content
large_stringlengths
0
6.46M
path
large_stringlengths
3
331
license_type
large_stringclasses
2 values
repo_name
large_stringlengths
5
125
language
large_stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.46M
extension
large_stringclasses
75 values
text
stringlengths
0
6.46M
####################### # Rare Interactive Tool ####################### ############# # Philippines ############# ############################# # Managed access and reserves ############################# ###################################################### ###################################################### ### 0. Preparing the environment and packages # Clean environment rm(list = ls()) # Preparing packages if (!require("pacman")) install.packages("pacman") # Load packages pacman::p_load(berryFunctions,dplyr,raster,rgdal,sf,sp, stringr) ###################################################### ###################################################### ### 1. Setting up directories and loading the required data for analysis ## Make sure to copy a country's files are in the appropriate directory (managed access, coral, habitat quality, etc.) ## NOTE: This should be completed before running this code ## It will be preference if to have all the countries's data in a single main directory ## or in separate subdirectories ## Single directory will have lots of files, while separate directories will lead to have ## to setting up many directories in the code ## 1a. Set the directories where the raw managed access and reserve data are currently stored managed_access_dir <- "country_projects\\phl\\data\\a_raw_data\\managed_access_areas" reserve_dir <- "country_projects\\phl\\data\\a_raw_data\\existing_reserve" ## 1b. setting output directories tool_dir <- "country_projects\\phl\\data\\d_tool_data" ## 1c. inspect the directories list.files(managed_access_dir) list.files(reserve_dir) ###################################################### ###################################################### ### 2. load the data ## 2a. load managed access and reserve data phl_ma <- st_read(dsn = managed_access_dir, layer = "phl_proposed_ma") phl_reserves <- st_read(dsn = reserve_dir, layer = "phl_reserves_established") ###################################################### ###################################################### ### 3. Inspect the data (classes, crs, etc.) ## 3a. Examine the top of the data head(phl_ma) head(phl_reserves) ## 3b. Inspect crs and set crs values if needed for later analyses crs(phl_ma) crs(phl_reserves) ###################################################### ###################################################### ### 4. Cleaning and preparing data ## 4a. managed access areas ma <- phl_ma %>% dplyr::mutate(iso3 = "PHL", country = "Philippines") %>% dplyr::select(iso3, country, MUNNAME, Area_ha, PROVNAME) %>% dplyr::mutate(MUNNAME = str_to_title(MUNNAME), PROVNAME = str_to_title(PROVNAME)) %>% dplyr::mutate(MUNNAME = recode(MUNNAME, "City Of Escalante" = "City of Escalante"), PROVNAME = recode(PROVNAME, "Surigao Del Norte" = "Surigao del Norte")) %>% dplyr::rename(region = PROVNAME, maa = MUNNAME, maa_area = Area_ha) ## 4b. reserves reserve <- phl_reserves %>% dplyr::mutate(iso3 = "PHL") %>% dplyr::select(MPA_name, Area_ha, iso3) %>% dplyr::rename(reserve_name = MPA_name, area_ha = Area_ha) ###################################################### ###################################################### ### 8. Saving as a GeoPackage st_write(obj = ma, dsn = paste0(tool_dir, "/", "managed_access_areas.shp"), append = F) st_write(obj = reserve, dsn = paste0(tool_dir, "/", "existing_reserves.shp"), append = F)
/rare_interactive_tool/country_projects/phl/code/rare_tool_phl_8_managed_access_reserves.R
no_license
bpfree/work_sample
R
false
false
3,419
r
####################### # Rare Interactive Tool ####################### ############# # Philippines ############# ############################# # Managed access and reserves ############################# ###################################################### ###################################################### ### 0. Preparing the environment and packages # Clean environment rm(list = ls()) # Preparing packages if (!require("pacman")) install.packages("pacman") # Load packages pacman::p_load(berryFunctions,dplyr,raster,rgdal,sf,sp, stringr) ###################################################### ###################################################### ### 1. Setting up directories and loading the required data for analysis ## Make sure to copy a country's files are in the appropriate directory (managed access, coral, habitat quality, etc.) ## NOTE: This should be completed before running this code ## It will be preference if to have all the countries's data in a single main directory ## or in separate subdirectories ## Single directory will have lots of files, while separate directories will lead to have ## to setting up many directories in the code ## 1a. Set the directories where the raw managed access and reserve data are currently stored managed_access_dir <- "country_projects\\phl\\data\\a_raw_data\\managed_access_areas" reserve_dir <- "country_projects\\phl\\data\\a_raw_data\\existing_reserve" ## 1b. setting output directories tool_dir <- "country_projects\\phl\\data\\d_tool_data" ## 1c. inspect the directories list.files(managed_access_dir) list.files(reserve_dir) ###################################################### ###################################################### ### 2. load the data ## 2a. load managed access and reserve data phl_ma <- st_read(dsn = managed_access_dir, layer = "phl_proposed_ma") phl_reserves <- st_read(dsn = reserve_dir, layer = "phl_reserves_established") ###################################################### ###################################################### ### 3. Inspect the data (classes, crs, etc.) ## 3a. Examine the top of the data head(phl_ma) head(phl_reserves) ## 3b. Inspect crs and set crs values if needed for later analyses crs(phl_ma) crs(phl_reserves) ###################################################### ###################################################### ### 4. Cleaning and preparing data ## 4a. managed access areas ma <- phl_ma %>% dplyr::mutate(iso3 = "PHL", country = "Philippines") %>% dplyr::select(iso3, country, MUNNAME, Area_ha, PROVNAME) %>% dplyr::mutate(MUNNAME = str_to_title(MUNNAME), PROVNAME = str_to_title(PROVNAME)) %>% dplyr::mutate(MUNNAME = recode(MUNNAME, "City Of Escalante" = "City of Escalante"), PROVNAME = recode(PROVNAME, "Surigao Del Norte" = "Surigao del Norte")) %>% dplyr::rename(region = PROVNAME, maa = MUNNAME, maa_area = Area_ha) ## 4b. reserves reserve <- phl_reserves %>% dplyr::mutate(iso3 = "PHL") %>% dplyr::select(MPA_name, Area_ha, iso3) %>% dplyr::rename(reserve_name = MPA_name, area_ha = Area_ha) ###################################################### ###################################################### ### 8. Saving as a GeoPackage st_write(obj = ma, dsn = paste0(tool_dir, "/", "managed_access_areas.shp"), append = F) st_write(obj = reserve, dsn = paste0(tool_dir, "/", "existing_reserves.shp"), append = F)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/folded.R \name{left_join.folded} \alias{left_join.folded} \title{Left-join Folded} \usage{ \method{left_join}{folded}(.data, ..., .dots) } \arguments{ \item{.data}{passed to next method} \item{...}{passed to next method} \item{.dots}{passed to next method} } \value{ folded } \description{ Left-joins folded. } \keyword{internal}
/man/left_join.folded.Rd
no_license
cran/fold
R
false
true
432
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/folded.R \name{left_join.folded} \alias{left_join.folded} \title{Left-join Folded} \usage{ \method{left_join}{folded}(.data, ..., .dots) } \arguments{ \item{.data}{passed to next method} \item{...}{passed to next method} \item{.dots}{passed to next method} } \value{ folded } \description{ Left-joins folded. } \keyword{internal}
# Create plot 2 hpcAll <- read.csv('household_power_consumption.txt',sep=';',stringsAsFactors=FALSE) hpc <- hpcAll[hpcAll$Date == '1/2/2007' | hpcAll$Date == '2/2/2007',] DTs <- strptime(paste(hpc$Date, hpc$Time, sep=" "), "%d/%m/%Y %H:%M:%S") hpc <- cbind(DTs,hpc) png('plot2.png', width=480, height=480, bg="transparent") with(hpc, plot(DTs, Global_active_power, type='l', main='', xlab='',ylab='Global Active Power (kilowatts)')) dev.off()
/plot2.R
no_license
petehinchliffe/ExData_Plotting1
R
false
false
444
r
# Create plot 2 hpcAll <- read.csv('household_power_consumption.txt',sep=';',stringsAsFactors=FALSE) hpc <- hpcAll[hpcAll$Date == '1/2/2007' | hpcAll$Date == '2/2/2007',] DTs <- strptime(paste(hpc$Date, hpc$Time, sep=" "), "%d/%m/%Y %H:%M:%S") hpc <- cbind(DTs,hpc) png('plot2.png', width=480, height=480, bg="transparent") with(hpc, plot(DTs, Global_active_power, type='l', main='', xlab='',ylab='Global Active Power (kilowatts)')) dev.off()
library(data.table) ## 1. Merges the training and the test sets to create one data set ## The data is read and converted into a single data frame features <- read.csv('./UCI HAR Dataset/features.txt', header = FALSE, sep = ' ') features <- as.character(features[,2]) train_x <- read.table('./UCI HAR Dataset/train/X_train.txt') train_y <- read.csv('./UCI HAR Dataset/train/y_train.txt', header = FALSE, sep = ' ') train_subject <- read.csv('./UCI HAR Dataset/train/subject_train.txt',header = FALSE, sep = ' ') data_train <- data.frame(train_subject, train_y, train_x) names(data_train) <- c(c('subject', 'activity'), features) test_x <- read.table('./UCI HAR Dataset/test/X_test.txt') test_y <- read.csv('./UCI HAR Dataset/test/y_test.txt', header = FALSE, sep = ' ') test_subject <- read.csv('./UCI HAR Dataset/test/subject_test.txt', header = FALSE, sep = ' ') data_test <- data.frame(test_subject, test_y, test_x) names(data_test) <- c(c('subject', 'activity'), features) data_all <- rbind(data_train, data_test) # 2. Extracts only the measurements on the mean and standard deviation for each measurement mean_std <- grep('mean|std', features) data_sub <- data_all[,c(1,2,mean_std + 2)] # 3. Uses descriptive activity names to name the activities in the data set act_labels <- read.table('./UCI HAR Dataset/activity_labels.txt', header = FALSE) act_labels <- as.character(act_labels[,2]) data_sub$activity <- act_labels[data_sub$activity] data_sub # 4. Appropriately labels the data set with descriptive variable names name_new <- names(data_sub) name_new <- gsub("[(][)]", "", name_new) name_new <- gsub("^t", "TimeDomain_", name_new) name_new <- gsub("^f", "FrequencyDomain_", name_new) name_new <- gsub("Acc", "Accelerometer", name_new) name_new <- gsub("Gyro", "Gyroscope", name_new) name_new <- gsub("Mag", "Magnitude", name_new) name_new <- gsub("-mean-", "_Mean_", name_new) name_new <- gsub("-std-", "_StandardDeviation_", name_new) name_new <- gsub("-", "_", name_new) names(data_sub) <- name_new data_sub # 5. From the data set in step 4, creates a second, independent tidy data set with the average of each variable for each activity and each subject data <- aggregate(data_sub[,3:81], by = list(activity = data_sub$activity, subject = data_sub$subject),FUN = mean) write.table(x = data, file = "data.txt", row.names = FALSE)
/run_analysis.R
no_license
nvia/cleandata
R
false
false
2,355
r
library(data.table) ## 1. Merges the training and the test sets to create one data set ## The data is read and converted into a single data frame features <- read.csv('./UCI HAR Dataset/features.txt', header = FALSE, sep = ' ') features <- as.character(features[,2]) train_x <- read.table('./UCI HAR Dataset/train/X_train.txt') train_y <- read.csv('./UCI HAR Dataset/train/y_train.txt', header = FALSE, sep = ' ') train_subject <- read.csv('./UCI HAR Dataset/train/subject_train.txt',header = FALSE, sep = ' ') data_train <- data.frame(train_subject, train_y, train_x) names(data_train) <- c(c('subject', 'activity'), features) test_x <- read.table('./UCI HAR Dataset/test/X_test.txt') test_y <- read.csv('./UCI HAR Dataset/test/y_test.txt', header = FALSE, sep = ' ') test_subject <- read.csv('./UCI HAR Dataset/test/subject_test.txt', header = FALSE, sep = ' ') data_test <- data.frame(test_subject, test_y, test_x) names(data_test) <- c(c('subject', 'activity'), features) data_all <- rbind(data_train, data_test) # 2. Extracts only the measurements on the mean and standard deviation for each measurement mean_std <- grep('mean|std', features) data_sub <- data_all[,c(1,2,mean_std + 2)] # 3. Uses descriptive activity names to name the activities in the data set act_labels <- read.table('./UCI HAR Dataset/activity_labels.txt', header = FALSE) act_labels <- as.character(act_labels[,2]) data_sub$activity <- act_labels[data_sub$activity] data_sub # 4. Appropriately labels the data set with descriptive variable names name_new <- names(data_sub) name_new <- gsub("[(][)]", "", name_new) name_new <- gsub("^t", "TimeDomain_", name_new) name_new <- gsub("^f", "FrequencyDomain_", name_new) name_new <- gsub("Acc", "Accelerometer", name_new) name_new <- gsub("Gyro", "Gyroscope", name_new) name_new <- gsub("Mag", "Magnitude", name_new) name_new <- gsub("-mean-", "_Mean_", name_new) name_new <- gsub("-std-", "_StandardDeviation_", name_new) name_new <- gsub("-", "_", name_new) names(data_sub) <- name_new data_sub # 5. From the data set in step 4, creates a second, independent tidy data set with the average of each variable for each activity and each subject data <- aggregate(data_sub[,3:81], by = list(activity = data_sub$activity, subject = data_sub$subject),FUN = mean) write.table(x = data, file = "data.txt", row.names = FALSE)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/descend.R \name{getPval} \alias{getPval} \title{Grab the likelihood ratio test p-values if the tests are performed from a list of descend objects} \usage{ getPval(descend.list) } \arguments{ \item{descend.list}{a list of descend objects computed from {\code{\link{runDescend}}}} } \value{ A matrix of one column. Each row is for a distribution measurement or a coefficient if covariates are presented. } \description{ Grab the likelihood ratio test p-values if the tests are performed from a list of descend objects }
/man/getPval.Rd
no_license
jingshuw/descend
R
false
true
596
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/descend.R \name{getPval} \alias{getPval} \title{Grab the likelihood ratio test p-values if the tests are performed from a list of descend objects} \usage{ getPval(descend.list) } \arguments{ \item{descend.list}{a list of descend objects computed from {\code{\link{runDescend}}}} } \value{ A matrix of one column. Each row is for a distribution measurement or a coefficient if covariates are presented. } \description{ Grab the likelihood ratio test p-values if the tests are performed from a list of descend objects }
################################ ### Code for ecological statistics for ### "Divergent extremes but convergent recovery of bacterial and archaeal soil ### communities to an ongoing subterranean coal mine fire" ### by SH Lee, JW Sorensen, KL Grady, TC Tobin and A Shade ### Prepared 12 November 2016 ### Author: Ashley Shade, Michigan State University; shade.ashley <at> gmail.com ################################ # # Before you start # Make sure you are using the latest version of R (and Rstudio) # The following packages (and their dependencies) are needed to run the whole analysis # calibrate 1.7.2 # gplots 3.0.1 # ggplot2 2.1.0 # indicspecies 1.7.5 # limma 3.26.9 # mass 7.3-45 (calibrate dependency) # outliers 0.14 # reshape2 1.4.1 # vegan 2.4-0 # reldist 1.6-6 # bipartite 2.06.1 # GUniFrac 1.0 # ape 3.5 # phangorn 2.0-2 # ################################ ### Plotting soil contextual data ################################ #load R libraries for this section library(ggplot2) library(reshape2) library(outliers) #read in mapping file with soil data map=read.table("InputFiles/Centralia_Collapsed_Map_forR.txt", header=TRUE, sep="\t") #plot chemistry v. temperature (Supporting Figure 3) #melt data map.long=melt(map, id.vars=c("SampleID", "SoilTemperature_to10cm", "Classification"), measure.vars=c("NO3N_ppm","NH4N_ppm","pH","SulfateSulfur_ppm","K_ppm","Ca_ppm","Mg_ppm","OrganicMatter_500","Fe_ppm", "As_ppm", "P_ppm", "SoilMoisture_Per")) #make a gradient color palette, note bias GnYlOrRd=colorRampPalette(colors=c("green", "yellow", "orange","red"), bias=2) sfig3=ggplot(map.long, aes(y=as.numeric(SoilTemperature_to10cm), x=value))+ #add points layer geom_point(aes(y=as.numeric(SoilTemperature_to10cm), x=value, shape=Classification, color=as.numeric(SoilTemperature_to10cm)))+ #set facet with 4 columns, make x-axes appropriate for each variable facet_wrap(~variable, ncol=4, scales="free_x")+ #set gradient for temperature and add gradient colorbar scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temperature"))+ #omit the legend for the size of the points scale_size(guide=FALSE)+ #define the axis labels labs(y="Temperature (Celsius)", x=" ")+ #set a simple theme theme_bw(base_size=10) sfig3 #ggsave("Figures/SFig3.eps", width=178, units="mm") ##Subset contextual data inclusive of soil quantitative variables env=map[,c("SoilTemperature_to10cm", "NO3N_ppm", "pH", "K_ppm", "Mg_ppm", "OrganicMatter_500", "NH4N_ppm", "SulfateSulfur_ppm", "Ca_ppm", "Fe_ppm", "As_ppm", "P_ppm", "SoilMoisture_Per","Fire_history")] ##Test for outliers, loop will print all significant outliers and their sampleID - these were not removed from analysis for (i in 1:ncol(env)){ x=grubbs.test(env[,i], type=10) if(x$p.value < 0.05){ print(colnames(env)[i]) print(row.names(env)[env[,i]==max(env[,i])]) } } #samples 13 (for pH, Ca) and 10 (for NO3N, NH4N,Fe) are common outliers - both have high temps. Sample 3 is also outlier for Mg and OM; this is a recovered site. Generally this test indicates a lot of variability. #correlation test between temperature and other soil chemistry for(i in 1:ncol(env)){ ct=cor.test(env[,"SoilTemperature_to10cm"],env[,i]) if (ct$p.value < 0.05){ print(colnames(env)[i]) print(ct) } } #extract means from recovered and reference soils' pH mean(env[map[,"Classification"]=="Reference","pH"]) mean(env[map[,"Classification"]== "Recovered","pH"]) #plot cell counts and 16S rRNA qPCR data (Supporting Figure 2) map.long.counts=melt(map, id.vars=c("SampleID", "Classification"), measure.vars=c("rRNA_gene_copies_per_g_dry_soil","CellCounts_per_g_dry_soil")) labels=c(rRNA_gene_copies_per_g_dry_soil="rRNA gene copies",CellCounts_per_g_dry_soil="Cell counts") sfig4 <- ggplot(data=map.long.counts, aes(x=Classification, y=value))+ geom_boxplot() + geom_jitter(aes(shape=Classification))+ facet_grid(variable~., scales="free_y", labeller=labeller(variable = labels))+ scale_shape(guide=FALSE)+ #scale_color_manual(values=colors)+ scale_x_discrete(name="Fire classification")+ scale_y_continuous(name="value per g dry soil")+ theme_bw(base_size=10) sfig4 #ggsave("Figures/SFig4.eps", width=86, units="mm") #Pariwise t-tests for cell counts t.test(map[map[,"Classification"]=="Recovered","CellCounts_per_g_dry_soil"],map[map[,"Classification"]=="FireAffected","CellCounts_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="Recovered","CellCounts_per_g_dry_soil"],map[map[,"Classification"]=="Reference","CellCounts_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="FireAffected","CellCounts_per_g_dry_soil"],map[map[,"Classification"]=="Reference","CellCounts_per_g_dry_soil"]) #Pairwise t-tests for qPCR t.test(map[map[,"Classification"]=="Recovered","rRNA_gene_copies_per_g_dry_soil"],map[map[,"Classification"]=="FireAffected","rRNA_gene_copies_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="Recovered","rRNA_gene_copies_per_g_dry_soil"],map[map[,"Classification"]=="Reference","rRNA_gene_copies_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="Reference","rRNA_gene_copies_per_g_dry_soil"],map[map[,"Classification"]=="FireAffected","rRNA_gene_copies_per_g_dry_soil"]) ################################ ### Preparing OTU and distance tables for analysis ################################ #load R libraries for this section library(ggplot2) library(reshape2) library(vegan) #read in community OTU table, and transpose (rarefied collapsed MASTER table, output from QIIME) comm=read.table("InputFiles/MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1, check.names=FALSE, sep="\t") #remove consensus lineage from otu table rdp=comm[,"ConsensusLineage"] comm=comm[,-ncol(comm)] #How many total QCed sequences? sum(colSums(comm)) #sort community by colnames (to be in the consistent, consecutive order for all analyses) comm=comm[,order(colnames(comm))] #who are the singleton OTUs (observed 1 time in an abundance of 1 sequence)? singletonOTUs=row.names(comm)[rowSums(comm)==1] length(singletonOTUs) #total 1374 singleton OTUs g=grep("_dn", singletonOTUs) length(g) #1201 de novo OTUs are singletons #who are the remaining de novo OTUs? g=grep("_dn_",row.names(comm)) dn=rdp[g] rdp.nosigs=rdp[rowSums(comm)>1] #designate a full dataset comm.sigs=comm #remove OTUs with an abundance = 1, across the entire dataset (singleton OTUs) comm=comm[rowSums(comm)>1,] sum(colSums(comm)) #transpose matrix comm.t=t(comm) ### Read in resemblance matrices #read in weighted unifrac table (output from QIIME) uf=read.table("InputFiles/weighted_unifrac_MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1) #sort by rows, columns (so they are in the consecutive order) uf=uf[order(row.names(uf)),order(colnames(uf))] uf.d=as.dist(uf) #read in the unweighted unifrac table (output from QIIME) uwuf=read.table("InputFiles/unweighted_unifrac_MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1) #sort by rows, columns (so they are in the consecutive order) uwuf=uwuf[order(row.names(uwuf)),order(colnames(uwuf))] uwuf.d=as.dist(uwuf) #read in the normalized weighted unifrac table (output from QIIME) nwuf=read.table("InputFiles/weighted_normalized_unifrac_MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1) #sort by rows, columns (so all tables are in the consecutive order) nwuf=nwuf[order(row.names(nwuf)),order(colnames(nwuf))] nwuf.d=as.dist(nwuf) #assign fire classification fireclass=map[,"Classification"] ref.t=comm.t[map$Classification=="Reference",] rec.t=comm.t[map$Classification=="Recovered",] fire.t=comm.t[map$Classification=="FireAffected",] ################################ ### Calculate and plot within-sample (alpha) diversity ################################ #read in alpha diversity table (output from QIIME) div=read.table("InputFiles/MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000_alphadiv.txt", header=TRUE) #sort by sample ID (so that they are in consecutive order) div=div[order(row.names(div)),] #calculate pielou's evenness from OTU table s=specnumber(comm.t) h=diversity(comm.t,index="shannon") pielou=h/log(s) #combine alpha diversity data and fire classification (from map file) div=cbind(row.names(div),div,pielou, map$Classification) colnames(div)=c("SampleID", "PD", "Richness", "Pielou", "Classification") #plot (Figure 1) #reshape the data div.long=melt(div, id.vars=c("SampleID", "Classification")) #plot a facet #comment toggle for color v. bw colors=c("red", "yellow", "green") fig1 <- ggplot(data=div.long, aes(x=Classification, y=value))+ geom_boxplot() + geom_jitter(aes(shape=Classification))+ #geom_jitter(aes(color=Classification, cex=1.5))+ facet_grid(variable~., scales="free_y")+ #scale_shape(guide=FALSE)+ scale_size(guide=FALSE)+ scale_color_manual(values=colors)+ scale_x_discrete(name="Fire classification")+ scale_y_continuous(name="Diversity value")+ theme_bw(base_size=10) fig1 ggsave("Figures/Fig1.eps", width=86, units="mm") #ttest v=c("PD", "Richness", "Pielou") outdiv=NULL for(i in 1:length(v)){ #subset the data to test one phylum at a time active=div[div$Classification=="FireAffected",colnames(div)==v[i]] recov=div[div$Classification=="Recovered",colnames(div)==v[i]] ref=div[div$Classification=="Reference",colnames(div)==v[i]] #perform the test test1=t.test(active, recov, paired=FALSE, var.equal = FALSE) test2=t.test(active, ref, paired=FALSE, var.equal = FALSE) test3=t.test(ref, recov, paired=FALSE, var.equal = FALSE) test1.out=c(v[i],"ActivevRecov",test1$statistic, test1$parameter, test1$p.value) test2.out=c(v[i],"ActivevRef",test2$statistic, test2$parameter, test2$p.value) test3.out=c(v[i],"RefvRecov",test3$statistic, test3$parameter, test3$p.value) outdiv=rbind(outdiv, test1.out, test2.out, test3.out) } outdiv ################################ ### Analysis of technical replicates ################################ #Supporting Table 2 - assessing reproducibility among technical replicates techdiv=read.table("InputFiles/OTU_hdf5_filteredfailedalignments_rdp_rmCM_even53000_alphadiv.txt") #output from QIIME techdiv.out=NULL sampleIDs=c("C01", "C02", "C03", "C04", "C05", "C06", "C07", "C08", "C09", "C10", "C11", "C12", "C13", "C14", "C15", "C16", "C17", "C18") for(i in 1:length(sampleIDs)){ temp=techdiv[grep(sampleIDs[i], row.names(techdiv)),] temp2=c(mapply(mean,temp), mapply(sd,temp)) techdiv.out=rbind(techdiv.out,temp2) } row.names(techdiv.out)=sampleIDs colnames(techdiv.out)=c("PD_mean", "Richness_mean", "PD_sd", "Richness_sd") #write.table(techdiv.out, "Results/AlphaDiv_TechnicalReps.txt", quote=FALSE, sep="\t") #Supporting PCoA (SFig 2)- assessing reproducibility among technical replicates beta <- read.table("InputFiles/weighted_unifrac_OTU_hdf5_filteredfailedalignments_rdp_rmCM_even53000.txt", sep="\t", stringsAsFactors = FALSE, header = TRUE, row.names=1) map.f<- read.table("InputFiles/Centralia_Full_Map.txt", sep="\t", stringsAsFactors = FALSE, header = TRUE, row.names=1) beta <- beta[order(row.names(beta)),order(colnames(beta))] #Remove Mock beta <- beta[-55,-55] library(vegan) beta.pcoa<- cmdscale(beta, eig=TRUE) ax1.v.f=beta.pcoa$eig[1]/sum(beta.pcoa$eig) ax2.v.f=beta.pcoa$eig[2]/sum(beta.pcoa$eig) coordinates <- as.data.frame(beta.pcoa$points) Samples <- map$Sample coordinates$Sample<- map.f$Sample coordinates_avg_sd <- NULL for (i in 1:length(Samples)){ Site <- coordinates[coordinates$Sample==Samples[i],] AX1 <- c(mean(Site[,1]),sd(Site[,1])) AX2 <- c(mean(Site[,2]),sd(Site[,2])) coordinates_avg_sd<- rbind(coordinates_avg_sd,c(AX1,AX2)) } row.names(coordinates_avg_sd)<-Samples unique(map$Classification) Class=rep('black',nrow(map)) Class[map$Classification=="FireAffected"]='red' Class[map$Classification=="Reference"]='green' Class[map$Classification=="Recovered"]='yellow' library(calibrate) #SFig 2 dev.off() setEPS() postscript("Figures/SFig2.eps", width = 6, height=6, pointsize=8,paper="special") plot(coordinates_avg_sd[,1],coordinates_avg_sd[,3] ,cex=1.5,pch=21,bg=Class,main="Averaged Technical Replicates Weighted UniFrac PCoA",xlab= paste("PCoA1: ",100*round(ax1.v.f,3),"% var. explained",sep=""), ylab= paste("PCoA2: ",100* round(ax2.v.f,3),"% var. explained",sep="")) textxy(X=coordinates_avg_sd[,1], Y=coordinates_avg_sd[,3],labs=map$Sample, cex=1) arrows(coordinates_avg_sd[,1], coordinates_avg_sd[,3]- coordinates_avg_sd[,4], coordinates_avg_sd[,1], coordinates_avg_sd[,3]+ coordinates_avg_sd[,4], length=0.05, angle=90, code=3) arrows(coordinates_avg_sd[,1]- coordinates_avg_sd[,2], coordinates_avg_sd[,3], coordinates_avg_sd[,1] + coordinates_avg_sd[,2], coordinates_avg_sd[,3], length=0.05, angle=90, code=3) dev.off() ################################ ### Phylum-level responses to fire ################################ #load R libraries for this section library(ggplot2) #read in phylum level OTU table (QIIME output) comm.phylum=read.table("InputFiles/MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000_L2.txt", sep="\t", header=TRUE, row.names=1) #output from QIIME ##sort by sample ID (so that they are in consecutive order) comm.phylum=comm.phylum[,order(colnames(comm.phylum))] #combine phyla that contribute less than 0.01 each below01=comm.phylum[rowSums(comm.phylum)<0.01,] below01.cs=colSums(below01) #remove those below01 phyla from the table comm.phylum=comm.phylum[rowSums(comm.phylum)>0.01,] #add the summary from the <0.01 comm.phylum=rbind(comm.phylum,below01.cs) #rename the last row row.names(comm.phylum)[nrow(comm.phylum)]="Below_0.01" #for character string trucation in R : http://stackoverflow.com/questions/10883605/truncating-the-end-of-a-string-in-r-after-a-character-that-can-be-present-zero-o phylumnames=sub(".*p__", "", row.names(comm.phylum)) row.names(comm.phylum)=phylumnames #assign fire classifications to samples fireclass=map[,"Classification"] p.active=comm.phylum[,fireclass=="FireAffected"] p.recov=comm.phylum[,fireclass=="Recovered"] p.ref=comm.phylum[,fireclass=="Reference"] #Calculate a mean phylum rel. abundance across all of the samples that are within each activity group m.active=apply(p.active,1,mean) m.recov=apply(p.recov,1,mean) m.ref=apply(p.ref,1,mean) m.summary.p=cbind(m.active, m.recov,m.ref) colnames(m.summary.p)=c("FireAffected", "Recovered", "Reference") #sort in decreasing total abundance order m.summary.p=m.summary.p[order(rowSums(m.summary.p),decreasing=TRUE),] #plot (Figure 3) m.summary.p.long=melt(m.summary.p, id.vars=row.names(m.summary.p),measure.vars=c("FireAffected", "Recovered", "Reference")) colors=c("red", "yellow", "green") fig3=ggplot(m.summary.p.long, aes(x=Var1, y=value, fill=Var2))+ geom_dotplot(binaxis="y", dotsize = 3)+ facet_grid(Var2~.)+ scale_fill_manual(values=colors, guide=FALSE)+ labs(x="Phylum", y="Mean relative abundance", las=1)+ theme(axis.text.x = element_text(angle = 90, size = 10, face = "italic")) fig3 ggsave("Figures/Fig3.eps", width=178, units="mm") #Welch's t-test for all phyla u=row.names(comm.phylum) out=NULL for(i in 1:length(u)){ #subset the data to test one phylum at a time active=comm.phylum[row.names(comm.phylum)==u[i],fireclass=="FireAffected"] recov=comm.phylum[row.names(comm.phylum)==u[i],fireclass=="Recovered"] #perform the test test=t.test(active, recov, paired=FALSE, var.equal = FALSE) test.out=c(row.names(comm.phylum)[i],test$statistic, test$parameter, test$p.value) out=rbind(out,test.out) } colnames(out)=c("Phylum", "Tstatistic", "DF", "pvalue") #all results: Supporting Table 8 out #extract overrepresented in fire out[out[,"pvalue"]<0.05 & out[,"Tstatistic"]>0,] #extracted overrepresented in recovered out[out[,"pvalue"]<0.05 & out[,"Tstatistic"]<0,] #write.table(out, "Results/Phylum_ttest.txt",quote=FALSE, sep="\t") ################################ ### Comparative (beta) diversity ################################ #load R libraries for this section library(calibrate) library(ggplot2) library(vegan) # use weighted unifrac uf.pcoa=cmdscale(uf.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v=uf.pcoa$eig[1]/sum(uf.pcoa$eig) ax2.v=uf.pcoa$eig[2]/sum(uf.pcoa$eig) envEF=envfit(uf.pcoa, env) #Supporting Table 4 envEF unique(map$Classification) Class=rep('black',nrow(map)) Class[map$Classification=="FireAffected"]='red' Class[map$Classification=="Reference"]='green' Class[map$Classification=="Recovered"]='yellow' #export figure 2 #textxy is from the calibrate library dev.off() setEPS() postscript("Figures/Fig2.eps", width = 3.385, height=3.385, pointsize=8,paper="special") plot(uf.pcoa$points[,1],uf.pcoa$points[,2] ,cex=1.5,pch=21,bg=Class,main="Weighted UniFrac PCoA", xlab= paste("PCoA1: ",100*round(ax1.v,3),"% var. explained",sep=""), ylab= paste("PCoA2: ",100*round(ax2.v,3),"%var. explained",sep="")) textxy(X=uf.pcoa$points[,1], Y=uf.pcoa$points[,2],labs=map$SampleID, cex=0.8) legend('bottomleft',c('Fire Affected','Recovered','Reference'),pch=21,pt.bg=c("red", "yellow", "green"),lty=0) plot(envEF, p.max=0.10, col="black", cex=1) dev.off() #perform hypothesis testing on fire-affected v. recovered+reference sites #permanova Class2=sub("green", "yellow", Class) a=adonis(uf.d~Class2, distance=TRUE, permutations=1000) a #multivariate dispersion with Tukey HSD b=betadisper(uf.d, group=Class2) TukeyHSD(b, which = "group", ordered = FALSE,conf.level = 0.95) #mantel w/ spatial distances space=read.table("InputFiles/spatialdistancematrix.txt", header=TRUE, row.names=1) space.d=as.dist(space) mantel(uf.d,space.d) ################################ ### Do different resemblances agree in their overarching patterns? ################################ #Supporting Table 3A: #the variance explained by each distance (taxonomic/phylogenetic and weighted/unweighted) bc.d=vegdist(t(comm), method="bray") sor.d=vegdist(t(comm), method="bray",binary=TRUE) # PCoA using unweighted unifrac (QIIME output - unweighted phylogenetic) uwuf.pcoa=cmdscale(uwuf.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v.uwuf=uwuf.pcoa$eig[1]/sum(uwuf.pcoa$eig) ax2.v.uwuf=uwuf.pcoa$eig[2]/sum(uwuf.pcoa$eig) # PCoA using bray-curtis (vegan output - weighted taxonomic) bc.pcoa=cmdscale(bc.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v.bc=bc.pcoa$eig[1]/sum(bc.pcoa$eig) ax2.v.bc=bc.pcoa$eig[2]/sum(bc.pcoa$eig) #PCoA using sorensen (vegan output - unweighted taxonomic) sor.pcoa=cmdscale(sor.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v.sor=sor.pcoa$eig[1]/sum(sor.pcoa$eig) ax2.v.sor=sor.pcoa$eig[2]/sum(sor.pcoa$eig) #Mantel and PROTEST tests between all resemblances (Supporting Table 3B) resem=list(uf.d,uwuf.d,nwuf.d,bc.d,sor.d) #this loops a bit funny but all pairwise results are available names=c("weighted_UniFrac", "unweighted_UniFrac", "normalized_weighted_UniFrac", "BrayCurtis", "Sorenson") m.out=NULL for (i in 1:length(resem)){ dist1=resem[[i]] print(i) j=i+1 for(j in 2:length(resem)){ dist2=resem[[j]] print(j) #Mantel m=mantel(dist1,dist2) #Protest pr=protest(dist1,dist2) #results out m.v=c(names[i], names[j],m$statistic, m$signif, pr$t0, pr$ss, pr$signif) m.out=rbind(m.out,m.v) } } #Supporting Table 3B colnames(m.out)=c("Dist1", "Dist2", "Mantel_R", "Mantel_p", "PROTEST_R", "PROTEST_m12", "PROTEST_p") m.out #write.table(m.out, "Results/MantelDist.txt", quote=FALSE, sep="\t") ################################ ### Comparative diversity of fire-affected samples ################################ #load R libraries for this section library(vegan) #reduce uf to fire only uf.fire=uf[map$Classification=="FireAffected",map$Classification=="FireAffected"] uf.fire.d=as.dist(uf.fire) env.fire=env[map$Classification=="FireAffected",] labels=map[map$Classification=="FireAffected","SampleID"] #PCoA for fire sites only uf.fire.pcoa=cmdscale(uf.fire.d, eig=TRUE) #fit environmental variables envFIT.fire=envfit(uf.fire.pcoa, env=env.fire) #print results to screen (Supporting Table 5) envFIT.fire #df <- data.frame((envFIT.fire$vectors)$arrows, (envFIT.fire$vectors)$r, (envFIT.fire$vectors)$pvals) #write.table(df, "Results/ENV_Fire.txt", quote=FALSE, sep="\t") #calculate %var. explained by each axis ax1.v.f=uf.fire.pcoa$eig[1]/sum(uf.fire.pcoa$eig) ax2.v.f=uf.fire.pcoa$eig[2]/sum(uf.fire.pcoa$eig) #CAP for fire-sites, constrained by temperature #to determine explanatory value of abiotic factors for fire-affected sites, after temp is accounted for #make vector of temperature only temp=env.fire[,"SoilTemperature_to10cm"] #CAP cap1=capscale(uf.fire.d~Condition(temp)) #fit environmental variables c.ef=envfit(cap1, env.fire) #print results to screen (Supporting Table 6) c.ef #df <- data.frame((c.ef$vectors)$arrows, (c.ef$vectors)$r, (c.ef$vectors)$pvals) #write.table(df, "Results/CAP.txt", quote=FALSE, sep="\t") #calculate % var. explained by each axis ax1.v.f.t=cap1$CA$eig[1]/sum(cap1$CA$eig) ax2.v.f.t=cap1$CA$eig[2]/sum(cap1$CA$eig) #Plot: supporting Figure 6 setEPS() postscript("Figures/SFig6AB.eps", width = 6.770, height=3.385, pointsize=8,paper="special") par(mfrow=c(1,2)) plot(uf.fire.pcoa$points[,1],uf.fire.pcoa$points[,2], main= "(A) Fire-affected soils PCoA", type="n",xlab=paste("PCoA1: ",100*round(ax1.v.f,3),"% var. explained",sep=""), ylab= paste("PCoA2: ",100*round(ax2.v.f,3),"% var. explained",sep="")) textxy(X=uf.fire.pcoa$points[,1], Y=uf.fire.pcoa$points[,2],labs=labels, offset=0, cex=0.8) plot(envFIT.fire, p=0.10) plot(cap1, cex=0.9,main = "(B) Temperature-constrained \nfire-affected soils PCoA", xlab=paste("CAP Ax1: ",100*round(ax1.v.f.t,3),"%var. explained",sep=""), ylab=paste("CAP Ax2: ",100*round(ax2.v.f.t,3),"%var. explained",sep="")) plot(c.ef, p= 0.10) dev.off() ################################ ### Sloan neutral model ################################ #NOTE: must use full dataset (including singleton OTUs) for this analysis #Source for model fits is from Burns et al. ISMEJ 2015, downloaded R code from their supporting materials #Source code requires: minpack.lm, Hmisc, stats4 packages - make sure they are installed (and their dependencies) source("MiscSourceScripts/sncm.fit_function.r") #assign variables for function spp=t(comm.sigs) taxon=as.vector(rdp) ref.t.sigs=spp[map$Classification=="Reference",] rec.t.sigs=spp[map$Classification=="Recovered",] rec.t.sigs.NZ<- rec.t.sigs[,colSums(rec.t.sigs)>0] fire.t.sigs=spp[map$Classification=="FireAffected",] fire.t.sigs.NZ<-fire.t.sigs[,colSums(fire.t.sigs)>0] #Models for the whole community obs.np=sncm.fit(spp,taxon=rdp, stats=FALSE, pool=NULL) sta.np=sncm.fit(spp,taxon=rdp, stats=TRUE, pool=NULL) #Models for each classification #fire affected: total - asks the question: in itself, do the fire-affected sites follow neutral obs.fireT=sncm.fit(fire.t.sigs.NZ,taxon=rdp, stats=FALSE, pool=NULL) sta.fireT=sncm.fit(fire.t.sigs.NZ,taxon=rdp, stats=TRUE, pool=NULL) #recovered : total - asks the question: do recovered sites follow neutral expectations? obs.recT=sncm.fit(rec.t.sigs.NZ,taxon=rdp, stats=FALSE, pool=NULL) sta.recT=sncm.fit(rec.t.sigs.NZ,taxon=rdp, stats=TRUE, pool=NULL) results=rbind(sta.np, sta.fireT, sta.recT) row.names(results)=c("all", "Fire_Affected", "Recovered") #par(mfrow=c(2,3)) #for plotting in R studio w/out export l1=list(obs.np, obs.recT, obs.fireT) l2=list(sta.np, sta.recT, sta.fireT) names=c("(A) All", "(B) Recovered", "(C) Fire_Affected") out.sta=NULL #Plot supporting Fig 7 panels for(i in 1:length(l1)){ #define data temp=as.data.frame(l1[i]) sta=as.data.frame(l2[i]) #how many taxa are above their prediction, and below? above.pred=sum(temp$freq > (temp$pred.upr), na.rm=TRUE)/sta$Richness below.pred=sum(temp$freq < (temp$pred.lwr), na.rm=TRUE)/sta$Richness out=c(above.pred, below.pred) ap= temp$freq > (temp$pred.upr) bp= temp$freq < (temp$pred.lwr) #plot figure (SFig7) setEPS() if(i == 1){ postscript("Figures/SFig7A.eps", width = 2.33, height=3, pointsize=10,paper="special") } if (i == 2){ postscript("Figures/SFig7B.eps", width = 2.33, height=3, pointsize=10,paper="special") } if (i ==3){ postscript("Figures/SFig7C.eps", width = 2.33, height=3, pointsize=10,paper="special") } plot(x=log(temp$p), y=temp$freq, main=names[i], xlab="Log Abundance", ylab="Occurrence Frequency") points(x=log(temp$p[ap==TRUE]), y=temp$freq[ap==TRUE], col="red", pch=19) points(x=log(temp$p[bp==TRUE]), y=temp$freq[bp==TRUE], col="blue", pch=19) lines(temp$freq.pred~log(temp$p), col="yellow", lty=1, lwd=6) lines(temp$pred.upr~log(temp$p), col="yellow", lty=1, lwd=3) lines(temp$pred.lwr~log(temp$p), col="yellow", lty=1, lwd=3) dev.off() out.sta=rbind(out.sta, out) } colnames(out.sta)=c("%AbovePred", "%BelowPred") #Supporting Table 7 results=cbind(results, out.sta) results #write.table(results, "Results/SloanNeutralModel.txt", quote=FALSE, sep="\t") ################################ ### Beta null models ################################ #MODIFIED by als to use our dataset (comm.t) instead of "dune" and to only include the abundance-based model. We also changed the number of patches to by 18 to match with the dataset. #ORIGINAL scripts available in the appendix of the work below, published in Oikos (Appendix oik.02803, also R_analysis/oik-02803-appendix-to-Tucker2016/) #Note that beta null models with weighted UniFrac require ~75 hours walltime to complete with 4Gb memory and 1 processing node; beta-null models with Bray-Curtis only require ~30 hours ####################### ### Code for example metacommunity simulation and beta-null deviation calculations ### with "Differentiating between niche and neutral assembly in metacommunities using ### null models of beta-diversity" ### Prepared May 14, 2014 ### Authors Caroline Tucker, Lauren Shoemaker, Brett Melbourne ####################### ## Load required source files and libraries library(reldist) library(vegan) library(bipartite) source("oik-02803-appendix-to-Tucker2016/MetacommunityDynamicsFctsOikos.R") source("oik-02803-appendix-to-Tucker2016/PANullDevFctsOikos.R") ##packages for UniFrac Null Model (weighted) #als add library(GUniFrac) library(ape) library(phangorn) tree <- read.tree("MASTER_RepSeqs_aligned_clean.tre") is.rooted(tree) #https://github.com/joey711/phyloseq/issues/235 #FastUniFrac trees are unrooted; calculation is done using mid-point root. tree <- midpoint(tree) is.rooted(tree) #formatting problem with tree tip labels - for some reason tree dn OTUs have extra quotes around them and this needs to be removed tree$tip.label=gsub("'","", tree$tip.label) ### Prepare and calculate abundance beta-null deviation metric ## Adjusted from Stegen et al 2012 GEB bbs.sp.site <- comm.t patches=nrow(bbs.sp.site) rand <- 999 #note - two randomization runs in < 8 min on my laptop null.alphas <- matrix(NA, ncol(comm.t), rand) null.alpha <- matrix(NA, ncol(comm.t), rand) expected_beta <- matrix(NA, 1, rand) null.gamma <- matrix(NA, 1, rand) null.alpha.comp <- numeric() bucket_bray_res <- matrix(NA, patches, rand) bucket_wuf_res <- matrix(NA, patches, rand) #als add bbs.sp.site = ceiling(bbs.sp.site/max(bbs.sp.site)) mean.alpha = sum(bbs.sp.site)/nrow(bbs.sp.site) #mean.alpha gamma <- ncol(bbs.sp.site) #gamma obs_beta <- 1-mean.alpha/gamma obs_beta_all <- 1-rowSums(bbs.sp.site)/gamma ##Generate null patches for (randomize in 1:rand) { null.dist = comm.t for (species in 1:ncol(null.dist)) { tot.abund = sum(null.dist[,species]) null.dist[,species] = 0 for (individual in 1:tot.abund) { sampled.site = sample(c(1:nrow(bbs.sp.site)), 1) null.dist[sampled.site, species] = null.dist[sampled.site, species] + 1 } } ##Calculate null deviation for null patches and store null.alphas[,randomize] <- apply(null.dist, 2, function(x){sum(ifelse(x > 0, 1, 0))}) null.gamma[1, randomize] <- sum(ifelse(rowSums(null.dist)>0, 1, 0)) expected_beta[1, randomize] <- 1 - mean(null.alphas[,randomize]/null.gamma[,randomize]) null.alpha <- mean(null.alphas[,randomize]) null.alpha.comp <- c(null.alpha.comp, null.alpha) bucket_bray <- as.matrix(vegdist(null.dist, "bray")) wuf<-(GUniFrac(null.dist, tree, alpha=1)) #als add #wuf<-(GUniFrac(comm.t, tree, alpha=1)) #als add test that comparable values are calculated as with QIIME bucket_wuf <- as.matrix(wuf$unifracs[,,"d_1"]) #als add diag(bucket_bray) <- NA diag(bucket_wuf) <- NA #als add bucket_bray_res[,randomize] <- apply(bucket_bray, 2, FUN="mean", na.rm=TRUE) bucket_wuf_res[,randomize] <- apply(bucket_wuf, 2, FUN="mean", na.rm=TRUE) #als add } ## end randomize loop ## Calculate beta-diversity for obs metacommunity beta_comm_abund <- vegdist(comm.t, "bray") wuf_comm_abund <- GUniFrac(comm.t, tree, alpha=1) #als add res_beta_comm_abund <- as.matrix(as.dist(beta_comm_abund)) res_wuf_comm_abund <- as.matrix(as.dist(wuf_comm_abund$unifracs[,,"d_1"])) #als add diag(res_beta_comm_abund) <- NA diag(res_wuf_comm_abund) <- NA #als add # output beta diversity (Bray) beta_div_abund_stoch <- apply(res_beta_comm_abund, 2, FUN="mean", na.rm=TRUE) wuf_div_abund_stoch <- apply(res_wuf_comm_abund, 2, FUN="mean", na.rm=TRUE) #als add # output abundance beta-null deviation bray_abund_null_dev <- beta_div_abund_stoch - mean(bucket_bray_res) wuf_abund_null_dev <- wuf_div_abund_stoch - mean(bucket_wuf_res) #als add ### Outputs: #beta_div_stoch - Jaccard beta-diversity for the metacommunity, average value (of all pairwise comparisons) for each patch #beta_div_abund_stoch - Bray-Curtis beta-diversity for the metacommunity, average value (of all pairwise comparisons) for each patch #PA_null_dev - presence-absence null deviation values or the metacommunity, average value (of all pairwise comparisons) for each patch #abund_null_dev - abundance null deviation values or the metacommunity, average value (of all pairwise comparisons) for each patch ### #END script by Tucker et al. ####################### #plotting and statistical tests betanull.out=data.frame(I(beta_div_abund_stoch),I(bray_abund_null_dev),I(wuf_div_abund_stoch),I(wuf_abund_null_dev),I(map[,"SampleID"]),as.character(map[,"Classification"]), as.numeric(map[,"SoilTemperature_to10cm"]), stringsAsFactors=FALSE) colnames(betanull.out)=c("BRAY_beta_div_abund_stoch", "BRAY_AbundanceNullDeviation", "WUF_div_abund_stoch","WUF_AbundanceNullDeviation","SampleID","Classification", "SoilTemperature_to10cm") #write.table(betanull.out, "Results/bnullout_r1.txt", quote=FALSE, sep="\t") #betanull.out=read.table("Results/bnullout_r1.txt", header=TRUE, sep="\t") ##plottingorder orders samples along a chronosequence and disturbance intensity gradient, by 1) reference samples, 2) fire-affected, sites ranked from hottest to coolest soil temperatures; and 3) recovered sites ranked from hottest to coolest soil temepratures plottingorder=c(13,15,12,17,14,9,16,1,6,4,11,8,3,7,5,10,2,18) library("reshape2") bnull.long=melt(betanull.out, id.vars=c("SampleID", "Classification","SoilTemperature_to10cm"), measure.vars=c("BRAY_AbundanceNullDeviation", "WUF_AbundanceNullDeviation"), col=) GnYlOrRd=colorRampPalette(colors=c("green", "yellow", "orange","red"), bias=2) fig4A <- ggplot(data=bnull.long, aes(x=Classification, y=as.numeric(value)))+ geom_boxplot()+ geom_jitter(aes(color=as.numeric(SoilTemperature_to10cm), y=as.numeric(value)))+ facet_grid(variable~., scales="free_y")+ scale_size(guide=FALSE)+ scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temp"))+ scale_x_discrete(name="Fire classification", limits=c("Reference", "FireAffected", "Recovered"))+ scale_y_continuous(name="Abundance Null Deviation")+ theme_bw(base_size=10) fig4A bnull.long.bray=bnull.long[bnull.long[,"variable"]=="BRAY_AbundanceNullDeviation",] fig4B <- ggplot(data=bnull.long.bray, aes(x=plottingorder, y=as.numeric(value)))+ geom_point(aes(color=as.numeric(SoilTemperature_to10cm), y=as.numeric(value)))+ scale_size(guide=FALSE)+ scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temperature (Celsius)"))+ scale_x_continuous(name="Disturbance Intensity", breaks=c(1.5,7,15), labels=c("Ref", "FireAffected", "Recovered"))+ scale_y_continuous(name="Abundance Null Deviation")+ geom_vline(xintercept=c(2.5,11.5), col="gray", lty="dashed")+ theme_bw(base_size=10)+ theme(legend.position="none") fig4B bnull.long.wuf=bnull.long[bnull.long[,"variable"]=="WUF_AbundanceNullDeviation",] fig4C <- ggplot(data=bnull.long.wuf, aes(x=plottingorder, y=as.numeric(value)))+ geom_point(aes(color=as.numeric(SoilTemperature_to10cm), y=as.numeric(value)))+ scale_size(guide=FALSE)+ scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temperature (Celsius)"))+ scale_x_continuous(name="Disturbance Intensity", breaks=c(1.5,7,15), labels=c("Ref", "FireAffected", "Recovered"))+ scale_y_continuous(name="Abundance Null Deviation")+ geom_vline(xintercept=c(2.5,11.5), col="gray", lty="dashed")+ theme_bw(base_size=10)+ theme(legend.position="none") fig4C #Multiplot script written by Winston Chang source("MiscSourceScripts/multiplot.R") dev.off() setEPS() postscript("Figures/Fig4ABC.eps", width = 3.385, height=5, pointsize=9,paper="special") multiplot(fig4A, fig4B, fig4C, cols=1) dev.off() #Pairwise t-tests for Bray Beta Null t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","BRAY_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","BRAY_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","BRAY_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="Reference","BRAY_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Reference","BRAY_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","BRAY_AbundanceNullDeviation"]) #recovered and fire-affected are statistically distinct, p < 0.0006, all other comparisons p > 0.05 #Pairwise t-tests for WUF Beta Null t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","WUF_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","WUF_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","WUF_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="Reference","WUF_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Reference","WUF_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","WUF_AbundanceNullDeviation"]) #recovered and fire-affected are distinct, p < 0.04, all other comparisons p > 0.05 #Are the WUF and Bray beta null correlated? cor.test(bnull.long.wuf[,"value"], bnull.long.bray[,"value"]) #Pearson's R = 0.71, p = 0.001 ################################ ### Dominant taxa analysis ################################ #Extract cumulative most abundant OTUs from fire-affected soils - for Table 1 dim(fire) fire.ordered=fire[order(rowSums(fire),decreasing=TRUE),] perc=rowSums(fire.ordered)/sum(rowSums(fire.ordered)) #Analysis of the top 10 most prevalent taxa in fire-affected and recovered soils #libraries needed for this library(vegan) library(gplots) #Do hot soils have consistent dominant membership? fire=t(fire.t) fire.new=fire[rowSums(fire)>0,] rdp.fire=as.vector(rdp.nosigs[rowSums(fire)>0]) dim(fire.new) rec=t(rec.t) rec.new=rec[rowSums(rec)>0,] rdp.rec=as.vector(rdp.nosigs[rowSums(rec)>0]) dim(rec.new) #Function to provide the OTU numbers and Taxonomic IDs are the top (default=10) in each site. extractdominant.f<-function(data,rdp,top.no=10){ out1=NULL out2=NULL for(i in 1:ncol(data)){ s=sort(data[,i], decreasing=TRUE, index.return=TRUE) otuIDs=names(s$x[1:top.no]) rdp.out=rdp[s$ix[1:top.no]] sampleID=c(rep(colnames(data)[[i]],top.no)) temp=cbind(sampleID,otuIDs) out1=rbind(out1,temp) out2=cbind(out2,rdp.out) } colnames(out2)=colnames(data) #write.table(out2, paste("Results/rdp_",top.no,".txt",sep=""), quote=FALSE, sep="\t") #who are the top-10 ranked u=unique(out1[,2]) l=length(unique(out1[,2])) actual.prop=l/dim(out1)[[1]] expected.prop=top.no/dim(out1)[[1]] print("Unique OTU IDs within the most abundant") print(u) print("Number of unique OTUs within the most abundant") print(l) print("Redundancy index given the number of samples and the top number selected 1.00 means completely nonredundant, every top taxa was observed only 1 time across all samples") print(actual.prop) print("Expected redundancy index") print(expected.prop) #print("List of top taxa by sample") #print(out2) return(out2) } fire.out=extractdominant.f(fire.new,rdp.fire,10) rec.out=extractdominant.f(rec.new,rdp.rec,10) data=NULL data=fire.new top.no=10 rdp.in=rdp.fire subsettop.f=function(data, top.no, rdp.in){ otuIDs=NULL rdpIDs=NULL for(i in 1:ncol(data)){ s=sort(data[,i], decreasing=TRUE, index.return=TRUE) otuIDs=c(otuIDs, names(s$x[1:top.no])) rdpIDs=c(rdpIDs, rdp.in[s$ix[1:top.no]]) } temp=cbind(otuIDs,rdpIDs) #print(temp) u.top=unique(otuIDs) #temp.u=temp[is.element(temp[,"otuIDs"],u.top),] #write.table(temp.u, "Results/OTURDP_Top10.txt", sep="\t", quote=FALSE) top10.otu=NULL for(j in 1:nrow(data)){ if(is.element(row.names(data)[j],u.top)){ top10.otu=rbind(top10.otu,data[j,]) } } row.names(top10.otu)=u.top colnames(top10.otu)=colnames(data) return(top10.otu) } topfire=subsettop.f(fire.new,10,rdp.fire) #how many OTUs are de novo? length(grep("dn",rownames(topfire))) #create color pallette; see: http://colorbrewer2.org/ hc=colorRampPalette(c("#91bfdb","white","#fc8d59"), interpolate="linear") topfire.pa=1*(topfire>0) sum(rowSums(topfire.pa)==9) toprec=subsettop.f(rec.new,10, rdp.rec) #how many OTUs are de novo length(grep("dn",rownames(toprec))) #Figure 5 dev.off() setEPS() postscript("Figures/Fig5A.eps", width = 3.5, height=7, pointsize=10, paper="special") heatmap.2(topfire,col=hc(100),scale="column",key=TRUE,symkey=FALSE, trace="none", density.info="none",dendrogram="both", margins=c(5,13), srtCol=90) dev.off() setEPS() postscript("Figures/Fig5B.eps", width = 3.5, height=7, pointsize=10, paper="special") heatmap.2(toprec,col=hc(100),scale="column",key=TRUE,symkey=FALSE, trace="none", density.info="none",dendrogram="both", margins=c(5,13), srtCol=90) dev.off()
/R_analysis/Centralia2014_AmpliconWorkflow.R
permissive
kun-ecology/PAPER_LeeSorensen_ISMEJ_2017
R
false
false
38,831
r
################################ ### Code for ecological statistics for ### "Divergent extremes but convergent recovery of bacterial and archaeal soil ### communities to an ongoing subterranean coal mine fire" ### by SH Lee, JW Sorensen, KL Grady, TC Tobin and A Shade ### Prepared 12 November 2016 ### Author: Ashley Shade, Michigan State University; shade.ashley <at> gmail.com ################################ # # Before you start # Make sure you are using the latest version of R (and Rstudio) # The following packages (and their dependencies) are needed to run the whole analysis # calibrate 1.7.2 # gplots 3.0.1 # ggplot2 2.1.0 # indicspecies 1.7.5 # limma 3.26.9 # mass 7.3-45 (calibrate dependency) # outliers 0.14 # reshape2 1.4.1 # vegan 2.4-0 # reldist 1.6-6 # bipartite 2.06.1 # GUniFrac 1.0 # ape 3.5 # phangorn 2.0-2 # ################################ ### Plotting soil contextual data ################################ #load R libraries for this section library(ggplot2) library(reshape2) library(outliers) #read in mapping file with soil data map=read.table("InputFiles/Centralia_Collapsed_Map_forR.txt", header=TRUE, sep="\t") #plot chemistry v. temperature (Supporting Figure 3) #melt data map.long=melt(map, id.vars=c("SampleID", "SoilTemperature_to10cm", "Classification"), measure.vars=c("NO3N_ppm","NH4N_ppm","pH","SulfateSulfur_ppm","K_ppm","Ca_ppm","Mg_ppm","OrganicMatter_500","Fe_ppm", "As_ppm", "P_ppm", "SoilMoisture_Per")) #make a gradient color palette, note bias GnYlOrRd=colorRampPalette(colors=c("green", "yellow", "orange","red"), bias=2) sfig3=ggplot(map.long, aes(y=as.numeric(SoilTemperature_to10cm), x=value))+ #add points layer geom_point(aes(y=as.numeric(SoilTemperature_to10cm), x=value, shape=Classification, color=as.numeric(SoilTemperature_to10cm)))+ #set facet with 4 columns, make x-axes appropriate for each variable facet_wrap(~variable, ncol=4, scales="free_x")+ #set gradient for temperature and add gradient colorbar scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temperature"))+ #omit the legend for the size of the points scale_size(guide=FALSE)+ #define the axis labels labs(y="Temperature (Celsius)", x=" ")+ #set a simple theme theme_bw(base_size=10) sfig3 #ggsave("Figures/SFig3.eps", width=178, units="mm") ##Subset contextual data inclusive of soil quantitative variables env=map[,c("SoilTemperature_to10cm", "NO3N_ppm", "pH", "K_ppm", "Mg_ppm", "OrganicMatter_500", "NH4N_ppm", "SulfateSulfur_ppm", "Ca_ppm", "Fe_ppm", "As_ppm", "P_ppm", "SoilMoisture_Per","Fire_history")] ##Test for outliers, loop will print all significant outliers and their sampleID - these were not removed from analysis for (i in 1:ncol(env)){ x=grubbs.test(env[,i], type=10) if(x$p.value < 0.05){ print(colnames(env)[i]) print(row.names(env)[env[,i]==max(env[,i])]) } } #samples 13 (for pH, Ca) and 10 (for NO3N, NH4N,Fe) are common outliers - both have high temps. Sample 3 is also outlier for Mg and OM; this is a recovered site. Generally this test indicates a lot of variability. #correlation test between temperature and other soil chemistry for(i in 1:ncol(env)){ ct=cor.test(env[,"SoilTemperature_to10cm"],env[,i]) if (ct$p.value < 0.05){ print(colnames(env)[i]) print(ct) } } #extract means from recovered and reference soils' pH mean(env[map[,"Classification"]=="Reference","pH"]) mean(env[map[,"Classification"]== "Recovered","pH"]) #plot cell counts and 16S rRNA qPCR data (Supporting Figure 2) map.long.counts=melt(map, id.vars=c("SampleID", "Classification"), measure.vars=c("rRNA_gene_copies_per_g_dry_soil","CellCounts_per_g_dry_soil")) labels=c(rRNA_gene_copies_per_g_dry_soil="rRNA gene copies",CellCounts_per_g_dry_soil="Cell counts") sfig4 <- ggplot(data=map.long.counts, aes(x=Classification, y=value))+ geom_boxplot() + geom_jitter(aes(shape=Classification))+ facet_grid(variable~., scales="free_y", labeller=labeller(variable = labels))+ scale_shape(guide=FALSE)+ #scale_color_manual(values=colors)+ scale_x_discrete(name="Fire classification")+ scale_y_continuous(name="value per g dry soil")+ theme_bw(base_size=10) sfig4 #ggsave("Figures/SFig4.eps", width=86, units="mm") #Pariwise t-tests for cell counts t.test(map[map[,"Classification"]=="Recovered","CellCounts_per_g_dry_soil"],map[map[,"Classification"]=="FireAffected","CellCounts_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="Recovered","CellCounts_per_g_dry_soil"],map[map[,"Classification"]=="Reference","CellCounts_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="FireAffected","CellCounts_per_g_dry_soil"],map[map[,"Classification"]=="Reference","CellCounts_per_g_dry_soil"]) #Pairwise t-tests for qPCR t.test(map[map[,"Classification"]=="Recovered","rRNA_gene_copies_per_g_dry_soil"],map[map[,"Classification"]=="FireAffected","rRNA_gene_copies_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="Recovered","rRNA_gene_copies_per_g_dry_soil"],map[map[,"Classification"]=="Reference","rRNA_gene_copies_per_g_dry_soil"]) t.test(map[map[,"Classification"]=="Reference","rRNA_gene_copies_per_g_dry_soil"],map[map[,"Classification"]=="FireAffected","rRNA_gene_copies_per_g_dry_soil"]) ################################ ### Preparing OTU and distance tables for analysis ################################ #load R libraries for this section library(ggplot2) library(reshape2) library(vegan) #read in community OTU table, and transpose (rarefied collapsed MASTER table, output from QIIME) comm=read.table("InputFiles/MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1, check.names=FALSE, sep="\t") #remove consensus lineage from otu table rdp=comm[,"ConsensusLineage"] comm=comm[,-ncol(comm)] #How many total QCed sequences? sum(colSums(comm)) #sort community by colnames (to be in the consistent, consecutive order for all analyses) comm=comm[,order(colnames(comm))] #who are the singleton OTUs (observed 1 time in an abundance of 1 sequence)? singletonOTUs=row.names(comm)[rowSums(comm)==1] length(singletonOTUs) #total 1374 singleton OTUs g=grep("_dn", singletonOTUs) length(g) #1201 de novo OTUs are singletons #who are the remaining de novo OTUs? g=grep("_dn_",row.names(comm)) dn=rdp[g] rdp.nosigs=rdp[rowSums(comm)>1] #designate a full dataset comm.sigs=comm #remove OTUs with an abundance = 1, across the entire dataset (singleton OTUs) comm=comm[rowSums(comm)>1,] sum(colSums(comm)) #transpose matrix comm.t=t(comm) ### Read in resemblance matrices #read in weighted unifrac table (output from QIIME) uf=read.table("InputFiles/weighted_unifrac_MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1) #sort by rows, columns (so they are in the consecutive order) uf=uf[order(row.names(uf)),order(colnames(uf))] uf.d=as.dist(uf) #read in the unweighted unifrac table (output from QIIME) uwuf=read.table("InputFiles/unweighted_unifrac_MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1) #sort by rows, columns (so they are in the consecutive order) uwuf=uwuf[order(row.names(uwuf)),order(colnames(uwuf))] uwuf.d=as.dist(uwuf) #read in the normalized weighted unifrac table (output from QIIME) nwuf=read.table("InputFiles/weighted_normalized_unifrac_MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000.txt", header=TRUE, row.names=1) #sort by rows, columns (so all tables are in the consecutive order) nwuf=nwuf[order(row.names(nwuf)),order(colnames(nwuf))] nwuf.d=as.dist(nwuf) #assign fire classification fireclass=map[,"Classification"] ref.t=comm.t[map$Classification=="Reference",] rec.t=comm.t[map$Classification=="Recovered",] fire.t=comm.t[map$Classification=="FireAffected",] ################################ ### Calculate and plot within-sample (alpha) diversity ################################ #read in alpha diversity table (output from QIIME) div=read.table("InputFiles/MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000_alphadiv.txt", header=TRUE) #sort by sample ID (so that they are in consecutive order) div=div[order(row.names(div)),] #calculate pielou's evenness from OTU table s=specnumber(comm.t) h=diversity(comm.t,index="shannon") pielou=h/log(s) #combine alpha diversity data and fire classification (from map file) div=cbind(row.names(div),div,pielou, map$Classification) colnames(div)=c("SampleID", "PD", "Richness", "Pielou", "Classification") #plot (Figure 1) #reshape the data div.long=melt(div, id.vars=c("SampleID", "Classification")) #plot a facet #comment toggle for color v. bw colors=c("red", "yellow", "green") fig1 <- ggplot(data=div.long, aes(x=Classification, y=value))+ geom_boxplot() + geom_jitter(aes(shape=Classification))+ #geom_jitter(aes(color=Classification, cex=1.5))+ facet_grid(variable~., scales="free_y")+ #scale_shape(guide=FALSE)+ scale_size(guide=FALSE)+ scale_color_manual(values=colors)+ scale_x_discrete(name="Fire classification")+ scale_y_continuous(name="Diversity value")+ theme_bw(base_size=10) fig1 ggsave("Figures/Fig1.eps", width=86, units="mm") #ttest v=c("PD", "Richness", "Pielou") outdiv=NULL for(i in 1:length(v)){ #subset the data to test one phylum at a time active=div[div$Classification=="FireAffected",colnames(div)==v[i]] recov=div[div$Classification=="Recovered",colnames(div)==v[i]] ref=div[div$Classification=="Reference",colnames(div)==v[i]] #perform the test test1=t.test(active, recov, paired=FALSE, var.equal = FALSE) test2=t.test(active, ref, paired=FALSE, var.equal = FALSE) test3=t.test(ref, recov, paired=FALSE, var.equal = FALSE) test1.out=c(v[i],"ActivevRecov",test1$statistic, test1$parameter, test1$p.value) test2.out=c(v[i],"ActivevRef",test2$statistic, test2$parameter, test2$p.value) test3.out=c(v[i],"RefvRecov",test3$statistic, test3$parameter, test3$p.value) outdiv=rbind(outdiv, test1.out, test2.out, test3.out) } outdiv ################################ ### Analysis of technical replicates ################################ #Supporting Table 2 - assessing reproducibility among technical replicates techdiv=read.table("InputFiles/OTU_hdf5_filteredfailedalignments_rdp_rmCM_even53000_alphadiv.txt") #output from QIIME techdiv.out=NULL sampleIDs=c("C01", "C02", "C03", "C04", "C05", "C06", "C07", "C08", "C09", "C10", "C11", "C12", "C13", "C14", "C15", "C16", "C17", "C18") for(i in 1:length(sampleIDs)){ temp=techdiv[grep(sampleIDs[i], row.names(techdiv)),] temp2=c(mapply(mean,temp), mapply(sd,temp)) techdiv.out=rbind(techdiv.out,temp2) } row.names(techdiv.out)=sampleIDs colnames(techdiv.out)=c("PD_mean", "Richness_mean", "PD_sd", "Richness_sd") #write.table(techdiv.out, "Results/AlphaDiv_TechnicalReps.txt", quote=FALSE, sep="\t") #Supporting PCoA (SFig 2)- assessing reproducibility among technical replicates beta <- read.table("InputFiles/weighted_unifrac_OTU_hdf5_filteredfailedalignments_rdp_rmCM_even53000.txt", sep="\t", stringsAsFactors = FALSE, header = TRUE, row.names=1) map.f<- read.table("InputFiles/Centralia_Full_Map.txt", sep="\t", stringsAsFactors = FALSE, header = TRUE, row.names=1) beta <- beta[order(row.names(beta)),order(colnames(beta))] #Remove Mock beta <- beta[-55,-55] library(vegan) beta.pcoa<- cmdscale(beta, eig=TRUE) ax1.v.f=beta.pcoa$eig[1]/sum(beta.pcoa$eig) ax2.v.f=beta.pcoa$eig[2]/sum(beta.pcoa$eig) coordinates <- as.data.frame(beta.pcoa$points) Samples <- map$Sample coordinates$Sample<- map.f$Sample coordinates_avg_sd <- NULL for (i in 1:length(Samples)){ Site <- coordinates[coordinates$Sample==Samples[i],] AX1 <- c(mean(Site[,1]),sd(Site[,1])) AX2 <- c(mean(Site[,2]),sd(Site[,2])) coordinates_avg_sd<- rbind(coordinates_avg_sd,c(AX1,AX2)) } row.names(coordinates_avg_sd)<-Samples unique(map$Classification) Class=rep('black',nrow(map)) Class[map$Classification=="FireAffected"]='red' Class[map$Classification=="Reference"]='green' Class[map$Classification=="Recovered"]='yellow' library(calibrate) #SFig 2 dev.off() setEPS() postscript("Figures/SFig2.eps", width = 6, height=6, pointsize=8,paper="special") plot(coordinates_avg_sd[,1],coordinates_avg_sd[,3] ,cex=1.5,pch=21,bg=Class,main="Averaged Technical Replicates Weighted UniFrac PCoA",xlab= paste("PCoA1: ",100*round(ax1.v.f,3),"% var. explained",sep=""), ylab= paste("PCoA2: ",100* round(ax2.v.f,3),"% var. explained",sep="")) textxy(X=coordinates_avg_sd[,1], Y=coordinates_avg_sd[,3],labs=map$Sample, cex=1) arrows(coordinates_avg_sd[,1], coordinates_avg_sd[,3]- coordinates_avg_sd[,4], coordinates_avg_sd[,1], coordinates_avg_sd[,3]+ coordinates_avg_sd[,4], length=0.05, angle=90, code=3) arrows(coordinates_avg_sd[,1]- coordinates_avg_sd[,2], coordinates_avg_sd[,3], coordinates_avg_sd[,1] + coordinates_avg_sd[,2], coordinates_avg_sd[,3], length=0.05, angle=90, code=3) dev.off() ################################ ### Phylum-level responses to fire ################################ #load R libraries for this section library(ggplot2) #read in phylum level OTU table (QIIME output) comm.phylum=read.table("InputFiles/MASTER_OTU_hdf5_filteredfailedalignments_rdp_rmCM_collapse_even321000_L2.txt", sep="\t", header=TRUE, row.names=1) #output from QIIME ##sort by sample ID (so that they are in consecutive order) comm.phylum=comm.phylum[,order(colnames(comm.phylum))] #combine phyla that contribute less than 0.01 each below01=comm.phylum[rowSums(comm.phylum)<0.01,] below01.cs=colSums(below01) #remove those below01 phyla from the table comm.phylum=comm.phylum[rowSums(comm.phylum)>0.01,] #add the summary from the <0.01 comm.phylum=rbind(comm.phylum,below01.cs) #rename the last row row.names(comm.phylum)[nrow(comm.phylum)]="Below_0.01" #for character string trucation in R : http://stackoverflow.com/questions/10883605/truncating-the-end-of-a-string-in-r-after-a-character-that-can-be-present-zero-o phylumnames=sub(".*p__", "", row.names(comm.phylum)) row.names(comm.phylum)=phylumnames #assign fire classifications to samples fireclass=map[,"Classification"] p.active=comm.phylum[,fireclass=="FireAffected"] p.recov=comm.phylum[,fireclass=="Recovered"] p.ref=comm.phylum[,fireclass=="Reference"] #Calculate a mean phylum rel. abundance across all of the samples that are within each activity group m.active=apply(p.active,1,mean) m.recov=apply(p.recov,1,mean) m.ref=apply(p.ref,1,mean) m.summary.p=cbind(m.active, m.recov,m.ref) colnames(m.summary.p)=c("FireAffected", "Recovered", "Reference") #sort in decreasing total abundance order m.summary.p=m.summary.p[order(rowSums(m.summary.p),decreasing=TRUE),] #plot (Figure 3) m.summary.p.long=melt(m.summary.p, id.vars=row.names(m.summary.p),measure.vars=c("FireAffected", "Recovered", "Reference")) colors=c("red", "yellow", "green") fig3=ggplot(m.summary.p.long, aes(x=Var1, y=value, fill=Var2))+ geom_dotplot(binaxis="y", dotsize = 3)+ facet_grid(Var2~.)+ scale_fill_manual(values=colors, guide=FALSE)+ labs(x="Phylum", y="Mean relative abundance", las=1)+ theme(axis.text.x = element_text(angle = 90, size = 10, face = "italic")) fig3 ggsave("Figures/Fig3.eps", width=178, units="mm") #Welch's t-test for all phyla u=row.names(comm.phylum) out=NULL for(i in 1:length(u)){ #subset the data to test one phylum at a time active=comm.phylum[row.names(comm.phylum)==u[i],fireclass=="FireAffected"] recov=comm.phylum[row.names(comm.phylum)==u[i],fireclass=="Recovered"] #perform the test test=t.test(active, recov, paired=FALSE, var.equal = FALSE) test.out=c(row.names(comm.phylum)[i],test$statistic, test$parameter, test$p.value) out=rbind(out,test.out) } colnames(out)=c("Phylum", "Tstatistic", "DF", "pvalue") #all results: Supporting Table 8 out #extract overrepresented in fire out[out[,"pvalue"]<0.05 & out[,"Tstatistic"]>0,] #extracted overrepresented in recovered out[out[,"pvalue"]<0.05 & out[,"Tstatistic"]<0,] #write.table(out, "Results/Phylum_ttest.txt",quote=FALSE, sep="\t") ################################ ### Comparative (beta) diversity ################################ #load R libraries for this section library(calibrate) library(ggplot2) library(vegan) # use weighted unifrac uf.pcoa=cmdscale(uf.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v=uf.pcoa$eig[1]/sum(uf.pcoa$eig) ax2.v=uf.pcoa$eig[2]/sum(uf.pcoa$eig) envEF=envfit(uf.pcoa, env) #Supporting Table 4 envEF unique(map$Classification) Class=rep('black',nrow(map)) Class[map$Classification=="FireAffected"]='red' Class[map$Classification=="Reference"]='green' Class[map$Classification=="Recovered"]='yellow' #export figure 2 #textxy is from the calibrate library dev.off() setEPS() postscript("Figures/Fig2.eps", width = 3.385, height=3.385, pointsize=8,paper="special") plot(uf.pcoa$points[,1],uf.pcoa$points[,2] ,cex=1.5,pch=21,bg=Class,main="Weighted UniFrac PCoA", xlab= paste("PCoA1: ",100*round(ax1.v,3),"% var. explained",sep=""), ylab= paste("PCoA2: ",100*round(ax2.v,3),"%var. explained",sep="")) textxy(X=uf.pcoa$points[,1], Y=uf.pcoa$points[,2],labs=map$SampleID, cex=0.8) legend('bottomleft',c('Fire Affected','Recovered','Reference'),pch=21,pt.bg=c("red", "yellow", "green"),lty=0) plot(envEF, p.max=0.10, col="black", cex=1) dev.off() #perform hypothesis testing on fire-affected v. recovered+reference sites #permanova Class2=sub("green", "yellow", Class) a=adonis(uf.d~Class2, distance=TRUE, permutations=1000) a #multivariate dispersion with Tukey HSD b=betadisper(uf.d, group=Class2) TukeyHSD(b, which = "group", ordered = FALSE,conf.level = 0.95) #mantel w/ spatial distances space=read.table("InputFiles/spatialdistancematrix.txt", header=TRUE, row.names=1) space.d=as.dist(space) mantel(uf.d,space.d) ################################ ### Do different resemblances agree in their overarching patterns? ################################ #Supporting Table 3A: #the variance explained by each distance (taxonomic/phylogenetic and weighted/unweighted) bc.d=vegdist(t(comm), method="bray") sor.d=vegdist(t(comm), method="bray",binary=TRUE) # PCoA using unweighted unifrac (QIIME output - unweighted phylogenetic) uwuf.pcoa=cmdscale(uwuf.