FastText.load_fasttext_format('cc.en.300.bin') FASTTEXT_MODEL_BIN = "input/cc.en.300.bin" #this works ft_model = fasttext.load_model(FASTTEXT_MODEL_BIN) ft_model.get_word_vector("additional").shape from keras.preprocessing.text import Tokenizer tokenizer = Tokenizer() class SWEM_FastText(): """ Simple Word-Embeddingbased Models (SWEM) https://arxiv.org/abs/1805.09843v1 """ def __init__(self, dic, tokenizer, oov_initialize_range=(-0.01, 0.01)): self.tokenizer = tokenizer self.dic = dic self.embedding_dim = self.dic['a'].shape[0] self.oov_initialize_range = oov_initialize_range if self.oov_initialize_range[0] > self.oov_initialize_range[1]: raise ValueError("Specify valid initialize range: " f"[{self.oov_initialize_range[0]}, {self.oov_initialize_range[1]}]") def get_word_embeddings(self, text): np.random.seed(abs(hash(text)) % (10 ** 8)) vectors = [] for word in text.split(): if word in self.dic: vectors.append(self.dic[word]) else: vectors.append(np.random.uniform(self.oov_initialize_range[0], self.oov_initialize_range[1], self.embedding_dim)) return np.array(vectors) def average_pooling(self, text): word_embeddings = self.get_word_embeddings(text) return np.mean(word_embeddings, axis=0) swem = SWEM_FastText(ft_model, tokenizer) # Word ngram vector tr_vect = np.array([swem.average_pooling(text) for text in df_train['TITLE'].tolist()]) vl_vect = np.array([swem.average_pooling(text) for text in df_valid['TITLE'].tolist()]) ts_vect = np.array([swem.average_pooling(text) for text in df_test['TITLE'].tolist()]) le = LabelEncoder() y_tr = le.fit_transform(df_train['CATEGORY'].values) y_vl = le.transform(df_valid['CATEGORY'].values) y_te = le.transform(df_test['CATEGORY'].values) model = lgb.LGBMClassifier() model.fit(tr_vect, y_tr) # 検証データを予測する y_pred = model.predict_proba(vl_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_vl == y_pred_max) / len(y_vl) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_vl, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_vl, y_pred))) # 評価データを予測する y_pred = model.predict_proba(ts_vect) y_pred_max = np.argmax(y_pred, axis=1) # 最尤と判断したクラスの値にする accuracy = sum(y_te == y_pred_max) / len(y_te) print('{:.4f}'.format(accuracy)) print('{:.4f}'.format(roc_auc_score(y_te, y_pred, multi_class='ovo'))) print('{:.4f}'.format(log_loss(y_te, y_pred)))
0.643217
0.366817
**Chapter 10 – Introduction to Artificial Neural Networks with Keras** _This notebook contains all the sample code and solutions to the exercises in chapter 10._ <table align="left"> <td> <a target="_blank" href="https://colab.research.google.com/github/ageron/handson-ml2/blob/master/10_neural_nets_with_keras.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> </td> </table> # Setup First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0. ``` # Python ≥3.5 is required import sys assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required import sklearn assert sklearn.__version__ >= "0.20" try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass # TensorFlow ≥2.0 is required import tensorflow as tf assert tf.__version__ >= "2.0" # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "ann" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) ``` # Perceptrons **Note**: we set `max_iter` and `tol` explicitly to avoid warnings about the fact that their default value will change in future versions of Scikit-Learn. ``` import numpy as np from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() X = iris.data[:, (2, 3)] # petal length, petal width y = (iris.target == 0).astype(np.int) per_clf = Perceptron(max_iter=1000, tol=1e-3, random_state=42) per_clf.fit(X, y) y_pred = per_clf.predict([[2, 0.5]]) y_pred a = -per_clf.coef_[0][0] / per_clf.coef_[0][1] b = -per_clf.intercept_ / per_clf.coef_[0][1] axes = [0, 5, 0, 2] x0, x1 = np.meshgrid( np.linspace(axes[0], axes[1], 500).reshape(-1, 1), np.linspace(axes[2], axes[3], 200).reshape(-1, 1), ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = per_clf.predict(X_new) zz = y_predict.reshape(x0.shape) plt.figure(figsize=(10, 4)) plt.plot(X[y==0, 0], X[y==0, 1], "bs", label="Not Iris-Setosa") plt.plot(X[y==1, 0], X[y==1, 1], "yo", label="Iris-Setosa") plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], "k-", linewidth=3) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#9898ff', '#fafab0']) plt.contourf(x0, x1, zz, cmap=custom_cmap) plt.xlabel("Petal length", fontsize=14) plt.ylabel("Petal width", fontsize=14) plt.legend(loc="lower right", fontsize=14) plt.axis(axes) save_fig("perceptron_iris_plot") plt.show() ``` # Activation functions ``` def sigmoid(z): return 1 / (1 + np.exp(-z)) def relu(z): return np.maximum(0, z) def derivative(f, z, eps=0.000001): return (f(z + eps) - f(z - eps))/(2 * eps) z = np.linspace(-5, 5, 200) plt.figure(figsize=(11,4)) plt.subplot(121) plt.plot(z, np.sign(z), "r-", linewidth=1, label="Step") plt.plot(z, sigmoid(z), "g--", linewidth=2, label="Sigmoid") plt.plot(z, np.tanh(z), "b-", linewidth=2, label="Tanh") plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU") plt.grid(True) plt.legend(loc="center right", fontsize=14) plt.title("Activation functions", fontsize=14) plt.axis([-5, 5, -1.2, 1.2]) plt.subplot(122) plt.plot(z, derivative(np.sign, z), "r-", linewidth=1, label="Step") plt.plot(0, 0, "ro", markersize=5) plt.plot(0, 0, "rx", markersize=10) plt.plot(z, derivative(sigmoid, z), "g--", linewidth=2, label="Sigmoid") plt.plot(z, derivative(np.tanh, z), "b-", linewidth=2, label="Tanh") plt.plot(z, derivative(relu, z), "m-.", linewidth=2, label="ReLU") plt.grid(True) #plt.legend(loc="center right", fontsize=14) plt.title("Derivatives", fontsize=14) plt.axis([-5, 5, -0.2, 1.2]) save_fig("activation_functions_plot") plt.show() def heaviside(z): return (z >= 0).astype(z.dtype) def mlp_xor(x1, x2, activation=heaviside): return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5) x1s = np.linspace(-0.2, 1.2, 100) x2s = np.linspace(-0.2, 1.2, 100) x1, x2 = np.meshgrid(x1s, x2s) z1 = mlp_xor(x1, x2, activation=heaviside) z2 = mlp_xor(x1, x2, activation=sigmoid) plt.figure(figsize=(10,4)) plt.subplot(121) plt.contourf(x1, x2, z1) plt.plot([0, 1], [0, 1], "gs", markersize=20) plt.plot([0, 1], [1, 0], "y^", markersize=20) plt.title("Activation function: heaviside", fontsize=14) plt.grid(True) plt.subplot(122) plt.contourf(x1, x2, z2) plt.plot([0, 1], [0, 1], "gs", markersize=20) plt.plot([0, 1], [1, 0], "y^", markersize=20) plt.title("Activation function: sigmoid", fontsize=14) plt.grid(True) ``` # Building an Image Classifier First let's import TensorFlow and Keras. ``` import tensorflow as tf from tensorflow import keras tf.__version__ keras.__version__ ``` Let's start by loading the fashion MNIST dataset. Keras has a number of functions to load popular datasets in `keras.datasets`. The dataset is already split for you between a training set and a test set, but it can be useful to split the training set further to have a validation set: ``` fashion_mnist = keras.datasets.fashion_mnist (X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data() ``` The training set contains 60,000 grayscale images, each 28x28 pixels: ``` X_train_full.shape ``` Each pixel intensity is represented as a byte (0 to 255): ``` X_train_full.dtype ``` Let's split the full training set into a validation set and a (smaller) training set. We also scale the pixel intensities down to the 0-1 range and convert them to floats, by dividing by 255. ``` X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255. y_valid, y_train = y_train_full[:5000], y_train_full[5000:] X_test = X_test / 255. ``` You can plot an image using Matplotlib's `imshow()` function, with a `'binary'` color map: ``` plt.imshow(X_train[0], cmap="binary") plt.axis('off') plt.show() ``` The labels are the class IDs (represented as uint8), from 0 to 9: ``` y_train ``` Here are the corresponding class names: ``` class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] ``` So the first image in the training set is a coat: ``` class_names[y_train[0]] ``` The validation set contains 5,000 images, and the test set contains 10,000 images: ``` X_valid.shape X_test.shape ``` Let's take a look at a sample of the images in the dataset: ``` n_rows = 4 n_cols = 10 plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2)) for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows, n_cols, index + 1) plt.imshow(X_train[index], cmap="binary", interpolation="nearest") plt.axis('off') plt.title(class_names[y_train[index]], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5) save_fig('fashion_mnist_plot', tight_layout=False) plt.show() model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28, 28])) model.add(keras.layers.Dense(300, activation="relu")) model.add(keras.layers.Dense(100, activation="relu")) model.add(keras.layers.Dense(10, activation="softmax")) keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) model.layers model.summary() keras.utils.plot_model(model, "my_fashion_mnist_model.png", show_shapes=True) hidden1 = model.layers[1] hidden1.name model.get_layer(hidden1.name) is hidden1 weights, biases = hidden1.get_weights() weights weights.shape biases biases.shape model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"]) ``` This is equivalent to: ```python model.compile(loss=keras.losses.sparse_categorical_crossentropy, optimizer=keras.optimizers.SGD(), metrics=[keras.metrics.sparse_categorical_accuracy]) ``` ``` history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid)) history.params print(history.epoch) history.history.keys() import pandas as pd pd.DataFrame(history.history).plot(figsize=(8, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) save_fig("keras_learning_curves_plot") plt.show() model.evaluate(X_test, y_test) X_new = X_test[:3] y_proba = model.predict(X_new) y_proba.round(2) ``` **Warning**: `model.predict_classes(X_new)` is deprecated. It is replaced with `np.argmax(model.predict(X_new), axis=-1)`. ``` #y_pred = model.predict_classes(X_new) # deprecated y_pred = np.argmax(model.predict(X_new), axis=-1) y_pred np.array(class_names)[y_pred] y_new = y_test[:3] y_new plt.figure(figsize=(7.2, 2.4)) for index, image in enumerate(X_new): plt.subplot(1, 3, index + 1) plt.imshow(image, cmap="binary", interpolation="nearest") plt.axis('off') plt.title(class_names[y_test[index]], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5) save_fig('fashion_mnist_images_plot', tight_layout=False) plt.show() ``` # Regression MLP Let's load, split and scale the California housing dataset (the original one, not the modified one as in chapter 2): ``` from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler housing = fetch_california_housing() X_train_full, X_test, y_train_full, y_test = train_test_split(housing.data, housing.target, random_state=42) X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_valid = scaler.transform(X_valid) X_test = scaler.transform(X_test) np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=X_train.shape[1:]), keras.layers.Dense(1) ]) model.compile(loss="mean_squared_error", optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid)) mse_test = model.evaluate(X_test, y_test) X_new = X_test[:3] y_pred = model.predict(X_new) plt.plot(pd.DataFrame(history.history)) plt.grid(True) plt.gca().set_ylim(0, 1) plt.show() y_pred ``` # Functional API Not all neural network models are simply sequential. Some may have complex topologies. Some may have multiple inputs and/or multiple outputs. For example, a Wide & Deep neural network (see [paper](https://ai.google/research/pubs/pub45413)) connects all or part of the inputs directly to the output layer. ``` np.random.seed(42) tf.random.set_seed(42) input_ = keras.layers.Input(shape=X_train.shape[1:]) hidden1 = keras.layers.Dense(30, activation="relu")(input_) hidden2 = keras.layers.Dense(30, activation="relu")(hidden1) concat = keras.layers.concatenate([input_, hidden2]) output = keras.layers.Dense(1)(concat) model = keras.models.Model(inputs=[input_], outputs=[output]) model.summary() model.compile(loss="mean_squared_error", optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid)) mse_test = model.evaluate(X_test, y_test) y_pred = model.predict(X_new) ``` What if you want to send different subsets of input features through the wide or deep paths? We will send 5 features (features 0 to 4), and 6 through the deep path (features 2 to 7). Note that 3 features will go through both (features 2, 3 and 4). ``` np.random.seed(42) tf.random.set_seed(42) input_A = keras.layers.Input(shape=[5], name="wide_input") input_B = keras.layers.Input(shape=[6], name="deep_input") hidden1 = keras.layers.Dense(30, activation="relu")(input_B) hidden2 = keras.layers.Dense(30, activation="relu")(hidden1) concat = keras.layers.concatenate([input_A, hidden2]) output = keras.layers.Dense(1, name="output")(concat) model = keras.models.Model(inputs=[input_A, input_B], outputs=[output]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) X_train_A, X_train_B = X_train[:, :5], X_train[:, 2:] X_valid_A, X_valid_B = X_valid[:, :5], X_valid[:, 2:] X_test_A, X_test_B = X_test[:, :5], X_test[:, 2:] X_new_A, X_new_B = X_test_A[:3], X_test_B[:3] history = model.fit((X_train_A, X_train_B), y_train, epochs=20, validation_data=((X_valid_A, X_valid_B), y_valid)) mse_test = model.evaluate((X_test_A, X_test_B), y_test) y_pred = model.predict((X_new_A, X_new_B)) ``` Adding an auxiliary output for regularization: ``` np.random.seed(42) tf.random.set_seed(42) input_A = keras.layers.Input(shape=[5], name="wide_input") input_B = keras.layers.Input(shape=[6], name="deep_input") hidden1 = keras.layers.Dense(30, activation="relu")(input_B) hidden2 = keras.layers.Dense(30, activation="relu")(hidden1) concat = keras.layers.concatenate([input_A, hidden2]) output = keras.layers.Dense(1, name="main_output")(concat) aux_output = keras.layers.Dense(1, name="aux_output")(hidden2) model = keras.models.Model(inputs=[input_A, input_B], outputs=[output, aux_output]) model.compile(loss=["mse", "mse"], loss_weights=[0.9, 0.1], optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit([X_train_A, X_train_B], [y_train, y_train], epochs=20, validation_data=([X_valid_A, X_valid_B], [y_valid, y_valid])) total_loss, main_loss, aux_loss = model.evaluate( [X_test_A, X_test_B], [y_test, y_test]) y_pred_main, y_pred_aux = model.predict([X_new_A, X_new_B]) ``` # The subclassing API ``` class WideAndDeepModel(keras.models.Model): def __init__(self, units=30, activation="relu", **kwargs): super().__init__(**kwargs) self.hidden1 = keras.layers.Dense(units, activation=activation) self.hidden2 = keras.layers.Dense(units, activation=activation) self.main_output = keras.layers.Dense(1) self.aux_output = keras.layers.Dense(1) def call(self, inputs): input_A, input_B = inputs hidden1 = self.hidden1(input_B) hidden2 = self.hidden2(hidden1) concat = keras.layers.concatenate([input_A, hidden2]) main_output = self.main_output(concat) aux_output = self.aux_output(hidden2) return main_output, aux_output model = WideAndDeepModel(30, activation="relu") model.compile(loss="mse", loss_weights=[0.9, 0.1], optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit((X_train_A, X_train_B), (y_train, y_train), epochs=10, validation_data=((X_valid_A, X_valid_B), (y_valid, y_valid))) total_loss, main_loss, aux_loss = model.evaluate((X_test_A, X_test_B), (y_test, y_test)) y_pred_main, y_pred_aux = model.predict((X_new_A, X_new_B)) ``` # Saving and Restoring ``` np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) mse_test = model.evaluate(X_test, y_test) model.save("my_keras_model.h5") model = keras.models.load_model("my_keras_model.h5") model.predict(X_new) model.save_weights("my_keras_weights.ckpt") model.load_weights("my_keras_weights.ckpt") ``` # Using Callbacks during Training ``` keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) checkpoint_cb = keras.callbacks.ModelCheckpoint("my_keras_model.h5", save_best_only=True) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb]) model = keras.models.load_model("my_keras_model.h5") # rollback to best model mse_test = model.evaluate(X_test, y_test) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) early_stopping_cb = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True) history = model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, early_stopping_cb]) mse_test = model.evaluate(X_test, y_test) class PrintValTrainRatioCallback(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): print("\nval/train: {:.2f}".format(logs["val_loss"] / logs["loss"])) val_train_ratio_cb = PrintValTrainRatioCallback() history = model.fit(X_train, y_train, epochs=1, validation_data=(X_valid, y_valid), callbacks=[val_train_ratio_cb]) ``` # TensorBoard ``` root_logdir = os.path.join(os.curdir, "my_logs") def get_run_logdir(): import time run_id = time.strftime("run_%Y_%m_%d-%H_%M_%S") return os.path.join(root_logdir, run_id) run_logdir = get_run_logdir() run_logdir keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, tensorboard_cb]) ``` To start the TensorBoard server, one option is to open a terminal, if needed activate the virtualenv where you installed TensorBoard, go to this notebook's directory, then type: ```bash $ tensorboard --logdir=./my_logs --port=6006 ``` You can then open your web browser to [localhost:6006](http://localhost:6006) and use TensorBoard. Once you are done, press Ctrl-C in the terminal window, this will shutdown the TensorBoard server. Alternatively, you can load TensorBoard's Jupyter extension and run it like this: ``` %load_ext tensorboard %tensorboard --logdir=./my_logs --port=6006 run_logdir2 = get_run_logdir() run_logdir2 keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=0.05)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir2) history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, tensorboard_cb]) ``` Notice how TensorBoard now sees two runs, and you can compare the learning curves. Check out the other available logging options: ``` help(keras.callbacks.TensorBoard.__init__) ``` # Hyperparameter Tuning ``` keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) def build_model(n_hidden=1, n_neurons=30, learning_rate=3e-3, input_shape=[8]): model = keras.models.Sequential() model.add(keras.layers.InputLayer(input_shape=input_shape)) for layer in range(n_hidden): model.add(keras.layers.Dense(n_neurons, activation="relu")) model.add(keras.layers.Dense(1)) optimizer = keras.optimizers.SGD(lr=learning_rate) model.compile(loss="mse", optimizer=optimizer) return model keras_reg = keras.wrappers.scikit_learn.KerasRegressor(build_model) keras_reg.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[keras.callbacks.EarlyStopping(patience=10)]) mse_test = keras_reg.score(X_test, y_test) y_pred = keras_reg.predict(X_new) np.random.seed(42) tf.random.set_seed(42) ``` **Warning**: the following cell crashes at the end of training. This seems to be caused by [Keras issue #13586](https://github.com/keras-team/keras/issues/13586), which was triggered by a recent change in Scikit-Learn. [Pull Request #13598](https://github.com/keras-team/keras/pull/13598) seems to fix the issue, so this problem should be resolved soon. In the meantime, I've added `.tolist()` and `.rvs(1000).tolist()` as workarounds. ``` from scipy.stats import reciprocal from sklearn.model_selection import RandomizedSearchCV param_distribs = { "n_hidden": [0, 1, 2, 3], "n_neurons": np.arange(1, 100) .tolist(), "learning_rate": reciprocal(3e-4, 3e-2) .rvs(1000).tolist(), } rnd_search_cv = RandomizedSearchCV(keras_reg, param_distribs, n_iter=10, cv=3, verbose=2) rnd_search_cv.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[keras.callbacks.EarlyStopping(patience=10)]) rnd_search_cv.best_params_ rnd_search_cv.best_score_ rnd_search_cv.best_estimator_ rnd_search_cv.score(X_test, y_test) model = rnd_search_cv.best_estimator_.model model model.evaluate(X_test, y_test) ``` # Exercise solutions ## 1. to 9. See appendix A. ## 10. *Exercise: Train a deep MLP on the MNIST dataset (you can load it using `keras.datasets.mnist.load_data()`. See if you can get over 98% precision. Try searching for the optimal learning rate by using the approach presented in this chapter (i.e., by growing the learning rate exponentially, plotting the loss, and finding the point where the loss shoots up). Try adding all the bells and whistles—save checkpoints, use early stopping, and plot learning curves using TensorBoard.* Let's load the dataset: ``` (X_train_full, y_train_full), (X_test, y_test) = keras.datasets.mnist.load_data() ``` Just like for the Fashion MNIST dataset, the MNIST training set contains 60,000 grayscale images, each 28x28 pixels: ``` X_train_full.shape ``` Each pixel intensity is also represented as a byte (0 to 255): ``` X_train_full.dtype ``` Let's split the full training set into a validation set and a (smaller) training set. We also scale the pixel intensities down to the 0-1 range and convert them to floats, by dividing by 255, just like we did for Fashion MNIST: ``` X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255. y_valid, y_train = y_train_full[:5000], y_train_full[5000:] X_test = X_test / 255. ``` Let's plot an image using Matplotlib's `imshow()` function, with a `'binary'` color map: ``` plt.imshow(X_train[0], cmap="binary") plt.axis('off') plt.show() ``` The labels are the class IDs (represented as uint8), from 0 to 9. Conveniently, the class IDs correspond to the digits represented in the images, so we don't need a `class_names` array: ``` y_train ``` The validation set contains 5,000 images, and the test set contains 10,000 images: ``` X_valid.shape X_test.shape ``` Let's take a look at a sample of the images in the dataset: ``` n_rows = 4 n_cols = 10 plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2)) for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows, n_cols, index + 1) plt.imshow(X_train[index], cmap="binary", interpolation="nearest") plt.axis('off') plt.title(y_train[index], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5) plt.show() ``` Let's build a simple dense network and find the optimal learning rate. We will need a callback to grow the learning rate at each iteration. It will also record the learning rate and the loss at each iteration: ``` K = keras.backend class ExponentialLearningRate(keras.callbacks.Callback): def __init__(self, factor): self.factor = factor self.rates = [] self.losses = [] def on_batch_end(self, batch, logs): self.rates.append(K.get_value(self.model.optimizer.lr)) self.losses.append(logs["loss"]) K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor) keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) ``` We will start with a small learning rate of 1e-3, and grow it by 0.5% at each iteration: ``` model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) expon_lr = ExponentialLearningRate(factor=1.005) ``` Now let's train the model for just 1 epoch: ``` history = model.fit(X_train, y_train, epochs=1, validation_data=(X_valid, y_valid), callbacks=[expon_lr]) ``` We can now plot the loss as a functionof the learning rate: ``` plt.plot(expon_lr.rates, expon_lr.losses) plt.gca().set_xscale('log') plt.hlines(min(expon_lr.losses), min(expon_lr.rates), max(expon_lr.rates)) plt.axis([min(expon_lr.rates), max(expon_lr.rates), 0, expon_lr.losses[0]]) plt.grid() plt.xlabel("Learning rate") plt.ylabel("Loss") ``` The loss starts shooting back up violently when the learning rate goes over 6e-1, so let's try using half of that, at 3e-1: ``` keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=3e-1), metrics=["accuracy"]) run_index = 1 # increment this at every run run_logdir = os.path.join(os.curdir, "my_mnist_logs", "run_{:03d}".format(run_index)) run_logdir early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) checkpoint_cb = keras.callbacks.ModelCheckpoint("my_mnist_model.h5", save_best_only=True) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) history = model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, early_stopping_cb, tensorboard_cb]) model = keras.models.load_model("my_mnist_model.h5") # rollback to best model model.evaluate(X_test, y_test) ``` We got over 98% accuracy. Finally, let's look at the learning curves using TensorBoard: ``` %tensorboard --logdir=./my_mnist_logs --port=6006 ```
github_jupyter
# Python ≥3.5 is required import sys assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required import sklearn assert sklearn.__version__ >= "0.20" try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass # TensorFlow ≥2.0 is required import tensorflow as tf assert tf.__version__ >= "2.0" # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "ann" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) import numpy as np from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() X = iris.data[:, (2, 3)] # petal length, petal width y = (iris.target == 0).astype(np.int) per_clf = Perceptron(max_iter=1000, tol=1e-3, random_state=42) per_clf.fit(X, y) y_pred = per_clf.predict([[2, 0.5]]) y_pred a = -per_clf.coef_[0][0] / per_clf.coef_[0][1] b = -per_clf.intercept_ / per_clf.coef_[0][1] axes = [0, 5, 0, 2] x0, x1 = np.meshgrid( np.linspace(axes[0], axes[1], 500).reshape(-1, 1), np.linspace(axes[2], axes[3], 200).reshape(-1, 1), ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = per_clf.predict(X_new) zz = y_predict.reshape(x0.shape) plt.figure(figsize=(10, 4)) plt.plot(X[y==0, 0], X[y==0, 1], "bs", label="Not Iris-Setosa") plt.plot(X[y==1, 0], X[y==1, 1], "yo", label="Iris-Setosa") plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], "k-", linewidth=3) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#9898ff', '#fafab0']) plt.contourf(x0, x1, zz, cmap=custom_cmap) plt.xlabel("Petal length", fontsize=14) plt.ylabel("Petal width", fontsize=14) plt.legend(loc="lower right", fontsize=14) plt.axis(axes) save_fig("perceptron_iris_plot") plt.show() def sigmoid(z): return 1 / (1 + np.exp(-z)) def relu(z): return np.maximum(0, z) def derivative(f, z, eps=0.000001): return (f(z + eps) - f(z - eps))/(2 * eps) z = np.linspace(-5, 5, 200) plt.figure(figsize=(11,4)) plt.subplot(121) plt.plot(z, np.sign(z), "r-", linewidth=1, label="Step") plt.plot(z, sigmoid(z), "g--", linewidth=2, label="Sigmoid") plt.plot(z, np.tanh(z), "b-", linewidth=2, label="Tanh") plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU") plt.grid(True) plt.legend(loc="center right", fontsize=14) plt.title("Activation functions", fontsize=14) plt.axis([-5, 5, -1.2, 1.2]) plt.subplot(122) plt.plot(z, derivative(np.sign, z), "r-", linewidth=1, label="Step") plt.plot(0, 0, "ro", markersize=5) plt.plot(0, 0, "rx", markersize=10) plt.plot(z, derivative(sigmoid, z), "g--", linewidth=2, label="Sigmoid") plt.plot(z, derivative(np.tanh, z), "b-", linewidth=2, label="Tanh") plt.plot(z, derivative(relu, z), "m-.", linewidth=2, label="ReLU") plt.grid(True) #plt.legend(loc="center right", fontsize=14) plt.title("Derivatives", fontsize=14) plt.axis([-5, 5, -0.2, 1.2]) save_fig("activation_functions_plot") plt.show() def heaviside(z): return (z >= 0).astype(z.dtype) def mlp_xor(x1, x2, activation=heaviside): return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5) x1s = np.linspace(-0.2, 1.2, 100) x2s = np.linspace(-0.2, 1.2, 100) x1, x2 = np.meshgrid(x1s, x2s) z1 = mlp_xor(x1, x2, activation=heaviside) z2 = mlp_xor(x1, x2, activation=sigmoid) plt.figure(figsize=(10,4)) plt.subplot(121) plt.contourf(x1, x2, z1) plt.plot([0, 1], [0, 1], "gs", markersize=20) plt.plot([0, 1], [1, 0], "y^", markersize=20) plt.title("Activation function: heaviside", fontsize=14) plt.grid(True) plt.subplot(122) plt.contourf(x1, x2, z2) plt.plot([0, 1], [0, 1], "gs", markersize=20) plt.plot([0, 1], [1, 0], "y^", markersize=20) plt.title("Activation function: sigmoid", fontsize=14) plt.grid(True) import tensorflow as tf from tensorflow import keras tf.__version__ keras.__version__ fashion_mnist = keras.datasets.fashion_mnist (X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data() X_train_full.shape X_train_full.dtype X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255. y_valid, y_train = y_train_full[:5000], y_train_full[5000:] X_test = X_test / 255. plt.imshow(X_train[0], cmap="binary") plt.axis('off') plt.show() y_train class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] class_names[y_train[0]] X_valid.shape X_test.shape n_rows = 4 n_cols = 10 plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2)) for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows, n_cols, index + 1) plt.imshow(X_train[index], cmap="binary", interpolation="nearest") plt.axis('off') plt.title(class_names[y_train[index]], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5) save_fig('fashion_mnist_plot', tight_layout=False) plt.show() model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28, 28])) model.add(keras.layers.Dense(300, activation="relu")) model.add(keras.layers.Dense(100, activation="relu")) model.add(keras.layers.Dense(10, activation="softmax")) keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) model.layers model.summary() keras.utils.plot_model(model, "my_fashion_mnist_model.png", show_shapes=True) hidden1 = model.layers[1] hidden1.name model.get_layer(hidden1.name) is hidden1 weights, biases = hidden1.get_weights() weights weights.shape biases biases.shape model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"]) model.compile(loss=keras.losses.sparse_categorical_crossentropy, optimizer=keras.optimizers.SGD(), metrics=[keras.metrics.sparse_categorical_accuracy]) history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid)) history.params print(history.epoch) history.history.keys() import pandas as pd pd.DataFrame(history.history).plot(figsize=(8, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) save_fig("keras_learning_curves_plot") plt.show() model.evaluate(X_test, y_test) X_new = X_test[:3] y_proba = model.predict(X_new) y_proba.round(2) #y_pred = model.predict_classes(X_new) # deprecated y_pred = np.argmax(model.predict(X_new), axis=-1) y_pred np.array(class_names)[y_pred] y_new = y_test[:3] y_new plt.figure(figsize=(7.2, 2.4)) for index, image in enumerate(X_new): plt.subplot(1, 3, index + 1) plt.imshow(image, cmap="binary", interpolation="nearest") plt.axis('off') plt.title(class_names[y_test[index]], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5) save_fig('fashion_mnist_images_plot', tight_layout=False) plt.show() from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler housing = fetch_california_housing() X_train_full, X_test, y_train_full, y_test = train_test_split(housing.data, housing.target, random_state=42) X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_valid = scaler.transform(X_valid) X_test = scaler.transform(X_test) np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=X_train.shape[1:]), keras.layers.Dense(1) ]) model.compile(loss="mean_squared_error", optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid)) mse_test = model.evaluate(X_test, y_test) X_new = X_test[:3] y_pred = model.predict(X_new) plt.plot(pd.DataFrame(history.history)) plt.grid(True) plt.gca().set_ylim(0, 1) plt.show() y_pred np.random.seed(42) tf.random.set_seed(42) input_ = keras.layers.Input(shape=X_train.shape[1:]) hidden1 = keras.layers.Dense(30, activation="relu")(input_) hidden2 = keras.layers.Dense(30, activation="relu")(hidden1) concat = keras.layers.concatenate([input_, hidden2]) output = keras.layers.Dense(1)(concat) model = keras.models.Model(inputs=[input_], outputs=[output]) model.summary() model.compile(loss="mean_squared_error", optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid)) mse_test = model.evaluate(X_test, y_test) y_pred = model.predict(X_new) np.random.seed(42) tf.random.set_seed(42) input_A = keras.layers.Input(shape=[5], name="wide_input") input_B = keras.layers.Input(shape=[6], name="deep_input") hidden1 = keras.layers.Dense(30, activation="relu")(input_B) hidden2 = keras.layers.Dense(30, activation="relu")(hidden1) concat = keras.layers.concatenate([input_A, hidden2]) output = keras.layers.Dense(1, name="output")(concat) model = keras.models.Model(inputs=[input_A, input_B], outputs=[output]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) X_train_A, X_train_B = X_train[:, :5], X_train[:, 2:] X_valid_A, X_valid_B = X_valid[:, :5], X_valid[:, 2:] X_test_A, X_test_B = X_test[:, :5], X_test[:, 2:] X_new_A, X_new_B = X_test_A[:3], X_test_B[:3] history = model.fit((X_train_A, X_train_B), y_train, epochs=20, validation_data=((X_valid_A, X_valid_B), y_valid)) mse_test = model.evaluate((X_test_A, X_test_B), y_test) y_pred = model.predict((X_new_A, X_new_B)) np.random.seed(42) tf.random.set_seed(42) input_A = keras.layers.Input(shape=[5], name="wide_input") input_B = keras.layers.Input(shape=[6], name="deep_input") hidden1 = keras.layers.Dense(30, activation="relu")(input_B) hidden2 = keras.layers.Dense(30, activation="relu")(hidden1) concat = keras.layers.concatenate([input_A, hidden2]) output = keras.layers.Dense(1, name="main_output")(concat) aux_output = keras.layers.Dense(1, name="aux_output")(hidden2) model = keras.models.Model(inputs=[input_A, input_B], outputs=[output, aux_output]) model.compile(loss=["mse", "mse"], loss_weights=[0.9, 0.1], optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit([X_train_A, X_train_B], [y_train, y_train], epochs=20, validation_data=([X_valid_A, X_valid_B], [y_valid, y_valid])) total_loss, main_loss, aux_loss = model.evaluate( [X_test_A, X_test_B], [y_test, y_test]) y_pred_main, y_pred_aux = model.predict([X_new_A, X_new_B]) class WideAndDeepModel(keras.models.Model): def __init__(self, units=30, activation="relu", **kwargs): super().__init__(**kwargs) self.hidden1 = keras.layers.Dense(units, activation=activation) self.hidden2 = keras.layers.Dense(units, activation=activation) self.main_output = keras.layers.Dense(1) self.aux_output = keras.layers.Dense(1) def call(self, inputs): input_A, input_B = inputs hidden1 = self.hidden1(input_B) hidden2 = self.hidden2(hidden1) concat = keras.layers.concatenate([input_A, hidden2]) main_output = self.main_output(concat) aux_output = self.aux_output(hidden2) return main_output, aux_output model = WideAndDeepModel(30, activation="relu") model.compile(loss="mse", loss_weights=[0.9, 0.1], optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit((X_train_A, X_train_B), (y_train, y_train), epochs=10, validation_data=((X_valid_A, X_valid_B), (y_valid, y_valid))) total_loss, main_loss, aux_loss = model.evaluate((X_test_A, X_test_B), (y_test, y_test)) y_pred_main, y_pred_aux = model.predict((X_new_A, X_new_B)) np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) mse_test = model.evaluate(X_test, y_test) model.save("my_keras_model.h5") model = keras.models.load_model("my_keras_model.h5") model.predict(X_new) model.save_weights("my_keras_weights.ckpt") model.load_weights("my_keras_weights.ckpt") keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) checkpoint_cb = keras.callbacks.ModelCheckpoint("my_keras_model.h5", save_best_only=True) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb]) model = keras.models.load_model("my_keras_model.h5") # rollback to best model mse_test = model.evaluate(X_test, y_test) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) early_stopping_cb = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True) history = model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, early_stopping_cb]) mse_test = model.evaluate(X_test, y_test) class PrintValTrainRatioCallback(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): print("\nval/train: {:.2f}".format(logs["val_loss"] / logs["loss"])) val_train_ratio_cb = PrintValTrainRatioCallback() history = model.fit(X_train, y_train, epochs=1, validation_data=(X_valid, y_valid), callbacks=[val_train_ratio_cb]) root_logdir = os.path.join(os.curdir, "my_logs") def get_run_logdir(): import time run_id = time.strftime("run_%Y_%m_%d-%H_%M_%S") return os.path.join(root_logdir, run_id) run_logdir = get_run_logdir() run_logdir keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, tensorboard_cb]) $ tensorboard --logdir=./my_logs --port=6006 %load_ext tensorboard %tensorboard --logdir=./my_logs --port=6006 run_logdir2 = get_run_logdir() run_logdir2 keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Dense(30, activation="relu", input_shape=[8]), keras.layers.Dense(30, activation="relu"), keras.layers.Dense(1) ]) model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=0.05)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir2) history = model.fit(X_train, y_train, epochs=30, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, tensorboard_cb]) help(keras.callbacks.TensorBoard.__init__) keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) def build_model(n_hidden=1, n_neurons=30, learning_rate=3e-3, input_shape=[8]): model = keras.models.Sequential() model.add(keras.layers.InputLayer(input_shape=input_shape)) for layer in range(n_hidden): model.add(keras.layers.Dense(n_neurons, activation="relu")) model.add(keras.layers.Dense(1)) optimizer = keras.optimizers.SGD(lr=learning_rate) model.compile(loss="mse", optimizer=optimizer) return model keras_reg = keras.wrappers.scikit_learn.KerasRegressor(build_model) keras_reg.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[keras.callbacks.EarlyStopping(patience=10)]) mse_test = keras_reg.score(X_test, y_test) y_pred = keras_reg.predict(X_new) np.random.seed(42) tf.random.set_seed(42) from scipy.stats import reciprocal from sklearn.model_selection import RandomizedSearchCV param_distribs = { "n_hidden": [0, 1, 2, 3], "n_neurons": np.arange(1, 100) .tolist(), "learning_rate": reciprocal(3e-4, 3e-2) .rvs(1000).tolist(), } rnd_search_cv = RandomizedSearchCV(keras_reg, param_distribs, n_iter=10, cv=3, verbose=2) rnd_search_cv.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[keras.callbacks.EarlyStopping(patience=10)]) rnd_search_cv.best_params_ rnd_search_cv.best_score_ rnd_search_cv.best_estimator_ rnd_search_cv.score(X_test, y_test) model = rnd_search_cv.best_estimator_.model model model.evaluate(X_test, y_test) (X_train_full, y_train_full), (X_test, y_test) = keras.datasets.mnist.load_data() X_train_full.shape X_train_full.dtype X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255. y_valid, y_train = y_train_full[:5000], y_train_full[5000:] X_test = X_test / 255. plt.imshow(X_train[0], cmap="binary") plt.axis('off') plt.show() y_train X_valid.shape X_test.shape n_rows = 4 n_cols = 10 plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2)) for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows, n_cols, index + 1) plt.imshow(X_train[index], cmap="binary", interpolation="nearest") plt.axis('off') plt.title(y_train[index], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5) plt.show() K = keras.backend class ExponentialLearningRate(keras.callbacks.Callback): def __init__(self, factor): self.factor = factor self.rates = [] self.losses = [] def on_batch_end(self, batch, logs): self.rates.append(K.get_value(self.model.optimizer.lr)) self.losses.append(logs["loss"]) K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor) keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) expon_lr = ExponentialLearningRate(factor=1.005) history = model.fit(X_train, y_train, epochs=1, validation_data=(X_valid, y_valid), callbacks=[expon_lr]) plt.plot(expon_lr.rates, expon_lr.losses) plt.gca().set_xscale('log') plt.hlines(min(expon_lr.losses), min(expon_lr.rates), max(expon_lr.rates)) plt.axis([min(expon_lr.rates), max(expon_lr.rates), 0, expon_lr.losses[0]]) plt.grid() plt.xlabel("Learning rate") plt.ylabel("Loss") keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=3e-1), metrics=["accuracy"]) run_index = 1 # increment this at every run run_logdir = os.path.join(os.curdir, "my_mnist_logs", "run_{:03d}".format(run_index)) run_logdir early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) checkpoint_cb = keras.callbacks.ModelCheckpoint("my_mnist_model.h5", save_best_only=True) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) history = model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, early_stopping_cb, tensorboard_cb]) model = keras.models.load_model("my_mnist_model.h5") # rollback to best model model.evaluate(X_test, y_test) %tensorboard --logdir=./my_mnist_logs --port=6006
0.59972
0.965609
<a href="https://colab.research.google.com/github/fadilaasetyabudi/Klinik/blob/master/PenyajianData.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` Penyajian Data ``` **PENYAJIAN DATA ** Salah satu pembahasan dalam statistika deskriptif adalah teknik penyajian data. Data yang sudah kita kumpulkan dan sudah kita peroleh seyogyanya terorganisasi dengan baik, sehingga dapat disajikan dengan baik pula. Data yang tersaji dengan baik dapat dipahami dan bermakna bagi pengguna. Jika data yang sudah diperoleh jumlahnya sangat banyak, maka cara yang baik untuk menganalisa nya adalah dengan mengorganisasi dan menyajikan data tersebut dalam bentuk yang ringkas dan padat. Sehingga membuat pengguna mudah dan cepat dalam membaca data tersebut. Organisasi data adalah proses penyusunan data di dalam kelompok atau kelas berdasarkan ciri-ciri terttentu. Berikut ini adalah tujuan organisasi data: 1. Meringkas data mentah untuk tujuan analisis statistika 2. Mengurangi maslah kompleksitas data dan menyajikan sifat-sifat data 3. Memudahkan untuk perbandingan dan membuat kesimpulan tentang data 4. Menyediakan informasi tentang hubungan antara elemen di dalam sekelompok data 5 Memudahkan kita dalam memisahkan elemen data ke dalam kelompok yang sama dan kemudian bisa mengelompokkan berdasarkan kesamaan dan ketidaksamaan elemen tersebut (Agus Widarjono) Data disajikan dalam 2 bentuk, yakni: 1. Trabulasi 2. Grafis **Tabulasi ** Penyajian data dalam bentuk tabulasi adalah penyajian data kedalam bentuk tabel. Sebelum membahas tentang penyajiannya, maka yang perlu dibahas adalah bagaimana cara untuk mengorganisasi data. Salah satu teknik yang digunakan untuk mengorganisasi data adalah distribusi frekuensi (frequency distribution). *Distribusi Frekuensi* Untuk membentuk distribusi frekuensi akan dijelaskan dengan contoh berikut. Terdapat data jumlah siswa putus sekolah dari 34 provinsi , | No | Provinsi | Laki - Laki | Perempuan | Jumlah | |----|---------------------------------|--------------|-----------|---------| | 1 | Prov. D.K.I. Jakarta | 361 | 245 | 606 | | 2 | Prov. Jawa Barat | 2.859 | 2.767 | 5.626 | | 3 | Prov. Jawa Tengah | 1.369 | 1.249 | 2.618 | | 4 | Prov. D.I. Yogyakarta | 138 | 122 | 260 | | 5 | Prov. Jawa Timur | 2.160 | 1.831 | 3.991 | | 6 | Prov. Aceh | 691 | 482 | 1.173 | | 7 | Prov. Sumatera Utara | 1.955 | 1.364 | 3.319 | | 8 | Prov. Sumatera Barat | 675 | 425 | 1.100 | | 9 | Prov. Riau | 530 | 481 | 1.011 | | 10 | Prov. Jambi | 232 | 196 | 428 | | 11 | Prov. Sumatera Selatan | 962 | 842 | 1.804 | | 12 | Prov. Lampung | 643 | 688 | 1.331 | | 13 | Prov. Kalimantan Barat | 561 | 623 | 1.184 | | 14 | Prov. Kalimantan Tengah | 218 | 228 | 446 | | 15 | Prov. Kalimantan Selatan | 267 | 224 | 491 | | 16 | Prov. Kalimantan Timur | 179 | 204 | 383 | | 17 | Prov. Sulawesi Utara | 175 | 136 | 311 | | 18 | Prov. Sulawesi Tengah | 194 | 210 | 404 | | 19 | Prov. Sulawesi Selatan | 767 | 617 | 1.384 | | 20 | Prov. Sulawesi Tenggara | 511 | 449 | 960 | | 21 | Prov. Maluku | 149 | 125 | 274 | | 22 | Prov. Bali | 257 | 249 | 506 | | 23 | Prov. Nusa Tenggara Barat | 687 | 576 | 1.263 | | 24 | Prov. Nusa Tenggara Timur | 1.272 | 984 | 2.256 | | 25 | Prov. Papua | 195 | 196 | 391 | | 26 | Prov. Bengkulu | 218 | 180 | 398 | | 27 | Prov. Maluku Utara | 94 | 94 | 188 | | 28 | Prov. Banten | 699 | 535 | 1.234 | | 29 | Prov. Kepulauan Bangka Belitung | 132 | 125 | 257 | | 30 | Prov. Gorontalo | 54 | 76 | 130 | | 31 | Prov. Kepulauan Riau | 117 | 105 | 222 | | 32 | Prov. Papua Barat | 117 | 81 | 198 | | 33 | Prov. Sulawesi Barat | 103 | 100 | 203 | | 34 | Prov. Kalimantan Utara | 32 | 37 | 69 | | Berikut ini adalah langkah-langkah dalam membentuk distribusi frekuensi: 1. Menentukan Jumlah Kelas Interval Untuk menentukan kelas interval (K), gunakan persamaan ini: K = 1 + 3, 3logn Sesuai contoh kasus di atas, maka K = 1+ 3,3 .1,64 = 6,412 Jadi jumlah kelas interval 6 atau 7 . Pada kesempatan ini digunakan 6 kelas. 2. Menghitung Rentang Data Untuk menghitung rentang data, caranya adalah data terbesar dikurangi data terkecil kemudian ditambah 1. Data terbesar adalah 5.626, dan data terkecil adalah 69. Jadi 5.626-69+1 = 5558 3. Menghitung Panjang Kelas Untuk menghitung Panjang Kelas, caranya adalah Rentang Data dibagi Jumlah Kelas Interval sehingga: 5.558 / 6 = 926,333. Walaupun dari hitungan panjang kelas yang diperoleh adalah 926,333, tetapi pada penyusunan tabel ini digunakan panjang kelas 1000. Hal ini akan lebih komunikatif bila dibandingkan dengan menggunkan panjang kelas 926,33. 4. Menyusun Interval Kelas Secara teoritis penyusunan kelas interval dimulai dari data yang terkecil, yakni 69. Tetapi agar lebih kominikatif, maka dimulai dengan angka 1. 5. Menghitung Frekuensi Menggunakan Tally Setelah Kelas Interval tersusun, selanjutnya memasukkan data satu per satu mulai awal hingga akhir sesuai Kelas Intervalnya, yakni dengan menandai menggunakan Tally (|||| ||). Misalnya apabila bertemu data 69, maka pada Kelas Interval ke-1 diberi Tally, jika bertemu data 5000 maka pada Kelas Interval ke-6 diberi Tally. Begitu seterusnya sampai 34 data. Sehingga diperoleh data seperti tabel di bawah ini. Apabila semua data telah dimasukkan, kolom Tally bisa dihapus. | No Kelas | Kelas Interval | Frekuensi (f) | |----------|------------------|---------------| | 1 | 1-1000 | 20 | | 2 | 1001-2000 | 9 | | 3 | 2001-3000 | 2 | | 4 | 3001-4000 | 2 | | 5 | 40001-5000 | 0 | | 6 | 5001-6000 | 1 | **Grafis ** Selain tabel, data disajikan dalam bentuk grafis. Dalam penyajian grafis ini, data disajikan dalam bentuk gambar. Terdapat dua macam penyajian grafis, yakni dalam bentuk grafik dan diagram. **Grafik** - digunakan untuk meyajikan data yang menunjukkan hubungan 2 variabel. Misalnya hubungan variabel jumlah dan variabel waktu. **Diagram** - digunakan untuk menunjukkan perbandingan data dari berbagai kelompok, biasanya disajikan dalam bentuk perbandingan persentase. Grafik Garis Grafik Jumlah Siswa Putus Sekolah Tiap Provinsi Tahun 2016-2017 dan 2017-2018 https://ibb.co/hVB8g0Z Grafik Jumlah Siswa Putus Sekolah Menurut Jenis Kelamin dan Tingkat Provinsi https://ibb.co/HNm4R4L Diagram Batang Diagram Jumlah Siswa Putus Sekolah Tiap Provinsi Tahun 2016-2017 dan 2017-2018 https://ibb.co/mTr3gHq Diagram Batnag Jumlah Siswa Putus Sekolah Menurut Jenis Kelamin dan Tingkat Provinsi https://ibb.co/PMcwK7K
github_jupyter
Penyajian Data
0.236428
0.97296
# Contextual Bandits with Continuous Actions In this tutorial we will simulate the scenario of personalizing a thermostat for a household with two rooms using Contextual Bandits in a continuous action space. The goal is to maximize user satisfaction with the thermostat quantified by measuring thermostat accuracy or reward (TR). The thermostat proposes a temperature and the user will either accept the temperature or adjust it to fit their needs. Let's recall that in a CB setting, a data point has four components, - Context - Chosen Action - Probability of chosen action - Reward/cost for chosen action In our simulator we will need to generate a context, get an action/decision for the given context, and also simulate generating a reward. The goal of the learning agent is to maximize the reward or to minimize the loss. The thermostat tracks two rooms: 'Living Room' and 'Bedroom'. Each room will need temperature adjustment either in the morning or in the afternoon. The context is therefore (room, time_of_day). In a continuous range we can't specify actions since there are infinite actions we can take across the continuous range. We do however provide the minimum value and the maximum value of the range. Here we will range between 0 degrees Celsius and 32 degrees Celsius using 1 degree increments which gives us a continuous range of 33 degrees. The reward is measured using the absolute difference between the proposed temperature and the one that was actually set by the people living in the house. Let's first start with importing the necessary packages: ``` import matplotlib.pyplot as plt from vowpalwabbit import pyvw import random import math import json # VW minimizes loss/cost, therefore we will pass cost as -reward USER_LIKED_TEMPERATURE = -1.0 USER_DISLIKED_TEMPERATURE = 0.0 ``` ## Simulate reward In the real world we will have to learn the room temperature preferences as we observe the interactions between the proposed temperature for each room and the one selected by the people living in the house. Since this is a simulation we will have to define the preference profile for each room. The reward that we provide to the learner will follow this preference profile. Our hope is to see if the learner can take better and better decisions as we see more samples which in turn means we are maximizing the reward. We will also modify the reward function in a few different ways and see if the CB learner picks up the changes. We will compare the TR with and without learning. VW minimizes the cost, which is defined as -reward. Therefore, we will pass the cost associated to each chosen action to VW. The reward function below specifies that we want the living room to be cold in the morning but warm in the afternoon. In reverse, we prefer the bedroom to be warm in the morning and cold in the afternoon. It looks dense but we are just simulating our hypothetical world in the format of the feedback the learner understands: cost. If the learner recommends a temperature that aligns with the reward function, we give a positive reward. Max reward is -1.0, min reward is 0 since VW learns in terms of cost, so we return a negative reward. In our simulated world this is the difference between the temperature recommended and the temperature chosen. If the difference is smaller than 5 degrees then we give a reward to the thermostat. This is a steep cost function. ``` def get_cost(context, temperature, min_value, max_value): range = float(max_value - min_value) if context['room'] == "Living Room": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": selected_temperature = random.uniform(25, 29) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['room'] == "Bedroom": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(22, 29) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE # This function modifies (context, temperature (i.e. action), cost, probability) to VW friendly json format def to_vw_example_format(context, cats_label=None): example_dict = {} if cats_label is not None: chosen_temp, cost, pdf_value = cats_label example_dict['_label_ca'] = {'action' : chosen_temp, 'cost': cost, 'pdf_value': pdf_value} example_dict['c'] = {'room={}'.format(context['room']): 1, 'time_of_day={}'.format(context['time_of_day']) : 1} return json.dumps(example_dict) ``` ## Getting a decision We call VW and get a predicted temperature and the value of the probability density function at that temperature. Since we are predicting over a continuous range VW will sample a pdf before returning the predicted value and the density of the pdf at that point. We are incorporating exploration into our strategy so the pdf will be more dense around the value that VW chooses to predict, and less dense in the rest of the continuous range. So it is more likely that VW will choose an action around the predicted value. We have all of the information we need to choose a temperature for a specific room and time of day. To use VW to achieve this, we will do the following: We convert our context into the json format we need. We pass this example to VW and get the chosen action and the probability of chosing that action. Finally we return the chosen temperature and the probability of choosing it (we are going to need the probability when we learn form this example) ``` def predict_temperature(vw, context): vw_text_example = to_vw_example_format(context) return vw.predict(vw_text_example) ``` ## Simulation set up Now that we have done all of the setup work and know how to interact with VW, let's simulate the world of our two rooms. The scenario is that the thermostat it turned on in each room and it has to propose a temperature. Remember that the reward function allows us to define the worlds reaction to what VW recommends. We will choose between 'Living Room' and 'Bedroom' uniformly at random and also choose the time of day uniformly at random. We can think of this as tossing a coin to choose between the rooms ('Living Room' if heads and 'Bedroom' if tails) and another coin toss for choosing time of day. ``` rooms = ['Living Room', 'Bedroom'] times_of_day = ['morning', 'afternoon'] def choose_room(rooms): return random.choice(rooms) def choose_time_of_day(times_of_day): return random.choice(times_of_day) ``` We will instantiate a CB learner in VW and then simulate the thermostat interaction num_iterations number of times. In each interaction, we: 1. Decide between 'Living Room' and 'Bedroom' 2. Decide time of day 3. Pass context i.e. (room, time of day) to learner to get a temperature i.e. a value between min (0 degrees) and max (32 degrees) and probability of choosing that temperature 4. Receive reward i.e. see if the proposed temperature was adjusted or not, and by how much. Remember that cost is just negative reward. 5. Format context, action (temperature), probability, and reward into VW format 6. Learn from the example The above steps are repeatedly executed during our simulations, so we define the process in the run_simulation function. The cost function must be supplied as this is essentially us simulating how the world works. ``` def run_simulation(vw, num_iterations, rooms, times_of_day, cost_function, min_value, max_value, do_learn=True): reward_rate = [] hits = 0 cost_sum = 0. for i in range(1, num_iterations + 1): # 1. In each simulation choose a room room = choose_room(rooms) # 2. Choose time of day for a given room time_of_day = choose_time_of_day(times_of_day) # 3. Pass context to vw to get a temperature context = {'room': room, 'time_of_day': time_of_day} temperature, pdf_value = predict_temperature(vw, context) # 4. Get cost of the action we chose cost = cost_function(context, temperature, min_value, max_value) if cost <= -0.75: # count something as a hit only if it has a high reward hits += 1 cost_sum += cost if do_learn: # 5. Inform VW of what happened so we can learn from it txt_ex = to_vw_example_format(context, cats_label=(temperature, cost, pdf_value)) vw_format = vw.parse(txt_ex, pyvw.vw.lContinuous) # 6. Learn vw.learn(vw_format) # 7. Let VW know you're done with these objects vw.finish_example(vw_format) # We negate this so that on the plot instead of minimizing cost, we are maximizing reward reward_rate.append(-1*cost_sum/i) return reward_rate, hits ``` We want to be able to visualize what is occurring, so we are going to plot the reward rate over each iteration of the simulation. If VW is showing temperatures the that are close to what the simulated world wants, the reward will be higher. Below is a little utility function to make showing the plot easier. ``` def plot_reward_rate(num_iterations, reward_rate, title): plt.show() plt.plot(range(1, num_iterations + 1), reward_rate) plt.xlabel('num_iterations', fontsize=14) plt.ylabel('reward rate', fontsize=14) plt.title(title) plt.ylim([0,1]) ``` ## Scenario 1 We will use the first reward function get_cost and assume that the preferences for room temperatures do not change over time and see what happens to the smart thermostat as we learn. We will also see what happens when there is no learning. We will use the "no learning" case as our baseline to compare to. We will be using the CATS algorithm which does tree based learning with smoothing. That means that we need to provide the number of actions (buckets/tree leaves) that the continuous range will be discretized into, and then we need to define the bandwidth which is the radius around the chosen discreet action that the algorithm will sample a temperature from with higher probability. For example, in our current range of 32 degrees celsius if we select the number of actions to be 8 that means that the algorithm will initially predict an action from the centre of one of 8 buckets: `(0 - 2 - 4), (4 - 6 - 8), (8 - 10 - 12), (12 - 14 - 16), (16 - 18 - 20), (20 - 22 - 24), (24 - 26 - 28), (28 - 30 - 32)` Let's say that for a given context, it selects the third bucket that starts from 8 degrees celsius, goes until 12 degrees celsius, and has a center of 10 degrees celsius. For a smoothing radius (bandwidth) of 1 the resulting probability density function (pdf) that VW will have to sample from will have a higher density around `[bucket_centre - bandwidth, bucket_centre + bandwidth]` i.e. \[9, 11\]. If bandwidth was bigger, for example 5 then we would have higher density (and therefore higher probability of selecting an action) in the range \[5, 15\], providing a smoothing range that spans the discretized buckets. The bandwidth is defined in terms of the continuous range (max_value - min_value) ### With Learning ``` num_iterations = 5000 num_actions = 32 bandwidth = 1 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") ctr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=True) vw.finish() plot_reward_rate(num_iterations, ctr, 'reward rate with num_actions = 32 and bandwidth = 1') ``` ### Without Learning Let's do the same but without learning. The reward rate never improves and just hovers around 0.5 ``` num_iterations = 5000 num_actions = 32 bandwidth = 1 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") ctr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=False) vw.finish() plot_reward_rate(num_iterations, ctr, 'click through rate with num_actions = 32 and bandwidth = 1') ``` ## Parameter sweep Next let's do a parameter sweep for different values of `num_actions` and `bandwidth`. We will use the below function to help us plot the reward rates for different combinations of `num_actions` and `bandwidths` ``` def plot_reward_sweep(num_iterations, actions, bandwidths, data): plt.show() n_actions = len(actions) n_bandwidths = len(bandwidths) fig, axs = plt.subplots(n_actions, n_bandwidths) for i in range(0, len(actions)): for j in range(0, len(bandwidths)): if bandwidths[j] >= actions[i]: axs[i, j].set_title('NA') continue reward_rate, hits = data[str(actions[i])][str(bandwidths[j])] hits_percentage = (hits/(num_iterations))*100 axs[i, j].plot(range(1, num_iterations + 1), reward_rate) axs[i, j].set_title('hits {:.2f}% TR {:.2f}%'.format(hits_percentage, reward_rate[-1]*100)) axs[i, j].set_ylim([0,1]) for i, row in enumerate(axs): for j, ax in enumerate(row): ax.set_xlabel('b: ' + str(bandwidths[j%len(bandwidths)]), fontsize=14) ax.set_ylabel('k: ' + str(actions[i%len(actions)]), fontsize=14) fig.text(0.5, 0.04, 'num_iterations', ha='center', fontsize=14) fig.text(0.04, 0.5, 'reward_rate', va='center', rotation='vertical', fontsize=14) fig.set_figheight(18) fig.set_figwidth(30) plt.suptitle('#examples {}'.format(num_iterations)) # Hide x labels and tick labels for top plots and y ticks for right plots. for ax in axs.flat: ax.label_outer() ``` ### With Learning We will try all the number of actions as powers of 2 from 8 until 2048. Since our continuous range stays the same (0-32) we are creating smaller range buckets as the number of actions grows. The number of actions needs to be a power of 2 as it represents the number of leaves that the internal binary tree will have. Small number of actions might result in coarser discretizaton leading to results similar to uniform random. On the other hand really large number of actions could mean that we need a lot more data in order to train all of the buckets. We will also try all the combinaitons of the above action numbers with bandwidths ranging from 0 to 25. The smaller the bandwidth the smaller the smoothing range around the selected continuous value. Really large bandwidths will result in large smoothing ranges and could lead to results similar to uniform random. ``` # do parameter sweeping data = {} num_actions = [8, 32, 64, 128, 256, 512, 1024, 2048] bandwidths = [0, 1, 2, 3, 25] num_iterations = 5000 for actions in num_actions: for bd in bandwidths: if str(actions) not in data: data[str(actions)] = {} if bd >= actions: continue print("Starting simulation for: --cats {} --bandwidth {} --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet".format(actions, bd)) vw = pyvw.vw("--cats " + str(actions) + " --bandwidth " + str(bd) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") rr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=True) vw.finish() print("Done with simulation for num_actions: {} and bandwidth: {}".format(actions, bd)) print() data[str(actions)][str(bd)] = (rr, hits) print("Plotting...") plot_reward_sweep(num_iterations, num_actions, bandwidths, data) ``` ### Without Learning ``` # do parameter sweeping data = {} num_actions = [8, 32, 64, 128, 256, 512, 1024, 2048] bandwidths = [0, 1, 2, 3, 25] num_iterations = 5000 for actions in num_actions: for bd in bandwidths: if str(actions) not in data: data[str(actions)] = {} if bd >= actions: continue print("Starting simulation for: --cats {} --bandwidth {} --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet".format(actions, bd)) vw = pyvw.vw("--cats " + str(actions) + " --bandwidth " + str(bd) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") rr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=False) vw.finish() print("Done with simulation for num_actions: {} and bandwidth: {}".format(actions, bd)) print() data[str(actions)][str(bd)] = (rr, hits) print("Plotting...") plot_reward_sweep(num_iterations, num_actions, bandwidths, data) ``` ## Scenario 2 In the real world peoples preferences change as e.g. the seasons change. So now in the simulation we are going to incorporate two different cost functions, and swap over to the second one halfway through. Below is a a table of the new cost function we are going to use, get_cost_1: ### Living Room | | get_cost | get_cost_1 | |:---|:---:|:---:| | **Morning** | Cold | Hot | | **Afternoon** | Hot | Cold | ### Bedroom | | get_cost | get_cost_1 | |:---|:---:|:---:| | **Morning** | Hot | Cold | | **Afternoon** | Cold | Cold | Below we define the new cost function ``` def get_cost_1(context, temperature, min_value, max_value): range = float(max_value - min_value) if context['room'] == "Living Room": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(25, 29) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['room'] == "Bedroom": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE ``` To make it easy to show the effect of the cost function changing we are going to modify the run_simulation function. It is a little less readable now, but it supports accepting a list of cost functions and it will operate over each cost function in turn. ``` def run_simulation_multiple_cost_functions(vw, num_iterations, rooms, times_of_day, cost_functions, min_value, max_value, do_learn=True): reward_rate = [] hits = 0 cost_sum = 0. start_counter = 1 end_counter = start_counter + num_iterations for cost_function in cost_functions: for i in range(start_counter, end_counter): # 1. In each simulation choose a room room = choose_room(rooms) # 2. Choose time of day for a given room time_of_day = choose_time_of_day(times_of_day) # 3. Pass context to vw to get a temperature context = {'room': room, 'time_of_day': time_of_day} temperature, pdf_value = predict_temperature(vw, context) # 4. Get cost of the action we chose cost = cost_function(context, temperature, min_value, max_value) if cost <= -0.75: # count something as a hit only if it has a high reward hits += 1 cost_sum += cost if do_learn: # 5. Inform VW of what happened so we can learn from it txt_ex = to_vw_example_format(context, cats_label=(temperature, cost, pdf_value)) vw_format = vw.parse(txt_ex, pyvw.vw.lContinuous) # 6. Learn vw.learn(vw_format) # 7. Let VW know you're done with these objects vw.finish_example(vw_format) # We negate this so that on the plot instead of minimizing cost, we are maximizing reward reward_rate.append(-1*cost_sum/i) start_counter = end_counter end_counter = start_counter + num_iterations return reward_rate, hits ``` ### With Learning Now that we have run a parameter sweep we can better pick the values of num_actions and bandwidth. For the next scenario we will pick `num_actions 128` and `bandwidth 2`. Let us now switch to the second cost function after a few samples (running the first cost function). Recall that this cost function changes the preferences of the room temperatures but it is still working with the same continuous action space as before. We should see the learner pick up these changes and optimize towards the new preferences. ``` # use first reward function initially and then switch to second reward function # Instantiate learner in VW num_actions = 128 bandwidth = 2 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") num_iterations_per_cost_func = 5000 cost_functions = [get_cost, get_cost_1] total_iterations = num_iterations_per_cost_func * len(cost_functions) ctr, hits = run_simulation_multiple_cost_functions(vw, num_iterations_per_cost_func, rooms, times_of_day, cost_functions, 0, 32, do_learn=True) vw.finish() plot_reward_rate(total_iterations, ctr, 'reward rate with num_actions = 32 and bandwidth = 1') ``` ### Without Learning ``` # use first reward function initially and then switch to second reward function # Instantiate learner in VW num_actions = 128 bandwidth = 2 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") num_iterations_per_cost_func = 5000 cost_functions = [get_cost, get_cost_1] total_iterations = num_iterations_per_cost_func * len(cost_functions) ctr, hits = run_simulation_multiple_cost_functions(vw, num_iterations_per_cost_func, rooms, times_of_day, cost_functions, 0, 32, do_learn=False) vw.finish() plot_reward_rate(total_iterations, ctr, 'reward rate with num_actions = 32 and bandwidth = 1') ``` ## Scenario 3 ### Better cost function The cost function we have been using until now has been a bit too simplistic but has served us well enough to showcase the differences in learning and also in showing CB pickup the new cost cost function and adjust to it. A slightly better cost function for our simulated world could be the difference between the temperature recommended and the temperature chosen. The smaller the difference the better the thermostat is doing. We are going to model that by taking the absolute cost: `1.0 - |selected_temperature - predicted_temerature| / range` and the transforming that cost into a reward by multiplying it with `-1` ``` def get_smooth_cost(context, temperature, min_value, max_value): range = float(max_value - min_value) if context['room'] == "Living Room": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(25, 29) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost elif context['time_of_day'] == "afternoon": selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost else: return USER_DISLIKED_TEMPERATURE elif context['room'] == "Bedroom": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost elif context['time_of_day'] == "afternoon": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE ``` Let's try the original paramter sweep with the new cost function `get_smooth_cost` ``` # do parameter sweeping data = {} num_actions = [8, 32, 64, 128, 256, 512, 1024, 2048] bandwidths = [0, 1, 2, 3, 25] num_iterations = 5000 for actions in num_actions: for bd in bandwidths: if str(actions) not in data: data[str(actions)] = {} if bd >= actions: continue print("Starting simulation for: --cats {} --bandwidth {} --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet".format(actions, bd)) vw = pyvw.vw("--cats " + str(actions) + " --bandwidth " + str(bd) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") rr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_smooth_cost, 0, 32, do_learn=True) vw.finish() print("Done with simulation for num_actions: {} and bandwidth: {}".format(actions, bd)) print() data[str(actions)][str(bd)] = (rr, hits) print("Plotting...") plot_reward_sweep(num_iterations, num_actions, bandwidths, data) ```
github_jupyter
import matplotlib.pyplot as plt from vowpalwabbit import pyvw import random import math import json # VW minimizes loss/cost, therefore we will pass cost as -reward USER_LIKED_TEMPERATURE = -1.0 USER_DISLIKED_TEMPERATURE = 0.0 def get_cost(context, temperature, min_value, max_value): range = float(max_value - min_value) if context['room'] == "Living Room": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": selected_temperature = random.uniform(25, 29) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['room'] == "Bedroom": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(22, 29) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE # This function modifies (context, temperature (i.e. action), cost, probability) to VW friendly json format def to_vw_example_format(context, cats_label=None): example_dict = {} if cats_label is not None: chosen_temp, cost, pdf_value = cats_label example_dict['_label_ca'] = {'action' : chosen_temp, 'cost': cost, 'pdf_value': pdf_value} example_dict['c'] = {'room={}'.format(context['room']): 1, 'time_of_day={}'.format(context['time_of_day']) : 1} return json.dumps(example_dict) def predict_temperature(vw, context): vw_text_example = to_vw_example_format(context) return vw.predict(vw_text_example) rooms = ['Living Room', 'Bedroom'] times_of_day = ['morning', 'afternoon'] def choose_room(rooms): return random.choice(rooms) def choose_time_of_day(times_of_day): return random.choice(times_of_day) def run_simulation(vw, num_iterations, rooms, times_of_day, cost_function, min_value, max_value, do_learn=True): reward_rate = [] hits = 0 cost_sum = 0. for i in range(1, num_iterations + 1): # 1. In each simulation choose a room room = choose_room(rooms) # 2. Choose time of day for a given room time_of_day = choose_time_of_day(times_of_day) # 3. Pass context to vw to get a temperature context = {'room': room, 'time_of_day': time_of_day} temperature, pdf_value = predict_temperature(vw, context) # 4. Get cost of the action we chose cost = cost_function(context, temperature, min_value, max_value) if cost <= -0.75: # count something as a hit only if it has a high reward hits += 1 cost_sum += cost if do_learn: # 5. Inform VW of what happened so we can learn from it txt_ex = to_vw_example_format(context, cats_label=(temperature, cost, pdf_value)) vw_format = vw.parse(txt_ex, pyvw.vw.lContinuous) # 6. Learn vw.learn(vw_format) # 7. Let VW know you're done with these objects vw.finish_example(vw_format) # We negate this so that on the plot instead of minimizing cost, we are maximizing reward reward_rate.append(-1*cost_sum/i) return reward_rate, hits def plot_reward_rate(num_iterations, reward_rate, title): plt.show() plt.plot(range(1, num_iterations + 1), reward_rate) plt.xlabel('num_iterations', fontsize=14) plt.ylabel('reward rate', fontsize=14) plt.title(title) plt.ylim([0,1]) num_iterations = 5000 num_actions = 32 bandwidth = 1 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") ctr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=True) vw.finish() plot_reward_rate(num_iterations, ctr, 'reward rate with num_actions = 32 and bandwidth = 1') num_iterations = 5000 num_actions = 32 bandwidth = 1 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") ctr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=False) vw.finish() plot_reward_rate(num_iterations, ctr, 'click through rate with num_actions = 32 and bandwidth = 1') def plot_reward_sweep(num_iterations, actions, bandwidths, data): plt.show() n_actions = len(actions) n_bandwidths = len(bandwidths) fig, axs = plt.subplots(n_actions, n_bandwidths) for i in range(0, len(actions)): for j in range(0, len(bandwidths)): if bandwidths[j] >= actions[i]: axs[i, j].set_title('NA') continue reward_rate, hits = data[str(actions[i])][str(bandwidths[j])] hits_percentage = (hits/(num_iterations))*100 axs[i, j].plot(range(1, num_iterations + 1), reward_rate) axs[i, j].set_title('hits {:.2f}% TR {:.2f}%'.format(hits_percentage, reward_rate[-1]*100)) axs[i, j].set_ylim([0,1]) for i, row in enumerate(axs): for j, ax in enumerate(row): ax.set_xlabel('b: ' + str(bandwidths[j%len(bandwidths)]), fontsize=14) ax.set_ylabel('k: ' + str(actions[i%len(actions)]), fontsize=14) fig.text(0.5, 0.04, 'num_iterations', ha='center', fontsize=14) fig.text(0.04, 0.5, 'reward_rate', va='center', rotation='vertical', fontsize=14) fig.set_figheight(18) fig.set_figwidth(30) plt.suptitle('#examples {}'.format(num_iterations)) # Hide x labels and tick labels for top plots and y ticks for right plots. for ax in axs.flat: ax.label_outer() # do parameter sweeping data = {} num_actions = [8, 32, 64, 128, 256, 512, 1024, 2048] bandwidths = [0, 1, 2, 3, 25] num_iterations = 5000 for actions in num_actions: for bd in bandwidths: if str(actions) not in data: data[str(actions)] = {} if bd >= actions: continue print("Starting simulation for: --cats {} --bandwidth {} --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet".format(actions, bd)) vw = pyvw.vw("--cats " + str(actions) + " --bandwidth " + str(bd) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") rr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=True) vw.finish() print("Done with simulation for num_actions: {} and bandwidth: {}".format(actions, bd)) print() data[str(actions)][str(bd)] = (rr, hits) print("Plotting...") plot_reward_sweep(num_iterations, num_actions, bandwidths, data) # do parameter sweeping data = {} num_actions = [8, 32, 64, 128, 256, 512, 1024, 2048] bandwidths = [0, 1, 2, 3, 25] num_iterations = 5000 for actions in num_actions: for bd in bandwidths: if str(actions) not in data: data[str(actions)] = {} if bd >= actions: continue print("Starting simulation for: --cats {} --bandwidth {} --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet".format(actions, bd)) vw = pyvw.vw("--cats " + str(actions) + " --bandwidth " + str(bd) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") rr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_cost, 0, 32, do_learn=False) vw.finish() print("Done with simulation for num_actions: {} and bandwidth: {}".format(actions, bd)) print() data[str(actions)][str(bd)] = (rr, hits) print("Plotting...") plot_reward_sweep(num_iterations, num_actions, bandwidths, data) def get_cost_1(context, temperature, min_value, max_value): range = float(max_value - min_value) if context['room'] == "Living Room": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(25, 29) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['room'] == "Bedroom": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE elif context['time_of_day'] == "afternoon": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature if math.fabs(selected_temperature - temperature) < 5.0: return USER_LIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE def run_simulation_multiple_cost_functions(vw, num_iterations, rooms, times_of_day, cost_functions, min_value, max_value, do_learn=True): reward_rate = [] hits = 0 cost_sum = 0. start_counter = 1 end_counter = start_counter + num_iterations for cost_function in cost_functions: for i in range(start_counter, end_counter): # 1. In each simulation choose a room room = choose_room(rooms) # 2. Choose time of day for a given room time_of_day = choose_time_of_day(times_of_day) # 3. Pass context to vw to get a temperature context = {'room': room, 'time_of_day': time_of_day} temperature, pdf_value = predict_temperature(vw, context) # 4. Get cost of the action we chose cost = cost_function(context, temperature, min_value, max_value) if cost <= -0.75: # count something as a hit only if it has a high reward hits += 1 cost_sum += cost if do_learn: # 5. Inform VW of what happened so we can learn from it txt_ex = to_vw_example_format(context, cats_label=(temperature, cost, pdf_value)) vw_format = vw.parse(txt_ex, pyvw.vw.lContinuous) # 6. Learn vw.learn(vw_format) # 7. Let VW know you're done with these objects vw.finish_example(vw_format) # We negate this so that on the plot instead of minimizing cost, we are maximizing reward reward_rate.append(-1*cost_sum/i) start_counter = end_counter end_counter = start_counter + num_iterations return reward_rate, hits # use first reward function initially and then switch to second reward function # Instantiate learner in VW num_actions = 128 bandwidth = 2 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") num_iterations_per_cost_func = 5000 cost_functions = [get_cost, get_cost_1] total_iterations = num_iterations_per_cost_func * len(cost_functions) ctr, hits = run_simulation_multiple_cost_functions(vw, num_iterations_per_cost_func, rooms, times_of_day, cost_functions, 0, 32, do_learn=True) vw.finish() plot_reward_rate(total_iterations, ctr, 'reward rate with num_actions = 32 and bandwidth = 1') # use first reward function initially and then switch to second reward function # Instantiate learner in VW num_actions = 128 bandwidth = 2 # Instantiate VW learner vw = pyvw.vw("--cats " + str(num_actions) + " --bandwidth " + str(bandwidth) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") num_iterations_per_cost_func = 5000 cost_functions = [get_cost, get_cost_1] total_iterations = num_iterations_per_cost_func * len(cost_functions) ctr, hits = run_simulation_multiple_cost_functions(vw, num_iterations_per_cost_func, rooms, times_of_day, cost_functions, 0, 32, do_learn=False) vw.finish() plot_reward_rate(total_iterations, ctr, 'reward rate with num_actions = 32 and bandwidth = 1') def get_smooth_cost(context, temperature, min_value, max_value): range = float(max_value - min_value) if context['room'] == "Living Room": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(25, 29) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost elif context['time_of_day'] == "afternoon": selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost else: return USER_DISLIKED_TEMPERATURE elif context['room'] == "Bedroom": if context['time_of_day'] == "morning": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost elif context['time_of_day'] == "afternoon": # randomly pick a temperature in this range selected_temperature = random.uniform(15, 18) # the absolute difference between selected temperature and proposed temperature cost = 1.0 - math.fabs(selected_temperature - temperature) / range return -1.0 * cost else: return USER_DISLIKED_TEMPERATURE else: return USER_DISLIKED_TEMPERATURE # do parameter sweeping data = {} num_actions = [8, 32, 64, 128, 256, 512, 1024, 2048] bandwidths = [0, 1, 2, 3, 25] num_iterations = 5000 for actions in num_actions: for bd in bandwidths: if str(actions) not in data: data[str(actions)] = {} if bd >= actions: continue print("Starting simulation for: --cats {} --bandwidth {} --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet".format(actions, bd)) vw = pyvw.vw("--cats " + str(actions) + " --bandwidth " + str(bd) + " --min_value 0 --max_value 32 --json --chain_hash --coin --epsilon 0.2 -q :: --quiet") rr, hits = run_simulation(vw, num_iterations, rooms, times_of_day, get_smooth_cost, 0, 32, do_learn=True) vw.finish() print("Done with simulation for num_actions: {} and bandwidth: {}".format(actions, bd)) print() data[str(actions)][str(bd)] = (rr, hits) print("Plotting...") plot_reward_sweep(num_iterations, num_actions, bandwidths, data)
0.558086
0.990569
