weikaih's picture
Upload README.md with huggingface_hub
fb567f9 verified
metadata
license: mit
task_categories:
  - image-classification
  - object-detection
  - visual-question-answering
  - zero-shot-image-classification
language:
  - en
tags:
  - ego4d
  - egocentric-vision
  - computer-vision
  - random-sampling
  - video-frames
  - first-person-view
  - activity-recognition
size_categories:
  - 10K<n<100K
pretty_name: Ego4D Random Views Dataset
dataset_info:
  features:
    - name: image
      dtype: image
    - name: frame_id
      dtype: string
    - name: video_uid
      dtype: string
    - name: video_filename
      dtype: string
    - name: video_path
      dtype: string
    - name: frame_idx
      dtype: int32
    - name: total_frames
      dtype: int32
    - name: timestamp_sec
      dtype: float32
    - name: fps
      dtype: float32
    - name: worker_id
      dtype: int32
    - name: generated_at
      dtype: string
    - name: image_width
      dtype: int32
    - name: image_height
      dtype: int32
    - name: original_shape_height
      dtype: int32
    - name: original_shape_width
      dtype: int32
    - name: original_shape_channels
      dtype: int32
  splits:
    - name: train
      num_bytes: 21000000000
      num_examples: 20000
  download_size: 21000000000
  dataset_size: 21000000000
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
viewer: true

Ego4D Random Views Dataset

This dataset contains 20,000 random view frames sampled from the Ego4D dataset using a high-performance multi-process generation system.

Dataset Preview

Dataset Overview

  • Total Images: 20,000 high-quality frames
  • Image Format: PNG (1024×1024 resolution)
  • Source: Ego4D v2 dataset (52,665+ video files)
  • Sampling Method: Multi-process random sampling with maximum diversity
  • Generation Time: 797.57 seconds (~13 minutes)
  • Generation Speed: 25.08 frames/second
  • Success Rate: 100.0%

Key Features

🎬 Maximum Diversity: Sampled from 50,000+ different Ego4D videos
🚀 High Performance: Generated using 128 parallel workers
📊 Complete Metadata: Full metadata for each frame including video source, timestamp, etc.
🎯 High Quality: 1024×1024 resolution PNG images
💾 Efficient Storage: Stored in parquet format for fast loading
🔍 Rich Context: Each frame includes video UID, timestamp, and source information

Dataset Schema

Each sample contains:

Field Type Description
image Image The frame image (1024×1024 PNG)
frame_id string Unique frame identifier
video_uid string Original Ego4D video UID
video_filename string Source video filename
video_path string Full path to source video
frame_idx int32 Frame index in original video
total_frames int32 Total frames in source video
timestamp_sec float32 Timestamp in video (seconds)
fps float32 Video frame rate
worker_id int32 Generation worker ID
generated_at string Generation timestamp
image_width int32 Image width (1024)
image_height int32 Image height (1024)
original_shape_* int32 Original video frame dimensions

Usage

Quick Start

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("weikaih/ego4d-random-views-20k")

# Get a sample
sample = dataset['train'][0]
image = sample['image']  # PIL Image
print(f"Video: {sample['video_filename']}")
print(f"Timestamp: {sample['timestamp_sec']:.2f}s")

Exploring the Data

import matplotlib.pyplot as plt

# Display a sample image
sample = dataset['train'][42]
plt.figure(figsize=(10, 6))

plt.subplot(1, 2, 1)
plt.imshow(sample['image'])
plt.title(f"Frame from {sample['video_uid'][:8]}...")
plt.axis('off')

plt.subplot(1, 2, 2)
plt.text(0.1, 0.8, f"Video: {sample['video_filename'][:30]}...")
plt.text(0.1, 0.7, f"Timestamp: {sample['timestamp_sec']:.2f}s")
plt.text(0.1, 0.6, f"Frame: {sample['frame_idx']}/{sample['total_frames']}")
plt.text(0.1, 0.5, f"FPS: {sample['fps']}")
plt.axis('off')
plt.show()