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v.uwuf=uwuf.pcoa$eig[1]/sum(uwuf.pcoa$eig) ax2.v.uwuf=uwuf.pcoa$eig[2]/sum(uwuf.pcoa$eig) # PCoA using bray-curtis (vegan output - weighted taxonomic) bc.pcoa=cmdscale(bc.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v.bc=bc.pcoa$eig[1]/sum(bc.pcoa$eig) ax2.v.bc=bc.pcoa$eig[2]/sum(bc.pcoa$eig) #PCoA using sorensen (vegan output - unweighted taxonomic) sor.pcoa=cmdscale(sor.d, eig=TRUE) #calculate percent variance explained, then add to plot ax1.v.sor=sor.pcoa$eig[1]/sum(sor.pcoa$eig) ax2.v.sor=sor.pcoa$eig[2]/sum(sor.pcoa$eig) #Mantel and PROTEST tests between all resemblances (Supporting Table 3B) resem=list(uf.d,uwuf.d,nwuf.d,bc.d,sor.d) #this loops a bit funny but all pairwise results are available names=c("weighted_UniFrac", "unweighted_UniFrac", "normalized_weighted_UniFrac", "BrayCurtis", "Sorenson") m.out=NULL for (i in 1:length(resem)){ dist1=resem[[i]] print(i) j=i+1 for(j in 2:length(resem)){ dist2=resem[[j]] print(j) #Mantel m=mantel(dist1,dist2) #Protest pr=protest(dist1,dist2) #results out m.v=c(names[i], names[j],m$statistic, m$signif, pr$t0, pr$ss, pr$signif) m.out=rbind(m.out,m.v) } } #Supporting Table 3B colnames(m.out)=c("Dist1", "Dist2", "Mantel_R", "Mantel_p", "PROTEST_R", "PROTEST_m12", "PROTEST_p") m.out #write.table(m.out, "Results/MantelDist.txt", quote=FALSE, sep="\t") ################################ ### Comparative diversity of fire-affected samples ################################ #load R libraries for this section library(vegan) #reduce uf to fire only uf.fire=uf[map$Classification=="FireAffected",map$Classification=="FireAffected"] uf.fire.d=as.dist(uf.fire) env.fire=env[map$Classification=="FireAffected",] labels=map[map$Classification=="FireAffected","SampleID"] #PCoA for fire sites only uf.fire.pcoa=cmdscale(uf.fire.d, eig=TRUE) #fit environmental variables envFIT.fire=envfit(uf.fire.pcoa, env=env.fire) #print results to screen (Supporting Table 5) envFIT.fire #df <- data.frame((envFIT.fire$vectors)$arrows, (envFIT.fire$vectors)$r, (envFIT.fire$vectors)$pvals) #write.table(df, "Results/ENV_Fire.txt", quote=FALSE, sep="\t") #calculate %var. explained by each axis ax1.v.f=uf.fire.pcoa$eig[1]/sum(uf.fire.pcoa$eig) ax2.v.f=uf.fire.pcoa$eig[2]/sum(uf.fire.pcoa$eig) #CAP for fire-sites, constrained by temperature #to determine explanatory value of abiotic factors for fire-affected sites, after temp is accounted for #make vector of temperature only temp=env.fire[,"SoilTemperature_to10cm"] #CAP cap1=capscale(uf.fire.d~Condition(temp)) #fit environmental variables c.ef=envfit(cap1, env.fire) #print results to screen (Supporting Table 6) c.ef #df <- data.frame((c.ef$vectors)$arrows, (c.ef$vectors)$r, (c.ef$vectors)$pvals) #write.table(df, "Results/CAP.txt", quote=FALSE, sep="\t") #calculate % var. explained by each axis ax1.v.f.t=cap1$CA$eig[1]/sum(cap1$CA$eig) ax2.v.f.t=cap1$CA$eig[2]/sum(cap1$CA$eig) #Plot: supporting Figure 6 setEPS() postscript("Figures/SFig6AB.eps", width = 6.770, height=3.385, pointsize=8,paper="special") par(mfrow=c(1,2)) plot(uf.fire.pcoa$points[,1],uf.fire.pcoa$points[,2], main= "(A) Fire-affected soils PCoA", type="n",xlab=paste("PCoA1: ",100*round(ax1.v.f,3),"% var. explained",sep=""), ylab= paste("PCoA2: ",100*round(ax2.v.f,3),"% var. explained",sep="")) textxy(X=uf.fire.pcoa$points[,1], Y=uf.fire.pcoa$points[,2],labs=labels, offset=0, cex=0.8) plot(envFIT.fire, p=0.10) plot(cap1, cex=0.9,main = "(B) Temperature-constrained \nfire-affected soils PCoA", xlab=paste("CAP Ax1: ",100*round(ax1.v.f.t,3),"%var. explained",sep=""), ylab=paste("CAP Ax2: ",100*round(ax2.v.f.t,3),"%var. explained",sep="")) plot(c.ef, p= 0.10) dev.off() ################################ ### Sloan neutral model ################################ #NOTE: must use full dataset (including singleton OTUs) for this analysis #Source for model fits is from Burns et al. ISMEJ 2015, downloaded R code from their supporting materials #Source code requires: minpack.lm, Hmisc, stats4 packages - make sure they are installed (and their dependencies) source("MiscSourceScripts/sncm.fit_function.r") #assign variables for function spp=t(comm.sigs) taxon=as.vector(rdp) ref.t.sigs=spp[map$Classification=="Reference",] rec.t.sigs=spp[map$Classification=="Recovered",] rec.t.sigs.NZ<- rec.t.sigs[,colSums(rec.t.sigs)>0] fire.t.sigs=spp[map$Classification=="FireAffected",] fire.t.sigs.NZ<-fire.t.sigs[,colSums(fire.t.sigs)>0] #Models for the whole community obs.np=sncm.fit(spp,taxon=rdp, stats=FALSE, pool=NULL) sta.np=sncm.fit(spp,taxon=rdp, stats=TRUE, pool=NULL) #Models for each classification #fire affected: total - asks the question: in itself, do the fire-affected sites follow neutral obs.fireT=sncm.fit(fire.t.sigs.NZ,taxon=rdp, stats=FALSE, pool=NULL) sta.fireT=sncm.fit(fire.t.sigs.NZ,taxon=rdp, stats=TRUE, pool=NULL) #recovered : total - asks the question: do recovered sites follow neutral expectations? obs.recT=sncm.fit(rec.t.sigs.NZ,taxon=rdp, stats=FALSE, pool=NULL) sta.recT=sncm.fit(rec.t.sigs.NZ,taxon=rdp, stats=TRUE, pool=NULL) results=rbind(sta.np, sta.fireT, sta.recT) row.names(results)=c("all", "Fire_Affected", "Recovered") #par(mfrow=c(2,3)) #for plotting in R studio w/out export l1=list(obs.np, obs.recT, obs.fireT) l2=list(sta.np, sta.recT, sta.fireT) names=c("(A) All", "(B) Recovered", "(C) Fire_Affected") out.sta=NULL #Plot supporting Fig 7 panels for(i in 1:length(l1)){ #define data temp=as.data.frame(l1[i]) sta=as.data.frame(l2[i]) #how many taxa are above their prediction, and below? above.pred=sum(temp$freq > (temp$pred.upr), na.rm=TRUE)/sta$Richness below.pred=sum(temp$freq < (temp$pred.lwr), na.rm=TRUE)/sta$Richness out=c(above.pred, below.pred) ap= temp$freq > (temp$pred.upr) bp= temp$freq < (temp$pred.lwr) #plot figure (SFig7) setEPS() if(i == 1){ postscript("Figures/SFig7A.eps", width = 2.33, height=3, pointsize=10,paper="special") } if (i == 2){ postscript("Figures/SFig7B.eps", width = 2.33, height=3, pointsize=10,paper="special") } if (i ==3){ postscript("Figures/SFig7C.eps", width = 2.33, height=3, pointsize=10,paper="special") } plot(x=log(temp$p), y=temp$freq, main=names[i], xlab="Log Abundance", ylab="Occurrence Frequency") points(x=log(temp$p[ap==TRUE]), y=temp$freq[ap==TRUE], col="red", pch=19) points(x=log(temp$p[bp==TRUE]), y=temp$freq[bp==TRUE], col="blue", pch=19) lines(temp$freq.pred~log(temp$p), col="yellow", lty=1, lwd=6) lines(temp$pred.upr~log(temp$p), col="yellow", lty=1, lwd=3) lines(temp$pred.lwr~log(temp$p), col="yellow", lty=1, lwd=3) dev.off() out.sta=rbind(out.sta, out) } colnames(out.sta)=c("%AbovePred", "%BelowPred") #Supporting Table 7 results=cbind(results, out.sta) results #write.table(results, "Results/SloanNeutralModel.txt", quote=FALSE, sep="\t") ################################ ### Beta null models ################################ #MODIFIED by als to use our dataset (comm.t) instead of "dune" and to only include the abundance-based model. We also changed the number of patches to by 18 to match with the dataset. #ORIGINAL scripts available in the appendix of the work below, published in Oikos (Appendix oik.02803, also R_analysis/oik-02803-appendix-to-Tucker2016/) #Note that beta null models with weighted UniFrac require ~75 hours walltime to complete with 4Gb memory and 1 processing node; beta-null models with Bray-Curtis only require ~30 hours ####################### ### Code for example metacommunity simulation and beta-null deviation calculations ### with "Differentiating between niche and neutral assembly in metacommunities using ### null models of beta-diversity" ### Prepared May 14, 2014 ### Authors Caroline Tucker, Lauren Shoemaker, Brett Melbourne ####################### ## Load required source files and libraries library(reldist) library(vegan) library(bipartite) source("oik-02803-appendix-to-Tucker2016/MetacommunityDynamicsFctsOikos.R") source("oik-02803-appendix-to-Tucker2016/PANullDevFctsOikos.R") ##packages for UniFrac Null Model (weighted) #als add library(GUniFrac) library(ape) library(phangorn) tree <- read.tree("MASTER_RepSeqs_aligned_clean.tre") is.rooted(tree) #https://github.com/joey711/phyloseq/issues/235 #FastUniFrac trees are unrooted; calculation is done using mid-point root. tree <- midpoint(tree) is.rooted(tree) #formatting problem with tree tip labels - for some reason tree dn OTUs have extra quotes around them and this needs to be removed tree$tip.label=gsub("'","", tree$tip.label) ### Prepare and calculate abundance beta-null deviation metric ## Adjusted from Stegen et al 2012 GEB bbs.sp.site <- comm.t patches=nrow(bbs.sp.site) rand <- 999 #note - two randomization runs in < 8 min on my laptop null.alphas <- matrix(NA, ncol(comm.t), rand) null.alpha <- matrix(NA, ncol(comm.t), rand) expected_beta <- matrix(NA, 1, rand) null.gamma <- matrix(NA, 1, rand) null.alpha.comp <- numeric() bucket_bray_res <- matrix(NA, patches, rand) bucket_wuf_res <- matrix(NA, patches, rand) #als add bbs.sp.site = ceiling(bbs.sp.site/max(bbs.sp.site)) mean.alpha = sum(bbs.sp.site)/nrow(bbs.sp.site) #mean.alpha gamma <- ncol(bbs.sp.site) #gamma obs_beta <- 1-mean.alpha/gamma obs_beta_all <- 1-rowSums(bbs.sp.site)/gamma ##Generate null patches for (randomize in 1:rand) { null.dist = comm.t for (species in 1:ncol(null.dist)) { tot.abund = sum(null.dist[,species]) null.dist[,species] = 0 for (individual in 1:tot.abund) { sampled.site = sample(c(1:nrow(bbs.sp.site)), 1) null.dist[sampled.site, species] = null.dist[sampled.site, species] + 1 } } ##Calculate null deviation for null patches and store null.alphas[,randomize] <- apply(null.dist, 2, function(x){sum(ifelse(x > 0, 1, 0))}) null.gamma[1, randomize] <- sum(ifelse(rowSums(null.dist)>0, 1, 0)) expected_beta[1, randomize] <- 1 - mean(null.alphas[,randomize]/null.gamma[,randomize]) null.alpha <- mean(null.alphas[,randomize]) null.alpha.comp <- c(null.alpha.comp, null.alpha) bucket_bray <- as.matrix(vegdist(null.dist, "bray")) wuf<-(GUniFrac(null.dist, tree, alpha=1)) #als add #wuf<-(GUniFrac(comm.t, tree, alpha=1)) #als add test that comparable values are calculated as with QIIME bucket_wuf <- as.matrix(wuf$unifracs[,,"d_1"]) #als add diag(bucket_bray) <- NA diag(bucket_wuf) <- NA #als add bucket_bray_res[,randomize] <- apply(bucket_bray, 2, FUN="mean", na.rm=TRUE) bucket_wuf_res[,randomize] <- apply(bucket_wuf, 2, FUN="mean", na.rm=TRUE) #als add } ## end randomize loop ## Calculate beta-diversity for obs metacommunity beta_comm_abund <- vegdist(comm.t, "bray") wuf_comm_abund <- GUniFrac(comm.t, tree, alpha=1) #als add res_beta_comm_abund <- as.matrix(as.dist(beta_comm_abund)) res_wuf_comm_abund <- as.matrix(as.dist(wuf_comm_abund$unifracs[,,"d_1"])) #als add diag(res_beta_comm_abund) <- NA diag(res_wuf_comm_abund) <- NA #als add # output beta diversity (Bray) beta_div_abund_stoch <- apply(res_beta_comm_abund, 2, FUN="mean", na.rm=TRUE) wuf_div_abund_stoch <- apply(res_wuf_comm_abund, 2, FUN="mean", na.rm=TRUE) #als add # output abundance beta-null deviation bray_abund_null_dev <- beta_div_abund_stoch - mean(bucket_bray_res) wuf_abund_null_dev <- wuf_div_abund_stoch - mean(bucket_wuf_res) #als add ### Outputs: #beta_div_stoch - Jaccard beta-diversity for the metacommunity, average value (of all pairwise comparisons) for each patch #beta_div_abund_stoch - Bray-Curtis beta-diversity for the metacommunity, average value (of all pairwise comparisons) for each patch #PA_null_dev - presence-absence null deviation values or the metacommunity, average value (of all pairwise comparisons) for each patch #abund_null_dev - abundance null deviation values or the metacommunity, average value (of all pairwise comparisons) for each patch ### #END script by Tucker et al. ####################### #plotting and statistical tests betanull.out=data.frame(I(beta_div_abund_stoch),I(bray_abund_null_dev),I(wuf_div_abund_stoch),I(wuf_abund_null_dev),I(map[,"SampleID"]),as.character(map[,"Classification"]), as.numeric(map[,"SoilTemperature_to10cm"]), stringsAsFactors=FALSE) colnames(betanull.out)=c("BRAY_beta_div_abund_stoch", "BRAY_AbundanceNullDeviation", "WUF_div_abund_stoch","WUF_AbundanceNullDeviation","SampleID","Classification", "SoilTemperature_to10cm") #write.table(betanull.out, "Results/bnullout_r1.txt", quote=FALSE, sep="\t") #betanull.out=read.table("Results/bnullout_r1.txt", header=TRUE, sep="\t") ##plottingorder orders samples along a chronosequence and disturbance intensity gradient, by 1) reference samples, 2) fire-affected, sites ranked from hottest to coolest soil temperatures; and 3) recovered sites ranked from hottest to coolest soil temepratures plottingorder=c(13,15,12,17,14,9,16,1,6,4,11,8,3,7,5,10,2,18) library("reshape2") bnull.long=melt(betanull.out, id.vars=c("SampleID", "Classification","SoilTemperature_to10cm"), measure.vars=c("BRAY_AbundanceNullDeviation", "WUF_AbundanceNullDeviation"), col=) GnYlOrRd=colorRampPalette(colors=c("green", "yellow", "orange","red"), bias=2) fig4A <- ggplot(data=bnull.long, aes(x=Classification, y=as.numeric(value)))+ geom_boxplot()+ geom_jitter(aes(color=as.numeric(SoilTemperature_to10cm), y=as.numeric(value)))+ facet_grid(variable~., scales="free_y")+ scale_size(guide=FALSE)+ scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temp"))+ scale_x_discrete(name="Fire classification", limits=c("Reference", "FireAffected", "Recovered"))+ scale_y_continuous(name="Abundance Null Deviation")+ theme_bw(base_size=10) fig4A bnull.long.bray=bnull.long[bnull.long[,"variable"]=="BRAY_AbundanceNullDeviation",] fig4B <- ggplot(data=bnull.long.bray, aes(x=plottingorder, y=as.numeric(value)))+ geom_point(aes(color=as.numeric(SoilTemperature_to10cm), y=as.numeric(value)))+ scale_size(guide=FALSE)+ scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temperature (Celsius)"))+ scale_x_continuous(name="Disturbance Intensity", breaks=c(1.5,7,15), labels=c("Ref", "FireAffected", "Recovered"))+ scale_y_continuous(name="Abundance Null Deviation")+ geom_vline(xintercept=c(2.5,11.5), col="gray", lty="dashed")+ theme_bw(base_size=10)+ theme(legend.position="none") fig4B bnull.long.wuf=bnull.long[bnull.long[,"variable"]=="WUF_AbundanceNullDeviation",] fig4C <- ggplot(data=bnull.long.wuf, aes(x=plottingorder, y=as.numeric(value)))+ geom_point(aes(color=as.numeric(SoilTemperature_to10cm), y=as.numeric(value)))+ scale_size(guide=FALSE)+ scale_color_gradientn(colours=GnYlOrRd(5), guide="colorbar", guide_legend(title="Temperature (Celsius)"))+ scale_x_continuous(name="Disturbance Intensity", breaks=c(1.5,7,15), labels=c("Ref", "FireAffected", "Recovered"))+ scale_y_continuous(name="Abundance Null Deviation")+ geom_vline(xintercept=c(2.5,11.5), col="gray", lty="dashed")+ theme_bw(base_size=10)+ theme(legend.position="none") fig4C #Multiplot script written by Winston Chang source("MiscSourceScripts/multiplot.R") dev.off() setEPS() postscript("Figures/Fig4ABC.eps", width = 3.385, height=5, pointsize=9,paper="special") multiplot(fig4A, fig4B, fig4C, cols=1) dev.off() #Pairwise t-tests for Bray Beta Null t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","BRAY_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","BRAY_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","BRAY_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="Reference","BRAY_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Reference","BRAY_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","BRAY_AbundanceNullDeviation"]) #recovered and fire-affected are statistically distinct, p < 0.0006, all other comparisons p > 0.05 #Pairwise t-tests for WUF Beta Null t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","WUF_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","WUF_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Recovered","WUF_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="Reference","WUF_AbundanceNullDeviation"]) t.test(betanull.out[betanull.out[,"Classification"]=="Reference","WUF_AbundanceNullDeviation"],betanull.out[betanull.out[,"Classification"]=="FireAffected","WUF_AbundanceNullDeviation"]) #recovered and fire-affected are distinct, p < 0.04, all other comparisons p > 0.05 #Are the WUF and Bray beta null correlated? cor.test(bnull.long.wuf[,"value"], bnull.long.bray[,"value"]) #Pearson's R = 0.71, p = 0.001 ################################ ### Dominant taxa analysis ################################ #Extract cumulative most abundant OTUs from fire-affected soils - for Table 1 dim(fire) fire.ordered=fire[order(rowSums(fire),decreasing=TRUE),] perc=rowSums(fire.ordered)/sum(rowSums(fire.ordered)) #Analysis of the top 10 most prevalent taxa in fire-affected and recovered soils #libraries needed for this library(vegan) library(gplots) #Do hot soils have consistent dominant membership? fire=t(fire.t) fire.new=fire[rowSums(fire)>0,] rdp.fire=as.vector(rdp.nosigs[rowSums(fire)>0]) dim(fire.new) rec=t(rec.t) rec.new=rec[rowSums(rec)>0,] rdp.rec=as.vector(rdp.nosigs[rowSums(rec)>0]) dim(rec.new) #Function to provide the OTU numbers and Taxonomic IDs are the top (default=10) in each site. extractdominant.f<-function(data,rdp,top.no=10){ out1=NULL out2=NULL for(i in 1:ncol(data)){ s=sort(data[,i], decreasing=TRUE, index.return=TRUE) otuIDs=names(s$x[1:top.no]) rdp.out=rdp[s$ix[1:top.no]] sampleID=c(rep(colnames(data)[[i]],top.no)) temp=cbind(sampleID,otuIDs) out1=rbind(out1,temp) out2=cbind(out2,rdp.out) } colnames(out2)=colnames(data) #write.table(out2, paste("Results/rdp_",top.no,".txt",sep=""), quote=FALSE, sep="\t") #who are the top-10 ranked u=unique(out1[,2]) l=length(unique(out1[,2])) actual.prop=l/dim(out1)[[1]] expected.prop=top.no/dim(out1)[[1]] print("Unique OTU IDs within the most abundant") print(u) print("Number of unique OTUs within the most abundant") print(l) print("Redundancy index given the number of samples and the top number selected 1.00 means completely nonredundant, every top taxa was observed only 1 time across all samples") print(actual.prop) print("Expected redundancy index") print(expected.prop) #print("List of top taxa by sample") #print(out2) return(out2) } fire.out=extractdominant.f(fire.new,rdp.fire,10) rec.out=extractdominant.f(rec.new,rdp.rec,10) data=NULL data=fire.new top.no=10 rdp.in=rdp.fire subsettop.f=function(data, top.no, rdp.in){ otuIDs=NULL rdpIDs=NULL for(i in 1:ncol(data)){ s=sort(data[,i], decreasing=TRUE, index.return=TRUE) otuIDs=c(otuIDs, names(s$x[1:top.no])) rdpIDs=c(rdpIDs, rdp.in[s$ix[1:top.no]]) } temp=cbind(otuIDs,rdpIDs) #print(temp) u.top=unique(otuIDs) #temp.u=temp[is.element(temp[,"otuIDs"],u.top),] #write.table(temp.u, "Results/OTURDP_Top10.txt", sep="\t", quote=FALSE) top10.otu=NULL for(j in 1:nrow(data)){ if(is.element(row.names(data)[j],u.top)){ top10.otu=rbind(top10.otu,data[j,]) } } row.names(top10.otu)=u.top colnames(top10.otu)=colnames(data) return(top10.otu) } topfire=subsettop.f(fire.new,10,rdp.fire) #how many OTUs are de novo? length(grep("dn",rownames(topfire))) #create color pallette; see: http://colorbrewer2.org/ hc=colorRampPalette(c("#91bfdb","white","#fc8d59"), interpolate="linear") topfire.pa=1*(topfire>0) sum(rowSums(topfire.pa)==9) toprec=subsettop.f(rec.new,10, rdp.rec) #how many OTUs are de novo length(grep("dn",rownames(toprec))) #Figure 5 dev.off() setEPS() postscript("Figures/Fig5A.eps", width = 3.5, height=7, pointsize=10, paper="special") heatmap.2(topfire,col=hc(100),scale="column",key=TRUE,symkey=FALSE, trace="none", density.info="none",dendrogram="both", margins=c(5,13), srtCol=90) dev.off() setEPS() postscript("Figures/Fig5B.eps", width = 3.5, height=7, pointsize=10, paper="special") heatmap.2(toprec,col=hc(100),scale="column",key=TRUE,symkey=FALSE, trace="none", density.info="none",dendrogram="both", margins=c(5,13), srtCol=90) dev.off()
| pc = 0xc002 | a = 0x00 | x = 0x15 | y = 0x00 | sp = 0x01fd | p[NV-BDIZC] = 00110100 | | pc = 0xc004 | a = 0x00 | x = 0x15 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | | pc = 0xc006 | a = 0x00 | x = 0x15 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | MEM[0x0050] = 0x15 | | pc = 0xc007 | a = 0x00 | x = 0x16 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | | pc = 0xc009 | a = 0x00 | x = 0x15 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | MEM[0x0050] = 0x15 | | pc = 0xc00a | a = 0x00 | x = 0x16 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 |
/res/store-load-11.r
no_license
HeitorBRaymundo/861
R
false
false
570
r
| pc = 0xc002 | a = 0x00 | x = 0x15 | y = 0x00 | sp = 0x01fd | p[NV-BDIZC] = 00110100 | | pc = 0xc004 | a = 0x00 | x = 0x15 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | | pc = 0xc006 | a = 0x00 | x = 0x15 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | MEM[0x0050] = 0x15 | | pc = 0xc007 | a = 0x00 | x = 0x16 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | | pc = 0xc009 | a = 0x00 | x = 0x15 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 | MEM[0x0050] = 0x15 | | pc = 0xc00a | a = 0x00 | x = 0x16 | y = 0x0b | sp = 0x01fd | p[NV-BDIZC] = 00110100 |
download.file(url = "https://ndownloader.figshare.com/files/2292169", destfile = "data/portal_daa_joined.csv") surveys <- read.csv(file = "Data/portal_daa_joined.csv") surveys surveys[,-c(2:4)] surveys[1:400,1] surveys[1:400,1:8] col158 <- c(1,5,6,7,8) surveys[1:400,col158] surveys_subset <- c(surveys[1:400,col158]) surveys_subset surveys_subset[which($hindfoot_length>32)] surveys_subset$hindfoot_length<- as.numeric(surveys_subset$hindfoot_length) #tried to do this because there are NA values and I think that was messing with my outputs surveys_subset$hindfoot_length surveys_subset$hindfoot_length<- as.numeric(surveys_subset$hindfoot_length) #Tried to make tem numeric so I can do a histogram, did not seem to work surveys_long_feet<-subset(surveys_subset, hindfoot_length>32) surveys_long_feet #gave "$<NA>NULL" output because there are NA values hist(surveys_long_feet$hindfoot_length) #"x must be numeric..."I thought I made it numeric above..did not work surveys_long_feet$hindfoot_length<- as.character(surveys_long_feet$hindfoot_length) hist(surveys_long_feet$hindfoot_length) #gave same error as above because it is still a character...I give up, sorry Arthur!
/Script/Week_4_Assignment_ST.R
no_license
gge-ucd/r-davis-in-class-Sadie-Trombley
R
false
false
1,231
r
download.file(url = "https://ndownloader.figshare.com/files/2292169", destfile = "data/portal_daa_joined.csv") surveys <- read.csv(file = "Data/portal_daa_joined.csv") surveys surveys[,-c(2:4)] surveys[1:400,1] surveys[1:400,1:8] col158 <- c(1,5,6,7,8) surveys[1:400,col158] surveys_subset <- c(surveys[1:400,col158]) surveys_subset surveys_subset[which($hindfoot_length>32)] surveys_subset$hindfoot_length<- as.numeric(surveys_subset$hindfoot_length) #tried to do this because there are NA values and I think that was messing with my outputs surveys_subset$hindfoot_length surveys_subset$hindfoot_length<- as.numeric(surveys_subset$hindfoot_length) #Tried to make tem numeric so I can do a histogram, did not seem to work surveys_long_feet<-subset(surveys_subset, hindfoot_length>32) surveys_long_feet #gave "$<NA>NULL" output because there are NA values hist(surveys_long_feet$hindfoot_length) #"x must be numeric..."I thought I made it numeric above..did not work surveys_long_feet$hindfoot_length<- as.character(surveys_long_feet$hindfoot_length) hist(surveys_long_feet$hindfoot_length) #gave same error as above because it is still a character...I give up, sorry Arthur!