# Sequential Monte Carlo with two gaussians ``` %matplotlib inline import pymc3 as pm import numpy as np import matplotlib.pyplot as plt from pymc3.step_methods import smc import theano.tensor as tt from tempfile import mkdtemp import shutil test_folder = mkdtemp(prefix='SMC_TEST') plt.style.use('seaborn-darkgrid') print('Runing on PyMC3 v{}'.format(pm.__version__)) ``` Sampling from $n$-dimensional distributions with multiple peaks with a standard Metropolis-Hastings algorithm can be difficult, if not impossible, as the Markov chain often gets stuck in either of the minima. This problem can be avoided by running many (`n_chains`) Markov chains in parallel for (`n_steps`) steps. To speed this process up we do not sample right away from the posterior distribution, but rather from an intermediate distribution that is similar to the previous distribution. Once the sampling for all the chains is finished, the algorithm enters a 'transitional stage'. In this stage the similarity between the intermediate distributions is evaluated by a tempering parameter (`beta`), which is automatically determined from the sampling results (coefficient of variation - COV) from the previous intermediate distribution. If the COV is high the cooling is slow, resulting in small steps in `beta` and vice versa. Also based on the parameter distributions the `MultivariateProposal` is updated and new seed points for the following Markov chains are determined. The end points of the Markov chains with the highest likelihoods are chosen as new seed-points for the Markov chains of the next sampling stage. So the sampling of the intermediate distribution is repeated until `beta` > 1, which means that the posterior distribution is reached. ``` import pymc3 as pm import numpy as np from pymc3.step_methods import smc import theano.tensor as tt from matplotlib import pyplot as plt from tempfile import mkdtemp import shutil %matplotlib inline test_folder = mkdtemp(prefix='ATMIP_TEST') ``` The number of Markov chains and the number of steps each Markov chain is sampling has to be defined, as well as the `tune_interval` and the number of processors to be used in the parallel sampling. In this very simple example using only one processor is faster than forking the interpreter. However, if the calculation cost of the model increases it becomes more efficient to use many processors. ``` n_chains = 500 n_steps = 100 tune_interval = 25 n_jobs = 1 ``` Define the number of dimensions for the multivariate gaussians, their weights and the covariance matrix. ``` n = 4 mu1 = np.ones(n) * (1. / 2) mu2 = -mu1 stdev = 0.1 sigma = np.power(stdev, 2) * np.eye(n) isigma = np.linalg.inv(sigma) dsigma = np.linalg.det(sigma) w1 = 0.1 w2 = (1 - w1) ``` The PyMC3 model. Note that we are making two gaussians, where one has `w1` (90%) of the mass: ``` def two_gaussians(x): log_like1 = - 0.5 * n * tt.log(2 * np.pi) \ - 0.5 * tt.log(dsigma) \ - 0.5 * (x - mu1).T.dot(isigma).dot(x - mu1) log_like2 = - 0.5 * n * tt.log(2 * np.pi) \ - 0.5 * tt.log(dsigma) \ - 0.5 * (x - mu2).T.dot(isigma).dot(x - mu2) return tt.log(w1 * tt.exp(log_like1) + w2 * tt.exp(log_like2)) with pm.Model() as ATMIP_test: X = pm.Uniform('X', shape=n, lower=-2. * np.ones_like(mu1), upper=2. * np.ones_like(mu1), testval=-1. * np.ones_like(mu1), transform=None) like = pm.Deterministic('like', two_gaussians(X)) llk = pm.Potential('like', like) ``` Note: In contrast to other pymc3 samplers here we have to define a random variable `like` that contains the model likelihood. The likelihood has to be stored in the sampling traces along with the model parameter samples, in order to determine the coefficient of variation [COV] in each transition stage. Now the sampler is initialised dependent on the previous specifications: ``` with ATMIP_test: step = smc.SMC( n_chains=n_chains, tune_interval=tune_interval, likelihood_name=ATMIP_test.deterministics[0].name) ``` Finally, the sampling is executed: ``` mtrace = smc.ATMIP_sample( n_steps=n_steps, step=step, n_jobs=n_jobs, progressbar=False, stage='0', homepath=test_folder, model=ATMIP_test, rm_flag=True) ``` Note: Complex models run for a long time and might stop for some reason during the sampling. In order to restart the sampling in the stage when the sampler stopped, set the stage argument to the right stage number ("`stage='4'`"). The `rm_flag` determines whether existing results are deleted - there is NO additional warning, so the user should pay attention to that one! Plotting the results using the traceplot: ``` _ = pm.traceplot(mtrace, combined=True) ``` Finally, we delete the sampling result folder. This folder may occupy significant disc-space (Gigabytes), depending on the number of sampling parameters for complex models. So we advice the user to check in advance if there is enough space on the disc. ``` shutil.rmtree(test_folder) ```
github_jupyter
%matplotlib inline import pymc3 as pm import numpy as np import matplotlib.pyplot as plt from pymc3.step_methods import smc import theano.tensor as tt from tempfile import mkdtemp import shutil test_folder = mkdtemp(prefix='SMC_TEST') plt.style.use('seaborn-darkgrid') print('Runing on PyMC3 v{}'.format(pm.__version__)) import pymc3 as pm import numpy as np from pymc3.step_methods import smc import theano.tensor as tt from matplotlib import pyplot as plt from tempfile import mkdtemp import shutil %matplotlib inline test_folder = mkdtemp(prefix='ATMIP_TEST') n_chains = 500 n_steps = 100 tune_interval = 25 n_jobs = 1 n = 4 mu1 = np.ones(n) * (1. / 2) mu2 = -mu1 stdev = 0.1 sigma = np.power(stdev, 2) * np.eye(n) isigma = np.linalg.inv(sigma) dsigma = np.linalg.det(sigma) w1 = 0.1 w2 = (1 - w1) def two_gaussians(x): log_like1 = - 0.5 * n * tt.log(2 * np.pi) \ - 0.5 * tt.log(dsigma) \ - 0.5 * (x - mu1).T.dot(isigma).dot(x - mu1) log_like2 = - 0.5 * n * tt.log(2 * np.pi) \ - 0.5 * tt.log(dsigma) \ - 0.5 * (x - mu2).T.dot(isigma).dot(x - mu2) return tt.log(w1 * tt.exp(log_like1) + w2 * tt.exp(log_like2)) with pm.Model() as ATMIP_test: X = pm.Uniform('X', shape=n, lower=-2. * np.ones_like(mu1), upper=2. * np.ones_like(mu1), testval=-1. * np.ones_like(mu1), transform=None) like = pm.Deterministic('like', two_gaussians(X)) llk = pm.Potential('like', like) with ATMIP_test: step = smc.SMC( n_chains=n_chains, tune_interval=tune_interval, likelihood_name=ATMIP_test.deterministics[0].name) mtrace = smc.ATMIP_sample( n_steps=n_steps, step=step, n_jobs=n_jobs, progressbar=False, stage='0', homepath=test_folder, model=ATMIP_test, rm_flag=True) _ = pm.traceplot(mtrace, combined=True) shutil.rmtree(test_folder)
0.347316
0.990015
``` import json from tqdm.notebook import tqdm import tldextract import re import urllib.parse as urlparse base_directory = 'khaleesi/' # Replace * with HTTP or JS request chains file name below json_chains_dir = base_directory + 'data/crawl-*-labeled.json' features_dir = base_directory + 'features/*.csv' with open(json_chains_dir) as f: data = json.load(f) ad_keywords = ["click", "measurement", "measure", "promoted", "pagead", "hit", "banner", "2mdn",\ "adsystem", "adsense", "ptracking", "beacon", "openx", "aralego", "usermatch",\ "appnexus", "popunder", "punder", "metrics", "tpid", "pixel", "idsync", "uuid",\ "uid", "advertising", "adsync", "dspid", "dpid", "dpuuid", "tracking", "ad", "delivery",\ "pid", "id_sync", "pxl", "1x1", "px", "pix", "analytics", "csync", "cksync", "adserver",\ "bidder", "ads", "adform", "advert", "iframe", "googlead", "advertise", "track", "prebid",\ "bid", "zoneid", "siteid", "pageid", "viewid", "zone_id", "google_afc" , "google_afs",\ "google_gid", "google_cver", "pix", "rtb", "ssp", "dsp", "dmt", "sync", "doubleclick",\ "match", "tid", "google_nid", "google_dbm", "google_cm", "google_sc"] ad_keywords_plain = set(["pagead", "measure", "promote", "banner", "2mdn", "adsystem", "adsense",\ "beacon", "openx", "aralego", "usermatch", "metrics", "appnexus", "popunder",\ "punder", "tpid", "pixel", "uuid", "advertising", "dspid", "dpid", "dpuuid",\ "tracking", "adserver", "1x1", "analytics", "adform", "advert", "iframe",\ "googlead", "advertise", "track", "prebid", "zoneid", "siteid", "pageid",\ "viewid", "zone_id", "google_afc", "google_afs", "google_gid", "google_cver",\ "sync", "doubleclick", "match", "google_nid", "google_dbm", "google_cm", "google_sc"]) def keyword_in_url_test(word, url): regexKeywordsLeft = re.compile(r'[^0-9a-zA-Z]+' + word) regexKeywordsRight = re.compile(word + r'[^0-9a-zA-Z]') if regexKeywordsLeft.search(url) or regexKeywordsRight.search(url): return True def has_uuid(url): regexKeyword = re.compile(r'........-....-....-....-............') if regexKeyword.search(url): return True def dimensions_in_url(url): regexKeyword = re.compile(r'\\d{2,4}[xX]\\d{2,4}') if regexKeyword.search(url): return True out = open(features_dir, 'w') out.write('identifier,length_of_url,request_method,response_status,etag_in_header,p3p_in_header,has_subdomains,subdomain_of_top_level_domain_check,resource_type,url_has_uuid,url_has_dimensions,response_sets_cookie,third_party_domain,num_non_alphanumeric_chars_in_query_string,top_domain_in_query_string,num_request_cookies,semi_colons_in_url,response_type,response_subtype,content_length,query_string_length,keyword_in_url_re,keyword_in_url,redirect_to_new_domain,length_of_chain,num_unique_domains,num_request_headers,num_response_headers,target\n') pbar = tqdm(total=len(data), position=0, leave=True) domains = {} for key in data: pbar.update(1) top_url = data[key]['top_url'] if top_url == None: top_url = '' top_url_extracted = tldextract.extract(top_url) top_domain = top_url_extracted.domain + '.' + top_url_extracted.suffix top_hostname = top_url_extracted.subdomain + '.' + top_url_extracted.domain + '.' + top_url_extracted.suffix i = 0 while i < len(data[key]['content']): identifier = key + '|' + str(data[key]['content'][i]['redirect_id']) url = data[key]['content'][i]['url'] url_extracted = tldextract.extract(url) domain = url_extracted.domain + '.' + url_extracted.suffix hostname = url_extracted.subdomain + '.' + url_extracted.domain + '.' + url_extracted.suffix request_headers = data[key]['content'][i]['request_headers'] resource_type = data[key]['content'][i]['resource_type'] if key in domains: domains[key].add(domain) else: domains[key] = set([domain]) num_unique_domains = str(len(domains[key])) length_of_chain = str(i + 1) query_string = urlparse.urlparse(url).query query_string_length = str(len(query_string)) num_non_alphanumeric_chars_in_query_string = '0' if query_string_length != '0': non_alphanumeric_pattern = r'[^0-9a-zA-Z]' num_non_alphanumeric_chars_in_query_string = str( len(re.findall(non_alphanumeric_pattern, query_string))) subdomain_of_top_level_domain_check = '0' if top_domain == domain and top_hostname != hostname: subdomain_of_top_level_domain_check = '1' top_domain_in_query_string = '0' if top_domain in query_string: top_domain_in_query_string = '1' semi_colons_in_url = '0' if ';' in query_string: semi_colons_in_url = '1' keyword_in_url_re = '0' for keyword in ad_keywords: if keyword_in_url_test(keyword, url.lower()) == True: keyword_in_url_re = '1' break keyword_in_url = '0' for keyword in ad_keywords_plain: if keyword in url.lower(): keyword_in_url = '1' break url_has_uuid = '0' if has_uuid(url) == True: url_has_uuid = '1' url_has_dimensions = '0' if dimensions_in_url(url) == True: url_has_dimensions = '1' length_of_url = str(len(url)) has_subdomains = '1' if url_extracted.subdomain == '' or url_extracted.subdomain == 'www': has_subdomains = '0' third_party_domain = '0' if top_domain != domain: third_party_domain = '1' num_request_headers = str(len(request_headers)) request_method = data[key]['content'][i]['method'] num_request_cookies = '0' for element in request_headers: if element[0].lower() == 'cookie': try: num_request_cookies = str(element[1].count("; ") + 1) except: num_request_cookies = '1' target = str(False) if 'ground_truth' in data[key]['content'][i]: target = str(data[key]['content'][i]['ground_truth']) num_response_headers = etag_in_header = response_sets_cookie = p3p_in_header = content_length = response_type = response_subtype = response_status = redirect_to_new_domain = '?' if i != 0: previous_url = data[key]['content'][i-1]['url'] previous_url_extracted = tldextract.extract(previous_url) previous_domain = previous_url_extracted.domain + \ '.' + previous_url_extracted.suffix response_headers = data[key]['content'][i-1]['response_headers'] response_status = str(data[key]['content'][i-1]['response_status']) num_response_headers = str(len(response_headers)) redirect_to_new_domain = '0' if domain != previous_domain: redirect_to_new_domain = '1' response_type_field = '' etag_in_header = response_sets_cookie = p3p_in_header = content_length = '0' for element in response_headers: if element[0].lower() == 'content-type': response_type_field = element[1] elif element[0].lower() == 'content-length': content_length = str(element[1]) elif element[0].lower() == 'etag': etag_in_header = '1' elif element[0].lower() == 'p3p': p3p_in_header = '1' elif element[0].lower() == 'set-cookie': response_sets_cookie = '1' response_type = '0' if 'application' in response_type_field: response_type = '1' elif 'audio' in response_type_field: response_type = '2' elif 'image' in response_type_field: response_type = '3' elif 'text' in response_type_field: response_type = '4' elif 'video' in response_type_field: response_type = '5' elif 'font' in response_type_field: response_type = '6' elif 'model' in response_type_field: response_type = '7' response_subtype = '0' if 'html' in response_type_field: response_subtype = '1' elif 'css' in response_type_field: response_subtype = '2' elif 'javascript' in response_type_field: response_subtype = '3' elif 'gif' in response_type_field: response_subtype = '4' elif 'png' in response_type_field: response_subtype = '5' elif 'jpeg' in response_type_field: response_subtype = '6' elif 'plain' in response_type_field: response_subtype = '7' elif 'json' in response_type_field: response_subtype = '8' out.write(','.join([identifier, length_of_url, request_method, response_status, etag_in_header, p3p_in_header, has_subdomains, subdomain_of_top_level_domain_check, resource_type, url_has_uuid, url_has_dimensions, response_sets_cookie, third_party_domain, num_non_alphanumeric_chars_in_query_string, top_domain_in_query_string, num_request_cookies, semi_colons_in_url, response_type, response_subtype, content_length, query_string_length, keyword_in_url_re, keyword_in_url, redirect_to_new_domain, length_of_chain, num_unique_domains, num_request_headers, num_response_headers, target]) + '\n') i += 1 out.close() ```
github_jupyter
import json from tqdm.notebook import tqdm import tldextract import re import urllib.parse as urlparse base_directory = 'khaleesi/' # Replace * with HTTP or JS request chains file name below json_chains_dir = base_directory + 'data/crawl-*-labeled.json' features_dir = base_directory + 'features/*.csv' with open(json_chains_dir) as f: data = json.load(f) ad_keywords = ["click", "measurement", "measure", "promoted", "pagead", "hit", "banner", "2mdn",\ "adsystem", "adsense", "ptracking", "beacon", "openx", "aralego", "usermatch",\ "appnexus", "popunder", "punder", "metrics", "tpid", "pixel", "idsync", "uuid",\ "uid", "advertising", "adsync", "dspid", "dpid", "dpuuid", "tracking", "ad", "delivery",\ "pid", "id_sync", "pxl", "1x1", "px", "pix", "analytics", "csync", "cksync", "adserver",\ "bidder", "ads", "adform", "advert", "iframe", "googlead", "advertise", "track", "prebid",\ "bid", "zoneid", "siteid", "pageid", "viewid", "zone_id", "google_afc" , "google_afs",\ "google_gid", "google_cver", "pix", "rtb", "ssp", "dsp", "dmt", "sync", "doubleclick",\ "match", "tid", "google_nid", "google_dbm", "google_cm", "google_sc"] ad_keywords_plain = set(["pagead", "measure", "promote", "banner", "2mdn", "adsystem", "adsense",\ "beacon", "openx", "aralego", "usermatch", "metrics", "appnexus", "popunder",\ "punder", "tpid", "pixel", "uuid", "advertising", "dspid", "dpid", "dpuuid",\ "tracking", "adserver", "1x1", "analytics", "adform", "advert", "iframe",\ "googlead", "advertise", "track", "prebid", "zoneid", "siteid", "pageid",\ "viewid", "zone_id", "google_afc", "google_afs", "google_gid", "google_cver",\ "sync", "doubleclick", "match", "google_nid", "google_dbm", "google_cm", "google_sc"]) def keyword_in_url_test(word, url): regexKeywordsLeft = re.compile(r'[^0-9a-zA-Z]+' + word) regexKeywordsRight = re.compile(word + r'[^0-9a-zA-Z]') if regexKeywordsLeft.search(url) or regexKeywordsRight.search(url): return True def has_uuid(url): regexKeyword = re.compile(r'........-....-....-....-............') if regexKeyword.search(url): return True def dimensions_in_url(url): regexKeyword = re.compile(r'\\d{2,4}[xX]\\d{2,4}') if regexKeyword.search(url): return True out = open(features_dir, 'w') out.write('identifier,length_of_url,request_method,response_status,etag_in_header,p3p_in_header,has_subdomains,subdomain_of_top_level_domain_check,resource_type,url_has_uuid,url_has_dimensions,response_sets_cookie,third_party_domain,num_non_alphanumeric_chars_in_query_string,top_domain_in_query_string,num_request_cookies,semi_colons_in_url,response_type,response_subtype,content_length,query_string_length,keyword_in_url_re,keyword_in_url,redirect_to_new_domain,length_of_chain,num_unique_domains,num_request_headers,num_response_headers,target\n') pbar = tqdm(total=len(data), position=0, leave=True) domains = {} for key in data: pbar.update(1) top_url = data[key]['top_url'] if top_url == None: top_url = '' top_url_extracted = tldextract.extract(top_url) top_domain = top_url_extracted.domain + '.' + top_url_extracted.suffix top_hostname = top_url_extracted.subdomain + '.' + top_url_extracted.domain + '.' + top_url_extracted.suffix i = 0 while i < len(data[key]['content']): identifier = key + '|' + str(data[key]['content'][i]['redirect_id']) url = data[key]['content'][i]['url'] url_extracted = tldextract.extract(url) domain = url_extracted.domain + '.' + url_extracted.suffix hostname = url_extracted.subdomain + '.' + url_extracted.domain + '.' + url_extracted.suffix request_headers = data[key]['content'][i]['request_headers'] resource_type = data[key]['content'][i]['resource_type'] if key in domains: domains[key].add(domain) else: domains[key] = set([domain]) num_unique_domains = str(len(domains[key])) length_of_chain = str(i + 1) query_string = urlparse.urlparse(url).query query_string_length = str(len(query_string)) num_non_alphanumeric_chars_in_query_string = '0' if query_string_length != '0': non_alphanumeric_pattern = r'[^0-9a-zA-Z]' num_non_alphanumeric_chars_in_query_string = str( len(re.findall(non_alphanumeric_pattern, query_string))) subdomain_of_top_level_domain_check = '0' if top_domain == domain and top_hostname != hostname: subdomain_of_top_level_domain_check = '1' top_domain_in_query_string = '0' if top_domain in query_string: top_domain_in_query_string = '1' semi_colons_in_url = '0' if ';' in query_string: semi_colons_in_url = '1' keyword_in_url_re = '0' for keyword in ad_keywords: if keyword_in_url_test(keyword, url.lower()) == True: keyword_in_url_re = '1' break keyword_in_url = '0' for keyword in ad_keywords_plain: if keyword in url.lower(): keyword_in_url = '1' break url_has_uuid = '0' if has_uuid(url) == True: url_has_uuid = '1' url_has_dimensions = '0' if dimensions_in_url(url) == True: url_has_dimensions = '1' length_of_url = str(len(url)) has_subdomains = '1' if url_extracted.subdomain == '' or url_extracted.subdomain == 'www': has_subdomains = '0' third_party_domain = '0' if top_domain != domain: third_party_domain = '1' num_request_headers = str(len(request_headers)) request_method = data[key]['content'][i]['method'] num_request_cookies = '0' for element in request_headers: if element[0].lower() == 'cookie': try: num_request_cookies = str(element[1].count("; ") + 1) except: num_request_cookies = '1' target = str(False) if 'ground_truth' in data[key]['content'][i]: target = str(data[key]['content'][i]['ground_truth']) num_response_headers = etag_in_header = response_sets_cookie = p3p_in_header = content_length = response_type = response_subtype = response_status = redirect_to_new_domain = '?' if i != 0: previous_url = data[key]['content'][i-1]['url'] previous_url_extracted = tldextract.extract(previous_url) previous_domain = previous_url_extracted.domain + \ '.' + previous_url_extracted.suffix response_headers = data[key]['content'][i-1]['response_headers'] response_status = str(data[key]['content'][i-1]['response_status']) num_response_headers = str(len(response_headers)) redirect_to_new_domain = '0' if domain != previous_domain: redirect_to_new_domain = '1' response_type_field = '' etag_in_header = response_sets_cookie = p3p_in_header = content_length = '0' for element in response_headers: if element[0].lower() == 'content-type': response_type_field = element[1] elif element[0].lower() == 'content-length': content_length = str(element[1]) elif element[0].lower() == 'etag': etag_in_header = '1' elif element[0].lower() == 'p3p': p3p_in_header = '1' elif element[0].lower() == 'set-cookie': response_sets_cookie = '1' response_type = '0' if 'application' in response_type_field: response_type = '1' elif 'audio' in response_type_field: response_type = '2' elif 'image' in response_type_field: response_type = '3' elif 'text' in response_type_field: response_type = '4' elif 'video' in response_type_field: response_type = '5' elif 'font' in response_type_field: response_type = '6' elif 'model' in response_type_field: response_type = '7' response_subtype = '0' if 'html' in response_type_field: response_subtype = '1' elif 'css' in response_type_field: response_subtype = '2' elif 'javascript' in response_type_field: response_subtype = '3' elif 'gif' in response_type_field: response_subtype = '4' elif 'png' in response_type_field: response_subtype = '5' elif 'jpeg' in response_type_field: response_subtype = '6' elif 'plain' in response_type_field: response_subtype = '7' elif 'json' in response_type_field: response_subtype = '8' out.write(','.join([identifier, length_of_url, request_method, response_status, etag_in_header, p3p_in_header, has_subdomains, subdomain_of_top_level_domain_check, resource_type, url_has_uuid, url_has_dimensions, response_sets_cookie, third_party_domain, num_non_alphanumeric_chars_in_query_string, top_domain_in_query_string, num_request_cookies, semi_colons_in_url, response_type, response_subtype, content_length, query_string_length, keyword_in_url_re, keyword_in_url, redirect_to_new_domain, length_of_chain, num_unique_domains, num_request_headers, num_response_headers, target]) + '\n') i += 1 out.close()
0.278355
0.133641
``` import numpy as np import pandas as pd import warnings import matplotlib.pyplot as plt import seaborn as sns # silence warnings warnings.filterwarnings("ignore") # setting some CONSTANTs plt.style.use(['science']) plt.rcParams.update({ "text.usetex": False, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) FIGSIZE = (12, 8) ``` # Load Data ``` metrics = pd.read_csv("metrics.csv") metrics ``` # Plotting Metrics ``` sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) for idx, val in enumerate(["Grocery and Gourmet Food", "Pet Supplies"]): axes[idx].set_title(val) sns.barplot(x="N", y="Recall@N", hue="Algorithm", data=metrics[metrics["Category"] == val], ci=None, ax=axes[idx]) axes[1].set_ylabel("") axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) # remove minor ticks on x-axis axes[0].tick_params(axis='x',which='minor',bottom=False) axes[1].tick_params(axis='x',which='minor',bottom=False) plt.savefig("recall@n.png", dpi=300, transparent=False) plt.show() sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) for idx, val in enumerate(["Grocery and Gourmet Food", "Pet Supplies"]): axes[idx].set_title(val) sns.barplot(x="N", y="Novelty@N", hue="Algorithm", data=metrics[metrics["Category"] == val], ci=None, ax=axes[idx]) axes[1].set_ylabel("") axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].set_ylim(0.7, 1) axes[1].set_ylim(0.7, 1) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) # remove minor ticks on x-axis axes[0].tick_params(axis='x',which='minor',bottom=False) axes[1].tick_params(axis='x',which='minor',bottom=False) plt.savefig("novelty@n.png", dpi=300, transparent=False) plt.show() ``` # Cold-Start Users Plot ``` metrics_cold_start = pd.read_csv("metrics_cold_start.csv") metrics_cold_start.head() sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) # tracking markers markers = ['s', 'p', '*', 'h', 'H', 'D'] for idx, val in enumerate(["Grocery and Gourmet Food", "Pet Supplies"]): axes[idx].set_title(val) sns.lineplot(x="N", y="Recall@N", hue="Algorithm", data=metrics_cold_start[metrics_cold_start["Category"] == val], ci=None, ax=axes[idx], style="Algorithm", markers=markers, markersize=15) axes[1].set_ylabel("") axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) axes[0].set_ylim(bottom=0) axes[1].set_ylim(bottom=0) # set ticks and remove minor ticks on x-axis axes[0].set_xticks([5, 10, 15, 20]) axes[1].set_xticks([5, 10, 15, 20]) axes[0].tick_params(axis='x', which='minor', bottom=False) axes[1].tick_params(axis='x', which='minor', bottom=False) plt.savefig("cold_start_recall@n.png", dpi=300, transparent=False) plt.show() ``` # Plotting Popularity Distribution ``` ps_train = pd.read_csv("../../data/processed/Pet_Supplies_processed.csv") ggf_train = pd.read_csv("../../data/processed/Grocery_and_Gourmet_Food_processed.csv") item_review_counts_ps = ps_train.groupby(["asin"]).agg({"processedReviewText": "count"}) item_review_counts_ggf = ggf_train.groupby(["asin"]).agg({"processedReviewText": "count"}) # sort by popularity (no. of reviews) item_review_counts_ps = item_review_counts_ps.sort_values(by="processedReviewText", ascending=False) item_review_counts_ggf = item_review_counts_ggf.sort_values(by="processedReviewText", ascending=False) sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) for idx, val in enumerate(zip(["(a) Grocery and Gourmet Food", "(b) Pet Supplies"], [item_review_counts_ggf, item_review_counts_ps])): axes[idx].set_title(val[0]) val[1].plot(ax=axes[idx]) axes[1].set_ylabel("") # axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].set_xticks([]) axes[1].set_xticks([]) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) axes[1].legend().set_visible(False) axes[0].set_ylabel("Popularity (No. of reviews)") axes[0].set_ylim(bottom=0) axes[1].set_ylim(bottom=0) # axes[0].axhline(y=16) # axes[1].axhline(y=25) plt.savefig("long-tail.png", dpi=300, transparent=False) plt.show() print(item_review_counts_ggf.quantile(.8), item_review_counts_ps.quantile(.8), sep="\n") ```
github_jupyter
import numpy as np import pandas as pd import warnings import matplotlib.pyplot as plt import seaborn as sns # silence warnings warnings.filterwarnings("ignore") # setting some CONSTANTs plt.style.use(['science']) plt.rcParams.update({ "text.usetex": False, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) FIGSIZE = (12, 8) metrics = pd.read_csv("metrics.csv") metrics sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) for idx, val in enumerate(["Grocery and Gourmet Food", "Pet Supplies"]): axes[idx].set_title(val) sns.barplot(x="N", y="Recall@N", hue="Algorithm", data=metrics[metrics["Category"] == val], ci=None, ax=axes[idx]) axes[1].set_ylabel("") axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) # remove minor ticks on x-axis axes[0].tick_params(axis='x',which='minor',bottom=False) axes[1].tick_params(axis='x',which='minor',bottom=False) plt.savefig("recall@n.png", dpi=300, transparent=False) plt.show() sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) for idx, val in enumerate(["Grocery and Gourmet Food", "Pet Supplies"]): axes[idx].set_title(val) sns.barplot(x="N", y="Novelty@N", hue="Algorithm", data=metrics[metrics["Category"] == val], ci=None, ax=axes[idx]) axes[1].set_ylabel("") axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].set_ylim(0.7, 1) axes[1].set_ylim(0.7, 1) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) # remove minor ticks on x-axis axes[0].tick_params(axis='x',which='minor',bottom=False) axes[1].tick_params(axis='x',which='minor',bottom=False) plt.savefig("novelty@n.png", dpi=300, transparent=False) plt.show() metrics_cold_start = pd.read_csv("metrics_cold_start.csv") metrics_cold_start.head() sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) # tracking markers markers = ['s', 'p', '*', 'h', 'H', 'D'] for idx, val in enumerate(["Grocery and Gourmet Food", "Pet Supplies"]): axes[idx].set_title(val) sns.lineplot(x="N", y="Recall@N", hue="Algorithm", data=metrics_cold_start[metrics_cold_start["Category"] == val], ci=None, ax=axes[idx], style="Algorithm", markers=markers, markersize=15) axes[1].set_ylabel("") axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) axes[0].set_ylim(bottom=0) axes[1].set_ylim(bottom=0) # set ticks and remove minor ticks on x-axis axes[0].set_xticks([5, 10, 15, 20]) axes[1].set_xticks([5, 10, 15, 20]) axes[0].tick_params(axis='x', which='minor', bottom=False) axes[1].tick_params(axis='x', which='minor', bottom=False) plt.savefig("cold_start_recall@n.png", dpi=300, transparent=False) plt.show() ps_train = pd.read_csv("../../data/processed/Pet_Supplies_processed.csv") ggf_train = pd.read_csv("../../data/processed/Grocery_and_Gourmet_Food_processed.csv") item_review_counts_ps = ps_train.groupby(["asin"]).agg({"processedReviewText": "count"}) item_review_counts_ggf = ggf_train.groupby(["asin"]).agg({"processedReviewText": "count"}) # sort by popularity (no. of reviews) item_review_counts_ps = item_review_counts_ps.sort_values(by="processedReviewText", ascending=False) item_review_counts_ggf = item_review_counts_ggf.sort_values(by="processedReviewText", ascending=False) sns.set_style("ticks") sns.set_context("poster") custom_palette = sns.color_palette("husl", 5) sns.despine(trim=True); plt.rcParams.update({ "text.usetex": True, "font.family": "serif", # specify font family here "font.serif": ["Palatino"], # specify font here "font.size":12}) fig, axes = plt.subplots(1, 2, figsize=(28, 13), sharey=False) for idx, val in enumerate(zip(["(a) Grocery and Gourmet Food", "(b) Pet Supplies"], [item_review_counts_ggf, item_review_counts_ps])): axes[idx].set_title(val[0]) val[1].plot(ax=axes[idx]) axes[1].set_ylabel("") # axes[1].legend(frameon=False, loc='lower center', bbox_to_anchor=(-.1, -.2), ncol=6) axes[0].set_xticks([]) axes[1].set_xticks([]) axes[0].yaxis.labelpad = 20 axes[0].legend().set_visible(False) axes[1].legend().set_visible(False) axes[0].set_ylabel("Popularity (No. of reviews)") axes[0].set_ylim(bottom=0) axes[1].set_ylim(bottom=0) # axes[0].axhline(y=16) # axes[1].axhline(y=25) plt.savefig("long-tail.png", dpi=300, transparent=False) plt.show() print(item_review_counts_ggf.quantile(.8), item_review_counts_ps.quantile(.8), sep="\n")
0.394784
0.7445
``` import random shapes = ('Hearts','Diamonds','Spades','Clubs') #copied from pierian data ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace') values = {'Two':2, 'Three':3, 'Four':4, 'Five':5, 'Six':6, 'Seven':7, 'Eight':8, 'Nine':9, 'Ten':10, 'Jack':11, 'Queen':12, 'King':13, 'Ace':14} # first we need to create CLASS CARD as per data class cards: def __init__(self,shape,rank): self.rank = rank self.shape = shape self.value = values[rank] def __str__(self): return self.rank + " Of " + self.shape shapes[0] ranks[5] values['Three'] values['Two'] values['Seven'] print(values) Gamecard1 = cards('Hearts','Seven') print(Gamecard1) Gamecard1 = cards('Hearts','Seven') gamecard2 = cards(shapes[2],ranks[10]) gamecard2.rank gamecard2.shape gamecard2.value print(gamecard2) class deck_card: def __init__(self): self.all_card_list=[] for shape in shapes: for rank in ranks: self.all_card_list.append(cards(shape,rank)) def shuffle_mode(self): random.shuffle(self.all_card_list) def Taking_onecard(self): return self.all_card_list.pop() d = deck_card() len(d.all_card_list) d.all_card_list print(d) d.shuffle_mode print(d.all_card_list[0]) d.all_card_list d.shuffle_mode() d.all_card_list print(d.all_card_list[0]) print(d.all_card_list[51]) taken1 = d.Taking_onecard() print(taken1) len(d.all_card_list) taken2 = d.Taking_onecard() print(taken2) len(d.all_card_list) class player_turn(): def __init__(self,name): self.name = name self.all_cards_list = [] def player_took1(self): return self.all_cards_list.pop(0) def add_playercards(self,new_cards): if type(new_cards) == type([]): self.all_cards_list.extend(new_cards) else: self.all_cards_list.append(new_cards) def __str__(self): return f'Player {self.name} has {len(self.all_cards_list)} cards ' p = player_turn('Govind') print(p) p.add_playercards(taken1) print(p) print(taken1) p.add_playercards(taken2) print(p) # GAME LOGIC class player_turn(): def __init__(self): self.name = input() self.all_cards_list = [] def player_took1(self): return self.all_cards_list.pop(0) def add_playercards(self,new_cards): if type(new_cards) == type([]): self.all_cards_list.extend(new_cards) else: self.all_cards_list.append(new_cards) def __str__(self): return f'Player {self.name} has {len(self.all_cards_list)} cards ' player_one =player_turn() print(player_one) player_two = player_turn() print(player_two) # Shuffle new_deck = deck_card() new_deck.shuffle_mode() len(new_deck.all_card_list) len(new_deck.all_card_list)/2 for card in range(26): player_one.add_playercards(new_deck.Taking_onecard()) player_two.add_playercards(new_deck.Taking_onecard()) len (player_one.all_cards_list) len (player_two.all_cards_list) # GAME ON player_one.name game_on = True round_num = 0 while game_on: round_num += 1 print(f'Round {round_num} Begins!!!!!') if len(player_one.all_cards_list) ==0: print(f'Player {player_one.name}, Out of card!!\n') print(f'Congrats!,Player {player_two.name} Has won the game...!') game_on = False break if len(player_two.all_cards_list) ==0: print(f'Player {player_two.name}, Out of card!!\n') print(f'Congrats!,Player {player_one.name} Has won the game...!') game_on = False break player_one_cards=[] player_one_cards.append(player_one.player_took1()) player_two_cards=[] player_two_cards.append(player_two.player_took1()) at_war = True while at_war: if player_one_cards[-1].value > player_two_cards[-1].value: player_one.add_playercards(player_one_cards) player_one.add_playercards(player_two_cards) at_war =False elif player_one_cards[-1].value < player_two_cards[-1].value: player_two.add_playercards(player_one_cards) player_two.add_playercards(player_two_cards) at_war =False else: print("WE ARE AT WAR!!!!!") if len(player_one.all_cards_list) < 5: print(f"Player {player_one.name} unable to declare war ") print(f"PLAYER {player_two.name} WINS!!!!!") game_on=False break elif len(player_two.all_cards_list) < 5: print(f"Player {player_two.name} unable to declare war ") print(f"PLAYER {player_one.name} WINS!!!!!") game_on=False break else: for num in range(5): player_one_cards.append(player_one.player_took1()) player_two_cards.append(player_two.player_took1()) import random suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs') ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace') values = {'Two':2, 'Three':3, 'Four':4, 'Five':5, 'Six':6, 'Seven':7, 'Eight':8, 'Nine':9, 'Ten':10, 'Jack':10, 'Queen':10, 'King':10, 'Ace':11} playing = True class Card: def __init__(self,suit,rank): self.suit = suit self.rank = rank def __str__(self): return self.rank + ' of ' + self.suit class Deck: def __init__(self): self.deck = [] # start with an empty list for suit in suits: for rank in ranks: self.deck.append(Card(suit,rank)) # build Card objects and add them to the list def __str__(self): deck_comp = '' # start with an empty string for card in self.deck: deck_comp += '\n '+card.__str__() # add each Card object's print string return 'The deck has:' + deck_comp def shuffle(self): random.shuffle(self.deck) def deal(self): single_card = self.deck.pop() return single_card class Hand: def __init__(self): self.cards = [] # start with an empty list as we did in the Deck class self.value = 0 # start with zero value self.aces = 0 # add an attribute to keep track of aces def add_card(self,card): self.cards.append(card) self.value += values[card.rank] if card.rank == 'Ace': self.aces += 1 # add to self.aces def adjust_for_ace(self): while self.value > 21 and self.aces: self.value -= 10 self.aces -= 1 class Chips: def __init__(self): self.total = 100 ### This can be set to a default value or supplied by a user input self.bet = 0 def win_bet(self): self.total += self.bet def lose_bet(self): self.total -= self.bet c=Chips() c. def take_bet(chips): while True: try: chips.bet = int(input('How many chips would you like to bet? ')) except ValueError: print('Sorry, a bet must be an integer!') else: if chips.bet > chips.total: print("Sorry, your bet can't exceed",chips.total) else: break def hit(deck,hand): hand.add_card(deck.deal()) hand.adjust_for_ace() def hit_or_stand(deck,hand): global playing # to control an upcoming while loop while True: x = input("Would you like to Hit or Stand? Enter 'h' or 's' ") if x[0].lower() == 'h': hit(deck,hand) # hit() function defined above elif x[0].lower() == 's': print("Player stands. Dealer is playing.") playing = False else: print("Sorry, please try again.") continue break def show_some(player,dealer): print("\nDealer's Hand:") print(" <card hidden>") print('',dealer.cards[1]) print("\nPlayer's Hand:", *player.cards, sep='\n ') def show_all(player,dealer): print("\nDealer's Hand:", *dealer.cards, sep='\n ') print("Dealer's Hand =",dealer.value) print("\nPlayer's Hand:", *player.cards, sep='\n ') print("Player's Hand =",player.value) def player_busts(player,dealer,chips): print("Player busts!") chips.lose_bet() def player_wins(player,dealer,chips): print("Player wins!") chips.win_bet() def dealer_busts(player,dealer,chips): print("Dealer busts!") chips.win_bet() def dealer_wins(player,dealer,chips): print("Dealer wins!") chips.lose_bet() def push(player,dealer): print("Dealer and Player tie! It's a push.") while True: # Print an opening statement print('Welcome to BlackJack! Get as close to 21 as you can without going over!\n\ Dealer hits until she reaches 17. Aces count as 1 or 11.') # Create & shuffle the deck, deal two cards to each player deck = Deck() deck.shuffle() player_hand = Hand() player_hand.add_card(deck.deal()) player_hand.add_card(deck.deal()) dealer_hand = Hand() dealer_hand.add_card(deck.deal()) dealer_hand.add_card(deck.deal()) # Set up the Player's chips player_chips = Chips() # remember the default value is 100 # Prompt the Player for their bet take_bet(player_chips) # Show cards (but keep one dealer card hidden) show_some(player_hand,dealer_hand) while playing: # recall this variable from our hit_or_stand function # Prompt for Player to Hit or Stand hit_or_stand(deck,player_hand) # Show cards (but keep one dealer card hidden) show_some(player_hand,dealer_hand) # If player's hand exceeds 21, run player_busts() and break out of loop if player_hand.value > 21: player_busts(player_hand,dealer_hand,player_chips) break # If Player hasn't busted, play Dealer's hand until Dealer reaches 17 if player_hand.value <= 21: while dealer_hand.value < 17: hit(deck,dealer_hand) # Show all cards show_all(player_hand,dealer_hand) # Run different winning scenarios if dealer_hand.value > 21: dealer_busts(player_hand,dealer_hand,player_chips) elif dealer_hand.value > player_hand.value: dealer_wins(player_hand,dealer_hand,player_chips) elif dealer_hand.value < player_hand.value: player_wins(player_hand,dealer_hand,player_chips) else: push(player_hand,dealer_hand) # Inform Player of their chips total print("\nPlayer's winnings stand at",player_chips.total) # Ask to play again new_game = input("Would you like to play another hand? Enter 'y' or 'n' ") if new_game[0].lower()=='y': playing=True continue else: print("Thanks for playing!") break ```
github_jupyter
import random shapes = ('Hearts','Diamonds','Spades','Clubs') #copied from pierian data ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace') values = {'Two':2, 'Three':3, 'Four':4, 'Five':5, 'Six':6, 'Seven':7, 'Eight':8, 'Nine':9, 'Ten':10, 'Jack':11, 'Queen':12, 'King':13, 'Ace':14} # first we need to create CLASS CARD as per data class cards: def __init__(self,shape,rank): self.rank = rank self.shape = shape self.value = values[rank] def __str__(self): return self.rank + " Of " + self.shape shapes[0] ranks[5] values['Three'] values['Two'] values['Seven'] print(values) Gamecard1 = cards('Hearts','Seven') print(Gamecard1) Gamecard1 = cards('Hearts','Seven') gamecard2 = cards(shapes[2],ranks[10]) gamecard2.rank gamecard2.shape gamecard2.value print(gamecard2) class deck_card: def __init__(self): self.all_card_list=[] for shape in shapes: for rank in ranks: self.all_card_list.append(cards(shape,rank)) def shuffle_mode(self): random.shuffle(self.all_card_list) def Taking_onecard(self): return self.all_card_list.pop() d = deck_card() len(d.all_card_list) d.all_card_list print(d) d.shuffle_mode print(d.all_card_list[0]) d.all_card_list d.shuffle_mode() d.all_card_list print(d.all_card_list[0]) print(d.all_card_list[51]) taken1 = d.Taking_onecard() print(taken1) len(d.all_card_list) taken2 = d.Taking_onecard() print(taken2) len(d.all_card_list) class player_turn(): def __init__(self,name): self.name = name self.all_cards_list = [] def player_took1(self): return self.all_cards_list.pop(0) def add_playercards(self,new_cards): if type(new_cards) == type([]): self.all_cards_list.extend(new_cards) else: self.all_cards_list.append(new_cards) def __str__(self): return f'Player {self.name} has {len(self.all_cards_list)} cards ' p = player_turn('Govind') print(p) p.add_playercards(taken1) print(p) print(taken1) p.add_playercards(taken2) print(p) # GAME LOGIC class player_turn(): def __init__(self): self.name = input() self.all_cards_list = [] def player_took1(self): return self.all_cards_list.pop(0) def add_playercards(self,new_cards): if type(new_cards) == type([]): self.all_cards_list.extend(new_cards) else: self.all_cards_list.append(new_cards) def __str__(self): return f'Player {self.name} has {len(self.all_cards_list)} cards ' player_one =player_turn() print(player_one) player_two = player_turn() print(player_two) # Shuffle new_deck = deck_card() new_deck.shuffle_mode() len(new_deck.all_card_list) len(new_deck.all_card_list)/2 for card in range(26): player_one.add_playercards(new_deck.Taking_onecard()) player_two.add_playercards(new_deck.Taking_onecard()) len (player_one.all_cards_list) len (player_two.all_cards_list) # GAME ON player_one.name game_on = True round_num = 0 while game_on: round_num += 1 print(f'Round {round_num} Begins!!!!!') if len(player_one.all_cards_list) ==0: print(f'Player {player_one.name}, Out of card!!\n') print(f'Congrats!,Player {player_two.name} Has won the game...!') game_on = False break if len(player_two.all_cards_list) ==0: print(f'Player {player_two.name}, Out of card!!\n') print(f'Congrats!,Player {player_one.name} Has won the game...!') game_on = False break player_one_cards=[] player_one_cards.append(player_one.player_took1()) player_two_cards=[] player_two_cards.append(player_two.player_took1()) at_war = True while at_war: if player_one_cards[-1].value > player_two_cards[-1].value: player_one.add_playercards(player_one_cards) player_one.add_playercards(player_two_cards) at_war =False elif player_one_cards[-1].value < player_two_cards[-1].value: player_two.add_playercards(player_one_cards) player_two.add_playercards(player_two_cards) at_war =False else: print("WE ARE AT WAR!!!!!") if len(player_one.all_cards_list) < 5: print(f"Player {player_one.name} unable to declare war ") print(f"PLAYER {player_two.name} WINS!!!!!") game_on=False break elif len(player_two.all_cards_list) < 5: print(f"Player {player_two.name} unable to declare war ") print(f"PLAYER {player_one.name} WINS!!!!!") game_on=False break else: for num in range(5): player_one_cards.append(player_one.player_took1()) player_two_cards.append(player_two.player_took1()) import random suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs') ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace') values = {'Two':2, 'Three':3, 'Four':4, 'Five':5, 'Six':6, 'Seven':7, 'Eight':8, 'Nine':9, 'Ten':10, 'Jack':10, 'Queen':10, 'King':10, 'Ace':11} playing = True class Card: def __init__(self,suit,rank): self.suit = suit self.rank = rank def __str__(self): return self.rank + ' of ' + self.suit class Deck: def __init__(self): self.deck = [] # start with an empty list for suit in suits: for rank in ranks: self.deck.append(Card(suit,rank)) # build Card objects and add them to the list def __str__(self): deck_comp = '' # start with an empty string for card in self.deck: deck_comp += '\n '+card.__str__() # add each Card object's print string return 'The deck has:' + deck_comp def shuffle(self): random.shuffle(self.deck) def deal(self): single_card = self.deck.pop() return single_card class Hand: def __init__(self): self.cards = [] # start with an empty list as we did in the Deck class self.value = 0 # start with zero value self.aces = 0 # add an attribute to keep track of aces def add_card(self,card): self.cards.append(card) self.value += values[card.rank] if card.rank == 'Ace': self.aces += 1 # add to self.aces def adjust_for_ace(self): while self.value > 21 and self.aces: self.value -= 10 self.aces -= 1 class Chips: def __init__(self): self.total = 100 ### This can be set to a default value or supplied by a user input self.bet = 0 def win_bet(self): self.total += self.bet def lose_bet(self): self.total -= self.bet c=Chips() c. def take_bet(chips): while True: try: chips.bet = int(input('How many chips would you like to bet? ')) except ValueError: print('Sorry, a bet must be an integer!') else: if chips.bet > chips.total: print("Sorry, your bet can't exceed",chips.total) else: break def hit(deck,hand): hand.add_card(deck.deal()) hand.adjust_for_ace() def hit_or_stand(deck,hand): global playing # to control an upcoming while loop while True: x = input("Would you like to Hit or Stand? Enter 'h' or 's' ") if x[0].lower() == 'h': hit(deck,hand) # hit() function defined above elif x[0].lower() == 's': print("Player stands. Dealer is playing.") playing = False else: print("Sorry, please try again.") continue break def show_some(player,dealer): print("\nDealer's Hand:") print(" <card hidden>") print('',dealer.cards[1]) print("\nPlayer's Hand:", *player.cards, sep='\n ') def show_all(player,dealer): print("\nDealer's Hand:", *dealer.cards, sep='\n ') print("Dealer's Hand =",dealer.value) print("\nPlayer's Hand:", *player.cards, sep='\n ') print("Player's Hand =",player.value) def player_busts(player,dealer,chips): print("Player busts!") chips.lose_bet() def player_wins(player,dealer,chips): print("Player wins!") chips.win_bet() def dealer_busts(player,dealer,chips): print("Dealer busts!") chips.win_bet() def dealer_wins(player,dealer,chips): print("Dealer wins!") chips.lose_bet() def push(player,dealer): print("Dealer and Player tie! It's a push.") while True: # Print an opening statement print('Welcome to BlackJack! Get as close to 21 as you can without going over!\n\ Dealer hits until she reaches 17. Aces count as 1 or 11.') # Create & shuffle the deck, deal two cards to each player deck = Deck() deck.shuffle() player_hand = Hand() player_hand.add_card(deck.deal()) player_hand.add_card(deck.deal()) dealer_hand = Hand() dealer_hand.add_card(deck.deal()) dealer_hand.add_card(deck.deal()) # Set up the Player's chips player_chips = Chips() # remember the default value is 100 # Prompt the Player for their bet take_bet(player_chips) # Show cards (but keep one dealer card hidden) show_some(player_hand,dealer_hand) while playing: # recall this variable from our hit_or_stand function # Prompt for Player to Hit or Stand hit_or_stand(deck,player_hand) # Show cards (but keep one dealer card hidden) show_some(player_hand,dealer_hand) # If player's hand exceeds 21, run player_busts() and break out of loop if player_hand.value > 21: player_busts(player_hand,dealer_hand,player_chips) break # If Player hasn't busted, play Dealer's hand until Dealer reaches 17 if player_hand.value <= 21: while dealer_hand.value < 17: hit(deck,dealer_hand) # Show all cards show_all(player_hand,dealer_hand) # Run different winning scenarios if dealer_hand.value > 21: dealer_busts(player_hand,dealer_hand,player_chips) elif dealer_hand.value > player_hand.value: dealer_wins(player_hand,dealer_hand,player_chips) elif dealer_hand.value < player_hand.value: player_wins(player_hand,dealer_hand,player_chips) else: push(player_hand,dealer_hand) # Inform Player of their chips total print("\nPlayer's winnings stand at",player_chips.total) # Ask to play again new_game = input("Would you like to play another hand? Enter 'y' or 'n' ") if new_game[0].lower()=='y': playing=True continue else: print("Thanks for playing!") break
0.255622
0.2414
## Observations and Insights Mouse subjects were split fairly evenly between male and female for the overall experiment. Two of the drug regimens decreased tumor volume significantly relative to the placebo trials: Ramicane and Capomulin. Incidentally Ramicane and Capomulin were the two drugs with the most overall data points studied ## Dependencies and starter code ``` # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata = "data/Mouse_metadata.csv" study_results = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata) study_results = pd.read_csv(study_results) # mouse_metadata.head() # study_results.head() # Combine the data into a single dataset full_data = pd.merge(mouse_metadata, study_results, on="Mouse ID") full_data ``` ## Summary statistics ``` # Generate a summary statistics table of the tumor volume for each regimen's mean, median, # variance, standard deviation, and SEM # unique_drugs = full_data["Drug Regimen"].unique() # unique_drugs.sort() # print(unique_drugs) data_df = pd.DataFrame() regimen_data = full_data.groupby("Drug Regimen") data_df["Tumor Volume Mean"] = regimen_data["Tumor Volume (mm3)"].mean().round(decimals=2) data_df["Tumor Volume Median"] = regimen_data["Tumor Volume (mm3)"].median().round(decimals=2) data_df["Tumor Volume Variance"] = regimen_data["Tumor Volume (mm3)"].var().round(decimals=2) data_df["Tumor Volume SD"] = regimen_data["Tumor Volume (mm3)"].std().round(decimals=2) data_df["Tumor Volume SEM"] = regimen_data["Tumor Volume (mm3)"].sem().round(decimals=2) data_df ``` ## Bar plots ``` # Generate a bar plot showing number of data points for each treatment regimen using pandas data_df["Count"] = regimen_data["Tumor Volume (mm3)"].count() data_df.reset_index(inplace=True) data_df data_df.plot.bar(x="Drug Regimen", y="Count") plt.show() # # Generate a bar plot showing number of data points for each treatment regimen using pyplot plt.bar(data_df["Drug Regimen"], data_df["Count"]) plt.xticks(rotation=90) ``` ## Pie plots ``` # Generate a pie plot showing the distribution of female versus male mice using pandas needfully_gendered = full_data.drop_duplicates("Mouse ID") # !!! A small note: the rubric's notes on this section say, " Two bar plots are..."" gender_group = needfully_gendered.groupby("Sex") gender_df = pd.DataFrame(gender_group["Sex"].count()) # print(gender_df) gender_df.plot.pie(subplots=True) # Generate a pie plot showing the distribution of female versus male mice using pyplot plt.pie(gender_df, labels=["Female","Male"]) plt.title("Sex") ``` ## Quartiles, outliers and boxplots ``` # Calculate the final tumor volume of each mouse in the four most promising treatment regimens. # Calculate the IQR and quantitatively determine if there are any potential outliers. promising=data_df.sort_values(by="Tumor Volume Mean") promising_drugs = promising["Drug Regimen"][0:4] full_data["Promising Drug"] = full_data["Drug Regimen"].isin(promising_drugs) promising_df = full_data.loc[full_data["Promising Drug"],:].drop_duplicates("Mouse ID",keep="last").reset_index(drop=True) promising_df.drop(columns=["Sex","Age_months","Weight (g)","Timepoint","Metastatic Sites","Promising Drug"],inplace=True) promising_df.head() print(promising_drugs) quartiles = promising_df["Tumor Volume (mm3)"].quantile([.25,.5,.75]) lowerq = quartiles[0.25] upperq = quartiles[0.75] iqr = upperq-lowerq lower_bound = lowerq - (1.5*iqr) upper_bound = upperq + (1.5*iqr) outliers_df = promising_df.loc[(promising_df["Tumor Volume (mm3)"] > upper_bound) | (promising_df["Tumor Volume (mm3)"] < lower_bound), :] outliers_df #no outliers present among Capomulin, Ramicane, Propriva, Ceftamin # Generate a box plot of the final tumor volume of each mouse across four regimens of interest capo_final = promising_df.loc[promising_df["Drug Regimen"] == "Capomulin"] rami_final = promising_df.loc[promising_df["Drug Regimen"] == "Ramicane"] prop_final = promising_df.loc[promising_df["Drug Regimen"] == "Propriva"] ceft_final = promising_df.loc[promising_df["Drug Regimen"] == "Ceftamin"] fig, ax = plt.subplots() #each variable contains a set of attribute/methods that are manipulateable or callable. "Fig" can change formatting, "Ax" is about the drawing ax.boxplot([capo_final["Tumor Volume (mm3)"],rami_final["Tumor Volume (mm3)"],prop_final["Tumor Volume (mm3)"],ceft_final["Tumor Volume (mm3)"]]) ax.set_xticklabels(promising_drugs) plt.title("Variance in Tumor Volume for Most Promising Regimens", x=.5, y=1) plt.subplots_adjust(top = 0.99, bottom=0.01, hspace=.25) ``` ## Line and scatter plots ``` # Generate a line plot of time point versus tumor volume for *a mouse* treated with Capomulin (s185) s185 = full_data.loc[full_data["Mouse ID"] == "s185"] s185 plt.plot(s185["Timepoint"], s185["Tumor Volume (mm3)"]) plt.xlabel("Timepoint") plt.ylabel("Tumor Volume (mm3)") plt.title("Capomulin Tumor Volume Over Time: Case Study (s185F)") # Generate a scatter plot of mouse weight versus average tumor volume for the Capomulin regimen capomulin = full_data.loc[full_data["Drug Regimen"] == "Capomulin"] capo_avgs = capomulin.groupby(capomulin["Mouse ID"]).mean() avg_volume = capo_avgs["Tumor Volume (mm3)"].mean() plt.figure(figsize=(10, 6)) plt.scatter(capo_avgs["Weight (g)"], capo_avgs["Tumor Volume (mm3)"]) plt.axhline(avg_volume, c="red", alpha=70) plt.text(25.7,40.7,f"Average Tumor Volume ({round(avg_volume,2)})") plt.xlabel("Weight (g)") plt.ylabel("Tumor Volume (mm3)") plt.title("Tumor Volume by Weight") # again... not totally sure what output is desired here. "Versus"? Hopefully you think this is cute. # Calculate the correlation coefficient and linear regression model for mouse weight # and average tumor volume for the Capomulin regimen weight = capomulin.groupby(capomulin["Mouse ID"])["Weight (g)"].mean() volume = capomulin.groupby(capomulin["Mouse ID"])["Tumor Volume (mm3)"].mean() slope, int, r, p, std_err = st.linregress(weight, volume) fit = slope * weight + int plt.scatter(weight,volume) plt.xlabel("Mouse Weight") plt.ylabel("Tumor Volume (mm3)") plt.plot(weight,fit,"--") plt.xticks(weight, rotation=90) plt.show() corr = round(st.pearsonr(weight,volume)[0],2) print(f'The correlation between weight and tumor volume is {corr}') ```
github_jupyter
# Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata = "data/Mouse_metadata.csv" study_results = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata) study_results = pd.read_csv(study_results) # mouse_metadata.head() # study_results.head() # Combine the data into a single dataset full_data = pd.merge(mouse_metadata, study_results, on="Mouse ID") full_data # Generate a summary statistics table of the tumor volume for each regimen's mean, median, # variance, standard deviation, and SEM # unique_drugs = full_data["Drug Regimen"].unique() # unique_drugs.sort() # print(unique_drugs) data_df = pd.DataFrame() regimen_data = full_data.groupby("Drug Regimen") data_df["Tumor Volume Mean"] = regimen_data["Tumor Volume (mm3)"].mean().round(decimals=2) data_df["Tumor Volume Median"] = regimen_data["Tumor Volume (mm3)"].median().round(decimals=2) data_df["Tumor Volume Variance"] = regimen_data["Tumor Volume (mm3)"].var().round(decimals=2) data_df["Tumor Volume SD"] = regimen_data["Tumor Volume (mm3)"].std().round(decimals=2) data_df["Tumor Volume SEM"] = regimen_data["Tumor Volume (mm3)"].sem().round(decimals=2) data_df # Generate a bar plot showing number of data points for each treatment regimen using pandas data_df["Count"] = regimen_data["Tumor Volume (mm3)"].count() data_df.reset_index(inplace=True) data_df data_df.plot.bar(x="Drug Regimen", y="Count") plt.show() # # Generate a bar plot showing number of data points for each treatment regimen using pyplot plt.bar(data_df["Drug Regimen"], data_df["Count"]) plt.xticks(rotation=90) # Generate a pie plot showing the distribution of female versus male mice using pandas needfully_gendered = full_data.drop_duplicates("Mouse ID") # !!! A small note: the rubric's notes on this section say, " Two bar plots are..."" gender_group = needfully_gendered.groupby("Sex") gender_df = pd.DataFrame(gender_group["Sex"].count()) # print(gender_df) gender_df.plot.pie(subplots=True) # Generate a pie plot showing the distribution of female versus male mice using pyplot plt.pie(gender_df, labels=["Female","Male"]) plt.title("Sex") # Calculate the final tumor volume of each mouse in the four most promising treatment regimens. # Calculate the IQR and quantitatively determine if there are any potential outliers. promising=data_df.sort_values(by="Tumor Volume Mean") promising_drugs = promising["Drug Regimen"][0:4] full_data["Promising Drug"] = full_data["Drug Regimen"].isin(promising_drugs) promising_df = full_data.loc[full_data["Promising Drug"],:].drop_duplicates("Mouse ID",keep="last").reset_index(drop=True) promising_df.drop(columns=["Sex","Age_months","Weight (g)","Timepoint","Metastatic Sites","Promising Drug"],inplace=True) promising_df.head() print(promising_drugs) quartiles = promising_df["Tumor Volume (mm3)"].quantile([.25,.5,.75]) lowerq = quartiles[0.25] upperq = quartiles[0.75] iqr = upperq-lowerq lower_bound = lowerq - (1.5*iqr) upper_bound = upperq + (1.5*iqr) outliers_df = promising_df.loc[(promising_df["Tumor Volume (mm3)"] > upper_bound) | (promising_df["Tumor Volume (mm3)"] < lower_bound), :] outliers_df #no outliers present among Capomulin, Ramicane, Propriva, Ceftamin # Generate a box plot of the final tumor volume of each mouse across four regimens of interest capo_final = promising_df.loc[promising_df["Drug Regimen"] == "Capomulin"] rami_final = promising_df.loc[promising_df["Drug Regimen"] == "Ramicane"] prop_final = promising_df.loc[promising_df["Drug Regimen"] == "Propriva"] ceft_final = promising_df.loc[promising_df["Drug Regimen"] == "Ceftamin"] fig, ax = plt.subplots() #each variable contains a set of attribute/methods that are manipulateable or callable. "Fig" can change formatting, "Ax" is about the drawing ax.boxplot([capo_final["Tumor Volume (mm3)"],rami_final["Tumor Volume (mm3)"],prop_final["Tumor Volume (mm3)"],ceft_final["Tumor Volume (mm3)"]]) ax.set_xticklabels(promising_drugs) plt.title("Variance in Tumor Volume for Most Promising Regimens", x=.5, y=1) plt.subplots_adjust(top = 0.99, bottom=0.01, hspace=.25) # Generate a line plot of time point versus tumor volume for *a mouse* treated with Capomulin (s185) s185 = full_data.loc[full_data["Mouse ID"] == "s185"] s185 plt.plot(s185["Timepoint"], s185["Tumor Volume (mm3)"]) plt.xlabel("Timepoint") plt.ylabel("Tumor Volume (mm3)") plt.title("Capomulin Tumor Volume Over Time: Case Study (s185F)") # Generate a scatter plot of mouse weight versus average tumor volume for the Capomulin regimen capomulin = full_data.loc[full_data["Drug Regimen"] == "Capomulin"] capo_avgs = capomulin.groupby(capomulin["Mouse ID"]).mean() avg_volume = capo_avgs["Tumor Volume (mm3)"].mean() plt.figure(figsize=(10, 6)) plt.scatter(capo_avgs["Weight (g)"], capo_avgs["Tumor Volume (mm3)"]) plt.axhline(avg_volume, c="red", alpha=70) plt.text(25.7,40.7,f"Average Tumor Volume ({round(avg_volume,2)})") plt.xlabel("Weight (g)") plt.ylabel("Tumor Volume (mm3)") plt.title("Tumor Volume by Weight") # again... not totally sure what output is desired here. "Versus"? Hopefully you think this is cute. # Calculate the correlation coefficient and linear regression model for mouse weight # and average tumor volume for the Capomulin regimen weight = capomulin.groupby(capomulin["Mouse ID"])["Weight (g)"].mean() volume = capomulin.groupby(capomulin["Mouse ID"])["Tumor Volume (mm3)"].mean() slope, int, r, p, std_err = st.linregress(weight, volume) fit = slope * weight + int plt.scatter(weight,volume) plt.xlabel("Mouse Weight") plt.ylabel("Tumor Volume (mm3)") plt.plot(weight,fit,"--") plt.xticks(weight, rotation=90) plt.show() corr = round(st.pearsonr(weight,volume)[0],2) print(f'The correlation between weight and tumor volume is {corr}')
0.532668
0.947769
``` import pandas as pd from pandas import DataFrame, Series import numpy as np from IPython.display import display, HTML import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt %matplotlib inline import nmrglue as ng import glob filenames = glob.glob("*DEPT*.fid") experiment_list = [] for filename in filenames: dic, FIDs = ng.varian.read(filename) count = 0 for i in range(np.shape(FIDs)[0]): # ignore blank data thisFID = FIDs[i] if np.sum(thisFID) == 0.0 or np.max(np.abs(thisFID)) < 0.1: print "Ignored blank FID %d from %s." % (i+1, filename) continue count += 1 experiment_list.append(FIDs[i]) npoints = np.shape(experiment_list[0])[0] print "Sequence: %s (%s=%s, %s=%s)" % (dic["procpar"]["seqfil"]["values"][0], dic["procpar"]["dn"]["values"][0], dic["procpar"]["dm"]["values"][0], dic["procpar"]["dn2"]["values"][0], dic["procpar"]["dm2"]["values"][0]) print "%d FIDs loaded from %s (%d complex points, nt=%sx%s, d1=%s s)." % (count, filename, npoints, len(dic["procpar"]["nt"]["values"]), dic["procpar"]["nt"]["values"][0], dic["procpar"]["d1"]["values"][0]) obs = float(dic["procpar"]["reffrq"]["values"][0]) # spectrometer frequency in MHz sw = float(dic["procpar"]["sw"]["values"][0]) tof = float(dic["procpar"]["tof"]["values"][0]) carrier = obs*1.0E6 + tof # carrier frequency in Hz udic = ng.varian.guess_udic(dic, FIDs) udic[0]['size'] = int(dic["np"]) # number of R|I points in the spectrum udic[0]['complex'] = True # True if complex data udic[0]['encoding'] = 'direct' # keep as 'direct' udic[0]['sw'] = sw # spectral width in Hz udic[0]['obs'] = obs # Observation freq. in MHz. udic[0]['car'] = carrier # carrier freq in Hz udic[0]['label'] = 'C13' # the observed nucleus udic[0]['time'] = True # whether this is time domain data udic[0]['freq'] = False udic["ndim"]=1 def process(dic, FID): C = ng.convert.converter() C.from_varian(dic, FID, udic) pdic, pdata = C.to_pipe() pdic, pdata = ng.pipe_proc.em(pdic, pdata, lb=0.25) # line broadening pdic, pdata = ng.pipe_proc.zf(pdic, pdata, size=4*npoints, auto=True) pdic, pdata = ng.pipe_proc.ft(pdic, pdata) pdic, pdata = ng.pipe_proc.ps(pdic, pdata, p0=145, p1=-150) return pdic, pdata raw_spectrum_list = [ process(dic,FID) for FID in experiment_list ] raw_spectra = [ spectrum for dic, spectrum in raw_spectrum_list ] pdic, pdata = raw_spectrum_list[1] uc = ng.pipe.make_uc(pdic, pdata) ppm = uc.ppm_scale() ppm = ppm - ppm[-1] - 10.0 spectrum_number = 0 spectrum = np.real(raw_spectra[spectrum_number]) plt.figure(figsize=(18,4)) plt.xlim(30,0) plt.ylim(-2500,2500) plt.plot(ppm, spectrum, "k") plt.xlabel("13C chemical shift (ppm)") ax = plt.gca() ax.tick_params(top="off") ax.get_xaxis().set_tick_params(length=5,direction='out', width=1) locs, labels = plt.xticks() plt.setp(labels, rotation=90) plt.show() interval = ppm[1]-ppm[0] def find_index(this_ppm): return int(np.ceil((this_ppm-ppm[0])/interval)) def cphase(angle): return np.exp(1j*np.radians(angle)) peaks = [(125.12,125.00), (125.12,125.00), (90.485,90.365), (49.05, 48.93), (26.18,26.06), (22.625,22.505), (6.855,6.715)] phases = [1.0, 1.0, 0.0, -1.0, -1.0, -1.0, -3.0] cphases = [ cphase(i) for i in phases ] spectrum_number = 0 peak_number = 6 spectrum = raw_spectra[spectrum_number] plt.figure(figsize=(18,4)) peak = peaks[peak_number] phase = cphases[peak_number] plt.plot(ppm, np.real(spectrum*phase), "k") center = np.average(peak) x_axis_range = 0.5 start = center+x_axis_range end = center-x_axis_range plt.xlim(start,end) plt.ylim(-5000,20000) peak_start = find_index(peak[0]) peak_end = find_index(peak[1]) peak_x = ppm[peak_start:peak_end] peak_y = np.real(spectrum[peak_start:peak_end]*phase) plt.plot(peak_x,peak_y,"bx") plt.xlabel("13C chemical shift (ppm)") plt.xticks(np.linspace(end,start,41)) #plt.yticks([]) ax = plt.gca() ax.tick_params(top="off") ax.get_xaxis().set_tick_params(length=5,direction='out', width=1) locs, labels = plt.xticks() plt.setp(labels, rotation=90) plt.show() def compute_baseline(spectrum, order=2, clip_below = -1000, clip_above = 1000, plot=False): noise_x = ppm.copy() noise_y = np.real(spectrum.copy()) mask = np.ones(len(ppm), dtype=bool) for peak in peaks: index_low = find_index(peak[0]) index_high = find_index(peak[1]) mask[index_low:index_high] = False noise_x = noise_x[mask] noise_y = noise_y[mask] noise_y = np.clip(noise_y, clip_below, clip_above) poly_coeff = np.polyfit(noise_x,noise_y,order) baseline_func = np.poly1d(poly_coeff) baseline = baseline_func(ppm) RMSE = np.sqrt(np.mean(np.square(noise_y-baseline_func(noise_x)))) if plot: plt.figure(figsize=(18,4)) plt.plot(ppm, np.real(spectrum), "k") plt.plot(ppm, baseline, "r") y_minus_limit = 1.67*clip_below if clip_below < 0.0 else 0.6*clip_below y_plus_limit = 1.67*clip_above if clip_above > 0.0 else 0.6*clip_above plt.ylim(y_minus_limit,y_plus_limit) plt.xlabel("19F chemical shift (ppm)") ax = plt.gca() ax.tick_params(top="off") ax.get_xaxis().set_tick_params(length=5,direction='out', width=1) locs, labels = plt.xticks() plt.setp(labels, rotation=90) plt.show() else: print "%.1E " % (RMSE / 1E5), for i in poly_coeff: print "%6.2f" % i, print return baseline baselines = [ compute_baseline(spectrum) for spectrum in raw_spectra ] subtracted_spectra = [ spectrum - baseline for spectrum, baseline in zip(raw_spectra,baselines) ] def compute_signal_to_noise(spectrum, noise=(70.0, 60.0), plot=False): xy = np.array([ppm,spectrum]) min_value2 = find_index(noise[0]) max_value2 = find_index(noise[1]) y_noise = np.real(xy[1,min_value2:max_value2]) zero_level = np.mean(y_noise) signal_to_noise = [] for i,peak in enumerate(peaks): min_value1 = find_index(peak[0]) max_value1 = find_index(peak[1]) y_signal = np.real(xy[1,min_value1:max_value1]*cphases[i]) signal_level = np.max(y_signal - zero_level)/2.0 noise_level = np.sqrt(np.mean(np.square(y_noise-zero_level))) signal_to_noise.append(signal_level / noise_level) if plot: print "%.2E %.2E" % (signal_level, noise_level) print zero_level plt.plot(x_signal,y_signal,"r") plt.plot(x_noise,y_noise,"b") #plt.ylim(-5E4,5E4) plt.show() return signal_to_noise signal_to_noise_list = [ compute_signal_to_noise(spectrum) for spectrum in subtracted_spectra ] signal_to_noise = DataFrame(signal_to_noise_list) experiment_numbers = [ i+1 for i in range(len(raw_spectra)) ] signal_to_noise["run"] = experiment_numbers signal_to_noise.set_index("run",drop=True,inplace=True) peak_numbers = range(len(peaks)) peak_numbers = ["peak %d" % (i+1) for i in peak_numbers] signal_to_noise.columns = peak_numbers #display(signal_to_noise) avg_signal_to_noise = signal_to_noise.mean() avg_signal_to_noise = avg_signal_to_noise.apply(lambda x : "%.0f" % x) avg_signal_to_noise.name = "S/N" display(avg_signal_to_noise) def integrate(spectrum, i, peak): index_low = find_index(peak[0]) index_high = find_index(peak[1]) return np.sum(np.real(spectrum[index_low:index_high]*cphases[i])) results=[] for spectrum in subtracted_spectra: integrals = [] for i,peak in enumerate(peaks): integrals.append(integrate(spectrum,i,peak)) integrals = np.array(integrals) integrals = integrals/1E5 #integrals = 10.00 * integrals / integrals[8] results.append(integrals) integrations = DataFrame(results) integrations.columns = peak_numbers integrations["run"] = experiment_numbers integrations.set_index("run",drop=True,inplace=True) display(integrations) print "n = %d" % len(integrations) mean = integrations.mean().apply(lambda x : "%.4f" % x) stdev = integrations.std().apply(lambda x : "%.4f" % x) cov = (100.0*integrations.std()/integrations.mean()).apply(lambda x : "%.2f%%" % x) stderr = (integrations.std() / np.sqrt(len(integrations))).apply(lambda x : "%.4f" % x) stderr_cov = (100*integrations.std()/(integrations.mean()*np.sqrt(len(integrations)))).apply(lambda x : "%.2f%%" % x) headings = ["avg", "stdev", "cov", "stderr", "stderr_cov", "S/N"] summary_df = DataFrame([mean, stdev, cov, stderr, stderr_cov, avg_signal_to_noise], index=headings) display(summary_df) ```
github_jupyter
import pandas as pd from pandas import DataFrame, Series import numpy as np from IPython.display import display, HTML import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt %matplotlib inline import nmrglue as ng import glob filenames = glob.glob("*DEPT*.fid") experiment_list = [] for filename in filenames: dic, FIDs = ng.varian.read(filename) count = 0 for i in range(np.shape(FIDs)[0]): # ignore blank data thisFID = FIDs[i] if np.sum(thisFID) == 0.0 or np.max(np.abs(thisFID)) < 0.1: print "Ignored blank FID %d from %s." % (i+1, filename) continue count += 1 experiment_list.append(FIDs[i]) npoints = np.shape(experiment_list[0])[0] print "Sequence: %s (%s=%s, %s=%s)" % (dic["procpar"]["seqfil"]["values"][0], dic["procpar"]["dn"]["values"][0], dic["procpar"]["dm"]["values"][0], dic["procpar"]["dn2"]["values"][0], dic["procpar"]["dm2"]["values"][0]) print "%d FIDs loaded from %s (%d complex points, nt=%sx%s, d1=%s s)." % (count, filename, npoints, len(dic["procpar"]["nt"]["values"]), dic["procpar"]["nt"]["values"][0], dic["procpar"]["d1"]["values"][0]) obs = float(dic["procpar"]["reffrq"]["values"][0]) # spectrometer frequency in MHz sw = float(dic["procpar"]["sw"]["values"][0]) tof = float(dic["procpar"]["tof"]["values"][0]) carrier = obs*1.0E6 + tof # carrier frequency in Hz udic = ng.varian.guess_udic(dic, FIDs) udic[0]['size'] = int(dic["np"]) # number of R|I points in the spectrum udic[0]['complex'] = True # True if complex data udic[0]['encoding'] = 'direct' # keep as 'direct' udic[0]['sw'] = sw # spectral width in Hz udic[0]['obs'] = obs # Observation freq. in MHz. udic[0]['car'] = carrier # carrier freq in Hz udic[0]['label'] = 'C13' # the observed nucleus udic[0]['time'] = True # whether this is time domain data udic[0]['freq'] = False udic["ndim"]=1 def process(dic, FID): C = ng.convert.converter() C.from_varian(dic, FID, udic) pdic, pdata = C.to_pipe() pdic, pdata = ng.pipe_proc.em(pdic, pdata, lb=0.25) # line broadening pdic, pdata = ng.pipe_proc.zf(pdic, pdata, size=4*npoints, auto=True) pdic, pdata = ng.pipe_proc.ft(pdic, pdata) pdic, pdata = ng.pipe_proc.ps(pdic, pdata, p0=145, p1=-150) return pdic, pdata raw_spectrum_list = [ process(dic,FID) for FID in experiment_list ] raw_spectra = [ spectrum for dic, spectrum in raw_spectrum_list ] pdic, pdata = raw_spectrum_list[1] uc = ng.pipe.make_uc(pdic, pdata) ppm = uc.ppm_scale() ppm = ppm - ppm[-1] - 10.0 spectrum_number = 0 spectrum = np.real(raw_spectra[spectrum_number]) plt.figure(figsize=(18,4)) plt.xlim(30,0) plt.ylim(-2500,2500) plt.plot(ppm, spectrum, "k") plt.xlabel("13C chemical shift (ppm)") ax = plt.gca() ax.tick_params(top="off") ax.get_xaxis().set_tick_params(length=5,direction='out', width=1) locs, labels = plt.xticks() plt.setp(labels, rotation=90) plt.show() interval = ppm[1]-ppm[0] def find_index(this_ppm): return int(np.ceil((this_ppm-ppm[0])/interval)) def cphase(angle): return np.exp(1j*np.radians(angle)) peaks = [(125.12,125.00), (125.12,125.00), (90.485,90.365), (49.05, 48.93), (26.18,26.06), (22.625,22.505), (6.855,6.715)] phases = [1.0, 1.0, 0.0, -1.0, -1.0, -1.0, -3.0] cphases = [ cphase(i) for i in phases ] spectrum_number = 0 peak_number = 6 spectrum = raw_spectra[spectrum_number] plt.figure(figsize=(18,4)) peak = peaks[peak_number] phase = cphases[peak_number] plt.plot(ppm, np.real(spectrum*phase), "k") center = np.average(peak) x_axis_range = 0.5 start = center+x_axis_range end = center-x_axis_range plt.xlim(start,end) plt.ylim(-5000,20000) peak_start = find_index(peak[0]) peak_end = find_index(peak[1]) peak_x = ppm[peak_start:peak_end] peak_y = np.real(spectrum[peak_start:peak_end]*phase) plt.plot(peak_x,peak_y,"bx") plt.xlabel("13C chemical shift (ppm)") plt.xticks(np.linspace(end,start,41)) #plt.yticks([]) ax = plt.gca() ax.tick_params(top="off") ax.get_xaxis().set_tick_params(length=5,direction='out', width=1) locs, labels = plt.xticks() plt.setp(labels, rotation=90) plt.show() def compute_baseline(spectrum, order=2, clip_below = -1000, clip_above = 1000, plot=False): noise_x = ppm.copy() noise_y = np.real(spectrum.copy()) mask = np.ones(len(ppm), dtype=bool) for peak in peaks: index_low = find_index(peak[0]) index_high = find_index(peak[1]) mask[index_low:index_high] = False noise_x = noise_x[mask] noise_y = noise_y[mask] noise_y = np.clip(noise_y, clip_below, clip_above) poly_coeff = np.polyfit(noise_x,noise_y,order) baseline_func = np.poly1d(poly_coeff) baseline = baseline_func(ppm) RMSE = np.sqrt(np.mean(np.square(noise_y-baseline_func(noise_x)))) if plot: plt.figure(figsize=(18,4)) plt.plot(ppm, np.real(spectrum), "k") plt.plot(ppm, baseline, "r") y_minus_limit = 1.67*clip_below if clip_below < 0.0 else 0.6*clip_below y_plus_limit = 1.67*clip_above if clip_above > 0.0 else 0.6*clip_above plt.ylim(y_minus_limit,y_plus_limit) plt.xlabel("19F chemical shift (ppm)") ax = plt.gca() ax.tick_params(top="off") ax.get_xaxis().set_tick_params(length=5,direction='out', width=1) locs, labels = plt.xticks() plt.setp(labels, rotation=90) plt.show() else: print "%.1E " % (RMSE / 1E5), for i in poly_coeff: print "%6.2f" % i, print return baseline baselines = [ compute_baseline(spectrum) for spectrum in raw_spectra ] subtracted_spectra = [ spectrum - baseline for spectrum, baseline in zip(raw_spectra,baselines) ] def compute_signal_to_noise(spectrum, noise=(70.0, 60.0), plot=False): xy = np.array([ppm,spectrum]) min_value2 = find_index(noise[0]) max_value2 = find_index(noise[1]) y_noise = np.real(xy[1,min_value2:max_value2]) zero_level = np.mean(y_noise) signal_to_noise = [] for i,peak in enumerate(peaks): min_value1 = find_index(peak[0]) max_value1 = find_index(peak[1]) y_signal = np.real(xy[1,min_value1:max_value1]*cphases[i]) signal_level = np.max(y_signal - zero_level)/2.0 noise_level = np.sqrt(np.mean(np.square(y_noise-zero_level))) signal_to_noise.append(signal_level / noise_level) if plot: print "%.2E %.2E" % (signal_level, noise_level) print zero_level plt.plot(x_signal,y_signal,"r") plt.plot(x_noise,y_noise,"b") #plt.ylim(-5E4,5E4) plt.show() return signal_to_noise signal_to_noise_list = [ compute_signal_to_noise(spectrum) for spectrum in subtracted_spectra ] signal_to_noise = DataFrame(signal_to_noise_list) experiment_numbers = [ i+1 for i in range(len(raw_spectra)) ] signal_to_noise["run"] = experiment_numbers signal_to_noise.set_index("run",drop=True,inplace=True) peak_numbers = range(len(peaks)) peak_numbers = ["peak %d" % (i+1) for i in peak_numbers] signal_to_noise.columns = peak_numbers #display(signal_to_noise) avg_signal_to_noise = signal_to_noise.mean() avg_signal_to_noise = avg_signal_to_noise.apply(lambda x : "%.0f" % x) avg_signal_to_noise.name = "S/N" display(avg_signal_to_noise) def integrate(spectrum, i, peak): index_low = find_index(peak[0]) index_high = find_index(peak[1]) return np.sum(np.real(spectrum[index_low:index_high]*cphases[i])) results=[] for spectrum in subtracted_spectra: integrals = [] for i,peak in enumerate(peaks): integrals.append(integrate(spectrum,i,peak)) integrals = np.array(integrals) integrals = integrals/1E5 #integrals = 10.00 * integrals / integrals[8] results.append(integrals) integrations = DataFrame(results) integrations.columns = peak_numbers integrations["run"] = experiment_numbers integrations.set_index("run",drop=True,inplace=True) display(integrations) print "n = %d" % len(integrations) mean = integrations.mean().apply(lambda x : "%.4f" % x) stdev = integrations.std().apply(lambda x : "%.4f" % x) cov = (100.0*integrations.std()/integrations.mean()).apply(lambda x : "%.2f%%" % x) stderr = (integrations.std() / np.sqrt(len(integrations))).apply(lambda x : "%.4f" % x) stderr_cov = (100*integrations.std()/(integrations.mean()*np.sqrt(len(integrations)))).apply(lambda x : "%.2f%%" % x) headings = ["avg", "stdev", "cov", "stderr", "stderr_cov", "S/N"] summary_df = DataFrame([mean, stdev, cov, stderr, stderr_cov, avg_signal_to_noise], index=headings) display(summary_df)
0.497315
0.44083
# Exercise 2: Scattering from a pressure-release sphere ## The problem In the [first](../tutorials/1_sphere_scatterer_null_field.ipynb) and [second](../tutorials/2_sphere_scatterer_direct.ipynb) tutorials, we looked at two formulations for a rigid scattering problem. In this exercise, you will write your own code to solve a pressure-release scattering problem. As in the tutorials, we will use a unit sphere for $\Omega$, and we define the incident wave by $$ p_{\text{inc}}(\mathbf x) = \mathrm{e}^{\mathrm{i} k x_0}. $$ where $\mathbf x = (x_0, x_1, x_2)$. Acoustic waves are governed by the Helmholtz equation: $$ \Delta p_\text{total} + k^2 p_\text{total} = 0, \quad \text{ in } \mathbb{R}^3 \backslash \Omega, $$ where $p_\text{total}$ is the total pressure. We can split $p_\text{total}$ into incident and scattered pressures by writing $p_\text{s}+p_\text{inc}$. The scattered pressure ($p_\text{s}$) satisfies the Sommerfeld radiation condition $$ \frac{\partial p_\text{s}}{\partial r}-\mathrm{i}kp_\text{s}=o(r^{-1}) $$ when $r:=|\mathbf{x}|\rightarrow\infty$. For our problem, we impose a Dirichlet boundary condition: $$ p_\text{total}=0, \quad \text{ on } \Gamma, $$ where $\Gamma$ is the surface of the sphere $\Omega$. ## The formulation We use a formulation based on the [direct formulation in the second tutorial](../tutorials/2_sphere_scatterer_direct.ipynb). ### Representation formula For this problem, we use the following representation formula: $$ p_\text{s} = \mathcal{D}u -\mathcal{S}\lambda, $$ where $\mathcal{S}$ is the single layer potential operator; $\mathcal{D}$ is the double layer potential operator; $u$ is the value (or trace) of $p_\text{s}$ on the surface $\Gamma$; and $\lambda$ is the normal derivative of $p_\text{s}$ on the surface $\Gamma$. For this problem, our boundary condition tells us that $u=-p_\text{inc}$ on $\Gamma$. ### Boundary integral equation For this problem, we want to solve the following boundary integral equation: $$ \mathsf{S}\lambda = -(\mathsf{D} - \tfrac{1}{2}\mathsf{I})p_\text{inc}, $$ where $\mathsf{S}$ is the single layer boundary operator; $\mathsf{D}$ is the double layer boundary operator, and $\mathsf{I}$ is the identity operator. ### Solving with Bempp Your task is to adapt and combine the two example codes in [first](../tutorials/1_sphere_scatterer_null_field.ipynb) and [second](../tutorials/2_sphere_scatterer_direct.ipynb) tutorials to solve this problem and plot a slice of the solution at $z=0$ To get you started, I've copies the first few lines (which were the same in both examples) into the cell below. ``` %matplotlib inline import bempp.api from bempp.api.operators.boundary import helmholtz, sparse from bempp.api.operators.potential import helmholtz as helmholtz_potential from bempp.api.linalg import gmres import numpy as np from matplotlib import pyplot as plt k = 8. grid = bempp.api.shapes.regular_sphere(3) space = bempp.api.function_space(grid, "DP", 0) ``` ## What next? After attempting this exercises, you should read [tutorial 3](../tutorials/3_convergence.ipynb).