PyTorch Integration

import torch
from torch.utils.data import DataLoader
from torchvision import transforms

# Define transforms
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                       std=[0.229, 0.224, 0.225])
])

# Custom dataset class
class Ego4DDataset(torch.utils.data.Dataset):
    def __init__(self, hf_dataset, transform=None):
        self.dataset = hf_dataset
        self.transform = transform
    
    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        sample = self.dataset[idx]
        image = sample['image']
        
        if self.transform:
            image = self.transform(image)
        
        return image, sample

# Create dataset and dataloader
pytorch_dataset = Ego4DDataset(dataset['train'], transform=transform)
dataloader = DataLoader(pytorch_dataset, batch_size=32, shuffle=True)

# Training loop example
for batch_idx, (images, metadata) in enumerate(dataloader):
    # Your training code here
    print(f"Batch {batch_idx}: {images.shape}")
    if batch_idx >= 2:  # Just show first few batches
        break

Data Analysis

import pandas as pd
from collections import Counter

# Convert to pandas for analysis
data = []
for sample in dataset['train']:
    data.append({
        'video_uid': sample['video_uid'],
        'timestamp_sec': sample['timestamp_sec'],
        'fps': sample['fps'],
        'total_frames': sample['total_frames'],
        'worker_id': sample['worker_id']
    })

df = pd.DataFrame(data)

# Basic statistics
print(f"Unique videos: {df['video_uid'].nunique()}")
print(f"Average FPS: {df['fps'].mean():.2f}")
print(f"Timestamp range: {df['timestamp_sec'].min():.2f}s - {df['timestamp_sec'].max():.2f}s")

# Video distribution
video_counts = Counter(df['video_uid'])
print(f"Samples per video - Min: {min(video_counts.values())}, Max: {max(video_counts.values())}")

Applications

This dataset is suitable for:

  • Egocentric vision research: First-person view understanding
  • Activity recognition: Daily activity classification
  • Object detection: Objects in natural settings
  • Scene understanding: Indoor/outdoor scene analysis
  • Transfer learning: Pre-training for egocentric tasks
  • Multi-modal learning: Combining with video metadata
  • Temporal analysis: Using timestamp information

Generation Statistics

  • Target Frames: 20,000
  • Generated Frames: 20,000
  • Success Rate: 100.0%
  • Generation Time: 13.3 minutes
  • Workers Used: 128
  • Processing Speed: 25.08 frames/second
  • Source Videos: 52,665+ Ego4D video files
  • Diversity: Maximum diversity through distributed sampling

Technical Details

Sampling Strategy

  • Random Selection: Both video and frame positions randomly sampled
  • Worker Distribution: Videos distributed across 128 workers for diversity
  • Quality Control: Automatic validation and error recovery
  • Metadata Preservation: Complete provenance tracking

Data Quality

  • Image Quality: All frames validated during generation
  • Resolution: Consistent 1024×1024 PNG format
  • Color Space: RGB color space
  • Compression: PNG lossless compression
  • Metadata Completeness: 100% metadata coverage

Citation

If you use this dataset, please cite the original Ego4D paper:

@inproceedings{grauman2022ego4d,
  title={Ego4d: Around the world in 3,000 hours of egocentric video},
  author={Grauman, Kristen and Westbury, Andrew and Byrnes, Eugene and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={18211--18230},
  year={2022}
}

License

This dataset follows the same license terms as the original Ego4D dataset. Please refer to the Ego4D license for usage terms.

Dataset Creation

This dataset was generated using a high-performance multi-process sampling system designed for maximum diversity and efficiency. The generation process:

  1. Video Indexing: Scanned 52,665+ Ego4D video files
  2. Distributed Sampling: Used 128 parallel workers for maximum diversity
  3. Quality Assurance: Validated each frame during generation
  4. Metadata Collection: Captured complete provenance information
  5. Efficient Upload: Used HuggingFace datasets library with parquet format

For more details on the generation process, see the technical documentation.