#-------------------------------------------------------------------------------------------------- #Adding new data source: GDSC1 and GDSC2 # #-------------------------------------------------------------------------------------------------- # There are 970 and 969 cell lines # # --------------------------------------------------------- cann1 = read.csv("./inst/extdata/gdsc1_cell_ann_curated.csv", row.names = 1, stringsAsFactors = F, check.names = F) cann2 = read.csv("./inst/extdata/gdsc2_cell_ann_curated.csv", row.names = 1, stringsAsFactors = F, check.names = F) # 7 news dim(cann1); dim(cann2) # 970 - 24 ; 969 - 24 # length(intersect(cann1$Sample.Name, gdsc1Data::drugData@sampleData@samples$Name)) # 970 # length(intersect(cann2$Sample.Name, gdsc2Data::drugData@sampleData@samples$Name)) # 969 ctable=rcellminerUtilsCDB::cellLineMatchTab dim(ctable) # 2068 - 28 ## GDSC1------------------------------------------------------------ ctable$gdsc1 = NA ind1 = match(cann1$Sample.Name.Old, ctable$gdscDec15) ## notf1 =which(is.na(ind1)) # zero # kk = which(cann1$Sample.Name!=cann1$Sample.Name.Old) # View(cann1[kk,]) ## ctable$gdsc1[ind1] = cann1$Sample.Name ## GDSC2 ----------------------------------------------------------- ctable$gdsc2 = NA ind2 = match(cann2$Sample.Name.Old, ctable$gdscDec15) notf2 = which(is.na(ind2)) length(notf2) # 7 ctable$gdsc2[ind2[-notf2]] = cann2$Sample.Name[-notf2] # new ones to dec15 cvcls = cann2$`cellosaurus ID`[which(cann2$`cellosaurus ID`!="")] newc = cann2$Sample.Name[which(cann2$`cellosaurus ID`!="")] ind3 = match(cvcls, ctable$cellosaurus_accession) ctable$gdsc2[ind3] = newc # View(ctable[ind3,]) ## OK done for both datasets !!! length(which(!is.na(ctable$gdsc1))) # 970 length(which(!is.na(ctable$gdsc2))) # 969 length(which(!is.na(ctable$gdsc1) & !is.na(ctable$gdsc2) )) # 961 ## ====================== dim(ctable) # 2068 30 cellLineMatchTab <- ctable save(cellLineMatchTab, file = "data/cellLineMatchTab.RData") ## END
/inst/extdata/Add_GDSC_1_2_cell_lines.R
no_license
CBIIT/rcellminerUtilsCDB
R
false
false
2,017
r
#-------------------------------------------------------------------------------------------------- #Adding new data source: GDSC1 and GDSC2 # #-------------------------------------------------------------------------------------------------- # There are 970 and 969 cell lines # # --------------------------------------------------------- cann1 = read.csv("./inst/extdata/gdsc1_cell_ann_curated.csv", row.names = 1, stringsAsFactors = F, check.names = F) cann2 = read.csv("./inst/extdata/gdsc2_cell_ann_curated.csv", row.names = 1, stringsAsFactors = F, check.names = F) # 7 news dim(cann1); dim(cann2) # 970 - 24 ; 969 - 24 # length(intersect(cann1$Sample.Name, gdsc1Data::drugData@sampleData@samples$Name)) # 970 # length(intersect(cann2$Sample.Name, gdsc2Data::drugData@sampleData@samples$Name)) # 969 ctable=rcellminerUtilsCDB::cellLineMatchTab dim(ctable) # 2068 - 28 ## GDSC1------------------------------------------------------------ ctable$gdsc1 = NA ind1 = match(cann1$Sample.Name.Old, ctable$gdscDec15) ## notf1 =which(is.na(ind1)) # zero # kk = which(cann1$Sample.Name!=cann1$Sample.Name.Old) # View(cann1[kk,]) ## ctable$gdsc1[ind1] = cann1$Sample.Name ## GDSC2 ----------------------------------------------------------- ctable$gdsc2 = NA ind2 = match(cann2$Sample.Name.Old, ctable$gdscDec15) notf2 = which(is.na(ind2)) length(notf2) # 7 ctable$gdsc2[ind2[-notf2]] = cann2$Sample.Name[-notf2] # new ones to dec15 cvcls = cann2$`cellosaurus ID`[which(cann2$`cellosaurus ID`!="")] newc = cann2$Sample.Name[which(cann2$`cellosaurus ID`!="")] ind3 = match(cvcls, ctable$cellosaurus_accession) ctable$gdsc2[ind3] = newc # View(ctable[ind3,]) ## OK done for both datasets !!! length(which(!is.na(ctable$gdsc1))) # 970 length(which(!is.na(ctable$gdsc2))) # 969 length(which(!is.na(ctable$gdsc1) & !is.na(ctable$gdsc2) )) # 961 ## ====================== dim(ctable) # 2068 30 cellLineMatchTab <- ctable save(cellLineMatchTab, file = "data/cellLineMatchTab.RData") ## END
# Script for Getting and Cleaning Data Course Project # You should create one R script called run_analysis.R that does the following. # 1. Merges the training and the test sets to create one data set. # 2. Extracts only the measurements on the mean and standard deviation for each measurement. # 3. Uses descriptive activity names to name the activities in the data set # 4. Appropriately labels the data set with descriptive variable names. # 5. From the data set in step 4, creates a second, independent tidy data set with the average of each # variable for each activity and each subject. # Please make sure to have installed dplyr package, if not run # run the following 2 lines of code # install.packages("dplyr") # library(dplyr) require(plyr) require(dplyr) # 1. Merges the training and the test sets to create one data set. #set working directory setwd("C:/Users/DJ/Desktop/Coursera/Getting and Cleaning Data/Course Project/getdata-projectfiles-UCI HAR Dataset/UCI HAR Dataset") # Read all tables into R actLabels <- read.table("./activity_labels.txt", col.names = c("ActivityID", "Activity")) features <- read.table("./features.txt", colClasses = "character") # test data testX <- read.table("./test/X_test.txt") testY <- read.table("./test/Y_test.txt") subjectTest <- read.table("./test/subject_test.txt") #train data trainX <- read.table("./train/X_train.txt") trainY <- read.table("./train/Y_train.txt") subjectTrain <- read.table("./train/subject_train.txt") # COmbine 2 data sets together Test <- cbind(testY,cbind(subjectTest, testX)) Train <- cbind(trainY,cbind(subjectTrain, trainX)) TestAndTrain <- rbind(Test, Train) # Label Columns TestAndTrainLabels <- rbind(c(562, "ActivityID"), c(563, "SubjectID"), features) names(TestAndTrain) <- TestAndTrainLabels[,2] # 2. Extracts only the measurements on the mean and standard deviation for each measurement. TestAndTrainSubset <- TestAndTrain[,grepl("mean[()]|std[()]|ActivityID|SubjectID", names(TestAndTrain))] # 3. Uses descriptive activity names to name the activities in the data set TestAndTrainSubset <- inner_join(TestAndTrainSubset, actLabels, by = "ActivityID") # 4. Appropriately labels the data set with descriptive variable names names(TestAndTrainSubset) <- gsub("mean[(][)]", "Mean_Value", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("std[(][)]", "Standard_Deviation", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("[-]", "_", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("^t", "Time_", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("^f", "Frequency_", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("Acc", "Acceleration", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("Mag", "Magnitude", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("Gyro", "Gyroscopic", names(TestAndTrainSubset)) # 5. From the data set in step 4, creates a second, independent tidy data set with the average of each # variable for each activity and each subject. TidyDataSubset <- arrange(ddply(TestAndTrainSubset, c("Activity", "SubjectID"), numcolwise(mean)), ActivityID) write.table(TidyDataSubset, file = "TidyDataSubset.txt")
/Desktop/Coursera/Getting and Cleaning Data/Getting-Cleaning-Data-Project/run_analysis.R
no_license
dctb13/Getting-And-Cleaning-Data
R
false
false
3,217
r
# Script for Getting and Cleaning Data Course Project # You should create one R script called run_analysis.R that does the following. # 1. Merges the training and the test sets to create one data set. # 2. Extracts only the measurements on the mean and standard deviation for each measurement. # 3. Uses descriptive activity names to name the activities in the data set # 4. Appropriately labels the data set with descriptive variable names. # 5. From the data set in step 4, creates a second, independent tidy data set with the average of each # variable for each activity and each subject. # Please make sure to have installed dplyr package, if not run # run the following 2 lines of code # install.packages("dplyr") # library(dplyr) require(plyr) require(dplyr) # 1. Merges the training and the test sets to create one data set. #set working directory setwd("C:/Users/DJ/Desktop/Coursera/Getting and Cleaning Data/Course Project/getdata-projectfiles-UCI HAR Dataset/UCI HAR Dataset") # Read all tables into R actLabels <- read.table("./activity_labels.txt", col.names = c("ActivityID", "Activity")) features <- read.table("./features.txt", colClasses = "character") # test data testX <- read.table("./test/X_test.txt") testY <- read.table("./test/Y_test.txt") subjectTest <- read.table("./test/subject_test.txt") #train data trainX <- read.table("./train/X_train.txt") trainY <- read.table("./train/Y_train.txt") subjectTrain <- read.table("./train/subject_train.txt") # COmbine 2 data sets together Test <- cbind(testY,cbind(subjectTest, testX)) Train <- cbind(trainY,cbind(subjectTrain, trainX)) TestAndTrain <- rbind(Test, Train) # Label Columns TestAndTrainLabels <- rbind(c(562, "ActivityID"), c(563, "SubjectID"), features) names(TestAndTrain) <- TestAndTrainLabels[,2] # 2. Extracts only the measurements on the mean and standard deviation for each measurement. TestAndTrainSubset <- TestAndTrain[,grepl("mean[()]|std[()]|ActivityID|SubjectID", names(TestAndTrain))] # 3. Uses descriptive activity names to name the activities in the data set TestAndTrainSubset <- inner_join(TestAndTrainSubset, actLabels, by = "ActivityID") # 4. Appropriately labels the data set with descriptive variable names names(TestAndTrainSubset) <- gsub("mean[(][)]", "Mean_Value", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("std[(][)]", "Standard_Deviation", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("[-]", "_", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("^t", "Time_", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("^f", "Frequency_", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("Acc", "Acceleration", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("Mag", "Magnitude", names(TestAndTrainSubset)) names(TestAndTrainSubset) <- gsub("Gyro", "Gyroscopic", names(TestAndTrainSubset)) # 5. From the data set in step 4, creates a second, independent tidy data set with the average of each # variable for each activity and each subject. TidyDataSubset <- arrange(ddply(TestAndTrainSubset, c("Activity", "SubjectID"), numcolwise(mean)), ActivityID) write.table(TidyDataSubset, file = "TidyDataSubset.txt")
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{raw} \alias{raw} \title{Raw sample dataset} \format{ A data frame with 2000 genes and 815 cells: } \source{ GEO GSM2861514 } \usage{ raw } \description{ A subsample of a real sc-RNAseq dataset } \keyword{datasets}
/man/raw.Rd
no_license
seriph78/COTAN_stable
R
false
true
320
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{raw} \alias{raw} \title{Raw sample dataset} \format{ A data frame with 2000 genes and 815 cells: } \source{ GEO GSM2861514 } \usage{ raw } \description{ A subsample of a real sc-RNAseq dataset } \keyword{datasets}
context("overlapping-areas") library(sf) p_self <- st_sfc(st_polygon(list(cbind(c(0, 0, 1, -0.1, -0.1, 1.5, 0), c(0, 1, 1, 0.2, 1.2, 1.2, 0))))) plot(p_self) p_valid <- st_sfc(st_polygon(list(cbind(c(0, 0, 1, 0, 0, -0.1, -0.1, 1.5, 0), c(0, 0.272727272727272, 1, 1, 0.272727272727272, 0.2, 1.2, 1.2, 0))))) st_sfc(p_self, p_valid) test_that("the triangulate and rebuild fix works", { expect_equal(fix_overlapping_area(p_self), p_valid) })
/tests/testthat/test-overlapping-areas.R
no_license
r-gris/torpor
R
false
false
536
r
context("overlapping-areas") library(sf) p_self <- st_sfc(st_polygon(list(cbind(c(0, 0, 1, -0.1, -0.1, 1.5, 0), c(0, 1, 1, 0.2, 1.2, 1.2, 0))))) plot(p_self) p_valid <- st_sfc(st_polygon(list(cbind(c(0, 0, 1, 0, 0, -0.1, -0.1, 1.5, 0), c(0, 0.272727272727272, 1, 1, 0.272727272727272, 0.2, 1.2, 1.2, 0))))) st_sfc(p_self, p_valid) test_that("the triangulate and rebuild fix works", { expect_equal(fix_overlapping_area(p_self), p_valid) })
####################################################################### #### Plot ChEA results ####################################################################### ## Goal: Analyze ChEA results and generate analysis plots ## Data structures: ## - df_DE ####################################################################### #### SET UP ####################################################################### source("../scripts/R/load.R") ####################################################################### #### Set relevant input and output directories ####################################################################### ## Inputs dataDirs <- c("./") ## Outputs dataDir <- "../results/AALE_KRAS-RIT1/ChEA" resultsDir <- "../results/AALE_KRAS-RIT1/ChEA" figsDir <- "../results/AALE_KRAS-RIT1/Figures" load("df_DE.RData") perturbations <- unique(df_DE$Perturbation) ####################################################################### #### Load ChEA3 output files ####################################################################### libraries <- c("ENCODE_ChIP-seq", "ReMap_ChIP-seq", "Literature_ChIP-seq", "ARCHS4_Coexpression", "GTEx_Coexpression", "Enrichr_Queries") for (library in libraries) { foo <- fread(paste0(dataDir, "/RIT1-M90I_Renilla_", library, ".tsv")) bar <- fread(paste0(dataDir, "/KRAS-G12V_Renilla_", library, ".tsv")) } ####################################################################### #### Plot top enriched TFs (Enrichr query) ####################################################################### df_enrichr <- data.frame(Query_Name = character(), Rank = integer(), Scaled_Rank = double(), Set_name = character(), TF = character(), Intersect = integer(), FET_pvalue = double(), FDR = double(), Odds_Ratio = double(), Library = character()) ## Load Enrichr Queries results table for (perturb in perturbations) { foo <- fread(paste0(dataDir, "/", perturb, "_Renilla_Enrichr_Queries.tsv")) foo <- as_tibble(foo) %>% mutate(Perturbation = perturb) names(foo) <- gsub(" ", "_", names(foo)) names(foo) <- gsub("p-value", "pvalue", names(foo)) print(head(foo)) dim(filter(foo, FDR < 0.05)) df_enrichr <- bind_rows(df_enrichr, foo) } df_enrichr <- as_tibble(df_enrichr) EMT_gene_list_short <- c("HIC1", "TWIST1", "HOXD9", "FOXQ1", "FOSL1") df_EMT_genes <- data.frame(TF = EMT_gene_list_short, EMT_status = "DB-Confirmed") EMT_gene_list <- c("PRRX2", "FOXS1", "FOXC2", "BNC1", "FOSB", "HOXC6", "HOXB9", "FOXF1", "SIM2", "FOXL1", "EHF", "EGR2", "ATF3", "ZNF750", "FOXF2", "HOXC8", "JDP2", "HOXA10", "OVOL1", "ELF5", "SOX7", "MSX2", "ASCL2", "RELB", "HEY1") +df <- data.frame(TF = EMT_gene_list, EMT_status = "Literature") df_EMT_genes <- bind_rows(df_EMT_genes, df) df <- data.frame(TF = c("SNAI1", "SNAI2"), EMT_status = "SNAIL") df_EMT_genes <- bind_rows(df_EMT_genes, df) ## Take top 25 enriched TFs by p-value for (perturb in perturbations) { df_plot <- df_enrichr %>% filter(Perturbation == perturb) %>% arrange(FET_pvalue) %>% dplyr::slice(1:25) %>% left_join(df_EMT_genes) df_plot$EMT_status[is.na(df_plot$EMT_status)] <- "No" xmax <- max(-log10(df_plot$FET_pvalue)) colors <- c("#de2d26", "#fc9272", "#fee0d2", "#bdbdbd") names(colors) <- c("SNAIL", "DB-Confirmed", "Literature", "No") ## Plot horizontal bar plot of top 25 TF p-values g <- ggplot(df_plot) + geom_col(aes(x = reorder(TF, -FET_pvalue), y = -log10(FET_pvalue), fill = EMT_status), width = .75) + coord_flip() + scale_fill_manual(values = colors, guide = FALSE) + scale_x_discrete(name = "Transcription Factor") + scale_y_continuous(name = "-log10(FET p-value)", limits = c(0, xmax+2), expand = c(0,0)) + theme_classic(base_size = 24) + theme(axis.ticks.y = element_blank(), axis.text.x = element_text(margin = margin(t = 6, b = 8), size = 24), axis.text.y = element_text(margin = margin(r = 4, l = 6), size = 20)) ggsave(plot = g, file = paste0("/", perturb, "_Enrichr-top25-bars.pdf"), device = "pdf", height = 8, width = 10, path = resultsDir) } ####################################################################### #### Compare KRAS and RIT1 Enrichr query results ####################################################################### foo <- fread(paste0(dataDir, "/RIT1-M90I_Renilla_Enrichr_Queries.tsv")) bar <- fread(paste0(dataDir, "/KRAS-G12V_Renilla_Enrichr_Queries.tsv")) df_enrichr <- inner_join(foo, bar, by = c("Query Name", "TF", "Library"), suffix = c("_RIT1-M90I", "_KRAS-G12V")) df_enrichr %>% filter(TF == "EHF") df_plot <- df_enrichr g <- ggplot(df_plot) + geom_point(aes(x = -log10(`FET p-value_KRAS-G12V`), y = -log10(`FET p-value_RIT1-M90I`)), alpha = 0.5, size = 2, shape = 16) + geom_abline(color = "grey") + scale_x_continuous(limits = c(0, 47)) + scale_y_continuous(limits = c(0, 35)) + theme_classic(base_size = 18) ggsave(g, file = "/Enrichr_pval_scatterplot.pdf", device = "pdf", height = 6, width = 6, path = resultsDir) foo1 <- mutate(foo, Perturbation = "RIT1-M90I") bar1 <- mutate(bar, Perturbation = "KRAS-G12V") df_plot <- bind_rows(foo1, bar1) %>% mutate(Perturbation = factor(Perturbation, levels = c("KRAS-G12V", "RIT1-M90I"))) g <- ggplot(df_plot, aes(x = Perturbation, y = -log10(FET_pvalue), group = TF)) + geom_point() + stat_summary(geom="line") + theme_classic(base_size = 18) ggsave(g, file = "/Enrichr_difference.pdf", device = "pdf", height = 7, width = 6, path = resultsDir) ####################################################################### #### Compare KRAS and RIT1 overall TF enrichment ####################################################################### ## Score := Mean Integrated Rank ## Library := Rank of TF in each library analysis that could be performed foo <- as_tibble(fread(paste0(dataDir, "/RIT1-M90I_Renilla_Integrated_meanRank.tsv"))) bar <- as_tibble(fread(paste0(dataDir, "/KRAS-G12V_Renilla_Integrated_meanRank.tsv"))) df_chea <- inner_join(foo, bar, by = c("Query Name", "TF"), suffix = c("_RIT1_M90I", "_KRAS_G12V")) df_chea %>% filter(TF == "EHF") df_plot <- df_chea g <- ggplot(df_plot) + geom_point(aes(x = Score_KRAS_G12V, y = Score_RIT1_M90I), alpha = 0.5, size = 2, shape = 16) + geom_abline(color = "grey") + theme_classic(base_size = 18) ggsave(g, file = "/MeanRank_scatterplot.pdf", device = "pdf", height = 6, width = 6, path = resultsDir) df_chea_top <- df_chea %>% filter(Rank_RIT1_M90I < 50 | Rank_KRAS_G12V < 50) %>% mutate(score_diff = abs(Score_RIT1_M90I - Score_KRAS_G12V)) # filter(score_diff > 200) foo1 <- mutate(foo, Perturbation = "RIT1-M90I") bar1 <- mutate(bar, Perturbation = "KRAS-G12V") df_plot <- bind_rows(foo1, bar1) %>% mutate(Perturbation = factor(Perturbation, levels = c("KRAS-G12V", "RIT1-M90I"))) %>% filter(TF %in% df_chea_top$TF) g <- ggplot(df_plot, aes(x = Perturbation, y = Score, group = TF)) + geom_point() + stat_summary(geom="line", alpha = 0.5) + theme_classic(base_size = 18) ggsave(g, file = "/MeanRank_difference_top.pdf", device = "pdf", height = 6, width = 6, path = resultsDir)
/analysis_ChEA.R
no_license
aprilflow/KRAS-RIT1-profiling
R
false
false
8,223
r
####################################################################### #### Plot ChEA results ####################################################################### ## Goal: Analyze ChEA results and generate analysis plots ## Data structures: ## - df_DE ####################################################################### #### SET UP ####################################################################### source("../scripts/R/load.R") ####################################################################### #### Set relevant input and output directories ####################################################################### ## Inputs dataDirs <- c("./") ## Outputs dataDir <- "../results/AALE_KRAS-RIT1/ChEA" resultsDir <- "../results/AALE_KRAS-RIT1/ChEA" figsDir <- "../results/AALE_KRAS-RIT1/Figures" load("df_DE.RData") perturbations <- unique(df_DE$Perturbation) ####################################################################### #### Load ChEA3 output files ####################################################################### libraries <- c("ENCODE_ChIP-seq", "ReMap_ChIP-seq", "Literature_ChIP-seq", "ARCHS4_Coexpression", "GTEx_Coexpression", "Enrichr_Queries") for (library in libraries) { foo <- fread(paste0(dataDir, "/RIT1-M90I_Renilla_", library, ".tsv")) bar <- fread(paste0(dataDir, "/KRAS-G12V_Renilla_", library, ".tsv")) } ####################################################################### #### Plot top enriched TFs (Enrichr query) ####################################################################### df_enrichr <- data.frame(Query_Name = character(), Rank = integer(), Scaled_Rank = double(), Set_name = character(), TF = character(), Intersect = integer(), FET_pvalue = double(), FDR = double(), Odds_Ratio = double(), Library = character()) ## Load Enrichr Queries results table for (perturb in perturbations) { foo <- fread(paste0(dataDir, "/", perturb, "_Renilla_Enrichr_Queries.tsv")) foo <- as_tibble(foo) %>% mutate(Perturbation = perturb) names(foo) <- gsub(" ", "_", names(foo)) names(foo) <- gsub("p-value", "pvalue", names(foo)) print(head(foo)) dim(filter(foo, FDR < 0.05)) df_enrichr <- bind_rows(df_enrichr, foo) } df_enrichr <- as_tibble(df_enrichr) EMT_gene_list_short <- c("HIC1", "TWIST1", "HOXD9", "FOXQ1", "FOSL1") df_EMT_genes <- data.frame(TF = EMT_gene_list_short, EMT_status = "DB-Confirmed") EMT_gene_list <- c("PRRX2", "FOXS1", "FOXC2", "BNC1", "FOSB", "HOXC6", "HOXB9", "FOXF1", "SIM2", "FOXL1", "EHF", "EGR2", "ATF3", "ZNF750", "FOXF2", "HOXC8", "JDP2", "HOXA10", "OVOL1", "ELF5", "SOX7", "MSX2", "ASCL2", "RELB", "HEY1") +df <- data.frame(TF = EMT_gene_list, EMT_status = "Literature") df_EMT_genes <- bind_rows(df_EMT_genes, df) df <- data.frame(TF = c("SNAI1", "SNAI2"), EMT_status = "SNAIL") df_EMT_genes <- bind_rows(df_EMT_genes, df) ## Take top 25 enriched TFs by p-value for (perturb in perturbations) { df_plot <- df_enrichr %>% filter(Perturbation == perturb) %>% arrange(FET_pvalue) %>% dplyr::slice(1:25) %>% left_join(df_EMT_genes) df_plot$EMT_status[is.na(df_plot$EMT_status)] <- "No" xmax <- max(-log10(df_plot$FET_pvalue)) colors <- c("#de2d26", "#fc9272", "#fee0d2", "#bdbdbd") names(colors) <- c("SNAIL", "DB-Confirmed", "Literature", "No") ## Plot horizontal bar plot of top 25 TF p-values g <- ggplot(df_plot) + geom_col(aes(x = reorder(TF, -FET_pvalue), y = -log10(FET_pvalue), fill = EMT_status), width = .75) + coord_flip() + scale_fill_manual(values = colors, guide = FALSE) + scale_x_discrete(name = "Transcription Factor") + scale_y_continuous(name = "-log10(FET p-value)", limits = c(0, xmax+2), expand = c(0,0)) + theme_classic(base_size = 24) + theme(axis.ticks.y = element_blank(), axis.text.x = element_text(margin = margin(t = 6, b = 8), size = 24), axis.text.y = element_text(margin = margin(r = 4, l = 6), size = 20)) ggsave(plot = g, file = paste0("/", perturb, "_Enrichr-top25-bars.pdf"), device = "pdf", height = 8, width = 10, path = resultsDir) } ####################################################################### #### Compare KRAS and RIT1 Enrichr query results ####################################################################### foo <- fread(paste0(dataDir, "/RIT1-M90I_Renilla_Enrichr_Queries.tsv")) bar <- fread(paste0(dataDir, "/KRAS-G12V_Renilla_Enrichr_Queries.tsv")) df_enrichr <- inner_join(foo, bar, by = c("Query Name", "TF", "Library"), suffix = c("_RIT1-M90I", "_KRAS-G12V")) df_enrichr %>% filter(TF == "EHF") df_plot <- df_enrichr g <- ggplot(df_plot) + geom_point(aes(x = -log10(`FET p-value_KRAS-G12V`), y = -log10(`FET p-value_RIT1-M90I`)), alpha = 0.5, size = 2, shape = 16) + geom_abline(color = "grey") + scale_x_continuous(limits = c(0, 47)) + scale_y_continuous(limits = c(0, 35)) + theme_classic(base_size = 18) ggsave(g, file = "/Enrichr_pval_scatterplot.pdf", device = "pdf", height = 6, width = 6, path = resultsDir) foo1 <- mutate(foo, Perturbation = "RIT1-M90I") bar1 <- mutate(bar, Perturbation = "KRAS-G12V") df_plot <- bind_rows(foo1, bar1) %>% mutate(Perturbation = factor(Perturbation, levels = c("KRAS-G12V", "RIT1-M90I"))) g <- ggplot(df_plot, aes(x = Perturbation, y = -log10(FET_pvalue), group = TF)) + geom_point() + stat_summary(geom="line") + theme_classic(base_size = 18) ggsave(g, file = "/Enrichr_difference.pdf", device = "pdf", height = 7, width = 6, path = resultsDir) ####################################################################### #### Compare KRAS and RIT1 overall TF enrichment ####################################################################### ## Score := Mean Integrated Rank ## Library := Rank of TF in each library analysis that could be performed foo <- as_tibble(fread(paste0(dataDir, "/RIT1-M90I_Renilla_Integrated_meanRank.tsv"))) bar <- as_tibble(fread(paste0(dataDir, "/KRAS-G12V_Renilla_Integrated_meanRank.tsv"))) df_chea <- inner_join(foo, bar, by = c("Query Name", "TF"), suffix = c("_RIT1_M90I", "_KRAS_G12V")) df_chea %>% filter(TF == "EHF") df_plot <- df_chea g <- ggplot(df_plot) + geom_point(aes(x = Score_KRAS_G12V, y = Score_RIT1_M90I), alpha = 0.5, size = 2, shape = 16) + geom_abline(color = "grey") + theme_classic(base_size = 18) ggsave(g, file = "/MeanRank_scatterplot.pdf", device = "pdf", height = 6, width = 6, path = resultsDir) df_chea_top <- df_chea %>% filter(Rank_RIT1_M90I < 50 | Rank_KRAS_G12V < 50) %>% mutate(score_diff = abs(Score_RIT1_M90I - Score_KRAS_G12V)) # filter(score_diff > 200) foo1 <- mutate(foo, Perturbation = "RIT1-M90I") bar1 <- mutate(bar, Perturbation = "KRAS-G12V") df_plot <- bind_rows(foo1, bar1) %>% mutate(Perturbation = factor(Perturbation, levels = c("KRAS-G12V", "RIT1-M90I"))) %>% filter(TF %in% df_chea_top$TF) g <- ggplot(df_plot, aes(x = Perturbation, y = Score, group = TF)) + geom_point() + stat_summary(geom="line", alpha = 0.5) + theme_classic(base_size = 18) ggsave(g, file = "/MeanRank_difference_top.pdf", device = "pdf", height = 6, width = 6, path = resultsDir)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stat.R \name{ca.test} \alias{ca.test} \alias{ca.test.default} \alias{ca.test.formula} \title{Cochran-Armitage test for trend} \usage{ ca.test(x, ...) \method{ca.test}{default}(x, g, ..., score = NULL, simulate.p.value = FALSE, B = 2000L) \method{ca.test}{formula}(formula, data, ...) } \arguments{ \item{x}{a factor-like vector giving the (unordered) variable (equivalently the row variable of a contingency table) alternatively, \code{x} can be a \code{2 x c} table or matrix with exactly two rows and at least three ordered columns; \code{x} may also be a list of the row variable split by the ordered column variable in which case the list is assumed to be ordered, i.e., \code{x[[1]] < x[[2]] < ... < x[[c]]}; see examples} \item{...