github_jupyter
%matplotlib inline import bempp.api from bempp.api.operators.boundary import helmholtz, sparse from bempp.api.operators.potential import helmholtz as helmholtz_potential from bempp.api.linalg import gmres import numpy as np from matplotlib import pyplot as plt k = 8. grid = bempp.api.shapes.regular_sphere(3) space = bempp.api.function_space(grid, "DP", 0)
0.384219
0.990678
<center> <img src="../../img/ods_stickers.jpg"> ## Открытый курс по машинному обучению </center> Автор материала: программист-исследователь Mail.ru Group, старший преподаватель Факультета Компьютерных Наук ВШЭ Юрий Кашницкий. Материал распространяется на условиях лицензии [Creative Commons CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Можно использовать в любых целях (редактировать, поправлять и брать за основу), кроме коммерческих, но с обязательным упоминанием автора материала. # <center>Тема 4. Линейные модели классификации и регрессии ## <center>Часть 3. Наглядный пример регуляризации логистической регрессии В 1 статье уже приводился пример того, как полиномиальные признаки позволяют линейным моделям строить нелинейные разделяющие поверхности. Покажем это в картинках. Посмотрим, как регуляризация влияет на качество классификации на наборе данных по тестированию микрочипов из курса Andrew Ng по машинному обучению. Будем использовать логистическую регрессию с полиномиальными признаками и варьировать параметр регуляризации C. Сначала посмотрим, как регуляризация влияет на разделяющую границу классификатора, интуитивно распознаем переобучение и недообучение. Потом численно установим близкий к оптимальному параметр регуляризации с помощью кросс-валидации (`cross-validation`) и перебора по сетке (`GridSearch`). ``` from __future__ import division, print_function # отключим всякие предупреждения Anaconda import warnings warnings.filterwarnings('ignore') %matplotlib inline from matplotlib import pyplot as plt import seaborn as sns import numpy as np import pandas as pd from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.model_selection import cross_val_score, StratifiedKFold from sklearn.model_selection import GridSearchCV ``` Загружаем данные с помощью метода `read_csv` библиотеки `pandas`. В этом наборе данных для 118 микрочипов (объекты) указаны результаты двух тестов по контролю качества (два числовых признака) и сказано, пустили ли микрочип в производство. Признаки уже центрированы, то есть из всех значений вычтены средние по столбцам. Таким образом, "среднему" микрочипу соответствуют нулевые значения результатов тестов. ``` # загрузка данных data = pd.read_csv('../../data/microchip_tests.txt', header=None, names = ('test1','test2','released')) # информация о наборе данных data.info() ``` Посмотрим на первые и последние 5 строк. ``` data.head(5) data.tail(5) ``` Сохраним обучающую выборку и метки целевого класса в отдельных массивах NumPy. ``` X = data.ix[:,:2].values y = data.ix[:,2].values ``` Отобразим данные. Красный цвет соответствует бракованным чипам, зеленый – нормальным. ``` plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов') plt.legend(); ``` Определяем функцию для отображения разделяющей кривой классификатора ``` def plot_boundary(clf, X, y, grid_step=.01, poly_featurizer=None): x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1 y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1 xx, yy = np.meshgrid(np.arange(x_min, x_max, grid_step), np.arange(y_min, y_max, grid_step)) # каждой точке в сетке [x_min, m_max]x[y_min, y_max] # ставим в соответствие свой цвет Z = clf.predict(poly_featurizer.transform(np.c_[xx.ravel(), yy.ravel()])) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, cmap=plt.cm.Paired) ``` Полиномиальными признаками до степени $d$ для двух переменных $x_1$ и $x_2$ мы называем следующие: $$\large \{x_1^d, x_1^{d-1}x_2, \ldots x_2^d\} = \{x_1^ix_2^j\}_{i+j=d, i,j \in \mathbb{N}}$$ Например, для $d=3$ это будут следующие признаки: $$\large 1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3$$ Нарисовав треугольник Пифагора, Вы сообразите, сколько таких признаков будет для $d=4,5...$ и вообще для любого $d$. Попросту говоря, таких признаков экспоненциально много, и строить, скажем, для 100 признаков полиномиальные степени 10 может оказаться затратно (а более того, и не нужно). Создадим объект `sklearn`, который добавит в матрицу $X$ полиномиальные признаки вплоть до степени 7. ``` poly = PolynomialFeatures(degree=7) X_poly = poly.fit_transform(X) X_poly.shape ``` Обучим логистическую регрессию с параметром регуляризации $C = 10^{-2}$. Изобразим разделяющую границу. Также проверим долю правильных ответов классификатора на обучающей выборке. Видим, что регуляризация оказалась слишком сильной, и модель "недообучилась". ``` C = 1e-2 logit = LogisticRegression(C=C, n_jobs=-1, random_state=17) logit.fit(X_poly, y) plot_boundary(logit, X, y, grid_step=.01, poly_featurizer=poly) plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов. Логит с C=0.01') plt.legend(); print("Доля правильных ответов классификатора на обучающей выборке:", round(logit.score(X_poly, y), 3)) ``` Увеличим $C$ до 1. Тем самым мы *ослабляем* регуляризацию, теперь в решении значния весов логистической регрессии могут оказаться больше (по модулю), чем в прошлом случае. ``` C = 1 logit = LogisticRegression(C=C, n_jobs=-1, random_state=17) logit.fit(X_poly, y) plot_boundary(logit, X, y, grid_step=.005, poly_featurizer=poly) plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов. Логит с C=1') plt.legend(); print("Доля правильных ответов классификатора на обучающей выборке:", round(logit.score(X_poly, y), 3)) ``` Еще увеличим $C$ – до 10 тысяч. Теперь регуляризации явно недостаточно, и мы наблюдаем переобучение. Можно заметить, что в прошлом случае (при $C$=1 и "гладкой" границе) доля правильных ответов модели на обучающей выборке не намного ниже, чем в 3 случае, зато на новой выборке, можно себе представить, 2 модель сработает намного лучше. ``` C = 1e4 logit = LogisticRegression(C=C, n_jobs=-1, random_state=17) logit.fit(X_poly, y) plot_boundary(logit, X, y, grid_step=.005, poly_featurizer=poly) plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов. Логит с C=10k') plt.legend(); print("Доля правильных ответов классификатора на обучающей выборке:", round(logit.score(X_poly, y), 3)) ``` Чтоб обсудить результаты, перепишем формулу для функционала, который оптимизируется в логистической регрессии, в таком виде: $$J(X,y,w) = \mathcal{L} + \frac{1}{C}||w||^2,$$ где - $\mathcal{L}$ – логистическая функция потерь, просуммированная по всей выборке - $C$ – обратный коэффициент регуляризации (тот самый $C$ в `sklearn`-реализации `LogisticRegression`) **Промежуточные выводы**: - чем больше параметр $C$, тем более сложные зависимости в данных может восстанавливать модель (интуитивно $C$ соответствует "сложности" модели (model capacity)) - если регуляризация слишком сильная (малые значения $C$), то решением задачи минимизации логистической функции потерь может оказаться то, когда многие веса занулились или стали слишком малыми. Еще говорят, что модель недостаточно "штрафуется" за ошибки (то есть в функционале $J$ "перевешивает" сумма квадратов весов, а ошибка $\mathcal{L}$ может быть относительно большой). В таком случае модель окажется *недообученной* (1 случай) - наоборот, если регуляризация слишком слабая (большие значения $C$), то решением задачи оптимизации может стать вектор $w$ с большими по модулю компонентами. В таком случае больший вклад в оптимизируемый функционал $J$ имеет $\mathcal{L}$ и, вольно выражаясь, модель слишком "боится" ошибиться на объектах обучающей выборки, поэтому окажется *переобученной* (3 случай) - то, какое значение $C$ выбрать, сама логистическая регрессия "не поймет" (или еще говорят "не выучит"), то есть это не может быть определено решением оптимизационной задачи, которой является логистическая регрессия (в отличие от весов $w$). Так же точно, дерево решений не может "само понять", какое ограничение на глубину выбрать (за один процесс обучения). Поэтому $C$ – это *гиперпараметр* модели, который настраивается на кросс-валидации, как и *max_depth* для дерева. **Настройка параметра регуляризации** Теперь найдем оптимальное (в данном примере) значение параметра регуляризации $C$. Сделать это можно с помощью `LogisticRegressionCV` – перебора параметров по сетке с последующей кросс-валидацией. Этот класс создан специально для логистической регрессии (для нее известны эффективные алгоритмы перебора параметров), для произвольной модели мы бы использовали `GridSearchCV`, `RandomizedSearchCV` или, например, специальные алгоритмы оптимизации гиперпараметров, реализованные в `hyperopt`. ``` skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=17) c_values = np.logspace(-2, 3, 500) logit_searcher = LogisticRegressionCV(Cs=c_values, cv=skf, verbose=1, n_jobs=-1) logit_searcher.fit(X_poly, y) logit_searcher.C_ ``` Посмотрим, как качество модели (доля правильных ответов на обучающей и валидационной выборках) меняется при изменении гиперпараметра $C$. ``` plt.plot(c_values, np.mean(logit_searcher.scores_[1], axis=0)) plt.xlabel('C') plt.ylabel('Mean CV-accuracy'); ``` Выделим участок с "лучшими" значениями C. ``` plt.plot(c_values, np.mean(logit_searcher.scores_[1], axis=0)) plt.xlabel('C') plt.ylabel('Mean CV-accuracy'); plt.xlim((0,10)); ``` Такие кривые называются *валидационными*, и в `sklearn` для них их построения есть специальные методы.
github_jupyter
from __future__ import division, print_function # отключим всякие предупреждения Anaconda import warnings warnings.filterwarnings('ignore') %matplotlib inline from matplotlib import pyplot as plt import seaborn as sns import numpy as np import pandas as pd from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.model_selection import cross_val_score, StratifiedKFold from sklearn.model_selection import GridSearchCV # загрузка данных data = pd.read_csv('../../data/microchip_tests.txt', header=None, names = ('test1','test2','released')) # информация о наборе данных data.info() data.head(5) data.tail(5) X = data.ix[:,:2].values y = data.ix[:,2].values plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов') plt.legend(); def plot_boundary(clf, X, y, grid_step=.01, poly_featurizer=None): x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1 y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1 xx, yy = np.meshgrid(np.arange(x_min, x_max, grid_step), np.arange(y_min, y_max, grid_step)) # каждой точке в сетке [x_min, m_max]x[y_min, y_max] # ставим в соответствие свой цвет Z = clf.predict(poly_featurizer.transform(np.c_[xx.ravel(), yy.ravel()])) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, cmap=plt.cm.Paired) poly = PolynomialFeatures(degree=7) X_poly = poly.fit_transform(X) X_poly.shape C = 1e-2 logit = LogisticRegression(C=C, n_jobs=-1, random_state=17) logit.fit(X_poly, y) plot_boundary(logit, X, y, grid_step=.01, poly_featurizer=poly) plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов. Логит с C=0.01') plt.legend(); print("Доля правильных ответов классификатора на обучающей выборке:", round(logit.score(X_poly, y), 3)) C = 1 logit = LogisticRegression(C=C, n_jobs=-1, random_state=17) logit.fit(X_poly, y) plot_boundary(logit, X, y, grid_step=.005, poly_featurizer=poly) plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов. Логит с C=1') plt.legend(); print("Доля правильных ответов классификатора на обучающей выборке:", round(logit.score(X_poly, y), 3)) C = 1e4 logit = LogisticRegression(C=C, n_jobs=-1, random_state=17) logit.fit(X_poly, y) plot_boundary(logit, X, y, grid_step=.005, poly_featurizer=poly) plt.scatter(X[y == 1, 0], X[y == 1, 1], c='green', label='Выпущен') plt.scatter(X[y == 0, 0], X[y == 0, 1], c='red', label='Бракован') plt.xlabel("Тест 1") plt.ylabel("Тест 2") plt.title('2 теста микрочипов. Логит с C=10k') plt.legend(); print("Доля правильных ответов классификатора на обучающей выборке:", round(logit.score(X_poly, y), 3)) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=17) c_values = np.logspace(-2, 3, 500) logit_searcher = LogisticRegressionCV(Cs=c_values, cv=skf, verbose=1, n_jobs=-1) logit_searcher.fit(X_poly, y) logit_searcher.C_ plt.plot(c_values, np.mean(logit_searcher.scores_[1], axis=0)) plt.xlabel('C') plt.ylabel('Mean CV-accuracy'); plt.plot(c_values, np.mean(logit_searcher.scores_[1], axis=0)) plt.xlabel('C') plt.ylabel('Mean CV-accuracy'); plt.xlim((0,10));
0.485844
0.971886
# DataLoader in PyTorch __DataLoader__ -- класс в PyTorch, который позволяет итеративно проходить по датасету, отвечает за оркестрацию всего процесса работы с датасетом. ``` DataLoader( dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, prefetch_factor=2, persistent_workers=False ) ``` - __dataset__ -- позволяет создать кастомные классы для работы с датасетом, где можно указать логику формирвоания батча. - __sampler__ -- определяет порядок элементов из датасета, которые будут идти в батч, то есть это список индексов, объединенных в батч. Удобно переопределять, когда обучение распредленное. - __collate_fn__ -- позволяет сделать финальную предобработку над батчем данных. Если, например, в батч попали последовательности разных размеров, то после уже сбора батча, можно будет дополнить последовательности нулями относительно максимально длиной последовательности. ## Custom Dataset ``` import pandas as pd import pickle import numpy as np from tqdm import tqdm_notebook from torch.utils.data import DataLoader, Dataset, Sampler from torch.utils.data.dataloader import default_collate BATCH_SIZE = 128 EPOCHS = 100 class CustomDataset(Dataset): # Конструктор, где считаем датасет def __init__(self, dataset_path): with open(dataset_path, 'rb') as f: self.X, self.target = pickle.load(f) return # Переопределяем метод вычисление размера датасета def __len__(self): return len(self.X) # Переопределяем метод, # который достает по индексу наблюдение из датасет def __getitem__(self, idx): return self.X[idx], self.target[idx] ``` ## Custom Sampler ``` class CustomSampler(Sampler): # Конструктор, где инициализируем индексы элементов def __init__(self, data): self.data_indices = np.arange(len(data)) shuffled_indices = np.random.permutation(len(self.data_indices)) self.data_indices = np.ascontiguousarray(self.data_indices)[shuffled_indices] return def __len__(self): return len(self.data_indices) # Возращает итератор, # который будет возвращать индексы из перемешанного датасета def __iter__(self): return iter(self.data_indices) ``` ## Custom collate_fn ``` def collate(batch): return default_collate(batch) def create_data_loader(train_dataset, train_sampler, test_dataset, test_sampler): train_loader = DataLoader(dataset=train_dataset, sampler=train_sampler, batch_size=BATCH_SIZE, collate_fn=collate, shuffle=False) test_loader = DataLoader(dataset=test_dataset, sampler=test_sampler, batch_size=BATCH_SIZE, collate_fn=collate, shuffle=False) return train_loader, test_loader !git clone https://github.com/RiskModellingResearch/DeepLearning_Winter22.git # Создаем объекты Custom Dataset и Sampler train_ds = CustomDataset('DeepLearning_Winter22/week_03/data/X_train_cat.pickle') train_sampler = CustomSampler(train_ds.X) test_ds = CustomDataset('DeepLearning_Winter22/week_03/data/X_test_cat.pickle') test_sampler = CustomSampler(test_ds.X) train_loader, test_loader = create_data_loader(train_ds, train_sampler, test_ds, test_sampler) def run_train(): for epoch in tqdm_notebook(range(EPOCHS)): for features, labels in train_loader: pass return run_train() ```
github_jupyter
DataLoader( dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, prefetch_factor=2, persistent_workers=False ) import pandas as pd import pickle import numpy as np from tqdm import tqdm_notebook from torch.utils.data import DataLoader, Dataset, Sampler from torch.utils.data.dataloader import default_collate BATCH_SIZE = 128 EPOCHS = 100 class CustomDataset(Dataset): # Конструктор, где считаем датасет def __init__(self, dataset_path): with open(dataset_path, 'rb') as f: self.X, self.target = pickle.load(f) return # Переопределяем метод вычисление размера датасета def __len__(self): return len(self.X) # Переопределяем метод, # который достает по индексу наблюдение из датасет def __getitem__(self, idx): return self.X[idx], self.target[idx] class CustomSampler(Sampler): # Конструктор, где инициализируем индексы элементов def __init__(self, data): self.data_indices = np.arange(len(data)) shuffled_indices = np.random.permutation(len(self.data_indices)) self.data_indices = np.ascontiguousarray(self.data_indices)[shuffled_indices] return def __len__(self): return len(self.data_indices) # Возращает итератор, # который будет возвращать индексы из перемешанного датасета def __iter__(self): return iter(self.data_indices) def collate(batch): return default_collate(batch) def create_data_loader(train_dataset, train_sampler, test_dataset, test_sampler): train_loader = DataLoader(dataset=train_dataset, sampler=train_sampler, batch_size=BATCH_SIZE, collate_fn=collate, shuffle=False) test_loader = DataLoader(dataset=test_dataset, sampler=test_sampler, batch_size=BATCH_SIZE, collate_fn=collate, shuffle=False) return train_loader, test_loader !git clone https://github.com/RiskModellingResearch/DeepLearning_Winter22.git # Создаем объекты Custom Dataset и Sampler train_ds = CustomDataset('DeepLearning_Winter22/week_03/data/X_train_cat.pickle') train_sampler = CustomSampler(train_ds.X) test_ds = CustomDataset('DeepLearning_Winter22/week_03/data/X_test_cat.pickle') test_sampler = CustomSampler(test_ds.X) train_loader, test_loader = create_data_loader(train_ds, train_sampler, test_ds, test_sampler) def run_train(): for epoch in tqdm_notebook(range(EPOCHS)): for features, labels in train_loader: pass return run_train()
0.59749
0.886862
<a href="https://colab.research.google.com/github/unpackAI/DL101/blob/main/01_CV_Workbook.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # 💻Week 1 Workbook of unpackAI "DL101 Bootcamp" ## 📕 Learning Objectives of the Week * Understand the fundamental process of building your own image classification project. ## 🔗 Install & Import Required Code Packages ``` !pip install -Uqq fastbook !pip install -Uqq unpackai from unpackai.utils import clean_error_img from fastbook import * from fastai.vision.widgets import * ``` ## unpackAI Assignment Section * **Assignment 1**: Go through the multiple choice questions below and choose the correct answer. Discuss during the presentation session. * **Assignment 2**: Build an entire single label classification model starting from defining your objective, gathering data to training your model and interpreting the results. ## Assigment 1: Go through the multiple choice questions below and choose the correct answer. Discuss during the presentation session. 1. What is overfitting? > A: Overfitting is a scenario in data science where a data model is unable to capture the relationship between the input and output variables accurately, generating a high loss on both the training set and unseen data. > B: Overfitting happens when a model learns and memorizes the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data. This results in a further decreasing loss on the training set but an increasing loss on the validation set. > C: Overfitting is when the model is performing very well on the training, validation and test set and achieves a very low loss in all 3 data sets. This means that your model is ready to be used in practice. 2. What is a training, validation and test set? > A: The *training set* is the sample of data used to start fitting and training the model. The *test set* is the sample of data used to evaluate the trained models performance on new data while continuing to improve and tune the model's parameters. The *validation set* is the sample of data used to evaluate the final model without continuing to tune its parameters. > B: The *test set* is the sample of data used to start fitting and training the model. The *training set* is the sample of data used to evaluate the trained models performance on new data while continuing to improve and tune the model's parameters. The *validation set* is the sample of data used to evaluate the final model without continuing to tune its parameters. > C: The *training set* is the sample of data used to start fitting and training the model. The *validation set* is the sample of data used to evaluate the trained models performance on new data while continuing to improve and tune the model's parameters. The *test set* is the sample of data used to evaluate the final model without continuing to tune its parameters. 3. Observe the `Learner` that you have encountered in the Coursebook. What are the key **metrics** to represent the model's performance? Name and explain them. > A: The key metrics are *epochs* and *time*. Both give us key insights how much memory the model requires and its performance. > B: The key metrics are *train_loss*, *valid_loss* and *error rate / accuray*. Each metric provides insights on the model's performance on the training set, validation set and test set. > C: The single most important metric is the *loss*. The loss is what tells the machine and human how the model performs. 4. What is the difference between Classification and Regression in Machine Learning? > A: A *classification model* is one that attempts to predict a class, or category. That is, it's predicting from a number of discrete possibilities, such as "dog" or "cat". A *regression model* is one that attempts to predict one or more numeric quantities, such as a temperature or a location. > B: A *regression model* is one that attempts to predict a class, or category. That is, it's predicting from a number of discrete possibilities, such as "dog" or "cat". A *classification model* is one that attempts to predict one or more numeric quantities, such as a temperature or a location. > C: A *classification model* is one that attempts to utilize sorting algorithms that can allow it to learn time-dependent patterns across multiples models different from images and speech. A *regression model* is one that attempts to to predict the "rating" or "preference" a user would give to an item. 5. What is transfer learning in Machine Learning? > A: Transfer learning is a machine learning technique where the parameters of a model are not updated through model training but simply replaced by the parameters of another pre-trained model. > B: Transfer learning is a technique where a machine learning engineer uses his expertise and techniques in another industry to a problem in an industry he does not have much experience in. > C: A: Transfer learning is a machine learning technique where a pre-trained model is re-purposed on a second related task. In practice this means that, we use an existing already-trained model and its trained "intelligence" to utilize it for our own use case. ## Assignment 2: Build an entire single label classification model starting from defining your objective, gathering data to training your model and interpreting the results. ### Step One - Define a ML problem and propose a solution. #### 1. Define the objective (what goal, metrics to measure success) **Your objective:** *Example objective: The goal is to build a model that is able to differentiate between grizzly bears, black bears and teddy bears with a minimum accuracy of 90%.* #### 2. Describe your dataset (what data, how many classes etc.) **Your dataset:** *Example dataset: The dataset consists of a total of 450 images seperated in 3 different classes that each have a set of 150 images. The three classes are: "black", "grizzly" and "teddy".* #### 3. Describe your model (what is the model supposed to do) **Your model:** *Example model: A 3-class, single-label classification model, which correctly classifies an image that it has never seen before in one of three classes named above.* ### Step Two - Collect and construct your dataset In order to collect and design your own dataset we provide you with the scraping tool below. **DuckDuckGo Image Scraper** - Scrape and Collect images via a search engine from the web. In order to collect your images we will be utilizing **DuckDuckGo**. DuckDuckGo is an internet search engine that emphasizes protecting searchers' privacy and avoiding the filter bubble of personalized search results. The below is a slightly modified version of the notebook by [Jew Dockrill](https://joedockrill.github.io/jmd_imagescraper/). Many thanks to him for the notebook and the package he wrote. > Note: When using a Web Search Engine to download your pictures, there's no way to be sure exactly what images a search like this will find. The results can change over time. We've heard of at least one case of a community member who found some unpleasant pictures in their search results. You'll receive whatever images are found by the web search engine. If you're running this at work, or with kids, etc, then be cautious before you display the downloaded images. ##### Install & import `DuckDuckGoImageScraper` specific packages ``` !pip install -q jmd_imagescraper from jmd_imagescraper.imagecleaner import * from pathlib import Path from jmd_imagescraper.core import * ``` ##### Download images Below you can see an example, of what changes would be required to work with a teddy, grizzly and black bear dataset. ``` IMAGE_DIR = Path("/content/gdrive/MyDrive/images") # Comment: You can store in a different Google Drive Folder number_images_to_download = 50 duckduckgo_search(IMAGE_DIR, "teddy", "teddy bear", max_results=number_images_to_download) duckduckgo_search(IMAGE_DIR, "grizzly", "grizzly bear", max_results=number_images_to_download) duckduckgo_search(IMAGE_DIR, "black", "black bear", max_results=number_images_to_download) ``` Now modify the code below for your own use case. You will have to: 1. `path`: Define the `path` which will be the folder in which you will temporarily save the images. Once you disconnect, the images will be deleted. 1. `number_images_to_download`: The number of images you download per defined class. This can go up to 477 at the time of writing. 1. `duckduckgo_search`: You will have to define your **classes** (for example: teddy, grizzly, black) and your **search term** (for example: teddy bear, grizzly bear, black bear). > Note: When downloading the images please make sure to check your search terms ahead of running the script below. Go and search for yourself to define the best search terms. ``` path = Path().cwd()/"images" number_images_to_download = 50 duckduckgo_search(path, "apple", "apple in the basket", max_results=number_images_to_download) duckduckgo_search(path, "orange", "orange", max_results=number_images_to_download) duckduckgo_search(path, "pineapple", "pineapple", max_results=number_images_to_download) ``` ##### Displaying the image cleaner Use this to get rid of unsuitable images without leaving your notebook. ``` display_image_cleaner(path) ``` Some time especially in real life projects, erronous image is a frequently occuring thing, you can fix the problem by deleting all of our faulty images. **We leave it up to you to finish your own model using your own dataset!** ``` clean_error_img(path) ``` #### Your own data If you want to use your own personal data, you can upload your images using the file system on the right (see the image below). > Hint: Make sure to define your path so that it points to your main folder that contains your labeled folders with the images. A great way to do that is to use the *folder* icon on the left, to find the right folder, right click and *copy path*. ``` path = Path("insert path here") ``` **However, considering your own time, we recommend you to use the DuckDuckGo Image Scraper above.** ### Step Three - Data Transformation: Create your **DataLoaders** and utilize **Data Augmentation Methods** to improve your dataset. ``` ``` ### Step Three - Train your model. ``` ``` ### Step Four - Interpret the model and make predictions: Create a notebook app to upload and classify external images. > Hint: Utilize the *top losses* and *classification marix* methods seen in the coursebook to interpret your model. ``` ```
github_jupyter
!pip install -Uqq fastbook !pip install -Uqq unpackai from unpackai.utils import clean_error_img from fastbook import * from fastai.vision.widgets import * !pip install -q jmd_imagescraper from jmd_imagescraper.imagecleaner import * from pathlib import Path from jmd_imagescraper.core import * IMAGE_DIR = Path("/content/gdrive/MyDrive/images") # Comment: You can store in a different Google Drive Folder number_images_to_download = 50 duckduckgo_search(IMAGE_DIR, "teddy", "teddy bear", max_results=number_images_to_download) duckduckgo_search(IMAGE_DIR, "grizzly", "grizzly bear", max_results=number_images_to_download) duckduckgo_search(IMAGE_DIR, "black", "black bear", max_results=number_images_to_download) path = Path().cwd()/"images" number_images_to_download = 50 duckduckgo_search(path, "apple", "apple in the basket", max_results=number_images_to_download) duckduckgo_search(path, "orange", "orange", max_results=number_images_to_download) duckduckgo_search(path, "pineapple", "pineapple", max_results=number_images_to_download) display_image_cleaner(path) clean_error_img(path) path = Path("insert path here") ``` ### Step Three - Train your model. ### Step Four - Interpret the model and make predictions: Create a notebook app to upload and classify external images. > Hint: Utilize the *top losses* and *classification marix* methods seen in the coursebook to interpret your model.
0.688049
0.995327
``` import os # Find the latest version of spark 3.0 from http://www.apache.org/dist/spark/ and enter as the spark version # For example: # spark_version = 'spark-3.0.1' spark_version = 'spark-3.0.3' os.environ['SPARK_VERSION']=spark_version # Install Spark and Java !apt-get update !apt-get install openjdk-11-jdk-headless -qq > /dev/null !wget -q http://www.apache.org/dist/spark/$SPARK_VERSION/$SPARK_VERSION-bin-hadoop2.7.tgz !tar xf $SPARK_VERSION-bin-hadoop2.7.tgz !pip install -q findspark # Set Environment Variables import os os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-11-openjdk-amd64" os.environ["SPARK_HOME"] = f"/content/{spark_version}-bin-hadoop2.7" # Start a SparkSession import findspark findspark.init() !wget https://jdbc.postgresql.org/download/postgresql-42.2.9.jar from pyspark.sql import SparkSession spark = SparkSession.builder.appName("BigData-HW-Part-1").config("spark.driver.extraClassPath", "/content.postgressql-42.2.9.jar").getOrCreate() #Load Amazon data into Spark DataFrame from pyspark import SparkFiles url = 'https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_us_Video_Games_v1_00.tsv.gz' spark.sparkContext.addFile(url) video_game_df = spark.read.csv(SparkFiles.get("amazon_reviews_us_Video_Games_v1_00.tsv.gz"), sep='\t', header=True, inferSchema=True) video_game_df.show() #Size of Data video_game_df.count() #Clean DataFrame to match tables from pyspark.sql.functions import to_date review_id_df = video_game_df.select(['review_id', 'customer_id', 'product_id', 'product_parent', to_date('review_date', 'yyyy-MM-dd').alias('review_date')]) review_id_df.show() products_df = video_game_df.select(['product_id', 'product_title']).drop_duplicates() products_df.show() reviews_df = video_game_df.select(['review_id', 'review_headline', 'review_body']) reviews_df.show(10) customers_df = video_game_df.groupBy('customer_id').agg({'customer_id': 'count'}).withColumnRenamed('count(customer_id', 'customer_count') customers_df.show() vine_df = video_game_df.select(['review_id', 'star_rating', 'helpful_votes', 'total_votes', 'vine']) vine_df.show(10) #Schema ''''CREATE TABLE review_id_table ( review_id INT, customer_id TEXT, product_id TEXT, product_parent TEXT, review_date DATE ); CREATE TABLE product ( product_id TEXT, product_title TEXT ); CREATE TABLE customers ( customer_id INT customer_count INT ); CREATE TABLE vine_table ( review_id TEXT, star_rating INT, helpful_votes INT, total_votes INT, vine TEXT ); ''' #Push to AWS RDS instance mode = 'append' jdbc_url = '' config = {'user':'', 'password': '', 'driver': 'org.postgresql.Driver'} #write review_id to table in RDS review_id_df.write.jdbc(url=jdbc_url, table='review_id_table', mode=mode, properties=config) ```
github_jupyter
import os # Find the latest version of spark 3.0 from http://www.apache.org/dist/spark/ and enter as the spark version # For example: # spark_version = 'spark-3.0.1' spark_version = 'spark-3.0.3' os.environ['SPARK_VERSION']=spark_version # Install Spark and Java !apt-get update !apt-get install openjdk-11-jdk-headless -qq > /dev/null !wget -q http://www.apache.org/dist/spark/$SPARK_VERSION/$SPARK_VERSION-bin-hadoop2.7.tgz !tar xf $SPARK_VERSION-bin-hadoop2.7.tgz !pip install -q findspark # Set Environment Variables import os os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-11-openjdk-amd64" os.environ["SPARK_HOME"] = f"/content/{spark_version}-bin-hadoop2.7" # Start a SparkSession import findspark findspark.init() !wget https://jdbc.postgresql.org/download/postgresql-42.2.9.jar from pyspark.sql import SparkSession spark = SparkSession.builder.appName("BigData-HW-Part-1").config("spark.driver.extraClassPath", "/content.postgressql-42.2.9.jar").getOrCreate() #Load Amazon data into Spark DataFrame from pyspark import SparkFiles url = 'https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_us_Video_Games_v1_00.tsv.gz' spark.sparkContext.addFile(url) video_game_df = spark.read.csv(SparkFiles.get("amazon_reviews_us_Video_Games_v1_00.tsv.gz"), sep='\t', header=True, inferSchema=True) video_game_df.show() #Size of Data video_game_df.count() #Clean DataFrame to match tables from pyspark.sql.functions import to_date review_id_df = video_game_df.select(['review_id', 'customer_id', 'product_id', 'product_parent', to_date('review_date', 'yyyy-MM-dd').alias('review_date')]) review_id_df.show() products_df = video_game_df.select(['product_id', 'product_title']).drop_duplicates() products_df.show() reviews_df = video_game_df.select(['review_id', 'review_headline', 'review_body']) reviews_df.show(10) customers_df = video_game_df.groupBy('customer_id').agg({'customer_id': 'count'}).withColumnRenamed('count(customer_id', 'customer_count') customers_df.show() vine_df = video_game_df.select(['review_id', 'star_rating', 'helpful_votes', 'total_votes', 'vine']) vine_df.show(10) #Schema ''''CREATE TABLE review_id_table ( review_id INT, customer_id TEXT, product_id TEXT, product_parent TEXT, review_date DATE ); CREATE TABLE product ( product_id TEXT, product_title TEXT ); CREATE TABLE customers ( customer_id INT customer_count INT ); CREATE TABLE vine_table ( review_id TEXT, star_rating INT, helpful_votes INT, total_votes INT, vine TEXT ); ''' #Push to AWS RDS instance mode = 'append' jdbc_url = '' config = {'user':'', 'password': '', 'driver': 'org.postgresql.Driver'} #write review_id to table in RDS review_id_df.write.jdbc(url=jdbc_url, table='review_id_table', mode=mode, properties=config)
0.299208
0.14069
## Age-structured SIR model for India We can now generalise the model in example-2 to more than two age groups. Assume that the population has been partitioned into $i=1,\ldots, M$ age groups and that we have available the $M\times M$ contact matrix $C_{ij}$. These are a sum of contributions from contacts at home, workplace, schools and all other public spheres. Using superscripts $H$, $W$, $S$ and $O$ for each of these, we write the contact matrix as $$ C_{ij} = C^H_{ij} + C^W_{ij} + C^S_{ij} + C^O_{ij} $$ We read in these contact matrices from the data sets provided in the paper *Projecting social contact matrices in 152 countries using contact surveys and demographic data* by Prem et al, sum them to obtain the total contact matrix. We also read in the age distribution of India obtained from the *Population pyramid* website. The infection parameter $\beta$ is unknown, so we fit it to the case data till 25th March. The hope is that this will take into account the fact that there are, in reality, asymptomatic infectives, and that the symptomatic cases are an understimate. Also, the model is being applied to the whole of India, where the well-mixedness of the population, implicit in a non-spatial model, breaks down. This type of fitting gets more accurate, though, when it is applied to more local regions, where the well-mixedness is a better assumption. We then run the simulation, assuming all initial cases are symptomatic, and remain so. This will be an underestimate in the initial stages but once the epidemic enters the non-linear phase, there will be must less sensitivity to the initial condition. At the end of the simulation, we extract the number of susceptibles remaining in each age group, and the difference with the initial number of susceptibles is the total number that are infected. We multiply this with mortality data from China to obtain mortality estimates. ``` %%capture ## compile PyRoss for this notebook import os owd = os.getcwd() os.chdir('../') %run setup.py install os.chdir(owd) %matplotlib inline import numpy as np import pyross import pandas as pd import matplotlib.pyplot as plt M=16 # number of age groups # load age structure data my_data = np.genfromtxt('data/age_structures/India-2019.csv', delimiter=',', skip_header=1) aM, aF = my_data[:, 1], my_data[:, 2] # set age groups Ni=aM+aF; Ni=Ni[0:M]; N=np.sum(Ni) # contact matrices my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_home_1.xlsx', sheet_name='India',index_col=None) CH = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_work_1.xlsx', sheet_name='India',index_col=None) CW = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_school_1.xlsx', sheet_name='India',index_col=None) CS = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_other_locations_1.xlsx', sheet_name='India',index_col=None) CO = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_all_locations_1.xlsx', sheet_name='India',index_col=None) CA = np.array(my_data) # matrix of total contacts C=CH+CW+CS+CO beta = 0.01646692 # infection rate gIa = 1./7 # recovery rate of asymptomatic infectives gIs = 1./7 # recovery rate of symptomatic infectives alpha = 0. # fraction of asymptomatic infectives fsa = 1 # the self-isolation parameter # initial conditions Is_0 = np.zeros((M)); Is_0[6:13]=3; Is_0[2:6]=1 Ia_0 = np.zeros((M)) R_0 = np.zeros((M)) S_0 = Ni - (Ia_0 + Is_0 + R_0) # matrix for linearised dynamics L0 = np.zeros((M, M)) L = np.zeros((2*M, 2*M)) for i in range(M): for j in range(M): L0[i,j]=C[i,j]*Ni[i]/Ni[j] L[0:M, 0:M] = alpha*beta/gIs*L0 L[0:M, M:2*M] = fsa*alpha*beta/gIs*L0 L[M:2*M, 0:M] = ((1-alpha)*beta/gIs)*L0 L[M:2*M, M:2*M] = fsa*((1-alpha)*beta/gIs)*L0 r0 = np.max(np.linalg.eigvals(L)) print("The basic reproductive ratio for these parameters is", r0) # duration of simulation and data file Tf=21*2-1; Nf=2000; # the contact structure is independent of time def contactMatrix(t): return C # intantiate model parameters = {'alpha':alpha,'beta':beta, 'gIa':gIa,'gIs':gIs,'fsa':fsa} model = pyross.models.SIR(parameters, M, Ni) # run model data=model.simulate(S_0, Ia_0, Is_0, contactMatrix, Tf, Nf) t = data['t']; IC = np.zeros((Nf)) for i in range(M): IC += data['X'][:,2*M+i] fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.plot(t, IC, '-', lw=4, color='#A60628', label='forecast', alpha=0.8) plt.xticks(np.arange(0, Tf, 10), ('4 Mar', '18 Mar', '24 Mar', '3 Apr', '13 Apr', '23 Apr')); my_data = np.genfromtxt('data/covid-cases/india.txt', delimiter='', skip_header=6) day, cases = my_data[:,0], my_data[:,3] - my_data[:,1] plt.plot(cases, 'o-', lw=4, color='#348ABD', ms=16, label='data', alpha=0.5) plt.legend(fontsize=26, loc='upper left'); plt.grid() plt.autoscale(enable=True, axis='x', tight=True) plt.ylabel('Infected individuals'); plt.xlim(0, 40); plt.ylim(0, 9999); #plt.savefig('/Users/rsingh/Desktop/2a.png', format='png', dpi=212) cases C=CH+CW+CS+CO Tf=200; # matrix for linearised dynamics L0 = np.zeros((M, M)) L = np.zeros((2*M, 2*M)) for i in range(M): for j in range(M): L0[i,j]=C[i,j]*Ni[i]/Ni[j] L[0:M, 0:M] = alpha*beta/gIs*L0 L[0:M, M:2*M] = fsa*alpha*beta/gIs*L0 L[M:2*M, 0:M] = ((1-alpha)*beta/gIs)*L0 L[M:2*M, M:2*M] = fsa*((1-alpha)*beta/gIs)*L0 r0 = np.max(np.linalg.eigvals(L)) print("The basic reproductive ratio for these parameters is", r0) def contactMatrix(t): return C # start simulation Nf=2000; data=model.simulate(S_0, Ia_0, Is_0, contactMatrix, Tf, Nf) t = data.get('t'); IC = np.zeros((Nf)); SC = np.zeros((Nf)) for i in range(M): SC += data.get('X')[:,0*M+i] IC += data.get('X')[:,2*M+i] fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.plot(t, SC*10**(-6), '-', lw=4, color='#348ABD', label='susceptible', alpha=0.8,) plt.fill_between(t, 0, SC*10**(-6), color="#348ABD", alpha=0.3) plt.plot(t, IC*10**(-6), '-', lw=4, color='#A60628', label='infected', alpha=0.8) plt.fill_between(t, 0, IC*10**(-6), color="#A60628", alpha=0.3) my_data = np.genfromtxt('data/covid-cases/india.txt', delimiter='', skip_header=6) day, cases = my_data[:,0], my_data[:,3] - my_data[:,1] plt.plot(cases*10**(-6), 'ro-', lw=4, color='dimgrey', ms=16, label='data', alpha=0.5) plt.legend(fontsize=26); plt.grid() plt.autoscale(enable=True, axis='x', tight=True) plt.ylabel('Individuals (millions)') plt.plot(t*0+t[np.argsort(IC)[-1]], -170+.4*SC*10**(-6), lw=4, color='g', alpha=0.8) plt.xticks(np.arange(0, 200, 30), ('4 Mar', '3 Apr', '3 May', '2 Jun', '2 Jul', '1 Aug', '31 Aug')); #plt.savefig('/Users/rsingh/Desktop/2b.png', format='png', dpi=212) IC[np.argsort(IC)[-1]] IC cases # matrix for linearised dynamics L0 = np.zeros((M, M)) L = np.zeros((2*M, 2*M)) xind=[np.argsort(IC)[-1]] rr = np.zeros((Tf)) for tt in range(Tf): Si = np.array((data['X'][tt*10,0:M])).flatten() for i in range(M): for j in range(M): L0[i,j]=C[i,j]*Si[i]/Ni[j] L[0:M, 0:M] = alpha*beta/gIs*L0 L[0:M, M:2*M] = fsa*alpha*beta/gIs*L0 L[M:2*M, 0:M] = ((1-alpha)*beta/gIs)*L0 L[M:2*M, M:2*M] = fsa*((1-alpha)*beta/gIs)*L0 rr[tt] = np.real(np.max(np.linalg.eigvals(L))) fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.plot(t[::10], rr, 'o', lw=4, color='#A60628', label='suscetible', alpha=0.8,) plt.fill_between(t, 0, t*0+1, color="dimgrey", alpha=0.2); plt.ylabel('Basic reproductive ratio') plt.ylim(np.min(rr)-.1, np.max(rr)+.1) plt.xticks(np.arange(0, 200, 30), ('4 Mar', '3 Apr', '3 May', '2 Jun', '2 Jul', '1 Aug', '31 Aug')); #plt.savefig('/Users/rsingh/Desktop/test.png', format='png', dpi=212) fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.bar(np.arange(16),data.get('X')[0,0:M]*10**(-6), label='susceptible (initial)', alpha=0.8) plt.bar(np.arange(16),data.get('X')[-1,0:M]*10**(-6), label='susceptible (final)', alpha=0.8) plt.xticks(np.arange(-0.4, 16.45, 3.95), ('0', '20', '40', '60', '80')); plt.xlim(-0.45, 15.45); plt.ylabel('Individuals (millions)'); plt.xlabel('Age') plt.legend(fontsize=22); plt.axis('tight') plt.autoscale(enable=True, axis='x', tight=True) #plt.savefig('/Users/rsingh/Desktop/3a.png', format='png', dpi=212) MM = np.array((0,0,.2,.2,.2,.2,.2,.2,.4,.4,1.3,1.3,3.6,3.6,8,8)) ## Fatality Rate by AGE per 100 cases fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) m1 = .01*MM*(data.get('X')[0,0:M]-data['X'][-1,0:M]) plt.bar(np.arange(16),m1*10**(-6), label='susceptible (final)', alpha=0.8) plt.axis('tight'); plt.xticks(np.arange(-0.4, 16.45, 3.95), ('0', '20', '40', '60', '80')); plt.xlim(-0.45, 15.45); plt.ylabel('Mortality (millions)'); plt.xlabel('Age') plt.autoscale(enable=True, axis='x', tight=True) #plt.savefig('/Users/rsingh/Desktop/3b.png', format='png', dpi=212) m1 = .01*MM*(data['X'][0,0:M]-data['X'][-1,0:M]) np.sum(m1) SC[0]-SC[-1] 900*10^7 ```
github_jupyter
%%capture ## compile PyRoss for this notebook import os owd = os.getcwd() os.chdir('../') %run setup.py install os.chdir(owd) %matplotlib inline import numpy as np import pyross import pandas as pd import matplotlib.pyplot as plt M=16 # number of age groups # load age structure data my_data = np.genfromtxt('data/age_structures/India-2019.csv', delimiter=',', skip_header=1) aM, aF = my_data[:, 1], my_data[:, 2] # set age groups Ni=aM+aF; Ni=Ni[0:M]; N=np.sum(Ni) # contact matrices my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_home_1.xlsx', sheet_name='India',index_col=None) CH = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_work_1.xlsx', sheet_name='India',index_col=None) CW = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_school_1.xlsx', sheet_name='India',index_col=None) CS = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_other_locations_1.xlsx', sheet_name='India',index_col=None) CO = np.array(my_data) my_data = pd.read_excel('data/contact_matrices_152_countries/MUestimates_all_locations_1.xlsx', sheet_name='India',index_col=None) CA = np.array(my_data) # matrix of total contacts C=CH+CW+CS+CO beta = 0.01646692 # infection rate gIa = 1./7 # recovery rate of asymptomatic infectives gIs = 1./7 # recovery rate of symptomatic infectives alpha = 0. # fraction of asymptomatic infectives fsa = 1 # the self-isolation parameter # initial conditions Is_0 = np.zeros((M)); Is_0[6:13]=3; Is_0[2:6]=1 Ia_0 = np.zeros((M)) R_0 = np.zeros((M)) S_0 = Ni - (Ia_0 + Is_0 + R_0) # matrix for linearised dynamics L0 = np.zeros((M, M)) L = np.zeros((2*M, 2*M)) for i in range(M): for j in range(M): L0[i,j]=C[i,j]*Ni[i]/Ni[j] L[0:M, 0:M] = alpha*beta/gIs*L0 L[0:M, M:2*M] = fsa*alpha*beta/gIs*L0 L[M:2*M, 0:M] = ((1-alpha)*beta/gIs)*L0 L[M:2*M, M:2*M] = fsa*((1-alpha)*beta/gIs)*L0 r0 = np.max(np.linalg.eigvals(L)) print("The basic reproductive ratio for these parameters is", r0) # duration of simulation and data file Tf=21*2-1; Nf=2000; # the contact structure is independent of time def contactMatrix(t): return C # intantiate model parameters = {'alpha':alpha,'beta':beta, 'gIa':gIa,'gIs':gIs,'fsa':fsa} model = pyross.models.SIR(parameters, M, Ni) # run model data=model.simulate(S_0, Ia_0, Is_0, contactMatrix, Tf, Nf) t = data['t']; IC = np.zeros((Nf)) for i in range(M): IC += data['X'][:,2*M+i] fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.plot(t, IC, '-', lw=4, color='#A60628', label='forecast', alpha=0.8) plt.xticks(np.arange(0, Tf, 10), ('4 Mar', '18 Mar', '24 Mar', '3 Apr', '13 Apr', '23 Apr')); my_data = np.genfromtxt('data/covid-cases/india.txt', delimiter='', skip_header=6) day, cases = my_data[:,0], my_data[:,3] - my_data[:,1] plt.plot(cases, 'o-', lw=4, color='#348ABD', ms=16, label='data', alpha=0.5) plt.legend(fontsize=26, loc='upper left'); plt.grid() plt.autoscale(enable=True, axis='x', tight=True) plt.ylabel('Infected individuals'); plt.xlim(0, 40); plt.ylim(0, 9999); #plt.savefig('/Users/rsingh/Desktop/2a.png', format='png', dpi=212) cases C=CH+CW+CS+CO Tf=200; # matrix for linearised dynamics L0 = np.zeros((M, M)) L = np.zeros((2*M, 2*M)) for i in range(M): for j in range(M): L0[i,j]=C[i,j]*Ni[i]/Ni[j] L[0:M, 0:M] = alpha*beta/gIs*L0 L[0:M, M:2*M] = fsa*alpha*beta/gIs*L0 L[M:2*M, 0:M] = ((1-alpha)*beta/gIs)*L0 L[M:2*M, M:2*M] = fsa*((1-alpha)*beta/gIs)*L0 r0 = np.max(np.linalg.eigvals(L)) print("The basic reproductive ratio for these parameters is", r0) def contactMatrix(t): return C # start simulation Nf=2000; data=model.simulate(S_0, Ia_0, Is_0, contactMatrix, Tf, Nf) t = data.get('t'); IC = np.zeros((Nf)); SC = np.zeros((Nf)) for i in range(M): SC += data.get('X')[:,0*M+i] IC += data.get('X')[:,2*M+i] fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.plot(t, SC*10**(-6), '-', lw=4, color='#348ABD', label='susceptible', alpha=0.8,) plt.fill_between(t, 0, SC*10**(-6), color="#348ABD", alpha=0.3) plt.plot(t, IC*10**(-6), '-', lw=4, color='#A60628', label='infected', alpha=0.8) plt.fill_between(t, 0, IC*10**(-6), color="#A60628", alpha=0.3) my_data = np.genfromtxt('data/covid-cases/india.txt', delimiter='', skip_header=6) day, cases = my_data[:,0], my_data[:,3] - my_data[:,1] plt.plot(cases*10**(-6), 'ro-', lw=4, color='dimgrey', ms=16, label='data', alpha=0.5) plt.legend(fontsize=26); plt.grid() plt.autoscale(enable=True, axis='x', tight=True) plt.ylabel('Individuals (millions)') plt.plot(t*0+t[np.argsort(IC)[-1]], -170+.4*SC*10**(-6), lw=4, color='g', alpha=0.8) plt.xticks(np.arange(0, 200, 30), ('4 Mar', '3 Apr', '3 May', '2 Jun', '2 Jul', '1 Aug', '31 Aug')); #plt.savefig('/Users/rsingh/Desktop/2b.png', format='png', dpi=212) IC[np.argsort(IC)[-1]] IC cases # matrix for linearised dynamics L0 = np.zeros((M, M)) L = np.zeros((2*M, 2*M)) xind=[np.argsort(IC)[-1]] rr = np.zeros((Tf)) for tt in range(Tf): Si = np.array((data['X'][tt*10,0:M])).flatten() for i in range(M): for j in range(M): L0[i,j]=C[i,j]*Si[i]/Ni[j] L[0:M, 0:M] = alpha*beta/gIs*L0 L[0:M, M:2*M] = fsa*alpha*beta/gIs*L0 L[M:2*M, 0:M] = ((1-alpha)*beta/gIs)*L0 L[M:2*M, M:2*M] = fsa*((1-alpha)*beta/gIs)*L0 rr[tt] = np.real(np.max(np.linalg.eigvals(L))) fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.plot(t[::10], rr, 'o', lw=4, color='#A60628', label='suscetible', alpha=0.8,) plt.fill_between(t, 0, t*0+1, color="dimgrey", alpha=0.2); plt.ylabel('Basic reproductive ratio') plt.ylim(np.min(rr)-.1, np.max(rr)+.1) plt.xticks(np.arange(0, 200, 30), ('4 Mar', '3 Apr', '3 May', '2 Jun', '2 Jul', '1 Aug', '31 Aug')); #plt.savefig('/Users/rsingh/Desktop/test.png', format='png', dpi=212) fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) plt.bar(np.arange(16),data.get('X')[0,0:M]*10**(-6), label='susceptible (initial)', alpha=0.8) plt.bar(np.arange(16),data.get('X')[-1,0:M]*10**(-6), label='susceptible (final)', alpha=0.8) plt.xticks(np.arange(-0.4, 16.45, 3.95), ('0', '20', '40', '60', '80')); plt.xlim(-0.45, 15.45); plt.ylabel('Individuals (millions)'); plt.xlabel('Age') plt.legend(fontsize=22); plt.axis('tight') plt.autoscale(enable=True, axis='x', tight=True) #plt.savefig('/Users/rsingh/Desktop/3a.png', format='png', dpi=212) MM = np.array((0,0,.2,.2,.2,.2,.2,.2,.4,.4,1.3,1.3,3.6,3.6,8,8)) ## Fatality Rate by AGE per 100 cases fig = plt.figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.rcParams.update({'font.size': 22}) m1 = .01*MM*(data.get('X')[0,0:M]-data['X'][-1,0:M]) plt.bar(np.arange(16),m1*10**(-6), label='susceptible (final)', alpha=0.8) plt.axis('tight'); plt.xticks(np.arange(-0.4, 16.45, 3.95), ('0', '20', '40', '60', '80')); plt.xlim(-0.45, 15.45); plt.ylabel('Mortality (millions)'); plt.xlabel('Age') plt.autoscale(enable=True, axis='x', tight=True) #plt.savefig('/Users/rsingh/Desktop/3b.png', format='png', dpi=212) m1 = .01*MM*(data['X'][0,0:M]-data['X'][-1,0:M]) np.sum(m1) SC[0]-SC[-1] 900*10^7
0.393968
0.955068
``` !wget -O loan_train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv import itertools import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter import pandas as pd import numpy as np import matplotlib.ticker as ticker from sklearn import preprocessing from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import log_loss from sklearn.metrics import f1_score from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split %matplotlib inline df = pd.read_csv('loan_train.csv') df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True) df['loan_status'].replace(to_replace=['COLLECTION','PAIDOFF'], value=[0,1],inplace=True) df['due_date'] = pd.to_datetime(df['due_date']) df['effective_date'] = pd.to_datetime(df['effective_date']) df['dayofweek'] = df['effective_date'].dt.dayofweek df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) Feature = df[['Principal','terms','age','Gender','weekend']] Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1) Feature.drop(['Master or Above'], axis = 1,inplace=True) X = Feature y = df['loan_status'].values X = preprocessing.StandardScaler().fit(X).transform(X) X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.3, random_state=3) defaultTree = DecisionTreeClassifier(criterion="entropy", max_depth = 4) defaultTree.fit(X_trainset,y_trainset) predTree = defaultTree.predict(X_testset) print (predTree [0:5]) print (y_testset [0:5]) from sklearn import metrics import matplotlib.pyplot as plt print("DecisionTrees's Accuracy: ", metrics.accuracy_score(y_testset, predTree)) !wget -O loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv test_df = pd.read_csv('loan_test.csv') test_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True) test_df['loan_status'].replace(to_replace=['COLLECTION','PAIDOFF'], value=[0,1],inplace=True) test_df['due_date'] = pd.to_datetime(test_df['due_date']) test_df['effective_date'] = pd.to_datetime(test_df['effective_date']) test_df['dayofweek'] = test_df['effective_date'].dt.dayofweek test_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) test_Feature = test_df[['Principal','terms','age','Gender','weekend']] test_Feature = pd.concat([test_Feature,pd.get_dummies(test_df['education'])], axis=1) test_Feature.drop(['Master or Above'], axis = 1,inplace=True) test_X = test_Feature test_y = test_df['loan_status'].values test_X = preprocessing.StandardScaler().fit(test_X).transform(test_X) test_yhat = defaultTree.predict(test_X) jaccard_similarity_score(test_yhat, test_y) f1_score(test_yhat, test_y, average='weighted') ```
github_jupyter
!wget -O loan_train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv import itertools import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter import pandas as pd import numpy as np import matplotlib.ticker as ticker from sklearn import preprocessing from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import log_loss from sklearn.metrics import f1_score from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split %matplotlib inline df = pd.read_csv('loan_train.csv') df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True) df['loan_status'].replace(to_replace=['COLLECTION','PAIDOFF'], value=[0,1],inplace=True) df['due_date'] = pd.to_datetime(df['due_date']) df['effective_date'] = pd.to_datetime(df['effective_date']) df['dayofweek'] = df['effective_date'].dt.dayofweek df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) Feature = df[['Principal','terms','age','Gender','weekend']] Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1) Feature.drop(['Master or Above'], axis = 1,inplace=True) X = Feature y = df['loan_status'].values X = preprocessing.StandardScaler().fit(X).transform(X) X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.3, random_state=3) defaultTree = DecisionTreeClassifier(criterion="entropy", max_depth = 4) defaultTree.fit(X_trainset,y_trainset) predTree = defaultTree.predict(X_testset) print (predTree [0:5]) print (y_testset [0:5]) from sklearn import metrics import matplotlib.pyplot as plt print("DecisionTrees's Accuracy: ", metrics.accuracy_score(y_testset, predTree)) !wget -O loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv test_df = pd.read_csv('loan_test.csv') test_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True) test_df['loan_status'].replace(to_replace=['COLLECTION','PAIDOFF'], value=[0,1],inplace=True) test_df['due_date'] = pd.to_datetime(test_df['due_date']) test_df['effective_date'] = pd.to_datetime(test_df['effective_date']) test_df['dayofweek'] = test_df['effective_date'].dt.dayofweek test_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) test_Feature = test_df[['Principal','terms','age','Gender','weekend']] test_Feature = pd.concat([test_Feature,pd.get_dummies(test_df['education'])], axis=1) test_Feature.drop(['Master or Above'], axis = 1,inplace=True) test_X = test_Feature test_y = test_df['loan_status'].values test_X = preprocessing.StandardScaler().fit(test_X).transform(test_X) test_yhat = defaultTree.predict(test_X) jaccard_similarity_score(test_yhat, test_y) f1_score(test_yhat, test_y, average='weighted')
0.530236
0.494446
### ¿Cómo funciona la suspensión de un auto? > Una primer aproximación al modelo de la suspensión de un automovil es considerar el oscilador armónico amortiguado. El cual se representa a través de la siguiente ecuación diferencial. \begin{equation} m\ddot{x} + k x + B \dot{x} = 0 \end{equation} donde $k$ es la constante del muelle, y $B$ la constante de amortiguación. Referencia: - https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html - https://docs.scipy.org/doc/scipy/reference/index.html ___ <div> <img style="float: left; margin: 0px 0px 15px 0px;" src="https://upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Packard_wishbone_front_suspension_%28Autocar_Handbook%2C_13th_ed%2C_1935%29.jpg/414px-Packard_wishbone_front_suspension_%28Autocar_Handbook%2C_13th_ed%2C_1935%29.jpg" width="150px" height="50px" /> <img style="float: center; margin: 0px 0px 15px 15px;" src="https://upload.wikimedia.org/wikipedia/commons/d/df/Radaufhängung_Renault.JPG" width="150px" height="100px" /> </div> Esta es una ecuación diferencial ordinaria (EDO). En python existe una función llamada _odeint_ del paquete _integrate_ de la libreria _scipy_, que permite integrar sistemas del tipo \begin{equation} \frac{dy}{dt} = f(x,y) \end{equation} con condiciones iniciales $y(0) = y_{0}$. Ahora bien, si nos fijamos bien, la ecuación diferencial que tenemos es de segundo orden. No hay problema. La podemos simplificar como un sistema de ecuaciones de primer orden como sigue: \begin{align} \dot{x} & = y \\ \dot{y} & = -\frac{k}{m} x - \frac{B}{m} y \end{align} ``` import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint %matplotlib inline k = 3.0 # Constante del muelle m = 1.0 # Masa B = .5 # Constante de amortiguación def armonico(variables, t): x, y = variables return [y, -k * x / m - B / m * y] inicial = [0.6, 0.4] # Vector de posición inicial y velocidad inicial # condiciones iniciales x(t=0)=0.6 [m] y(t=0)=0.4 [m/s] #tiempo = np.linspace(0, 15) # Dominio temporal de 0 a 15 tiempo = np.arange(0, 20, .01) resultado = odeint(armonico, inicial, tiempo) #El sistema se resuelve con #odeint(sistema, condiciones iniciales, rango donde graficaremos) xx, yy = resultado.T # extraer posición y velocidad. import matplotlib as mpl label_size = 14 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size plt.plot(tiempo, xx, c = 'r', label="Posicion") plt.plot(tiempo, yy, c = 'k', label="Velocidad") plt.legend(loc = 'best', prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() omega0 = k/m plt.figure(figsize = (6,6)) plt.scatter(xx, yy/omega0, lw = 0, s = 3, cmap = 'viridis', c = xx) plt.show() from ipywidgets import * def amortiguado(t = 0): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(tiempo, xx, 'k-') ax.plot(tiempo[t], xx[t], 'ro') ax.text(4, .6, 'tiempo = %s'%tiempo[t]) ax.text(4, .5, 'posición = %s'%xx[t]) fig.canvas.draw() t_f = len(tiempo) interact_manual(amortiguado, t = (0, t_f, 1)); ``` ### Casos Teníamos \begin{equation} m\ddot{x} + k x + B \dot{x} = 0 \end{equation} si recordamos que $\omega_0 ^2 = k/m$ y definimos $B/m\equiv 2\Gamma$, tendremos \begin{equation} \ddot{x} + 2\Gamma \dot{x}+ \omega_0^2 x = 0 \end{equation} ### Amortiguado Si $\omega_0^2 > \Gamma^2$ se tiene movimiento oscilatorio amortiguado. ``` omega0 = k/m Gamma = B/(2*m) omega0**2, Gamma**2 omega0**2 > Gamma**2 ``` Entonces, el primer caso que ya habíamos presentado corresponde a movimiento amortiguado. ``` plt.plot(tiempo, xx, c = 'r', label="Posicion") plt.plot(tiempo, yy, c = 'k', label="Velocidad") plt.legend(loc = 'best', prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() ``` ### Sobreamortiguado Si $\omega_0^2 < \Gamma^2$ se tiene movimiento oscilatorio amortiguado. ``` k = .1 # Constante del muelle m = 1.0 # Masa B = .5 # Constante de amortiguación omega0 = k/m Gamma = B/(2*m) omega0**2, Gamma**2 omega0**2 < Gamma**2 inicial = [0.6, 0.4] tiempo = np.arange(0, 20, .01) resultado = odeint(armonico, inicial, tiempo) xxA, yyA = resultado.T # extraer posición y velocidad. plt.plot(tiempo, xxA, c = 'r', label="Posicion") plt.plot(tiempo, yyA, c = 'k', label="Velocidad") plt.legend(loc = 'best', prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() ``` ### Amortiguamiento crítico Si $\omega_0^2 = \Gamma^2$ se tiene movimiento aperiódico crítico (amortiguamiento crítico). ``` k = np.sqrt(.0625) # Constante del muelle m = 1.0 # Masa B = .5 # Constante de amortiguación omega0 = k/m Gamma = B/(2*m) omega0**2, Gamma**2 omega0**2 == Gamma**2 inicial = [0.6, 0.4] tiempo = np.arange(0, 20, .01) resultado = odeint(armonico, inicial, tiempo) xxC, yyC = resultado.T # extraer posición y velocidad. plt.plot(tiempo, xxC, c = 'r', label="Posicion") plt.plot(tiempo, yyC, c = 'k', label="Velocidad") plt.legend(loc = 'best',prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() ``` En resumen, se tiene entonces: ``` fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col', sharey='row',figsize =(10,6)) ax1.plot(tiempo, xx, c = 'k') ax1.set_title('Amortiguado', fontsize = 14) ax1.set_ylabel('Posición', fontsize = 14) ax2.plot(tiempo, xxA, c = 'b') ax2.set_title('Sobreamortiguado', fontsize = 14) ax3.plot(tiempo, xxC, c = 'r') ax3.set_title('Crítico', fontsize = 16) ax4.plot(tiempo, yy, c = 'k') ax4.set_ylabel('Velocidad', fontsize = 14) ax4.set_xlabel('tiempo', fontsize = 14) ax5.plot(tiempo, yyA, c = 'b') ax5.set_xlabel('tiempo', fontsize = 14) ax6.plot(tiempo, yyC, c = 'r') ax6.set_xlabel('tiempo', fontsize = 14) plt.show() ``` > **Actividad**. ¿Cómo se ve el espacio fase para los diferentes casos así como para diferentes condiciones iniciales? <script> $(document).ready(function(){ $('div.prompt').hide(); $('div.back-to-top').hide(); $('nav#menubar').hide(); $('.breadcrumb').hide(); $('.hidden-print').hide(); }); </script> <footer id="attribution" style="float:right; color:#808080; background:#fff;"> Created with Jupyter by Lázaro Alonso. </footer>
github_jupyter
import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint %matplotlib inline k = 3.0 # Constante del muelle m = 1.0 # Masa B = .5 # Constante de amortiguación def armonico(variables, t): x, y = variables return [y, -k * x / m - B / m * y] inicial = [0.6, 0.4] # Vector de posición inicial y velocidad inicial # condiciones iniciales x(t=0)=0.6 [m] y(t=0)=0.4 [m/s] #tiempo = np.linspace(0, 15) # Dominio temporal de 0 a 15 tiempo = np.arange(0, 20, .01) resultado = odeint(armonico, inicial, tiempo) #El sistema se resuelve con #odeint(sistema, condiciones iniciales, rango donde graficaremos) xx, yy = resultado.T # extraer posición y velocidad. import matplotlib as mpl label_size = 14 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size plt.plot(tiempo, xx, c = 'r', label="Posicion") plt.plot(tiempo, yy, c = 'k', label="Velocidad") plt.legend(loc = 'best', prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() omega0 = k/m plt.figure(figsize = (6,6)) plt.scatter(xx, yy/omega0, lw = 0, s = 3, cmap = 'viridis', c = xx) plt.show() from ipywidgets import * def amortiguado(t = 0): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(tiempo, xx, 'k-') ax.plot(tiempo[t], xx[t], 'ro') ax.text(4, .6, 'tiempo = %s'%tiempo[t]) ax.text(4, .5, 'posición = %s'%xx[t]) fig.canvas.draw() t_f = len(tiempo) interact_manual(amortiguado, t = (0, t_f, 1)); omega0 = k/m Gamma = B/(2*m) omega0**2, Gamma**2 omega0**2 > Gamma**2 plt.plot(tiempo, xx, c = 'r', label="Posicion") plt.plot(tiempo, yy, c = 'k', label="Velocidad") plt.legend(loc = 'best', prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() k = .1 # Constante del muelle m = 1.0 # Masa B = .5 # Constante de amortiguación omega0 = k/m Gamma = B/(2*m) omega0**2, Gamma**2 omega0**2 < Gamma**2 inicial = [0.6, 0.4] tiempo = np.arange(0, 20, .01) resultado = odeint(armonico, inicial, tiempo) xxA, yyA = resultado.T # extraer posición y velocidad. plt.plot(tiempo, xxA, c = 'r', label="Posicion") plt.plot(tiempo, yyA, c = 'k', label="Velocidad") plt.legend(loc = 'best', prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() k = np.sqrt(.0625) # Constante del muelle m = 1.0 # Masa B = .5 # Constante de amortiguación omega0 = k/m Gamma = B/(2*m) omega0**2, Gamma**2 omega0**2 == Gamma**2 inicial = [0.6, 0.4] tiempo = np.arange(0, 20, .01) resultado = odeint(armonico, inicial, tiempo) xxC, yyC = resultado.T # extraer posición y velocidad. plt.plot(tiempo, xxC, c = 'r', label="Posicion") plt.plot(tiempo, yyC, c = 'k', label="Velocidad") plt.legend(loc = 'best',prop={'size': 14}) plt.xlabel('tiempo', fontsize = 14) plt.show() fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col', sharey='row',figsize =(10,6)) ax1.plot(tiempo, xx, c = 'k') ax1.set_title('Amortiguado', fontsize = 14) ax1.set_ylabel('Posición', fontsize = 14) ax2.plot(tiempo, xxA, c = 'b') ax2.set_title('Sobreamortiguado', fontsize = 14) ax3.plot(tiempo, xxC, c = 'r') ax3.set_title('Crítico', fontsize = 16) ax4.plot(tiempo, yy, c = 'k') ax4.set_ylabel('Velocidad', fontsize = 14) ax4.set_xlabel('tiempo', fontsize = 14) ax5.plot(tiempo, yyA, c = 'b') ax5.set_xlabel('tiempo', fontsize = 14) ax6.plot(tiempo, yyC, c = 'r') ax6.set_xlabel('tiempo', fontsize = 14) plt.show()
0.335569
0.919751
# Computational Assignment 1 **Assigned Tuesday, 1-22-19.**, **Due Tuesday, 1-29-19.** Congratulations on installing the Jupyter Notebook! Welcomne to your first computational assignment! Beyond using this as a tool to understand physical chemistry, python and notebooks are actually used widely in scientific analysis. Big data analysis especially uses python notebooks. ## Introduction to the notebook If you double click on the text above, you will notice the look suddenly changes. Every section of the notebook, including the introductory text, is a technically a code entry. The text is written in a typesetting language called **Markdown**. To learn more see https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet To run a code entry in the notebook, select the section you want to run and type `shift+enter` If you want to make notes on a notebook, you can press the plus sign in the toolbar above to creat a new entry. Then make sure to switch the menu that in the toolbar from **code** to **Markdown**. We can also run calculations this way. In the entry below, I haved typed `123+3483` Select the entry and type `shift+enter` ``` 123+3483 ``` Once you run an entry, the output is displayed on the screen, when applicable Now try some arithmatic yourself in the blank entry below. (Don't forget to hit `shift+enter` to run your calculation!) ``` 123+3483 ``` ## Introduction to programming and python Python is a very powerful and intuitive modern programming language. It is easier to learn than many other languages. Because of the wide availability of libraries such **numpy** and **scipy** (among many others), it is very useful for scientific calculations. In this section, we will cover some very basic concepts. I assuming that nearly everyone has little or no previous programming experience, which is common for most chemistry and biology students. We will slowly build up to the skills we need to run complex calculations! ### Our first python code: "Hello World!" The first thing we usually learn how to do is print a simple message to the output. Run the following entry. ``` print("Hello World!") ``` Print is function that takes in text as an argument and outputs that text. A slightly more complicated example. Run the following entry ``` # This is a comment in python # Set a variable x = 1 + 7 # print the result of the variable print(x) ``` The lines that begin with "#" are comments. They are not read by the notebook and do not affect the code. They are very useful to make your code human readable This snippet of code set assigned the result of `1+7` to the variable `x` and then used `print` to output that value. ## Loops One of the benifits of the computer is that it can run a calcualtion many times without having to manually type each line. The way that we do this is to use a **loop**. ``` # This is an example of a loop # The colon is required on the first line for i in (1,2,3): # This indentation is required for loops print ("Hello World, iteration",i) ``` ### Explanation 1. The command `for` tells the code that this is a loop 2. The variable `i` is the counting variable. Everytime the loop runs, it will sequentially take on a different value from the list 3. The `(1,2,3)` is list of values. Sometimes we need to run a loop many times or iterate over a large list of numbers. For this, the `range` command is useful ``` # The command range(a,b) creates a list of numbers from a to b for i in range(-3,3): print ("Hello World, iteration",i) ``` Note that the `range(a,b)` command makes a list that spans from `a` to `b-1`. In the example above `range(-3,3`) makes a list that goes from -3 to 2 ## Conditional Statements: IF Many times we want the computer to do something after analyzing a logical statement. **If this is true, then do that**. These are called conditional statements ``` # Conditional example a = 100 if (a>0): #Like in the loop example, the indentation defines what happens in this # block of the if statement print("the number is positive") elif (a<0): print("the number is negative") elif (a==0): print("the number is zero") ``` Now we can try it again with a different value for `a` ``` # Conditional example again a = -1234 if (a>0): print("the number is positive") elif (a<0): print("the number is negative") elif (a==0): print("the number is zero") ``` Once more time ``` # Conditional example again a = 0 if (a>0): print("the number is positive") elif (a<0): print("the number is negative") elif (a==0): print("the number is zero") ``` ## Bringing it all together These can all be combined together to perform complicated actions. Note the indentation and colons. They matter. ### Combined Example ``` # A loop with an if statement for i in range(-1,2): print("Iteration",i) if (i==0): print("zero!") ``` # Exercise Following the examples above, write a code snippet that uses the `range` command to scan from -10 to 10 and print whether the number is positive, negative, or zero. **To turn this in, print this notebook and please make sure that your name is written on in.** ``` # Xin Yao Ren for i in range(-10,11): if (i>0): print ("The number is positive") elif (i<0): print ("The number is negative") elif (i ==0): print ("The number is zero") ```
github_jupyter
123+3483 123+3483 print("Hello World!") # This is a comment in python # Set a variable x = 1 + 7 # print the result of the variable print(x) # This is an example of a loop # The colon is required on the first line for i in (1,2,3): # This indentation is required for loops print ("Hello World, iteration",i) # The command range(a,b) creates a list of numbers from a to b for i in range(-3,3): print ("Hello World, iteration",i) # Conditional example a = 100 if (a>0): #Like in the loop example, the indentation defines what happens in this # block of the if statement print("the number is positive") elif (a<0): print("the number is negative") elif (a==0): print("the number is zero") # Conditional example again a = -1234 if (a>0): print("the number is positive") elif (a<0): print("the number is negative") elif (a==0): print("the number is zero") # Conditional example again a = 0 if (a>0): print("the number is positive") elif (a<0): print("the number is negative") elif (a==0): print("the number is zero") # A loop with an if statement for i in range(-1,2): print("Iteration",i) if (i==0): print("zero!") # Xin Yao Ren for i in range(-10,11): if (i>0): print ("The number is positive") elif (i<0): print ("The number is negative") elif (i ==0): print ("The number is zero")
0.13109
0.987981
``` %load_ext autoreload %autoreload 2 import numpy as np import cvxpy as cp import polytope as pc import matplotlib.pyplot as plt from evanqp import CvxpyProblem, Polytope, Verifier from utils import dlqr class DoubleIntegrator(CvxpyProblem): def __init__(self, N=10): self.N = N n = 2 m = 1 # Double Integrator self.A = np.array([[1.0, 1.0], [0.5, 1.0]]) self.B = np.array([[0.0], [1.0]]) # Weights self.Q = np.diag([1.0, 1.0]) self.R = np.array([[1.0]]) self.K, self.P, _ = dlqr(self.A, self.B, self.Q, self.R) # Constraints self.x_max = np.array([10.0, 10.0]) self.x_min = np.array([-10.0, -10.0]) self.u_max = 1.0 self.u_min = -1.0 # Terminal Set computation # state constraints Hx = np.vstack((np.eye(n), -np.eye(n))) hx = np.concatenate((self.x_max, -self.x_min)) # input constraints Hu = np.vstack((np.eye(m), -np.eye(m))) hu = np.array([self.u_max, -self.u_min]) # closed loop dynamics Ak = self.A - self.B @ self.K # state & input constraints HH = np.vstack((Hx, -Hu @ self.K)) hh = np.concatenate((hx, hu)) # compute maximal invariant set O = pc.Polytope(HH, hh) while True: O_prev = O # pre-set O = O.intersect(pc.Polytope(O.A @ Ak, O.b)) if O == O_prev: break self.F, self.f = O.A, O.b self.x0 = cp.Parameter(n, name='x0') self.xN = cp.Parameter(n, name='xN') self.x = cp.Variable((N + 1, n), name='x') self.u = cp.Variable((N, m), name='u') objective = cp.quad_form(self.x[N, :], self.P) constraints = [self.x0 == self.x[0, :], self.xN == self.x[N, :]] for i in range(N): objective += cp.quad_form(self.x[i, :], self.Q) + cp.quad_form(self.u[i, :], self.R) constraints += [self.x[i + 1, :] == self.A @ self.x[i, :] + self.B @ self.u[i, :]] constraints += [self.x_min <= self.x[i, :], self.x[i, :] <= self.x_max] constraints += [self.u_min <= self.u[i, :], self.u[i, :] <= self.u_max] # constraints += [self.F @ self.x[N, :] <= self.f] self.objective = cp.Minimize(objective) self._problem = cp.Problem(self.objective, constraints) def problem(self): return self._problem def parameters(self): return [self.x0] def variables(self): return [self.xN] def solve(self, x0): self.x0.value = x0 self._problem.solve(solver=cp.GUROBI) solution = {self.u0: self.u0.value, self.u: self.u.value, self.x: self.x.value, self.objective: self.objective.value} return solution mpc_controller = DoubleIntegrator() parameter_set = Polytope(np.array([[1, 0], [-1, 0], [0, 1], [0, -1]]), np.array([10, 10, 10, 10])) verifier = Verifier(parameter_set, mpc_controller) poly = Polytope(mpc_controller.F, mpc_controller.f) verifier.variables_in_polytope(poly) poly = Polytope(mpc_controller.F, mpc_controller.f) Verifier.min_optimal_mpc_horizon(parameter_set, lambda N: DoubleIntegrator(N=N), poly) ```
github_jupyter
%load_ext autoreload %autoreload 2 import numpy as np import cvxpy as cp import polytope as pc import matplotlib.pyplot as plt from evanqp import CvxpyProblem, Polytope, Verifier from utils import dlqr class DoubleIntegrator(CvxpyProblem): def __init__(self, N=10): self.N = N n = 2 m = 1 # Double Integrator self.A = np.array([[1.0, 1.0], [0.5, 1.0]]) self.B = np.array([[0.0], [1.0]]) # Weights self.Q = np.diag([1.0, 1.0]) self.R = np.array([[1.0]]) self.K, self.P, _ = dlqr(self.A, self.B, self.Q, self.R) # Constraints self.x_max = np.array([10.0, 10.0]) self.x_min = np.array([-10.0, -10.0]) self.u_max = 1.0 self.u_min = -1.0 # Terminal Set computation # state constraints Hx = np.vstack((np.eye(n), -np.eye(n))) hx = np.concatenate((self.x_max, -self.x_min)) # input constraints Hu = np.vstack((np.eye(m), -np.eye(m))) hu = np.array([self.u_max, -self.u_min]) # closed loop dynamics Ak = self.A - self.B @ self.K # state & input constraints HH = np.vstack((Hx, -Hu @ self.K)) hh = np.concatenate((hx, hu)) # compute maximal invariant set O = pc.Polytope(HH, hh) while True: O_prev = O # pre-set O = O.intersect(pc.Polytope(O.A @ Ak, O.b)) if O == O_prev: break self.F, self.f = O.A, O.b self.x0 = cp.Parameter(n, name='x0') self.xN = cp.Parameter(n, name='xN') self.x = cp.Variable((N + 1, n), name='x') self.u = cp.Variable((N, m), name='u') objective = cp.quad_form(self.x[N, :], self.P) constraints = [self.x0 == self.x[0, :], self.xN == self.x[N, :]] for i in range(N): objective += cp.quad_form(self.x[i, :], self.Q) + cp.quad_form(self.u[i, :], self.R) constraints += [self.x[i + 1, :] == self.A @ self.x[i, :] + self.B @ self.u[i, :]] constraints += [self.x_min <= self.x[i, :], self.x[i, :] <= self.x_max] constraints += [self.u_min <= self.u[i, :], self.u[i, :] <= self.u_max] # constraints += [self.F @ self.x[N, :] <= self.f] self.objective = cp.Minimize(objective) self._problem = cp.Problem(self.objective, constraints) def problem(self): return self._problem def parameters(self): return [self.x0] def variables(self): return [self.xN] def solve(self, x0): self.x0.value = x0 self._problem.solve(solver=cp.GUROBI) solution = {self.u0: self.u0.value, self.u: self.u.value, self.x: self.x.value, self.objective: self.objective.value} return solution mpc_controller = DoubleIntegrator() parameter_set = Polytope(np.array([[1, 0], [-1, 0], [0, 1], [0, -1]]), np.array([10, 10, 10, 10])) verifier = Verifier(parameter_set, mpc_controller) poly = Polytope(mpc_controller.F, mpc_controller.f) verifier.variables_in_polytope(poly) poly = Polytope(mpc_controller.F, mpc_controller.f) Verifier.min_optimal_mpc_horizon(parameter_set, lambda N: DoubleIntegrator(N=N), poly)
0.584627
0.49707
``` def start_game(): # Generateing 2-D matrix (list) mat = [] for i in range(4): mat.append([0]*4) return mat import random def add_new_2(mat): # Generating random position for new 2 r = random.randint(0, 3) c = random.randint(0, 3) while mat[r][c] != 0: r = random.randint(0, 3) c = random.randint(0, 3) mat[r][c] = 2 def get_current_state(mat): # WON # Anywhere 2048 is present for i in range(4): for j in range(4): if mat[i][j] == 2048: return 'WON!' # Not Over Yet # Anywhere 0 is present for i in range(4): for j in range(4): if mat[i][j] == 0: return 'GAME NOT OVER!' # Every row and column except last row and last column for i in range(3): for j in range(3): if mat[i][j] == mat[i+1][j] or mat[i][j] == mat[i][j+1]: return 'GAME NOT OVER!' # Last Row for j in range(3): if mat[3][j] == mat[3][j+1]: return 'GAME NOT OVER!' # Last Column for i in range(3): if mat[i][3] == mat[i+1][3]: return 'GAME NOT OVER!' # LOST return 'LOST!' def compress(mat): new_mat = [] changed = False for i in range(4): new_mat.append([0]*4) for i in range(4): pos = 0 for j in range(4): if mat[i][j] != 0: new_mat[i][pos] = mat[i][j] if j != pos: changed = True pos += 1 return new_mat, changed def merge(mat): changed = False for i in range(4): for j in range(3): if mat[i][j] == mat[i][j+1] and mat[i][j] != 0: mat[i][j] *= 2 mat[i][j+1] = 0 changed = True return mat, changed def reverse(mat): new_mat = [] for i in range(4): new_mat.append([]) for j in range(4): new_mat[i].append(mat[i][4-j-1]) return new_mat def transpose(mat): new_mat = [] for i in range(4): new_mat.append([]) for j in range(4): new_mat[i].append(mat[j][i]) return new_mat def move_up(grid): transposed_grid = transpose(grid) new_grid, changed1 = compress(transposed_grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) final_grid = transpose(new_grid) return final_grid, changed def move_down(grid): transposed_grid = transpose(grid) reverse_grid = reverse(transposed_grid) new_grid, changed1 = compress(reverse_grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) final_reversed_grid = reverse(new_grid) final_grid = transpose(final_reversed_grid) return final_grid, changed def move_right(grid): reverse_grid = reverse(grid) new_grid, changed1 = compress(reverse_grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) final_grid = reverse(new_grid) return final_grid, changed def move_left(grid): new_grid, changed1 = compress(grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) return new_grid, changed ```
github_jupyter
def start_game(): # Generateing 2-D matrix (list) mat = [] for i in range(4): mat.append([0]*4) return mat import random def add_new_2(mat): # Generating random position for new 2 r = random.randint(0, 3) c = random.randint(0, 3) while mat[r][c] != 0: r = random.randint(0, 3) c = random.randint(0, 3) mat[r][c] = 2 def get_current_state(mat): # WON # Anywhere 2048 is present for i in range(4): for j in range(4): if mat[i][j] == 2048: return 'WON!' # Not Over Yet # Anywhere 0 is present for i in range(4): for j in range(4): if mat[i][j] == 0: return 'GAME NOT OVER!' # Every row and column except last row and last column for i in range(3): for j in range(3): if mat[i][j] == mat[i+1][j] or mat[i][j] == mat[i][j+1]: return 'GAME NOT OVER!' # Last Row for j in range(3): if mat[3][j] == mat[3][j+1]: return 'GAME NOT OVER!' # Last Column for i in range(3): if mat[i][3] == mat[i+1][3]: return 'GAME NOT OVER!' # LOST return 'LOST!' def compress(mat): new_mat = [] changed = False for i in range(4): new_mat.append([0]*4) for i in range(4): pos = 0 for j in range(4): if mat[i][j] != 0: new_mat[i][pos] = mat[i][j] if j != pos: changed = True pos += 1 return new_mat, changed def merge(mat): changed = False for i in range(4): for j in range(3): if mat[i][j] == mat[i][j+1] and mat[i][j] != 0: mat[i][j] *= 2 mat[i][j+1] = 0 changed = True return mat, changed def reverse(mat): new_mat = [] for i in range(4): new_mat.append([]) for j in range(4): new_mat[i].append(mat[i][4-j-1]) return new_mat def transpose(mat): new_mat = [] for i in range(4): new_mat.append([]) for j in range(4): new_mat[i].append(mat[j][i]) return new_mat def move_up(grid): transposed_grid = transpose(grid) new_grid, changed1 = compress(transposed_grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) final_grid = transpose(new_grid) return final_grid, changed def move_down(grid): transposed_grid = transpose(grid) reverse_grid = reverse(transposed_grid) new_grid, changed1 = compress(reverse_grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) final_reversed_grid = reverse(new_grid) final_grid = transpose(final_reversed_grid) return final_grid, changed def move_right(grid): reverse_grid = reverse(grid) new_grid, changed1 = compress(reverse_grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) final_grid = reverse(new_grid) return final_grid, changed def move_left(grid): new_grid, changed1 = compress(grid) new_grid, changed2 = merge(new_grid) changed = changed1 or changed2 new_grid, temp = compress(new_grid) return new_grid, changed
0.313945
0.449332
``` import warnings warnings.simplefilter("ignore") warnings.filterwarnings("ignore") import joblib import missingno import pandas_profiling import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import scipy.stats as stats from scipy.stats import zscore from imblearn.over_sampling import SMOTE from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC import xgboost as xgb import lightgbm as lgb from sklearn import metrics from sklearn.metrics import f1_score from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV df_train = pd.read_csv("train.csv") df_test = pd.read_csv("test.csv") df_train.isna().sum() # checking for missing values in training dataset df_test.isna().sum() # checking for missing values in testing dataset df_train.nunique().sort_values().to_frame("Unique Values") df_test.nunique().sort_values().to_frame("Unique Values") df_train # Label Encoder le = LabelEncoder() df_train["Gender"] = le.fit_transform(df_train["Gender"]) df_train.head() # Ordinal Encoder oe = OrdinalEncoder() oe_col = ["Income", "Product_Holdings", "Credit_Category"] def ordinal_encode(df, column): df[column] = oe.fit_transform(df[column]) return df df=ordinal_encode(df_train, oe_col) df.drop("ID", axis=1 , inplace=True) df.head() sns.pairplot(df_train) # Z score method z=np.abs(zscore(df_train)) threshold=3 np.where(z>3) df=df_train[(z<3).all(axis=1)] df print("Rows and Columns before using Z Score", df_train.shape) print("Rows and Columns after using Z Score", df.shape) # Percentage of Data Loss data_loss=((df_train.shape[0]-df.shape[0])/df_train.shape[0])*100 print("Total percent of data lost after Z Score to deal with outliers is", data_loss) df.skew() df.hist(figsize=(15,15)) plt.show() df X = df.drop('Is_Churn', axis=1) Y = df['Is_Churn'] # adding samples to make all the categorical label values same oversample = SMOTE() X, Y = oversample.fit_resample(X, Y) scaler = StandardScaler() X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns) X.head() maxAccu=0 maxRS=0 for i in range(1, 1000): X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=i) lr=LogisticRegression() lr.fit(X_train, Y_train) pred = lr.predict(X_test) acc_score = (accuracy_score(Y_test, pred))*100 if acc_score>maxAccu: maxAccu=acc_score maxRS=i print("Best accuracy score is", maxAccu,"on Random State", maxRS) # Classification Model Function def classify(model, X, Y): X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=maxRS) # Training the model model.fit(X_train, Y_train) # Predicting Y_test pred = model.predict(X_test) # Classification Report class_report = classification_report(Y_test, pred) print("\nClassification Report:\n", class_report) # Accuracy Score acc_score = (accuracy_score(Y_test, pred))*100 print("Accuracy Score:", acc_score) # F1 Score f_one_score = (f1_score(Y_test, pred, average='macro'))*100 print("F1 Score:", f_one_score) # Cross Validation Score cv_score = (cross_val_score(model, X, Y, cv=5).mean())*100 print("Cross Validation Score:", cv_score) # Result of accuracy minus cv scores result = acc_score - cv_score print("\nAccuracy Score - Cross Validation Score is", result) # Logistic Regression model1=LogisticRegression() classify(model1, X, Y) # Support Vector Classifier model2=SVC(C=1.0, kernel='rbf', gamma='auto', random_state=42) classify(model2, X, Y) # Decision Tree Classifier model3=DecisionTreeClassifier(random_state=maxRS, max_depth=15) classify(model3, X, Y) # Random Forest Classifier model4=RandomForestClassifier(max_depth=15, random_state=maxRS) classify(model4, X, Y) # K Neighbors Classifier model5=KNeighborsClassifier(n_neighbors=15) classify(model5, X, Y) # Extra Trees Classifier model6=ExtraTreesClassifier() classify(model6, X, Y) # XGB Classifier model7=xgb.XGBClassifier(verbosity=0) classify(model7, X, Y) # LGBM Classifier model8=lgb.LGBMClassifier() classify(model8, X, Y) # Choosing SVC Classifier fmod_param = {'C' : [1.0, 2.0, 3.0, 4.0, 5.0], 'kernel' : ['poly', 'rbf', 'sigmoid'], 'random_state' : [21, 42, 111, 143, 808], 'gamma' : ['scale', 'auto'], 'decision_function_shape' : ['ovo', 'ovr'] } GSCV = GridSearchCV(SVC(), fmod_param, cv=5) GSCV.fit(X_train,Y_train) GSCV.best_params_ Final_Model = SVC(C=5.0, decision_function_shape='ovo', gamma='scale', kernel='rbf', random_state=21) Classifier = Final_Model.fit(X_train, Y_train) fmod_pred = Final_Model.predict(X_test) fmod_acc = (f1_score(Y_test, fmod_pred, average='macro'))*100 print("F1 score for the Best Model is:", fmod_acc) df = df_test.drop("ID", axis=1) df # Label Encoder le = LabelEncoder() df["Gender"] = le.fit_transform(df["Gender"]) # Ordinal Encoder oe = OrdinalEncoder() oe_col = ["Income", "Product_Holdings", "Credit_Category"] def ordinal_encode(df, column): df[column] = oe.fit_transform(df[column]) return df X=ordinal_encode(df, oe_col) # Feature Scaling scaler = StandardScaler() X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns) X.head() Predicted_Churn = Final_Model.predict(X) # Checking the predicted churn details and storing in dataframe format predicted_output = pd.DataFrame() predicted_output['ID'] = df_test["ID"] predicted_output['Is_Churn'] = Predicted_Churn predicted_output predicted_output.to_csv("sample_submission_solutionfile.csv", index=False) ```
github_jupyter
import warnings warnings.simplefilter("ignore") warnings.filterwarnings("ignore") import joblib import missingno import pandas_profiling import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import scipy.stats as stats from scipy.stats import zscore from imblearn.over_sampling import SMOTE from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC import xgboost as xgb import lightgbm as lgb from sklearn import metrics from sklearn.metrics import f1_score from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV df_train = pd.read_csv("train.csv") df_test = pd.read_csv("test.csv") df_train.isna().sum() # checking for missing values in training dataset df_test.isna().sum() # checking for missing values in testing dataset df_train.nunique().sort_values().to_frame("Unique Values") df_test.nunique().sort_values().to_frame("Unique Values") df_train # Label Encoder le = LabelEncoder() df_train["Gender"] = le.fit_transform(df_train["Gender"]) df_train.head() # Ordinal Encoder oe = OrdinalEncoder() oe_col = ["Income", "Product_Holdings", "Credit_Category"] def ordinal_encode(df, column): df[column] = oe.fit_transform(df[column]) return df df=ordinal_encode(df_train, oe_col) df.drop("ID", axis=1 , inplace=True) df.head() sns.pairplot(df_train) # Z score method z=np.abs(zscore(df_train)) threshold=3 np.where(z>3) df=df_train[(z<3).all(axis=1)] df print("Rows and Columns before using Z Score", df_train.shape) print("Rows and Columns after using Z Score", df.shape) # Percentage of Data Loss data_loss=((df_train.shape[0]-df.shape[0])/df_train.shape[0])*100 print("Total percent of data lost after Z Score to deal with outliers is", data_loss) df.skew() df.hist(figsize=(15,15)) plt.show() df X = df.drop('Is_Churn', axis=1) Y = df['Is_Churn'] # adding samples to make all the categorical label values same oversample = SMOTE() X, Y = oversample.fit_resample(X, Y) scaler = StandardScaler() X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns) X.head() maxAccu=0 maxRS=0 for i in range(1, 1000): X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=i) lr=LogisticRegression() lr.fit(X_train, Y_train) pred = lr.predict(X_test) acc_score = (accuracy_score(Y_test, pred))*100 if acc_score>maxAccu: maxAccu=acc_score maxRS=i print("Best accuracy score is", maxAccu,"on Random State", maxRS) # Classification Model Function def classify(model, X, Y): X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=maxRS) # Training the model model.fit(X_train, Y_train) # Predicting Y_test pred = model.predict(X_test) # Classification Report class_report = classification_report(Y_test, pred) print("\nClassification Report:\n", class_report) # Accuracy Score acc_score = (accuracy_score(Y_test, pred))*100 print("Accuracy Score:", acc_score) # F1 Score f_one_score = (f1_score(Y_test, pred, average='macro'))*100 print("F1 Score:", f_one_score) # Cross Validation Score cv_score = (cross_val_score(model, X, Y, cv=5).mean())*100 print("Cross Validation Score:", cv_score) # Result of accuracy minus cv scores result = acc_score - cv_score print("\nAccuracy Score - Cross Validation Score is", result) # Logistic Regression model1=LogisticRegression() classify(model1, X, Y) # Support Vector Classifier model2=SVC(C=1.0, kernel='rbf', gamma='auto', random_state=42) classify(model2, X, Y) # Decision Tree Classifier model3=DecisionTreeClassifier(random_state=maxRS, max_depth=15) classify(model3, X, Y) # Random Forest Classifier model4=RandomForestClassifier(max_depth=15, random_state=maxRS) classify(model4, X, Y) # K Neighbors Classifier model5=KNeighborsClassifier(n_neighbors=15) classify(model5, X, Y) # Extra Trees Classifier model6=ExtraTreesClassifier() classify(model6, X, Y) # XGB Classifier model7=xgb.XGBClassifier(verbosity=0) classify(model7, X, Y) # LGBM Classifier model8=lgb.LGBMClassifier() classify(model8, X, Y) # Choosing SVC Classifier fmod_param = {'C' : [1.0, 2.0, 3.0, 4.0, 5.0], 'kernel' : ['poly', 'rbf', 'sigmoid'], 'random_state' : [21, 42, 111, 143, 808], 'gamma' : ['scale', 'auto'], 'decision_function_shape' : ['ovo', 'ovr'] } GSCV = GridSearchCV(SVC(), fmod_param, cv=5) GSCV.fit(X_train,Y_train) GSCV.best_params_ Final_Model = SVC(C=5.0, decision_function_shape='ovo', gamma='scale', kernel='rbf', random_state=21) Classifier = Final_Model.fit(X_train, Y_train) fmod_pred = Final_Model.predict(X_test) fmod_acc = (f1_score(Y_test, fmod_pred, average='macro'))*100 print("F1 score for the Best Model is:", fmod_acc) df = df_test.drop("ID", axis=1) df # Label Encoder le = LabelEncoder() df["Gender"] = le.fit_transform(df["Gender"]) # Ordinal Encoder oe = OrdinalEncoder() oe_col = ["Income", "Product_Holdings", "Credit_Category"] def ordinal_encode(df, column): df[column] = oe.fit_transform(df[column]) return df X=ordinal_encode(df, oe_col) # Feature Scaling scaler = StandardScaler() X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns) X.head() Predicted_Churn = Final_Model.predict(X) # Checking the predicted churn details and storing in dataframe format predicted_output = pd.DataFrame() predicted_output['ID'] = df_test["ID"] predicted_output['Is_Churn'] = Predicted_Churn predicted_output predicted_output.to_csv("sample_submission_solutionfile.csv", index=False)
0.663669
0.414069
``` # Run this to ensure TensorFlow 2.x is used try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import json import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import numpy as np import matplotlib.pyplot as plt import io vocab_size = 10000 #maximum number of tokens embedding_dim = 16 #used in the model max_length = 100 trunc_type='post' padding_type='post' oov_tok = "????" training_size = 20000 !wget --no-check-certificate \ https://storage.googleapis.com/laurencemoroney-blog.appspot.com/sarcasm.json -O sarcasm.json with open("sarcasm.json", 'r') as f: datastore = json.load(f) sentences = [] labels = [] for item in datastore: sentences.append(item['headline']) labels.append(item['is_sarcastic']) training_sentences = sentences[0:training_size] testing_sentences = sentences[training_size:] training_labels = labels[0:training_size] testing_labels = labels[training_size:] tokenizer = Tokenizer(num_words = vocab_size, oov_token = oov_tok) tokenizer.fit_on_texts(training_sentences) # This assigns numbers to each word word_index = tokenizer.word_index # This stores the assigned number-word pair in a dictionary # Converting Training Data to sequences and then padding them training_sequences = tokenizer.texts_to_sequences(training_sentences) training_sequences_padded = pad_sequences(training_sequences) # Converting Testing Data to sequences and then padding them testing_sequences = tokenizer.texts_to_sequences(testing_sentences) testing_sequences_padded = pad_sequences(testing_sequences) # Information about training data print("\nPadded Sequences:") print(training_sequences_padded) print("\nShape:", training_sequences_padded.shape) print("\nThe Maximum length is: ", max(len(i) for i in training_sequences_padded)) # Information about testing data print("\nPadded Sequences:") print(testing_sequences_padded) print("\nShape:", testing_sequences_padded.shape) print("\nThe Maximum length is: ", max(len(i) for i in testing_sequences_padded)) training_sequences_padded = np.array(training_sequences_padded) training_labels = np.array(training_labels) testing_sequences_padded = np.array(testing_sequences_padded) testing_labels = np.array(testing_labels) model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=max_length), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy']) print(model.summary()) num_epochs = 30 history = model.fit(training_sequences_padded, training_labels, epochs=num_epochs, validation_data=(testing_sequences_padded, testing_labels), verbose=2) def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() plot_graphs(history, "accuracy") plot_graphs(history, "loss") reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) def decode_sentence(text): return ' '.join([reverse_word_index.get(i, '?') for i in text]) print(decode_sentence(training_sequences_padded[0])) print(training_sentences[2]) print(labels[2]) e = model.layers[0] weights = e.get_weights()[0] print(weights.shape) # shape: (vocab_size, embedding_dim) out_v = io.open('vecs.tsv', 'w', encoding='utf-8') out_m = io.open('meta.tsv', 'w', encoding='utf-8') for word_num in range(1, vocab_size): word = reverse_word_index[word_num] embeddings = weights[word_num] out_m.write(word + "\n") out_v.write('\t'.join([str(x) for x in embeddings]) + "\n") out_v.close() out_m.close() sentence = ["fuck you bitch asshole", "game of thrones season finale showing this sunday night"] sequences = tokenizer.texts_to_sequences(sentence) padded = pad_sequences(sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type) print(model.predict(padded)) ```
github_jupyter
# Run this to ensure TensorFlow 2.x is used try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import json import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import numpy as np import matplotlib.pyplot as plt import io vocab_size = 10000 #maximum number of tokens embedding_dim = 16 #used in the model max_length = 100 trunc_type='post' padding_type='post' oov_tok = "????" training_size = 20000 !wget --no-check-certificate \ https://storage.googleapis.com/laurencemoroney-blog.appspot.com/sarcasm.json -O sarcasm.json with open("sarcasm.json", 'r') as f: datastore = json.load(f) sentences = [] labels = [] for item in datastore: sentences.append(item['headline']) labels.append(item['is_sarcastic']) training_sentences = sentences[0:training_size] testing_sentences = sentences[training_size:] training_labels = labels[0:training_size] testing_labels = labels[training_size:] tokenizer = Tokenizer(num_words = vocab_size, oov_token = oov_tok) tokenizer.fit_on_texts(training_sentences) # This assigns numbers to each word word_index = tokenizer.word_index # This stores the assigned number-word pair in a dictionary # Converting Training Data to sequences and then padding them training_sequences = tokenizer.texts_to_sequences(training_sentences) training_sequences_padded = pad_sequences(training_sequences) # Converting Testing Data to sequences and then padding them testing_sequences = tokenizer.texts_to_sequences(testing_sentences) testing_sequences_padded = pad_sequences(testing_sequences) # Information about training data print("\nPadded Sequences:") print(training_sequences_padded) print("\nShape:", training_sequences_padded.shape) print("\nThe Maximum length is: ", max(len(i) for i in training_sequences_padded)) # Information about testing data print("\nPadded Sequences:") print(testing_sequences_padded) print("\nShape:", testing_sequences_padded.shape) print("\nThe Maximum length is: ", max(len(i) for i in testing_sequences_padded)) training_sequences_padded = np.array(training_sequences_padded) training_labels = np.array(training_labels) testing_sequences_padded = np.array(testing_sequences_padded) testing_labels = np.array(testing_labels) model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=max_length), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy']) print(model.summary()) num_epochs = 30 history = model.fit(training_sequences_padded, training_labels, epochs=num_epochs, validation_data=(testing_sequences_padded, testing_labels), verbose=2) def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string, 'val_'+string]) plt.show() plot_graphs(history, "accuracy") plot_graphs(history, "loss") reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) def decode_sentence(text): return ' '.join([reverse_word_index.get(i, '?') for i in text]) print(decode_sentence(training_sequences_padded[0])) print(training_sentences[2]) print(labels[2]) e = model.layers[0] weights = e.get_weights()[0] print(weights.shape) # shape: (vocab_size, embedding_dim) out_v = io.open('vecs.tsv', 'w', encoding='utf-8') out_m = io.open('meta.tsv', 'w', encoding='utf-8') for word_num in range(1, vocab_size): word = reverse_word_index[word_num] embeddings = weights[word_num] out_m.write(word + "\n") out_v.write('\t'.join([str(x) for x in embeddings]) + "\n") out_v.close() out_m.close() sentence = ["fuck you bitch asshole", "game of thrones season finale showing this sunday night"] sequences = tokenizer.texts_to_sequences(sentence) padded = pad_sequences(sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type) print(model.predict(padded))
0.669745
0.766075
## Dependencies ``` from openvaccine_scripts import * import warnings, json from sklearn.model_selection import KFold, StratifiedKFold import tensorflow.keras.layers as L import tensorflow.keras.backend as K from tensorflow.keras import optimizers, losses, Model from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau SEED = 0 seed_everything(SEED) warnings.filterwarnings('ignore') ``` # Model parameters ``` config = { "BATCH_SIZE": 64, "EPOCHS": 120, "LEARNING_RATE": 1e-3, "ES_PATIENCE": 10, "N_FOLDS": 5, "N_USED_FOLDS": 5, "PB_SEQ_LEN": 107, "PV_SEQ_LEN": 130, } with open('config.json', 'w') as json_file: json.dump(json.loads(json.dumps(config)), json_file) config ``` # Load data ``` database_base_path = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(database_base_path + 'train.json', lines=True) test = pd.read_json(database_base_path + 'test.json', lines=True) print('Train samples: %d' % len(train)) display(train.head()) print(f'Test samples: {len(test)}') display(test.head()) ``` ## Auxiliary functions ``` def get_dataset(x, y=None, labeled=True, shuffled=True, batch_size=32, buffer_size=-1, seed=0): if labeled: dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]}, {'outputs': y})) else: dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]})) if shuffled: dataset = dataset.shuffle(2048, seed=seed) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(buffer_size) return dataset def get_dataset_sampling(x, y=None, shuffled=True, seed=0): dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]}, {'outputs': y})) if shuffled: dataset = dataset.shuffle(2048, seed=seed) return dataset ``` # Model ``` def model_fn(hidden_dim=384, dropout=.5, pred_len=68, n_outputs=5): inputs_seq = L.Input(shape=(None, 1), name='inputs_seq') inputs_struct = L.Input(shape=(None, 1), name='inputs_struct') inputs_loop = L.Input(shape=(None, 1), name='inputs_loop') def _one_hot(x, num_classes): return K.squeeze(K.one_hot(K.cast(x, 'uint8'), num_classes=num_classes), axis=2) ohe_seq = L.Lambda(_one_hot, arguments={'num_classes': len(token2int_seq)}, input_shape=(None, 1))(inputs_seq) ohe_struct = L.Lambda(_one_hot, arguments={'num_classes': len(token2int_struct)}, input_shape=(None, 1))(inputs_struct) ohe_loop = L.Lambda(_one_hot, arguments={'num_classes': len(token2int_loop)}, input_shape=(None, 1))(inputs_loop) x_concat = L.concatenate([ohe_seq, ohe_struct, ohe_loop], axis=-1, name='ohe_concatenate') x = L.Conv1D(filters=256, kernel_size=5, padding='same')(x_concat) x = L.Bidirectional(L.GRU(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal'))(x) x = L.Bidirectional(L.GRU(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal'))(x) # Since we are only making predictions on the first part of each sequence, we have to truncate it x_truncated = x[:, :pred_len] outputs = L.Dense(n_outputs, activation='linear', name='outputs')(x_truncated) model = Model(inputs=[inputs_seq, inputs_struct, inputs_loop], outputs=outputs) opt = optimizers.Adam(learning_rate=config['LEARNING_RATE']) model.compile(optimizer=opt, loss=MCRMSE) return model model = model_fn() model.summary() ``` # Pre-process ``` feature_cols = ['sequence', 'structure', 'predicted_loop_type'] pred_cols = ['reactivity', 'deg_Mg_pH10', 'deg_pH10', 'deg_Mg_50C', 'deg_50C'] encoder_list = [token2int_seq, token2int_struct, token2int_loop] train_features = np.array([preprocess_inputs(train, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) train_labels = np.array(train[pred_cols].values.tolist()).transpose((0, 2, 1)) public_test = test.query("seq_length == 107").copy() private_test = test.query("seq_length == 130").copy() x_test_public = np.array([preprocess_inputs(public_test, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) x_test_private = np.array([preprocess_inputs(private_test, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) # To use as stratified col train['signal_to_noise_int'] = train['signal_to_noise'].astype(int) ``` # Training ``` AUTO = tf.data.experimental.AUTOTUNE skf = StratifiedKFold(n_splits=config['N_USED_FOLDS'], shuffle=True, random_state=SEED) history_list = [] oof = train[['id']].copy() oof_preds = np.zeros(train_labels.shape) test_public_preds = np.zeros((x_test_public.shape[0], config['PB_SEQ_LEN'], len(pred_cols))) test_private_preds = np.zeros((x_test_private.shape[0], config['PV_SEQ_LEN'], len(pred_cols))) for fold,(train_idx, valid_idx) in enumerate(skf.split(train_labels, train['signal_to_noise_int'])): if fold >= config['N_USED_FOLDS']: break print(f'\nFOLD: {fold+1}') ### Create datasets x_train = train_features[train_idx] y_train = train_labels[train_idx] x_valid = train_features[valid_idx] y_valid = train_labels[valid_idx] train_ds = get_dataset(x_train, y_train, labeled=True, shuffled=True, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) valid_ds = get_dataset(x_valid, y_valid, labeled=True, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) oof_ds = get_dataset(train_features[valid_idx], labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) test_public_ds = get_dataset(x_test_public, labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) test_private_ds = get_dataset(x_test_private, labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) ### Model K.clear_session() model = model_fn() model_path = f'model_{fold}.h5' es = EarlyStopping(monitor='val_loss', mode='min', patience=config['ES_PATIENCE'], restore_best_weights=True, verbose=1) rlrp = ReduceLROnPlateau(monitor='val_loss', mode='min', factor=0.1, patience=5, verbose=1) ### Train history = model.fit(train_ds, validation_data=valid_ds, callbacks=[es, rlrp], epochs=config['EPOCHS'], batch_size=config['BATCH_SIZE'], verbose=2).history history_list.append(history) # Save last model weights model.save_weights(model_path) ### Inference oof_preds[valid_idx] = model.predict(oof_ds) # Short sequence (public test) model = model_fn(pred_len= config['PB_SEQ_LEN']) model.load_weights(model_path) test_public_preds += model.predict(test_public_ds) * (1 / config['N_USED_FOLDS']) # Long sequence (private test) model = model_fn(pred_len= config['PV_SEQ_LEN']) model.load_weights(model_path) test_private_preds += model.predict(test_private_ds) * (1 / config['N_USED_FOLDS']) ``` ## Model loss graph ``` for fold, history in enumerate(history_list): print(f'\nFOLD: {fold+1}') print(f"Train {np.array(history['loss']).min():.5f} Validation {np.array(history['val_loss']).min():.5f}") plot_metrics_agg(history_list) ``` # Post-processing ``` # Assign values to OOF set # Assign labels for idx, col in enumerate(pred_cols): val = train_labels[:, :, idx] oof = oof.assign(**{col: list(val)}) # Assign preds for idx, col in enumerate(pred_cols): val = oof_preds[:, :, idx] oof = oof.assign(**{f'{col}_pred': list(val)}) # Assign values to test set preds_ls = [] for df, preds in [(public_test, test_public_preds), (private_test, test_private_preds)]: for i, uid in enumerate(df.id): single_pred = preds[i] single_df = pd.DataFrame(single_pred, columns=pred_cols) single_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_df.shape[0])] preds_ls.append(single_df) preds_df = pd.concat(preds_ls) ``` # Model evaluation ``` display(evaluate_model(train, train_labels, oof_preds, pred_cols)) ``` # Visualize test predictions ``` submission = pd.read_csv(database_base_path + 'sample_submission.csv') submission = submission[['id_seqpos']].merge(preds_df, on=['id_seqpos']) ``` # Test set predictions ``` display(submission.head(10)) display(submission.describe()) submission.to_csv('submission.csv', index=False) ```
github_jupyter
from openvaccine_scripts import * import warnings, json from sklearn.model_selection import KFold, StratifiedKFold import tensorflow.keras.layers as L import tensorflow.keras.backend as K from tensorflow.keras import optimizers, losses, Model from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau SEED = 0 seed_everything(SEED) warnings.filterwarnings('ignore') config = { "BATCH_SIZE": 64, "EPOCHS": 120, "LEARNING_RATE": 1e-3, "ES_PATIENCE": 10, "N_FOLDS": 5, "N_USED_FOLDS": 5, "PB_SEQ_LEN": 107, "PV_SEQ_LEN": 130, } with open('config.json', 'w') as json_file: json.dump(json.loads(json.dumps(config)), json_file) config database_base_path = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(database_base_path + 'train.json', lines=True) test = pd.read_json(database_base_path + 'test.json', lines=True) print('Train samples: %d' % len(train)) display(train.head()) print(f'Test samples: {len(test)}') display(test.head()) def get_dataset(x, y=None, labeled=True, shuffled=True, batch_size=32, buffer_size=-1, seed=0): if labeled: dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]}, {'outputs': y})) else: dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]})) if shuffled: dataset = dataset.shuffle(2048, seed=seed) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(buffer_size) return dataset def get_dataset_sampling(x, y=None, shuffled=True, seed=0): dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]}, {'outputs': y})) if shuffled: dataset = dataset.shuffle(2048, seed=seed) return dataset def model_fn(hidden_dim=384, dropout=.5, pred_len=68, n_outputs=5): inputs_seq = L.Input(shape=(None, 1), name='inputs_seq') inputs_struct = L.Input(shape=(None, 1), name='inputs_struct') inputs_loop = L.Input(shape=(None, 1), name='inputs_loop') def _one_hot(x, num_classes): return K.squeeze(K.one_hot(K.cast(x, 'uint8'), num_classes=num_classes), axis=2) ohe_seq = L.Lambda(_one_hot, arguments={'num_classes': len(token2int_seq)}, input_shape=(None, 1))(inputs_seq) ohe_struct = L.Lambda(_one_hot, arguments={'num_classes': len(token2int_struct)}, input_shape=(None, 1))(inputs_struct) ohe_loop = L.Lambda(_one_hot, arguments={'num_classes': len(token2int_loop)}, input_shape=(None, 1))(inputs_loop) x_concat = L.concatenate([ohe_seq, ohe_struct, ohe_loop], axis=-1, name='ohe_concatenate') x = L.Conv1D(filters=256, kernel_size=5, padding='same')(x_concat) x = L.Bidirectional(L.GRU(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal'))(x) x = L.Bidirectional(L.GRU(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal'))(x) # Since we are only making predictions on the first part of each sequence, we have to truncate it x_truncated = x[:, :pred_len] outputs = L.Dense(n_outputs, activation='linear', name='outputs')(x_truncated) model = Model(inputs=[inputs_seq, inputs_struct, inputs_loop], outputs=outputs) opt = optimizers.Adam(learning_rate=config['LEARNING_RATE']) model.compile(optimizer=opt, loss=MCRMSE) return model model = model_fn() model.summary() feature_cols = ['sequence', 'structure', 'predicted_loop_type'] pred_cols = ['reactivity', 'deg_Mg_pH10', 'deg_pH10', 'deg_Mg_50C', 'deg_50C'] encoder_list = [token2int_seq, token2int_struct, token2int_loop] train_features = np.array([preprocess_inputs(train, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) train_labels = np.array(train[pred_cols].values.tolist()).transpose((0, 2, 1)) public_test = test.query("seq_length == 107").copy() private_test = test.query("seq_length == 130").copy() x_test_public = np.array([preprocess_inputs(public_test, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) x_test_private = np.array([preprocess_inputs(private_test, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) # To use as stratified col train['signal_to_noise_int'] = train['signal_to_noise'].astype(int) AUTO = tf.data.experimental.AUTOTUNE skf = StratifiedKFold(n_splits=config['N_USED_FOLDS'], shuffle=True, random_state=SEED) history_list = [] oof = train[['id']].copy() oof_preds = np.zeros(train_labels.shape) test_public_preds = np.zeros((x_test_public.shape[0], config['PB_SEQ_LEN'], len(pred_cols))) test_private_preds = np.zeros((x_test_private.shape[0], config['PV_SEQ_LEN'], len(pred_cols))) for fold,(train_idx, valid_idx) in enumerate(skf.split(train_labels, train['signal_to_noise_int'])): if fold >= config['N_USED_FOLDS']: break print(f'\nFOLD: {fold+1}') ### Create datasets x_train = train_features[train_idx] y_train = train_labels[train_idx] x_valid = train_features[valid_idx] y_valid = train_labels[valid_idx] train_ds = get_dataset(x_train, y_train, labeled=True, shuffled=True, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) valid_ds = get_dataset(x_valid, y_valid, labeled=True, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) oof_ds = get_dataset(train_features[valid_idx], labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) test_public_ds = get_dataset(x_test_public, labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) test_private_ds = get_dataset(x_test_private, labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) ### Model K.clear_session() model = model_fn() model_path = f'model_{fold}.h5' es = EarlyStopping(monitor='val_loss', mode='min', patience=config['ES_PATIENCE'], restore_best_weights=True, verbose=1) rlrp = ReduceLROnPlateau(monitor='val_loss', mode='min', factor=0.1, patience=5, verbose=1) ### Train history = model.fit(train_ds, validation_data=valid_ds, callbacks=[es, rlrp], epochs=config['EPOCHS'], batch_size=config['BATCH_SIZE'], verbose=2).history history_list.append(history) # Save last model weights model.save_weights(model_path) ### Inference oof_preds[valid_idx] = model.predict(oof_ds) # Short sequence (public test) model = model_fn(pred_len= config['PB_SEQ_LEN']) model.load_weights(model_path) test_public_preds += model.predict(test_public_ds) * (1 / config['N_USED_FOLDS']) # Long sequence (private test) model = model_fn(pred_len= config['PV_SEQ_LEN']) model.load_weights(model_path) test_private_preds += model.predict(test_private_ds) * (1 / config['N_USED_FOLDS']) for fold, history in enumerate(history_list): print(f'\nFOLD: {fold+1}') print(f"Train {np.array(history['loss']).min():.5f} Validation {np.array(history['val_loss']).min():.5f}") plot_metrics_agg(history_list) # Assign values to OOF set # Assign labels for idx, col in enumerate(pred_cols): val = train_labels[:, :, idx] oof = oof.assign(**{col: list(val)}) # Assign preds for idx, col in enumerate(pred_cols): val = oof_preds[:, :, idx] oof = oof.assign(**{f'{col}_pred': list(val)}) # Assign values to test set preds_ls = [] for df, preds in [(public_test, test_public_preds), (private_test, test_private_preds)]: for i, uid in enumerate(df.id): single_pred = preds[i] single_df = pd.DataFrame(single_pred, columns=pred_cols) single_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_df.shape[0])] preds_ls.append(single_df) preds_df = pd.concat(preds_ls) display(evaluate_model(train, train_labels, oof_preds, pred_cols)) submission = pd.read_csv(database_base_path + 'sample_submission.csv') submission = submission[['id_seqpos']].merge(preds_df, on=['id_seqpos']) display(submission.head(10)) display(submission.describe()) submission.to_csv('submission.csv', index=False)
0.622459
0.706866
``` import numpy import pandas import re import os season = 2016 input_file_name = 'data/rankings/{}_composite_rankings.csv'.format(season) def pattern_match(pattern, string): return (re.search(pattern, string) is not None) special_columns = ['Team', 'Rank', 'Conf', 'Record', 'Mean', 'Median', 'St.Dev'] def get_fields(width, line, data_type, n=1): data = list() for i in range(n): y = line[:width] #print '"{}"'.format(y) z = numpy.nan if y.strip() == '' else data_type(y.strip()) data.append(z) line = line[width:] return (data, line) def parse_line(line): ranker_width = 4 section_width = 2 rank_width = 5 team_width = 17 conf_width = 5 record_width = 7 team_short_width = 9 float_width = 6 float_2_width = 7 data = list() temp_line = line # First Block temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(rank_width, temp_line, int) data.extend(temp_data) temp_data, temp_line = get_fields(team_width, temp_line, str) data.extend(temp_data) temp_data, temp_line = get_fields(conf_width, temp_line, str) data.extend(temp_data) temp_data, temp_line = get_fields(record_width, temp_line, str) data.extend(temp_data) # Blocks 2 through 4 for i in range(3): for j in range(3): temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(rank_width, temp_line, int) data.extend(temp_data) temp_data, temp_line = get_fields(team_short_width, temp_line, str) data.extend(temp_data) # Block 5 for j in range(1): temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 2) data.extend(temp_data) temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(float_width, temp_line, float, 2) data.extend(temp_data) temp_data, temp_line = get_fields(float_2_width, temp_line, float) data.extend(temp_data) # print zip(header[:len(data)], data) # print temp_line return data with open(input_file_name, 'r') as input_file: for line_number, line in enumerate(input_file): if line_number == 0: header = map(lambda s: s.strip().strip(','), line.split()) df_header = list() for f in header: if f not in df_header: df_header.append(f) df_dict = dict([(f, list()) for f in df_header]) continue # skip empty lines if line.strip() == '': continue # Check for a duplicate header line duplicate_header = map(lambda s: s.strip().strip(','), line.split()) if header == duplicate_header: continue data = parse_line(line) recorded = list() for f, x in zip(header, data): if f not in recorded: df_dict[f].append(x) recorded.append(f) df = pandas.DataFrame(df_dict) ranker_list = sorted(list(set(df.columns) - set(special_columns))) feature_list = list(special_columns) + ranker_list for ranker in ranker_list: df[ranker] = df[ranker].fillna(df['Median']) df[feature_list][:5] output_file = 'data/rankings/{}_composite_rankings.clean.csv'.format(season) df[feature_list].to_csv(output_file, sep='|') ```
github_jupyter
import numpy import pandas import re import os season = 2016 input_file_name = 'data/rankings/{}_composite_rankings.csv'.format(season) def pattern_match(pattern, string): return (re.search(pattern, string) is not None) special_columns = ['Team', 'Rank', 'Conf', 'Record', 'Mean', 'Median', 'St.Dev'] def get_fields(width, line, data_type, n=1): data = list() for i in range(n): y = line[:width] #print '"{}"'.format(y) z = numpy.nan if y.strip() == '' else data_type(y.strip()) data.append(z) line = line[width:] return (data, line) def parse_line(line): ranker_width = 4 section_width = 2 rank_width = 5 team_width = 17 conf_width = 5 record_width = 7 team_short_width = 9 float_width = 6 float_2_width = 7 data = list() temp_line = line # First Block temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(rank_width, temp_line, int) data.extend(temp_data) temp_data, temp_line = get_fields(team_width, temp_line, str) data.extend(temp_data) temp_data, temp_line = get_fields(conf_width, temp_line, str) data.extend(temp_data) temp_data, temp_line = get_fields(record_width, temp_line, str) data.extend(temp_data) # Blocks 2 through 4 for i in range(3): for j in range(3): temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(rank_width, temp_line, int) data.extend(temp_data) temp_data, temp_line = get_fields(team_short_width, temp_line, str) data.extend(temp_data) # Block 5 for j in range(1): temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 5) data.extend(temp_data) temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(ranker_width, temp_line, int, 2) data.extend(temp_data) temp_data, temp_line = get_fields(section_width, temp_line, str) temp_data, temp_line = get_fields(float_width, temp_line, float, 2) data.extend(temp_data) temp_data, temp_line = get_fields(float_2_width, temp_line, float) data.extend(temp_data) # print zip(header[:len(data)], data) # print temp_line return data with open(input_file_name, 'r') as input_file: for line_number, line in enumerate(input_file): if line_number == 0: header = map(lambda s: s.strip().strip(','), line.split()) df_header = list() for f in header: if f not in df_header: df_header.append(f) df_dict = dict([(f, list()) for f in df_header]) continue # skip empty lines if line.strip() == '': continue # Check for a duplicate header line duplicate_header = map(lambda s: s.strip().strip(','), line.split()) if header == duplicate_header: continue data = parse_line(line) recorded = list() for f, x in zip(header, data): if f not in recorded: df_dict[f].append(x) recorded.append(f) df = pandas.DataFrame(df_dict) ranker_list = sorted(list(set(df.columns) - set(special_columns))) feature_list = list(special_columns) + ranker_list for ranker in ranker_list: df[ranker] = df[ranker].fillna(df['Median']) df[feature_list][:5] output_file = 'data/rankings/{}_composite_rankings.clean.csv'.format(season) df[feature_list].to_csv(output_file, sep='|')
0.201342
0.185873
``` %%writefile lyrics.txt Look, I was gonna go easy on you not to hurt your feelings But I'm only going to get this one chance (Six minutes, six minutes) Something's wrong, I can feel it (Six minutes, six minutes, Slim Shady, you're on) Just a feeling I've got Like something's about to happen But I don't know what If that means, what I think it means, we're in trouble Big trouble. And if he is as bananas as you say I'm not taking any chances You are just what the doc ordered I'm beginning to feel like a Rap God, Rap God All my people from the front to the back nod, back nod Now who thinks their arms are long enough to slap box, slap box? They said I rap like a robot, so call me rap-bot But for me to rap like a computer must be in my genes I got a laptop in my back pocket My pen'll go off when I half-cock it Got a fat knot from that rap profit Made a living and a killing off it Ever since Bill Clinton was still in office With Monica Lewinsky feeling on his nutsack I'm an MC still as honest But as rude and as indecent as all hell Syllables, skill-a-holic (Kill 'em all with) This flippity, dippity-hippity hip-hop You don't really wanna get into a pissing match With this rappity brat Packing a MAC in the back of the Ac Backpack rap, crap, yap-yap, yackety-yack And at the exact same time I attempt these lyrical acrobat stunts while I'm practicing that I'll still be able to break a motherfuckin' table Over the back of a couple of faggots and crack it in half Only realized it was ironic I was signed to Aftermath after the fact How could I not blow? All I do is drop "F" bombs Feel my wrath of attack Rappers are having a rough time period Here's a maxi pad It's actually disastrously bad For the wack while I'm masterfully constructing this masterpiece yeah 'Cause I'm beginning to feel like a Rap God, Rap God All my people from the front to the back nod, back nod Now who thinks their arms are long enough to slap box, slap box? Let me show you maintaining this shit ain't that hard, that hard Everybody want the key and the secret to rap Immortality like I have got Well, to be truthful the blueprint's Simply rage and youthful exuberance Everybody loves to root for a nuisance Hit the Earth like an asteroid Did nothing but shoot for the moon since (pew) MCs get taken to school with this music 'Cause I use it as a vehicle to 'bust a rhyme' Now I lead a new school full of students Me? I'm a product of Rakim Lakim Shabazz, 2Pac, N.W.A., Cube, hey, Doc, Ren Yella, Eazy, thank you, they got Slim Inspired enough to one day grow up Blow up and be in a position To meet Run-D.M.C. and induct them Into the motherfuckin' Rock n' Roll Hall of Fame even though I walk in the church And burst in a ball of flames Only Hall of Fame I'll be inducted in is the alcohol of fame On the wall of shame You fags think it's all a game 'Til I walk a flock of flames Off a plank and Tell me what in the fuck are you thinking? Little gay-looking boy So gay I can barely say it with a 'straight' face, looking boy You're witnessing a mass-occur like you're watching a church gathering take place, looking boy Oy vey, that boy's gay That's all they say, looking boy You get a thumbs up, pat on the back And a "way to go" from your label every day, looking boy Hey, looking boy, what d'you say, looking boy? I get a "hell yeah" from Dre, looking boy I'mma work for everything I have Never asked nobody for shit Get outta my face, looking boy Basically boy you're never gonna be capable Of keeping up with the same pace, looking boy, 'cause I'm beginning to feel like a Rap God, Rap God All my people from the front to the back nod, back nod The way I'm racing around the track, call me NASCAR, NASCAR Dale Earnhardt of the trailer park, the White Trash God Kneel before General Zod this planet's Krypton, no Asgard, Asgard So you'll be Thor and I'll be Odin You're rodent, I'm omnipotent Let off then I'm reloading Immediately with these bombs I'm totin' And I should not be woken I'm the walking dead But I'm just a talking head, a zombie floating But I got your mom deep-throating I'm out my Ramen Noodle We have nothing in common, poodle I'm a Doberman, pinch yourself In the arm and pay homage, pupil It's me My honesty's brutal But it's honestly futile if I don't utilize What I do though for good At least once in a while so I wanna make sure Somewhere in this chicken scratch I scribble and doodle Enough rhymes to Maybe try to help get some people through tough times But I gotta keep a few punchlines Just in case 'cause even you unsigned Rappers are hungry looking at me like it's lunchtime I know there was a time where once I Was king of the underground But I still rap like I'm on my Pharoahe Monch grind So I crunch rhymes But sometimes when you combine Appeal with the skin color of mine You get too big and here they come trying to Censor you like that one line I said On "I'm Back" from The Mathers LP One when I tried to say I'll take seven kids from Columbine Put 'em all in a line Add an AK-47, a revolver and a nine See if I get away with it now That I ain't as big as I was, but I'm Morphin' into an immortal coming through the portal You're stuck in a time warp from two thousand four though And I don't know what the fuck that you rhyme for You're pointless as Rapunzel With fucking cornrows You write normal? Fuck being normal And I just bought a new ray gun from the future Just to come and shoot ya Like when Fabolous made Ray J mad 'Cause Fab said he looked like a fag At Mayweather's pad singin' to a man While he played piano Man, oh man, that was a 24/7 special On the cable channel So Ray J went straight to the radio station the very next day "Hey, Fab, I'mma kill you" Lyrics coming at you with supersonic speed, (JJ Fad) Uh, summa lumma dooma lumma you assuming I'm a human What I gotta do to get it through to you? I'm superhuman Innovative and I'm made of rubber, so that anything you say is Ricocheting off of me and it'll glue to you I'm devastating more than ever demonstrating How to give a motherfuckin' audience a feeling like it's levitating Never fading, and I know that haters are forever waiting For the day that they can say I fell off, they'll be celebrating 'Cause I know the way to get 'em motivated I make elevating music You make elevator music "Oh, he's too mainstream." Well, that's what they do When they get jealous, they confuse it "It's not hip-hop, it's pop." 'Cause I found a hella way to fuse it With rock, shock rap with Doc Throw on "Lose Yourself" and make 'em lose it "I don't know how to make songs like that I don't know what words to use." Let me know when it occurs to you While I'm ripping any one of these verses that versus you It's curtains, I'm inadvertently hurtin' you How many verses I gotta murder to Prove that if you were half as nice Your songs you could sacrifice virgins to Unghh, school flunky, pill junky But look at the accolades these skills brung me Full of myself, but still hungry I bully myself 'cause I make me do what I put my mind to And I'm a million leagues above you Ill when I speak in tongues But it's still tongue-in-cheek, fuck you I'm drunk. So, Satan, take the fucking wheel I'm asleep in the front seat Bumping Heavy D and the Boyz Still "Chunky, but Funky" But in my head there's something I can feel tugging and struggling Angels fight with devils and Here's what they want from me They're asking me to eliminate some of the women hate But if you take into consideration the bitter hatred I had Then you may be a little patient and more sympathetic to the situation And understand the discrimination But fuck it Life's handing you lemons Make lemonade then But if I can't batter the women How the fuck am I supposed to bake them a cake then? Don't mistake him for Satan It's a fatal mistake if you think I need to be overseas And take a vacation to trip a broad And make her fall on her face and Don't be a retard, be a king? Think not Why be a king when you can be a god? def read_file(filepath): with open(filepath) as f: str_text = f.read() return str_text my_file=read_file('lyrics.txt') my_file # Now removing punctuation and extra spaces import spacy import string nlp=spacy.load('en_core_web_sm',disable=['parser','ner','tagger']) def remove_punc(text): return [token.text.lower() for token in nlp(text) if token.text not in set(string.punctuation) and token.text not in '\n\n \n\n\n!"-#$%&()--.*+,-/:;<=>?@[\\]^_`{|}~\t\n'] tokenized=remove_punc(my_file) tokenized train_seq=26 sequences=[] for i in range(train_seq,len(tokenized)): sentence=tokenized[i-train_seq:i] sequences.append(sentence) sequences " ".join(sequences[0]) " ".join(sequences[50]) " ".join(sequences[98]) import tensorflow.keras as keras from keras.preprocessing.text import Tokenizer from tensorflow.keras import Sequential from keras.layers import Dense,LSTM,Embedding from tensorflow.keras.utils import to_categorical tokenizer=Tokenizer() tokenizer.fit_on_texts(sequences) sequences=tokenizer.texts_to_sequences(sequences) vocab_size=len(tokenizer.word_counts) vocab_size import numpy as np seq=np.array(sequences) seq.shape def create_model(vocab_size,seq_len): model=Sequential() model.add(Embedding(vocab_size, 25, input_length=seq_len)) model.add(LSTM(150,return_sequences=True)) model.add(LSTM(150)) model.add(Dense(150,activation='relu')) model.add(Dense(vocab_size,activation='softmax')) model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) model.summary() return model X=seq[:,:-1] Y=seq[:,-1] y=to_categorical(Y,num_classes=vocab_size+1) y.shape seq_length=X.shape[1] seq_length model=create_model(vocab_size+1,seq_length) model.fit(X,y,epochs=300,batch_size=64) from keras.preprocessing.sequence import pad_sequences !pip install tensorflow==2.5.2 def predict(model,tokenizer,seq_len,seed_text,num_gen_word): input_text=seed_text output_text=[] for i in range(num_gen_word): encoded_text=tokenizer.texts_to_sequences([input_text])[0] pad_encoded=pad_sequences([encoded_text],maxlen=seq_len,truncating='pre') pred_word_ind= model.predict(pad_encoded)[0] classes_x=np.argmax(pred_word_ind,axis=-1) pred_word=tokenizer.index_word[classes_x] input_text+=" "+pred_word output_text.append(pred_word) return " ".join(output_text) predict(model,tokenizer,seq_length," ".join(sequences[10]),300) " ".join(sequences[0]) encoded_text=tokenizer.texts_to_sequences(" ".join(sequences[0]))[0] pad_encoded=pad_sequences([encoded_text],maxlen=seq_length,truncating='pre') pred_word_ind= model.predict(pad_encoded)[0] pred_word_ind classes_x=np.argmax(pred_word_ind,axis=-1) classes_x tokenizer.index_word[classes_x] ```
github_jupyter
%%writefile lyrics.txt Look, I was gonna go easy on you not to hurt your feelings But I'm only going to get this one chance (Six minutes, six minutes) Something's wrong, I can feel it (Six minutes, six minutes, Slim Shady, you're on) Just a feeling I've got Like something's about to happen But I don't know what If that means, what I think it means, we're in trouble Big trouble. And if he is as bananas as you say I'm not taking any chances You are just what the doc ordered I'm beginning to feel like a Rap God, Rap God All my people from the front to the back nod, back nod Now who thinks their arms are long enough to slap box, slap box? They said I rap like a robot, so call me rap-bot But for me to rap like a computer must be in my genes I got a laptop in my back pocket My pen'll go off when I half-cock it Got a fat knot from that rap profit Made a living and a killing off it Ever since Bill Clinton was still in office With Monica Lewinsky feeling on his nutsack I'm an MC still as honest But as rude and as indecent as all hell Syllables, skill-a-holic (Kill 'em all with) This flippity, dippity-hippity hip-hop You don't really wanna get into a pissing match With this rappity brat Packing a MAC in the back of the Ac Backpack rap, crap, yap-yap, yackety-yack And at the exact same time I attempt these lyrical acrobat stunts while I'm practicing that I'll still be able to break a motherfuckin' table Over the back of a couple of faggots and crack it in half Only realized it was ironic I was signed to Aftermath after the fact How could I not blow? All I do is drop "F" bombs Feel my wrath of attack Rappers are having a rough time period Here's a maxi pad It's actually disastrously bad For the wack while I'm masterfully constructing this masterpiece yeah 'Cause I'm beginning to feel like a Rap God, Rap God All my people from the front to the back nod, back nod Now who thinks their arms are long enough to slap box, slap box? Let me show you maintaining this shit ain't that hard, that hard Everybody want the key and the secret to rap Immortality like I have got Well, to be truthful the blueprint's Simply rage and youthful exuberance Everybody loves to root for a nuisance Hit the Earth like an asteroid Did nothing but shoot for the moon since (pew) MCs get taken to school with this music 'Cause I use it as a vehicle to 'bust a rhyme' Now I lead a new school full of students Me? I'm a product of Rakim Lakim Shabazz, 2Pac, N.W.A., Cube, hey, Doc, Ren Yella, Eazy, thank you, they got Slim Inspired enough to one day grow up Blow up and be in a position To meet Run-D.M.C. and induct them Into the motherfuckin' Rock n' Roll Hall of Fame even though I walk in the church And burst in a ball of flames Only Hall of Fame I'll be inducted in is the alcohol of fame On the wall of shame You fags think it's all a game 'Til I walk a flock of flames Off a plank and Tell me what in the fuck are you thinking? Little gay-looking boy So gay I can barely say it with a 'straight' face, looking boy You're witnessing a mass-occur like you're watching a church gathering take place, looking boy Oy vey, that boy's gay That's all they say, looking boy You get a thumbs up, pat on the back And a "way to go" from your label every day, looking boy Hey, looking boy, what d'you say, looking boy? I get a "hell yeah" from Dre, looking boy I'mma work for everything I have Never asked nobody for shit Get outta my face, looking boy Basically boy you're never gonna be capable Of keeping up with the same pace, looking boy, 'cause I'm beginning to feel like a Rap God, Rap God All my people from the front to the back nod, back nod The way I'm racing around the track, call me NASCAR, NASCAR Dale Earnhardt of the trailer park, the White Trash God Kneel before General Zod this planet's Krypton, no Asgard, Asgard So you'll be Thor and I'll be Odin You're rodent, I'm omnipotent Let off then I'm reloading Immediately with these bombs I'm totin' And I should not be woken I'm the walking dead But I'm just a talking head, a zombie floating But I got your mom deep-throating I'm out my Ramen Noodle We have nothing in common, poodle I'm a Doberman, pinch yourself In the arm and pay homage, pupil It's me My honesty's brutal But it's honestly futile if I don't utilize What I do though for good At least once in a while so I wanna make sure Somewhere in this chicken scratch I scribble and doodle Enough rhymes to Maybe try to help get some people through tough times But I gotta keep a few punchlines Just in case 'cause even you unsigned Rappers are hungry looking at me like it's lunchtime I know there was a time where once I Was king of the underground But I still rap like I'm on my Pharoahe Monch grind So I crunch rhymes But sometimes when you combine Appeal with the skin color of mine You get too big and here they come trying to Censor you like that one line I said On "I'm Back" from The Mathers LP One when I tried to say I'll take seven kids from Columbine Put 'em all in a line Add an AK-47, a revolver and a nine See if I get away with it now That I ain't as big as I was, but I'm Morphin' into an immortal coming through the portal You're stuck in a time warp from two thousand four though And I don't know what the fuck that you rhyme for You're pointless as Rapunzel With fucking cornrows You write normal? Fuck being normal And I just bought a new ray gun from the future Just to come and shoot ya Like when Fabolous made Ray J mad 'Cause Fab said he looked like a fag At Mayweather's pad singin' to a man While he played piano Man, oh man, that was a 24/7 special On the cable channel So Ray J went straight to the radio station the very next day "Hey, Fab, I'mma kill you" Lyrics coming at you with supersonic speed, (JJ Fad) Uh, summa lumma dooma lumma you assuming I'm a human What I gotta do to get it through to you? I'm superhuman Innovative and I'm made of rubber, so that anything you say is Ricocheting off of me and it'll glue to you I'm devastating more than ever demonstrating How to give a motherfuckin' audience a feeling like it's levitating Never fading, and I know that haters are forever waiting For the day that they can say I fell off, they'll be celebrating 'Cause I know the way to get 'em motivated I make elevating music You make elevator music "Oh, he's too mainstream." Well, that's what they do When they get jealous, they confuse it "It's not hip-hop, it's pop." 'Cause I found a hella way to fuse it With rock, shock rap with Doc Throw on "Lose Yourself" and make 'em lose it "I don't know how to make songs like that I don't know what words to use." Let me know when it occurs to you While I'm ripping any one of these verses that versus you It's curtains, I'm inadvertently hurtin' you How many verses I gotta murder to Prove that if you were half as nice Your songs you could sacrifice virgins to Unghh, school flunky, pill junky But look at the accolades these skills brung me Full of myself, but still hungry I bully myself 'cause I make me do what I put my mind to And I'm a million leagues above you Ill when I speak in tongues But it's still tongue-in-cheek, fuck you I'm drunk. So, Satan, take the fucking wheel I'm asleep in the front seat Bumping Heavy D and the Boyz Still "Chunky, but Funky" But in my head there's something I can feel tugging and struggling Angels fight with devils and Here's what they want from me They're asking me to eliminate some of the women hate But if you take into consideration the bitter hatred I had Then you may be a little patient and more sympathetic to the situation And understand the discrimination But fuck it Life's handing you lemons Make lemonade then But if I can't batter the women How the fuck am I supposed to bake them a cake then? Don't mistake him for Satan It's a fatal mistake if you think I need to be overseas And take a vacation to trip a broad And make her fall on her face and Don't be a retard, be a king? Think not Why be a king when you can be a god? def read_file(filepath): with open(filepath) as f: str_text = f.read() return str_text my_file=read_file('lyrics.txt') my_file # Now removing punctuation and extra spaces import spacy import string nlp=spacy.load('en_core_web_sm',disable=['parser','ner','tagger']) def remove_punc(text): return [token.text.lower() for token in nlp(text) if token.text not in set(string.punctuation) and token.text not in '\n\n \n\n\n!"-#$%&()--.*+,-/:;<=>?@[\\]^_`{|}~\t\n'] tokenized=remove_punc(my_file) tokenized train_seq=26 sequences=[] for i in range(train_seq,len(tokenized)): sentence=tokenized[i-train_seq:i] sequences.append(sentence) sequences " ".join(sequences[0]) " ".join(sequences[50]) " ".join(sequences[98]) import tensorflow.keras as keras from keras.preprocessing.text import Tokenizer from tensorflow.keras import Sequential from keras.layers import Dense,LSTM,Embedding from tensorflow.keras.utils import to_categorical tokenizer=Tokenizer() tokenizer.fit_on_texts(sequences) sequences=tokenizer.texts_to_sequences(sequences) vocab_size=len(tokenizer.word_counts) vocab_size import numpy as np seq=np.array(sequences) seq.shape def create_model(vocab_size,seq_len): model=Sequential() model.add(Embedding(vocab_size, 25, input_length=seq_len)) model.add(LSTM(150,return_sequences=True)) model.add(LSTM(150)) model.add(Dense(150,activation='relu')) model.add(Dense(vocab_size,activation='softmax')) model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) model.summary() return model X=seq[:,:-1] Y=seq[:,-1] y=to_categorical(Y,num_classes=vocab_size+1) y.shape seq_length=X.shape[1] seq_length model=create_model(vocab_size+1,seq_length) model.fit(X,y,epochs=300,batch_size=64) from keras.preprocessing.sequence import pad_sequences !pip install tensorflow==2.5.2 def predict(model,tokenizer,seq_len,seed_text,num_gen_word): input_text=seed_text output_text=[] for i in range(num_gen_word): encoded_text=tokenizer.texts_to_sequences([input_text])[0] pad_encoded=pad_sequences([encoded_text],maxlen=seq_len,truncating='pre') pred_word_ind= model.predict(pad_encoded)[0] classes_x=np.argmax(pred_word_ind,axis=-1) pred_word=tokenizer.index_word[classes_x] input_text+=" "+pred_word output_text.append(pred_word) return " ".join(output_text) predict(model,tokenizer,seq_length," ".join(sequences[10]),300) " ".join(sequences[0]) encoded_text=tokenizer.texts_to_sequences(" ".join(sequences[0]))[0] pad_encoded=pad_sequences([encoded_text],maxlen=seq_length,truncating='pre') pred_word_ind= model.predict(pad_encoded)[0] pred_word_ind classes_x=np.argmax(pred_word_ind,axis=-1) classes_x tokenizer.index_word[classes_x]