}{further arguments to be passed to or from methods} \item{g}{a factor-like vector giving the \emph{ordered} group for each corresponding element of \code{x}, ignored with a warning if \code{x} is a list or table; if \code{g} is not a factor, it will be coerced, and groups will be ordered as sort(unique(g)); see \code{\link{factor}}} \item{score}{group score for each column, default is \code{1:ncol}} \item{simulate.p.value}{logical; if \code{TRUE}, p-value is computed using by Monte Carlo simulation} \item{B}{an integer specifying the number of replicates used in the Monte Carlo test} \item{formula}{a formula of the form \code{row ~ column} where \code{row} gives the row variable having two unique values and \code{column} gives the \emph{ordered} column variable} \item{data}{an optional matrix or data frame (or similar: see \code{\link{model.frame}}) containing the variables in \code{formula}; by default the variables are taken from \code{environment(formula)}} } \value{ A list with class "\code{htest}" containing the following elements: \item{\code{statistic}}{the chi-squared test statistic} \item{\code{parameter}}{the degrees of freedom of the approximate chi- squared distribution of the test statistic} \item{\code{p.value}}{the p-value of the test (two-sided)} \item{\code{method}}{a character string describing the test, and, optionally, the number of Monte Carlo replications, if applicable} \item{\code{data.name}}{a character string giving the names of the data} \item{\code{conf.int}}{optionally (if \code{simulate.p.value = TRUE}), the 99\% confidence interval of the Monte Carlo p-value} \item{\code{summary}}{optionally (if \code{simulate.p.value = TRUE}), a summary of the simulated test statistics} } \description{ Performs a Cochran-Armitage chi-squared test for trend in proportions for a \code{2 x c} contingency table with a nominal row (r == 2) and ordinal column (c > 2) variable. } \examples{ ## example from stats::prop.trend.test smokers <- c(83, 90, 129, 70) patients <- c(86, 93, 136, 82) prop.test(smokers, patients) prop.trend.test(smokers, patients) # DescTools::CochranArmitageTest(rbind(smokers, patients - smokers)) ca.test(rbind(smokers, patients - smokers)) ca.test(rbind(smokers, patients - smokers), score = c(0, 0, 1, 2)) ## equivalent ways to call ca.test dat <- data.frame(x = mtcars$vs, y = mtcars$gear) ca.test(dat$x, dat$y) ca.test(x ~ y, dat) ca.test(split(dat$x, dat$y)) ca.test(table(dat$x, dat$y)) \dontrun{ ## simulate p-value with 1k replicates set.seed(1) ca.test(rbind(smokers, patients - smokers), simulate.p.value = TRUE, B = 1000) } } \seealso{ \code{\link{prop.trend.test}}; \code{\link{jt.test}} for doubly-ordered tables; \code{\link{cuzick.test}}; \code{DescTools::CochranArmitageTest} }
/man/ca.test.Rd
no_license
raredd/rawr
R
false
true
3,607
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stat.R \name{ca.test} \alias{ca.test} \alias{ca.test.default} \alias{ca.test.formula} \title{Cochran-Armitage test for trend} \usage{ ca.test(x, ...) \method{ca.test}{default}(x, g, ..., score = NULL, simulate.p.value = FALSE, B = 2000L) \method{ca.test}{formula}(formula, data, ...) } \arguments{ \item{x}{a factor-like vector giving the (unordered) variable (equivalently the row variable of a contingency table) alternatively, \code{x} can be a \code{2 x c} table or matrix with exactly two rows and at least three ordered columns; \code{x} may also be a list of the row variable split by the ordered column variable in which case the list is assumed to be ordered, i.e., \code{x[[1]] < x[[2]] < ... < x[[c]]}; see examples} \item{...}{further arguments to be passed to or from methods} \item{g}{a factor-like vector giving the \emph{ordered} group for each corresponding element of \code{x}, ignored with a warning if \code{x} is a list or table; if \code{g} is not a factor, it will be coerced, and groups will be ordered as sort(unique(g)); see \code{\link{factor}}} \item{score}{group score for each column, default is \code{1:ncol}} \item{simulate.p.value}{logical; if \code{TRUE}, p-value is computed using by Monte Carlo simulation} \item{B}{an integer specifying the number of replicates used in the Monte Carlo test} \item{formula}{a formula of the form \code{row ~ column} where \code{row} gives the row variable having two unique values and \code{column} gives the \emph{ordered} column variable} \item{data}{an optional matrix or data frame (or similar: see \code{\link{model.frame}}) containing the variables in \code{formula}; by default the variables are taken from \code{environment(formula)}} } \value{ A list with class "\code{htest}" containing the following elements: \item{\code{statistic}}{the chi-squared test statistic} \item{\code{parameter}}{the degrees of freedom of the approximate chi- squared distribution of the test statistic} \item{\code{p.value}}{the p-value of the test (two-sided)} \item{\code{method}}{a character string describing the test, and, optionally, the number of Monte Carlo replications, if applicable} \item{\code{data.name}}{a character string giving the names of the data} \item{\code{conf.int}}{optionally (if \code{simulate.p.value = TRUE}), the 99\% confidence interval of the Monte Carlo p-value} \item{\code{summary}}{optionally (if \code{simulate.p.value = TRUE}), a summary of the simulated test statistics} } \description{ Performs a Cochran-Armitage chi-squared test for trend in proportions for a \code{2 x c} contingency table with a nominal row (r == 2) and ordinal column (c > 2) variable. } \examples{ ## example from stats::prop.trend.test smokers <- c(83, 90, 129, 70) patients <- c(86, 93, 136, 82) prop.test(smokers, patients) prop.trend.test(smokers, patients) # DescTools::CochranArmitageTest(rbind(smokers, patients - smokers)) ca.test(rbind(smokers, patients - smokers)) ca.test(rbind(smokers, patients - smokers), score = c(0, 0, 1, 2)) ## equivalent ways to call ca.test dat <- data.frame(x = mtcars$vs, y = mtcars$gear) ca.test(dat$x, dat$y) ca.test(x ~ y, dat) ca.test(split(dat$x, dat$y)) ca.test(table(dat$x, dat$y)) \dontrun{ ## simulate p-value with 1k replicates set.seed(1) ca.test(rbind(smokers, patients - smokers), simulate.p.value = TRUE, B = 1000) } } \seealso{ \code{\link{prop.trend.test}}; \code{\link{jt.test}} for doubly-ordered tables; \code{\link{cuzick.test}}; \code{DescTools::CochranArmitageTest} }
library(tidyhydat) ### Name: hy_stn_datum_conv ### Title: Extract station datum conversions from HYDAT database ### Aliases: hy_stn_datum_conv ### ** Examples ## Not run: ##D hy_stn_datum_conv(station_number = c("02JE013","08MF005")) ## End(Not run)
/data/genthat_extracted_code/tidyhydat/examples/hy_stn_datum_conv.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
258
r
library(tidyhydat) ### Name: hy_stn_datum_conv ### Title: Extract station datum conversions from HYDAT database ### Aliases: hy_stn_datum_conv ### ** Examples ## Not run: ##D hy_stn_datum_conv(station_number = c("02JE013","08MF005")) ## End(Not run)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/download_tar.R \name{URLs_WIKITEXT} \alias{URLs_WIKITEXT} \title{WIKITEXT dataset} \usage{ URLs_WIKITEXT(filename = "WIKITEXT", untar = TRUE) } \arguments{ \item{filename}{the name of the file} \item{untar}{logical, whether to untar the '.tgz' file} } \value{ None } \description{ download WIKITEXT dataset }
/man/URLs_WIKITEXT.Rd
permissive
Cdk29/fastai
R
false
true
388
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/download_tar.R \name{URLs_WIKITEXT} \alias{URLs_WIKITEXT} \title{WIKITEXT dataset} \usage{ URLs_WIKITEXT(filename = "WIKITEXT", untar = TRUE) } \arguments{ \item{filename}{the name of the file} \item{untar}{logical, whether to untar the '.tgz' file} } \value{ None } \description{ download WIKITEXT dataset }
## Heterosexual model test script library(EpiModelHIV) st <- make_nw_het(part.dur = 2013) est <- netest(st$nw, formation = st$formation, target.stats = st$stats, coef.form = -Inf, coef.diss = st$coef.diss, constraints = ~bd(maxout = 3), set.control.ergm = control.ergm(MCMLE.maxit = 500, MPLE.type = "penalized")) dx <- netdx(est, nsims = 5, nsteps = 250, set.control.ergm = control.simulate.ergm(MCMC.burnin = 1e6)) print(dx) plot(dx) param <- param_het() init <- init_het(i.prev.male = 0.25, i.prev.feml = 0.25) control <- control_het(nsteps = 2600) sim <- netsim(est, param, init, control)
/inst/het-test-script.R
no_license
dth2/EpiModelHIV_SHAMP
R
false
false
695
r
## Heterosexual model test script library(EpiModelHIV) st <- make_nw_het(part.dur = 2013) est <- netest(st$nw, formation = st$formation, target.stats = st$stats, coef.form = -Inf, coef.diss = st$coef.diss, constraints = ~bd(maxout = 3), set.control.ergm = control.ergm(MCMLE.maxit = 500, MPLE.type = "penalized")) dx <- netdx(est, nsims = 5, nsteps = 250, set.control.ergm = control.simulate.ergm(MCMC.burnin = 1e6)) print(dx) plot(dx) param <- param_het() init <- init_het(i.prev.male = 0.25, i.prev.feml = 0.25) control <- control_het(nsteps = 2600) sim <- netsim(est, param, init, control)
library(pact) ### Name: KfoldCV ### Title: Split a dataset into k parts for k-fold cross-validation ### Aliases: KfoldCV ### ** Examples KfoldCV(15,3) KfoldCV(15,15)
/data/genthat_extracted_code/pact/examples/KfoldCV.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
173
r
library(pact) ### Name: KfoldCV ### Title: Split a dataset into k parts for k-fold cross-validation ### Aliases: KfoldCV ### ** Examples KfoldCV(15,3) KfoldCV(15,15)
# R_code_variability.r # Ghiacciaio del Similaun # DAY 1 # librerie require(raster) require(RStoolbox) # Set working directory setwd("C:/lab/") # Carichiamo sentinel.png sent <- brick("sentinel.png") # Plottaggio... # NIR = 1, RED = 2, GREEN = 3 plotRGB(sent) # Stretch automatico lineare #plotRGB(sent, r = 1, g = 2, b = 3, stretch = "lin") plotRGB(sent, r = 2, g = 1, b = 3, stretch = "lin") sent # class : RasterBrick # dimensions : 794, 798, 633612, 4 (nrow, ncol, ncell, nlayers) # resolution : 1, 1 (x, y) # extent : 0, 798, 0, 794 (xmin, xmax, ymin, ymax) # crs : NA # source : C:/lab/sentinel.png # names : sentinel.1, sentinel.2, sentinel.3, sentinel.4 # min values : 0, 0, 0, 0 # max values : 255, 255, 255, 255 # Assegnamo le singole bande a variabili per richiamarle più easy... nir <- sent$sentinel.1 red <- sent$sentinel.2 ndvi = (nir - red) / (nir + red) plot(ndvi) # Cambio palette... cl <- colorRampPalette(c('black', 'white', 'red', 'magenta', 'green')) (200) plot(ndvi, col = cl) # Adesso calcoliamo la variabilità dell'immagine! #funzione focal() per usare la moving window ndvisd3 <- focal(ndvi, w = matrix(1/9, nrow = 3, ncol = 3), fun = sd) # Cambiamo la palette... clsd <- colorRampPalette(c('blue','green','pink','magenta','orange','brown','red','yellow')) (200) plot(ndvisd3, col=clsd) # calcoliamo la media della biomassa... ndvimean3 <- focal(ndvi, w = matrix(1/9, nrow = 3, ncol = 3), fun = mean) plot(ndvimean3, col = clsd) # Cambiamo la grandezza della moving window... # 13 x 13 Standard Deviation ndvisd13 <- focal(ndvi, w = matrix(1/169, nrow = 13, ncol = 13), fun = sd) plot(ndvisd13, col = clsd) # 5 x 5 Standard Deviation ndvisd5 <- focal(ndvi, w = matrix(1/25, nrow = 5, ncol = 5), fun = sd) plot(ndvisd5, col = clsd) # Facciamo l'analisi delle componenti principali # PCA sentpca <- rasterPCA(sent) plot(sentpca$map) # Per vedere quanta variabilità spiegano le singole componenti... summary(sentpca$model) # Importance of components: # Comp.1 Comp.2 Comp.3 # Standard deviation 77.3362848 53.5145531 5.765599616 # Proportion of Variance 0.6736804 0.3225753 0.003744348 (Prop. di var. spiegata) # Cumulative Proportion 0.6736804 0.9962557 1.000000000 # Comp.4 # Standard deviation 0 # Proportion of Variance 0 # Cumulative Proportion 1 # La prima PC spiega il 67.36% delle informazioni originali. # DAY 2 # Dichiaro nuovamente le librerie e setto la working directory library(ggplot2) library(gridExtra) library(viridis) # serve per i colori, per colorare i plot di ggplot in modo automatico! # sent <- brick("sentinel.png") # sentpca <- rasterPCA(sent) # plot(sentpca) # summary(sentpca) # sentpca per vedere tutte le variabilità (vedi day 1) # PC1 --> ha più info all'interno dell'immagine # Funzione focal per passare la moving window e calcolare la deviazione standard (variabilità di tutti i dati originali) e la riportavamo sul valore centrale. # Sposto la moving window e il processo riparte! sentpca$map$PC1 #seleziono solo la PC1... # Calcoliamo la variabilità sulla pc1 # Moving window 3 x 3 pc1sd3 <- focal(pc1, w = matrix(1/9, nrow = 3, ncol = 3), fun = sd) clsd <- colorRampPalette(c('blue','green','pink','magenta','orange','brown','red','yellow')) (200) plot(pc1sd3, col=clsd) # come cambiano i valori su una singola banda # Moving window 5 x 5 pc1sd5 <- focal(pc1, w=matrix(1/25, nrow=5, ncol=5), fun=sd) clsd <- colorRampPalette(c('blue','green','pink','magenta','orange','brown','red','yellow')) (200) plot(pc1sd5, col=clsd) # source() test! source("source_test_lezione.r") # Per prendere e caricare un codice dall'esterno! # Plottare i nostri dati tramite ggplot2 #ggplot() # mi crea una finestra vuota ggolot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) ggplot() + + geom_raster(pc1sd3, mapping = aes(x = x, y = y, fill = layer)) # Usando viridis! ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis() ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis() + ggtitle("Standard deviation of PC1 by viridis colour scale") ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis(option = "magma") + ggtitle("Standard deviation of PC1 by magma colour scale") # grid arrange # associamo ogni plottaggio ad un oggetto... p1 <- ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis() + ggtitle("Standard deviation of PC1 by viridis colour scale") p2 <- ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis(option = "magma") + ggtitle("Standard deviation of PC1 by magma colour scale") p3 <- ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis(option = "turbo") + ggtitle("Standard deviation of PC1 by turbo colour scale") grid.arrange(p1, p2, p3, nrow = 1) # ----- END -----
/R_code_variability.r
no_license
chiarasalv23/telerilevamento_2021
R
false
false
5,134
r
# R_code_variability.r # Ghiacciaio del Similaun # DAY 1 # librerie require(raster) require(RStoolbox) # Set working directory setwd("C:/lab/") # Carichiamo sentinel.png sent <- brick("sentinel.png") # Plottaggio... # NIR = 1, RED = 2, GREEN = 3 plotRGB(sent) # Stretch automatico lineare #plotRGB(sent, r = 1, g = 2, b = 3, stretch = "lin") plotRGB(sent, r = 2, g = 1, b = 3, stretch = "lin") sent # class : RasterBrick # dimensions : 794, 798, 633612, 4 (nrow, ncol, ncell, nlayers) # resolution : 1, 1 (x, y) # extent : 0, 798, 0, 794 (xmin, xmax, ymin, ymax) # crs : NA # source : C:/lab/sentinel.png # names : sentinel.1, sentinel.2, sentinel.3, sentinel.4 # min values : 0, 0, 0, 0 # max values : 255, 255, 255, 255 # Assegnamo le singole bande a variabili per richiamarle più easy... nir <- sent$sentinel.1 red <- sent$sentinel.2 ndvi = (nir - red) / (nir + red) plot(ndvi) # Cambio palette... cl <- colorRampPalette(c('black', 'white', 'red', 'magenta', 'green')) (200) plot(ndvi, col = cl) # Adesso calcoliamo la variabilità dell'immagine! #funzione focal() per usare la moving window ndvisd3 <- focal(ndvi, w = matrix(1/9, nrow = 3, ncol = 3), fun = sd) # Cambiamo la palette... clsd <- colorRampPalette(c('blue','green','pink','magenta','orange','brown','red','yellow')) (200) plot(ndvisd3, col=clsd) # calcoliamo la media della biomassa... ndvimean3 <- focal(ndvi, w = matrix(1/9, nrow = 3, ncol = 3), fun = mean) plot(ndvimean3, col = clsd) # Cambiamo la grandezza della moving window... # 13 x 13 Standard Deviation ndvisd13 <- focal(ndvi, w = matrix(1/169, nrow = 13, ncol = 13), fun = sd) plot(ndvisd13, col = clsd) # 5 x 5 Standard Deviation ndvisd5 <- focal(ndvi, w = matrix(1/25, nrow = 5, ncol = 5), fun = sd) plot(ndvisd5, col = clsd) # Facciamo l'analisi delle componenti principali # PCA sentpca <- rasterPCA(sent) plot(sentpca$map) # Per vedere quanta variabilità spiegano le singole componenti... summary(sentpca$model) # Importance of components: # Comp.1 Comp.2 Comp.3 # Standard deviation 77.3362848 53.5145531 5.765599616 # Proportion of Variance 0.6736804 0.3225753 0.003744348 (Prop. di var. spiegata) # Cumulative Proportion 0.6736804 0.9962557 1.000000000 # Comp.4 # Standard deviation 0 # Proportion of Variance 0 # Cumulative Proportion 1 # La prima PC spiega il 67.36% delle informazioni originali. # DAY 2 # Dichiaro nuovamente le librerie e setto la working directory library(ggplot2) library(gridExtra) library(viridis) # serve per i colori, per colorare i plot di ggplot in modo automatico! # sent <- brick("sentinel.png") # sentpca <- rasterPCA(sent) # plot(sentpca) # summary(sentpca) # sentpca per vedere tutte le variabilità (vedi day 1) # PC1 --> ha più info all'interno dell'immagine # Funzione focal per passare la moving window e calcolare la deviazione standard (variabilità di tutti i dati originali) e la riportavamo sul valore centrale. # Sposto la moving window e il processo riparte! sentpca$map$PC1 #seleziono solo la PC1... # Calcoliamo la variabilità sulla pc1 # Moving window 3 x 3 pc1sd3 <- focal(pc1, w = matrix(1/9, nrow = 3, ncol = 3), fun = sd) clsd <- colorRampPalette(c('blue','green','pink','magenta','orange','brown','red','yellow')) (200) plot(pc1sd3, col=clsd) # come cambiano i valori su una singola banda # Moving window 5 x 5 pc1sd5 <- focal(pc1, w=matrix(1/25, nrow=5, ncol=5), fun=sd) clsd <- colorRampPalette(c('blue','green','pink','magenta','orange','brown','red','yellow')) (200) plot(pc1sd5, col=clsd) # source() test! source("source_test_lezione.r") # Per prendere e caricare un codice dall'esterno! # Plottare i nostri dati tramite ggplot2 #ggplot() # mi crea una finestra vuota ggolot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) ggplot() + + geom_raster(pc1sd3, mapping = aes(x = x, y = y, fill = layer)) # Usando viridis! ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis() ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis() + ggtitle("Standard deviation of PC1 by viridis colour scale") ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis(option = "magma") + ggtitle("Standard deviation of PC1 by magma colour scale") # grid arrange # associamo ogni plottaggio ad un oggetto... p1 <- ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis() + ggtitle("Standard deviation of PC1 by viridis colour scale") p2 <- ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis(option = "magma") + ggtitle("Standard deviation of PC1 by magma colour scale") p3 <- ggplot() + geom_raster(pc1sd5, mapping = aes(x = x, y = y, fill = layer)) + scale_fill_viridis(option = "turbo") + ggtitle("Standard deviation of PC1 by turbo colour scale") grid.arrange(p1, p2, p3, nrow = 1) # ----- END -----
#' Cohort Status Trace Plot #' #' @param mapvizieR_obj conforming mapvizieR obj #' @param studentids vector of studentids #' @param measurementscale target subject #' @param match_method do we limit to matched students, and if so, how? #' no matching = any student record in the studentids. #' UNIMPLEMENTED METHODS / TODO #' strict = only kids who appear in all terms #' strict after imputation = impute first, then use stritc method #' back one = look back one test term, and only include kids who can be matched #' @param first_and_spring_only show all terms, or only entry & spring? #' default is TRUE. #' @param entry_grade_seasons which grade_level_seasons are entry grades? #' @param collapse_schools treats all students as part of the same 'school' for purposes of plotting, so that one trajectory is shown. #' default is TRUE. if FALSE will separate lines by school and show a lengend. #' @param retention_strategy #' @param plot_labels c('RIT', 'NPR'). 'RIT' is default. #' #' @return a ggplot object #' @export #' @param mapvizieR_obj #' @param studentids #' @param measurementscale #' @param match_method #' @param first_and_spring_only #' @param entry_grade_seasons #' @param collapse_schools #' @param plot_labels #' #' @return a ggplot object #' @export cohort_status_trace_plot <- function( mapvizieR_obj, studentids, measurementscale, match_method = 'no matching', first_and_spring_only = TRUE, entry_grade_seasons = c(-0.8, 4.2), collapse_schools = TRUE, retention_strategy = 'collapse', small_n_cutoff = -1, plot_labels = 'RIT' ) { #opening parameter checks valid_retention <- c('collapse', 'filter_small') retention_strategy %>% ensurer::ensure_that( . %in% valid_retention ~ paste0("retention_strategy should be either one of: ", paste(valid_retention, collapse = ', ')) ) #mv consistency checks mv_opening_checks(mapvizieR_obj, studentids, 1) #limit this_cdf <- mv_limit_cdf(mapvizieR_obj, studentids, measurementscale) #prep the internal cdf for summary(). zero out map_year_academic and termname to prevent retained students from showing #as unique terms if (retention_strategy == 'collapse') { this_cdf <- cdf_collapse_by_grade(this_cdf) } #summary groups by school. if you want transfers in prior years to show as one unit, you want to collapse schools. if (collapse_schools) { this_cdf$schoolname <- table(this_cdf$schoolname) %>% sort(decreasing = TRUE) %>% names() %>% magrittr::extract(1) } #cdf summary this_sum <- summary(this_cdf) if (retention_strategy == 'filter_small') { this_sum <- this_sum[this_sum$n_students >= small_n_cutoff * max(this_sum$n_students), ] } if(plot_labels == 'RIT') { this_sum$label_text <- this_sum$mean_testritscore %>% round(1) } if(plot_labels == 'NPR') { this_sum$label_text <- this_sum$cohort_status_npr %>% round(1) } p <- ggplot( data = this_sum, aes( x = grade_level_season, y = cohort_status_npr, label = label_text, color = schoolname ) ) + geom_point() + geom_line() + geom_text() p <- p + theme_bw() + theme( panel.grid = element_blank() ) + scale_y_continuous( limits = c(0, 100), breaks = seq(0, 100, 10) ) + scale_x_continuous( breaks = this_sum$grade_level_season %>% unique(), labels = this_sum$grade_level_season %>% unique() %>% lapply(fall_spring_me) %>% unlist(), limits = c( this_sum$grade_level_season %>% unique() %>% min() - .1, this_sum$grade_level_season %>% unique() %>% max() + .1 ) ) p <- p + labs( x = 'Grade & Season', y = 'Grade/Cohort Status Percentile' ) if (collapse_schools) { p <- p + theme(legend.position = 'none') } p }
/R/cohort_status_trace_plot.R
no_license
charkins24/mapvizieR
R
false
false
3,816
r