0.034205
0.342654
<h1>Simulator</h1> <p>This notebook is meant to demonstrate the functionality of the simulator. I will provide a series of code examples along with visualizations to demonstrate what it enables</p> <h2>Import packages</h2> ``` import os from PIL import Image import numpy as np import trimesh import warnings # warnings.filterwarnings("ignore") import meshplot as mp from pterotactyl.simulator.scene import sampler from pterotactyl.simulator.physics import grasping from pterotactyl.utility import utils import pterotactyl.objects as objects ``` <h2>Select object</h2> ``` OBJ_LOCATION = os.path.join(os.path.dirname(objects.__file__), "test_objects/0") batch = [OBJ_LOCATION] ``` <h2>Visualize object to be touched (OPTIONAL)</h2> ``` verts, faces = utils.load_mesh_touch(OBJ_LOCATION + '.obj') plot = mp.plot(verts.data.cpu().numpy(), faces.data.cpu().numpy()) ``` <h2> Start the simulator and load the batch </h2> Here we setup the grasping environment, indicating that the batchsize is 1, that we want vision signals outputted, and that the resolution of the images should be 256 by 256. We then load the object into the simulator, and set the object scale to be 1/2.6 . ``` s = sampler.Sampler(grasping.Agnostic_Grasp, bs=1, vision=True, resolution = [256, 256]) s.load_objects(batch, from_dataset=False, scale = 2.6) ``` <h2> Perform an action </h2> ``` action = [30] parameters = [[[.3, .3, .3], [60, 0, 135]]] signals = s.sample(action, touch=True, touch_point_cloud=True, vision=True, vision_occluded=True,parameters=parameters ) ``` <h2> Observe results </h2> ``` img_vision = Image.fromarray(signals["vision"][0]) display(img_vision) img_vision_grasp = Image.fromarray(signals["vision_occluded"][0]) display(img_vision_grasp) image = np.zeros((121*4, 121*2, 3)).astype(np.uint8) for i in range(4): print(f'Finger {i} has status {signals["touch_status"][0][i]}') touch = signals["touch_signal"][0][i].data.numpy().astype(np.uint8) image[i*121:i*121+121, :121] = touch depth = utils.visualize_depth(signals["depths"][0][i].data.numpy()).reshape(121, 121, 1) image[i*121:i*121+121, 121:] = depth print(' ') print(' TOUCH DEPTH') display(Image.fromarray(image)) ``` <h2> Visualize the touches </h2> ``` points = [] plot = mp.plot(verts.data.cpu().numpy(), faces.data.cpu().numpy()) for p in signals["touch_point_cloud"][0]: if p.shape[0] >0: points.append(p) points = np.concatenate(points).reshape(-1,3) plot.add_points(points, c=points.sum(axis=1), shading={ "point_size": 0.03}) ``` <h2> Perfrom new actions </h2> ``` action = [40] parameters = [[[0.35, -0.35, 0.3], [60, 0, 45]]] signals = s.sample(action, touch=True, touch_point_cloud=False, vision=True, vision_occluded=True,parameters=parameters ) ``` <h2> Observe new results </h2> ``` img_vision = Image.fromarray(signals["vision"][0]) display(img_vision) img_vision_grasp = Image.fromarray(signals["vision_occluded"][0]) display(img_vision_grasp) image = np.zeros((121*4, 121*2, 3)).astype(np.uint8) for i in range(4): print(f'Finger {i} has status {signals["touch_status"][0][i]}') touch = signals["touch_signal"][0][i].data.numpy().astype(np.uint8) image[i*121:i*121+121, :121] = touch depth = utils.visualize_depth(signals["depths"][0][i].data.numpy()).reshape(121, 121, 1) image[i*121:i*121+121, 121:] = depth print(' ') print(' TOUCH DEPTH') display(Image.fromarray(image)) ```
github_jupyter
import os from PIL import Image import numpy as np import trimesh import warnings # warnings.filterwarnings("ignore") import meshplot as mp from pterotactyl.simulator.scene import sampler from pterotactyl.simulator.physics import grasping from pterotactyl.utility import utils import pterotactyl.objects as objects OBJ_LOCATION = os.path.join(os.path.dirname(objects.__file__), "test_objects/0") batch = [OBJ_LOCATION] verts, faces = utils.load_mesh_touch(OBJ_LOCATION + '.obj') plot = mp.plot(verts.data.cpu().numpy(), faces.data.cpu().numpy()) s = sampler.Sampler(grasping.Agnostic_Grasp, bs=1, vision=True, resolution = [256, 256]) s.load_objects(batch, from_dataset=False, scale = 2.6) action = [30] parameters = [[[.3, .3, .3], [60, 0, 135]]] signals = s.sample(action, touch=True, touch_point_cloud=True, vision=True, vision_occluded=True,parameters=parameters ) img_vision = Image.fromarray(signals["vision"][0]) display(img_vision) img_vision_grasp = Image.fromarray(signals["vision_occluded"][0]) display(img_vision_grasp) image = np.zeros((121*4, 121*2, 3)).astype(np.uint8) for i in range(4): print(f'Finger {i} has status {signals["touch_status"][0][i]}') touch = signals["touch_signal"][0][i].data.numpy().astype(np.uint8) image[i*121:i*121+121, :121] = touch depth = utils.visualize_depth(signals["depths"][0][i].data.numpy()).reshape(121, 121, 1) image[i*121:i*121+121, 121:] = depth print(' ') print(' TOUCH DEPTH') display(Image.fromarray(image)) points = [] plot = mp.plot(verts.data.cpu().numpy(), faces.data.cpu().numpy()) for p in signals["touch_point_cloud"][0]: if p.shape[0] >0: points.append(p) points = np.concatenate(points).reshape(-1,3) plot.add_points(points, c=points.sum(axis=1), shading={ "point_size": 0.03}) action = [40] parameters = [[[0.35, -0.35, 0.3], [60, 0, 45]]] signals = s.sample(action, touch=True, touch_point_cloud=False, vision=True, vision_occluded=True,parameters=parameters ) img_vision = Image.fromarray(signals["vision"][0]) display(img_vision) img_vision_grasp = Image.fromarray(signals["vision_occluded"][0]) display(img_vision_grasp) image = np.zeros((121*4, 121*2, 3)).astype(np.uint8) for i in range(4): print(f'Finger {i} has status {signals["touch_status"][0][i]}') touch = signals["touch_signal"][0][i].data.numpy().astype(np.uint8) image[i*121:i*121+121, :121] = touch depth = utils.visualize_depth(signals["depths"][0][i].data.numpy()).reshape(121, 121, 1) image[i*121:i*121+121, 121:] = depth print(' ') print(' TOUCH DEPTH') display(Image.fromarray(image))
0.199074
0.934215
``` import pandas as pd import numpy as np import pathlib import os %matplotlib inline from matplotlib import pyplot as plt from matplotlib import cm import seaborn as sns COLUMNS_NO_FEATURES = ['id', 'tile', 'cnt', 'ra_k', 'dec_k', 'vs_type', 'vs_catalog', 'cls'] PATH = pathlib.Path(os.path.abspath(os.path.dirname(""))) DATA_PATH = PATH / "bin" for d in DATA_PATH.glob("*.pkl.bz2"): tile = d.name.split(".")[0] original = pd.read_pickle(d) new_path = f"/home/jbcabral/carpyncho3/production_data/stored/light_curves/{tile}/features_{tile}.npy" new = pd.DataFrame(np.load(new_path, allow_pickle=True)) new = new[new.id.isin(original.id)] new["vs_type"] = new.vs_type.str.decode("utf-8") new["cls"] = new.vs_type.apply(lambda t: 1 if t != "" else 0) new["tile"] = new.id.apply(lambda i: "b" + str(i)[1:4]) # break new.to_pickle(d, compression="bz2") print(d) df = pd.read_pickle("_data/s20k.pkl.bz2") for x in df.columns: if df[x].dtype == object: continue if np.isinf(df[x].values).sum(): print(x) print (df[np.isinf(df.Period_fit.values)].shape) print( df[np.isinf(df.Period_fit.values)].vs_type.unique()) for d in DATA_PATH.glob("*.pkl.bz2"): df = pd.read_pickle(d) break import matplotlib.pyplot as plt %matplotlib inline import pandas as pd df = pd.read_pickle("_data/sO2O.pkl.bz2") import seaborn as sns df =df.drop(["StetsonK"], axis=1) X_columns = [c for c in df.columns if c not in ['id', 'tile', 'cnt', 'ra_k', 'dec_k', 'vs_type', 'vs_catalog', 'cls'] ] plt.scatter(df.Meanvariance, df.Std) from scipy import stats from scipy.cluster.hierarchy import dendrogram, linkage from scipy.spatial.distance import squareform # aca cargo los datos all_data = pd.concat(data.values(), ignore_index=True) # aca le calculo la correlacion a todo corr = all_data[X_columns].corr(method="pearson").values corr = np.abs(np.tril(corr, -1)) # todo lo que es menos .9 lo plancho a 0 corr[corr < .9] = 0 # calculo las distancias con el 1 - triangulo inf (tril) distances = linkage(1-corr, method="single", optimal_ordering=True) # grafico el dendograma fig, ax = plt.subplots(figsize=(15, 8)) ddata = dendrogram(distances, labels=X_columns, ax=ax); plt.tight_layout() # fig.savefig("plots/s_features/dendro.pdf") import pandas as pd pd.read_pickle("_data/full.pkl.bz2").Mean.describe() df.Mean.describe() df=pd.read_pickle("_data/full.pkl.bz2") def sample(df, **k): sample = [] for t, g in df.groupby("tile"): rr = g[g.cls == 1] unk = g[g.cls == 0].sample(**k) sample.extend([rr, unk]) return pd.concat(sample) def sample_o2o(df): sample = [] for t, g in df.groupby("tile"): rr = g[g.cls == 1] unk = g[g.cls == 0].sample(len(rr)) sample.extend([rr, unk]) return pd.concat(sample) s10p = sample(df, frac=.1) s20k = sample(s10p, n=20000) s5k = sample(s20k, n=5000) s2_5k = sample(s5k, n=2500) sO2O = sample_o2o(s2_5k) import joblib joblib.dump({ 0.1: s10p.id.values, 20000: s20k.id.values, 5000: s5k.id.values, 2500: s2_5k.id.values, 'O2O': sO2O.id.values }, "bin/sampleids3.pkl") df.saple(frac=.10).shape df.sample(frac=.10).shape joblib.load("bin/sampleids.pkl") import pandas as pd df=pd.read_pickle("_data/full.pkl.bz2") import numpy as np import pandas as pd from PyAstronomy.pyasl import foldAt import feets.preprocess lc = np.load("/home/jbcabral/carpyncho3/production_data/stored/light_curves/b278/lc_obs_b278.npy") lc = lc[(lc["bm_src_id"] == 32780000002917) | (lc["bm_src_id"] == 32780000005228)] lc = pd.DataFrame(lc) def get_ts(df, id): ts = df[df.bm_src_id == id] time, mag, err = ( ts.pwp_stack_src_hjd.values, ts.pwp_stack_src_mag3.values, ts.pwp_stack_src_mag_err3.values) sort = np.argsort(time) time, mag, err = time[sort], mag[sort], err[sort] print(len(time)) time, mag, err = feets.preprocess.remove_noise(time, mag, err, std_limit=3) print(len(time)) return time, mag, err def plot_lc(tax, pax, sid): time, mag, err = get_ts(lc, sid) tax.errorbar(time, mag, err, ls="", marker="o", ecolor="k") tax.set_title(f"Source '{sid}' in time") tax.set_xlabel("Time") tax.set_ylabel("Magnitude") tax.invert_yaxis() t0 = np.min(mag) period = df[df.id == sid].PeriodLS.values[0] phases = foldAt(time, period, T0=t0) sort = np.argsort(phases) phases, pmag, perr = phases[sort], mag[sort], err[sort] phases = np.hstack((phases, phases + 1)) pmag = np.hstack((pmag, pmag)) perr = np.hstack((perr, perr)) pax.errorbar(phases, pmag, perr, ls="", marker="o", ecolor="k", color="r") pax.set_title(f"Source '{sid}' in phase - Period={period}, t0={t0}") pax.set_xlabel("Phase") pax.set_ylabel("Magnitude") pax.invert_yaxis() sid = 32780000002917 fig, axs = plt.subplots(1, 2, figsize=(20, 4)) plot_lc(*axs, sid=sid) fig.tight_layout() sid = 32780000005228 fig, axs = plt.subplots(1, 2, figsize=(20, 4)) plot_lc(*axs, sid=sid) fig.tight_layout() df2 = pd.read_pickle("_data/full_scaled.pkl.bz2") df[df.id.isin([32780000002917, 32780000005228])].to_csv("to_pablo.csv", index=False) df2[df2.id.isin([32780000002917, 32780000005228])]["id Period_fit Psi_eta PeriodLS Psi_CS Skew n09_jh_color Mean".split()] Period_fit Psi_eta PeriodLS Psi_CS Skew n09_jh_color Mean 10384 0.3289593 -0.2615279 -0.08669450 1.736924 0.06582776 -1.163823 0.5229311 10389 -3.3952236 -2.6802177 -0.08656242 1.639955 0.05954095 -1.089007 -0.5671582 df3 = pd.read_pickle("_data/s5k.pkl.bz2").to_csv("to_pablo5k.csv.bz2", index=False, compression="bz2") ```
github_jupyter
import pandas as pd import numpy as np import pathlib import os %matplotlib inline from matplotlib import pyplot as plt from matplotlib import cm import seaborn as sns COLUMNS_NO_FEATURES = ['id', 'tile', 'cnt', 'ra_k', 'dec_k', 'vs_type', 'vs_catalog', 'cls'] PATH = pathlib.Path(os.path.abspath(os.path.dirname(""))) DATA_PATH = PATH / "bin" for d in DATA_PATH.glob("*.pkl.bz2"): tile = d.name.split(".")[0] original = pd.read_pickle(d) new_path = f"/home/jbcabral/carpyncho3/production_data/stored/light_curves/{tile}/features_{tile}.npy" new = pd.DataFrame(np.load(new_path, allow_pickle=True)) new = new[new.id.isin(original.id)] new["vs_type"] = new.vs_type.str.decode("utf-8") new["cls"] = new.vs_type.apply(lambda t: 1 if t != "" else 0) new["tile"] = new.id.apply(lambda i: "b" + str(i)[1:4]) # break new.to_pickle(d, compression="bz2") print(d) df = pd.read_pickle("_data/s20k.pkl.bz2") for x in df.columns: if df[x].dtype == object: continue if np.isinf(df[x].values).sum(): print(x) print (df[np.isinf(df.Period_fit.values)].shape) print( df[np.isinf(df.Period_fit.values)].vs_type.unique()) for d in DATA_PATH.glob("*.pkl.bz2"): df = pd.read_pickle(d) break import matplotlib.pyplot as plt %matplotlib inline import pandas as pd df = pd.read_pickle("_data/sO2O.pkl.bz2") import seaborn as sns df =df.drop(["StetsonK"], axis=1) X_columns = [c for c in df.columns if c not in ['id', 'tile', 'cnt', 'ra_k', 'dec_k', 'vs_type', 'vs_catalog', 'cls'] ] plt.scatter(df.Meanvariance, df.Std) from scipy import stats from scipy.cluster.hierarchy import dendrogram, linkage from scipy.spatial.distance import squareform # aca cargo los datos all_data = pd.concat(data.values(), ignore_index=True) # aca le calculo la correlacion a todo corr = all_data[X_columns].corr(method="pearson").values corr = np.abs(np.tril(corr, -1)) # todo lo que es menos .9 lo plancho a 0 corr[corr < .9] = 0 # calculo las distancias con el 1 - triangulo inf (tril) distances = linkage(1-corr, method="single", optimal_ordering=True) # grafico el dendograma fig, ax = plt.subplots(figsize=(15, 8)) ddata = dendrogram(distances, labels=X_columns, ax=ax); plt.tight_layout() # fig.savefig("plots/s_features/dendro.pdf") import pandas as pd pd.read_pickle("_data/full.pkl.bz2").Mean.describe() df.Mean.describe() df=pd.read_pickle("_data/full.pkl.bz2") def sample(df, **k): sample = [] for t, g in df.groupby("tile"): rr = g[g.cls == 1] unk = g[g.cls == 0].sample(**k) sample.extend([rr, unk]) return pd.concat(sample) def sample_o2o(df): sample = [] for t, g in df.groupby("tile"): rr = g[g.cls == 1] unk = g[g.cls == 0].sample(len(rr)) sample.extend([rr, unk]) return pd.concat(sample) s10p = sample(df, frac=.1) s20k = sample(s10p, n=20000) s5k = sample(s20k, n=5000) s2_5k = sample(s5k, n=2500) sO2O = sample_o2o(s2_5k) import joblib joblib.dump({ 0.1: s10p.id.values, 20000: s20k.id.values, 5000: s5k.id.values, 2500: s2_5k.id.values, 'O2O': sO2O.id.values }, "bin/sampleids3.pkl") df.saple(frac=.10).shape df.sample(frac=.10).shape joblib.load("bin/sampleids.pkl") import pandas as pd df=pd.read_pickle("_data/full.pkl.bz2") import numpy as np import pandas as pd from PyAstronomy.pyasl import foldAt import feets.preprocess lc = np.load("/home/jbcabral/carpyncho3/production_data/stored/light_curves/b278/lc_obs_b278.npy") lc = lc[(lc["bm_src_id"] == 32780000002917) | (lc["bm_src_id"] == 32780000005228)] lc = pd.DataFrame(lc) def get_ts(df, id): ts = df[df.bm_src_id == id] time, mag, err = ( ts.pwp_stack_src_hjd.values, ts.pwp_stack_src_mag3.values, ts.pwp_stack_src_mag_err3.values) sort = np.argsort(time) time, mag, err = time[sort], mag[sort], err[sort] print(len(time)) time, mag, err = feets.preprocess.remove_noise(time, mag, err, std_limit=3) print(len(time)) return time, mag, err def plot_lc(tax, pax, sid): time, mag, err = get_ts(lc, sid) tax.errorbar(time, mag, err, ls="", marker="o", ecolor="k") tax.set_title(f"Source '{sid}' in time") tax.set_xlabel("Time") tax.set_ylabel("Magnitude") tax.invert_yaxis() t0 = np.min(mag) period = df[df.id == sid].PeriodLS.values[0] phases = foldAt(time, period, T0=t0) sort = np.argsort(phases) phases, pmag, perr = phases[sort], mag[sort], err[sort] phases = np.hstack((phases, phases + 1)) pmag = np.hstack((pmag, pmag)) perr = np.hstack((perr, perr)) pax.errorbar(phases, pmag, perr, ls="", marker="o", ecolor="k", color="r") pax.set_title(f"Source '{sid}' in phase - Period={period}, t0={t0}") pax.set_xlabel("Phase") pax.set_ylabel("Magnitude") pax.invert_yaxis() sid = 32780000002917 fig, axs = plt.subplots(1, 2, figsize=(20, 4)) plot_lc(*axs, sid=sid) fig.tight_layout() sid = 32780000005228 fig, axs = plt.subplots(1, 2, figsize=(20, 4)) plot_lc(*axs, sid=sid) fig.tight_layout() df2 = pd.read_pickle("_data/full_scaled.pkl.bz2") df[df.id.isin([32780000002917, 32780000005228])].to_csv("to_pablo.csv", index=False) df2[df2.id.isin([32780000002917, 32780000005228])]["id Period_fit Psi_eta PeriodLS Psi_CS Skew n09_jh_color Mean".split()] Period_fit Psi_eta PeriodLS Psi_CS Skew n09_jh_color Mean 10384 0.3289593 -0.2615279 -0.08669450 1.736924 0.06582776 -1.163823 0.5229311 10389 -3.3952236 -2.6802177 -0.08656242 1.639955 0.05954095 -1.089007 -0.5671582 df3 = pd.read_pickle("_data/s5k.pkl.bz2").to_csv("to_pablo5k.csv.bz2", index=False, compression="bz2")
0.28398
0.344003
``` from __future__ import division, absolute_import, print_function %load_ext autoreload %autoreload 2 import numpy as np import tensorflow as tf tf.__version__ ``` # Detecting lines of 5 with a ConvNet and hand-woven features ``` hor=np.zeros([5,5], dtype=float) hor[2]=1 diag=np.eye(5, dtype=float) filters = np.array([hor, hor.T, diag, diag[::-1]]) kernel_init = tf.constant_initializer(np.rollaxis(filters, 0, 3)) bias_init = tf.constant_initializer(-4.) ## Take particular note of the shape: Channels last np.shape(kernel_init.value) ``` ### Verifying the function with some examples ``` boards = np.zeros([6, 10, 10]) for i in range(5): boards[0][5][3+i] = 1. boards[1][3+i][5] = 1. boards[2][8-i][3+i] = 1. boards[3][2+i][2+i] = 1. boards[4][2+i][2+i] = 1. boards[5][2+i][2+i] = 1. boards[0] inp=tf.constant(boards.reshape(-1,10, 10, 1)) out = tf.layers.conv2d(kernel_size=5, kernel_initializer=kernel_init, filters=4, inputs=inp, padding='same', bias_initializer=bias_init, activation='relu') out = tf.layers.max_pooling2d(inputs=out, pool_size=10, strides=1) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) res = sess.run(out) res = np.squeeze(np.rollaxis(res, -1, 0)) print(res) ``` You see that every sample (the six columns) has a $1$ at the position that corresponds to the particular pattern that has been recognized. ``` sum(res) ``` ### Creating labels with the hand-crafted features The *labels* graph maps each sample that contains a line of 5 to a $1$, all others to a $0$ ``` inp_heuristics = tf.placeholder(name="inp_heuristics", shape=[None, 10, 10, 1], dtype=tf.float32) out = tf.layers.conv2d(kernel_size=5, kernel_initializer=kernel_init, filters=4, inputs=inp_heuristics, padding='same', bias_initializer=bias_init, activation='relu') out = tf.layers.max_pooling2d(inputs=out, pool_size=10, strides=1) labels = tf.squeeze(tf.sign(tf.reduce_sum(out, axis=3))) samples = (np.random.uniform(size = [5, 10,10]) < .3).astype(float).reshape(-1,10,10,1) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) res = sess.run(labels, feed_dict={inp_heuristics: samples}) res np.rollaxis(samples[3],-1, 0) def create_samples(sess, placeholder, n=100): samples = (np.random.uniform(size = [n, 10,10]) < .3).astype(float).reshape(-1,10,10,1) lbls = sess.run(labels, feed_dict={placeholder: samples}) return samples, lbls ``` ### Combining ResNet and Inception Concepts #### Design considerations In contrast to Deepmind's network, I'm also using 5x5 filters in an inception [Ref] manner. I use blocks of 3 inception layers with skip connections between the blocks. The skip connections are 1x1 2-filter layers, so that each block's output is mapped into a feature map of 2 channels, which then skips the subsequent block. I'm using a single batch-normalization layer at the end of each block because I accept more risk of overfitting in favour of reducing noise. Gomoku is not about image recognition. The risk of overfitting is come by with zillions of synthetically created boards, anyway. ``` class ResNet: """ After sufficient training, this instance of ResNet takes an array of dimensions 10x10 and returns 1 if the array contains the pattern you tought it to recognize. """ def __init__(self, n_blocks): self.inps = tf.placeholder(name="inp_resnet", shape=[None, 10, 10, 1], dtype=tf.float32) self.lbls = tf.placeholder(name="lbl_resnet", shape=[None, 1], dtype=tf.float32) out = self.inps for i in range(n_blocks): out = self._res_block(out) out = tf.layers.conv2d(kernel_size=1, filters=1, inputs=out, padding='same', activation='sigmoid') self.out = tf.reshape(tf.layers.max_pooling2d(inputs=out, pool_size=10, strides=1), [-1, 1]) self.errors = (self.lbls - self.out)**2 self.accuracy=tf.reduce_sum(tf.cast(self.errors < .1, dtype=tf.int64)) self.loss = tf.losses.mean_squared_error(self.out, self.lbls) self.optimizer = tf.train.AdamOptimizer(learning_rate=1e-4) self.trainer = self.optimizer.minimize(self.loss) def _res_block(self, inp, filters=16, activation='elu'): out1_3 = tf.layers.conv2d(kernel_size=3, filters=filters, inputs=inp, padding='same', activation=activation) out1_5 = tf.layers.conv2d(kernel_size=5, filters=filters, inputs=inp, padding='same', activation=activation) out1 = tf.concat([out1_3, out1_5], axis=3) out2_3 = tf.layers.conv2d(kernel_size=3, filters=filters, inputs=out1, padding='same', activation=activation) out2_5 = tf.layers.conv2d(kernel_size=5, filters=filters, inputs=out1, padding='same', activation=activation) out2 = tf.concat([out2_3, out2_5], axis=3) out3_3 = tf.layers.conv2d(kernel_size=3, filters=filters, inputs=out2, padding='same', activation=activation) out3_5 = tf.layers.conv2d(kernel_size=5, filters=filters, inputs=out2, padding='same', activation=activation) out3 = tf.concat([out3_3, out3_5], axis=3) bn = tf.layers.batch_normalization(inputs=out3) skip = tf.layers.conv2d(kernel_size=1, filters=2, inputs=inp, padding='same', activation=None) return tf.concat([skip, bn], axis=3) resnet = ResNet(10) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(40001): smp, lbl = create_samples(sess, inp_heuristics, 500) lbl = lbl.reshape([-1, 1]) l, o, _ = sess.run([resnet.loss, resnet.out, resnet.trainer], feed_dict={resnet.lbls: lbl, resnet.inps: smp}) if i % 1000 == 0: print("training loss %s: " % l) smp, lbl = create_samples(sess, inp_heuristics, 1000) lbl = lbl.reshape([-1, 1]) acc, pred, err = sess.run([resnet.accuracy, resnet.out, resnet.errors], feed_dict={resnet.inps: smp, resnet.lbls: lbl}) print("Accuracy %s" % acc) ```
github_jupyter
from __future__ import division, absolute_import, print_function %load_ext autoreload %autoreload 2 import numpy as np import tensorflow as tf tf.__version__ hor=np.zeros([5,5], dtype=float) hor[2]=1 diag=np.eye(5, dtype=float) filters = np.array([hor, hor.T, diag, diag[::-1]]) kernel_init = tf.constant_initializer(np.rollaxis(filters, 0, 3)) bias_init = tf.constant_initializer(-4.) ## Take particular note of the shape: Channels last np.shape(kernel_init.value) boards = np.zeros([6, 10, 10]) for i in range(5): boards[0][5][3+i] = 1. boards[1][3+i][5] = 1. boards[2][8-i][3+i] = 1. boards[3][2+i][2+i] = 1. boards[4][2+i][2+i] = 1. boards[5][2+i][2+i] = 1. boards[0] inp=tf.constant(boards.reshape(-1,10, 10, 1)) out = tf.layers.conv2d(kernel_size=5, kernel_initializer=kernel_init, filters=4, inputs=inp, padding='same', bias_initializer=bias_init, activation='relu') out = tf.layers.max_pooling2d(inputs=out, pool_size=10, strides=1) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) res = sess.run(out) res = np.squeeze(np.rollaxis(res, -1, 0)) print(res) sum(res) inp_heuristics = tf.placeholder(name="inp_heuristics", shape=[None, 10, 10, 1], dtype=tf.float32) out = tf.layers.conv2d(kernel_size=5, kernel_initializer=kernel_init, filters=4, inputs=inp_heuristics, padding='same', bias_initializer=bias_init, activation='relu') out = tf.layers.max_pooling2d(inputs=out, pool_size=10, strides=1) labels = tf.squeeze(tf.sign(tf.reduce_sum(out, axis=3))) samples = (np.random.uniform(size = [5, 10,10]) < .3).astype(float).reshape(-1,10,10,1) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) res = sess.run(labels, feed_dict={inp_heuristics: samples}) res np.rollaxis(samples[3],-1, 0) def create_samples(sess, placeholder, n=100): samples = (np.random.uniform(size = [n, 10,10]) < .3).astype(float).reshape(-1,10,10,1) lbls = sess.run(labels, feed_dict={placeholder: samples}) return samples, lbls class ResNet: """ After sufficient training, this instance of ResNet takes an array of dimensions 10x10 and returns 1 if the array contains the pattern you tought it to recognize. """ def __init__(self, n_blocks): self.inps = tf.placeholder(name="inp_resnet", shape=[None, 10, 10, 1], dtype=tf.float32) self.lbls = tf.placeholder(name="lbl_resnet", shape=[None, 1], dtype=tf.float32) out = self.inps for i in range(n_blocks): out = self._res_block(out) out = tf.layers.conv2d(kernel_size=1, filters=1, inputs=out, padding='same', activation='sigmoid') self.out = tf.reshape(tf.layers.max_pooling2d(inputs=out, pool_size=10, strides=1), [-1, 1]) self.errors = (self.lbls - self.out)**2 self.accuracy=tf.reduce_sum(tf.cast(self.errors < .1, dtype=tf.int64)) self.loss = tf.losses.mean_squared_error(self.out, self.lbls) self.optimizer = tf.train.AdamOptimizer(learning_rate=1e-4) self.trainer = self.optimizer.minimize(self.loss) def _res_block(self, inp, filters=16, activation='elu'): out1_3 = tf.layers.conv2d(kernel_size=3, filters=filters, inputs=inp, padding='same', activation=activation) out1_5 = tf.layers.conv2d(kernel_size=5, filters=filters, inputs=inp, padding='same', activation=activation) out1 = tf.concat([out1_3, out1_5], axis=3) out2_3 = tf.layers.conv2d(kernel_size=3, filters=filters, inputs=out1, padding='same', activation=activation) out2_5 = tf.layers.conv2d(kernel_size=5, filters=filters, inputs=out1, padding='same', activation=activation) out2 = tf.concat([out2_3, out2_5], axis=3) out3_3 = tf.layers.conv2d(kernel_size=3, filters=filters, inputs=out2, padding='same', activation=activation) out3_5 = tf.layers.conv2d(kernel_size=5, filters=filters, inputs=out2, padding='same', activation=activation) out3 = tf.concat([out3_3, out3_5], axis=3) bn = tf.layers.batch_normalization(inputs=out3) skip = tf.layers.conv2d(kernel_size=1, filters=2, inputs=inp, padding='same', activation=None) return tf.concat([skip, bn], axis=3) resnet = ResNet(10) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(40001): smp, lbl = create_samples(sess, inp_heuristics, 500) lbl = lbl.reshape([-1, 1]) l, o, _ = sess.run([resnet.loss, resnet.out, resnet.trainer], feed_dict={resnet.lbls: lbl, resnet.inps: smp}) if i % 1000 == 0: print("training loss %s: " % l) smp, lbl = create_samples(sess, inp_heuristics, 1000) lbl = lbl.reshape([-1, 1]) acc, pred, err = sess.run([resnet.accuracy, resnet.out, resnet.errors], feed_dict={resnet.inps: smp, resnet.lbls: lbl}) print("Accuracy %s" % acc)
0.817028
0.855972
# Funciones de utilidad y aversión al riesgo <img style="float: right; margin: 0px 0px 15px 15px;" src="https://upload.wikimedia.org/wikipedia/commons/6/62/Risk_down_arrow.png" width="400px" height="400px" /> En el módulo anterior aprendimos - qué es un portafolio, cómo medir su rendimiento esperado y su volatilidad; - un portafolio de activos riesgosos tiene menos riesgo que la suma ponderada de los riesgos individuales, - y que esto se logra mediante el concepto de diversificación; - la diversificación elimina el riesgo idiosincrático, que es el que afecta a cada compañía en particular, - sin embargo, el riesgo de mercado no se puede eliminar porque afecta a todos por igual. - Finalmente, aprendimos conceptos importantes como frontera de mínima varianza, portafolios eficientes y el portafolio de mínima varianza, que son claves en el problema de selección óptima de portafolios. Muy bien, sin embargo, para plantear el problema de selección óptima de portafolios necesitamos definir la función que vamos a optimizar: función de utilidad. **Objetivos:** - ¿Cómo tomamos decisiones según los economistas? - ¿Cómo toman decisiones los inversionistas? - ¿Qué son las funciones de utilidad? *Referencia:* - Notas del curso "Portfolio Selection and Risk Management", Rice University, disponible en Coursera. ___ ## 1. Introducción La teoría económica comienza con una suposición muy importante: - **cada individuo actúa para obtener el mayor beneficio posible con los recursos disponibles**. - En otras palabras, **maximizan su propia utilidad** ¿Qué es utilidad? - Es un concepto relacionado con la felicidad, pero más amplio. - Por ejemplo, yo obtengo utilidad de lavar mis dientes o comer sano. Ninguna de las dos me brindan felicidad, pero lo primero mantendrá mis dientes sanos y en el largo plazo, lo segundo probablemente contribuirá a una buena vejez. Los economistas no se preocupan en realidad por lo que nos da utilidad, sino simplemente que cada uno de nosotros tiene sus propias preferencias. - Por ejemplo, a mi me gusta el café, el fútbol, los perros, la academia, viajar, entre otros. - Ustedes tienen sus propias preferencias también. La vida es compleja y con demasiada incertidumbre. Debemos tomar decisiones a cada momento, y estas decisiones involucran ciertos "trade-off". - Por ejemplo, normalmente tenemos una compensación entre utilidad hoy contra utilidad en el futuro. - Debemos balancear nuestro consumo hoy contra nuestro consumo luego. - Por ejemplo, ustedes gastan cerca de cuatro horas a la semana viniendo a clases de portafolios, porque esperan que esto contribuya a mejorar su nivel de vida en el futuro. De manera que los economistas dicen que cada individuo se comporta como el siguiente optimizador: \begin{align} \max & \quad\text{Utilidad}\\ \text{s. a.} & \quad\text{Recursos disponibles} \end{align} ¿Qué tiene que ver todo esto con el curso? - En este módulo desarrollaremos herramientas para describir las preferencias de los inversionistas cuando se encuentran con decisiones de riesgo y rendimiento. - Veremos como podemos medir la actitud frente al riesgo, ¿cuánto te gusta o disgusta el riesgo? - Finalmente, veremos como podemos formular el problema de maximizar la utilidad de un inversionista para tomar la decisión de inversión óptima. ___ ## 2. Funciones de utilidad. ¿Cómo tomamos decisiones? Por ejemplo: - Ustedes tienen que decidir si venir a clase o quedarse en su casa viendo Netflix, o ir al gimnasio. - Tienen que decidir entre irse de fiesta cada fin, o ahorrar para salir de vacaciones. En el caso de un portafolio, la decisión que se debe tomar es **¿cuáto riesgo estás dispuesto a tomar por qué cantidad de rendimiento?** **¿Cómo evaluarías el "trade-off" entre tener cetes contra una estrategia muy riesgosa con un posible altísimo rendimiento?** De manera que veremos como tomamos decisiones cuando tenemos distintas posibilidades. Específicamente, hablaremos acerca de las **preferencias**, como los economistas usan dichas preferencias para explicar las decisiones y los "trade-offs" en dichas decisiones. Usamos las **preferencias** para describir las decisiones que tomamos. Las preferencias nos dicen cómo un individuo evalúa los "trade-offs" entre distintas elecciones. Por definición, las preferencias son únicas para cada individuo. En el problema de selección de portafolios: - las preferencias que dictan cuánto riesgo estás dispuesto a asumir por cuánto rendimiento, son específicas para cada uno de ustedes. - Sus respuestas a esa pregunta pueden ser muy distintas, porque tenemos distintas preferencias. Ahora, nosotros no podemos *cuantificar* dichas preferencias. - Por esto usamos el concepto de utilidad, para medir qué tan satisfecho está un individuo con sus elecciones. - Así que podemos pensar en la utilidad como un indicador numérico que describe las preferencias, - o un índice que nos ayuda a clasificar diferentes decisiones. - En términos simples, **la utilidad nos ayuda a transmitir a números la noción de cómo te sientes**; - mientras más utilidad, mejor te sientes. **Función de utilidad**: manera sistemática de asignar una medida o indicador numérico para clasificar diferentes escogencias. El número que da una función de utilidad no tiene significado alguno. Simplemente es una manera de clasificar diferentes decisiones. **Ejemplo.** Podemos escribir la utilidad de un inversionista como función de la riqueza, $$U(W).$$ - $U(W)$ nos da una medida de qué tan satisfechos estamos con el nivel de riqueza que tenemos. - $U(W)$ no es la riqueza como tal, sino que la función de utilidad traduce la cantidad de riqueza en un índice numérico subjetivo. ¿Cómo luciría gráficamente una función de utilidad de riqueza $U(W)$? <font color=blue> Ver en el tablero </font> - ¿Qué caracteristicas debe tener? - ¿Cómo es su primera derivada? - ¿Cómo es su segunda derivada? - Tiempos buenos: riqueza alta (¿cómo es la primera derivada acá?) - Tiempos malos: poca riqueza (¿cómo es la primera derivada acá?) ## 3. Aversión al riesgo Una dimensión importante en la toma de decisiones en finanzas y economía es la **incertidumbre**. Probablemente no hay ninguna decisión en economía que no involucre riesgo. - A la mayoría de las personas no les gusta mucho el riesgo. - De hecho, estudios del comportamiento humano de cara al riesgo, sugieren fuertemente que los seres humanos somos aversos al riesgo. - Por ejemplo, la mayoría de hogares poseen seguros para sus activos. - Así, cuando planteamos el problema de selección óptima de portafolios, suponemos que el inversionista es averso al riesgo. ¿Qué significa esto en términos de preferencias? ¿Cómo lo medimos? - Como seres humanos, todos tenemos diferentes genes y preferencias, y esto aplica también a la actitud frente al riesgo. - Por tanto, la aversión al riesgo es clave en cómo describimos las preferencias de un inversinista. - Individuos con un alto grado de aversión al riesgo valorarán la seguridad a un alto precio, mientras otros no tanto. - De manera que alguien con alta aversión al riesgo, no querrá enfrentarse a una situación con resultado incierto y querrá pagar una gran prima de seguro para eliminar dicho riesgo. - O equivalentemente, una persona con alta aversión al riesgo requerirá una compensación alta si se decide a asumir ese riesgo. El **grado de aversión al riesgo** mide qué tanto un inversionista prefiere un resultado seguro a un resultado incierto. Lo opuesto a aversión al riesgo es **tolerancia al riesgo**. <font color=blue> Ver en el tablero gráficamente, cómo se explica la aversión al riesgo desde las funciones de utilidad. </font> **Conclusión:** la concavidad en la función de utilidad dicta qué tan averso al riesgo es el individuo. ### ¿Cómo medimos el grado de aversión al riesgo de un individuo? ¿Saben cuál es su coeficiente de aversión al riesgo? Podemos estimarlo. Suponga que se puede participar en la siguiente lotería: - usted puede ganar $\$1000$ con $50\%$ de probabilidad, o - puede ganar $\$500$ con $50\%$ de probabilidad. Es decir, de entrada usted tendrá $\$500$ seguros pero también tiene la posibilidad de ganar $\$1000$. ¿Cuánto estarías dispuesto a pagar por esta oportunidad? Bien, podemos relacionar tu respuesta con tu coeficiente de aversión al riesgo. | Coeficiente de aversión al riesgo | Cantidad que pagarías | | --------------------------------- | --------------------- | | 0 | 750 | | 0.5 | 729 | | 1 | 707 | | 2 | 667 | | 3 | 632 | | 4 | 606 | | 5 | 586 | | 10 | 540 | | 15 | 525 | | 20 | 519 | | 50 | 507 | La mayoría de la gente está dispuesta a pagar entre $\$540$ (10) y $\$707$ (1). Es muy raro encontrar coeficientes de aversión al riesgo menores a 1. Esto está soportado por una gran cantidad de encuestas. - En el mundo financiero, los consultores financieros utilizan cuestionarios para medir el coeficiente de aversión al riesgo. **Ejemplo.** Describir en términos de aversión al riesgo las siguientes funciones de utilidad que dibujaré en el tablero. ___ # Anuncios ## 1. Quiz la siguiente clase. ## 2. Examen Módulos 1 y 2: martes 8 de octubre. ## 3. Recordar Tarea 5 para martes 1 de octubre. <script> $(document).ready(function(){ $('div.prompt').hide(); $('div.back-to-top').hide(); $('nav#menubar').hide(); $('.breadcrumb').hide(); $('.hidden-print').hide(); }); </script> <footer id="attribution" style="float:right; color:#808080; background:#fff;"> Created with Jupyter by Esteban Jiménez Rodríguez. </footer>
github_jupyter
# Funciones de utilidad y aversión al riesgo <img style="float: right; margin: 0px 0px 15px 15px;" src="https://upload.wikimedia.org/wikipedia/commons/6/62/Risk_down_arrow.png" width="400px" height="400px" /> En el módulo anterior aprendimos - qué es un portafolio, cómo medir su rendimiento esperado y su volatilidad; - un portafolio de activos riesgosos tiene menos riesgo que la suma ponderada de los riesgos individuales, - y que esto se logra mediante el concepto de diversificación; - la diversificación elimina el riesgo idiosincrático, que es el que afecta a cada compañía en particular, - sin embargo, el riesgo de mercado no se puede eliminar porque afecta a todos por igual. - Finalmente, aprendimos conceptos importantes como frontera de mínima varianza, portafolios eficientes y el portafolio de mínima varianza, que son claves en el problema de selección óptima de portafolios. Muy bien, sin embargo, para plantear el problema de selección óptima de portafolios necesitamos definir la función que vamos a optimizar: función de utilidad. **Objetivos:** - ¿Cómo tomamos decisiones según los economistas? - ¿Cómo toman decisiones los inversionistas? - ¿Qué son las funciones de utilidad? *Referencia:* - Notas del curso "Portfolio Selection and Risk Management", Rice University, disponible en Coursera. ___ ## 1. Introducción La teoría económica comienza con una suposición muy importante: - **cada individuo actúa para obtener el mayor beneficio posible con los recursos disponibles**. - En otras palabras, **maximizan su propia utilidad** ¿Qué es utilidad? - Es un concepto relacionado con la felicidad, pero más amplio. - Por ejemplo, yo obtengo utilidad de lavar mis dientes o comer sano. Ninguna de las dos me brindan felicidad, pero lo primero mantendrá mis dientes sanos y en el largo plazo, lo segundo probablemente contribuirá a una buena vejez. Los economistas no se preocupan en realidad por lo que nos da utilidad, sino simplemente que cada uno de nosotros tiene sus propias preferencias. - Por ejemplo, a mi me gusta el café, el fútbol, los perros, la academia, viajar, entre otros. - Ustedes tienen sus propias preferencias también. La vida es compleja y con demasiada incertidumbre. Debemos tomar decisiones a cada momento, y estas decisiones involucran ciertos "trade-off". - Por ejemplo, normalmente tenemos una compensación entre utilidad hoy contra utilidad en el futuro. - Debemos balancear nuestro consumo hoy contra nuestro consumo luego. - Por ejemplo, ustedes gastan cerca de cuatro horas a la semana viniendo a clases de portafolios, porque esperan que esto contribuya a mejorar su nivel de vida en el futuro. De manera que los economistas dicen que cada individuo se comporta como el siguiente optimizador: \begin{align} \max & \quad\text{Utilidad}\\ \text{s. a.} & \quad\text{Recursos disponibles} \end{align} ¿Qué tiene que ver todo esto con el curso? - En este módulo desarrollaremos herramientas para describir las preferencias de los inversionistas cuando se encuentran con decisiones de riesgo y rendimiento. - Veremos como podemos medir la actitud frente al riesgo, ¿cuánto te gusta o disgusta el riesgo? - Finalmente, veremos como podemos formular el problema de maximizar la utilidad de un inversionista para tomar la decisión de inversión óptima. ___ ## 2. Funciones de utilidad. ¿Cómo tomamos decisiones? Por ejemplo: - Ustedes tienen que decidir si venir a clase o quedarse en su casa viendo Netflix, o ir al gimnasio. - Tienen que decidir entre irse de fiesta cada fin, o ahorrar para salir de vacaciones. En el caso de un portafolio, la decisión que se debe tomar es **¿cuáto riesgo estás dispuesto a tomar por qué cantidad de rendimiento?** **¿Cómo evaluarías el "trade-off" entre tener cetes contra una estrategia muy riesgosa con un posible altísimo rendimiento?** De manera que veremos como tomamos decisiones cuando tenemos distintas posibilidades. Específicamente, hablaremos acerca de las **preferencias**, como los economistas usan dichas preferencias para explicar las decisiones y los "trade-offs" en dichas decisiones. Usamos las **preferencias** para describir las decisiones que tomamos. Las preferencias nos dicen cómo un individuo evalúa los "trade-offs" entre distintas elecciones. Por definición, las preferencias son únicas para cada individuo. En el problema de selección de portafolios: - las preferencias que dictan cuánto riesgo estás dispuesto a asumir por cuánto rendimiento, son específicas para cada uno de ustedes. - Sus respuestas a esa pregunta pueden ser muy distintas, porque tenemos distintas preferencias. Ahora, nosotros no podemos *cuantificar* dichas preferencias. - Por esto usamos el concepto de utilidad, para medir qué tan satisfecho está un individuo con sus elecciones. - Así que podemos pensar en la utilidad como un indicador numérico que describe las preferencias, - o un índice que nos ayuda a clasificar diferentes decisiones. - En términos simples, **la utilidad nos ayuda a transmitir a números la noción de cómo te sientes**; - mientras más utilidad, mejor te sientes. **Función de utilidad**: manera sistemática de asignar una medida o indicador numérico para clasificar diferentes escogencias. El número que da una función de utilidad no tiene significado alguno. Simplemente es una manera de clasificar diferentes decisiones. **Ejemplo.** Podemos escribir la utilidad de un inversionista como función de la riqueza, $$U(W).$$ - $U(W)$ nos da una medida de qué tan satisfechos estamos con el nivel de riqueza que tenemos. - $U(W)$ no es la riqueza como tal, sino que la función de utilidad traduce la cantidad de riqueza en un índice numérico subjetivo. ¿Cómo luciría gráficamente una función de utilidad de riqueza $U(W)$? <font color=blue> Ver en el tablero </font> - ¿Qué caracteristicas debe tener? - ¿Cómo es su primera derivada? - ¿Cómo es su segunda derivada? - Tiempos buenos: riqueza alta (¿cómo es la primera derivada acá?) - Tiempos malos: poca riqueza (¿cómo es la primera derivada acá?) ## 3. Aversión al riesgo Una dimensión importante en la toma de decisiones en finanzas y economía es la **incertidumbre**. Probablemente no hay ninguna decisión en economía que no involucre riesgo. - A la mayoría de las personas no les gusta mucho el riesgo. - De hecho, estudios del comportamiento humano de cara al riesgo, sugieren fuertemente que los seres humanos somos aversos al riesgo. - Por ejemplo, la mayoría de hogares poseen seguros para sus activos. - Así, cuando planteamos el problema de selección óptima de portafolios, suponemos que el inversionista es averso al riesgo. ¿Qué significa esto en términos de preferencias? ¿Cómo lo medimos? - Como seres humanos, todos tenemos diferentes genes y preferencias, y esto aplica también a la actitud frente al riesgo. - Por tanto, la aversión al riesgo es clave en cómo describimos las preferencias de un inversinista. - Individuos con un alto grado de aversión al riesgo valorarán la seguridad a un alto precio, mientras otros no tanto. - De manera que alguien con alta aversión al riesgo, no querrá enfrentarse a una situación con resultado incierto y querrá pagar una gran prima de seguro para eliminar dicho riesgo. - O equivalentemente, una persona con alta aversión al riesgo requerirá una compensación alta si se decide a asumir ese riesgo. El **grado de aversión al riesgo** mide qué tanto un inversionista prefiere un resultado seguro a un resultado incierto. Lo opuesto a aversión al riesgo es **tolerancia al riesgo**. <font color=blue> Ver en el tablero gráficamente, cómo se explica la aversión al riesgo desde las funciones de utilidad. </font> **Conclusión:** la concavidad en la función de utilidad dicta qué tan averso al riesgo es el individuo. ### ¿Cómo medimos el grado de aversión al riesgo de un individuo? ¿Saben cuál es su coeficiente de aversión al riesgo? Podemos estimarlo. Suponga que se puede participar en la siguiente lotería: - usted puede ganar $\$1000$ con $50\%$ de probabilidad, o - puede ganar $\$500$ con $50\%$ de probabilidad. Es decir, de entrada usted tendrá $\$500$ seguros pero también tiene la posibilidad de ganar $\$1000$. ¿Cuánto estarías dispuesto a pagar por esta oportunidad? Bien, podemos relacionar tu respuesta con tu coeficiente de aversión al riesgo. | Coeficiente de aversión al riesgo | Cantidad que pagarías | | --------------------------------- | --------------------- | | 0 | 750 | | 0.5 | 729 | | 1 | 707 | | 2 | 667 | | 3 | 632 | | 4 | 606 | | 5 | 586 | | 10 | 540 | | 15 | 525 | | 20 | 519 | | 50 | 507 | La mayoría de la gente está dispuesta a pagar entre $\$540$ (10) y $\$707$ (1). Es muy raro encontrar coeficientes de aversión al riesgo menores a 1. Esto está soportado por una gran cantidad de encuestas. - En el mundo financiero, los consultores financieros utilizan cuestionarios para medir el coeficiente de aversión al riesgo. **Ejemplo.** Describir en términos de aversión al riesgo las siguientes funciones de utilidad que dibujaré en el tablero. ___ # Anuncios ## 1. Quiz la siguiente clase. ## 2. Examen Módulos 1 y 2: martes 8 de octubre. ## 3. Recordar Tarea 5 para martes 1 de octubre. <script> $(document).ready(function(){ $('div.prompt').hide(); $('div.back-to-top').hide(); $('nav#menubar').hide(); $('.breadcrumb').hide(); $('.hidden-print').hide(); }); </script> <footer id="attribution" style="float:right; color:#808080; background:#fff;"> Created with Jupyter by Esteban Jiménez Rodríguez. </footer>
0.453262
0.930836
# PTQ 与 QAT 实践 本文主要介绍如何使用 PyTorch 将浮点模型转换为 PTQ 或者 QAT 模型。 ## 背景 {guilabel}`目标`:快速将浮点模型转换为 PTQ 或者 QAT 模型。 ### 读者 本教程适用于会使用 PyTorch 编写 CNN 等模块的的算法工程师。 ### 环境配置 本文使用 Python 3.10.0 (其他版本请自测),暂时仅 Linux 平台被测试。 查看 `torch` 和 `torchvision` 的版本: ``` import torch import torchvision print(f'torch: {torch.__version__} \n' f'torchvision: {torchvision.__version__}') ``` 设置一些警告配置: ``` # 设置 warnings import warnings warnings.filterwarnings( action='ignore', category=DeprecationWarning, module='.*' ) warnings.filterwarnings( action='ignore', module='torch.ao.quantization' ) ``` ## 概述:PQT 与 QAT 参考:[量化](https://pytorch.org/docs/master/quantization.html) `训练后量化` : 简称 PTQ(Post Training Quantization):权重量化,激活量化,需要借助数据在训练后进行校准。 `静态量化感知训练` : 简称 QAT(static quantization aware training):权重量化,激活量化,在训练过程中的量化数值进行建模。 `浮点模型` : 模型的 **权重** 和 **激活** 均为浮点类型(如 {data}`torch.float32`, {data}`torch.float64`)。 `量化模型` : 模型的 **权重** 和 **激活** 均为量化类型(如 {data}`torch.qint32`, {data}`torch.qint8`, {data}`torch.quint8`, {data}`torch.quint2x4`, {data}`torch.quint4x2`)。 下面举例说明如何将浮点模型转换为量化模型。 为了方便说明定义如下模块: ```{rubric} 定义简单的浮点模块 ``` ``` from torch import nn, Tensor class M(nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(1, 1, 1) self.relu = torch.nn.ReLU() def _forward_impl(self, x: Tensor) -> Tensor: '''提供便捷函数''' x = self.conv(x) x = self.relu(x) return x def forward(self, x: Tensor) -> Tensor: x= self._forward_impl(x) return x ``` ```{rubric} 定义可量化模块 ``` 将浮点模块 `M` 转换为可量化模块 `QM`(量化流程的最关键的一步)。 ``` from torch.ao.quantization import QuantStub, DeQuantStub class QM(M): ''' Args: is_print: 为了测试需求,打印一些信息 ''' def __init__(self, is_print: bool=False): super().__init__() self.is_print = is_print self.quant = QuantStub() # 将张量从浮点转换为量化 self.dequant = DeQuantStub() # 将张量从量化转换为浮点 def forward(self, x: Tensor) -> Tensor: # 手动指定张量将在量化模型中从浮点模块转换为量化模块的位置 x = self.quant(x) if self.is_print: print('量化前的类型:', x.dtype) x = self._forward_impl(x) if self.is_print: print('量化中的类型:',x.dtype) # 在量化模型中手动指定张量从量化到浮点的转换位置 x = self.dequant(x) if self.is_print: print('量化后的类型:', x.dtype) return x ``` 简单测试前向过程的激活数据类型: ``` input_fp32 = torch.randn(4, 1, 4, 4) # 输入的数据 m = QM(is_print=True) x = m(input_fp32) ``` 查看权重的数据类型: ``` m.conv.weight.dtype ``` 可以看出,此时模块 `m` 是浮点模块。 ### PTQ 简介 当内存带宽和计算空间都很重要时,通常会使用训练后量化,而 CNN 就是其典型的用例。训练后量化对模型的 **权重** 和 **激活** 进行量化。它在可能的情况下将 **激活** 融合到前面的层中。它需要用具有代表性的数据集进行 **校准**,以确定激活的最佳量化参数。 ```{rubric} 示意图 ``` ``` # 原始模型 # 全部的张量和计算均在浮点上进行 previous_layer_fp32 -- linear_fp32 -- activation_fp32 -- next_layer_fp32 / linear_weight_fp32 # 静态量化模型 # weights 和 activations 在 int8 上 previous_layer_int8 -- linear_with_activation_int8 -- next_layer_int8 / linear_weight_int8 ``` 直接创建浮点模块的实例: ``` # 创建浮点模型实例 model_fp32 = QM(is_print=True) ``` 要使 PTQ 生效,必须将模型设置为 `eval` 模式: ``` model_fp32.eval() ``` 查看此时的数据类型: ``` input_fp32 = torch.randn(4, 1, 4, 4) x = model_fp32(input_fp32) print('激活和权重的数据类型分别为:' f'{x.dtype}, {model_fp32.conv.weight.dtype}') ``` ```{rubric} 定义观测器 ``` 赋值实例变量 `qconfig`,其中包含关于要附加哪种观测器的信息: - 使用 [`'fbgemm'`](https://github.com/pytorch/FBGEMM) 用于带 AVX2 的 x86(没有AVX2,一些运算的实现效率很低);使用 [`'qnnpack'`](https://github.com/pytorch/pytorch/tree/master/aten/src/ATen/native/quantized/cpu/qnnpack) 用于 ARM CPU(通常出现在移动/嵌入式设备中)。 - 其他量化配置,如选择对称或非对称量化和 `MinMax` 或 `L2Norm` 校准技术,可以在这里指定。 ``` model_fp32.qconfig = torch.ao.quantization.get_default_qconfig('fbgemm') ``` 查看此时的数据类型: ``` input_fp32 = torch.randn(4, 1, 4, 4) x = model_fp32(input_fp32) print('激活和权重的数据类型分别为:' f'{x.dtype}, {model_fp32.conv.weight.dtype}') ``` ```{rubric} 融合激活层 ``` 在适用的地方,融合 activation 到前面的层(这需要根据模型架构手动完成)。常见的融合包括 `conv + relu` 和 `conv + batchnorm + relu`。 ``` model_fp32_fused = torch.ao.quantization.fuse_modules(model_fp32, [['conv', 'relu']]) model_fp32_fused ``` 可以看到 `model_fp32_fused` 中 `ConvReLU2d` 融合 `model_fp32` 的两个层 `conv` 和 `relu`。 查看此时的数据类型: ``` input_fp32 = torch.randn(4, 1, 4, 4) x = model_fp32_fused(input_fp32) print('激活和权重的数据类型分别为:' f'{x.dtype}, {model_fp32.conv.weight.dtype}') ``` ```{rubric} 启用观测器 ``` 在融合后的模块中启用观测器,用于在校准期间观测激活(activation)张量。 ``` model_fp32_prepared = torch.quantization.prepare(model_fp32_fused) ``` ```{rubric} 校准准备好的模型 ``` 校准准备好的模型,以确定量化参数的激活在现实世界的设置,校准具有代表性的数据集。 ``` input_fp32 = torch.randn(4, 1, 4, 4) x = model_fp32_prepared(input_fp32) print('激活和权重的数据类型分别为:' f'{x.dtype}, {model_fp32.conv.weight.dtype}') ``` ```{rubric} 模型转换 ``` ```{note} 量化权重,计算和存储每个激活张量要使用的尺度(scale)和偏差(bias)值,并用量化实现替换关键算子。 ``` 转换已校准好的模型为量化模型: ``` model_int8 = torch.quantization.convert(model_fp32_prepared) model_int8 ``` 查看权重的数据类型: ``` model_int8.conv.weight().dtype ``` 可以看出此时权重的元素大小为 1 字节,而不是 FP32 的 4 字节: ``` model_int8.conv.weight().element_size() ``` 运行模型,相关的计算将在 {data}`torch.qint8` 中发生。 ``` res = model_int8(input_fp32) res.dtype ``` 要了解更多关于量化意识训练的信息,请参阅 [QAT 教程](https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html)。 ### QAT 概述 与其他量化方法相比,QAT 在 **训练过程中** 模拟量化的效果,可以获得更高的 accuracy。在训练过程中,所有的计算都是在浮点上进行的,使用 fake_quant 模块通过夹紧和舍入的方式对量化效果进行建模,模拟 INT8 的效果。模型转换后,权值和激活被量化,激活在可能的情况下被融合到前一层。它通常与 CNN 一起使用,与 PTQ 相比具有更高的 accuracy。 ```{rubric} 示意图 ``` ``` # 原始模型 # 全部张量和计算均在浮点上 previous_layer_fp32 -- linear_fp32 -- activation_fp32 -- next_layer_fp32 / linear_weight_fp32 # 在训练过程中使用 fake_quants 建模量化数值 previous_layer_fp32 -- fq -- linear_fp32 -- activation_fp32 -- fq -- next_layer_fp32 / linear_weight_fp32 -- fq # 量化模型 # weights 和 activations 在 int8 上 previous_layer_int8 -- linear_with_activation_int8 -- next_layer_int8 / linear_weight_int8 ``` 定义比 `M` 稍微复杂一点的浮点模块: ``` class M2(M): def __init__(self): super().__init__() self.bn = torch.nn.BatchNorm2d(1) def _forward_impl(self, x: Tensor) -> Tensor: '''提供便捷函数''' x = self.conv(x) x = self.bn(x) x = self.relu(x) return x ``` 同样需要定义可量化模块: ``` class QM2(M2, QM): def __init__(self): super().__init__() ``` 创建浮点模型实例: ``` # 创建模型实例 model_fp32 = QM2() model_fp32 ``` 模型必须设置为训练模式,以便 QAT 可用: ``` model_fp32.train(); ``` 添加量化配置(与 PTQ 相同相似): ``` model_fp32.qconfig = torch.ao.quantization.get_default_qat_qconfig('fbgemm') ``` ```{rubric} 融合 QAT 模块 ``` QAT 的模块融合与 PTQ 相同相似: ``` from torch.ao.quantization import fuse_modules_qat model_fp32_fused = fuse_modules_qat(model_fp32, [['conv', 'bn', 'relu']]) ``` ```{rubric} 准备 QAT 模型 ``` 这将在模型中插入观测者和伪量化模块,它们将在校准期间观测权重和激活的张量。 ``` model_fp32_prepared = torch.quantization.prepare_qat(model_fp32_fused) ``` ```{rubric} 训练 QAT 模型 ``` ```python # 下文会编写实际的例子,此处没有显示 training_loop(model_fp32_prepared) ``` 将观测到的模型转换为量化模型。需要: - 量化权重,计算和存储用于每个激活张量的尺度(scale)和偏差(bias)值, - 在适当的地方融合模块,并用量化实现替换关键算子。 ``` model_fp32_prepared.eval() model_int8 = torch.quantization.convert(model_fp32_prepared) ``` 运行模型,相关的计算将在 {data}`torch.qint8` 中发生。 ``` res = model_int8(input_fp32) ``` 要了解更多关于量化意识训练的信息,请参阅 [QAT 教程](https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html)。 ### PTQ/QAT 统一的量化流程 PTQ 和 QAT 的量化流程十分相似,为了统一接口,可以使用 `torchvision` 提供的函数 {func}`~torchvision.models.quantization.utils._fuse_modules`。 下面利用函数 {func}`~torchvision.models.quantization.utils._fuse_modules` 可量化模块 `QM2`。 ``` from typing import Any from torch.ao.quantization import fuse_modules, fuse_modules_qat from torch.ao.quantization import get_default_qconfig, get_default_qat_qconfig from torch.ao.quantization import quantize, quantize_qat def _fuse_modules( model: nn.Module, modules_to_fuse: list[str] | list[list[str]], is_qat: bool | None, **kwargs: Any ): if is_qat is None: is_qat = model.training method = fuse_modules_qat if is_qat else fuse_modules return method(model, modules_to_fuse, **kwargs) class QM3(QM2): '''可量化模型 Args: is_qat: 是否使用 QAT 模式 ''' def __init__(self, is_qat: bool | None = None, backend='fbgemm'): super().__init__() self.is_qat = is_qat # 定义观测器 if is_qat: self.train() self.qconfig = get_default_qat_qconfig(backend) else: self.eval() self.qconfig = get_default_qconfig(backend) def fuse_model(self) -> None: '''模块融合''' if self.is_qat: modules_to_fuse = ['bn', 'relu'] else: modules_to_fuse = ['conv', 'bn', 'relu'] return _fuse_modules(self, modules_to_fuse, self.is_qat, inplace=True) ``` 有了可量化模块 `QM3`,可以十分便利的切换 PTQ/QAT了。 比如,PTQ,可以这样: ``` def run_fn(model, num_epochs): for _ in range(num_epochs): input_fp32 = torch.randn(4, 1, 4, 4) model(input_fp32) num_epochs = 10 ptq_model = QM3(is_qat=False) model_fused = ptq_model.fuse_model() quanted_model = quantize(model_fused, run_fn, [num_epochs]) ``` QAT 可以这样: ``` num_epochs = 10 qat_model = QM3(is_qat=True) model_fused = qat_model.fuse_model() quanted_model = quantize_qat(model_fused, run_fn, [num_epochs]) ``` ### PTQ/QAT 量化策略 对于通用量化技术,需要了解: 1. 将任何需要输出再量化请求的运算(因此有额外的参数)从函数形式转换为模块形式(例如,使用 {class}`torch.nn.ReLU` 而不是 {func}`torch.nn.functional.relu`)。 1. 通过在子模块上指定 `.qconfig` 属性或指定 `qconfig_dict` 来指定模型的哪些部分需要量化。例如,设置 `model.conv1.qconfig = None` 表示 `model.conv1` 层不量化,设置 `model.linear1.qconfig = custom_qconfig` 表示 `model.linear1` 将使用 `custom_qconfig` 而不是全局 `qconfig`。 对于量化激活的静态量化技术(即对模型的权重和激活均进行量化,包括 PTQ 和 QAT),用户还需要做以下工作: 1. 指定量化和反量化激活的位置。这是使用 {class}`~torch.ao.quantization.stubs.QuantStub` 和 {class}`~torch.ao.quantization.stubs.DeQuantStub` 模块完成的。 1. 使用 {class}`~torch.nn.quantized.FloatFunctional` 将需要对量化进行特殊处理的张量运算封装到模块中。例如像 {func}`add` 和 {func}`cat` 这样需要特殊处理来确定输出量化参数的运算。 1. 融合模块:将运算/模块组合成单个模块,获得更高的 accuracy 和性能。这是使用 {func}`~torch.ao.quantization.fuse_modules.fuse_modules` API 完成的,该 API 接受要融合的模块列表。目前支持以下融合:`[Conv, Relu]`、 `[Conv, BatchNorm]`、 `[Conv, BatchNorm, Relu]` 和 `[Linear, Relu]`。 示例: ```{figure} images/resnet.png :align: center :class: w3-border 倒置残差块的转换前后对比 ``` ## PTQ 和 QAT 实战 ```{rubric} 模型对比 ``` 类型|大小(MB)|accuracy($\%$) :-|:-|:- 浮点|9.188|94.91 浮点融合|8.924|94.91 QAT|2.657|94.41 ```{rubric} 不同 QConfig 的静态 PTQ 模型 ``` accuracy($\%$)|激活|权重| :-|:-|:- |51.11|{data}`~torch.ao.quantization.observer.MinMaxObserver`.`with_args(quant_min=0, quant_max=127)`|{data}`~torch.ao.quantization.observer.MinMaxObserver`.`with_args(dtype=torch.qint8, qscheme=torch.per_tensor_symmetric)` 80.42|{data}`~torch.ao.quantization.observer.HistogramObserver`.`with_args(quant_min=0, quant_max=127)`|{data}`~torch.ao.quantization.observer.PerChannelMinMaxObserver`.`with_args(dtype=torch.qint8, qscheme=torch.per_channel_symmetric)` 为了提供一致的量化工具接口,我们使用 Python 包 `torchq`。 本地载入临时 `torchq` 包: ``` from mod import torchq ``` ```{tip} 本文使用 `torchq` 的 `'0.0.1-alpha'` 版本。 ``` 更方便的是:使用 `pip` 安装: ```shell pip install torchq==0.0.1-alpha ``` 接着,便可以直接导入: ```python import torchq ``` ```{tip} 本文使用 `torchq` 的 `'0.0.1-alpha'` 版本。 ``` 可以看出 PTQ 和 QAT 需要用户自定义的内容主要集中在: **模块融合** 和 **算子替换**。 {func}`~torchvision.models.quantization.utils._fuse_modules` 提供了 {func}`~torch.ao.quantization.fuse_modules.fuse_modules` 和 {func}`~torch.ao.quantization.fuse_modules.fuse_modules_qat` 的统一接口。下面以 MobileNetV2 为例,简述如何使用 {func}`~torchvision.models.quantization.utils._fuse_modules` 函数和 {class}`~torch.nn.quantized.FloatFunctional` 类定制可量化的模块。 ``` '''参考 torchvision/models/quantization/mobilenetv2.py ''' from typing import Any from torch import Tensor from torch import nn from torchvision._internally_replaced_utils import load_state_dict_from_url from torchvision.ops.misc import ConvNormActivation from torchvision.models.quantization.utils import _fuse_modules, _replace_relu, quantize_model from torch.ao.quantization import QuantStub, DeQuantStub from torchvision.models.mobilenetv2 import InvertedResidual, MobileNetV2, model_urls quant_model_urls = { "mobilenet_v2_qnnpack": "https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth" } class QuantizableInvertedResidual(InvertedResidual): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.skip_add = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return self.skip_add.add(x, self.conv(x)) else: return self.conv(x) def fuse_model(self, is_qat: bool | None = None) -> None: for idx in range(len(self.conv)): if type(self.conv[idx]) is nn.Conv2d: _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True) class QuantizableMobileNetV2(MobileNetV2): def __init__(self, *args: Any, **kwargs: Any) -> None: """ MobileNet V2 main class Args: 继承自浮点 MobileNetV2 的参数 """ super().__init__(*args, **kwargs) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self, is_qat: bool | None=None) -> None: for m in self.modules(): if type(m) is ConvNormActivation: _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True) if type(m) is QuantizableInvertedResidual: m.fuse_model(is_qat) def mobilenet_v2( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableMobileNetV2: """ 从 `MobileNetV2:反向残差和线性瓶颈 <https://arxiv.org/abs/1801.04381>`_ 构建 MobileNetV2 架构。 注意,quantize = True 返回具有 8 bit 权值的量化模型。量化模型只支持推理并在 CPU 上运行。 目前还不支持 GPU 推理 Args: pretrained (bool): 如果为 True,返回在 ImageNet 上训练过的模型。 progress (bool): 如果为 True,则显示下载到标准错误的进度条 quantize(bool): 如果为 True,则返回量化模型,否则返回浮点模型 """ model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs) _replace_relu(model) if quantize: # TODO use pretrained as a string to specify the backend backend = "qnnpack" quantize_model(model, backend) else: assert pretrained in [True, False] if pretrained: if quantize: model_url = quant_model_urls["mobilenet_v2_" + backend] else: model_url = model_urls["mobilenet_v2"] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) return model ``` ### 一些准备工作 下面以 Cifar10 为了来说明 PTQ/QAT 的量化流程。 定义几个[辅助函数](https://github.com/pytorch/examples/blob/master/imagenet/main.py)来帮助评估模型。 ``` from torchq.helper import evaluate, print_size_of_model, load_model ``` 设置超参数: ``` saved_model_dir = 'models/' float_model_file = 'mobilenet_pretrained_float.pth' scripted_float_model_file = 'mobilenet_float_scripted.pth' scripted_ptq_model_file = 'mobilenet_ptq_scripted.pth' scripted_quantized_model_file = 'mobilenet_quantization_scripted_quantized.pth' scripted_qat_model_file = 'mobilenet_qat_scripted_quantized.pth' learning_rate = 5e-5 num_epochs = 30 batch_size = 16 num_classes = 10 # 设置评估策略 criterion = nn.CrossEntropyLoss() ``` 定义数据集和数据加载器: ``` from torchq.xinet import CV # 为了 cifar10 匹配 ImageNet,需要将其 resize 到 224 train_iter, test_iter = CV.load_data_cifar10(batch_size=batch_size, resize=224) ``` 查看数据集的 batch 次数: ``` print('训练、测试批次分别为:', len(train_iter), len(test_iter)) ``` 获取训练和测试数据集的大小: ``` num_train = sum(len(ys) for _, ys in train_iter) num_eval = sum(len(ys) for _, ys in test_iter) num_train, num_eval ``` ### 微调浮点模型 配置浮点模型: ``` #from torchvision.models.quantization import mobilenet_v2 # 定义模型 def create_model(quantize=False, num_classes=10, pretrained=False): float_model = mobilenet_v2(pretrained=pretrained, quantize=quantize) # 匹配 ``num_classes`` float_model.classifier[1] = nn.Linear(float_model.last_channel, num_classes) return float_model ``` 定义模型: ``` float_model = create_model(pretrained=True, quantize=False, num_classes=num_classes) ``` 定义微调的函数 {class}`torchq.xinet.CV`.{func}`train_fine_tuning` 用于模型。 微调浮点模型: ``` CV.train_fine_tuning(float_model, train_iter, test_iter, learning_rate=learning_rate, num_epochs=num_epochs, device='cuda:2', param_group=True) ``` 保存模型: ``` torch.save(float_model.state_dict(), saved_model_dir + float_model_file) ``` ### 配置可量化模型 加载浮点模型: ``` float_model = create_model(quantize=False, num_classes=num_classes) float_model = load_model(float_model, saved_model_dir + float_model_file) ``` 查看浮点模型的信息: ``` def print_info(model, model_type='浮点模型', test_iter=test_iter, criterion=criterion, num_eval=num_eval): '''打印信息''' print_size_of_model(model) top1, top5 = evaluate(model, criterion, test_iter) print(f'\n{model_type}:\n\t' f'在 {num_eval} 张图片上评估 accuracy 为: {top1.avg:2.5f}') print_info(float_model, model_type='浮点模型') ``` 可以先查看融合前的 inverted residual 块: ``` float_model.features[1].conv ``` 融合模块: ``` float_model.fuse_model(is_qat=None) ``` 查看融合后的 inverted residual 块: ``` float_model.features[1].conv ``` 为了得到“基线”精度,看看融合模块的非量化模型的精度: ``` model_type = '融合后的浮点模型' print("baseline 模型大小") print_size_of_model(float_model) top1, top5 = evaluate(float_model, criterion, test_iter) from torch import jit print(f'\n{model_type}:\n\t在 {num_eval} 张图片上评估 accuracy 为: {top1.avg:2.2f}') # 保存 jit.save(jit.script(float_model), saved_model_dir + scripted_float_model_file) ``` 这将是我们进行比较的基准。接下来,尝试不同的量化方法。 ### PTQ 实战 ``` # 加载模型 myModel = create_model(pretrained=False, quantize=False, num_classes=num_classes) float_model = load_model(myModel, saved_model_dir + float_model_file) myModel.eval() # 融合 myModel.fuse_model() ``` 指定量化配置(从简单的最小/最大范围估计和加权的逐张量量化开始): ``` from torch.ao.quantization.qconfig import default_qconfig myModel.qconfig = default_qconfig myModel.qconfig ``` 开始校准准备: ``` from torch.ao.quantization.quantize import prepare print('PTQ 准备:插入观测者') prepare(myModel, inplace=True) print('\n 查看观测者插入后的 inverted residual \n\n', myModel.features[1].conv) ``` 用数据集校准: ``` num_calibration_batches = 200 # 取部分训练集做校准 evaluate(myModel, criterion, train_iter, neval_batches=num_calibration_batches) print('\nPTQ:校准完成!') ``` 转换为量化模型: ``` from torch.ao.quantization.quantize import convert convert(myModel, inplace=True) print('PTQ:转换完成!') ``` 融合并量化后,查看融合模块的 Inverted Residual 块: ``` myModel.features[1].conv ``` 量化后的模型大小: ``` print_size_of_model(myModel) ``` 评估: ``` model_type = 'PTQ 模型' top1, top5 = evaluate(myModel, criterion, test_iter) print(f'\n{model_type}:\n\t在 {num_eval} 张图片上评估 accuracy 为: {top1.avg:2.2f}') # jit.save(jit.script(myModel), saved_model_dir + scripted_ptq_model_file) ``` 使用了简单的 min/max 观测器来确定量化参数,将模型的大小减少到了 2.36 MB 以下,几乎减少了 4 倍。 此外,通过使用不同的量化配置来显著提高精度(对于量化 ARM 架构的推荐配置重复同样的练习)。该配置的操作如下: - 在 per-channel 基础上量化权重 - 使用直方图观测器,收集激活的直方图,然后以最佳方式选择量化参数。 ``` per_channel_quantized_model = create_model(quantize=False, num_classes=num_classes) per_channel_quantized_model = load_model(per_channel_quantized_model, saved_model_dir + float_model_file) per_channel_quantized_model.eval() per_channel_quantized_model.fuse_model() per_channel_quantized_model.qconfig = get_default_qconfig('fbgemm') per_channel_quantized_model.qconfig num_calibration_batches = 200 # 仅仅取 200 个批次 prepare(per_channel_quantized_model, inplace=True) evaluate(per_channel_quantized_model, criterion, train_iter, num_calibration_batches) model_type = 'PTQ 模型(直方图观测器)' convert(per_channel_quantized_model, inplace=True) top1, top5 = evaluate(per_channel_quantized_model, criterion, test_iter) print(f'\n{model_type}:\n\t在 {num_eval} 张图片上评估 accuracy 为: {top1.avg:2.2f}') jit.save(jit.script(per_channel_quantized_model), saved_model_dir + scripted_quantized_model_file) ``` 仅仅改变这种量化配置方法,就可以将准确度提高到 $80.42\%$ 以上!尽管如此,这还是比 $95\%$ 的基线水平低了 $15\%$。 ### QAT 实战 使用 QAT,所有的权值和激活都在前向和后向训练过程中被“伪量化”:也就是说,浮点值被舍入以模拟 int8 值,但所有的计算仍然使用浮点数完成。因此,训练过程中的所有权重调整都是在“感知到”模型最终将被量化的情况下进行的;因此,在量化之后,这种方法通常比动态量化或训练后的静态量化产生更高的精度。 实际执行 QAT 的总体工作流程与之前非常相似: - 可以使用与以前相同的模型:不需要为量化感知训练做额外的准备。 - 需要使用 `qconfig` 来指定在权重和激活之后插入何种类型的伪量化,而不是指定观测者。 ``` def create_qat_model(num_classes, model_path, quantize=False, backend='fbgemm'): qat_model = create_model(quantize=quantize, num_classes=num_classes) qat_model = load_model(qat_model, model_path) qat_model.fuse_model() qat_model.qconfig = get_default_qat_qconfig(backend=backend) return qat_model ``` 最后,`prepare_qat` 执行“伪量化”,为量化感知训练准备模型: ``` from torch.ao.quantization.quantize import prepare_qat model_path = saved_model_dir + float_model_file qat_model = create_qat_model(num_classes, model_path) qat_model = prepare_qat(qat_model) ``` Inverted Residual Block:准备好 QAT 后,注意伪量化模块: ``` qat_model.features[1].conv ``` 训练具有高精确度的量化模型要求在推理时对数值进行精确的建模。因此,对于量化感知训练,我们对训练循环进行如下修改: - 将批处理范数转换为训练结束时的运行均值和方差,以更好地匹配推理数值。 - 冻结量化器参数(尺度和零点)并微调权重。 ``` CV.train_fine_tuning(qat_model, train_iter, test_iter, learning_rate=learning_rate, num_epochs=30, device='cuda:2', param_group=True, is_freeze=False, is_quantized_acc=False, need_qconfig=False, ylim=[0.8, 1]) ``` ```{note} 这里的损失函数向上平移了 0.8 以提供更好的视觉效果。 ``` 由于量化模型暂仅支持 CPU,故而需要先将模型转换为 CPU 版本,则转为量化版本: ``` convert(qat_model.cpu().eval(), inplace=True) qat_model.eval(); print_info(qat_model,'QAT 模型') ``` 量化感知训练在整个数据集上的准确率超过 $94.4\%$,接近浮点精度 $95\%$。 更多关于 QAT 的内容: - QAT 是后训练量化技术的超集,允许更多的调试。例如,我们可以分析模型的准确性是否受到权重或激活量化的限制。 - 也可以在浮点上模拟量化模型的准确性,因为使用伪量化来模拟实际量化算法的数值。 - 也可以很容易地模拟训练后量化。 保存 QAT 模型: ``` jit.save(jit.script(qat_model), saved_model_dir + scripted_qat_model_file) ``` ### 小结 同样可以使用 {func}`~torch.ao.quantization.quantize.quantize` 和 {func}`~torch.ao.quantization.quantize.quantize_qat` 简化流程。 比如,QAT 流程可以这样: ```python model_path = saved_model_dir + float_model_file qat_model = create_qat_model(num_classes, model_path) num_epochs = 30 ylim = [0.8, 1] device = 'cuda:2' is_freeze = False is_quantized_acc = False need_qconfig = True # 做一些 QAT 的量化配置工作 param_group = True # 提供位置参数 args = [train_iter, test_iter, learning_rate, num_epochs, device, is_freeze, is_quantized_acc, need_qconfig, param_group, ylim] quantized_model = quantize_qat(qat_model, CV.train_fine_tuning, args) ``` 简而言之,不管是 PTQ 还是 QAT,我们只需要自定义融合模块函数和量化校准函数(比如 QAT 的训练中校准,PTQ 的训练后校准)。
github_jupyter