#' Cohort Status Trace Plot #' #' @param mapvizieR_obj conforming mapvizieR obj #' @param studentids vector of studentids #' @param measurementscale target subject #' @param match_method do we limit to matched students, and if so, how? #' no matching = any student record in the studentids. #' UNIMPLEMENTED METHODS / TODO #' strict = only kids who appear in all terms #' strict after imputation = impute first, then use stritc method #' back one = look back one test term, and only include kids who can be matched #' @param first_and_spring_only show all terms, or only entry & spring? #' default is TRUE. #' @param entry_grade_seasons which grade_level_seasons are entry grades? #' @param collapse_schools treats all students as part of the same 'school' for purposes of plotting, so that one trajectory is shown. #' default is TRUE. if FALSE will separate lines by school and show a lengend. #' @param retention_strategy #' @param plot_labels c('RIT', 'NPR'). 'RIT' is default. #' #' @return a ggplot object #' @export #' @param mapvizieR_obj #' @param studentids #' @param measurementscale #' @param match_method #' @param first_and_spring_only #' @param entry_grade_seasons #' @param collapse_schools #' @param plot_labels #' #' @return a ggplot object #' @export cohort_status_trace_plot <- function( mapvizieR_obj, studentids, measurementscale, match_method = 'no matching', first_and_spring_only = TRUE, entry_grade_seasons = c(-0.8, 4.2), collapse_schools = TRUE, retention_strategy = 'collapse', small_n_cutoff = -1, plot_labels = 'RIT' ) { #opening parameter checks valid_retention <- c('collapse', 'filter_small') retention_strategy %>% ensurer::ensure_that( . %in% valid_retention ~ paste0("retention_strategy should be either one of: ", paste(valid_retention, collapse = ', ')) ) #mv consistency checks mv_opening_checks(mapvizieR_obj, studentids, 1) #limit this_cdf <- mv_limit_cdf(mapvizieR_obj, studentids, measurementscale) #prep the internal cdf for summary(). zero out map_year_academic and termname to prevent retained students from showing #as unique terms if (retention_strategy == 'collapse') { this_cdf <- cdf_collapse_by_grade(this_cdf) } #summary groups by school. if you want transfers in prior years to show as one unit, you want to collapse schools. if (collapse_schools) { this_cdf$schoolname <- table(this_cdf$schoolname) %>% sort(decreasing = TRUE) %>% names() %>% magrittr::extract(1) } #cdf summary this_sum <- summary(this_cdf) if (retention_strategy == 'filter_small') { this_sum <- this_sum[this_sum$n_students >= small_n_cutoff * max(this_sum$n_students), ] } if(plot_labels == 'RIT') { this_sum$label_text <- this_sum$mean_testritscore %>% round(1) } if(plot_labels == 'NPR') { this_sum$label_text <- this_sum$cohort_status_npr %>% round(1) } p <- ggplot( data = this_sum, aes( x = grade_level_season, y = cohort_status_npr, label = label_text, color = schoolname ) ) + geom_point() + geom_line() + geom_text() p <- p + theme_bw() + theme( panel.grid = element_blank() ) + scale_y_continuous( limits = c(0, 100), breaks = seq(0, 100, 10) ) + scale_x_continuous( breaks = this_sum$grade_level_season %>% unique(), labels = this_sum$grade_level_season %>% unique() %>% lapply(fall_spring_me) %>% unlist(), limits = c( this_sum$grade_level_season %>% unique() %>% min() - .1, this_sum$grade_level_season %>% unique() %>% max() + .1 ) ) p <- p + labs( x = 'Grade & Season', y = 'Grade/Cohort Status Percentile' ) if (collapse_schools) { p <- p + theme(legend.position = 'none') } p }
# 데이터 불러오기 raw_welfare <- read.spss(file = 'Koweps_hpc10_2015_beta1.sav', to.data.frame = T, reencode='utf-8') # 복사본 만들기 Welfare <- raw_welfare # 데이터 검토하기 head(Welfare) tail(Welfare) View(Welfare) dim(Welfare) str(Welfare) summary(Welfare) # 변수명 바꾸기 Welfare <- rename(Welfare, sex = h10_g3, birth = h10_g4, marriage = h10_g10, religion = h10_g11, income = p1002_8aq1, code_job = h10_eco9, code_region = h10_reg7) # 성변 변수 검토 및 전처리 class(Welfare$sex) table(Welfare$sex) # 이상치 확인 table(Welfare$sex) # 이상치 결측 처리 Welfare$sex <- ifelse(Welfare$sex == 9, NA, Welfare$sex) #모른다고 답하거나 응답하지 않았을 경우는 9로 코딩되어 있음 # 결측치 확인 table(is.na(Welfare$sex)) # 성별 항목 이름 부여 Welfare$sex <- ifelse(Welfare$sex == 1, "male", "female") table(Welfare$sex) qplot(Welfare$sex) # 월급 변수 검토 및 전처리 class(Welfare$income) summary(Welfare$income) qplot(Welfare$income) qplot(Welfare$income) + xlim(0,1000) # 0~1000까지만 표현되게 설정 # 이상치 확인 summary(Welfare$income) # 이상치 결측 확인 Welfare$income <- ifelse(Welfare$income %in% c(0, 9999), NA, Welfare$income) # 결측치 확인 table(is.na(Welfare$income)) # 성별에 따른 월급 차이 분석하기 sex_income <- Welfare %>% filter(!is.na(income)) %>% summarise(mean_income = mean(income)) sex_income # 그래프 만들기 ggplot(data = sex_income, aes(x = sex, y = mean_income)) + geom_col()
/09-2. 성별에 따른 월급 차이.R
no_license
xoyeon/Doit_R
R
false
false
1,745
r
# 데이터 불러오기 raw_welfare <- read.spss(file = 'Koweps_hpc10_2015_beta1.sav', to.data.frame = T, reencode='utf-8') # 복사본 만들기 Welfare <- raw_welfare # 데이터 검토하기 head(Welfare) tail(Welfare) View(Welfare) dim(Welfare) str(Welfare) summary(Welfare) # 변수명 바꾸기 Welfare <- rename(Welfare, sex = h10_g3, birth = h10_g4, marriage = h10_g10, religion = h10_g11, income = p1002_8aq1, code_job = h10_eco9, code_region = h10_reg7) # 성변 변수 검토 및 전처리 class(Welfare$sex) table(Welfare$sex) # 이상치 확인 table(Welfare$sex) # 이상치 결측 처리 Welfare$sex <- ifelse(Welfare$sex == 9, NA, Welfare$sex) #모른다고 답하거나 응답하지 않았을 경우는 9로 코딩되어 있음 # 결측치 확인 table(is.na(Welfare$sex)) # 성별 항목 이름 부여 Welfare$sex <- ifelse(Welfare$sex == 1, "male", "female") table(Welfare$sex) qplot(Welfare$sex) # 월급 변수 검토 및 전처리 class(Welfare$income) summary(Welfare$income) qplot(Welfare$income) qplot(Welfare$income) + xlim(0,1000) # 0~1000까지만 표현되게 설정 # 이상치 확인 summary(Welfare$income) # 이상치 결측 확인 Welfare$income <- ifelse(Welfare$income %in% c(0, 9999), NA, Welfare$income) # 결측치 확인 table(is.na(Welfare$income)) # 성별에 따른 월급 차이 분석하기 sex_income <- Welfare %>% filter(!is.na(income)) %>% summarise(mean_income = mean(income)) sex_income # 그래프 만들기 ggplot(data = sex_income, aes(x = sex, y = mean_income)) + geom_col()
# Just plotting 5 examples that we have now for the various models. library(smcsmcTools) library(data.table) library(dplyr) library(ggplot2) library(GGally) scenarios = c("backward", "forward", "bidirectional")#, "backward")#, "bidirectional", "realistic") mplots <- list() neplots <- list() i <- 1 migs = c("0.0", "0.1", "0.3", "0.5", "0.7", "0.9") situations = c(0,2,4) midpoints <- c("40000", "50000", "60000", "70000") g = 29 matrices <- list() m <- list() ne = list() j = 1 mat <- matrix(, nrow = length(midpoints), ncol = length(migs)) emat <- matrix(, nrow = length(midpoints), ncol = length(migs)) for (sit in situations){ i = 1 plots <- list() eplots <- list() for (s in scenarios){ j = 1 for(mid in midpoints){ k = 1 for(mig in migs){ emat[j, k] <- avg_migr( file = paste0("~/repos/dirmig/data/spvaryingmig/", s, "_", mid, "_10000_", mig, "_", sit, ".out"), ancient = 100000, modern = 0, g = 29)$integrated[1] mat[j,k] <- avg_migr( file = paste0("~/repos/dirmig/data/spvaryingmig/", s, "_", mid, "_10000_", mig, "_", sit, ".out"), ancient = 100000, modern = 0, g = 29)$integrated[2] k = k+1 } j = j + 1 } rownames(mat) <- midpoints colnames(mat) <- factor(round(1-exp(-as.numeric(migs)), 3)) rownames(emat) <- midpoints colnames(emat) <- factor(round(1-exp(-as.numeric(migs)), 3)) df <- reshape2::melt(t(mat)) %>% as.data.frame() %>% mutate(Var1 = as.character(Var1)) df2 <- reshape2::melt(t(emat)) %>% as.data.frame() %>% mutate(Var1 = as.character(Var1)) plots[[i]] <- ggplot(df, aes(x = factor(Var1), y = Var2, fill = value)) + geom_tile() + geom_text(aes(label=round(value, 3)), color="white") + xlab("Amount of Migration \n(Proportion Replaced per Generation)") + ylab("Time of Migration \n(years before present)") + scale_fill_gradient(limits = c(0, 0.6)) + theme_bw() + theme(legend.position = "none", panel.border = element_blank(), panel.grid = element_blank(), axis.title.y = element_text(size = 15), axis.title.x = element_text(size = 15)) eplots[[i]] <- ggplot(df2, aes(x = factor(Var1), y = Var2, fill = value)) + geom_tile() + geom_text(aes(label=round(value, 3)), color="white") + xlab("Amount of Migration \n(Proportion Replaced per Generation)") + ylab("Time of Migration \n(years before present)") + scale_fill_gradient(limits = c(0, 0.6)) + theme_bw() + theme(legend.position = "none", panel.border = element_blank(), panel.grid = element_blank(), axis.title.y = element_text(size = 15), axis.title.x = element_text(size = 15)) i = i + 1 } p <- ggmatrix(c(plots, eplots), nrow=3, ncol = 2, byrow = F, xlab = "Amount of Migration (Proportion Replaced per Generation)", ylab = "Time of Migration (years before present)", yAxisLabels = c("Backwards", "Forwards", "Bidirectional"), xAxisLabels = c("Inferred Backwards Migration", "Inferred Forwards Migration")) + theme(axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12)) ggsave(p, file = paste0("~/repos/dirmig/plot/sims/recovered_migration_", sit, ".pdf"), height = 4, width = 10, units = "in") }
/r/all_mig_simulation_heatmaps.R
no_license
Chris1221/ancient_african_admixture
R
false
false
3,337
r
# Just plotting 5 examples that we have now for the various models. library(smcsmcTools) library(data.table) library(dplyr) library(ggplot2) library(GGally) scenarios = c("backward", "forward", "bidirectional")#, "backward")#, "bidirectional", "realistic") mplots <- list() neplots <- list() i <- 1 migs = c("0.0", "0.1", "0.3", "0.5", "0.7", "0.9") situations = c(0,2,4) midpoints <- c("40000", "50000", "60000", "70000") g = 29 matrices <- list() m <- list() ne = list() j = 1 mat <- matrix(, nrow = length(midpoints), ncol = length(migs)) emat <- matrix(, nrow = length(midpoints), ncol = length(migs)) for (sit in situations){ i = 1 plots <- list() eplots <- list() for (s in scenarios){ j = 1 for(mid in midpoints){ k = 1 for(mig in migs){ emat[j, k] <- avg_migr( file = paste0("~/repos/dirmig/data/spvaryingmig/", s, "_", mid, "_10000_", mig, "_", sit, ".out"), ancient = 100000, modern = 0, g = 29)$integrated[1] mat[j,k] <- avg_migr( file = paste0("~/repos/dirmig/data/spvaryingmig/", s, "_", mid, "_10000_", mig, "_", sit, ".out"), ancient = 100000, modern = 0, g = 29)$integrated[2] k = k+1 } j = j + 1 } rownames(mat) <- midpoints colnames(mat) <- factor(round(1-exp(-as.numeric(migs)), 3)) rownames(emat) <- midpoints colnames(emat) <- factor(round(1-exp(-as.numeric(migs)), 3)) df <- reshape2::melt(t(mat)) %>% as.data.frame() %>% mutate(Var1 = as.character(Var1)) df2 <- reshape2::melt(t(emat)) %>% as.data.frame() %>% mutate(Var1 = as.character(Var1)) plots[[i]] <- ggplot(df, aes(x = factor(Var1), y = Var2, fill = value)) + geom_tile() + geom_text(aes(label=round(value, 3)), color="white") + xlab("Amount of Migration \n(Proportion Replaced per Generation)") + ylab("Time of Migration \n(years before present)") + scale_fill_gradient(limits = c(0, 0.6)) + theme_bw() + theme(legend.position = "none", panel.border = element_blank(), panel.grid = element_blank(), axis.title.y = element_text(size = 15), axis.title.x = element_text(size = 15)) eplots[[i]] <- ggplot(df2, aes(x = factor(Var1), y = Var2, fill = value)) + geom_tile() + geom_text(aes(label=round(value, 3)), color="white") + xlab("Amount of Migration \n(Proportion Replaced per Generation)") + ylab("Time of Migration \n(years before present)") + scale_fill_gradient(limits = c(0, 0.6)) + theme_bw() + theme(legend.position = "none", panel.border = element_blank(), panel.grid = element_blank(), axis.title.y = element_text(size = 15), axis.title.x = element_text(size = 15)) i = i + 1 } p <- ggmatrix(c(plots, eplots), nrow=3, ncol = 2, byrow = F, xlab = "Amount of Migration (Proportion Replaced per Generation)", ylab = "Time of Migration (years before present)", yAxisLabels = c("Backwards", "Forwards", "Bidirectional"), xAxisLabels = c("Inferred Backwards Migration", "Inferred Forwards Migration")) + theme(axis.title.x = element_text(size = 12), axis.title.y = element_text(size = 12)) ggsave(p, file = paste0("~/repos/dirmig/plot/sims/recovered_migration_", sit, ".pdf"), height = 4, width = 10, units = "in") }
testlist <- list(Rs = numeric(0), atmp = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), relh = -1.72131968218895e+83, temp = c(8.5728629954997e-312, 1.56898424065867e+82, 8.96970809549085e-158, -1.3258495253834e-113, 2.79620616433656e-119, -6.80033518839696e+41, 2.68298522855314e-211, 1444042902784.06, 6.68889884134308e+51, -4.05003163986346e-308, -3.52601820453965e+43, -1.49815227045093e+197, -2.61605817623304e+76, -1.18078903777423e-90, 1.86807199752012e+112, -5.58551357556946e+160, 2.00994342527714e-162, 1.81541609400943e-79, 7.89363005545926e+139, 2.3317908961407e-93, 2.16562581831091e+161)) result <- do.call(meteor:::ET0_Makkink,testlist) str(result)
/meteor/inst/testfiles/ET0_Makkink/AFL_ET0_Makkink/ET0_Makkink_valgrind_files/1615845066-test.R
no_license
akhikolla/updatedatatype-list3
R
false
false
736
r
testlist <- list(Rs = numeric(0), atmp = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), relh = -1.72131968218895e+83, temp = c(8.5728629954997e-312, 1.56898424065867e+82, 8.96970809549085e-158, -1.3258495253834e-113, 2.79620616433656e-119, -6.80033518839696e+41, 2.68298522855314e-211, 1444042902784.06, 6.68889884134308e+51, -4.05003163986346e-308, -3.52601820453965e+43, -1.49815227045093e+197, -2.61605817623304e+76, -1.18078903777423e-90, 1.86807199752012e+112, -5.58551357556946e+160, 2.00994342527714e-162, 1.81541609400943e-79, 7.89363005545926e+139, 2.3317908961407e-93, 2.16562581831091e+161)) result <- do.call(meteor:::ET0_Makkink,testlist) str(result)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \name{sentiment_lexicon_neg_en} \alias{sentiment_lexicon_neg_en} \title{Negative Lexicon (en)} \format{A Character vector} \source{ http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#datasets } \description{ Negative Lexicon (en) } \seealso{ Other example datasets: \code{\link{names_female_en}}, \code{\link{names_female_es}}, \code{\link{names_male_en}}, \code{\link{names_male_es}}, \code{\link{senate_tweets}}, \code{\link{senators_profile}}, \code{\link{senators}}, \code{\link{sentiment_lexicon_pos_en}}, \code{\link{warriner_et_al_en}}, \code{\link{warriner_et_al_es}} Other lexicon datasets: \code{\link{sentiment_lexicon_pos_en}}, \code{\link{warriner_et_al_en}}, \code{\link{warriner_et_al_es}} } \concept{example datasets} \concept{lexicon datasets}
/man/sentiment_lexicon_neg_en.Rd
no_license
fentonmartin/twitterreport
R
false
true
870
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \name{sentiment_lexicon_neg_en} \alias{sentiment_lexicon_neg_en} \title{Negative Lexicon (en)} \format{A Character vector} \source{ http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#datasets } \description{ Negative Lexicon (en) } \seealso{ Other example datasets: \code{\link{names_female_en}}, \code{\link{names_female_es}}, \code{\link{names_male_en}}, \code{\link{names_male_es}}, \code{\link{senate_tweets}}, \code{\link{senators_profile}}, \code{\link{senators}}, \code{\link{sentiment_lexicon_pos_en}}, \code{\link{warriner_et_al_en}}, \code{\link{warriner_et_al_es}} Other lexicon datasets: \code{\link{sentiment_lexicon_pos_en}}, \code{\link{warriner_et_al_en}}, \code{\link{warriner_et_al_es}} } \concept{example datasets} \concept{lexicon datasets}
\name{nonparadom} \alias{nonparadom} \title{nonparadom} \description{Tests for nonparallel dominance, a form of asymmetry in predictability, between i to j and k to L (Wampold, 1984, 1989, 1992, 1995).} \usage{ nonparadom(data, i, j, k, L, labels = NULL, lag = 1, adjacent = TRUE, tailed = 1, permtest = FALSE, nperms = 10) } \arguments{ \item{data}{ \code{}A one-column dataframe, or a vector of code sequences, or a square frequency transition matrix. If data is not a frequency transition matrix, then data must be either (a) a series of string (non-numeric) code values, or (b) a series of integer codes with values ranging from "1" to what ever value the user specifies in the "ncodes" argument. There should be no code values with zero frequencies. Missing values are not permitted. } \item{i}{ \code{}Code value for i. } \item{j}{ \code{}Code value for j. } \item{k}{ \code{}Code value for k. } \item{L}{ \code{}Code value for L. } \item{labels}{ \code{}Optional argument for providing labels to the code values. Accepts a list of string variables. If unspecified, codes will be labeled "Code1", "Code2", etc. } \item{lag}{ \code{}The lag number for the analyses. } \item{adjacent}{ \code{}Can adjacent values be coded the same? Options are "TRUE" for yes or "FALSE" for no. } \item{tailed}{ \code{}Specify whether significance tests are one-tailed or two-tailed. Options are "1" or "2". } \item{permtest}{ \code{}Do you want to run permutation tests of significance? Options are "FALSE" for no, or "TRUE" for yes. Warning: these computations can be time consuming. } \item{nperms}{ \code{}The number of permutations per block. } } \details{ Tests for nonparallel dominance or asymmetry in predictability, which is the difference in predictability between i to j and k to L, as described by Wampold (1984, 1989, 1992, 1995). Parallel dominance (another function in this package) is the difference in predictability between i to j and j to i. In parallel dominance the i and j values across the two pairs of codes are the same. In nonparallel dominance, the i and j values across the two pairs of codes may vary, i.e., they do not have to be the same. } \value{Displays the transitional frequency matrix, expected frequencies, expected and observed nonparallel dominance frequencies, kappas, the z values for the kappas, and the significance levels. Returns a list with the following elements: \item{freqs}{The transitional frequency matrix} \item{expfreqs}{The expected frequencies} \item{npdomfreqs}{The nonparallel dominance frequencies} \item{expnpdomfreqs}{The expected nonparallel dominance frequencies} \item{domtypes}{There are 4 sequential dominance case types described by Wampold (1989). These cases describe the direction of the effect for \emph{i} on \emph{j} and \emph{j} on \emph{i}. The four cases are: (1) \emph{i} increases \emph{j}, and \emph{j} increases \emph{i}, (2) \emph{i} decreases \emph{j}, and \emph{j} decreases \emph{i}, (3) \emph{i} increases \emph{j}, and \emph{j} decreases \emph{i}, and (4) \emph{i} decreases \emph{j}, and \emph{j} increases \emph{i}. Each cell of this matrix indicates the case that applies to the transition indicated by the cell.} \item{kappas}{The nonparallel dominance kappas} \item{z}{The z values for the kappas} \item{pk}{The p-values for the kappas} } \references{ {O'Connor, B. P. (1999). Simple and flexible SAS and SPSS programs for analyzing lag-sequential categorical data. \emph{Behavior Research Methods, Instrumentation, and Computers, 31,} 718-726.} \cr\cr {Wampold, B. E., & Margolin, G. (1982). Nonparametric strategies to test the independence of behavioral states in sequential data. \emph{Psychological Bulletin, 92,} 755-765.} \cr\cr {Wampold, B. E. (1984). Tests of dominance in sequential categorical data. \emph{Psychological Bulletin, 96,} 424-429.} \cr\cr {Wampold, B. E. (1989). Kappa as a measure of pattern in sequential data. \emph{Quality & Quantity, 23,} 171-187.} \cr\cr {Wampold, B. E. (1992). The intensive examination of social interactions. In T. Kratochwill & J. Levin (Eds.), \emph{Single-case research design and analysis: New directions for psychology and education} (pp. 93-131). Hillsdale, NJ: Erlbaum.} \cr\cr {Wampold, B. E. (1995). Analysis of behavior sequences in psychotherapy. In J. Siegfried (Ed.), \emph{Therapeutic and everyday discourse as behavior change: Towards a micro-analysis in psychotherapy process research} (pp. 189-214). Norwood, NJ: Ablex.} } \author{Zakary A. Draper & Brian P. O'Connor} \examples{ nonparadom(data_Wampold_1984, i = 6, j = 1, k = 3, L = 4, labels = c('HPos','HNeu','HNeg','WPos','WNeu','WNeg'), permtest = TRUE, nperms = 1000) } \keyword{ Sequential Analysis }
/man/nonparadom.Rd
no_license
cran/LagSequential
R
false
false
4,928
rd
\name{nonparadom} \alias{nonparadom} \title{nonparadom} \description{Tests for nonparallel dominance, a form of asymmetry in predictability, between i to j and k to L (Wampold, 1984, 1989, 1992, 1995).} \usage{ nonparadom(data, i, j, k, L, labels = NULL, lag = 1, adjacent = TRUE, tailed = 1, permtest = FALSE, nperms = 10) } \arguments{ \item{data}{ \code{}A one-column dataframe, or a vector of code sequences, or a square frequency transition matrix. If data is not a frequency transition matrix, then data must be either (a) a series of string (non-numeric) code values, or (b) a series of integer codes with values ranging from "1" to what ever value the user specifies in the "ncodes" argument. There should be no code values with zero frequencies. Missing values are not permitted. } \item{i}{ \code{}Code value for i. } \item{j}{ \code{}Code value for j. } \item{k}{ \code{}Code value for k. } \item{L}{ \code{}Code value for L. } \item{labels}{ \code{}Optional argument for providing labels to the code values. Accepts a list of string variables. If unspecified, codes will be labeled "Code1", "Code2", etc. } \item{lag}{ \code{}The lag number for the analyses. } \item{adjacent}{ \code{}Can adjacent values be coded the same? Options are "TRUE" for yes or "FALSE" for no. } \item{tailed}{ \code{}Specify whether significance tests are one-tailed or two-tailed. Options are "1" or "2". } \item{permtest}{ \code{}Do you want to run permutation tests of significance? Options are "FALSE" for no, or "TRUE" for yes. Warning: these computations can be time consuming. } \item{nperms}{ \code{}The number of permutations per block. } } \details{ Tests for nonparallel dominance or asymmetry in predictability, which is the difference in predictability between i to j and k to L, as described by Wampold (1984, 1989, 1992, 1995). Parallel dominance (another function in this package) is the difference in predictability between i to j and j to i. In parallel dominance the i and j values across the two pairs of codes are the same. In nonparallel dominance, the i and j values across the two pairs of codes may vary, i.e., they do not have to be the same. } \value{Displays the transitional frequency matrix, expected frequencies, expected and observed nonparallel dominance frequencies, kappas, the z values for the kappas, and the significance levels. Returns a list with the following elements: \item{freqs}{The transitional frequency matrix} \item{expfreqs}{The expected frequencies} \item{npdomfreqs}{The nonparallel dominance frequencies} \item{expnpdomfreqs}{The expected nonparallel dominance frequencies} \item{domtypes}{There are 4 sequential dominance case types described by Wampold (1989). These cases describe the direction of the effect for \emph{i} on \emph{j} and \emph{j} on \emph{i}. The four cases are: (1) \emph{i} increases \emph{j}, and \emph{j} increases \emph{i}, (2) \emph{i} decreases \emph{j}, and \emph{j} decreases \emph{i}, (3) \emph{i} increases \emph{j}, and \emph{j} decreases \emph{i}, and (4) \emph{i} decreases \emph{j}, and \emph{j} increases \emph{i}. Each cell of this matrix indicates the case that applies to the transition indicated by the cell.} \item{kappas}{The nonparallel dominance kappas} \item{z}{The z values for the kappas} \item{pk}{The p-values for the kappas} } \references{ {O'Connor, B. P. (1999). Simple and flexible SAS and SPSS programs for analyzing lag-sequential categorical data. \emph{Behavior Research Methods, Instrumentation, and Computers, 31,} 718-726.} \cr\cr {Wampold, B. E., & Margolin, G. (1982). Nonparametric strategies to test the independence of behavioral states in sequential data. \emph{Psychological Bulletin, 92,} 755-765.} \cr\cr {Wampold, B. E. (1984). Tests of dominance in sequential categorical data. \emph{Psychological Bulletin, 96,} 424-429.} \cr\cr {Wampold, B. E. (1989). Kappa as a measure of pattern in sequential data. \emph{Quality & Quantity, 23,} 171-187.} \cr\cr {Wampold, B. E. (1992). The intensive examination of social interactions. In T. Kratochwill & J. Levin (Eds.), \emph{Single-case research design and analysis: New directions for psychology and education} (pp. 93-131). Hillsdale, NJ: Erlbaum.} \cr\cr {Wampold, B. E. (1995). Analysis of behavior sequences in psychotherapy. In J. Siegfried (Ed.), \emph{Therapeutic and everyday discourse as behavior change: Towards a micro-analysis in psychotherapy process research} (pp. 189-214). Norwood, NJ: Ablex.} } \author{Zakary A. Draper & Brian P. O'Connor} \examples{ nonparadom(data_Wampold_1984, i = 6, j = 1, k = 3, L = 4, labels = c('HPos','HNeu','HNeg','WPos','WNeu','WNeg'), permtest = TRUE, nperms = 1000) } \keyword{ Sequential Analysis }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/grid-utils.R \name{get_grids} \alias{get_grids} \title{Import multiple grid data sets} \usage{ get_grids(file_paths, extent = extent(-180, 180, -90, 90), shp = NULL) } \arguments{ \item{file_paths}{Full file paths to grid data.} \item{extent}{The extent of the grid file that should be loaded. See \code{\link[raster]{crop}}.} \item{shp}{If a (polygon) shp file provided, it will be used to mask everything outside the specified polygons (can be slow, depending on \code{shp} object. See \code{\link[raster]{mask}}.} } \description{ Import multiple grid data sets }
/tcruziutils/man/get_grids.Rd
permissive
jgjuarez/chagas-vector-sdm
R
false
true
646