import torch import torchvision print(f'torch: {torch.__version__} \n' f'torchvision: {torchvision.__version__}') # 设置 warnings import warnings warnings.filterwarnings( action='ignore', category=DeprecationWarning, module='.*' ) warnings.filterwarnings( action='ignore', module='torch.ao.quantization' ) 将浮点模块 `M` 转换为可量化模块 `QM`(量化流程的最关键的一步)。 简单测试前向过程的激活数据类型: 查看权重的数据类型: 可以看出,此时模块 `m` 是浮点模块。 ### PTQ 简介 当内存带宽和计算空间都很重要时,通常会使用训练后量化,而 CNN 就是其典型的用例。训练后量化对模型的 **权重** 和 **激活** 进行量化。它在可能的情况下将 **激活** 融合到前面的层中。它需要用具有代表性的数据集进行 **校准**,以确定激活的最佳量化参数。 直接创建浮点模块的实例: 要使 PTQ 生效,必须将模型设置为 `eval` 模式: 查看此时的数据类型: 赋值实例变量 `qconfig`,其中包含关于要附加哪种观测器的信息: - 使用 [`'fbgemm'`](https://github.com/pytorch/FBGEMM) 用于带 AVX2 的 x86(没有AVX2,一些运算的实现效率很低);使用 [`'qnnpack'`](https://github.com/pytorch/pytorch/tree/master/aten/src/ATen/native/quantized/cpu/qnnpack) 用于 ARM CPU(通常出现在移动/嵌入式设备中)。 - 其他量化配置,如选择对称或非对称量化和 `MinMax` 或 `L2Norm` 校准技术,可以在这里指定。 查看此时的数据类型: 在适用的地方,融合 activation 到前面的层(这需要根据模型架构手动完成)。常见的融合包括 `conv + relu` 和 `conv + batchnorm + relu`。 可以看到 `model_fp32_fused` 中 `ConvReLU2d` 融合 `model_fp32` 的两个层 `conv` 和 `relu`。 查看此时的数据类型: 在融合后的模块中启用观测器,用于在校准期间观测激活(activation)张量。 校准准备好的模型,以确定量化参数的激活在现实世界的设置,校准具有代表性的数据集。 转换已校准好的模型为量化模型: 查看权重的数据类型: 可以看出此时权重的元素大小为 1 字节,而不是 FP32 的 4 字节: 运行模型,相关的计算将在 {data}`torch.qint8` 中发生。 要了解更多关于量化意识训练的信息,请参阅 [QAT 教程](https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html)。 ### QAT 概述 与其他量化方法相比,QAT 在 **训练过程中** 模拟量化的效果,可以获得更高的 accuracy。在训练过程中,所有的计算都是在浮点上进行的,使用 fake_quant 模块通过夹紧和舍入的方式对量化效果进行建模,模拟 INT8 的效果。模型转换后,权值和激活被量化,激活在可能的情况下被融合到前一层。它通常与 CNN 一起使用,与 PTQ 相比具有更高的 accuracy。 定义比 `M` 稍微复杂一点的浮点模块: 同样需要定义可量化模块: 创建浮点模型实例: 模型必须设置为训练模式,以便 QAT 可用: 添加量化配置(与 PTQ 相同相似): QAT 的模块融合与 PTQ 相同相似: 这将在模型中插入观测者和伪量化模块,它们将在校准期间观测权重和激活的张量。 将观测到的模型转换为量化模型。需要: - 量化权重,计算和存储用于每个激活张量的尺度(scale)和偏差(bias)值, - 在适当的地方融合模块,并用量化实现替换关键算子。 运行模型,相关的计算将在 {data}`torch.qint8` 中发生。 要了解更多关于量化意识训练的信息,请参阅 [QAT 教程](https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html)。 ### PTQ/QAT 统一的量化流程 PTQ 和 QAT 的量化流程十分相似,为了统一接口,可以使用 `torchvision` 提供的函数 {func}`~torchvision.models.quantization.utils._fuse_modules`。 下面利用函数 {func}`~torchvision.models.quantization.utils._fuse_modules` 可量化模块 `QM2`。 有了可量化模块 `QM3`,可以十分便利的切换 PTQ/QAT了。 比如,PTQ,可以这样: QAT 可以这样: ### PTQ/QAT 量化策略 对于通用量化技术,需要了解: 1. 将任何需要输出再量化请求的运算(因此有额外的参数)从函数形式转换为模块形式(例如,使用 {class}`torch.nn.ReLU` 而不是 {func}`torch.nn.functional.relu`)。 1. 通过在子模块上指定 `.qconfig` 属性或指定 `qconfig_dict` 来指定模型的哪些部分需要量化。例如,设置 `model.conv1.qconfig = None` 表示 `model.conv1` 层不量化,设置 `model.linear1.qconfig = custom_qconfig` 表示 `model.linear1` 将使用 `custom_qconfig` 而不是全局 `qconfig`。 对于量化激活的静态量化技术(即对模型的权重和激活均进行量化,包括 PTQ 和 QAT),用户还需要做以下工作: 1. 指定量化和反量化激活的位置。这是使用 {class}`~torch.ao.quantization.stubs.QuantStub` 和 {class}`~torch.ao.quantization.stubs.DeQuantStub` 模块完成的。 1. 使用 {class}`~torch.nn.quantized.FloatFunctional` 将需要对量化进行特殊处理的张量运算封装到模块中。例如像 {func}`add` 和 {func}`cat` 这样需要特殊处理来确定输出量化参数的运算。 1. 融合模块:将运算/模块组合成单个模块,获得更高的 accuracy 和性能。这是使用 {func}`~torch.ao.quantization.fuse_modules.fuse_modules` API 完成的,该 API 接受要融合的模块列表。目前支持以下融合:`[Conv, Relu]`、 `[Conv, BatchNorm]`、 `[Conv, BatchNorm, Relu]` 和 `[Linear, Relu]`。 示例: ## PTQ 和 QAT 实战 类型|大小(MB)|accuracy($\%$) :-|:-|:- 浮点|9.188|94.91 浮点融合|8.924|94.91 QAT|2.657|94.41 accuracy($\%$)|激活|权重| :-|:-|:- |51.11|{data}`~torch.ao.quantization.observer.MinMaxObserver`.`with_args(quant_min=0, quant_max=127)`|{data}`~torch.ao.quantization.observer.MinMaxObserver`.`with_args(dtype=torch.qint8, qscheme=torch.per_tensor_symmetric)` 80.42|{data}`~torch.ao.quantization.observer.HistogramObserver`.`with_args(quant_min=0, quant_max=127)`|{data}`~torch.ao.quantization.observer.PerChannelMinMaxObserver`.`with_args(dtype=torch.qint8, qscheme=torch.per_channel_symmetric)` 为了提供一致的量化工具接口,我们使用 Python 包 `torchq`。 本地载入临时 `torchq` 包: 更方便的是:使用 `pip` 安装: 接着,便可以直接导入: 可以看出 PTQ 和 QAT 需要用户自定义的内容主要集中在: **模块融合** 和 **算子替换**。 {func}`~torchvision.models.quantization.utils._fuse_modules` 提供了 {func}`~torch.ao.quantization.fuse_modules.fuse_modules` 和 {func}`~torch.ao.quantization.fuse_modules.fuse_modules_qat` 的统一接口。下面以 MobileNetV2 为例,简述如何使用 {func}`~torchvision.models.quantization.utils._fuse_modules` 函数和 {class}`~torch.nn.quantized.FloatFunctional` 类定制可量化的模块。 ### 一些准备工作 下面以 Cifar10 为了来说明 PTQ/QAT 的量化流程。 定义几个[辅助函数](https://github.com/pytorch/examples/blob/master/imagenet/main.py)来帮助评估模型。 设置超参数: 定义数据集和数据加载器: 查看数据集的 batch 次数: 获取训练和测试数据集的大小: ### 微调浮点模型 配置浮点模型: 定义模型: 定义微调的函数 {class}`torchq.xinet.CV`.{func}`train_fine_tuning` 用于模型。 微调浮点模型: 保存模型: ### 配置可量化模型 加载浮点模型: 查看浮点模型的信息: 可以先查看融合前的 inverted residual 块: 融合模块: 查看融合后的 inverted residual 块: 为了得到“基线”精度,看看融合模块的非量化模型的精度: 这将是我们进行比较的基准。接下来,尝试不同的量化方法。 ### PTQ 实战 指定量化配置(从简单的最小/最大范围估计和加权的逐张量量化开始): 开始校准准备: 用数据集校准: 转换为量化模型: 融合并量化后,查看融合模块的 Inverted Residual 块: 量化后的模型大小: 评估: 使用了简单的 min/max 观测器来确定量化参数,将模型的大小减少到了 2.36 MB 以下,几乎减少了 4 倍。 此外,通过使用不同的量化配置来显著提高精度(对于量化 ARM 架构的推荐配置重复同样的练习)。该配置的操作如下: - 在 per-channel 基础上量化权重 - 使用直方图观测器,收集激活的直方图,然后以最佳方式选择量化参数。 仅仅改变这种量化配置方法,就可以将准确度提高到 $80.42\%$ 以上!尽管如此,这还是比 $95\%$ 的基线水平低了 $15\%$。 ### QAT 实战 使用 QAT,所有的权值和激活都在前向和后向训练过程中被“伪量化”:也就是说,浮点值被舍入以模拟 int8 值,但所有的计算仍然使用浮点数完成。因此,训练过程中的所有权重调整都是在“感知到”模型最终将被量化的情况下进行的;因此,在量化之后,这种方法通常比动态量化或训练后的静态量化产生更高的精度。 实际执行 QAT 的总体工作流程与之前非常相似: - 可以使用与以前相同的模型:不需要为量化感知训练做额外的准备。 - 需要使用 `qconfig` 来指定在权重和激活之后插入何种类型的伪量化,而不是指定观测者。 最后,`prepare_qat` 执行“伪量化”,为量化感知训练准备模型: Inverted Residual Block:准备好 QAT 后,注意伪量化模块: 训练具有高精确度的量化模型要求在推理时对数值进行精确的建模。因此,对于量化感知训练,我们对训练循环进行如下修改: - 将批处理范数转换为训练结束时的运行均值和方差,以更好地匹配推理数值。 - 冻结量化器参数(尺度和零点)并微调权重。 由于量化模型暂仅支持 CPU,故而需要先将模型转换为 CPU 版本,则转为量化版本: 量化感知训练在整个数据集上的准确率超过 $94.4\%$,接近浮点精度 $95\%$。 更多关于 QAT 的内容: - QAT 是后训练量化技术的超集,允许更多的调试。例如,我们可以分析模型的准确性是否受到权重或激活量化的限制。 - 也可以在浮点上模拟量化模型的准确性,因为使用伪量化来模拟实际量化算法的数值。 - 也可以很容易地模拟训练后量化。 保存 QAT 模型: ### 小结 同样可以使用 {func}`~torch.ao.quantization.quantize.quantize` 和 {func}`~torch.ao.quantization.quantize.quantize_qat` 简化流程。 比如,QAT 流程可以这样:
0.467818
0.963814
### Adequação de modelos e regressão não linear regressão com variaveis transformadas b1_inf = (xy_sum - x_sum*y_sum/n) / (x_sum**2 - (x_sum**2)/n) b0_inf = (y_sum - b1_inf*x_sum) / n ##### Imports ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm import seaborn as sns import math from statsmodels.graphics.gofplots import ProbPlot from scipy.stats import t from numpy.core.fromnumeric import mean ``` ##### Help functions ``` def df_residual(x, y): #create a new df for residual analysis #variable response = y #variable predict = x #predict variable response y_pred=list(modelo.predict()) #sns.resid(modelo) resi=list(modelo.resid) #create instance influence influence = modelo.get_influence() #get standard residuals stdresid = list(influence.resid_studentized_internal) #e/e* verify proportionality between error and standard error prop=np.divide(resi,stdresid) #tabela geral df = pd.DataFrame(list(zip(x, y, y_pred, resi, stdresid, prop)), columns =['x', 'y', 'yc', 'e', 'e*', 'e/e*']) return df ``` ##### Load dataset ``` df = pd.read_csv('data/carst.csv', delimiter=',') df ``` ##### 1. Faça uma análise de resíduos para carros do tipo 0 (dataset carst_csv) ``` #graph dispersion (cap_vol x consumo) sns.lmplot(x='cap_vol', y='consumo',hue='Etype', data=df);plt.grid(True) #select cars type = 0 df1 = df[df['Etype'] == 0] df1 #dispersion graph sns.lmplot(x='cap_vol', y='consumo',hue='brand/model/year', data=df1); #Regression results #select a response variable y = df1['consumo'] #select a predict variable x = df1['cap_vol'] #add a predict constant x = sm.add_constant(x) #fit linear regression model modelo = sm.OLS(y, x).fit() print(modelo.summary()) #equation of straight line b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print('y= {0}{1} x'.format(b0,b1)) #confidence interval b0 and b1 a = modelo.conf_int(alpha=0.05, cols=None) a #create a df for residual analysis dft = df_residual(df1['cap_vol'], df1['consumo']) dft #graph (y x yc) sns.lmplot(x='y', y='yc', data=dft);plt.grid(True) #graph (e* x x) sns.scatterplot(x='x', y='e*', data=dft);plt.grid(True) plt.xlabel('x= Capacidade Volumétrica') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph (e* x y) sns.scatterplot(x='y', y='e*', data=dft);plt.grid(True) plt.xlabel('y= Consumo') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph V(normal distribution) influence = modelo.get_influence() QQ = ProbPlot(influence.resid_studentized_internal) plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1) plot_lm_2.axes[0].set_xlabel('Percentil') plot_lm_2.axes[0].set_ylabel('Resíduos padronizados') ``` #### 2. Os seguintes dados: x=tempo de fritura (s) e y= teor de umidade (%). ##### a. Construa um gráfico de dispersão de y versus x e comente. ``` #data x = [5, 10, 15, 20, 25, 30, 45, 60] y= [16.3, 9.7, 8.1, 4.2, 3.4, 2.9, 1.9, 1.3] #create df df3 = pd.DataFrame({'x':x, 'y':y}) #dispersion graph (x x y) plt.scatter(df3['x'], df3['y']) plt.xlabel('tempo de fritura') plt.ylabel('teor de umidade') plt.grid(True) plt.show() ``` ##### b. Construa um gráfico de dispersão dos pares (ln(x), ln(y)) e comente. ``` #linearization vtx=np.log(df3['x']) vty=np.log(df3['y']) #dispersion graph plt.scatter(vtx, vty) plt.xlabel('Tempo de fritura (s)'); plt.ylabel('Teor de umidade (%)') plt.title('Gráfico com variáveis x e y transformadas') plt.grid(True) plt.show() #df comparison df4 = pd.DataFrame({'x':x, 'y':y, 'ln_x':vtx, 'ln_y':vty}) df4 ``` ##### c. Qual é a relação probabilística entre x e y sugerido pelo padrão linear no gráfico da parte (b)? ``` #Regression results #select a response variable y = vty #select a predict variable x = vtx #add a predict constant x = sm.add_constant(x) #fit linear regression model modelo = sm.OLS(y, x).fit() print(modelo.summary()) # parâmetros da reta intrinsecamente linear b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print('y= {0}{1} x'.format(b0,b1)) ``` ##### d. Preveja o valor do teor de umidade ao fritar as batatas por 20s, de uma forma que transmite informações sobre confiabilidade e precisão. ``` #t_student alpha = 0.05 #nível de significia = 5% df = len(x) - 2 #gl (n - 2) t_student = t.ppf(1 - alpha/2, df) print('t=: {}'.format(t_student)) x=df3['x'] y=df3['y'] vtx=np.log(x) vty=np.log(y) y_pred=list(modelo.predict()) #sns.resid(modelo) resi=(modelo.resid) #SQE = sum(y - y_inf) sqe = np.sum(resi*resi) #s2 = sqe/n-2 gl = modelo.df_resid s2 = sqe/gl #s s = pow(s2, 1/2) sqe, s2, s #sy_inf = s * pow(((1/n) + ((vtxs-vtxm)**2)/sxx), 1/2) #x* = ln(20) vtxs = np.log(20) #x mean vtxm = vtx.mean() #n n = modelo.df_resid + 2 #sxx xx = np.sum(vtx*vtx) xau = np.sum(vtx) sxx = xx-xau * xau/n #sy_inf sy_inf = s * pow(((1/n)+(vtxs-vtxm)*(vtxs-vtxm)/sxx),1/2) sy_inf #valor esperado de x = 20 deve ser usado como ln20(vtxs) yln20 = b0 + (b1*vtxs) yln20 #intervalo de previsão sy_ip = np.sqrt((s2) + (sy_inf**2)) #desvio padrao calculado ip = t_student * sy_ip #ip linearized model ip_yln20 = ([yln20 - ip, yln20 + ip]) #ip in original model(exponential) #interval 1 ip_yexp200=pow(math.e,ip_yln20[0]) #interval 2 ip_yexp201=pow(math.e,ip_yln20[1]) ip_yln20, ip_yexp200, ip_yexp201 ``` ##### e. Analise os resíduos do ajuste do modelo de regressão linear para os dados transformados e comente. ``` dft2 = df_residual(vtx, vty) dft2 #normal distribution QQ = ProbPlot(influence.resid_studentized_internal) plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1) plot_lm_2.axes[0].set_xlabel('Percentil') plot_lm_2.axes[0].set_ylabel('Resíduos padronizados') ``` #### 3. Os dados a seguir: índice de massa de queima(x) e o comprimento da chama(y) ##### a. Estime os parâmetros do modelo de função potência ``` x = [1.7, 2.2, 2.3, 2.6, 2.7, 3.0, 3.2, 3.3, 4.1, 4.3, 4.6, 5.7, 6.1] y = [1.3, 1.8, 1.6, 2.0, 2.1, 2.2, 3.0, 2.6, 4.1, 3.7, 5.0, 5.8, 5.3] vtx = np.log(x) vty = np.log(y) df5 = pd.DataFrame({'x':x, 'y':y, 'ln_x':vtx, 'ln_y':vty}) #Regression results #add a predict constant vtx = sm.add_constant(vtx) #fit linear regression model modelo = sm.OLS(vty, vtx).fit() print(modelo.summary()) #equation of straight line b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print('y= {0}+{1} x'.format(b0,b1)) #original representation b0 = pow(math.e, b0) print('y = {}x^{}'.format(b0, b1)) ``` ##### b. Construa gráficos de diagnóstico para verificar se uma função de potência é um modelo apropriado ``` vtx = np.log(x) vty = np.log(y) dft5 = df_residual(vtx, vty) dft5 #graph (y x yc) sns.lmplot(x='y', y='yc', data=dft5);plt.grid(True) #graph (e* x x) sns.scatterplot(x='x', y='e*', data=dft5);plt.grid(True) plt.xlabel('x= Massa de queima') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph (e* x y) sns.scatterplot(x='y', y='e*', data=dft5);plt.grid(True) plt.xlabel('y= Comprimento da chama') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph V(normal distribution) influence = modelo.get_influence() QQ = ProbPlot(influence.resid_studentized_internal) plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1) plot_lm_2.axes[0].set_xlabel('Percentil') plot_lm_2.axes[0].set_ylabel('Resíduos padronizados') ``` #### 4. Uma amostra de 20 observações, foi submetida ao processo de determinação da reta de regressão. Quando a variável preditora adota o valor de 3,5, a variável resposta adota o valor de 15. Após a obtenção da reta verifica-se que o valor esperado de da variável resposta para esse valor de 3,5 é 14,23. O valor médio da variável preditora é 2,2, o Sxx = 548 e o desvio padrão estimado s=0,98. Com todos estes dados calcular o valor do resíduo padronizado para a o dado especificado no problema. ``` n = 20 x = 3.5 y = 15 y_inf = 14.23 x_mean = 2.2 sxx = 548 s = 0.98 #fórmula para calculo do resíduo padronizado (obter resultado sem utilizar a função) e_std = y - y_inf / s * pow(1 - (1/n) - ((x - x_mean)**2/sxx),1/2) e_std ``` #### 5. Um conjunto de dados foi coletado e e visto que eles tem a caraterística de ser representados por um modelo logarítmico. Dito conjunto observa-se na seguinte tabela. Realizando a transformação de variáveis adequada para o modelo logarítmico, qual é o conjunto de dados adequado? ``` #Transforma apenas x x = [1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11, 12] y = [3.8, 4.5, 4.7, 5.0, 5.1, 5.5, 5.6, 5.9, 6.0, 6.2, 6.5, 6.6] vtx = np.log(x) df = pd.DataFrame({'y':y, 'vtx':vtx}) df ``` #### 6. O artigo “Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys” (J. of Engineering for Gas Turbines and Power, 2002: 161-176) apresentou os dados a seguir e ajustou um modelo de regressão não linear a fim de prever a amplitude do esforço dos ciclos em motores de avião até uma falha ocorrer. ``` x = (1326,1593,4414,5673,29516,26,843,1016,3410,7101,7356,7904,79,4175,34676,114789,2672,7532,30220) y = (0.01495,0.01470,0.01100,0.01190,0.00873,0.01819,0.00810,0.00801,0.00600,0.00575,0.00576,0.00580,0.01212,0.00782,0.00596,0.00600,0.00880,0.00883,0.00676) vtx = np.log(x) vty = np.log(y) #construir o DataFrame e nomear as colunas df = pd.DataFrame(list(zip(vtx, y)), columns =["ln_x","y"]) vtx = df['ln_x'] y = df['y'] #Regressão linear com as variáveis transformadas vtx = sm.add_constant(vtx) modelo = sm.OLS(y, vtx ).fit() #atenção esta variável será usada no IC # parâmetros da reta b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print("Função intrinsecamente linear y= {0}{1}x'".format(b0,b1)) #RESULTADO y = b0 + (b1 * np.log(2710)) print('valor previsto para x = 2710: y = {}'.format(y)) ```
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm import seaborn as sns import math from statsmodels.graphics.gofplots import ProbPlot from scipy.stats import t from numpy.core.fromnumeric import mean def df_residual(x, y): #create a new df for residual analysis #variable response = y #variable predict = x #predict variable response y_pred=list(modelo.predict()) #sns.resid(modelo) resi=list(modelo.resid) #create instance influence influence = modelo.get_influence() #get standard residuals stdresid = list(influence.resid_studentized_internal) #e/e* verify proportionality between error and standard error prop=np.divide(resi,stdresid) #tabela geral df = pd.DataFrame(list(zip(x, y, y_pred, resi, stdresid, prop)), columns =['x', 'y', 'yc', 'e', 'e*', 'e/e*']) return df df = pd.read_csv('data/carst.csv', delimiter=',') df #graph dispersion (cap_vol x consumo) sns.lmplot(x='cap_vol', y='consumo',hue='Etype', data=df);plt.grid(True) #select cars type = 0 df1 = df[df['Etype'] == 0] df1 #dispersion graph sns.lmplot(x='cap_vol', y='consumo',hue='brand/model/year', data=df1); #Regression results #select a response variable y = df1['consumo'] #select a predict variable x = df1['cap_vol'] #add a predict constant x = sm.add_constant(x) #fit linear regression model modelo = sm.OLS(y, x).fit() print(modelo.summary()) #equation of straight line b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print('y= {0}{1} x'.format(b0,b1)) #confidence interval b0 and b1 a = modelo.conf_int(alpha=0.05, cols=None) a #create a df for residual analysis dft = df_residual(df1['cap_vol'], df1['consumo']) dft #graph (y x yc) sns.lmplot(x='y', y='yc', data=dft);plt.grid(True) #graph (e* x x) sns.scatterplot(x='x', y='e*', data=dft);plt.grid(True) plt.xlabel('x= Capacidade Volumétrica') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph (e* x y) sns.scatterplot(x='y', y='e*', data=dft);plt.grid(True) plt.xlabel('y= Consumo') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph V(normal distribution) influence = modelo.get_influence() QQ = ProbPlot(influence.resid_studentized_internal) plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1) plot_lm_2.axes[0].set_xlabel('Percentil') plot_lm_2.axes[0].set_ylabel('Resíduos padronizados') #data x = [5, 10, 15, 20, 25, 30, 45, 60] y= [16.3, 9.7, 8.1, 4.2, 3.4, 2.9, 1.9, 1.3] #create df df3 = pd.DataFrame({'x':x, 'y':y}) #dispersion graph (x x y) plt.scatter(df3['x'], df3['y']) plt.xlabel('tempo de fritura') plt.ylabel('teor de umidade') plt.grid(True) plt.show() #linearization vtx=np.log(df3['x']) vty=np.log(df3['y']) #dispersion graph plt.scatter(vtx, vty) plt.xlabel('Tempo de fritura (s)'); plt.ylabel('Teor de umidade (%)') plt.title('Gráfico com variáveis x e y transformadas') plt.grid(True) plt.show() #df comparison df4 = pd.DataFrame({'x':x, 'y':y, 'ln_x':vtx, 'ln_y':vty}) df4 #Regression results #select a response variable y = vty #select a predict variable x = vtx #add a predict constant x = sm.add_constant(x) #fit linear regression model modelo = sm.OLS(y, x).fit() print(modelo.summary()) # parâmetros da reta intrinsecamente linear b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print('y= {0}{1} x'.format(b0,b1)) #t_student alpha = 0.05 #nível de significia = 5% df = len(x) - 2 #gl (n - 2) t_student = t.ppf(1 - alpha/2, df) print('t=: {}'.format(t_student)) x=df3['x'] y=df3['y'] vtx=np.log(x) vty=np.log(y) y_pred=list(modelo.predict()) #sns.resid(modelo) resi=(modelo.resid) #SQE = sum(y - y_inf) sqe = np.sum(resi*resi) #s2 = sqe/n-2 gl = modelo.df_resid s2 = sqe/gl #s s = pow(s2, 1/2) sqe, s2, s #sy_inf = s * pow(((1/n) + ((vtxs-vtxm)**2)/sxx), 1/2) #x* = ln(20) vtxs = np.log(20) #x mean vtxm = vtx.mean() #n n = modelo.df_resid + 2 #sxx xx = np.sum(vtx*vtx) xau = np.sum(vtx) sxx = xx-xau * xau/n #sy_inf sy_inf = s * pow(((1/n)+(vtxs-vtxm)*(vtxs-vtxm)/sxx),1/2) sy_inf #valor esperado de x = 20 deve ser usado como ln20(vtxs) yln20 = b0 + (b1*vtxs) yln20 #intervalo de previsão sy_ip = np.sqrt((s2) + (sy_inf**2)) #desvio padrao calculado ip = t_student * sy_ip #ip linearized model ip_yln20 = ([yln20 - ip, yln20 + ip]) #ip in original model(exponential) #interval 1 ip_yexp200=pow(math.e,ip_yln20[0]) #interval 2 ip_yexp201=pow(math.e,ip_yln20[1]) ip_yln20, ip_yexp200, ip_yexp201 dft2 = df_residual(vtx, vty) dft2 #normal distribution QQ = ProbPlot(influence.resid_studentized_internal) plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1) plot_lm_2.axes[0].set_xlabel('Percentil') plot_lm_2.axes[0].set_ylabel('Resíduos padronizados') x = [1.7, 2.2, 2.3, 2.6, 2.7, 3.0, 3.2, 3.3, 4.1, 4.3, 4.6, 5.7, 6.1] y = [1.3, 1.8, 1.6, 2.0, 2.1, 2.2, 3.0, 2.6, 4.1, 3.7, 5.0, 5.8, 5.3] vtx = np.log(x) vty = np.log(y) df5 = pd.DataFrame({'x':x, 'y':y, 'ln_x':vtx, 'ln_y':vty}) #Regression results #add a predict constant vtx = sm.add_constant(vtx) #fit linear regression model modelo = sm.OLS(vty, vtx).fit() print(modelo.summary()) #equation of straight line b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print('y= {0}+{1} x'.format(b0,b1)) #original representation b0 = pow(math.e, b0) print('y = {}x^{}'.format(b0, b1)) vtx = np.log(x) vty = np.log(y) dft5 = df_residual(vtx, vty) dft5 #graph (y x yc) sns.lmplot(x='y', y='yc', data=dft5);plt.grid(True) #graph (e* x x) sns.scatterplot(x='x', y='e*', data=dft5);plt.grid(True) plt.xlabel('x= Massa de queima') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph (e* x y) sns.scatterplot(x='y', y='e*', data=dft5);plt.grid(True) plt.xlabel('y= Comprimento da chama') plt.ylabel('e*= Resíduos padronizados') plt.axhline(y=0, color='black', linestyle='--', linewidth=1) plt.show() #graph V(normal distribution) influence = modelo.get_influence() QQ = ProbPlot(influence.resid_studentized_internal) plot_lm_2 = QQ.qqplot(line='45', alpha=0.5, color='#4C72B0', lw=1) plot_lm_2.axes[0].set_xlabel('Percentil') plot_lm_2.axes[0].set_ylabel('Resíduos padronizados') n = 20 x = 3.5 y = 15 y_inf = 14.23 x_mean = 2.2 sxx = 548 s = 0.98 #fórmula para calculo do resíduo padronizado (obter resultado sem utilizar a função) e_std = y - y_inf / s * pow(1 - (1/n) - ((x - x_mean)**2/sxx),1/2) e_std #Transforma apenas x x = [1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11, 12] y = [3.8, 4.5, 4.7, 5.0, 5.1, 5.5, 5.6, 5.9, 6.0, 6.2, 6.5, 6.6] vtx = np.log(x) df = pd.DataFrame({'y':y, 'vtx':vtx}) df x = (1326,1593,4414,5673,29516,26,843,1016,3410,7101,7356,7904,79,4175,34676,114789,2672,7532,30220) y = (0.01495,0.01470,0.01100,0.01190,0.00873,0.01819,0.00810,0.00801,0.00600,0.00575,0.00576,0.00580,0.01212,0.00782,0.00596,0.00600,0.00880,0.00883,0.00676) vtx = np.log(x) vty = np.log(y) #construir o DataFrame e nomear as colunas df = pd.DataFrame(list(zip(vtx, y)), columns =["ln_x","y"]) vtx = df['ln_x'] y = df['y'] #Regressão linear com as variáveis transformadas vtx = sm.add_constant(vtx) modelo = sm.OLS(y, vtx ).fit() #atenção esta variável será usada no IC # parâmetros da reta b=modelo.params b0=b[0] #intercepto b1=b[1] #inclinação print("Função intrinsecamente linear y= {0}{1}x'".format(b0,b1)) #RESULTADO y = b0 + (b1 * np.log(2710)) print('valor previsto para x = 2710: y = {}'.format(y))
0.516839
0.903847
<a href="https://colab.research.google.com/github/cagdastopcu/omission-of-visual-stimuli/blob/main/function_examples_for_data_analysis.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> #Pre-analysis setup Setup process for importing Allen SDK materials and data: A lot of this code is taken directly from https://colab.research.google.com/github/NeuromatchAcademy/course-content/blob/master/projects/neurons/load_Allen_Visual_Behavior_from_SDK.ipynb Install pip so we can install Allen's mindscope package. ``` !python -m pip install --upgrade pip !pip install mindscope_utilities --upgrade ``` This notebook always needs to have the runtime restarted. There should be a button above this line. Import dependencies. The usual stuff, scientific computing stuff, seaborn for plotting, mindscope from allen. AllenSDK's visual behavior packages. ``` import os import numpy as np import pandas as pd from tqdm import tqdm import seaborn as sns import matplotlib.pyplot as plt # Here are the Allen packages: import mindscope_utilities import mindscope_utilities.visual_behavior_ophys as ophys from allensdk.brain_observatory.behavior.behavior_project_cache import VisualBehaviorOphysProjectCache ``` This dataset need to be downloaded somewhere, the default Allen code just uses a local temporary directory. ``` data_storage_directory = "/temp" # Note: this path must exist on your local drive cache = VisualBehaviorOphysProjectCache.from_s3_cache(cache_dir=data_storage_directory) # Setup the tables for the sessions and experiments: session_table = cache.get_ophys_session_table() experiment_table = cache.get_ophys_experiment_table() ``` # Looking through experiment directories to find useful data Let's take a look at what the session table looks like. I think this is like a meta index of all the different sessions with a bunch of metadata about them. ``` session_table.head() ``` There are a ton of different properties. We want to look at different cell lines because they relate to the cell types we're interested in. Let's get the unique tags for "cre_line", just because the text output for that tag is pretty easy to read. ``` drivers = session_table["cre_line"].unique() print(drivers) ``` Great, now we can get the indices of these cell types from the session table. Let's make a function I guess. ``` def get_cell_type_index(cell_type,session_table): """Get the indexes of the Allen sessions that use a particular cre line. Args: cell_type: a string of the name of the cre line you want. This uses regex so you can try to be less descriptive, like 'sst' is good enoguh for Sst-IRES-cre. session_table: The table containing the sessions from Allen. Returns: ix (1D array): An index of sessions that use that cre line. """ # Look through the cre_line collumn and see if the cell_type string is contained in the output, then write down the index. ix = session_table.cre_line.str.contains(cell_type,regex=True).index return ix test_ix = get_cell_type_index('slc',session_table) print(test_ix) ``` # Working with experiment ids ``` ophys_session_id = test_ix[5] session_table.loc[ophys_session_id] experiments = {} ophys_experiment_ids = session_table.loc[ophys_session_id]['ophys_experiment_id'] for ophys_experiment_id in ophys_experiment_ids: experiments[ophys_experiment_id] = cache.get_behavior_ophys_experiment(ophys_experiment_id) neural_data = [] for ophys_experiment_id in tqdm(experiments.keys()): #tqdm is a package that shows progress bars for items that are iterated over this_experiment = experiments[ophys_experiment_id] this_experiment_neural_data = ophys.build_tidy_cell_df(this_experiment) # add some columns with metadata for the experiment metadata_keys = [ 'ophys_experiment_id', 'ophys_session_id', 'targeted_structure', 'imaging_depth', 'equipment_name', 'cre_line', 'mouse_id', 'sex', ] for metadata_key in metadata_keys: this_experiment_neural_data[metadata_key] = this_experiment.metadata[metadata_key] # append the data for this experiment to a list neural_data.append(this_experiment_neural_data) # concatate the list of dataframes into a single dataframe neural_data = pd.concat(neural_data) mindscope_utilities.event_triggered_response? cell_ids = neural_data['cell_specimen_id'].unique() single_cell_timeseries = neural_data.query('cell_specimen_id == 1086557208') stimulus_table = experiments[ophys_experiment_ids[0]].stimulus_presentations.drop(columns = ['image_set']) # dropping the 'image_set' column to avoid confusion. Image_set column contains a unique string for set of images presented in a session. cell_id = cell_ids[11] etr = mindscope_utilities.event_triggered_response( data = neural_data.query('cell_specimen_id == @cell_id'), t = 'timestamps', y = 'dff', event_times = stimulus_table.query('omitted')['start_time'], t_before=3, t_after=3, output_sampling_rate = 50, ) etr sns.lineplot( data=etr, x='time', y='dff', n_boot=500 ) ``` Let's functionalize this, since we want these plots. ``` def get_response(event_type, neural_data, c_id = 1, t_span = 3, plot = True): """Get the activity of a particular cell in response to an event Args: event_type: string that is a collumn in neural_data. e.g. 'omitted' or 'is_change' neural_data: the neural data table. c_id: cell id, which cell to get the response from. t_span: what timespan to sample, in seconds. plot: if true, a plot is generated. Returns: etr (1D array): The cell activity from -t_span s to +t_span s """ cell_ids = neural_data['cell_specimen_id'].unique() cell_id = cell_ids[c_id] etr = mindscope_utilities.event_triggered_response( data = neural_data.query('cell_specimen_id == @cell_id'), t = 'timestamps', y = 'dff', event_times = stimulus_table.query(event_type)['start_time'], t_before=t_span, t_after=t_span, output_sampling_rate = 50, ) etr if plot: sns.lineplot( data=etr, x='time', y='dff', n_boot=500 ) return etr get_response('is_change',neural_data,11,1,True) get_response('omitted',neural_data,11,2,plot=True) cell_ids = neural_data['cell_specimen_id'].unique() for c in range(len(cell_ids)): get_response('omitted',neural_data,c,.5,plot=True) ``` # Plotting means from cell types ``` excitatory_cell_examples = get_cell_type_index('slc',session_table) vip_cell_examples = get_cell_type_index('vip',session_table) sst_cell_examples = get_cell_type_index('sst',session_table) excitatory_cell_examples = excitatory_cell_examples[1] vip_cell_examples = vip_cell_examples[1] sst_cell_examples = sst_cell_examples[1] exc_1 = session_table.loc[excitatory_cell_examples] vip_1 = session_table.loc[vip_cell_examples] sst_1 = session_table.loc[sst_cell_examples] experiments = {} ophys_experiment_ids = session_table.loc[excitatory_cell_examples]['ophys_experiment_id'] for ophys_experiment_id in ophys_experiment_ids: experiments[ophys_experiment_id] = cache.get_behavior_ophys_experiment(ophys_experiment_id) neural_data = [] for ophys_experiment_id in tqdm(experiments.keys()): #tqdm is a package that shows progress bars for items that are iterated over this_experiment = experiments[ophys_experiment_id] this_experiment_neural_data = ophys.build_tidy_cell_df(this_experiment) # add some columns with metadata for the experiment metadata_keys = [ 'ophys_experiment_id', 'ophys_session_id', 'targeted_structure', 'imaging_depth', 'equipment_name', 'cre_line', 'mouse_id', 'sex', ] for metadata_key in metadata_keys: this_experiment_neural_data[metadata_key] = this_experiment.metadata[metadata_key] # append the data for this experiment to a list neural_data.append(this_experiment_neural_data) # concatate the list of dataframes into a single dataframe neural_data = pd.concat(neural_data) cell_ids = neural_data['cell_specimen_id'].unique() sample_data = get_response('omitted',neural_data,c,1,plot=False) responses = np.zeros((len(sample_data),len(cell_ids)),dtype=float) time = np.zeros((len(sample_data),len(cell_ids)),dtype=float) for c in range(len(cell_ids)): dummy = get_response('omitted',neural_data,c,1,plot=False) responses[:,c] = dummy.dff time[:,c] = dummy.time sns.lineplot( x=time.mean(axis=1), y=responses.mean(axis=1) ) ```
github_jupyter
!python -m pip install --upgrade pip !pip install mindscope_utilities --upgrade import os import numpy as np import pandas as pd from tqdm import tqdm import seaborn as sns import matplotlib.pyplot as plt # Here are the Allen packages: import mindscope_utilities import mindscope_utilities.visual_behavior_ophys as ophys from allensdk.brain_observatory.behavior.behavior_project_cache import VisualBehaviorOphysProjectCache data_storage_directory = "/temp" # Note: this path must exist on your local drive cache = VisualBehaviorOphysProjectCache.from_s3_cache(cache_dir=data_storage_directory) # Setup the tables for the sessions and experiments: session_table = cache.get_ophys_session_table() experiment_table = cache.get_ophys_experiment_table() session_table.head() drivers = session_table["cre_line"].unique() print(drivers) def get_cell_type_index(cell_type,session_table): """Get the indexes of the Allen sessions that use a particular cre line. Args: cell_type: a string of the name of the cre line you want. This uses regex so you can try to be less descriptive, like 'sst' is good enoguh for Sst-IRES-cre. session_table: The table containing the sessions from Allen. Returns: ix (1D array): An index of sessions that use that cre line. """ # Look through the cre_line collumn and see if the cell_type string is contained in the output, then write down the index. ix = session_table.cre_line.str.contains(cell_type,regex=True).index return ix test_ix = get_cell_type_index('slc',session_table) print(test_ix) ophys_session_id = test_ix[5] session_table.loc[ophys_session_id] experiments = {} ophys_experiment_ids = session_table.loc[ophys_session_id]['ophys_experiment_id'] for ophys_experiment_id in ophys_experiment_ids: experiments[ophys_experiment_id] = cache.get_behavior_ophys_experiment(ophys_experiment_id) neural_data = [] for ophys_experiment_id in tqdm(experiments.keys()): #tqdm is a package that shows progress bars for items that are iterated over this_experiment = experiments[ophys_experiment_id] this_experiment_neural_data = ophys.build_tidy_cell_df(this_experiment) # add some columns with metadata for the experiment metadata_keys = [ 'ophys_experiment_id', 'ophys_session_id', 'targeted_structure', 'imaging_depth', 'equipment_name', 'cre_line', 'mouse_id', 'sex', ] for metadata_key in metadata_keys: this_experiment_neural_data[metadata_key] = this_experiment.metadata[metadata_key] # append the data for this experiment to a list neural_data.append(this_experiment_neural_data) # concatate the list of dataframes into a single dataframe neural_data = pd.concat(neural_data) mindscope_utilities.event_triggered_response? cell_ids = neural_data['cell_specimen_id'].unique() single_cell_timeseries = neural_data.query('cell_specimen_id == 1086557208') stimulus_table = experiments[ophys_experiment_ids[0]].stimulus_presentations.drop(columns = ['image_set']) # dropping the 'image_set' column to avoid confusion. Image_set column contains a unique string for set of images presented in a session. cell_id = cell_ids[11] etr = mindscope_utilities.event_triggered_response( data = neural_data.query('cell_specimen_id == @cell_id'), t = 'timestamps', y = 'dff', event_times = stimulus_table.query('omitted')['start_time'], t_before=3, t_after=3, output_sampling_rate = 50, ) etr sns.lineplot( data=etr, x='time', y='dff', n_boot=500 ) def get_response(event_type, neural_data, c_id = 1, t_span = 3, plot = True): """Get the activity of a particular cell in response to an event Args: event_type: string that is a collumn in neural_data. e.g. 'omitted' or 'is_change' neural_data: the neural data table. c_id: cell id, which cell to get the response from. t_span: what timespan to sample, in seconds. plot: if true, a plot is generated. Returns: etr (1D array): The cell activity from -t_span s to +t_span s """ cell_ids = neural_data['cell_specimen_id'].unique() cell_id = cell_ids[c_id] etr = mindscope_utilities.event_triggered_response( data = neural_data.query('cell_specimen_id == @cell_id'), t = 'timestamps', y = 'dff', event_times = stimulus_table.query(event_type)['start_time'], t_before=t_span, t_after=t_span, output_sampling_rate = 50, ) etr if plot: sns.lineplot( data=etr, x='time', y='dff', n_boot=500 ) return etr get_response('is_change',neural_data,11,1,True) get_response('omitted',neural_data,11,2,plot=True) cell_ids = neural_data['cell_specimen_id'].unique() for c in range(len(cell_ids)): get_response('omitted',neural_data,c,.5,plot=True) excitatory_cell_examples = get_cell_type_index('slc',session_table) vip_cell_examples = get_cell_type_index('vip',session_table) sst_cell_examples = get_cell_type_index('sst',session_table) excitatory_cell_examples = excitatory_cell_examples[1] vip_cell_examples = vip_cell_examples[1] sst_cell_examples = sst_cell_examples[1] exc_1 = session_table.loc[excitatory_cell_examples] vip_1 = session_table.loc[vip_cell_examples] sst_1 = session_table.loc[sst_cell_examples] experiments = {} ophys_experiment_ids = session_table.loc[excitatory_cell_examples]['ophys_experiment_id'] for ophys_experiment_id in ophys_experiment_ids: experiments[ophys_experiment_id] = cache.get_behavior_ophys_experiment(ophys_experiment_id) neural_data = [] for ophys_experiment_id in tqdm(experiments.keys()): #tqdm is a package that shows progress bars for items that are iterated over this_experiment = experiments[ophys_experiment_id] this_experiment_neural_data = ophys.build_tidy_cell_df(this_experiment) # add some columns with metadata for the experiment metadata_keys = [ 'ophys_experiment_id', 'ophys_session_id', 'targeted_structure', 'imaging_depth', 'equipment_name', 'cre_line', 'mouse_id', 'sex', ] for metadata_key in metadata_keys: this_experiment_neural_data[metadata_key] = this_experiment.metadata[metadata_key] # append the data for this experiment to a list neural_data.append(this_experiment_neural_data) # concatate the list of dataframes into a single dataframe neural_data = pd.concat(neural_data) cell_ids = neural_data['cell_specimen_id'].unique() sample_data = get_response('omitted',neural_data,c,1,plot=False) responses = np.zeros((len(sample_data),len(cell_ids)),dtype=float) time = np.zeros((len(sample_data),len(cell_ids)),dtype=float) for c in range(len(cell_ids)): dummy = get_response('omitted',neural_data,c,1,plot=False) responses[:,c] = dummy.dff time[:,c] = dummy.time sns.lineplot( x=time.mean(axis=1), y=responses.mean(axis=1) )
0.585694
0.938011
# This data contains the results of an A/B test. <a href='https://tf-assets-prod.s3.amazonaws.com/tf-curric/data-science/ab_edited.csv'>Download it here.</a> ## For this analysis: ### <ol><li>Check for adequate sample sizes.</li><li>Check for changes over time in results.</li><li>Formally test for a significant difference in conversions between treatment and control groups.</li></ol> ``` import scipy.stats as st import pandas as pd import matplotlib.pyplot as plt rawdata = pd.read_csv('https://tf-assets-prod.s3.amazonaws.com/tf-curric/data-science/ab_edited.csv') display(rawdata.head(), rawdata.info()) rawdata['datestamp'] = pd.DatetimeIndex(rawdata['timestamp']).date display(rawdata.head(), rawdata['datestamp'].min(), rawdata['datestamp'].max() ) rawdata['daysstamp'] = pd.DatetimeIndex(rawdata['timestamp']).day display(rawdata.head()) ``` #### <span style="color:blue">1. From this data, we can see there are over 290,000 records. In addition, we're able to see that the entireity of this data occurs in 2017-01, so we can filter the timestamp down to just the days for a cleaner final presentation</span> ``` datacon = rawdata[rawdata['group'] == 'control'] datatre = rawdata[rawdata['group'] == 'treatment'] display(datacon.head(), datatre.head()) groupeddatacon = datacon.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()).reset_index(name='count') groupeddatatre = datatre.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()).reset_index(name='count') plt.bar(groupeddatacon['daysstamp'], groupeddatacon['count'], alpha=0.4, label='Control Group') plt.bar(groupeddatatre['daysstamp'], groupeddatatre['count'], alpha=0.4, label='Treatment Group') plt.xlabel('Days\nJanuary, 2017') plt.ylabel('Converted / day') plt.legend(loc='lower left') plt.show() groupeddatacon = datacon.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()/(x!=2).sum()).reset_index(name='ratio') groupeddatatre = datatre.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()/(x!=2).sum()).reset_index(name='ratio') plt.bar(groupeddatacon['daysstamp'], groupeddatacon['ratio'], alpha=0.4, label='Control Group') plt.bar(groupeddatatre['daysstamp'], groupeddatatre['ratio'], alpha=0.4, label='Treatment Group') plt.xlabel('Days\nJanuary, 2017') plt.ylabel('(Converted / Sum) / day') plt.legend(loc='lower left') plt.show() ``` #### <span style="color:blue">2. From this data, we can see there doesn't seem to be any major fluctuation day-by-day for either the control group or the treatment group.</span> ``` elist = pd.DatetimeIndex(datacon['datestamp'].unique()).sort_values(ascending=True) dlist = elist.strftime('%m/%d/%Y') plist = [] tlist = [] for today in elist: todaydatacon = datacon[datacon['datestamp'] == today] todaydatatre = datatre[datatre['datestamp'] == today] t, p = st.ttest_ind(todaydatacon['converted'], todaydatatre['converted']) plist.append(p) tlist.append(t) resultsdf = pd.DataFrame(list(zip(dlist, tlist, plist)), columns=['Date', 'T-test Stat', 'T-test P']) resultsdf['P < 0.05'] = resultsdf['T-test P'] < 0.05 resultsdf ``` #### <span style='color:blue'>Of the 23 days for which we have results, there was only one instance where P was less than 0.05. However, the overwhelming trend throughout the month, was the opposite. Therefore we Accept the Null Hypothesis that there is no significant difference in the means.</span>
github_jupyter
import scipy.stats as st import pandas as pd import matplotlib.pyplot as plt rawdata = pd.read_csv('https://tf-assets-prod.s3.amazonaws.com/tf-curric/data-science/ab_edited.csv') display(rawdata.head(), rawdata.info()) rawdata['datestamp'] = pd.DatetimeIndex(rawdata['timestamp']).date display(rawdata.head(), rawdata['datestamp'].min(), rawdata['datestamp'].max() ) rawdata['daysstamp'] = pd.DatetimeIndex(rawdata['timestamp']).day display(rawdata.head()) datacon = rawdata[rawdata['group'] == 'control'] datatre = rawdata[rawdata['group'] == 'treatment'] display(datacon.head(), datatre.head()) groupeddatacon = datacon.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()).reset_index(name='count') groupeddatatre = datatre.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()).reset_index(name='count') plt.bar(groupeddatacon['daysstamp'], groupeddatacon['count'], alpha=0.4, label='Control Group') plt.bar(groupeddatatre['daysstamp'], groupeddatatre['count'], alpha=0.4, label='Treatment Group') plt.xlabel('Days\nJanuary, 2017') plt.ylabel('Converted / day') plt.legend(loc='lower left') plt.show() groupeddatacon = datacon.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()/(x!=2).sum()).reset_index(name='ratio') groupeddatatre = datatre.groupby('daysstamp')['converted'].apply(lambda x: (x==1).sum()/(x!=2).sum()).reset_index(name='ratio') plt.bar(groupeddatacon['daysstamp'], groupeddatacon['ratio'], alpha=0.4, label='Control Group') plt.bar(groupeddatatre['daysstamp'], groupeddatatre['ratio'], alpha=0.4, label='Treatment Group') plt.xlabel('Days\nJanuary, 2017') plt.ylabel('(Converted / Sum) / day') plt.legend(loc='lower left') plt.show() elist = pd.DatetimeIndex(datacon['datestamp'].unique()).sort_values(ascending=True) dlist = elist.strftime('%m/%d/%Y') plist = [] tlist = [] for today in elist: todaydatacon = datacon[datacon['datestamp'] == today] todaydatatre = datatre[datatre['datestamp'] == today] t, p = st.ttest_ind(todaydatacon['converted'], todaydatatre['converted']) plist.append(p) tlist.append(t) resultsdf = pd.DataFrame(list(zip(dlist, tlist, plist)), columns=['Date', 'T-test Stat', 'T-test P']) resultsdf['P < 0.05'] = resultsdf['T-test P'] < 0.05 resultsdf
0.210604
0.909747
# 进程和线程 今天我们使用的计算机进入多CPU或多核时代,而我们的操作系统支持多任务。 进程:就是操作系统中执行的一个程序,操作系统以进程为单位分配存储空间,每个进程都有自己的地址空间,数据栈以及其他用于跟踪进程执行的辅助数据。一个进程还可以拥有多个并发的执行线索,简单说就是拥有多个可以获得cpu调度的执行单元。 线程:执行单元。。。在某个时刻能够获得CPU的只有唯一的一个线程,多个线程共享了CPU的执行时间 例子: 在停车场,两辆汽车去停在一个车位,就是并行,两辆车停两个车位,就是并发。 ``` from random import randint from time import time, sleep def download_task(filename): print('开始下载%s...' % filename) time_to_download = randint(5, 10) sleep(time_to_download) print('%s下载完成! 耗费了%d秒' % (filename, time_to_download)) def main(): start = time() download_task('Python从入门到住院.pdf') download_task('Peking Hot.avi') end = time() print('总共耗费了%.2f秒.' % (end - start)) if __name__ == '__main__': main() from multiprocessing import Process from os import getpid from random import randint from time import time, sleep def download_task(filename): print('启动下载进程,进程号[%d].' % getpid()) print('开始下载%s...' % filename) time_to_download = randint(5, 10) sleep(time_to_download) print('%s下载完成! 耗费了%d秒' % (filename, time_to_download)) def main(): start = time() p1 = Process(target=download_task, args=('Python从入门到住院.pdf', )) p1.start() p2 = Process(target=download_task, args=('Peking Hot.avi', )) p2.start() p1.join() p2.join() end = time() print('总共耗费了%.2f秒.' % (end - start)) if __name__ == '__main__': main() ``` # 装饰器 ``` def deco(func): def wrap(*args,**kwargs): return func(*args,**kwargs) return wrap @deco def foo(a,b): return a ** b def deco(n): def wrap1(func): def wrap2(*args, **kwargs): return func(*args, **kwargs) return wrap2 return wrap1 # 调用过程 wrap1 = deco() wrap2 = wrap1(foo) foo = wrap2 foo() # 单行形式 check_result(30)(foo)(4,8) import random def deco2(parms): def deco(func): def warp(*arg,**kwargs): if parms: kwargs['n1'] = -1 return func(*args,**kwargs) return warp return deco @deco(True) def A(n1,n2): if n1 == n2: print('验证密码正确') else : print('验证码错误') num = random.randrange(1000,9999) print('验证码是:%d'%num) num2 = int(input('>>')) A(n1 = num, n2 = num) class Rectangle(object): def __init__(self): pass def main(self): width = float(input("长为:")) heightd = float(input("宽为:")) self.getArea(width,heightd) self.getPerimeter(width,heightd) def getArea(self,width,heightd): Area = width * heightd print('面积为:%.2f'%Area) def getPerimeter(self,width,heightd): Perimeter = (width + heightd) * 2 print('周长为:%.2f'%Perimeter) if __name__ == '__main__': rectangle = Rectangle() rectangle.main() class Fan(object): def __init__(self): pass def main(self): speed = int(input("1档,2档,3档:")) on = bool() radius1 = float(5) radius2 = float(10) color1 = str('blue') color2 = str('yellow') self.gongneng(speed,on,radius1,radius2,color1,color2) def gongneng (self,speed,on,radius1,radius2,color1,color2): if speed == 1: print(on) elif speed == 2: print('半径为:',radius1,'颜色:',color1) elif speed == 3: print('半径为:',radius2,'颜色:',color2) else: pass if __name__ == "__main__": fan =Fan() fan.main() ```
github_jupyter
from random import randint from time import time, sleep def download_task(filename): print('开始下载%s...' % filename) time_to_download = randint(5, 10) sleep(time_to_download) print('%s下载完成! 耗费了%d秒' % (filename, time_to_download)) def main(): start = time() download_task('Python从入门到住院.pdf') download_task('Peking Hot.avi') end = time() print('总共耗费了%.2f秒.' % (end - start)) if __name__ == '__main__': main() from multiprocessing import Process from os import getpid from random import randint from time import time, sleep def download_task(filename): print('启动下载进程,进程号[%d].' % getpid()) print('开始下载%s...' % filename) time_to_download = randint(5, 10) sleep(time_to_download) print('%s下载完成! 耗费了%d秒' % (filename, time_to_download)) def main(): start = time() p1 = Process(target=download_task, args=('Python从入门到住院.pdf', )) p1.start() p2 = Process(target=download_task, args=('Peking Hot.avi', )) p2.start() p1.join() p2.join() end = time() print('总共耗费了%.2f秒.' % (end - start)) if __name__ == '__main__': main() def deco(func): def wrap(*args,**kwargs): return func(*args,**kwargs) return wrap @deco def foo(a,b): return a ** b def deco(n): def wrap1(func): def wrap2(*args, **kwargs): return func(*args, **kwargs) return wrap2 return wrap1 # 调用过程 wrap1 = deco() wrap2 = wrap1(foo) foo = wrap2 foo() # 单行形式 check_result(30)(foo)(4,8) import random def deco2(parms): def deco(func): def warp(*arg,**kwargs): if parms: kwargs['n1'] = -1 return func(*args,**kwargs) return warp return deco @deco(True) def A(n1,n2): if n1 == n2: print('验证密码正确') else : print('验证码错误') num = random.randrange(1000,9999) print('验证码是:%d'%num) num2 = int(input('>>')) A(n1 = num, n2 = num) class Rectangle(object): def __init__(self): pass def main(self): width = float(input("长为:")) heightd = float(input("宽为:")) self.getArea(width,heightd) self.getPerimeter(width,heightd) def getArea(self,width,heightd): Area = width * heightd print('面积为:%.2f'%Area) def getPerimeter(self,width,heightd): Perimeter = (width + heightd) * 2 print('周长为:%.2f'%Perimeter) if __name__ == '__main__': rectangle = Rectangle() rectangle.main() class Fan(object): def __init__(self): pass def main(self): speed = int(input("1档,2档,3档:")) on = bool() radius1 = float(5) radius2 = float(10) color1 = str('blue') color2 = str('yellow') self.gongneng(speed,on,radius1,radius2,color1,color2) def gongneng (self,speed,on,radius1,radius2,color1,color2): if speed == 1: print(on) elif speed == 2: print('半径为:',radius1,'颜色:',color1) elif speed == 3: print('半径为:',radius2,'颜色:',color2) else: pass if __name__ == "__main__": fan =Fan() fan.main()
0.316369
0.716863
![Callysto.ca Banner](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-top.jpg?raw=true) <a href="https://hub.callysto.ca/jupyter/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fcallysto%2Fcurriculum-notebooks&branch=master&subPath=Science/SourcesOfEnergy/resources-and-recycling.ipynb&depth=1" target="_parent"><img src="https://raw.githubusercontent.com/callysto/curriculum-notebooks/master/open-in-callysto-button.svg?sanitize=true" width="123" height="24" alt="Open in Callysto"/></a> ``` import myMagics %uiButtons ``` # Sources of Energy ## Learning Summary Students will begin to understand the importance of managing waste properly. They will learn about the different sources of energy. In addition, they will learn that these energy sources are not unlimited and can run out. By the end of this notebook, students will understand which energy sources are renewable and non-renewable. They will learn and begin to think about the good and bad traits of energy sources as well as the lifespan of the source. Students will be prompted to think about the efficiency of the energy source after taking all factors into consideration. ## Solar Energy Solar energy is energy that comes from the sun. The earth receives more energy from the sun in one hour than the whole world uses in one year. Solar energy is used to generate electricity using solar panels. A solar panel works by allowing particles of light to knock electrons free from atoms, generating a flow of electricity. Unfortunately, solar panels need solar cells to work which are created from already existing materials such as silicon, which is not an unlimited resource. Solar panels are hard to manufacture making solar energy use low. Once they are made, solar panels do not release any pollution into the air. Energy from the sun is produced every day which means it will never run out, making it a renewable resource. <img src="http://www.mountainjunkiegear.com/wp-content/uploads/2013/04/How-Solar-Panels-Work.jpg" style="margin: 0 auto; width: 1000px;"> #### Source Image: Solar Panels for your Home, Nov. 2015. Retrieved from http://www.mountainjunkiegear.com/wp-content/uploads/2013/04/How-Solar-Panels-Work ## Oil Energy and Natural Gas Energy The most used source of energy around the world is oil. Oil occurs naturally and takes over a million years to form from old plants and bacteria. Oil comes from far underground. It is brought to the surface by special pumps and pipes. Most electricity, fuel and everyday things such as plastic come from this source. The most common use of oil that you may know is gasoline for vehicles. Oil is a fossil fuel. A fossil fuel is a source of energy that does not reproduce at the rate it is being used making it a non-renewable resource. ``` from IPython.display import YouTubeVideo YouTubeVideo('WW8KfUJdTNY', width=800, height=300) ``` ##### Source Video: Crude Oil Extraction, July 2016. Retrieved from https://www.youtube.com/watch?time_continue=83&v=WW8KfUJdTNY Similarly, natural gas is found underground all over the world. It is often located around coal or oil pockets in the earth. The word 'natural' means that it is a gas formed by natural chemical processes that occur on earth. Natural gas is a by-product of decomposing biomass such as trees, grass, animals, wood and leaves. Your house uses natural gas every day for heating, cooking and electricity. How does natural gas get from deep within the ground all the way to your house to be used? Natural gas companies drill thousands of feet into the earth and use big pumps to bring it to the surface. Then they send the gas to your town through gas pipes buried underground. A gas company brings it to your house in smaller pipes. Each household in Alberta pays a natural gas bill each month. Since it is produced from the same processes as oil, natural gas is a fossil fuel too making it a non-renewable source. ## Coal Energy Another major source of energy around the world is coal. Most of the coal we use now was formed 300 million years ago. The energy in coal comes from energy that was stored in giant plants that lived hundreds of millions of years ago in swamp forests, even before the dinosaurs! <img src="http://www.dynamicscience.com.au/tester/solutions1/electric/electricenergy.gif" style="margin: 0 auto; width: 1000px;"> #### Source Image: Energy Conservation, n.d. Retrieved from http://www.dynamicscience.com.au/tester/solutions1/electric/electricenergy In the above diagram we see that plants are the only organisms on Earth that can harness solar energy and convert it into a more usable form called chemical energy. Chemical energy is trapped in the form of wood and other plant matter. Coal is also a source of chemical energy because when the plant matter died, it formed layers at the bottom of swamps. Water and dirt began to pile up on top of the dead plant remains and years of pressure formed the rock we call coal. Humans dig up coal and burn it. When coal is burned it turns into chemical energy and heat energy. The heat energy is used to heat water into super-hot steam. Steam occurs when water heats up to such a high temperature that it changes from a liquid to a gas. Steam is kinetic energy. Kinetic energy is the energy of motion, or in other words the movement of particles. The steam (or kinetic energy) causes a generator to spin and produces electrical energy. Coal is a fossil fuel making it non-renewable. Humans use coal at a faster rate than it reproduces. The law of conservation of energy states that energy cannot be created nor can it be destroyed. It can, however, change forms. Take the process outlined in the animation below. At every step there is a loss of energy. The efficiency of the process is given as an estimated percentage. <img src="http://www.dynamicscience.com.au/tester/solutions1/electric/powerstation/Untitled-17.gif" style="margin: 0 auto; width: 1000px;"> #### Source Image: Energy Conservation, n.d. Retrieved from http://www.dynamicscience.com.au/tester/solutions1/electric/electricenergy ``` %%html <style> #list { margin: 20px 0; padding: 0; } #list li { list-style: none; margin: 5px 0; } .energy { font-family: 'Courier New', Courier, monospace; font-size: 15px; } .answerSelect { margin: 10px 10px; } .correct { color: green; font-size: 25px; display: none; } .wrong { color: red; font-size: 25px; display: none; } .ansBtn { cursor: pointer; border: solid black 1px; background: #d3d3d3; padding: 10px 5px; border-radius: 0px; font-family: arial; font-size: 20px; } .ansBtn:hover { background: #f3f3f3; } .redtext { color: red; } .greentext { color: green; } </style> <body> <div style="height: 300px"> <ul id="list"> <li> <label for="q1">1) What process captures solar energy?</label> <select name="q1" id="q1" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="evaporation">Evaporation</option> <option value="photosynthesis">Photosynthesis</option> <option value="respiration">Respiration</option> <option value="condensation">Condensation</option> </select> <span class="correct" id="Q1C">&#10003</span> <span class="wrong" id="Q1W">&#10007</span> </li> <li> <label for="q2">2) Which is the most inefficient energy conversion step in the process outlined above?</label> <select name="q2" id="q2" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="kinetic into mechanical">Kinetic into mechanical</option> <option value="chemical into heat">Chemical into heat</option> <option value="mechanical into electrical">Mechanical into electrical</option> <option value="solar into chemical">Solar into chemical</option> </select> <span class="correct" id="Q2C">&#10003</span> <span class="wrong" id="Q2W">&#10007</span> </li> <li> <label for="q3">3) The more steps in the process of generating electrical energy the</label> <select name="q3" id="q3" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="less electrical energy that is generated">Less electrical energy that is generated</option> <option value="the more electrical energy that is generated">The more electrical energy that is generated</option> </select> <span class="correct" id="Q3C">&#10003</span> <span class="wrong" id="Q3W">&#10007</span> </li> <li> <label for="q4">4) The energy lost is in the form of</label> <select name="q4" id="q4" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="Electrical">Electrical</option> <option value="Heat">Heat</option> <option value="Chemical">Chemical</option> <option value="Mechanical">Mechanical</option> </select> <span class="correct" id="Q4C">&#10003</span> <span class="wrong" id="Q4W">&#10007</span> </li> <li> <label for="q5">5) What type of energy is carried by steam</label> <select name="q5" id="q5" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="Electrical">Electrical</option> <option value="Chemical">Chemical</option> <option value="Mechanical">Mechanical</option> <option value="Kinetic">Kinetic</option> </select> <span class="correct" id="Q5C">&#10003</span> <span class="wrong" id="Q5W">&#10007</span> </li> </ul> <span class="ansBtn" id="ansBtn" onclick="checkAns()">Check Answers!</span> </div> <script src="main.js"></script> </body> ``` ## Biomass Energy Perhaps one of the oldest forms of fuel known is biomass fuel. Biomass is any kind of biological matter that humans can burn in order to produce heat or energy. Biomass mainly consists of wood, leaves, and grass. All biomass has storages of carbon and when biomass is burned the carbon is released into the atmosphere as CO2 gas. Resources such as wood, leaves and grass are NOT fossil fuels because biomass is said to be carbon neutral. Carbon neutral means that the amount of carbon released when biomass is burned is equal to the amount of carbon that is naturally needed in the environment for processes like photosynthesis. As humans we must remember that trees take years to grow so if we carelessly use wood, it may not always be a resource immediately available for use. When someone in Alberta cuts down a tree to burn it for energy, it is said that one tree must be planted to replace it. Humans across Canada work to replace trees at the rate in which we use them making biomass a renewable source. ##### Biomass Fun Facts! 1) If you’ve ever been near a campfire or a fireplace, you’ve witnessed biomass energy through the burning of wood. 2) Biomass has been around since the beginning of time when man burned wood for heating and cooking. 3) Wood was the biggest energy provider in the world in the 1800’s. 4) Garbage can be burned to generate energy as well. This not only makes use of trash for energy, but reduces the amount of trash that goes into landfills. This process is called Waste-to-Energy. ## Wind Energy Wind is a newer source of energy. The use of wind for energy production, mainly electricity, has only been developed recently. Most wind power is converted to electricity by using giant machines called wind turbines. Wind is a natural resource that will never run out making wind a renewable resource. Wind that occurs naturally moves the turbines. The turbines power a generator. A generator is a device that converts mechanical energy to electrical energy. In this case the mechanical energy is the movement of the turbines created by the wind. This mechanical energy is changed into electrical energy that can be used in a home. Did you know that Alberta has a wind energy capacity of 1,483 megawatts. Alberta's wind farms produce enough electricity each year to power 625,000 homes, which is 8 percent of Alberta's electricity demand. <img src="https://i.gifer.com/so8.gif" style="margin: 0 auto; width: 1000px;"> #### Source Image: #Wind, n.d. Retrieved from https://gifer.com/en/so8 ## Water Energy The correct term for water energy is hydropower. Hydro means water. The first use of water for energy dates back to around 4000 B.C. They used a water wheel during Roman times to water crop and supply drinking water to villages. Now, water creates energy in hydro-dams. A hydro-dam produces electricity when water pushes a device called a turbine. This turbine spins a generator which converts mechanical energy into electrical energy. In this case the mechanical energy that occurs is when the water pushes the turbine. Water is considered a resource that will never run out. It is plentiful and is replenished every time it rains. <img src="http://www.wvic.com/images/stories/Hydroplants/hydroplant-animate.gif" style="margin: 0 auto; width: 1000px;"> #### Source Image: Wisconsin Valley Improvement Company, n.d. Retrieved from http://www.wvic.com/content/how_hydropower_works.cfm ## Nuclear Energy Nuclear energy uses the power of an atom to create steam power. Atoms can create energy in two different ways: nuclear fission which is when the inside of an atom is split or nuclear fusion which is done by fusing the inside of two atoms. The energy produced by the Sun, for example, comes from nuclear fusion reactions. Hydrogen gas in the core of the Sun is squeezed together so tightly that four hydrogen particles combine to form one helium atom. This is called nuclear fusion. When one of these two physical reactions occurs (nuclear fission or nuclear fusion) the atoms experience a slight loss of mass. The mass that is lost becomes a large amount of heat energy and light. This is why the sun is so hot and shines brightly. Did you know that Albert Einstein discovered his famous equation, E = mc2, with the sun and stars in mind? In his equation, Einstein invented a way to show that "Energy equals mass times the speed of light squared." The heat generated in nuclear fusion and nuclear fission is used to heat up water and produce steam, which is then used to create electricity. The separation and joining of atoms occurs safely within the walls of a nuclear power station. Nuclear power generates nuclear waste that can be dangerous to human health and the environment. ``` from IPython.display import YouTubeVideo YouTubeVideo('igf96TS3Els', width=800, height=300) ``` #### Source Video: Nuclear Power Station, July 2008. Retrieved from https://www.youtube.com/watch?v=igf96TS3Els ## Geothermal Energy Geothermal energy is generated by the high temperature of earth's core heating water into steam. The term 'geo' means earth and the word 'thermal' means heat, which means geothermal is 'heat from the earth.' Geothermal energy plants convert large amounts of steam (kinetic energy) into usable electricity. Geothermal energy plants are located in prime areas. Canada does not have any commercial geothermal energy plants. Note, there exists a device called a geothermal heat pump that can tap into geothermal energy to heat and cool buildings. A geothermal heat pump system consists of a heat pump, an air delivery system (ductwork), and a heat exchanger-a system of pipes buried in the shallow ground near the building. In the summer, the heat pump moves heat from the indoor air into the heat exchanger. In the winter, the heat pump removes heat from the heat exchanger and pumps it into the indoor air delivery system. Why is geothermal energy a renewable resource? Because the source of geothermal energy is the unlimited amount of heat generated by the Earth's core. It is important to recognize geothermal energy systems DO NOT get their heat directly from the core. Instead, they pull heat from the crust—the rocky upper 20 miles of the planet's surface. ``` from IPython.display import YouTubeVideo YouTubeVideo('y_ZGBhy48YI', width=800, height=300) ``` #### Source Video: Energy 101: Geothermal Heat Pumps, Jan. 2011. ## Renewable Energy Sources vs. Non-renewable Renewable energy sources are energy sources that can be replaced at the same rate they are used. The source is plentiful and generally quite efficient. An example of a renewable energy source is wind. Wind is a renewable energy source because there is a limitless supply that is naturally produced. Non-renewable energy sources are those that run out more quickly than they are naturally reproduced. Usually these energy sources take millions of year to produce and they have a bigger negative impact on the earth compared to alternate sources. An example of a non-renewable energy source is oil. Oil is non-renewable because humans are using it faster than it is being replaced naturally on earth. In order to get comfortable with the two types of Energy Sources, try identifying the renewable energy sources from the non-renewable in the activity below. ``` %%html <!-- Question 1 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <!-- Is Solar Energy a Renewable Energy Source? <p> tag below --> <p>Is Solar Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <!-- Each <li> tag is a list item to represent a possible Answer q1c1 stands for "question 1 choice 1", question 2 choice 3 would be q2c3 for example. You can change this convention if you want its just what I chose. Make sure all answers for a question have the same name attribute, in this case q1. This makes it so only a single radio button can be selected at one time--> <input type="radio" name="q1" id="q1c1" value="right"> <label for="q1c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q1" id="q1c2" value="wrong"> <label for="q1c2">No, it is a Non-Renewable Energy Source.</label> </li> </ul> <!-- Give a unique id for the button, i chose q1Btn. Question 2 I I would choose q2Btn and so on. This is used to tell the script which question we are interested in. --> <button id="q1Btn">Submit</button> <!-- this is where the user will get feedback once answering the question, the text that will go in here will be generated inside the script --> <p id="q1AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 2 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Oil Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q2" id="q2c1" value="wrong"> <label for="q2c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q2" id="q2c2" value="right"> <label for="q2c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q2Btn">Submit</button> <p id="q2AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 3 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Natural Gas a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q3" id="q3c1" value="wrong"> <label for="q3c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q3" id="q3c2" value="right"> <label for="q3c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q3Btn">Submit</button> <p id="q3AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 4 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Coal Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q4" id="q4c1" value="wrong"> <label for="q4c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q4" id="q4c2" value="right"> <label for="q4c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q4Btn">Submit</button> <p id="q4AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 5 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Biomass Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q5" id="q5c1" value="right"> <label for="q5c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q5" id="q5c2" value="wrong"> <label for="q5c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q5Btn">Submit</button> <p id="q5AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 6 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Wind Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q6" id="q6c1" value="right"> <label for="q6c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q6" id="q6c2" value="wrong"> <label for="q6c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q6Btn">Submit</button> <p id="q6AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 7 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Water Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q7" id="q7c1" value="right"> <label for="q7c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q7" id="q7c2" value="wrong"> <label for="q7c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q7Btn">Submit</button> <p id="q7AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 8 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Nuclear Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q8" id="q8c1" value="wrong"> <label for="q8c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q8" id="q8c2" value="right"> <label for="q8c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q8Btn">Submit</button> <p id="q8AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 9 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Geothermal Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q9" id="q9c1" value="right"> <label for="q9c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q9" id="q9c2" value="wrong"> <label for="q9c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q9Btn">Submit</button> <p id="q9AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <script> // Question 1 // This looks at which question is being checked, pass in the buttons id document.getElementById("q1Btn").onclick = function () { // This if statment is used for the correct answer, in this case choice 3 is correct if (document.getElementById("q1c1").checked) { // "Correct Answer" field is where you can add any text to be displayed when it is correct document.getElementById("q1AnswerStatus").innerHTML = "Correct Answer!"; } else { // "Wrong Answer" field is where you can add any text to be displayed when it is wrong document.getElementById("q1AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 2 document.getElementById("q2Btn").onclick = function () { if (document.getElementById("q2c2").checked) { document.getElementById("q2AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q2AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 3 document.getElementById("q3Btn").onclick = function () { if (document.getElementById("q3c2").checked) { document.getElementById("q3AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q3AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 4 document.getElementById("q4Btn").onclick = function () { if (document.getElementById("q4c2").checked) { document.getElementById("q4AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q4AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 5 document.getElementById("q5Btn").onclick = function () { if (document.getElementById("q5c1").checked) { document.getElementById("q5AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q5AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 6 document.getElementById("q6Btn").onclick = function () { if (document.getElementById("q6c1").checked) { document.getElementById("q6AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q6AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 7 document.getElementById("q7Btn").onclick = function () { if (document.getElementById("q7c1").checked) { document.getElementById("q7AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q7AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 8 document.getElementById("q8Btn").onclick = function () { if (document.getElementById("q8c2").checked) { document.getElementById("q8AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q8AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 9 document.getElementById("q9Btn").onclick = function () { if (document.getElementById("q9c1").checked) { document.getElementById("q9AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q9AnswerStatus").innerHTML = "Wrong Answer :("; } }; </script> ``` ## The Good and Bad Traits of Energy Sources Now that we understand each of the energy sources, it is important to weigh the good and the bad traits of each energy source. Efficient means the energy technique is achieving maximum productivity with minimum wasted effort or expense. Note that the bad traits of an energy source are usually negative side effects that we are trying to lessen or prevent while gathering usable energy. <img src="https://thesolarscoop.com/wp-content/uploads/2018/03/Solar.jpg" style="margin: 0 auto; width: 1000px;"> #### Source Image: EcoFasten, March 2018. Retrieved from https://thesolarscoop.com/wp-content/uploads/2018/03/Solar ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Solar</h1> <p></p> <table style="width:100%" table align="left"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Solar energy has recently experienced decreasing costs and high public support. </td> <td style="text-align:left">Solar energy is intermittent, i.e. electricity production is dependent on sunlight.</td> </tr> <tr> <td style="text-align:left">Low CO2 emissions.</td> <td style="text-align:left">Expensive but in recent years the cost of solar energy equipment has decreased.</td> </tr> <tr> <td style="text-align:left">Easy to install, little operation and maintenance work.</td> <td style="text-align:left">Forecasts are more unpredictable in comparison to fossil fuels (but better than wind).</td> </tr> </table> <h3></h3> <p></p> </body> </html> from IPython.display import Image Image(url= "https://ak5.picdn.net/shutterstock/videos/17748445/thumb/5.jpg", width=1000, height=300) ``` #### Source Image: Shutterstock, n.d. Retrieved from https://www.shutterstock.com/video/clip-17748445-close-up-industrial-oil-pump-jack-working ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Oil</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Oil is cheap to produce and refine. </td> <td style="text-align:left">Burning oil for electricity is a major source of air pollution on Earth and leads to health concerns and environmental damage. </td> </tr> <tr> <td style="text-align:left">Unlike the renewable energy sources such as solar and wind energy that are weather dependent sources of power, Oil represents a reliable, ready-to-use source of energy.</td> <td style="text-align:left">Burning oil for energy releases harmful gases into the atmosphere such as carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2, causes acid rain). </td> </tr> <tr> <td></td> <td style="text-align:left">Despite the fact that oil energy can get jobs done in a less expensive way, it is not a renewable source of energy. There will come a time when we run out of supply.</td> </tr> </table> <h3></h3> <p></p> </body> </html> from IPython.display import Image Image(filename="images/gasmap.jpg", width=1000, height=300) ``` #### Source Image: Studentenergy, n.d. Retrieved from https://www.studentenergy.org/topics/natural-gas ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Natural Gas</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Emits the least CO2 compared to the other forms of non-renewable fossil fuels.</td> <td style="text-align:left">Gas drilling has a negative impact on the environment.</td> </tr> <tr> <td style="text-align:left"> Natural gas hot water heaters typically heat water twice as fast as electric heaters.</td> <td style="text-align:left">Some regions that sell natural gas face political instability. This usually occurs when a country is dependent on natural gas as their only source of income. </td> </tr> <tr> <td></td> <td style="text-align:left">Natural gas is the more expensive energy source in comparison to other fossil fuels.</td> </tr> </table> <h3></h3> <p></p> </body> </html> from IPython.display import Image Image(url= "https://images.theconversation.com/files/125332/original/image-20160606-26003-1hjtcr5.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=496&fit=clip", width=1000, height=100) ``` #### Source Image: The Conversation, June 2016. Retrieved from http://theconversation.com/is-coal-the-only-way-to-deal-with-energy-poverty-in-developing-economies-54163 ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Coal</h1> </p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Coal provides stable and large-scale electricity generation.</td> <td style="text-align:left">Coal power plants emit high levels of CO2.</td> </tr> <tr> <td style="text-align:left">Coal power has a competitive production cost. Fuel costs are low and coal markets are well-functioning.</td> <td style="text-align:left">Technologies to reduce coal power plant CO2 emissions are expensive.</td> </tr> <tr> <td></td> <td style="text-align:left">Coal mining impacts the landscape and infrastructure leading to erosion and displacement of animals from their natural habitats.</td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://media.nationalgeographic.org/assets/photos/000/317/31713.jpg", width=1000, height=100) ``` #### Source Image: National Geographic, Photographs by USDA, V. Zutshi, S. Beaugez, M. Hendrikx, S. Heydt, M. Oeltjenbruns, A. Munoraharjo, F. Choudhury, G. Upton, O. Siudak, M. Gunther, R. Singh. Retrieved from https://www.nationalgeographic.org/photo/2biomass-crops-dup/ ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Biomass</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Biomass resources are abundant, cost-effective and political risk is limited.</td> <td style="text-align:left">Requires large storage space.</td> </tr> <tr> <td style="text-align:left">By using biomass in power production instead of fossil fuels, CO2 emissions are significantly reduced.</td> <td style="text-align:left">Burning of biomass still emits a fair level of CO2 and without proper management of biomass usage this CO2 could easily become a green house gas. </td> </tr> <tr> <td style="text-align:left">Properly managed biomass is carbon neutral over time. If not done in a sustainable way, biomass burning is doing more harm than good.</td> <td></td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://d32r1sh890xpii.cloudfront.net/article/718x300/1ffb18f07cf19289be69259800495f00.jpg", width=1000, height=300) ``` #### Source Image: Oilprice, n.d. Retrieved from https://oilprice.com/Alternative-Energy/Wind-Power/US-Wind-Energy-Demand-Surges.html ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Wind</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Wind power emits essentially no CO2 across its life cycle.</td> <td style="text-align:left">Has an impact on the landscape, wildlife and also emits noise.</td> </tr> <tr> <td style="text-align:left">Has no fuel costs.</td> <td style="text-align:left">Dependent on available wind.</td> </tr> <tr> <td></td> <td style="text-align:left">Has significant investment costs.</td> </tr> </table> </body> </html> from IPython.display import Image Image(filename="images/hydroelectric.jpg") ``` #### Source Image: What is Hydroelectric Power Plant? How Does It Work?, Jul. 2020. Retrieved from https://www.usgs.gov/media/images/flow-water-produces-hydroelectricity ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Hydro</h1> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Hydro power has almost no emissions that impact the climate or the environment.</td> <td style="text-align:left">Hydro power plants are a significant encroachment on the landscape and impact river ecosystems.</td> </tr> <tr> <td style="text-align:left">Provides large-scale and stable electricity generation.</td> <td style="text-align:left">Constructing a new hydro power plant requires a substantial investment.</td> </tr> <tr> <td style="text-align:left">Has no fuel costs. Hydro power plants have a long economic life.</td> <td></td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://images.theconversation.com/files/178921/original/file-20170719-13558-rs7g2s.jpg?ixlib=rb-1.1.0&rect=0%2C532%2C4000%2C2377&q=45&auto=format&w=496&fit=clip", width=1000, height=300) ``` #### Source Image: Harga, n.d. Retrieved from https://www.tokoonlineindonesia.id/small-nuclear-power-reactors-future-or-folly.html ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Nuclear</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Nuclear power emits low levels of CO2 across its life cycle.</td> <td style="text-align:left">The management of high-level waste requires storage in secure facilities for a very long time.</td> </tr> <tr> <td style="text-align:left">Provides stable and large-scale electricity generation.</td> <td style="text-align:left">Construction of a new nuclear power plant requires major investments.</td> </tr> <tr> <td style="text-align:left">Costs for fuel, operation and maintenance are normally relatively low.</td> <td style="text-align:left">If nuclear waste spills or is handled incorrectly it has serious effects on the environment. </td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://www.longrefrigeration.com/wp-content/uploads/2017/06/Depositphotos_59228621_s-2015.jpg", width=1000, height=100) ``` #### Source Image: Long Heating and Cooling Geothermal Heat Pumps, June 2017. Retrieved from https://www.longrefrigeration.com/how-geothermal-energy-works/depositphotos_59228621_s-2015/ ``` %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Geothermal</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">It only requires heat from the earth to work, a limitless supply.</td> <td style="text-align:left">High costs to construct geothermal plants.</td> </tr> <tr> <td style="text-align:left">It is simple and reliable, unlike the unpredictability of solar or wind energy.</td> <td style="text-align:left">Sites must be located in prime areas, requiring long distance transportation of the resourse through pipe, which is often costly.</td> </tr> <tr> <td style="text-align:left">It is a domestic source of energy found throughout the world. This means that geothermal energy is used in many households across the world, mainly for heating/cooling systems. </td> <td style="text-align:left">Emits some sulfur dioxide (SO2). </td> </tr> </table> </body> </html> ``` ## Conclusion In this notebook students learned about the 9 most popular sources of energy. The student should have a more clear understanding of the differences between renewable energy sources and non-renewable energy sources. Note that the good and bad traits of each energy source prompted the student to think about the efficiency of each energy source. ### And now a *"FeW FUn ENeRGy JokES"* to conclude! * What did Godzilla say when he ate the nuclear power plant? “Shocking!” * Why did the lights go out? Because they liked each other! * What would a barefooted man get if he steps on an electric wire? A pair of shocks! * Why is wind power popular? Because it has a lot of fans! [![Callysto.ca License](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-bottom.jpg?raw=true)](https://github.com/callysto/curriculum-notebooks/blob/master/LICENSE.md)
github_jupyter
import myMagics %uiButtons from IPython.display import YouTubeVideo YouTubeVideo('WW8KfUJdTNY', width=800, height=300) %%html <style> #list { margin: 20px 0; padding: 0; } #list li { list-style: none; margin: 5px 0; } .energy { font-family: 'Courier New', Courier, monospace; font-size: 15px; } .answerSelect { margin: 10px 10px; } .correct { color: green; font-size: 25px; display: none; } .wrong { color: red; font-size: 25px; display: none; } .ansBtn { cursor: pointer; border: solid black 1px; background: #d3d3d3; padding: 10px 5px; border-radius: 0px; font-family: arial; font-size: 20px; } .ansBtn:hover { background: #f3f3f3; } .redtext { color: red; } .greentext { color: green; } </style> <body> <div style="height: 300px"> <ul id="list"> <li> <label for="q1">1) What process captures solar energy?</label> <select name="q1" id="q1" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="evaporation">Evaporation</option> <option value="photosynthesis">Photosynthesis</option> <option value="respiration">Respiration</option> <option value="condensation">Condensation</option> </select> <span class="correct" id="Q1C">&#10003</span> <span class="wrong" id="Q1W">&#10007</span> </li> <li> <label for="q2">2) Which is the most inefficient energy conversion step in the process outlined above?</label> <select name="q2" id="q2" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="kinetic into mechanical">Kinetic into mechanical</option> <option value="chemical into heat">Chemical into heat</option> <option value="mechanical into electrical">Mechanical into electrical</option> <option value="solar into chemical">Solar into chemical</option> </select> <span class="correct" id="Q2C">&#10003</span> <span class="wrong" id="Q2W">&#10007</span> </li> <li> <label for="q3">3) The more steps in the process of generating electrical energy the</label> <select name="q3" id="q3" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="less electrical energy that is generated">Less electrical energy that is generated</option> <option value="the more electrical energy that is generated">The more electrical energy that is generated</option> </select> <span class="correct" id="Q3C">&#10003</span> <span class="wrong" id="Q3W">&#10007</span> </li> <li> <label for="q4">4) The energy lost is in the form of</label> <select name="q4" id="q4" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="Electrical">Electrical</option> <option value="Heat">Heat</option> <option value="Chemical">Chemical</option> <option value="Mechanical">Mechanical</option> </select> <span class="correct" id="Q4C">&#10003</span> <span class="wrong" id="Q4W">&#10007</span> </li> <li> <label for="q5">5) What type of energy is carried by steam</label> <select name="q5" id="q5" class="answerSelect"> <option value="default" selected>Select an Answer</option> <option value="Electrical">Electrical</option> <option value="Chemical">Chemical</option> <option value="Mechanical">Mechanical</option> <option value="Kinetic">Kinetic</option> </select> <span class="correct" id="Q5C">&#10003</span> <span class="wrong" id="Q5W">&#10007</span> </li> </ul> <span class="ansBtn" id="ansBtn" onclick="checkAns()">Check Answers!</span> </div> <script src="main.js"></script> </body> from IPython.display import YouTubeVideo YouTubeVideo('igf96TS3Els', width=800, height=300) from IPython.display import YouTubeVideo YouTubeVideo('y_ZGBhy48YI', width=800, height=300) %%html <!-- Question 1 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <!-- Is Solar Energy a Renewable Energy Source? <p> tag below --> <p>Is Solar Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <!-- Each <li> tag is a list item to represent a possible Answer q1c1 stands for "question 1 choice 1", question 2 choice 3 would be q2c3 for example. You can change this convention if you want its just what I chose. Make sure all answers for a question have the same name attribute, in this case q1. This makes it so only a single radio button can be selected at one time--> <input type="radio" name="q1" id="q1c1" value="right"> <label for="q1c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q1" id="q1c2" value="wrong"> <label for="q1c2">No, it is a Non-Renewable Energy Source.</label> </li> </ul> <!-- Give a unique id for the button, i chose q1Btn. Question 2 I I would choose q2Btn and so on. This is used to tell the script which question we are interested in. --> <button id="q1Btn">Submit</button> <!-- this is where the user will get feedback once answering the question, the text that will go in here will be generated inside the script --> <p id="q1AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 2 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Oil Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q2" id="q2c1" value="wrong"> <label for="q2c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q2" id="q2c2" value="right"> <label for="q2c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q2Btn">Submit</button> <p id="q2AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 3 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Natural Gas a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q3" id="q3c1" value="wrong"> <label for="q3c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q3" id="q3c2" value="right"> <label for="q3c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q3Btn">Submit</button> <p id="q3AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 4 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Coal Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q4" id="q4c1" value="wrong"> <label for="q4c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q4" id="q4c2" value="right"> <label for="q4c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q4Btn">Submit</button> <p id="q4AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 5 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Biomass Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q5" id="q5c1" value="right"> <label for="q5c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q5" id="q5c2" value="wrong"> <label for="q5c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q5Btn">Submit</button> <p id="q5AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 6 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Wind Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q6" id="q6c1" value="right"> <label for="q6c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q6" id="q6c2" value="wrong"> <label for="q6c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q6Btn">Submit</button> <p id="q6AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 7 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Water Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q7" id="q7c1" value="right"> <label for="q7c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q7" id="q7c2" value="wrong"> <label for="q7c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q7Btn">Submit</button> <p id="q7AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 8 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Nuclear Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q8" id="q8c1" value="wrong"> <label for="q8c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q8" id="q8c2" value="right"> <label for="q8c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q8Btn">Submit</button> <p id="q8AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <!-- Question 9 --> <div> &nbsp;&nbsp; &nbsp;&nbsp; <p>Is Geothermal Energy a Renewable Energy Source?</p> <ul style="list-style-type: none"> <li> <input type="radio" name="q9" id="q9c1" value="right"> <label for="q9c1">Yes, it is Renewable.</label> </li> <li> <input type="radio" name="q9" id="q9c2" value="wrong"> <label for="q9c2">No, it is a Non-Renewable Energy Source. </label> </li> </ul> <button id="q9Btn">Submit</button> <p id="q9AnswerStatus"></p> &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; </div> <script> // Question 1 // This looks at which question is being checked, pass in the buttons id document.getElementById("q1Btn").onclick = function () { // This if statment is used for the correct answer, in this case choice 3 is correct if (document.getElementById("q1c1").checked) { // "Correct Answer" field is where you can add any text to be displayed when it is correct document.getElementById("q1AnswerStatus").innerHTML = "Correct Answer!"; } else { // "Wrong Answer" field is where you can add any text to be displayed when it is wrong document.getElementById("q1AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 2 document.getElementById("q2Btn").onclick = function () { if (document.getElementById("q2c2").checked) { document.getElementById("q2AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q2AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 3 document.getElementById("q3Btn").onclick = function () { if (document.getElementById("q3c2").checked) { document.getElementById("q3AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q3AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 4 document.getElementById("q4Btn").onclick = function () { if (document.getElementById("q4c2").checked) { document.getElementById("q4AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q4AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 5 document.getElementById("q5Btn").onclick = function () { if (document.getElementById("q5c1").checked) { document.getElementById("q5AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q5AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 6 document.getElementById("q6Btn").onclick = function () { if (document.getElementById("q6c1").checked) { document.getElementById("q6AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q6AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 7 document.getElementById("q7Btn").onclick = function () { if (document.getElementById("q7c1").checked) { document.getElementById("q7AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q7AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 8 document.getElementById("q8Btn").onclick = function () { if (document.getElementById("q8c2").checked) { document.getElementById("q8AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q8AnswerStatus").innerHTML = "Wrong Answer :("; } }; // Question 9 document.getElementById("q9Btn").onclick = function () { if (document.getElementById("q9c1").checked) { document.getElementById("q9AnswerStatus").innerHTML = "Correct Answer!"; } else { document.getElementById("q9AnswerStatus").innerHTML = "Wrong Answer :("; } }; </script> %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Solar</h1> <p></p> <table style="width:100%" table align="left"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Solar energy has recently experienced decreasing costs and high public support. </td> <td style="text-align:left">Solar energy is intermittent, i.e. electricity production is dependent on sunlight.</td> </tr> <tr> <td style="text-align:left">Low CO2 emissions.</td> <td style="text-align:left">Expensive but in recent years the cost of solar energy equipment has decreased.</td> </tr> <tr> <td style="text-align:left">Easy to install, little operation and maintenance work.</td> <td style="text-align:left">Forecasts are more unpredictable in comparison to fossil fuels (but better than wind).</td> </tr> </table> <h3></h3> <p></p> </body> </html> from IPython.display import Image Image(url= "https://ak5.picdn.net/shutterstock/videos/17748445/thumb/5.jpg", width=1000, height=300) %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Oil</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Oil is cheap to produce and refine. </td> <td style="text-align:left">Burning oil for electricity is a major source of air pollution on Earth and leads to health concerns and environmental damage. </td> </tr> <tr> <td style="text-align:left">Unlike the renewable energy sources such as solar and wind energy that are weather dependent sources of power, Oil represents a reliable, ready-to-use source of energy.</td> <td style="text-align:left">Burning oil for energy releases harmful gases into the atmosphere such as carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2, causes acid rain). </td> </tr> <tr> <td></td> <td style="text-align:left">Despite the fact that oil energy can get jobs done in a less expensive way, it is not a renewable source of energy. There will come a time when we run out of supply.</td> </tr> </table> <h3></h3> <p></p> </body> </html> from IPython.display import Image Image(filename="images/gasmap.jpg", width=1000, height=300) %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Natural Gas</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Emits the least CO2 compared to the other forms of non-renewable fossil fuels.</td> <td style="text-align:left">Gas drilling has a negative impact on the environment.</td> </tr> <tr> <td style="text-align:left"> Natural gas hot water heaters typically heat water twice as fast as electric heaters.</td> <td style="text-align:left">Some regions that sell natural gas face political instability. This usually occurs when a country is dependent on natural gas as their only source of income. </td> </tr> <tr> <td></td> <td style="text-align:left">Natural gas is the more expensive energy source in comparison to other fossil fuels.</td> </tr> </table> <h3></h3> <p></p> </body> </html> from IPython.display import Image Image(url= "https://images.theconversation.com/files/125332/original/image-20160606-26003-1hjtcr5.jpg?ixlib=rb-1.1.0&q=45&auto=format&w=496&fit=clip", width=1000, height=100) %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Coal</h1> </p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Coal provides stable and large-scale electricity generation.</td> <td style="text-align:left">Coal power plants emit high levels of CO2.</td> </tr> <tr> <td style="text-align:left">Coal power has a competitive production cost. Fuel costs are low and coal markets are well-functioning.</td> <td style="text-align:left">Technologies to reduce coal power plant CO2 emissions are expensive.</td> </tr> <tr> <td></td> <td style="text-align:left">Coal mining impacts the landscape and infrastructure leading to erosion and displacement of animals from their natural habitats.</td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://media.nationalgeographic.org/assets/photos/000/317/31713.jpg", width=1000, height=100) %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Biomass</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Biomass resources are abundant, cost-effective and political risk is limited.</td> <td style="text-align:left">Requires large storage space.</td> </tr> <tr> <td style="text-align:left">By using biomass in power production instead of fossil fuels, CO2 emissions are significantly reduced.</td> <td style="text-align:left">Burning of biomass still emits a fair level of CO2 and without proper management of biomass usage this CO2 could easily become a green house gas. </td> </tr> <tr> <td style="text-align:left">Properly managed biomass is carbon neutral over time. If not done in a sustainable way, biomass burning is doing more harm than good.</td> <td></td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://d32r1sh890xpii.cloudfront.net/article/718x300/1ffb18f07cf19289be69259800495f00.jpg", width=1000, height=300) %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Wind</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Wind power emits essentially no CO2 across its life cycle.</td> <td style="text-align:left">Has an impact on the landscape, wildlife and also emits noise.</td> </tr> <tr> <td style="text-align:left">Has no fuel costs.</td> <td style="text-align:left">Dependent on available wind.</td> </tr> <tr> <td></td> <td style="text-align:left">Has significant investment costs.</td> </tr> </table> </body> </html> from IPython.display import Image Image(filename="images/hydroelectric.jpg") %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Hydro</h1> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Hydro power has almost no emissions that impact the climate or the environment.</td> <td style="text-align:left">Hydro power plants are a significant encroachment on the landscape and impact river ecosystems.</td> </tr> <tr> <td style="text-align:left">Provides large-scale and stable electricity generation.</td> <td style="text-align:left">Constructing a new hydro power plant requires a substantial investment.</td> </tr> <tr> <td style="text-align:left">Has no fuel costs. Hydro power plants have a long economic life.</td> <td></td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://images.theconversation.com/files/178921/original/file-20170719-13558-rs7g2s.jpg?ixlib=rb-1.1.0&rect=0%2C532%2C4000%2C2377&q=45&auto=format&w=496&fit=clip", width=1000, height=300) %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Nuclear</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">Nuclear power emits low levels of CO2 across its life cycle.</td> <td style="text-align:left">The management of high-level waste requires storage in secure facilities for a very long time.</td> </tr> <tr> <td style="text-align:left">Provides stable and large-scale electricity generation.</td> <td style="text-align:left">Construction of a new nuclear power plant requires major investments.</td> </tr> <tr> <td style="text-align:left">Costs for fuel, operation and maintenance are normally relatively low.</td> <td style="text-align:left">If nuclear waste spills or is handled incorrectly it has serious effects on the environment. </td> </tr> </table> </body> </html> from IPython.display import Image Image(url= "https://www.longrefrigeration.com/wp-content/uploads/2017/06/Depositphotos_59228621_s-2015.jpg", width=1000, height=100) %%html <head> <style> table, th, td { border: 1px solid black; border-collapse: collapse; } th, td { padding: 5px; text-align: left; } </style> </head> <body> <h1>Geothermal</h1> <p></p> <table style="width:100%"> <tr> <th style="text-align:center">Good Traits</th> <th style="text-align:center">Bad Traits</th> </tr> <tr> <td style="text-align:left">It only requires heat from the earth to work, a limitless supply.</td> <td style="text-align:left">High costs to construct geothermal plants.</td> </tr> <tr> <td style="text-align:left">It is simple and reliable, unlike the unpredictability of solar or wind energy.</td> <td style="text-align:left">Sites must be located in prime areas, requiring long distance transportation of the resourse through pipe, which is often costly.</td> </tr> <tr> <td style="text-align:left">It is a domestic source of energy found throughout the world. This means that geothermal energy is used in many households across the world, mainly for heating/cooling systems. </td> <td style="text-align:left">Emits some sulfur dioxide (SO2). </td> </tr> </table> </body> </html>
0.348423
0.993771
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/guilbera/colorizing/blob/main/notebooks/pytorch_implementation/pix2pix_model.ipynb) ``` import torch from torch import nn from torchsummary import summary class Generator(nn.Module): """Generator of the Pix2Pix model. For the Lab version, nb_output_channels=2 For the RGB version, nb_output_channels=3""" def __init__(self, nb_output_channels): super(Generator, self).__init__() self.relu = nn.ReLU() self.leakyrelu = nn.LeakyReLU() if nb_output_channels == 2: self.activation = nn.Tanh() elif nb_output_channels == 3: self.activation = nn.Sigmoid() self.conv2d_1 = nn.Conv2d(in_channels=1,out_channels=64,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_1 = nn.BatchNorm2d(64) self.conv2d_2 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_2 = nn.BatchNorm2d(128) self.conv2d_3 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_3 = nn.BatchNorm2d(256) self.conv2d_4 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_4 = nn.BatchNorm2d(512) self.conv2d_5 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_5 = nn.BatchNorm2d(512) self.conv2d_6 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_6 = nn.BatchNorm2d(512) self.conv2d_7 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_7 = nn.BatchNorm2d(512) self.conv2d_8 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.conv2d_9 = nn.ConvTranspose2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_9 = nn.BatchNorm2d(512) self.conv2d_10 = nn.ConvTranspose2d(in_channels=512*2,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_10 = nn.BatchNorm2d(512) self.conv2d_11 = nn.ConvTranspose2d(in_channels=512*2,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_11 = nn.BatchNorm2d(512) self.conv2d_12 = nn.ConvTranspose2d(in_channels=512*2,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_12 = nn.BatchNorm2d(512) self.conv2d_13 = nn.ConvTranspose2d(in_channels=512*2,out_channels=256,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_13 = nn.BatchNorm2d(256) self.conv2d_14 = nn.ConvTranspose2d(in_channels=256*2,out_channels=128,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_14 = nn.BatchNorm2d(128) self.conv2d_15 = nn.ConvTranspose2d(in_channels=128*2,out_channels=64,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_15 = nn.BatchNorm2d(64) self.conv2d_16 = nn.ConvTranspose2d(in_channels=64*2,out_channels=nb_output_channels,kernel_size=4,stride=2, padding=1, bias=True) def forward(self, encoder_input): #encoder encoder_output_1 = self.leakyrelu(self.conv2d_1(encoder_input)) encoder_output_2 = self.leakyrelu(self.batchnorm_2(self.conv2d_2(encoder_output_1))) encoder_output_3 = self.leakyrelu(self.batchnorm_3(self.conv2d_3(encoder_output_2))) encoder_output_4 = self.leakyrelu(self.batchnorm_4(self.conv2d_4(encoder_output_3))) encoder_output_5 = self.leakyrelu(self.batchnorm_5(self.conv2d_5(encoder_output_4))) encoder_output_6 = self.leakyrelu(self.batchnorm_6(self.conv2d_6(encoder_output_5))) encoder_output_7 = self.leakyrelu(self.batchnorm_7(self.conv2d_7(encoder_output_6))) encoder_output = self.conv2d_8(encoder_output_7) #decoder decoder_output = self.batchnorm_9(self.conv2d_9(self.relu(encoder_output))) decoder_output = self.batchnorm_10(self.conv2d_10(self.relu(torch.cat([encoder_output_7,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_11(self.conv2d_11(self.relu(torch.cat([encoder_output_6,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_12(self.conv2d_12(self.relu(torch.cat([encoder_output_5,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_13(self.conv2d_13(self.relu(torch.cat([encoder_output_4,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_14(self.conv2d_14(self.relu(torch.cat([encoder_output_3,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_15(self.conv2d_15(self.relu(torch.cat([encoder_output_2,decoder_output],1)))) #skip connection decoder_output = self.activation(self.conv2d_16(self.relu(torch.cat([encoder_output_1,decoder_output],1)))) #skip connection return decoder_output class Discriminator(nn.Module): """Patch discriminator of the Pix2Pix model.""" def __init__(self): super(Discriminator, self).__init__() self.leakyrelu = nn.LeakyReLU(0.2, True) self.sigmoid = nn.Sigmoid() self.conv2d_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=4,stride=2,padding=1, bias=True) self.conv2d_2 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=4,stride=2,padding=1, bias=False) self.batchnorm_2 = nn.BatchNorm2d(128) self.conv2d_3 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=4,stride=2,padding=1, bias=False) self.batchnorm_3 = nn.BatchNorm2d(256) self.conv2d_4 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=4,stride=1,padding=1, bias=False) self.batchnorm_4 = nn.BatchNorm2d(512) self.conv2d_5 = nn.Conv2d(in_channels=512,out_channels=1,kernel_size=4,stride=1,padding=1,bias=True) def forward(self, input): output = self.leakyrelu(self.conv2d_1(input)) output = self.leakyrelu(self.batchnorm_2(self.conv2d_2(output))) output = self.leakyrelu(self.batchnorm_3(self.conv2d_3(output))) output = self.leakyrelu(self.batchnorm_4(self.conv2d_4(output))) output = self.sigmoid(self.conv2d_5(output)) return output @torch.no_grad() def init_weights(m, gain=0.02): """weight initialisation of the different layers of the Generator and Discriminator""" if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d: nn.init.normal_(m.weight.data, mean=0.0, std=gain) if m.bias is not None: nn.init.constant_(m.bias.data, 0.0) elif type(m) == nn.BatchNorm2d: nn.init.normal_(m.weight.data, 1., gain) nn.init.constant_(m.bias.data, 0.) class DiscriminatorLoss(nn.Module): """for the patch discriminator, the output is a 30x30 tensor if the image is real, it should return all ones 'real_labels' if the image is fake, it should return all zeros 'fake_labels' returns the MSE loss between the output of the discriminator and the label""" def __init__(self, device): super().__init__() self.register_buffer('real_labels', torch.ones([30,30], requires_grad=False, device=device), False) self.register_buffer('fake_labels', torch.zeros([30,30], requires_grad=False, device=device), False) #use MSE loss for the discriminator self.loss = nn.MSELoss() def forward(self, predictions, target_is_real): if target_is_real: target = self.real_labels else: target = self.fake_labels return self.loss(predictions, target.expand_as(predictions)) ``` ### Summary of the models ``` show_summary = False if show_summary: if torch.cuda.is_available(): dev = "cuda:0" else: dev = "cpu" device = torch.device(dev) net_G = Generator(2).to(device) net_D = Discriminator().to(device) summary(net_G, (1, 256, 256)) summary(net_D, (3, 256, 256)) ```
github_jupyter
import torch from torch import nn from torchsummary import summary class Generator(nn.Module): """Generator of the Pix2Pix model. For the Lab version, nb_output_channels=2 For the RGB version, nb_output_channels=3""" def __init__(self, nb_output_channels): super(Generator, self).__init__() self.relu = nn.ReLU() self.leakyrelu = nn.LeakyReLU() if nb_output_channels == 2: self.activation = nn.Tanh() elif nb_output_channels == 3: self.activation = nn.Sigmoid() self.conv2d_1 = nn.Conv2d(in_channels=1,out_channels=64,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_1 = nn.BatchNorm2d(64) self.conv2d_2 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_2 = nn.BatchNorm2d(128) self.conv2d_3 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_3 = nn.BatchNorm2d(256) self.conv2d_4 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_4 = nn.BatchNorm2d(512) self.conv2d_5 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_5 = nn.BatchNorm2d(512) self.conv2d_6 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_6 = nn.BatchNorm2d(512) self.conv2d_7 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_7 = nn.BatchNorm2d(512) self.conv2d_8 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.conv2d_9 = nn.ConvTranspose2d(in_channels=512,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_9 = nn.BatchNorm2d(512) self.conv2d_10 = nn.ConvTranspose2d(in_channels=512*2,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_10 = nn.BatchNorm2d(512) self.conv2d_11 = nn.ConvTranspose2d(in_channels=512*2,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_11 = nn.BatchNorm2d(512) self.conv2d_12 = nn.ConvTranspose2d(in_channels=512*2,out_channels=512,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_12 = nn.BatchNorm2d(512) self.conv2d_13 = nn.ConvTranspose2d(in_channels=512*2,out_channels=256,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_13 = nn.BatchNorm2d(256) self.conv2d_14 = nn.ConvTranspose2d(in_channels=256*2,out_channels=128,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_14 = nn.BatchNorm2d(128) self.conv2d_15 = nn.ConvTranspose2d(in_channels=128*2,out_channels=64,kernel_size=4,stride=2, padding=1, bias=False) self.batchnorm_15 = nn.BatchNorm2d(64) self.conv2d_16 = nn.ConvTranspose2d(in_channels=64*2,out_channels=nb_output_channels,kernel_size=4,stride=2, padding=1, bias=True) def forward(self, encoder_input): #encoder encoder_output_1 = self.leakyrelu(self.conv2d_1(encoder_input)) encoder_output_2 = self.leakyrelu(self.batchnorm_2(self.conv2d_2(encoder_output_1))) encoder_output_3 = self.leakyrelu(self.batchnorm_3(self.conv2d_3(encoder_output_2))) encoder_output_4 = self.leakyrelu(self.batchnorm_4(self.conv2d_4(encoder_output_3))) encoder_output_5 = self.leakyrelu(self.batchnorm_5(self.conv2d_5(encoder_output_4))) encoder_output_6 = self.leakyrelu(self.batchnorm_6(self.conv2d_6(encoder_output_5))) encoder_output_7 = self.leakyrelu(self.batchnorm_7(self.conv2d_7(encoder_output_6))) encoder_output = self.conv2d_8(encoder_output_7) #decoder decoder_output = self.batchnorm_9(self.conv2d_9(self.relu(encoder_output))) decoder_output = self.batchnorm_10(self.conv2d_10(self.relu(torch.cat([encoder_output_7,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_11(self.conv2d_11(self.relu(torch.cat([encoder_output_6,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_12(self.conv2d_12(self.relu(torch.cat([encoder_output_5,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_13(self.conv2d_13(self.relu(torch.cat([encoder_output_4,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_14(self.conv2d_14(self.relu(torch.cat([encoder_output_3,decoder_output],1)))) #skip connection decoder_output = self.batchnorm_15(self.conv2d_15(self.relu(torch.cat([encoder_output_2,decoder_output],1)))) #skip connection decoder_output = self.activation(self.conv2d_16(self.relu(torch.cat([encoder_output_1,decoder_output],1)))) #skip connection return decoder_output class Discriminator(nn.Module): """Patch discriminator of the Pix2Pix model.""" def __init__(self): super(Discriminator, self).__init__() self.leakyrelu = nn.LeakyReLU(0.2, True) self.sigmoid = nn.Sigmoid() self.conv2d_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=4,stride=2,padding=1, bias=True) self.conv2d_2 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=4,stride=2,padding=1, bias=False) self.batchnorm_2 = nn.BatchNorm2d(128) self.conv2d_3 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=4,stride=2,padding=1, bias=False) self.batchnorm_3 = nn.BatchNorm2d(256) self.conv2d_4 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=4,stride=1,padding=1, bias=False) self.batchnorm_4 = nn.BatchNorm2d(512) self.conv2d_5 = nn.Conv2d(in_channels=512,out_channels=1,kernel_size=4,stride=1,padding=1,bias=True) def forward(self, input): output = self.leakyrelu(self.conv2d_1(input)) output = self.leakyrelu(self.batchnorm_2(self.conv2d_2(output))) output = self.leakyrelu(self.batchnorm_3(self.conv2d_3(output))) output = self.leakyrelu(self.batchnorm_4(self.conv2d_4(output))) output = self.sigmoid(self.conv2d_5(output)) return output @torch.no_grad() def init_weights(m, gain=0.02): """weight initialisation of the different layers of the Generator and Discriminator""" if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d: nn.init.normal_(m.weight.data, mean=0.0, std=gain) if m.bias is not None: nn.init.constant_(m.bias.data, 0.0) elif type(m) == nn.BatchNorm2d: nn.init.normal_(m.weight.data, 1., gain) nn.init.constant_(m.bias.data, 0.) class DiscriminatorLoss(nn.Module): """for the patch discriminator, the output is a 30x30 tensor if the image is real, it should return all ones 'real_labels' if the image is fake, it should return all zeros 'fake_labels' returns the MSE loss between the output of the discriminator and the label""" def __init__(self, device): super().__init__() self.register_buffer('real_labels', torch.ones([30,30], requires_grad=False, device=device), False) self.register_buffer('fake_labels', torch.zeros([30,30], requires_grad=False, device=device), False) #use MSE loss for the discriminator self.loss = nn.MSELoss() def forward(self, predictions, target_is_real): if target_is_real: target = self.real_labels else: target = self.fake_labels return self.loss(predictions, target.expand_as(predictions)) show_summary = False if show_summary: if torch.cuda.is_available(): dev = "cuda:0" else: dev = "cpu" device = torch.device(dev) net_G = Generator(2).to(device) net_D = Discriminator().to(device) summary(net_G, (1, 256, 256)) summary(net_D, (3, 256, 256))
0.947805
0.820218
# Training the rough Bergomi model part 2 In this notebook we train a neural network for the rough Bergomi model for expiries in the range (0.008,0.03]. Be aware that the datasets are rather large. ### Load, split and scale the datasets ``` MODEL_PART = str(2) import os, pandas as pd, numpy as np wd = os.getcwd() path_seperator = os.path.sep # Load contract grid: logMoneyness = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'logMoneyness.txt', delimiter=",", header = None).values expiries = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'expiries.txt', delimiter=",", header = None).values # Set useful parameters: nIn = 12 nOut = 150 nXi = 9 # Load training data: data_train = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'training_and_test_data' + path_seperator + 'rbergomi_training_data_' + MODEL_PART + '.csv', delimiter=",").values x_train = data_train[:,:nIn] y_train = data_train[:,nIn:nIn+nOut] data_train = None # Load test data: data_test = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'training_and_test_data' + path_seperator + 'rbergomi_test_data_' + MODEL_PART + '.csv', delimiter=",").values x_valid = data_test[:,:nIn] y_valid = data_test[:,nIn:nIn+nOut] data_test = None # Normalise data: from sklearn.preprocessing import StandardScaler tmp1 = np.reshape(np.array([0.50,3.50,0.00]), (1, 3)) tmp2 = np.reshape(np.array([0.00,0.75,-1.00]), (1, 3)) ub = np.concatenate((tmp1,np.tile(1,(1,nXi))),1) lb = np.concatenate((tmp2,np.tile(0.0025,(1,nXi))),1) def myscale(x): res=np.zeros(nIn) for i in range(nIn): res[i]=(x[i] - (ub[0,i] + lb[0,i])*0.5) * 2 / (ub[0,i] - lb[0,i]) return res def myinverse(x): res=np.zeros(nIn) for i in range(nIn): res[i]=x[i]*(ub[0,i] - lb[0,i]) *0.5 + (ub[0,i] + lb[0,i])*0.5 return res # Scale inputs: x_train_mod = np.array([myscale(x) for x in x_train]) x_valid_mod = np.array([myscale(x) for x in x_valid]) # Scale and normalise output: scale_y = StandardScaler() y_train_mod = scale_y.fit_transform(y_train) y_valid_mod = scale_y.transform(y_valid) ``` ### Define utility functions ``` import keras from keras.layers import Activation from keras import backend as K from keras.utils.generic_utils import get_custom_objects keras.backend.set_floatx('float64') def GetNetwork(nIn,nOut,nNodes,nLayers,actFun): # Description: Creates a neural network of a specified structure input1 = keras.layers.Input(shape=(nIn,)) layerTmp = keras.layers.Dense(nNodes,activation = actFun)(input1) for i in range(nLayers-1): layerTmp = keras.layers.Dense(nNodes,activation = actFun)(layerTmp) output1 = keras.layers.Dense(nOut,activation = 'linear')(layerTmp) return(keras.models.Model(inputs=input1, outputs=output1)) def TrainNetwork(nn,batchsize,numEpochs,objFun,optimizer,xTrain,yTrain,xTest,yTest): # Description: Trains a neural network and returns the network including the history # of the training process. nn.compile(loss = objFun, optimizer = optimizer) history = nn.fit(xTrain, yTrain, batch_size = batchsize, validation_data = (xTest,yTest), epochs = numEpochs, verbose = True, shuffle=1) return nn,history.history['loss'],history.history['val_loss'] def root_mean_squared_error(y_true, y_pred): return K.sqrt(K.mean(K.square( y_pred - y_true ))) ``` ### Define and train neural network <span style="color:red">This section can be skipped! Just go straight to "Load network" and load the already trained model</span> ``` # Define model: model = GetNetwork(nIn,nOut,200,3,'elu') # Set seed import random random.seed(455165) # Train network model,loss1,vloss1 = TrainNetwork(model,32,500,root_mean_squared_error,'adam',x_train_mod,y_train_mod,x_valid_mod,y_valid_mod) model,loss2,vloss2 = TrainNetwork(model,5000,200,root_mean_squared_error,'adam',x_train_mod,y_train_mod,x_valid_mod,y_valid_mod) ``` ### Save network <span style="color:red">This section can be skipped! Just go straight to "Load network" and load the already trained model</span> ``` # Save model: model.save(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi_model_' + MODEL_PART + '.h5') # Save weights (and scalings) in JSON format: # - You need to install 'json-tricks' first. # - We need this file for proper import into Matlab, R... etc. weights_and_more = model.get_weights() weights_and_more.append(0.5*(ub + lb)) weights_and_more.append(np.power(0.5*(ub - lb),2)) weights_and_more.append(scale_y.mean_) weights_and_more.append(scale_y.var_) import codecs, json for idx, val in enumerate(weights_and_more): weights_and_more[idx] = weights_and_more[idx].tolist() json_str = json.dumps(weights_and_more) text_file = open(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi_weights_' + MODEL_PART + '.json', "w") text_file.write(json_str) text_file.close() ``` ### Load network ``` # Load already trained neural network: model = keras.models.load_model(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi' + path_seperator + 'rbergomi_model_' + MODEL_PART + '.h5', custom_objects={'root_mean_squared_error': root_mean_squared_error}) ``` ### Validate approximation ``` # Specify test sample to plot: sample_ind = 5006 # Print parameters of test sample: print("Model Parameters (H,eta,rho,xi1,xi2,...): ",myinverse(x_valid_mod[sample_ind,:])) import scipy, matplotlib.pyplot as plt npts = 25 x_sample = x_valid_mod[sample_ind,:] y_sample = y_valid_mod[sample_ind,:] prediction = scale_y.inverse_transform(model.predict(x_valid_mod)) plt.figure(1,figsize=(14,12)) j = -1 for i in range(0,6): j = j + 1 plt.subplot(4,4,j+1) plt.plot(logMoneyness[i*npts:(i+1)*npts],y_valid[sample_ind,i*npts:(i+1)*npts],'b',label="True") plt.plot(logMoneyness[i*npts:(i+1)*npts],prediction[sample_ind,i*npts:(i+1)*npts],'--r',label=" Neural network") plt.title("Maturity=%1.3f "%expiries[i*npts]) plt.xlabel("log-moneyness") plt.ylabel("Implied volatility") plt.legend() plt.tight_layout() plt.show() ``` ### Save model predictions ``` import pandas as pd prediction = scale_y.inverse_transform(model.predict(x_valid_mod)) dl = {'prediction' + MODEL_PART: prediction.flatten(), 'y_valid' + MODEL_PART: y_valid.flatten()} df = pd.DataFrame(data=dl) df.to_csv(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi' + path_seperator + 'predictions' + path_seperator + 'pred' + MODEL_PART + '.csv', encoding='utf-8', index=False) y_train.shape ```
github_jupyter
MODEL_PART = str(2) import os, pandas as pd, numpy as np wd = os.getcwd() path_seperator = os.path.sep # Load contract grid: logMoneyness = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'logMoneyness.txt', delimiter=",", header = None).values expiries = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'expiries.txt', delimiter=",", header = None).values # Set useful parameters: nIn = 12 nOut = 150 nXi = 9 # Load training data: data_train = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'training_and_test_data' + path_seperator + 'rbergomi_training_data_' + MODEL_PART + '.csv', delimiter=",").values x_train = data_train[:,:nIn] y_train = data_train[:,nIn:nIn+nOut] data_train = None # Load test data: data_test = pd.read_csv(wd + path_seperator + 'data' + path_seperator + 'training_and_test_data' + path_seperator + 'rbergomi_test_data_' + MODEL_PART + '.csv', delimiter=",").values x_valid = data_test[:,:nIn] y_valid = data_test[:,nIn:nIn+nOut] data_test = None # Normalise data: from sklearn.preprocessing import StandardScaler tmp1 = np.reshape(np.array([0.50,3.50,0.00]), (1, 3)) tmp2 = np.reshape(np.array([0.00,0.75,-1.00]), (1, 3)) ub = np.concatenate((tmp1,np.tile(1,(1,nXi))),1) lb = np.concatenate((tmp2,np.tile(0.0025,(1,nXi))),1) def myscale(x): res=np.zeros(nIn) for i in range(nIn): res[i]=(x[i] - (ub[0,i] + lb[0,i])*0.5) * 2 / (ub[0,i] - lb[0,i]) return res def myinverse(x): res=np.zeros(nIn) for i in range(nIn): res[i]=x[i]*(ub[0,i] - lb[0,i]) *0.5 + (ub[0,i] + lb[0,i])*0.5 return res # Scale inputs: x_train_mod = np.array([myscale(x) for x in x_train]) x_valid_mod = np.array([myscale(x) for x in x_valid]) # Scale and normalise output: scale_y = StandardScaler() y_train_mod = scale_y.fit_transform(y_train) y_valid_mod = scale_y.transform(y_valid) import keras from keras.layers import Activation from keras import backend as K from keras.utils.generic_utils import get_custom_objects keras.backend.set_floatx('float64') def GetNetwork(nIn,nOut,nNodes,nLayers,actFun): # Description: Creates a neural network of a specified structure input1 = keras.layers.Input(shape=(nIn,)) layerTmp = keras.layers.Dense(nNodes,activation = actFun)(input1) for i in range(nLayers-1): layerTmp = keras.layers.Dense(nNodes,activation = actFun)(layerTmp) output1 = keras.layers.Dense(nOut,activation = 'linear')(layerTmp) return(keras.models.Model(inputs=input1, outputs=output1)) def TrainNetwork(nn,batchsize,numEpochs,objFun,optimizer,xTrain,yTrain,xTest,yTest): # Description: Trains a neural network and returns the network including the history # of the training process. nn.compile(loss = objFun, optimizer = optimizer) history = nn.fit(xTrain, yTrain, batch_size = batchsize, validation_data = (xTest,yTest), epochs = numEpochs, verbose = True, shuffle=1) return nn,history.history['loss'],history.history['val_loss'] def root_mean_squared_error(y_true, y_pred): return K.sqrt(K.mean(K.square( y_pred - y_true ))) # Define model: model = GetNetwork(nIn,nOut,200,3,'elu') # Set seed import random random.seed(455165) # Train network model,loss1,vloss1 = TrainNetwork(model,32,500,root_mean_squared_error,'adam',x_train_mod,y_train_mod,x_valid_mod,y_valid_mod) model,loss2,vloss2 = TrainNetwork(model,5000,200,root_mean_squared_error,'adam',x_train_mod,y_train_mod,x_valid_mod,y_valid_mod) # Save model: model.save(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi_model_' + MODEL_PART + '.h5') # Save weights (and scalings) in JSON format: # - You need to install 'json-tricks' first. # - We need this file for proper import into Matlab, R... etc. weights_and_more = model.get_weights() weights_and_more.append(0.5*(ub + lb)) weights_and_more.append(np.power(0.5*(ub - lb),2)) weights_and_more.append(scale_y.mean_) weights_and_more.append(scale_y.var_) import codecs, json for idx, val in enumerate(weights_and_more): weights_and_more[idx] = weights_and_more[idx].tolist() json_str = json.dumps(weights_and_more) text_file = open(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi_weights_' + MODEL_PART + '.json', "w") text_file.write(json_str) text_file.close() # Load already trained neural network: model = keras.models.load_model(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi' + path_seperator + 'rbergomi_model_' + MODEL_PART + '.h5', custom_objects={'root_mean_squared_error': root_mean_squared_error}) # Specify test sample to plot: sample_ind = 5006 # Print parameters of test sample: print("Model Parameters (H,eta,rho,xi1,xi2,...): ",myinverse(x_valid_mod[sample_ind,:])) import scipy, matplotlib.pyplot as plt npts = 25 x_sample = x_valid_mod[sample_ind,:] y_sample = y_valid_mod[sample_ind,:] prediction = scale_y.inverse_transform(model.predict(x_valid_mod)) plt.figure(1,figsize=(14,12)) j = -1 for i in range(0,6): j = j + 1 plt.subplot(4,4,j+1) plt.plot(logMoneyness[i*npts:(i+1)*npts],y_valid[sample_ind,i*npts:(i+1)*npts],'b',label="True") plt.plot(logMoneyness[i*npts:(i+1)*npts],prediction[sample_ind,i*npts:(i+1)*npts],'--r',label=" Neural network") plt.title("Maturity=%1.3f "%expiries[i*npts]) plt.xlabel("log-moneyness") plt.ylabel("Implied volatility") plt.legend() plt.tight_layout() plt.show() import pandas as pd prediction = scale_y.inverse_transform(model.predict(x_valid_mod)) dl = {'prediction' + MODEL_PART: prediction.flatten(), 'y_valid' + MODEL_PART: y_valid.flatten()} df = pd.DataFrame(data=dl) df.to_csv(wd + path_seperator + 'data' + path_seperator + 'neural_network_weights' + path_seperator + 'rbergomi' + path_seperator + 'predictions' + path_seperator + 'pred' + MODEL_PART + '.csv', encoding='utf-8', index=False) y_train.shape
0.668447
0.913792
``` %pylab inline %config InlineBackend.figure_format = 'retina' from ipywidgets import interact ``` Turn in an image (e.g., screenshot) or PDF copy of any code that is part of your answer. Make sure all images and PDF pages are properly rotated. Make sure that all pages are clearly visible. Tips: Use the document scanner function on your smart phone to take better page "scans" using your camera. Make sure your screen is not shifted toward warmer colours (some devices filter blue light at night) giving it a dim and orange appearance. # Q1 Let $Q$ be an orthogonal $m \times m$ matrix and $\hat{R}$ be an $n\times n$ upper triangular matrix, $m>n$, such that $$A = Q \begin{bmatrix} \hat{R} \\ \mathbf{0} \end{bmatrix} $$ ## A Show that if the diagonal elements of $\hat{R}$ all nonzero then $A$ is full rank. ## B Show that if $A$ is full rank then the diagonal elements of $\hat{R}$ all nonzero. ## C Let $\hat{Q}$ be $m\times n$ with orthonormal columns (so that $\hat{Q}^T\hat{Q} = I$ but $\hat{Q}$ is not invertible) such that $$ A = \hat{Q}\hat{R} .$$ Repeat part A and B for the above reduced QR decomposition. # Q2 Let $A\in \mathbb{R}^{m\times n}$ ($m>n$) be full rank. Let the SVD decomposition of $A$ be written as $$ A = \begin{bmatrix} \hat{U} & U_0 \end{bmatrix} \begin{bmatrix} \hat{\Sigma} \\ \mathbf{0} \end{bmatrix} V^T, $$ where $\hat{U}$ is $m\times n$, $U_0$ is $m\times(m-n)$, $\hat{\Sigma}$ is $n\times n$, and $V$ is $n\times n$. Use the above SVD to derive a formula for the pseudo inverse of $A$ in terms of $\hat{U}$, $\hat{\Sigma}$, and $V$. # Q3 Take $m=50$, $n=12$. Use the function `linspace` to produce an array $t$ of $m$ equally spaced points between on $[0, 1]$. Using two loops (or whatever method you like), produce the $m \times n$ matrix $$ A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^{n-1} \end{bmatrix}. $$ Produce an array $b = \cos(4t)$ which has $m$ elements just like $t$. This can be done with the command `b = cos(4*t)`. Calculate the least squares solution $x$ to the equation $Ax = b$ using three different methods: 1. The normal equations using the function `cholesky` 2. The QR decomposition using the function `qr` 3. The SVD decomposition using the function `svd` You may want to look at the help documentation for each of these functions (e.g., by using the command `help(cholesky)`). You will also want to use examples from the Week 9 Jupyter notebook, where you will find two functions: `backward_substitution` and `forward_substitution`. Copy these two functions into your homework notebook and use them to solve upper and lower triangular systems. These calculations above will produce three lists of twelve coefficients. In each list, shade with red pen the digits that appear to be wrong (affected by rounding error). Comment on what differences you observe. Do the normal equations exhibit instability? **Hint: $A$ is a Vandermonde matrix. When we were studying polynomial interpolation, I told you that we don't like working with this matrix directly. This is because it is ill-conditioned. You should be able to say exactly what that means now. What is the condition number of $A$? Is there a command to compute it Python> What do we know about the stability of the three algorithms?**
github_jupyter
%pylab inline %config InlineBackend.figure_format = 'retina' from ipywidgets import interact
0.26971
0.943815
# Randomness and reproducibility Random numbers and [stochastic processes](http://www2.econ.iastate.edu/tesfatsi/ace.htm#Stochasticity) are essential to most agent-based models. [Pseudo-random number generators](https://en.wikipedia.org/wiki/Pseudorandom_number_generator) can be used to create numbers in a sequence that appears random but is actually a deterministic sequence based on an initial seed value. In other words, the generator will produce the same pseudo-random sequence over multiple runs if it is given the same seed at the beginning. Note that is possible that the generators will draw the same number repeatedly, as illustrated in this [comic strip](https://dilbert.com/strip/2001-10-25) from Scott Adams: ![Alt text](graphics/dilbert_rng.gif) ``` import agentpy as ap import numpy as np import random ``` ## Random number generators Agentpy models contain two internal pseudo-random number generators with different features: - `Model.random` is an instance of `random.Random` (more info [here](https://realpython.com/python-random/)) - `Model.nprandom` is an instance of `numpy.random.Generator` (more info [here](https://numpy.org/devdocs/reference/random/index.html)) To illustrate, let us define a model that uses both generators to draw a random integer: ``` class RandomModel(ap.Model): def setup(self): self.x = self.random.randint(0, 99) self.y = self.nprandom.integers(99) self.report(['x', 'y']) self.stop() ``` If we run this model multiple times, we will likely get a different series of numbers in each iteration: ``` exp = ap.Experiment(RandomModel, iterations=5) results = exp.run() results.reporters ``` ## Defining custom seeds If we want the results to be reproducible, we can define a parameter `seed` that will be used automatically at the beginning of a simulation to initialize both generators. ``` parameters = {'seed': 42} exp = ap.Experiment(RandomModel, parameters, iterations=5) results = exp.run() ``` By default, the experiment will use this seed to generate different random seeds for each iteration: ``` results.reporters ``` Repeating this experiment will yield the same results: ``` exp2 = ap.Experiment(RandomModel, parameters, iterations=5) results2 = exp2.run() results2.reporters ``` Alternatively, we can set the argument `randomize=False` so that the experiment will use the same seed for each iteration: ``` exp3 = ap.Experiment(RandomModel, parameters, iterations=5, randomize=False) results3 = exp3.run() ``` Now, each iteration yields the same results: ``` results3.reporters ``` ## Sampling seeds For a sample with multiple parameter combinations, we can treat the seed like any other parameter. The following example will use the same seed for each parameter combination: ``` parameters = {'p': ap.Values(0, 1), 'seed': 0} sample1 = ap.Sample(parameters, randomize=False) list(sample1) ``` If we run an experiment with this sample, the same iteration of each parameter combination will have the same seed (remember that the experiment will generate different seeds for each iteration by default): ``` exp = ap.Experiment(RandomModel, sample1, iterations=2) results = exp.run() results.reporters ``` Alternatively, we can use `Sample` with `randomize=True` (default) to generate random seeds for each parameter combination in the sample. ``` sample3 = ap.Sample(parameters, randomize=True) list(sample3) ``` This will always generate the same set of random seeds: ``` sample3 = ap.Sample(parameters) list(sample3) ``` An experiment will now have different results for every parameter combination and iteration: ``` exp = ap.Experiment(RandomModel, sample3, iterations=2) results = exp.run() results.reporters ``` Repeating this experiment will yield the same results: ``` exp = ap.Experiment(RandomModel, sample3, iterations=2) results = exp.run() results.reporters ``` ## Stochastic methods of AgentList Let us now look at some stochastic operations that are often used in agent-based models. To start, we create a list of five agents: ``` model = ap.Model() agents = ap.AgentList(model, 5) agents ``` If we look at the agent's ids, we see that they have been created in order: ``` agents.id ``` To shuffle this list, we can use `AgentList.shuffle`: ``` agents.shuffle().id ``` To create a random subset, we can use `AgentList.random`: ``` agents.random(3).id ``` And if we want it to be possible to select the same agent more than once: ``` agents.random(6, replace=True).id ``` ## Agent-specific generators For more advanced applications, we can create separate generators for each object. We can ensure that the seeds of each object follow a controlled pseudo-random sequence by using the models' main generator to generate the seeds. ``` class RandomAgent(ap.Agent): def setup(self): seed = self.model.random.getrandbits(128) # Seed from model self.random = random.Random(seed) # Create agent generator self.x = self.random.random() # Create a random number class MultiRandomModel(ap.Model): def setup(self): self.agents = ap.AgentList(self, 2, RandomAgent) self.agents.record('x') self.stop() parameters = {'seed': 42} exp = ap.Experiment( MultiRandomModel, parameters, iterations=2, record=True, randomize=False) results = exp.run() results.variables.RandomAgent ``` Alternatively, we can also have each agent start from the same seed: ``` class RandomAgent2(ap.Agent): def setup(self): self.random = random.Random(self.p.agent_seed) # Create agent generator self.x = self.random.random() # Create a random number class MultiRandomModel2(ap.Model): def setup(self): self.agents = ap.AgentList(self, 2, RandomAgent2) self.agents.record('x') self.stop() parameters = {'agent_seed': 42} exp = ap.Experiment( MultiRandomModel2, parameters, iterations=2, record=True, randomize=False) results = exp.run() results.variables.RandomAgent2 ```
github_jupyter
import agentpy as ap import numpy as np import random class RandomModel(ap.Model): def setup(self): self.x = self.random.randint(0, 99) self.y = self.nprandom.integers(99) self.report(['x', 'y']) self.stop() exp = ap.Experiment(RandomModel, iterations=5) results = exp.run() results.reporters parameters = {'seed': 42} exp = ap.Experiment(RandomModel, parameters, iterations=5) results = exp.run() results.reporters exp2 = ap.Experiment(RandomModel, parameters, iterations=5) results2 = exp2.run() results2.reporters exp3 = ap.Experiment(RandomModel, parameters, iterations=5, randomize=False) results3 = exp3.run() results3.reporters parameters = {'p': ap.Values(0, 1), 'seed': 0} sample1 = ap.Sample(parameters, randomize=False) list(sample1) exp = ap.Experiment(RandomModel, sample1, iterations=2) results = exp.run() results.reporters sample3 = ap.Sample(parameters, randomize=True) list(sample3) sample3 = ap.Sample(parameters) list(sample3) exp = ap.Experiment(RandomModel, sample3, iterations=2) results = exp.run() results.reporters exp = ap.Experiment(RandomModel, sample3, iterations=2) results = exp.run() results.reporters model = ap.Model() agents = ap.AgentList(model, 5) agents agents.id agents.shuffle().id agents.random(3).id agents.random(6, replace=True).id class RandomAgent(ap.Agent): def setup(self): seed = self.model.random.getrandbits(128) # Seed from model self.random = random.Random(seed) # Create agent generator self.x = self.random.random() # Create a random number class MultiRandomModel(ap.Model): def setup(self): self.agents = ap.AgentList(self, 2, RandomAgent) self.agents.record('x') self.stop() parameters = {'seed': 42} exp = ap.Experiment( MultiRandomModel, parameters, iterations=2, record=True, randomize=False) results = exp.run() results.variables.RandomAgent class RandomAgent2(ap.Agent): def setup(self): self.random = random.Random(self.p.agent_seed) # Create agent generator self.x = self.random.random() # Create a random number class MultiRandomModel2(ap.Model): def setup(self): self.agents = ap.AgentList(self, 2, RandomAgent2) self.agents.record('x') self.stop() parameters = {'agent_seed': 42} exp = ap.Experiment( MultiRandomModel2, parameters, iterations=2, record=True, randomize=False) results = exp.run() results.variables.RandomAgent2
0.383526
0.985129
``` from utils import config, sample_utils as su, parse_midas_data from collections import defaultdict import numpy as np, math from matplotlib import pyplot as plt import bz2 sample_subject_map = su.parse_sample_subject_map() subject_sample_map = su.parse_subject_sample_map() sample_order_map = su.parse_sample_order_map() infant_samples = su.get_sample_names('infant') olm_samples = su.get_sample_names('olm') infant_samples = [sample for sample in infant_samples if sample not in olm_samples] samples = su.get_sample_names('backhed') good_species_list = parse_midas_data.load_pickled_good_species_list() # Load alpha diversity, richness at different timepoints # Relative abundance file relab_fpath = "%s/species/relative_abundance.txt.bz2" % (config.data_directory) relab_file = open(relab_fpath, 'r') decompressor = bz2.BZ2Decompressor() raw = decompressor.decompress(relab_file.read()) data = [row.split('\t') for row in raw.split('\n')] data.pop() # Get rid of extra element due to terminal newline header = su.parse_merged_sample_names(data[0]) # Generate alpha diversity dictionary alpha_div_dict = {} richness_dict = {} relab_dict = defaultdict(dict) # sample -> species -> relab for i in range(1, len(header)): sample = header[i] for row in data[1:]: species = row[0] rel_ab = float(row[i]) if rel_ab > 0: relab_dict[sample][species] = rel_ab acc = 0 richness = 0 for row in data[1:]: rel_ab = float(row[i]) if rel_ab != 0: acc += (rel_ab * math.log(rel_ab)) richness += 1 alpha_div_dict[header[i]] = (acc*-1) richness_dict[header[i]] = richness subjects = set([sample_subject_map[sample][:-2] for sample in samples]) backhed_order_tp_dict = {1: 'Birth', 2: 'Month 4', 3: 'Month 12'} # Reformat into subject -> tp -> alpha diversity subject_tp_alpha_div = {subject: defaultdict(dict) for subject in subjects} for sample in samples: subject, mi_type = sample_subject_map[sample].split('-') order = sample_order_map[sample][1] if mi_type == 'M': tp = 'Mother' elif mi_type == 'I': tp = backhed_order_tp_dict[order] subject_tp_alpha_div[subject][tp] = alpha_div_dict[sample] # Load data from Ricky data_dir = config.data_directory f = open('%s/strains/Backhed_2015_strain_number.csv' % data_dir, 'r') f.readline() all_species = set() sample_species_strain_count = defaultdict(dict) possible_counts = set() for line in f: sample, species, count = line.strip().split(',') sample_species_strain_count[sample][species] = int(count) possible_counts.add(int(count)) all_species.add(species) subjects = set([sample_subject_map[sample][:-2] for sample in sample_species_strain_count]) backhed_order_tp_dict = {1: 'Birth', 2: 'Month 4', 3: 'Month 12'} # Reformat into subject -> species -> tp -> count subject_tp_strain_count = {subject: defaultdict(dict) for subject in subjects} # subject -> tp -> strain richness subject_tp_strain_richness = {subject: {} for subject in subjects} for sample in sample_species_strain_count: subject, mi_type = sample_subject_map[sample].split('-') order = sample_order_map[sample][1] if mi_type == 'M': tp = 'Mother' elif mi_type == 'I': tp = backhed_order_tp_dict[order] strain_richness = 0 for species in sample_species_strain_count[sample]: count = sample_species_strain_count[sample][species] subject_tp_strain_count[subject][species][tp] = count strain_richness += count subject_tp_strain_richness[subject][tp] = strain_richness tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] tp_x_dict = {'Mother': 0, 'Birth': 1, 'Month 4': 2, 'Month 12': 3} xs = np.arange(len(tps_ordered)) fig, ax = plt.subplots(1, 2, figsize=(12, 4)) for subject in subject_tp_alpha_div: alpha_divs = [] xs_subset = [] for tp in tps_ordered: if tp in subject_tp_alpha_div[subject]: alpha_divs.append(subject_tp_alpha_div[subject][tp]) xs_subset.append(tp_x_dict[tp]) ax[0].plot(xs_subset, alpha_divs, '.-', alpha=0.5) ax[0].set_ylabel("Species alpha diversity") ax[0].set_xticks(xs) ax[0].set_xticklabels(tps_ordered) ax[0].text(-0.165, 0.92, 'A', size=20, transform=ax[0].transAxes, weight='bold') for subject in subject_tp_strain_richness: richnesses = [] xs_subset = [] for tp in tps_ordered: if tp in subject_tp_strain_richness[subject]: richnesses.append(subject_tp_strain_richness[subject][tp]) xs_subset.append(tp_x_dict[tp]) ax[1].plot(xs_subset, richnesses, '.-', alpha=0.5) ax[1].set_ylabel("Strain richness") ax[1].set_xticks(xs) ax[1].set_xticklabels(tps_ordered) ax[1].text(-0.165, 0.92, 'B', size=20, transform=ax[1].transAxes, weight='bold') plt.show() fig.savefig('%s/backhed_strain_richness.pdf' % config.analysis_directory) # Version 2 tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] tp_x_dict = {'Mother': 0, 'Birth': 1, 'Month 4': 2, 'Month 12': 3} xs = np.arange(len(tps_ordered)) fig, ax = plt.subplots(1, 2, figsize=(12, 4)) for subject in subject_tp_strain_richness: richnesses = [] xs_subset = [] for tp in tps_ordered: if tp in subject_tp_strain_richness[subject]: richnesses.append(subject_tp_strain_richness[subject][tp]) xs_subset.append(tp_x_dict[tp]) ax[0].plot(xs_subset, richnesses, '.-', alpha=0.5) ax[0].set_ylabel("Strain richness") ax[0].set_xticks(xs) ax[0].set_xticklabels(tps_ordered) ax[0].text(-0.165, 0.92, 'A', size=20, transform=ax[0].transAxes, weight='bold') # E. coli boxplot tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) species = 'Escherichia_coli_58110' tp_count_dict = defaultdict(list) for subject in subject_tp_strain_count: for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: tp_count_dict[tp].append(subject_tp_strain_count[subject][species][tp]) else: tp_count_dict[tp].append(0) counts = [tp_count_dict[tp] for tp in tps_ordered] for tp in tps_ordered: print(tp) print(len(tp_count_dict[tp])) ax[1].boxplot(counts) ax[1].text(-0.165, 0.92, 'B', size=20, transform=ax[1].transAxes, weight='bold') ax[1].set_ylabel("Strain count\n" + r'($\it{Escherichia}$ $\it{coli}$)') ax[1].set_yticks([0,1,2,3,4]) ax[1].set_xticks(xs + 1) ax[1].set_xticklabels(tps_ordered) plt.show() fig.savefig('%s/backhed_strain_richness_v2.pdf' % config.analysis_directory) # Idea: have thickness of line be proportionate to number of instances tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) species = 'Escherichia_coli_58110' fig, ax = plt.subplots() counts_count_dict = defaultdict(int) for subject in subject_tp_strain_count: counts = [] for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: counts.append(subject_tp_strain_count[subject][species][tp]) else: counts.append(0) counts_count_dict[tuple(counts)] += 1 for counts in counts_count_dict: ax.plot(xs, counts, '.-', linewidth=counts_count_dict[counts], alpha=0.5) ax.set_ylabel("Strain count") ax.set_yticks([0,1,2,3,4]) ax.set_xticks(xs) ax.set_xticklabels(tps_ordered) plt.show() # E. coli boxplot tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) species = 'Escherichia_coli_58110' fig, ax = plt.subplots() tp_count_dict = defaultdict(list) for subject in subject_tp_strain_count: for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: tp_count_dict[tp].append(subject_tp_strain_count[subject][species][tp]) else: tp_count_dict[tp].append(0) counts = [tp_count_dict[tp] for tp in tps_ordered] means = [np.mean(tp_count_dict[tp]) for tp in tps_ordered] for tp in tps_ordered: print(tp) print(len(tp_count_dict[tp])) print(np.mean(tp_count_dict[tp])) ax.boxplot(counts) ax.plot(xs + 1, means, '.-', markersize=10) ax.set_ylabel("Strain count") ax.set_yticks([0,1,2,3,4]) ax.set_xticks(xs + 1) ax.set_xticklabels(tps_ordered) plt.show() # Load pickles import pickle # Pickle directory pickle_dir = "%s/pickles" % config.data_directory sample_species_polymorphism_dict = pickle.load(open("%s/sample_species_polymorphism_dict.pkl" % (pickle_dir), 'rb')) # How does strain number relate to polymorphism rate? species = 'Escherichia_coli_58110' polymorphisms = [] strain_counts = [] for sample in sample_species_strain_count: if species in sample_species_polymorphism_dict[sample] and species in sample_species_strain_count[sample]: polymorphism = sample_species_polymorphism_dict[sample][species] strain_count = sample_species_strain_count[sample][species] polymorphisms.append(polymorphism) strain_counts.append(strain_count) plt.plot(polymorphisms, strain_counts, '.') plt.show() backhed_tp_day_dict = {'Birth': 3, 'Mother': 2, 'Month 4': 122, 'Month 12': 366} # Generate table for processing with R, specifically # Fit linear model: # Num strains E. coli ~ time + host (random effect) species = 'Escherichia_coli_58110' output_file = open('%s/%s_strain_data.csv' % (config.analysis_directory, species), 'wb') output_file.write(','.join(['num_strains', 'time', 'host']) + '\n') for subject in subject_tp_strain_count: for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: day = backhed_tp_day_dict[tp] output_file.write(','.join([str(v) for v in [subject_tp_strain_count[subject][species][tp], day, subject]]) + '\n') else: output_file.write(','.join([str(v) for v in [0, day, subject]]) + '\n') output_file.close() # Find most prevalent species among infants species_nonzero_count = defaultdict(int) species_relabs = defaultdict(list) for sample in infant_samples: for species in relab_dict[sample]: species_relabs[species].append(relab_dict[sample][species]) if relab_dict[sample][species] > 0: species_nonzero_count[species] += 1 species_infant_prev_ordered = [] for species, count in sorted(species_nonzero_count.items(), key=lambda x: x[1], reverse=True): species_infant_prev_ordered.append(species) species_avg_relabs = {species: np.mean(species_relabs[species]) for species in species_relabs} species_infant_relab_ordered = [] for species, avg_relab in sorted(species_avg_relabs.items(), key=lambda x: x[1], reverse=True): species_infant_relab_ordered.append(species) # Idea: have thickness of line be proportionate to number of instances tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) idx_matrix = np.transpose(np.meshgrid(np.arange(4), np.arange(4))) idx_pairs = [] for row in idx_matrix: idx_pairs += list(row) fig, ax = plt.subplots(4, 4, figsize=(15, 10), sharey=True, sharex=True) for species, idx_pair in zip(species_infant_prev_ordered[:16], idx_pairs): i, j = idx_pair counts_count_dict = defaultdict(int) for subject in subject_tp_strain_count: counts = [] for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: counts.append(subject_tp_strain_count[subject][species][tp]) else: counts.append(0) counts_count_dict[tuple(counts)] += 1 for counts in counts_count_dict: ax[i][j].plot(xs, counts, '.-', linewidth=counts_count_dict[counts], alpha=0.5) ax[i][j].set_title(species) ax[i][0].set_ylabel("Strain count") ax[0][0].set_yticks([0,1,2,3,4]) ax[0][0].set_xticks(xs) ax[0][0].set_xticklabels(tps_ordered) plt.subplots_adjust(wspace=0) plt.tight_layout() plt.show() fig.savefig('%s/backhed_strain_count_by_species.pdf' % config.analysis_directory) ```
github_jupyter
from utils import config, sample_utils as su, parse_midas_data from collections import defaultdict import numpy as np, math from matplotlib import pyplot as plt import bz2 sample_subject_map = su.parse_sample_subject_map() subject_sample_map = su.parse_subject_sample_map() sample_order_map = su.parse_sample_order_map() infant_samples = su.get_sample_names('infant') olm_samples = su.get_sample_names('olm') infant_samples = [sample for sample in infant_samples if sample not in olm_samples] samples = su.get_sample_names('backhed') good_species_list = parse_midas_data.load_pickled_good_species_list() # Load alpha diversity, richness at different timepoints # Relative abundance file relab_fpath = "%s/species/relative_abundance.txt.bz2" % (config.data_directory) relab_file = open(relab_fpath, 'r') decompressor = bz2.BZ2Decompressor() raw = decompressor.decompress(relab_file.read()) data = [row.split('\t') for row in raw.split('\n')] data.pop() # Get rid of extra element due to terminal newline header = su.parse_merged_sample_names(data[0]) # Generate alpha diversity dictionary alpha_div_dict = {} richness_dict = {} relab_dict = defaultdict(dict) # sample -> species -> relab for i in range(1, len(header)): sample = header[i] for row in data[1:]: species = row[0] rel_ab = float(row[i]) if rel_ab > 0: relab_dict[sample][species] = rel_ab acc = 0 richness = 0 for row in data[1:]: rel_ab = float(row[i]) if rel_ab != 0: acc += (rel_ab * math.log(rel_ab)) richness += 1 alpha_div_dict[header[i]] = (acc*-1) richness_dict[header[i]] = richness subjects = set([sample_subject_map[sample][:-2] for sample in samples]) backhed_order_tp_dict = {1: 'Birth', 2: 'Month 4', 3: 'Month 12'} # Reformat into subject -> tp -> alpha diversity subject_tp_alpha_div = {subject: defaultdict(dict) for subject in subjects} for sample in samples: subject, mi_type = sample_subject_map[sample].split('-') order = sample_order_map[sample][1] if mi_type == 'M': tp = 'Mother' elif mi_type == 'I': tp = backhed_order_tp_dict[order] subject_tp_alpha_div[subject][tp] = alpha_div_dict[sample] # Load data from Ricky data_dir = config.data_directory f = open('%s/strains/Backhed_2015_strain_number.csv' % data_dir, 'r') f.readline() all_species = set() sample_species_strain_count = defaultdict(dict) possible_counts = set() for line in f: sample, species, count = line.strip().split(',') sample_species_strain_count[sample][species] = int(count) possible_counts.add(int(count)) all_species.add(species) subjects = set([sample_subject_map[sample][:-2] for sample in sample_species_strain_count]) backhed_order_tp_dict = {1: 'Birth', 2: 'Month 4', 3: 'Month 12'} # Reformat into subject -> species -> tp -> count subject_tp_strain_count = {subject: defaultdict(dict) for subject in subjects} # subject -> tp -> strain richness subject_tp_strain_richness = {subject: {} for subject in subjects} for sample in sample_species_strain_count: subject, mi_type = sample_subject_map[sample].split('-') order = sample_order_map[sample][1] if mi_type == 'M': tp = 'Mother' elif mi_type == 'I': tp = backhed_order_tp_dict[order] strain_richness = 0 for species in sample_species_strain_count[sample]: count = sample_species_strain_count[sample][species] subject_tp_strain_count[subject][species][tp] = count strain_richness += count subject_tp_strain_richness[subject][tp] = strain_richness tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] tp_x_dict = {'Mother': 0, 'Birth': 1, 'Month 4': 2, 'Month 12': 3} xs = np.arange(len(tps_ordered)) fig, ax = plt.subplots(1, 2, figsize=(12, 4)) for subject in subject_tp_alpha_div: alpha_divs = [] xs_subset = [] for tp in tps_ordered: if tp in subject_tp_alpha_div[subject]: alpha_divs.append(subject_tp_alpha_div[subject][tp]) xs_subset.append(tp_x_dict[tp]) ax[0].plot(xs_subset, alpha_divs, '.-', alpha=0.5) ax[0].set_ylabel("Species alpha diversity") ax[0].set_xticks(xs) ax[0].set_xticklabels(tps_ordered) ax[0].text(-0.165, 0.92, 'A', size=20, transform=ax[0].transAxes, weight='bold') for subject in subject_tp_strain_richness: richnesses = [] xs_subset = [] for tp in tps_ordered: if tp in subject_tp_strain_richness[subject]: richnesses.append(subject_tp_strain_richness[subject][tp]) xs_subset.append(tp_x_dict[tp]) ax[1].plot(xs_subset, richnesses, '.-', alpha=0.5) ax[1].set_ylabel("Strain richness") ax[1].set_xticks(xs) ax[1].set_xticklabels(tps_ordered) ax[1].text(-0.165, 0.92, 'B', size=20, transform=ax[1].transAxes, weight='bold') plt.show() fig.savefig('%s/backhed_strain_richness.pdf' % config.analysis_directory) # Version 2 tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] tp_x_dict = {'Mother': 0, 'Birth': 1, 'Month 4': 2, 'Month 12': 3} xs = np.arange(len(tps_ordered)) fig, ax = plt.subplots(1, 2, figsize=(12, 4)) for subject in subject_tp_strain_richness: richnesses = [] xs_subset = [] for tp in tps_ordered: if tp in subject_tp_strain_richness[subject]: richnesses.append(subject_tp_strain_richness[subject][tp]) xs_subset.append(tp_x_dict[tp]) ax[0].plot(xs_subset, richnesses, '.-', alpha=0.5) ax[0].set_ylabel("Strain richness") ax[0].set_xticks(xs) ax[0].set_xticklabels(tps_ordered) ax[0].text(-0.165, 0.92, 'A', size=20, transform=ax[0].transAxes, weight='bold') # E. coli boxplot tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) species = 'Escherichia_coli_58110' tp_count_dict = defaultdict(list) for subject in subject_tp_strain_count: for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: tp_count_dict[tp].append(subject_tp_strain_count[subject][species][tp]) else: tp_count_dict[tp].append(0) counts = [tp_count_dict[tp] for tp in tps_ordered] for tp in tps_ordered: print(tp) print(len(tp_count_dict[tp])) ax[1].boxplot(counts) ax[1].text(-0.165, 0.92, 'B', size=20, transform=ax[1].transAxes, weight='bold') ax[1].set_ylabel("Strain count\n" + r'($\it{Escherichia}$ $\it{coli}$)') ax[1].set_yticks([0,1,2,3,4]) ax[1].set_xticks(xs + 1) ax[1].set_xticklabels(tps_ordered) plt.show() fig.savefig('%s/backhed_strain_richness_v2.pdf' % config.analysis_directory) # Idea: have thickness of line be proportionate to number of instances tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) species = 'Escherichia_coli_58110' fig, ax = plt.subplots() counts_count_dict = defaultdict(int) for subject in subject_tp_strain_count: counts = [] for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: counts.append(subject_tp_strain_count[subject][species][tp]) else: counts.append(0) counts_count_dict[tuple(counts)] += 1 for counts in counts_count_dict: ax.plot(xs, counts, '.-', linewidth=counts_count_dict[counts], alpha=0.5) ax.set_ylabel("Strain count") ax.set_yticks([0,1,2,3,4]) ax.set_xticks(xs) ax.set_xticklabels(tps_ordered) plt.show() # E. coli boxplot tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) species = 'Escherichia_coli_58110' fig, ax = plt.subplots() tp_count_dict = defaultdict(list) for subject in subject_tp_strain_count: for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: tp_count_dict[tp].append(subject_tp_strain_count[subject][species][tp]) else: tp_count_dict[tp].append(0) counts = [tp_count_dict[tp] for tp in tps_ordered] means = [np.mean(tp_count_dict[tp]) for tp in tps_ordered] for tp in tps_ordered: print(tp) print(len(tp_count_dict[tp])) print(np.mean(tp_count_dict[tp])) ax.boxplot(counts) ax.plot(xs + 1, means, '.-', markersize=10) ax.set_ylabel("Strain count") ax.set_yticks([0,1,2,3,4]) ax.set_xticks(xs + 1) ax.set_xticklabels(tps_ordered) plt.show() # Load pickles import pickle # Pickle directory pickle_dir = "%s/pickles" % config.data_directory sample_species_polymorphism_dict = pickle.load(open("%s/sample_species_polymorphism_dict.pkl" % (pickle_dir), 'rb')) # How does strain number relate to polymorphism rate? species = 'Escherichia_coli_58110' polymorphisms = [] strain_counts = [] for sample in sample_species_strain_count: if species in sample_species_polymorphism_dict[sample] and species in sample_species_strain_count[sample]: polymorphism = sample_species_polymorphism_dict[sample][species] strain_count = sample_species_strain_count[sample][species] polymorphisms.append(polymorphism) strain_counts.append(strain_count) plt.plot(polymorphisms, strain_counts, '.') plt.show() backhed_tp_day_dict = {'Birth': 3, 'Mother': 2, 'Month 4': 122, 'Month 12': 366} # Generate table for processing with R, specifically # Fit linear model: # Num strains E. coli ~ time + host (random effect) species = 'Escherichia_coli_58110' output_file = open('%s/%s_strain_data.csv' % (config.analysis_directory, species), 'wb') output_file.write(','.join(['num_strains', 'time', 'host']) + '\n') for subject in subject_tp_strain_count: for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: day = backhed_tp_day_dict[tp] output_file.write(','.join([str(v) for v in [subject_tp_strain_count[subject][species][tp], day, subject]]) + '\n') else: output_file.write(','.join([str(v) for v in [0, day, subject]]) + '\n') output_file.close() # Find most prevalent species among infants species_nonzero_count = defaultdict(int) species_relabs = defaultdict(list) for sample in infant_samples: for species in relab_dict[sample]: species_relabs[species].append(relab_dict[sample][species]) if relab_dict[sample][species] > 0: species_nonzero_count[species] += 1 species_infant_prev_ordered = [] for species, count in sorted(species_nonzero_count.items(), key=lambda x: x[1], reverse=True): species_infant_prev_ordered.append(species) species_avg_relabs = {species: np.mean(species_relabs[species]) for species in species_relabs} species_infant_relab_ordered = [] for species, avg_relab in sorted(species_avg_relabs.items(), key=lambda x: x[1], reverse=True): species_infant_relab_ordered.append(species) # Idea: have thickness of line be proportionate to number of instances tps_ordered = ['Mother', 'Birth', 'Month 4', 'Month 12'] xs = np.arange(len(tps_ordered)) idx_matrix = np.transpose(np.meshgrid(np.arange(4), np.arange(4))) idx_pairs = [] for row in idx_matrix: idx_pairs += list(row) fig, ax = plt.subplots(4, 4, figsize=(15, 10), sharey=True, sharex=True) for species, idx_pair in zip(species_infant_prev_ordered[:16], idx_pairs): i, j = idx_pair counts_count_dict = defaultdict(int) for subject in subject_tp_strain_count: counts = [] for tp in tps_ordered: if tp in subject_tp_strain_count[subject][species]: counts.append(subject_tp_strain_count[subject][species][tp]) else: counts.append(0) counts_count_dict[tuple(counts)] += 1 for counts in counts_count_dict: ax[i][j].plot(xs, counts, '.-', linewidth=counts_count_dict[counts], alpha=0.5) ax[i][j].set_title(species) ax[i][0].set_ylabel("Strain count") ax[0][0].set_yticks([0,1,2,3,4]) ax[0][0].set_xticks(xs) ax[0][0].set_xticklabels(tps_ordered) plt.subplots_adjust(wspace=0) plt.tight_layout() plt.show() fig.savefig('%s/backhed_strain_count_by_species.pdf' % config.analysis_directory)
0.718693
0.420778
``` # Standard ML Libraries import pandas as pd import torch import transformers from torch.utils.data import Dataset, DataLoader from transformers import DistilBertModel, DistilBertTokenizer # Use Cuda device = 'cuda' if torch.cuda.is_available() else 'cpu' # Load training data train_df = pd.read_csv('data/train.csv') test_df = pd.read_csv('data/test.csv') print(train_df.head()) print(test_df.head()) # Triage Dataset Class class Triage(Dataset): def __init__(self, dataframe, tokenizer, max_length): self.len = len(dataframe) self.data = dataframe self.tokenizer = tokenizer self.max_length = max_length def __getitem__(self, index): inputs = self.tokenizer.encode_plus( self.data.title[index], None, add_special_tokens = True, max_length = self.max_length, pad_to_max_length = True, return_token_type_ids = True, truncation = True ) return { 'ids': torch.tensor(inputs['input_ids'], dtype=torch.long), 'mask': torch.tensor(inputs['attention_mask'], dtype=torch.long), 'targets': torch.tensor(self.data.labels[index], dtype=torch.long) } def __len__(self): return self.len # Create dataset and dataloader MAX_LEN = 512 TRAIN_BATCH_SIZE = 4 VALID_BATCH_SIZE = 2 EPOCHS = 1 LEARNING_RATE = 1e-05 tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') training_set = Triage(train_df, tokenizer, MAX_LEN) testing_set = Triage(test_df, tokenizer, MAX_LEN) train_params = { 'batch_size': TRAIN_BATCH_SIZE, 'shuffle': True, 'num_workers': 0 } test_params = { 'batch_size': VALID_BATCH_SIZE, 'shuffle': True, 'num_workers': 0 } training_loader = DataLoader(training_set, **train_params) testing_loader = DataLoader(testing_set, **test_params) class DistillBERTClass(torch.nn.Module): def __init__(self): super(DistillBERTClass, self).__init__() self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased") self.pre_classifier = torch.nn.Linear(768, 768) self.dropout = torch.nn.Dropout(0.3) self.classifier = torch.nn.Linear(768, 4) def forward(self, input_ids, attention_mask): output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask) hidden_state = output_1[0] pooler = hidden_state[:,0] pooler = self.pre_classifier(pooler) pooler = torch.nn.ReLU()(pooler) pooler = self.dropout(pooler) output = self.classifier(pooler) return output model = DistillBERTClass() model.to(device) # Create the loss function and optimizer loss_function = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(params=model.parameters(), lr=LEARNING_RATE) # Function to calculate the accuracy of the model def calculate_accuracy(big_idx, targets): n_correct = (big_idx == targets).sum().item() return n_correct # Define the training function def train(epoch): tr_loss = 0 n_correct = 0 nb_tr_steps = 0 nb_tr_examples = 0 model.train() for _,data in enumerate(training_loader,0): ids = data['ids'].to(device, dtype=torch.long) mask = data['mask'].to(device, dtype=torch.long) targets = data['targets'].to(device, dtype=torch.long) outputs = model(ids, mask) loss = loss_function(outputs, targets) tr_loss += loss.item() big_val, big_idx = torch.max(outputs.data, dim=1) n_correct += calculate_accuracy(big_idx, targets) nb_tr_steps += 1 nb_tr_examples += targets.size(0) if _ % 1000 == 0: loss_step = tr_loss / nb_tr_steps accu_step = (n_correct * 100) / nb_tr_examples print(f"Training Loss per 5000 steps: {loss_step}") print(f"Training Accuracy per 5000 steps: {accu_step}") optimizer.zero_grad() loss.backward() optimizer.step() print(f"The Total accuracy for epoch {epoch}: {(n_correct * 100)/nb_tr_examples}") epoch_loss = tr_loss / nb_tr_steps epoch_accu = (n_correct * 100) / nb_tr_examples print(f"Training Loss Epoch: {epoch_loss}") print(f"Training Accuracy Epoch: {epoch_accu}\n\n") return for epoch in range(EPOCHS): train(epoch) tr_loss def valid(model, testing_loader): tr_loss = 0 n_correct = 0 nb_tr_steps = 0 nb_tr_examples = 0 model.eval() n_correct = 0; n_wrong = 0; total = 0 with torch.no_grad(): for _, data in enumerate(testing_loader, 0): ids = data['ids'].to(device, dtype = torch.long) mask = data['mask'].to(device, dtype = torch.long) targets = data['targets'].to(device, dtype = torch.long) outputs = model(ids, mask).squeeze() loss = loss_function(outputs, targets) tr_loss += loss.item() big_val, big_idx = torch.max(outputs.data, dim=1) n_correct += calculate_accuracy(big_idx, targets) nb_tr_steps += 1 nb_tr_examples+=targets.size(0) if _%5000==0: loss_step = tr_loss/nb_tr_steps accu_step = (n_correct*100)/nb_tr_examples print(f"Validation Loss per 100 steps: {loss_step}") print(f"Validation Accuracy per 100 steps: {accu_step}") epoch_loss = tr_loss/nb_tr_steps epoch_accu = (n_correct*100)/nb_tr_examples print(f"Validation Loss Epoch: {epoch_loss}") print(f"Validation Accuracy Epoch: {epoch_accu}") return epoch_accu print('This is the validation section to print the accuracy and see how it performs') print('Here we are leveraging on the dataloader crearted for the validation dataset, the approcah is using more of pytorch') acc = valid(model, testing_loader) print("Accuracy on test data = %0.2f%%" % acc) ```
github_jupyter
# Standard ML Libraries import pandas as pd import torch import transformers from torch.utils.data import Dataset, DataLoader from transformers import DistilBertModel, DistilBertTokenizer # Use Cuda device = 'cuda' if torch.cuda.is_available() else 'cpu' # Load training data train_df = pd.read_csv('data/train.csv') test_df = pd.read_csv('data/test.csv') print(train_df.head()) print(test_df.head()) # Triage Dataset Class class Triage(Dataset): def __init__(self, dataframe, tokenizer, max_length): self.len = len(dataframe) self.data = dataframe self.tokenizer = tokenizer self.max_length = max_length def __getitem__(self, index): inputs = self.tokenizer.encode_plus( self.data.title[index], None, add_special_tokens = True, max_length = self.max_length, pad_to_max_length = True, return_token_type_ids = True, truncation = True ) return { 'ids': torch.tensor(inputs['input_ids'], dtype=torch.long), 'mask': torch.tensor(inputs['attention_mask'], dtype=torch.long), 'targets': torch.tensor(self.data.labels[index], dtype=torch.long) } def __len__(self): return self.len # Create dataset and dataloader MAX_LEN = 512 TRAIN_BATCH_SIZE = 4 VALID_BATCH_SIZE = 2 EPOCHS = 1 LEARNING_RATE = 1e-05 tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') training_set = Triage(train_df, tokenizer, MAX_LEN) testing_set = Triage(test_df, tokenizer, MAX_LEN) train_params = { 'batch_size': TRAIN_BATCH_SIZE, 'shuffle': True, 'num_workers': 0 } test_params = { 'batch_size': VALID_BATCH_SIZE, 'shuffle': True, 'num_workers': 0 } training_loader = DataLoader(training_set, **train_params) testing_loader = DataLoader(testing_set, **test_params) class DistillBERTClass(torch.nn.Module): def __init__(self): super(DistillBERTClass, self).__init__() self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased") self.pre_classifier = torch.nn.Linear(768, 768) self.dropout = torch.nn.Dropout(0.3) self.classifier = torch.nn.Linear(768, 4) def forward(self, input_ids, attention_mask): output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask) hidden_state = output_1[0] pooler = hidden_state[:,0] pooler = self.pre_classifier(pooler) pooler = torch.nn.ReLU()(pooler) pooler = self.dropout(pooler) output = self.classifier(pooler) return output model = DistillBERTClass() model.to(device) # Create the loss function and optimizer loss_function = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(params=model.parameters(), lr=LEARNING_RATE) # Function to calculate the accuracy of the model def calculate_accuracy(big_idx, targets): n_correct = (big_idx == targets).sum().item() return n_correct # Define the training function def train(epoch): tr_loss = 0 n_correct = 0 nb_tr_steps = 0 nb_tr_examples = 0 model.train() for _,data in enumerate(training_loader,0): ids = data['ids'].to(device, dtype=torch.long) mask = data['mask'].to(device, dtype=torch.long) targets = data['targets'].to(device, dtype=torch.long) outputs = model(ids, mask) loss = loss_function(outputs, targets) tr_loss += loss.item() big_val, big_idx = torch.max(outputs.data, dim=1) n_correct += calculate_accuracy(big_idx, targets) nb_tr_steps += 1 nb_tr_examples += targets.size(0) if _ % 1000 == 0: loss_step = tr_loss / nb_tr_steps accu_step = (n_correct * 100) / nb_tr_examples print(f"Training Loss per 5000 steps: {loss_step}") print(f"Training Accuracy per 5000 steps: {accu_step}") optimizer.zero_grad() loss.backward() optimizer.step() print(f"The Total accuracy for epoch {epoch}: {(n_correct * 100)/nb_tr_examples}") epoch_loss = tr_loss / nb_tr_steps epoch_accu = (n_correct * 100) / nb_tr_examples print(f"Training Loss Epoch: {epoch_loss}") print(f"Training Accuracy Epoch: {epoch_accu}\n\n") return for epoch in range(EPOCHS): train(epoch) tr_loss def valid(model, testing_loader): tr_loss = 0 n_correct = 0 nb_tr_steps = 0 nb_tr_examples = 0 model.eval() n_correct = 0; n_wrong = 0; total = 0 with torch.no_grad(): for _, data in enumerate(testing_loader, 0): ids = data['ids'].to(device, dtype = torch.long) mask = data['mask'].to(device, dtype = torch.long) targets = data['targets'].to(device, dtype = torch.long) outputs = model(ids, mask).squeeze() loss = loss_function(outputs, targets) tr_loss += loss.item() big_val, big_idx = torch.max(outputs.data, dim=1) n_correct += calculate_accuracy(big_idx, targets) nb_tr_steps += 1 nb_tr_examples+=targets.size(0) if _%5000==0: loss_step = tr_loss/nb_tr_steps accu_step = (n_correct*100)/nb_tr_examples print(f"Validation Loss per 100 steps: {loss_step}") print(f"Validation Accuracy per 100 steps: {accu_step}") epoch_loss = tr_loss/nb_tr_steps epoch_accu = (n_correct*100)/nb_tr_examples print(f"Validation Loss Epoch: {epoch_loss}") print(f"Validation Accuracy Epoch: {epoch_accu}") return epoch_accu print('This is the validation section to print the accuracy and see how it performs') print('Here we are leveraging on the dataloader crearted for the validation dataset, the approcah is using more of pytorch') acc = valid(model, testing_loader) print("Accuracy on test data = %0.2f%%" % acc)
0.887101
0.478955
``` #Author : Meetkumar Patel #Research Paper : https://www.academia.edu/38463296/Toxic_Comment_Classification_Using_Neural_Networks_and_Machine_Learning import os import re import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import RNN, GRU, LSTM, Dense, Input, Embedding, Dropout, Activation, concatenate from keras.layers import Bidirectional, GlobalAveragePooling1D, GlobalMaxPooling1D from keras.models import Model from keras.callbacks import EarlyStopping, ModelCheckpoint from keras import initializers, regularizers, constraints, optimizers, layers train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test.csv') embedding_file = 'glove.6B.300d.txt' train_data.describe() test_data.describe() train_data.head() test_data.head() train_data.isnull().any() test_data.isnull().any() # Furhter actions on any columns is not required, because no columns has any missing data. classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] y = train_data[classes].values train_sentences = train_data["comment_text"].fillna("fillna").str.lower() test_sentences = test_data["comment_text"].fillna("fillna").str.lower() max_features = 100000 max_len = 150 embed_size = 300 tokenizer = Tokenizer(max_features) tokenizer.fit_on_texts(list(train_sentences)) tokenized_train_sentences = tokenizer.texts_to_sequences(train_sentences) tokenized_test_sentences = tokenizer.texts_to_sequences(test_sentences) train_sentences[1] tokenized_train_sentences[1] train_sentences[5] tokenized_train_sentences[5] train_padding = pad_sequences(tokenized_train_sentences, max_len) test_padding = pad_sequences(tokenized_test_sentences, max_len) def get_coefs(word, *arr): return word, np.asarray(arr, dtype='float32') embeddings_index = dict(get_coefs(*o.rstrip().rsplit(' ')) for o in open(embedding_file)) word_index = tokenizer.word_index nb_words = min(max_features, len(word_index)) embedding_matrix = np.zeros((nb_words, embed_size)) for word, i in word_index.items(): if i >= max_features: continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector image_input = Input(shape=(max_len, )) X = Embedding(max_features, embed_size, weights=[embedding_matrix])(image_input) X = Bidirectional(GRU(64, return_sequences=True, dropout=0.2, recurrent_dropout=0.2))(X) # Dropout and R-Dropout sequence, inspired by Deep Learning with Python - Francois Chollet avg_pl = GlobalAveragePooling1D()(X) max_pl = GlobalMaxPooling1D()(X) conc = concatenate([avg_pl, max_pl]) X = Dense(6, activation="sigmoid")(conc) model = Model(inputs=image_input, outputs=X) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) saved_model = "weights_base.best.hdf5" checkpoint = ModelCheckpoint(saved_model, monitor='val_acc', verbose=1, save_best_only=True, mode='max') early = EarlyStopping(monitor="val_acc", mode="max", patience=5) callbacks_list = [checkpoint, early] batch_sz = 32 epoch = 2 model.fit(train_padding, y, batch_size=batch_sz, epochs=epoch, validation_split=0.1, callbacks=callbacks_list) test_values = model.predict([test_padding], batch_size=1024, verbose=1) sample_submission = pd.read_csv('sample_submission.csv') sample_submission[classes] = test_values sample_submission.to_csv('submission.csv', index=False) ```
github_jupyter
#Author : Meetkumar Patel #Research Paper : https://www.academia.edu/38463296/Toxic_Comment_Classification_Using_Neural_Networks_and_Machine_Learning import os import re import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import RNN, GRU, LSTM, Dense, Input, Embedding, Dropout, Activation, concatenate from keras.layers import Bidirectional, GlobalAveragePooling1D, GlobalMaxPooling1D from keras.models import Model from keras.callbacks import EarlyStopping, ModelCheckpoint from keras import initializers, regularizers, constraints, optimizers, layers train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test.csv') embedding_file = 'glove.6B.300d.txt' train_data.describe() test_data.describe() train_data.head() test_data.head() train_data.isnull().any() test_data.isnull().any() # Furhter actions on any columns is not required, because no columns has any missing data. classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] y = train_data[classes].values train_sentences = train_data["comment_text"].fillna("fillna").str.lower() test_sentences = test_data["comment_text"].fillna("fillna").str.lower() max_features = 100000 max_len = 150 embed_size = 300 tokenizer = Tokenizer(max_features) tokenizer.fit_on_texts(list(train_sentences)) tokenized_train_sentences = tokenizer.texts_to_sequences(train_sentences) tokenized_test_sentences = tokenizer.texts_to_sequences(test_sentences) train_sentences[1] tokenized_train_sentences[1] train_sentences[5] tokenized_train_sentences[5] train_padding = pad_sequences(tokenized_train_sentences, max_len) test_padding = pad_sequences(tokenized_test_sentences, max_len) def get_coefs(word, *arr): return word, np.asarray(arr, dtype='float32') embeddings_index = dict(get_coefs(*o.rstrip().rsplit(' ')) for o in open(embedding_file)) word_index = tokenizer.word_index nb_words = min(max_features, len(word_index)) embedding_matrix = np.zeros((nb_words, embed_size)) for word, i in word_index.items(): if i >= max_features: continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector image_input = Input(shape=(max_len, )) X = Embedding(max_features, embed_size, weights=[embedding_matrix])(image_input) X = Bidirectional(GRU(64, return_sequences=True, dropout=0.2, recurrent_dropout=0.2))(X) # Dropout and R-Dropout sequence, inspired by Deep Learning with Python - Francois Chollet avg_pl = GlobalAveragePooling1D()(X) max_pl = GlobalMaxPooling1D()(X) conc = concatenate([avg_pl, max_pl]) X = Dense(6, activation="sigmoid")(conc) model = Model(inputs=image_input, outputs=X) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) saved_model = "weights_base.best.hdf5" checkpoint = ModelCheckpoint(saved_model, monitor='val_acc', verbose=1, save_best_only=True, mode='max') early = EarlyStopping(monitor="val_acc", mode="max", patience=5) callbacks_list = [checkpoint, early] batch_sz = 32 epoch = 2 model.fit(train_padding, y, batch_size=batch_sz, epochs=epoch, validation_split=0.1, callbacks=callbacks_list) test_values = model.predict([test_padding], batch_size=1024, verbose=1) sample_submission = pd.read_csv('sample_submission.csv') sample_submission[classes] = test_values sample_submission.to_csv('submission.csv', index=False)
0.564819
0.596463
``` import numpy as np import matplotlib.pyplot as plt import matplotlib %matplotlib inline # Create images with random rectangles and bounding boxes. num_imgs = 50000 img_size = 8 min_rect_size = 1 max_rect_size = 4 num_objects = 2 bboxes = np.zeros((num_imgs, num_objects, 4)) imgs = np.zeros((num_imgs, img_size, img_size)) for i_img in range(num_imgs): for i_object in range(num_objects): w, h = np.random.randint(min_rect_size, max_rect_size, size=2) x = np.random.randint(0, img_size - w) y = np.random.randint(0, img_size - h) imgs[i_img, x:x+w, y:y+h] = 1. bboxes[i_img, i_object] = [x, y, w, h] imgs.shape, bboxes.shape import random i = random.randint(1,1000) plt.imshow(imgs[i].T, cmap='Greys', interpolation='none', origin='lower', extent=[0, img_size, 0, img_size]) for bbox in bboxes[i]: plt.gca().add_patch(matplotlib.patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r', fc='none')) # Reshape and normalize the data to mean 0 and std 1. X = (imgs.reshape(num_imgs, -1) - np.mean(imgs)) / np.std(imgs) X.shape, np.mean(X), np.std(X) # Normalize x, y, w, h by img_size, so that all values are between 0 and 1. # Important: Do not shift to negative values (e.g. by setting to mean 0), because the IOU calculation needs positive w and h. y = bboxes.reshape(num_imgs, -1) / img_size y.shape, np.mean(y), np.std(y) # Split training and test. i = int(0.8 * num_imgs) train_X = X[:i] test_X = X[i:] train_y = y[:i] test_y = y[i:] test_imgs = imgs[i:] test_bboxes = bboxes[i:] from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Convolution2D, MaxPooling2D, Flatten from keras.optimizers import SGD filter_size = 3 pool_size = 2 model = Sequential([ Dense(512, input_dim=X.shape[-1]), Activation('relu'), Dense(128, input_dim=X.shape[-1]), Activation('relu'), Dropout(0.2), Dense(y.shape[-1]) ]) model.compile('adadelta', 'mse') def IOU(bbox1, bbox2): '''Calculate overlap between two bounding boxes [x, y, w, h] as the area of intersection over the area of unity''' x1, y1, w1, h1 = bbox1[0], bbox1[1], bbox1[2], bbox1[3] x2, y2, w2, h2 = bbox2[0], bbox2[1], bbox2[2], bbox2[3] w_I = min(x1 + w1, x2 + w2) - max(x1, x2) h_I = min(y1 + h1, y2 + h2) - max(y1, y2) if w_I <= 0 or h_I <= 0: # no overlap return 0 I = w_I * h_I U = w1 * h1 + w2 * h2 - I return I / U def distance(bbox1, bbox2): return np.sqrt(np.sum(np.square(bbox1[:2] - bbox2[:2]))) num_epochs = 50 flipped_train_y = np.array(train_y) flipped = np.zeros((len(flipped_train_y), num_epochs)) ious_epoch = np.zeros((len(flipped_train_y), num_epochs)) dists_epoch = np.zeros((len(flipped_train_y), num_epochs)) mses_epoch = np.zeros((len(flipped_train_y), num_epochs)) for epoch in range(num_epochs): print('Epoch', epoch) model.fit(train_X, flipped_train_y, epochs=1, validation_data=(test_X, test_y), verbose=2) pred_y = model.predict(train_X) for i, (pred_bboxes, exp_bboxes) in enumerate(zip(pred_y, flipped_train_y)): flipped_exp_bboxes = np.concatenate([exp_bboxes[4:], exp_bboxes[:4]]) mse = np.mean(np.square(pred_bboxes - exp_bboxes)) mse_flipped = np.mean(np.square(pred_bboxes - flipped_exp_bboxes)) iou = IOU(pred_bboxes[:4], exp_bboxes[:4]) + IOU(pred_bboxes[4:], exp_bboxes[4:]) iou_flipped = IOU(pred_bboxes[:4], flipped_exp_bboxes[:4]) + IOU(pred_bboxes[4:], flipped_exp_bboxes[4:]) dist = distance(pred_bboxes[:4], exp_bboxes[:4]) + distance(pred_bboxes[4:], exp_bboxes[4:]) dist_flipped = distance(pred_bboxes[:4], flipped_exp_bboxes[:4]) + distance(pred_bboxes[4:], flipped_exp_bboxes[4:]) if mse_flipped < mse: # you can also use iou or dist here flipped_train_y[i] = flipped_exp_bboxes flipped[i, epoch] = 1 mses_epoch[i, epoch] = mse_flipped / 2. ious_epoch[i, epoch] = iou_flipped / 2. dists_epoch[i, epoch] = dist_flipped / 2. else: mses_epoch[i, epoch] = mse / 2. ious_epoch[i, epoch] = iou / 2. dists_epoch[i, epoch] = dist / 2. print('Flipped {} training samples ({} %)'.format(np.sum(flipped[:, epoch]), np.mean(flipped[:, epoch]) * 100.)) print('Mean IOU: {}'.format(np.mean(ious_epoch[:, epoch]))) print('Mean dist: {}'.format(np.mean(dists_epoch[:, epoch]))) print('Mean mse: {}'.format(np.mean(mses_epoch[:, epoch]))) print('\n') plt.pcolor(flipped[:1000], cmap='Greys') plt.xlabel('Epoch') plt.ylabel('Training sample') plt.plot(np.mean(ious_epoch, axis=0), label='Mean IOU') # between predicted and assigned true bboxes plt.plot(np.mean(dists_epoch, axis=0), label='Mean distance') # relative to image size plt.legend() plt.ylim(0, 1) pred_y = model.predict(test_X) pred_y = pred_y.reshape(len(pred_y), num_objects, -1) pred_bboxes = pred_y[..., :4] * img_size pred_shapes = pred_y[..., 4:5] pred_bboxes.shape, pred_shapes.shape plt.figure(figsize=(16, 8)) for i_subplot in range(1, 5): plt.subplot(1, 4, i_subplot) i = np.random.randint(len(test_X)) plt.imshow(test_imgs[i].T, cmap='Greys', interpolation='none', origin='lower', extent=[0, img_size, 0, img_size]) for pred_bbox, exp_bbox, pred_shape in zip(pred_bboxes[i], test_bboxes[i], pred_shapes[i]): print(pred_bbox) plt.gca().add_patch(matplotlib.patches.Rectangle((pred_bbox[0], pred_bbox[1]), pred_bbox[2], pred_bbox[3],ec='r', fc='none')) ```
github_jupyter
import numpy as np import matplotlib.pyplot as plt import matplotlib %matplotlib inline # Create images with random rectangles and bounding boxes. num_imgs = 50000 img_size = 8 min_rect_size = 1 max_rect_size = 4 num_objects = 2 bboxes = np.zeros((num_imgs, num_objects, 4)) imgs = np.zeros((num_imgs, img_size, img_size)) for i_img in range(num_imgs): for i_object in range(num_objects): w, h = np.random.randint(min_rect_size, max_rect_size, size=2) x = np.random.randint(0, img_size - w) y = np.random.randint(0, img_size - h) imgs[i_img, x:x+w, y:y+h] = 1. bboxes[i_img, i_object] = [x, y, w, h] imgs.shape, bboxes.shape import random i = random.randint(1,1000) plt.imshow(imgs[i].T, cmap='Greys', interpolation='none', origin='lower', extent=[0, img_size, 0, img_size]) for bbox in bboxes[i]: plt.gca().add_patch(matplotlib.patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r', fc='none')) # Reshape and normalize the data to mean 0 and std 1. X = (imgs.reshape(num_imgs, -1) - np.mean(imgs)) / np.std(imgs) X.shape, np.mean(X), np.std(X) # Normalize x, y, w, h by img_size, so that all values are between 0 and 1. # Important: Do not shift to negative values (e.g. by setting to mean 0), because the IOU calculation needs positive w and h. y = bboxes.reshape(num_imgs, -1) / img_size y.shape, np.mean(y), np.std(y) # Split training and test. i = int(0.8 * num_imgs) train_X = X[:i] test_X = X[i:] train_y = y[:i] test_y = y[i:] test_imgs = imgs[i:] test_bboxes = bboxes[i:] from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Convolution2D, MaxPooling2D, Flatten from keras.optimizers import SGD filter_size = 3 pool_size = 2 model = Sequential([ Dense(512, input_dim=X.shape[-1]), Activation('relu'), Dense(128, input_dim=X.shape[-1]), Activation('relu'), Dropout(0.2), Dense(y.shape[-1]) ]) model.compile('adadelta', 'mse') def IOU(bbox1, bbox2): '''Calculate overlap between two bounding boxes [x, y, w, h] as the area of intersection over the area of unity''' x1, y1, w1, h1 = bbox1[0], bbox1[1], bbox1[2], bbox1[3] x2, y2, w2, h2 = bbox2[0], bbox2[1], bbox2[2], bbox2[3] w_I = min(x1 + w1, x2 + w2) - max(x1, x2) h_I = min(y1 + h1, y2 + h2) - max(y1, y2) if w_I <= 0 or h_I <= 0: # no overlap return 0 I = w_I * h_I U = w1 * h1 + w2 * h2 - I return I / U def distance(bbox1, bbox2): return np.sqrt(np.sum(np.square(bbox1[:2] - bbox2[:2]))) num_epochs = 50 flipped_train_y = np.array(train_y) flipped = np.zeros((len(flipped_train_y), num_epochs)) ious_epoch = np.zeros((len(flipped_train_y), num_epochs)) dists_epoch = np.zeros((len(flipped_train_y), num_epochs)) mses_epoch = np.zeros((len(flipped_train_y), num_epochs)) for epoch in range(num_epochs): print('Epoch', epoch) model.fit(train_X, flipped_train_y, epochs=1, validation_data=(test_X, test_y), verbose=2) pred_y = model.predict(train_X) for i, (pred_bboxes, exp_bboxes) in enumerate(zip(pred_y, flipped_train_y)): flipped_exp_bboxes = np.concatenate([exp_bboxes[4:], exp_bboxes[:4]]) mse = np.mean(np.square(pred_bboxes - exp_bboxes)) mse_flipped = np.mean(np.square(pred_bboxes - flipped_exp_bboxes)) iou = IOU(pred_bboxes[:4], exp_bboxes[:4]) + IOU(pred_bboxes[4:], exp_bboxes[4:]) iou_flipped = IOU(pred_bboxes[:4], flipped_exp_bboxes[:4]) + IOU(pred_bboxes[4:], flipped_exp_bboxes[4:]) dist = distance(pred_bboxes[:4], exp_bboxes[:4]) + distance(pred_bboxes[4:], exp_bboxes[4:]) dist_flipped = distance(pred_bboxes[:4], flipped_exp_bboxes[:4]) + distance(pred_bboxes[4:], flipped_exp_bboxes[4:]) if mse_flipped < mse: # you can also use iou or dist here flipped_train_y[i] = flipped_exp_bboxes flipped[i, epoch] = 1 mses_epoch[i, epoch] = mse_flipped / 2. ious_epoch[i, epoch] = iou_flipped / 2. dists_epoch[i, epoch] = dist_flipped / 2. else: mses_epoch[i, epoch] = mse / 2. ious_epoch[i, epoch] = iou / 2. dists_epoch[i, epoch] = dist / 2. print('Flipped {} training samples ({} %)'.format(np.sum(flipped[:, epoch]), np.mean(flipped[:, epoch]) * 100.)) print('Mean IOU: {}'.format(np.mean(ious_epoch[:, epoch]))) print('Mean dist: {}'.format(np.mean(dists_epoch[:, epoch]))) print('Mean mse: {}'.format(np.mean(mses_epoch[:, epoch]))) print('\n') plt.pcolor(flipped[:1000], cmap='Greys') plt.xlabel('Epoch') plt.ylabel('Training sample') plt.plot(np.mean(ious_epoch, axis=0), label='Mean IOU') # between predicted and assigned true bboxes plt.plot(np.mean(dists_epoch, axis=0), label='Mean distance') # relative to image size plt.legend() plt.ylim(0, 1) pred_y = model.predict(test_X) pred_y = pred_y.reshape(len(pred_y), num_objects, -1) pred_bboxes = pred_y[..., :4] * img_size pred_shapes = pred_y[..., 4:5] pred_bboxes.shape, pred_shapes.shape plt.figure(figsize=(16, 8)) for i_subplot in range(1, 5): plt.subplot(1, 4, i_subplot) i = np.random.randint(len(test_X)) plt.imshow(test_imgs[i].T, cmap='Greys', interpolation='none', origin='lower', extent=[0, img_size, 0, img_size]) for pred_bbox, exp_bbox, pred_shape in zip(pred_bboxes[i], test_bboxes[i], pred_shapes[i]): print(pred_bbox) plt.gca().add_patch(matplotlib.patches.Rectangle((pred_bbox[0], pred_bbox[1]), pred_bbox[2], pred_bbox[3],ec='r', fc='none'))
0.716119
0.694144
# Quiz - Week 4A ## Q1. * * * * Here is a table of 1-5 star ratings for five movies (M, N, P. Q. R) by three raters (A, B, C). <pre> M N P Q R A 1 2 3 4 5 B 2 3 2 5 3 C 5 5 5 3 2 </pre> * Normalize the ratings by subtracting the average for each row and then subtracting the average for each column in the resulting table. Then, identify the true statement about the normalized table. ## Solution 1. Step 1. Mean Calculation for row <pre> M N P Q R Mean A 1 2 3 4 5 3 B 2 3 2 5 3 3 C 5 5 5 3 2 4 </pre> Step 2. Mean Subtraction for row <pre> M N P Q R Mean A -2 -1 0 1 2 3 B -1 0 -1 2 0 3 C 1 1 1 -1 -2 4 </pre> Step 3. Mean Calculation for col <pre> M N P Q R Mean A -2 -1 0 1 2 3 B -1 0 -1 2 0 3 C 1 1 1 -1 -2 4 Mean -2/3 0 0 -2/3 0 </pre> Step 4. Mean Substraction for col <pre> M N P Q R Mean A -4/3 -1 0 1/3 2 3 B -1/3 0 -1 4/3 0 3 C 5/3 1 1 -1/3 -2 4 Mean -2/3 0 0 -2/3 0 </pre> ``` import numpy as np print np.mean(np.array([1,2,3,4,5])) print np.mean(np.array([2,3,2,5,3])) print np.mean(np.array([5,5,5,3,2])) print "==============" a = np.array([-2,-1, 1]) # print np.mean(a) print a - np.mean(a) a = np.array([-1, 0, 1]) # print np.mean(a) print a - np.mean(a) a = np.array([ 0,-1, 1]) # print np.mean(a) print a - np.mean(a) a = np.array([ 1, 2,-1]) # print np.mean(a) print a - np.mean(a) a = np.array([ 2, 0,-2]) # print np.mean(a) print a - np.mean(a) ``` ## Q2. * * * * Below is a table giving the profile of three items. <pre> A 1 0 1 0 1 2 B 1 1 0 0 1 6 C 0 1 0 1 0 2 </pre> * The first five attributes are Boolean, and the last is an integer "rating." Assume that the scale factor for the rating is α. Compute, as a function of α, the cosine distances between each pair of profiles. For each of α = 0, 0.5, 1, and 2, determine the cosine of the angle between each pair of vectors. Which of the following is FALSE? ``` from numpy.linalg import norm # cos(A, B) alphas = [0, 0.5, 1, 2] for alpha in alphas: print "==========================" A = np.array([1,0,1,0,1,2*alpha], dtype="float32") B = np.array([1,1,0,0,1,6*alpha], dtype="float32") C = np.array([0,1,0,1,0,2*alpha], dtype="float32") print "Current Alpha: " + str(alpha) cos_a_b = float(np.dot(A.T, B)) / float( norm(A, ord=2)* norm(B, ord=2)) print "Consine(A, B) = " + str(cos_a_b) cos_a_c = float(np.dot(A.T, C)) / float( norm(A, ord=2)* norm(C, ord=2)) print "Consine(A, C) = " + str(cos_a_c) cos_b_c = float(np.dot(B.T, C)) / float( norm(B, ord=2)* norm(C, ord=2)) print "Consine(B, C) = " + str(cos_b_c) ``` # Quiz - Week 4B # Q1. *** Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and two columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7]. There are many options for the second column [x,y,z]. Write down those constraints on x, y, and z. Then, identify in the list below the one column that could be [x,y,z]. All components are computed to three decimal places, so the constraints may be satisfied only to a close approximation. ``` import numpy as np def test_orth(lst, tested_lst): col_b = np.array(tested_lst) col_a = np.array(lst) return (np.dot(col_b.T, col_a), np.linalg.norm(col_b, ord=2) ) a = [2/7.0, 3/7.0, 6/7.0] print test_orth(a, [-.702, .117, .702]) print test_orth(a, [-.288, -.490, .772]) print test_orth(a, [.728, .485, -.485]) print test_orth(a, [2.250, -.500, -.750]) ``` ## Q2. *** Note: In this question, all columns will be written in their transposed form, as rows, to make the typography simpler. Matrix M has three rows and three columns, and the columns form an orthonormal basis. One of the columns is [2/7,3/7,6/7], and another is [6/7, 2/7, -3/7]. Let the third column be [x,y,z]. Since the length of the vector [x,y,z] must be 1, there is a constraint that $x^2+y^2+z^2$ = 1. However, there are other constraints, and these other constraints can be used to deduce facts about the ratios among x, y, and z. Compute these ratios, and then identify one of them in the list below. 2*x + 3*y + 6*z = 0 6*x + 2*y - 3*z = 0 14*x + 7*y = 0 => y = -2*x -4*x + 6*z = 0 => 3*z = 2*x => z = 2/3*x ## Q3. *** Suppose we have three points in a two dimensional space: (1,1), (2,2), and (3,4). We want to perform PCA on these points, so we construct a 2-by-2 matrix whose eigenvectors are the directions that best represent these three points. Construct this matrix and identify, in the list below, one of its elements. ``` M = np.array([[1,1], [2,2], [3,4]]) print np.dot(M.T, M) ``` ## Q4 *** Find, in the list below, the vector that is orthogonal to the vector [1,2,3]. Note: the interesting concept regarding eigenvectors is "orthonormal," that is unit vectors that are orthogonal. However, this question avoids using unit vectors to make the calculations simpler. ``` def test_orth(lst, tested_lst): flag = True col_b = np.array(tested_lst) col_a = np.array(lst) return np.dot(col_b.T, col_a) a = [1, 2, 3] print test_orth(a, [-1, -2, 0]) print test_orth(a, [-1, -2, -3]) print test_orth(a, [-4, 2, -1]) print test_orth(a, [-1, -1, 1]) print "=================" print test_orth(a, [-1,1,-1]) print test_orth(a, [2,-3, 1]) print test_orth(a, [-4,2,-1]) print test_orth(a, [ 3,0,-1]) ```
github_jupyter
import numpy as np print np.mean(np.array([1,2,3,4,5])) print np.mean(np.array([2,3,2,5,3])) print np.mean(np.array([5,5,5,3,2])) print "==============" a = np.array([-2,-1, 1]) # print np.mean(a) print a - np.mean(a) a = np.array([-1, 0, 1]) # print np.mean(a) print a - np.mean(a) a = np.array([ 0,-1, 1]) # print np.mean(a) print a - np.mean(a) a = np.array([ 1, 2,-1]) # print np.mean(a) print a - np.mean(a) a = np.array([ 2, 0,-2]) # print np.mean(a) print a - np.mean(a) from numpy.linalg import norm # cos(A, B) alphas = [0, 0.5, 1, 2] for alpha in alphas: print "==========================" A = np.array([1,0,1,0,1,2*alpha], dtype="float32") B = np.array([1,1,0,0,1,6*alpha], dtype="float32") C = np.array([0,1,0,1,0,2*alpha], dtype="float32") print "Current Alpha: " + str(alpha) cos_a_b = float(np.dot(A.T, B)) / float( norm(A, ord=2)* norm(B, ord=2)) print "Consine(A, B) = " + str(cos_a_b) cos_a_c = float(np.dot(A.T, C)) / float( norm(A, ord=2)* norm(C, ord=2)) print "Consine(A, C) = " + str(cos_a_c) cos_b_c = float(np.dot(B.T, C)) / float( norm(B, ord=2)* norm(C, ord=2)) print "Consine(B, C) = " + str(cos_b_c) import numpy as np def test_orth(lst, tested_lst): col_b = np.array(tested_lst) col_a = np.array(lst) return (np.dot(col_b.T, col_a), np.linalg.norm(col_b, ord=2) ) a = [2/7.0, 3/7.0, 6/7.0] print test_orth(a, [-.702, .117, .702]) print test_orth(a, [-.288, -.490, .772]) print test_orth(a, [.728, .485, -.485]) print test_orth(a, [2.250, -.500, -.750]) M = np.array([[1,1], [2,2], [3,4]]) print np.dot(M.T, M) def test_orth(lst, tested_lst): flag = True col_b = np.array(tested_lst) col_a = np.array(lst) return np.dot(col_b.T, col_a) a = [1, 2, 3] print test_orth(a, [-1, -2, 0]) print test_orth(a, [-1, -2, -3]) print test_orth(a, [-4, 2, -1]) print test_orth(a, [-1, -1, 1]) print "=================" print test_orth(a, [-1,1,-1]) print test_orth(a, [2,-3, 1]) print test_orth(a, [-4,2,-1]) print test_orth(a, [ 3,0,-1])
0.244543
0.941654
# Ellipsometer Basics **Scott Prahl** *April 2020* This notebook reviews the basic equations used in ellipsometry. It also demonstrates how the Fresnel reflection equations are related to the ellipsometry parameter $\rho = \tan\psi \cdot e^{j\Delta}$. References * Archer, *Manual on Ellipsometry* 1968. * Azzam, *Ellipsometry and Polarized Light*, 1977. * Fujiwara, *Spectroscopic Ellipsometry*, 2007. * Tompkins, *A User's Guide to Ellipsometry*, 1993 * Tompkins, *Handbook of Ellipsometry*, 2005. * Woollam, *A short course in ellipsometry*, 2001. ``` import sympy import numpy as np import matplotlib.pyplot as plt import pypolar.fresnel as fresnel import pypolar.ellipsometry as ellipse sympy.init_printing(use_unicode=True) ``` ## Ellipsometry ### Layout A basic ellipsometer configuration is shown below where the lights hits the sample at an angle $\theta$ from a normal to the surface. The incident electric field $E_{ip}$ is parallel to the plane-of-incidence (which contains the incoming vector and the vector normal to the surface). The electric field $E_{is}$ is perpendicular to the plane of incidence <img src="http://omlc.org/~prahl/host/453/week5/ellipsometry.png" width="100%"> Usually, the incident light $\mathbf{E}_i$ is linearly polarized but does not need to be. The reflected light $\mathbf{E}_r$ is, in general, elliptically polarized. $$ \mathbf{E}_i = \begin{bmatrix} E_{ip}e^{j\delta_{ip}}\\ E_{is}e^{j\delta_{is}}\\ \end{bmatrix} \qquad\mbox{and}\qquad \mathbf{E}_r = \begin{bmatrix} E_{rp}e^{j\delta_{rp}}\\ E_{rs}e^{j\delta_{rs}}\\ \end{bmatrix} $$ ### $\Delta$ and $\tan\psi$ The effect of reflection is characterized by the angle $\Delta$, defined as the change in phase, and the angle $\psi$, the arctangent of the factor by which the amplitude ratio changes. $$ \Delta = (\delta_{rp} - \delta_{rs}) - (\delta_{ip}-\delta_{is}) $$ and $$ \tan\psi = \frac{E_{is}}{E_{ip}} \cdot \frac{E_{rp}}{E_{rs}} $$ In the special (but common case) of a smooth surface, there will be no mixing of parallel and perpendicular light, i.e., $$ \begin{bmatrix} E_{rp}e^{j\delta_{rp}}\\ E_{rs}e^{j\delta_{rs}} \end{bmatrix} = \begin{bmatrix} r_p & 0 \\ 0 & r_s \end{bmatrix} \begin{bmatrix} E_{ip}e^{j\delta_{ip}}\\ E_{is}e^{j\delta_{is}} \end{bmatrix} = \begin{bmatrix} r_p E_{ip}e^{j\delta_{ip}}\\ s_s E_{is}e^{j\delta_{is}} \end{bmatrix} $$ the $\tan\psi$ equation simplifies to $$ \tan\psi = \frac{r_p}{r_s} $$ These overall change in field is often written as a single complex number $\rho$ $$ \rho = \tan\psi e^{j\Delta} $$ Ellipsometry is the science of measuring and interpreting $\Delta$ and $\psi$ for a surface. A simple use of ellipsometry is to determine the complex index of refraction $m$ for a thick uniform flat substrate. More elaborate ellisometric techniques allow one to determine one or more coatings on the substrate. ### Refractive index When light reflects off a surface, the amplitude and phase of the electric changes. These changes depend on the wavelength $\lambda$ of the light, the angle of incidence $\theta$, the complex refractive index of the material $m= n(1-j \kappa)$, and the polarization state of the incident beam: * The plane of incidence contains the incident electric field propagation vector and the normal to the surface. * The angle of incidence is the angle beween these two directions * The real part of the refractive index $n$ determines the speed of light in the material * The imaginary part of the refractive index $\kappa$ determines the light absorption of the material * Linearly polarized light parallel to the plane of incidence is **p-polarized**. * Linearly polarized light perpendicular to the plane of incident is **s-polarized**. * The phase shift and amplitude change is different for p and s- polarized light. * For dielectrics like glass, the amount of reflected light is determined by a single number, the index of refraction $n$. * Semi-conductors and metals have a complex index of refraction $m = n(1 - j \kappa)$. ### Fresnel Reflection The Fresnel formulas for light incident from a vacuum onto a flat surface at an angle $\theta$ from the normal with refractive index $m$ varies with the orientation of the electric field. The plane of incidence is defined as containing both the incident direction and the normal to the surface. If the incident field is parallel to the plane of incidence then $$ r_p=r_\parallel ={m^2\cos\theta-\sqrt{m^2-\sin^2\theta}\over m^2\cos\theta+\sqrt{m^2-\sin^2\theta}} $$ If the incident field is perpendicular to the plane of incidence then $$ r_s=r_\perp ={\cos\theta-\sqrt{m^2-\sin^2\theta}\over \cos\theta+\sqrt{m^2-\sin^2\theta}} $$ ### Fundamental Equation of Ellipsometry Ellipsometers are used to determine the parameters $\psi$ and $\Delta$ which can be used to calculate $\rho$ $$ \rho = {r_p(\theta)\over r_s(\theta)} = \tan\psi \cdot e^{j \Delta} $$ The graph below shows how $\psi$ and $\Delta$ vary with the incidence angle ### Determining the complex index of refraction A convenient formula for an isotropic, uniform sample is given in [Measurement of the Thickness and Refractive Index of Very Thin Films and the Optical Properties of Surfaces by Ellipsometry](https://archive.org/details/jresv67An4p363) so that when $\rho$ and $\theta$ are known, the complex index of refraction can be calculated. $$ m = \tan\theta \sqrt{1-{4\rho\sin^2\theta\over (1+\rho)^2}} $$ ``` def plot_rho(m): angles = np.linspace(0.001,90,91) rho = ellipse.rho_from_m(m,angles, deg=True) plt.plot(angles, np.abs(rho), color='red') plt.plot(angles, np.angle(rho),color='blue') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel(r'$\tan\psi$ or $\Delta$') plt.title('Refractive Index %.3f%.3fj' % (m.real,m.imag)) plt.xlim(0,90) plt.text(30, 3, r'$\Delta$', color='blue') plt.text(30, 0.8, 'tan($\psi$)', color='red') m = 1.5 plot_rho(m) plt.show() m = 1.5-1.0j plot_rho(m) plt.show() m = 3-3j plot_rho(m) plt.show() ``` Replicate figures 2.28 and 2.29 from Woollam's Short Course. ``` def plot_rho2(m1,m2): angles = np.linspace(65,85,181) rho1 = ellipse.rho_from_m(m1,angles,deg=True) rho2 = ellipse.rho_from_m(m2,angles,deg=True) psi1 = np.degrees(np.arctan(np.abs(rho1))) psi2 = np.degrees(np.arctan(np.abs(rho2))) Delta1 = np.degrees(np.angle(rho1)) Delta2 = np.degrees(np.angle(rho2)) plt.subplots(2,1,figsize=(8,8)) plt.subplot(2,1,1) plt.plot(angles, psi1, color='red') plt.plot(angles, psi2,color='blue') plt.ylabel(r'$\psi$ (degrees)') plt.title('%.3f%+.3fj and %.3f%+.3fj' % (m1.real,m1.imag,m2.real,m2.imag)) plt.grid(True) plt.subplot(2,1,2) plt.plot(angles, Delta1, color='red') plt.plot(angles, Delta2,color='blue') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel(r'$\Delta$ (degrees)') plt.grid(True) m1 = 4.516 - 0.249j # amorphous silicon m2 = 3.875 - 0.023j # crystalline silicon plot_rho2(m1,m2) plt.show() ``` ## Extracting Refractive Index from $\rho$ First we will calculate $\rho$ for a known complex index of refraction. ``` m = 1.5-1.3j theta_i = np.linspace(1,89,15) rho = ellipse.rho_from_m(m, theta_i, deg=True) plt.plot(theta_i, np.abs(rho), 'o', color='red') plt.plot(theta_i, np.angle(rho), 'o', color='blue') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel(r'$\tan\psi$ or $\Delta$') plt.title('Refractive Index %.3f%.3fj' % (m.real,m.imag)) plt.xlim(0,90) plt.text(30, 3, r'$\Delta$', color='blue') plt.text(30, 1.0, 'tan($\psi$)', color='red') plt.show() ``` Then, we will see if we can recover $m$ using $\rho$ and $\theta_i$. We will test with incidence angles from 1° to 89°. We avoid 0° and 90° because these angles are either impossible or do not contain sufficient information to invert. ``` m = 1.5-1.3j theta_i = np.linspace(1,89,15) rho = ellipse.rho_from_m(m, theta_i, deg=True) m2 = ellipse.m_from_rho(rho, theta_i, deg=True) plt.plot(theta_i, m2.real, 'o', color = 'blue') plt.plot(theta_i, m2.imag, 'o', color='red') plt.text(theta_i[0], m2[0].real-0.05, r'n', color='blue', va="top") plt.text(theta_i[0], m2[0].imag+0.1, r'$n \kappa$', color='red') plt.axhline(m.real,color='blue') plt.axhline(m.imag,color='red') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel('Real or Imaginary part of Refractive Index') plt.title('Refractive Index = %.4f %.4fj'%(m.real,m.imag)) plt.show() ``` Quantitatively show that things work at an incidence angle of 70° ``` theta_i = 70 m = 1.5 - 2.0j rho = ellipse.rho_from_m(m, theta_i, deg=True) print('Incidence angle = %.1f°'%(theta_i)) print('rho = %.3f%+.3fj'%(rho.real,rho.imag)) print('Refractive index = %.3f%+.3fj'%(m.real,m.imag)) print() m2 = ellipse.m_from_rho(rho, theta_i, deg=True) print('Extracted index = %.3f%+.3fj using rho'%(m2.real,m2.imag)) ```
github_jupyter
import sympy import numpy as np import matplotlib.pyplot as plt import pypolar.fresnel as fresnel import pypolar.ellipsometry as ellipse sympy.init_printing(use_unicode=True) def plot_rho(m): angles = np.linspace(0.001,90,91) rho = ellipse.rho_from_m(m,angles, deg=True) plt.plot(angles, np.abs(rho), color='red') plt.plot(angles, np.angle(rho),color='blue') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel(r'$\tan\psi$ or $\Delta$') plt.title('Refractive Index %.3f%.3fj' % (m.real,m.imag)) plt.xlim(0,90) plt.text(30, 3, r'$\Delta$', color='blue') plt.text(30, 0.8, 'tan($\psi$)', color='red') m = 1.5 plot_rho(m) plt.show() m = 1.5-1.0j plot_rho(m) plt.show() m = 3-3j plot_rho(m) plt.show() def plot_rho2(m1,m2): angles = np.linspace(65,85,181) rho1 = ellipse.rho_from_m(m1,angles,deg=True) rho2 = ellipse.rho_from_m(m2,angles,deg=True) psi1 = np.degrees(np.arctan(np.abs(rho1))) psi2 = np.degrees(np.arctan(np.abs(rho2))) Delta1 = np.degrees(np.angle(rho1)) Delta2 = np.degrees(np.angle(rho2)) plt.subplots(2,1,figsize=(8,8)) plt.subplot(2,1,1) plt.plot(angles, psi1, color='red') plt.plot(angles, psi2,color='blue') plt.ylabel(r'$\psi$ (degrees)') plt.title('%.3f%+.3fj and %.3f%+.3fj' % (m1.real,m1.imag,m2.real,m2.imag)) plt.grid(True) plt.subplot(2,1,2) plt.plot(angles, Delta1, color='red') plt.plot(angles, Delta2,color='blue') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel(r'$\Delta$ (degrees)') plt.grid(True) m1 = 4.516 - 0.249j # amorphous silicon m2 = 3.875 - 0.023j # crystalline silicon plot_rho2(m1,m2) plt.show() m = 1.5-1.3j theta_i = np.linspace(1,89,15) rho = ellipse.rho_from_m(m, theta_i, deg=True) plt.plot(theta_i, np.abs(rho), 'o', color='red') plt.plot(theta_i, np.angle(rho), 'o', color='blue') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel(r'$\tan\psi$ or $\Delta$') plt.title('Refractive Index %.3f%.3fj' % (m.real,m.imag)) plt.xlim(0,90) plt.text(30, 3, r'$\Delta$', color='blue') plt.text(30, 1.0, 'tan($\psi$)', color='red') plt.show() m = 1.5-1.3j theta_i = np.linspace(1,89,15) rho = ellipse.rho_from_m(m, theta_i, deg=True) m2 = ellipse.m_from_rho(rho, theta_i, deg=True) plt.plot(theta_i, m2.real, 'o', color = 'blue') plt.plot(theta_i, m2.imag, 'o', color='red') plt.text(theta_i[0], m2[0].real-0.05, r'n', color='blue', va="top") plt.text(theta_i[0], m2[0].imag+0.1, r'$n \kappa$', color='red') plt.axhline(m.real,color='blue') plt.axhline(m.imag,color='red') plt.xlabel(r"Incidence angle $\theta_i$ (degrees)") plt.ylabel('Real or Imaginary part of Refractive Index') plt.title('Refractive Index = %.4f %.4fj'%(m.real,m.imag)) plt.show() theta_i = 70 m = 1.5 - 2.0j rho = ellipse.rho_from_m(m, theta_i, deg=True) print('Incidence angle = %.1f°'%(theta_i)) print('rho = %.3f%+.3fj'%(rho.real,rho.imag)) print('Refractive index = %.3f%+.3fj'%(m.real,m.imag)) print() m2 = ellipse.m_from_rho(rho, theta_i, deg=True) print('Extracted index = %.3f%+.3fj using rho'%(m2.real,m2.imag))
0.479016
0.993189