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/grid-utils.R \name{get_grids} \alias{get_grids} \title{Import multiple grid data sets} \usage{ get_grids(file_paths, extent = extent(-180, 180, -90, 90), shp = NULL) } \arguments{ \item{file_paths}{Full file paths to grid data.} \item{extent}{The extent of the grid file that should be loaded. See \code{\link[raster]{crop}}.} \item{shp}{If a (polygon) shp file provided, it will be used to mask everything outside the specified polygons (can be slow, depending on \code{shp} object. See \code{\link[raster]{mask}}.} } \description{ Import multiple grid data sets }
###JAGS script ###running the Correlated Chain-Ladder (CCL) model #estimate parameters alpha and beta #predicting logloss, mu[i] and logloss[i] nburn=10000 modelString = "model { mu[1]<-alpha[w[1]]+beta[d[1]] logloss[1]~dnorm(mu[1],1/sig2[1]) for (i in 2:length(w)){ mu[i]<-alpha[w[i]]+beta[d[i]]+rho*(logloss[i-1]-mu[i-1])*wne1[i] logloss[i]~dnorm(mu[i],1/sig2[i]) } ### set up sig2 for (i in 1:length(w)){ sig2[i]<-sigd2[d[i]] } for (j in 1:10){ sigd2[j]<-sum(a[j:10]) } for (k in 1:10){ a[k]~dunif(0.000001,1) } # # specify priors # for (i in 1:numlev){ alpha[i]~dnorm(log(premium[i])+logelr,.1) } logelr~dnorm(logelr_mean,logelr_sig) logelr_mean ~ dnorm(0,1) logelr_sig ~ dexp(1) # for (i in 1:9){ beta[i]~dnorm(beta_mu[i],beta_sig[i]) beta_mu[i] ~ dnorm(0,1) beta_sig[i] ~ dexp(1) } beta[10]<-0 rho~dunif(-1,1) # rho~dunif(-.00001,.00001) # Use for LCL model }" ###Initialize JAGS model inits1=list(.RNG.name= "base::Wichmann-Hill", .RNG.seed= 12341) inits2=list(.RNG.name= "base::Marsaglia-Multicarry", .RNG.seed= 12342) inits3=list(.RNG.name= "base::Super-Duper", .RNG.seed= 12343) inits4=list(.RNG.name= "base::Mersenne-Twister", .RNG.seed= 12344) data.for.jags=list(premium= premium[1:10], logloss = log(rloss), numlev = numw, w = rdata$w, wne1 = rdata$wne1, d = rdata$d) ###run the model nthin=2 maxpsrf=2 while (maxpsrf>1.05){ nthin=nthin*2 print(paste("nthin =",nthin)) jagout=run.jags(model=modelString,monitor=c("alpha","beta[1:9]","sigd2","rho"), data=data.for.jags,n.chains=4,method="parallel", inits=list(inits1,inits2,inits3,inits4),thin=nthin,silent.jags=F, plots=TRUE,burnin=nburn,sample=2500,psrf.target=1.05) gelman=gelman.diag(jagout) maxpsrf=max(gelman$psrf[,1]) print(paste("maxpsrf =",maxpsrf)) }
/scripts/misc_models/stan3.r
no_license
blakeshurtz/actuarialsci
R
false
false
1,959
r
###JAGS script ###running the Correlated Chain-Ladder (CCL) model #estimate parameters alpha and beta #predicting logloss, mu[i] and logloss[i] nburn=10000 modelString = "model { mu[1]<-alpha[w[1]]+beta[d[1]] logloss[1]~dnorm(mu[1],1/sig2[1]) for (i in 2:length(w)){ mu[i]<-alpha[w[i]]+beta[d[i]]+rho*(logloss[i-1]-mu[i-1])*wne1[i] logloss[i]~dnorm(mu[i],1/sig2[i]) } ### set up sig2 for (i in 1:length(w)){ sig2[i]<-sigd2[d[i]] } for (j in 1:10){ sigd2[j]<-sum(a[j:10]) } for (k in 1:10){ a[k]~dunif(0.000001,1) } # # specify priors # for (i in 1:numlev){ alpha[i]~dnorm(log(premium[i])+logelr,.1) } logelr~dnorm(logelr_mean,logelr_sig) logelr_mean ~ dnorm(0,1) logelr_sig ~ dexp(1) # for (i in 1:9){ beta[i]~dnorm(beta_mu[i],beta_sig[i]) beta_mu[i] ~ dnorm(0,1) beta_sig[i] ~ dexp(1) } beta[10]<-0 rho~dunif(-1,1) # rho~dunif(-.00001,.00001) # Use for LCL model }" ###Initialize JAGS model inits1=list(.RNG.name= "base::Wichmann-Hill", .RNG.seed= 12341) inits2=list(.RNG.name= "base::Marsaglia-Multicarry", .RNG.seed= 12342) inits3=list(.RNG.name= "base::Super-Duper", .RNG.seed= 12343) inits4=list(.RNG.name= "base::Mersenne-Twister", .RNG.seed= 12344) data.for.jags=list(premium= premium[1:10], logloss = log(rloss), numlev = numw, w = rdata$w, wne1 = rdata$wne1, d = rdata$d) ###run the model nthin=2 maxpsrf=2 while (maxpsrf>1.05){ nthin=nthin*2 print(paste("nthin =",nthin)) jagout=run.jags(model=modelString,monitor=c("alpha","beta[1:9]","sigd2","rho"), data=data.for.jags,n.chains=4,method="parallel", inits=list(inits1,inits2,inits3,inits4),thin=nthin,silent.jags=F, plots=TRUE,burnin=nburn,sample=2500,psrf.target=1.05) gelman=gelman.diag(jagout) maxpsrf=max(gelman$psrf[,1]) print(paste("maxpsrf =",maxpsrf)) }
library(glmnet) mydata = read.table("./TrainingSet/LassoBIC/large_intestine.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mse",alpha=0.15,family="gaussian",standardize=FALSE) sink('./Model/EN/Lasso/large_intestine/large_intestine_030.txt',append=TRUE) print(glm$glmnet.fit) sink()
/Model/EN/Lasso/large_intestine/large_intestine_030.R
no_license
leon1003/QSMART
R
false
false
379
r
library(glmnet) mydata = read.table("./TrainingSet/LassoBIC/large_intestine.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mse",alpha=0.15,family="gaussian",standardize=FALSE) sink('./Model/EN/Lasso/large_intestine/large_intestine_030.txt',append=TRUE) print(glm$glmnet.fit) sink()
# TS Difference uva.duke.l <- uva.xplant$Liver - duke.xplant$Liver # TS Plot png("./ts_diff_uva_duke_l.png", width=900, height=900) par(mfrow=c(1,1), ps=20) plot(uva.xplant$Year, uva.duke.l, col = "blue", type = "l", xlab = "Time", ylab = "UVa - Duke", main = "Difference between Kidney Transplants at UVA and Duke") abline(0,0) dev.off() # LM Model uva.duke.l.lm <- lm(uva.duke.l ~ r11.donor$Liver) summary(uva.duke.l.lm) # LM Model Diagnostics png("./lm_diag_diff_uva_duke_l.png", width=900, height=900) par(mfrow = c(2,2),ps=20) plot(uva.duke.l.lm) par(mfrow = c(1,1)) dev.off() # ACF/PACF of Residuals png("./acf_diff_uva_duke_l.png", width=900, height=900) par(mfcol = c(1,2),ps = 20) acf(uva.duke.l.lm$residuals) pacf(uva.duke.l.lm$residuals) par(mfcol = c(1,1)) dev.off() # AR Suggestion (uva.duke.l.ar <- ar(uva.duke.l.lm$residuals)) # AIC for Different AR Lags png("./aic_ar_diff_uva_duke_l.png", width=900, height=900) par(mfcol = c(1,1),ps = 20) plot(uva.duke.l.ar$aic, type = "h") dev.off() # Adding the time series model # AR(1) uva.duke.l.lm.e1 <- uva.duke.l.lm$resid[1:24] # new var..1 AR term put resid into AR r11k <- r11.donor$Liver[2:25] # need lag of use 1-24 to pred 2-25 uva.duke.l.ar1 <- uva.xplant$Liver[2:25] - duke.xplant$Liver[2:25] # lag from 1-24 to pred 2-25 diff uva.duke.l.dm <- data.frame(uva.duke.l.ar1, r11k, uva.duke.l.lm.e1) summary(uva.duke.l.dm) # Linear model with time series component uva.duke.l.lm2<- lm(uva.duke.l.ar1 ~ ., data = uva.duke.l.dm) summary(uva.duke.l.lm2) AIC(uva.duke.l.lm2) lm.fitted <- fitted(uva.duke.l.lm2) lm.resid <- residuals(uva.duke.l.lm2) lm.model <- model.matrix(uva.duke.l.lm2) lm.boot <- RTSB(uva.duke.l.ar1, r11k, lm.fitted, lm.resid, lm.model, 5000) lm.boot boot.ci(lm.boot,0.95,type=c('bca','perc'),index=1) boot.ci(lm.boot,0.95,type=c('bca','perc'),index=2) boot.ci(lm.boot,0.95,type=c('bca','perc'),index=3) # diagnostics png("./lm-ar1_diag_diff_uva_duke_l.png", width=900, height=900) par(mfrow = c(2,2),ps=20) plot(uva.duke.l.lm2) par(mfrow = c(1,1)) dev.off() png("./lm-ar1_acf_diff_uva_duke_l.png", width=900, height=900) par(mfrow =c(1,2),ps=20) acf(uva.duke.l.lm2$residuals) pacf(uva.duke.l.lm2$residuals) par(mfrow =c(1,1)) dev.off()
/RCode/models_liv_duke.R
no_license
demasma/Project3
R
false
false
2,250
r
# TS Difference uva.duke.l <- uva.xplant$Liver - duke.xplant$Liver # TS Plot png("./ts_diff_uva_duke_l.png", width=900, height=900) par(mfrow=c(1,1), ps=20) plot(uva.xplant$Year, uva.duke.l, col = "blue", type = "l", xlab = "Time", ylab = "UVa - Duke", main = "Difference between Kidney Transplants at UVA and Duke") abline(0,0) dev.off() # LM Model uva.duke.l.lm <- lm(uva.duke.l ~ r11.donor$Liver) summary(uva.duke.l.lm) # LM Model Diagnostics png("./lm_diag_diff_uva_duke_l.png", width=900, height=900) par(mfrow = c(2,2),ps=20) plot(uva.duke.l.lm) par(mfrow = c(1,1)) dev.off() # ACF/PACF of Residuals png("./acf_diff_uva_duke_l.png", width=900, height=900) par(mfcol = c(1,2),ps = 20) acf(uva.duke.l.lm$residuals) pacf(uva.duke.l.lm$residuals) par(mfcol = c(1,1)) dev.off() # AR Suggestion (uva.duke.l.ar <- ar(uva.duke.l.lm$residuals)) # AIC for Different AR Lags png("./aic_ar_diff_uva_duke_l.png", width=900, height=900) par(mfcol = c(1,1),ps = 20) plot(uva.duke.l.ar$aic, type = "h") dev.off() # Adding the time series model # AR(1) uva.duke.l.lm.e1 <- uva.duke.l.lm$resid[1:24] # new var..1 AR term put resid into AR r11k <- r11.donor$Liver[2:25] # need lag of use 1-24 to pred 2-25 uva.duke.l.ar1 <- uva.xplant$Liver[2:25] - duke.xplant$Liver[2:25] # lag from 1-24 to pred 2-25 diff uva.duke.l.dm <- data.frame(uva.duke.l.ar1, r11k, uva.duke.l.lm.e1) summary(uva.duke.l.dm) # Linear model with time series component uva.duke.l.lm2<- lm(uva.duke.l.ar1 ~ ., data = uva.duke.l.dm) summary(uva.duke.l.lm2) AIC(uva.duke.l.lm2) lm.fitted <- fitted(uva.duke.l.lm2) lm.resid <- residuals(uva.duke.l.lm2) lm.model <- model.matrix(uva.duke.l.lm2) lm.boot <- RTSB(uva.duke.l.ar1, r11k, lm.fitted, lm.resid, lm.model, 5000) lm.boot boot.ci(lm.boot,0.95,type=c('bca','perc'),index=1) boot.ci(lm.boot,0.95,type=c('bca','perc'),index=2) boot.ci(lm.boot,0.95,type=c('bca','perc'),index=3) # diagnostics png("./lm-ar1_diag_diff_uva_duke_l.png", width=900, height=900) par(mfrow = c(2,2),ps=20) plot(uva.duke.l.lm2) par(mfrow = c(1,1)) dev.off() png("./lm-ar1_acf_diff_uva_duke_l.png", width=900, height=900) par(mfrow =c(1,2),ps=20) acf(uva.duke.l.lm2$residuals) pacf(uva.duke.l.lm2$residuals) par(mfrow =c(1,1)) dev.off()
# We are using three matrices: # x - the matrix that is initialized with makeCacheMatrix() # y - the matrix whose inverse is stored in m # m - the inverse matrix of y # NOTE: # To check if the matrix, whose inverse matrix is stored in m # is changed after the inverse was calculated with chaceSolved(), I # introduced y matrix. This matrix is always containing the matrix # whose inverse is stored in m. # If you reinitialized your object with the set() function, there # is no need for this extra check. But if you modify only one element, # and don`t recalculate the inverse, it is neccessary to check whose inverse # is stored in the cache. makeCacheMatrix <- function(x = matrix()) { m <- NULL y <- NULL # modifies the element of the matrix setelement <- function(a, b, c) { x[a,b]<-c x <<- x } # updates the x matrix and makes m null setx <- function(z) { x <<- z m <<- NULL } # returns x matrix getx <- function() x # updates m, which is the inverse of y matrix setSolve <- function(r) { m <<- r } # returns m that is the inverse of y matrix getSolve <- function() m # updates the y matrix sety <- function (k) { y <<- k } # returns the y matrix gety <- function () y list(setelement=setelement, setx=setx, getx=getx, setSolve=setSolve, getSolve=getSolve, sety=sety, gety=gety) } # Calculates and prints the inverse matrix of the initialized matrix. # Also updates y accordingly. cacheSolve <- function(j, ...) { # puts m into t t <- j$getSolve() # if m not null and the original matrix is not changed, # returns with the cached data if(!is.null(t) && identical(j$gety(), j$getx())) { message("getting cached data") return(t) } # if we are here, that means that m was null, # or the original matrix was changed, # let`s calculate the new inverse matrix and stores the new values data <- j$getx() t <- solve(data, ...) j$setSolve(t) j$sety(data) t }
/cachematrix.R
no_license
anikonagy15/ProgrammingAssignment2
R
false
false
2,320
r
# We are using three matrices: # x - the matrix that is initialized with makeCacheMatrix() # y - the matrix whose inverse is stored in m # m - the inverse matrix of y # NOTE: # To check if the matrix, whose inverse matrix is stored in m # is changed after the inverse was calculated with chaceSolved(), I # introduced y matrix. This matrix is always containing the matrix # whose inverse is stored in m. # If you reinitialized your object with the set() function, there # is no need for this extra check. But if you modify only one element, # and don`t recalculate the inverse, it is neccessary to check whose inverse # is stored in the cache. makeCacheMatrix <- function(x = matrix()) { m <- NULL y <- NULL # modifies the element of the matrix setelement <- function(a, b, c) { x[a,b]<-c x <<- x } # updates the x matrix and makes m null setx <- function(z) { x <<- z m <<- NULL } # returns x matrix getx <- function() x # updates m, which is the inverse of y matrix setSolve <- function(r) { m <<- r } # returns m that is the inverse of y matrix getSolve <- function() m # updates the y matrix sety <- function (k) { y <<- k } # returns the y matrix gety <- function () y list(setelement=setelement, setx=setx, getx=getx, setSolve=setSolve, getSolve=getSolve, sety=sety, gety=gety) } # Calculates and prints the inverse matrix of the initialized matrix. # Also updates y accordingly. cacheSolve <- function(j, ...) { # puts m into t t <- j$getSolve() # if m not null and the original matrix is not changed, # returns with the cached data if(!is.null(t) && identical(j$gety(), j$getx())) { message("getting cached data") return(t) } # if we are here, that means that m was null, # or the original matrix was changed, # let`s calculate the new inverse matrix and stores the new values data <- j$getx() t <- solve(data, ...) j$setSolve(t) j$sety(data) t }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sgdata.R \docType{data} \name{sgdata} \alias{sgdata} \title{Example dataset dataset with repeated measures of depression and rumination} \format{ A longitudinal dataset in wide format, i.e one row per person, one column per variable. \itemize{ \item{id}{: ID variable, unique identifier for each person} \item{bdi_s0}{: BDI value, baseline assessment} \item{bdi_s1}{: BDI value, session 1} \item{bdi_s2}{: BDI value, session 2} \item{bdi_s3}{: BDI value, session 3} \item{bdi_s4}{: BDI value, session 4} \item{bdi_s5}{: BDI value, session 5} \item{bdi_s6}{: BDI value, session 6} \item{bdi_s7}{: BDI value, session 7} \item{bdi_s8}{: BDI value, session 8} \item{bdi_s9}{: BDI value, session 9} \item{bdi_s10}{: BDI value, session 10} \item{bdi_s11}{: BDI value, session 11} \item{bdi_s12}{: BDI value, session 12} \item{bdi_fu1}{: BDI value, follow-up measure 1} \item{bdi_fu2}{: BDI value, follow-up measure 2} \item{rq_s0}{: RQ value, baseline assessment} \item{rq_s1}{: RQ value, session 1} \item{rq_s2}{: RQ value, session 2} \item{rq_s3}{: RQ value, session 3} \item{rq_s4}{: RQ value, session 4} \item{rq_s5}{: RQ value, session 5} \item{rq_s6}{: RQ value, session 6} \item{rq_s7}{: RQ value, session 7} \item{rq_s8}{: RQ value, session 8} \item{rq_s9}{: RQ value, session 9} \item{rq_s10}{: RQ value, session 10} \item{rq_s11}{: RQ value, session 11} \item{rq_s12}{: RQ value, session 12} \item{rq_fu1}{: RQ value, follow-up measure 1} \item{rq_fu2}{: RQ value, follow-up measure 2} } } \usage{ data(sgdata) } \description{ Example dataset with a measure of depression symptoms (BDI) and a secondary process measure (RQ; Rumination Questionnaire) to illustrate how the package works. } \examples{ # Load data into global environment data(sgdata) } \keyword{dataset}
/man/sgdata.Rd
permissive
milanwiedemann/suddengains
R
false
true
1,913
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sgdata.R \docType{data} \name{sgdata} \alias{sgdata} \title{Example dataset dataset with repeated measures of depression and rumination} \format{ A longitudinal dataset in wide format, i.e one row per person, one column per variable. \itemize{ \item{id}{: ID variable, unique identifier for each person} \item{bdi_s0}{: BDI value, baseline assessment} \item{bdi_s1}{: BDI value, session 1} \item{bdi_s2}{: BDI value, session 2} \item{bdi_s3}{: BDI value, session 3} \item{bdi_s4}{: BDI value, session 4} \item{bdi_s5}{: BDI value, session 5} \item{bdi_s6}{: BDI value, session 6} \item{bdi_s7}{: BDI value, session 7} \item{bdi_s8}{: BDI value, session 8} \item{bdi_s9}{: BDI value, session 9} \item{bdi_s10}{: BDI value, session 10} \item{bdi_s11}{: BDI value, session 11} \item{bdi_s12}{: BDI value, session 12} \item{bdi_fu1}{: BDI value, follow-up measure 1} \item{bdi_fu2}{: BDI value, follow-up measure 2} \item{rq_s0}{: RQ value, baseline assessment} \item{rq_s1}{: RQ value, session 1} \item{rq_s2}{: RQ value, session 2} \item{rq_s3}{: RQ value, session 3} \item{rq_s4}{: RQ value, session 4} \item{rq_s5}{: RQ value, session 5} \item{rq_s6}{: RQ value, session 6} \item{rq_s7}{: RQ value, session 7} \item{rq_s8}{: RQ value, session 8} \item{rq_s9}{: RQ value, session 9} \item{rq_s10}{: RQ value, session 10} \item{rq_s11}{: RQ value, session 11} \item{rq_s12}{: RQ value, session 12} \item{rq_fu1}{: RQ value, follow-up measure 1} \item{rq_fu2}{: RQ value, follow-up measure 2} } } \usage{ data(sgdata) } \description{ Example dataset with a measure of depression symptoms (BDI) and a secondary process measure (RQ; Rumination Questionnaire) to illustrate how the package works. } \examples{ # Load data into global environment data(sgdata) } \keyword{dataset}
\name{miss_cell} \alias{miss_cell} \title{ Missing values cell function } \description{ Counting the number of missing values in each cell. } \usage{ miss_cell(x, y, z, w, cell_ids, row_ids, col_ids, vnames, vars, n_min, pct = FALSE, digits = 0, prefix='', suffix='') } \arguments{ \item{x}{ The x variable } \item{y}{ NOT USED } \item{z}{ NOT USED } \item{w}{ NOT USED (The number of missing will not be weighted!). } \item{cell_ids}{ Index vector for selecting values in cell. } \item{row_ids}{ NOT USED } \item{col_ids}{ NOT USED } \item{vnames}{ NOT USED } \item{vars}{ NOT USED } \item{n_min}{ NOT USED } \item{pct}{ Logical asking whatever to draw absolute or relative frequency of missing values. } \item{digits}{ Integer indicating the number of decimal places. } \item{prefix}{ Free text added in each cell bevor results. } \item{suffix}{ Free text added in each cell after results. } } \author{ Andreas Schulz <ades-s@web.de> } \examples{ sex <- factor(rbinom(1000, 1, 0.4), labels=c('Men', 'Women')) height <- rnorm(1000, mean=1.66, sd=0.1) height[which(sex=='Men')]<-height[which(sex=='Men')]+0.1 weight <- rnorm(1000, mean=70, sd=5) decades <- rbinom(1000, 3, 0.5) decades <- factor(decades, labels=c('[35,45)','[45,55)','[55,65)','[65,75)')) d<-data.frame(sex, decades, height, weight) d$height[round(runif(250,1,1000))]<- NA d$weight[round(runif(25 ,1,1000))]<- NA tabular.ade(x_vars=c('height', 'weight'), xname=c('Height [m]','Weight [kg]'), cols=c('sex','decades','ALL'), cnames=c('Gender', 'Age decades'), data=d, FUN=miss_cell, prefix='Miss:') } \keyword{ missings }
/man/miss_cell.Rd
no_license
cran/etable
R
false
false
1,740
rd
\name{miss_cell} \alias{miss_cell} \title{ Missing values cell function } \description{ Counting the number of missing values in each cell. } \usage{ miss_cell(x, y, z, w, cell_ids, row_ids, col_ids, vnames, vars, n_min, pct = FALSE, digits = 0, prefix='', suffix='') } \arguments{ \item{x}{ The x variable } \item{y}{ NOT USED } \item{z}{ NOT USED } \item{w}{ NOT USED (The number of missing will not be weighted!). } \item{cell_ids}{ Index vector for selecting values in cell. } \item{row_ids}{ NOT USED } \item{col_ids}{ NOT USED } \item{vnames}{ NOT USED } \item{vars}{ NOT USED } \item{n_min}{ NOT USED } \item{pct}{ Logical asking whatever to draw absolute or relative frequency of missing values. } \item{digits}{ Integer indicating the number of decimal places. } \item{prefix}{ Free text added in each cell bevor results. } \item{suffix}{ Free text added in each cell after results. } } \author{ Andreas Schulz <ades-s@web.de> } \examples{ sex <- factor(rbinom(1000, 1, 0.4), labels=c('Men', 'Women')) height <- rnorm(1000, mean=1.66, sd=0.1) height[which(sex=='Men')]<-height[which(sex=='Men')]+0.1 weight <- rnorm(1000, mean=70, sd=5) decades <- rbinom(1000, 3, 0.5) decades <- factor(decades, labels=c('[35,45)','[45,55)','[55,65)','[65,75)')) d<-data.frame(sex, decades, height, weight) d$height[round(runif(250,1,1000))]<- NA d$weight[round(runif(25 ,1,1000))]<- NA tabular.ade(x_vars=c('height', 'weight'), xname=c('Height [m]','Weight [kg]'), cols=c('sex','decades','ALL'), cnames=c('Gender', 'Age decades'), data=d, FUN=miss_cell, prefix='Miss:') } \keyword{ missings }
Playerfunction=function(){ EndName<- regexpr("棒", x) Name<- regexpr(":", x) player<-substr(x,EndName+1,Name-1) player<-substr(player,(regexpr("[^1-9a-zA-Z]", player)),(regexpr("[^1-9a-zA-Z]", player)+100)) player[(which(regexpr("[\\(][0-9]",player) != -1))]="" player[(which(regexpr("[統義兄桃][一大弟猿]",player) != -1))]="" player <- gsub("1B",replacement="",player) player <- gsub("2B",replacement="",player) player <- gsub("3B",replacement="",player) player <- gsub("SS",replacement="",player) player <- gsub("C",replacement="",player) player <- gsub("LF",replacement="",player) player <- gsub("CF",replacement="",player) player <- gsub("RF",replacement="",player) player <- gsub("DH",replacement="",player) player <- gsub(",",replacement="",player) player <- gsub("比賽結束",replacement="",player) player <- gsub("比賽開始",replacement="",player) return(player) }
/offensive_db/functions/playerfunction.R
no_license
wokeketm1/CPBL
R
false
false
892
r
Playerfunction=function(){ EndName<- regexpr("棒", x) Name<- regexpr(":", x) player<-substr(x,EndName+1,Name-1) player<-substr(player,(regexpr("[^1-9a-zA-Z]", player)),(regexpr("[^1-9a-zA-Z]", player)+100)) player[(which(regexpr("[\\(][0-9]",player) != -1))]="" player[(which(regexpr("[統義兄桃][一大弟猿]",player) != -1))]="" player <- gsub("1B",replacement="",player) player <- gsub("2B",replacement="",player) player <- gsub("3B",replacement="",player) player <- gsub("SS",replacement="",player) player <- gsub("C",replacement="",player) player <- gsub("LF",replacement="",player) player <- gsub("CF",replacement="",player) player <- gsub("RF",replacement="",player) player <- gsub("DH",replacement="",player) player <- gsub(",",replacement="",player) player <- gsub("比賽結束",replacement="",player) player <- gsub("比賽開始",replacement="",player) return(player) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/experiment_class.R \name{seqlevels,experiment-method} \alias{seqlevels,experiment-method} \title{Seqlevels ORFik experiment Extracted from fasta genome index} \usage{ \S4method{seqlevels}{experiment}(x) } \arguments{ \item{x}{an ORFik \code{\link{experiment}}} } \value{ integer vector with names } \description{ Seqlevels ORFik experiment Extracted from fasta genome index }
/man/seqlevels-experiment-method.Rd
permissive
Roleren/ORFik
R
false
true
454
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/experiment_class.R \name{seqlevels,experiment-method} \alias{seqlevels,experiment-method} \title{Seqlevels ORFik experiment Extracted from fasta genome index} \usage{ \S4method{seqlevels}{experiment}(x) } \arguments{ \item{x}{an ORFik \code{\link{experiment}}} } \value{ integer vector with names } \description{ Seqlevels ORFik experiment Extracted from fasta genome index }
source('getdata.r') library('nlme') options(contrasts=c("contr.sum","contr.poly")) # Make some dataframes to analyze with linear models reg.dat <- cbind(climData.sub[,c('siteClim','yearClim','maxswe','novSWEmean', 'decSWEmean','janSWEmean','febSWEmean','meltdoy','onsetdoy', 'totaldaysSC','maat','freemat','scovmat', 'jfmMAT','jasMAT','preonsetTair','JASprecip')], soilTData[,c('jfmTs5mean','jfmTs20mean','jfmTs50mean', 'snowcovTs5mean','snowcovTs20mean', 'snowcovTs50mean','preonsetTs5', 'preonsetTs20','preonsetTs50')], soilVWCData[,c('jasVWC5mean','jasVWC20mean','jasVWC50mean', 'jfmVWC5mean','jfmVWC20mean','jfmVWC50mean', 'preonsetVWC5','preonsetVWC20', 'preonsetVWC50')]) # List of sites sites <- unique(reg.dat$siteClim) # BELOW-SNOW Tsoil - Create a data frame to store regression values scovTs.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Beta=0,x1Pval=0,x2Beta=0,x2Pval=0, x3Beta=0,x3Pval=0,x4Beta=0,x4Pval=0, x5Beta=0,x5Pval=0,x6Beta=0,x6Pval=0, x7Beta=0,x7Pval=0,x8Beta=0,x8Pval=0, x9Beta=0,x9Pval=0) wgtZ.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Z=0,x1df=0,x2Z=0,x2df=0, x3Z=0,x3df=0,x4Z=0,x4df=0, x5Z=0,x5df=0,x6Z=0,x6df=0, x7Z=0,x7df=0,x8Z=0,x8df=0, x9Z=0,x9df=0) for (i in 1:length(sites)) { # Subset for the site tmp <- reg.dat[reg.dat$siteClim==sites[i],] # Assign the independent variable y <- tmp$snowcovTs50mean # Create a list of independent variables # peak SWE, onsetdoy, preonset Tair, nov & dec SWE xlist <- data.frame(tmp$maxswe,tmp$onsetdoy,tmp$preonsetTair, tmp$scovmat,tmp$meltdoy,tmp$novSWEmean,tmp$decSWEmean, tmp$janSWEmean,tmp$febSWEmean) cols <- seq(3, 19, 2) for (j in 1:9) { x <- xlist[,j] # Get the x variable from the list # Only do the linear model if there are 3 or more non-NA cases if (length(y)-sum(is.na(y))>3 & length(x)-sum(is.na(x))>3) { lm1 <- lm(y~x, na.action=na.omit) scovTs.lm[i,cols[j]] <- lm1$coef[2] scovTs.lm[i,cols[j]+1] <- summary(lm1)$coef[8] # Save the degrees of freedom to weight the combined test wgtZ.lm[i,cols[j]+1] <- lm1$df.residual # Otherwise set NAs } else { scovTs.lm[i,cols[j]] <- NA scovTs.lm[i,cols[j]+1] <- NA } } } # Get the mean Betas for the x variables meandat <- sapply(scovTs.lm, mean, na.rm=TRUE) # How many of these regressions are significant (5 10 50 indvar)? sigp <- as.data.frame(scovTs.lm < 0.05) pdat <- sapply(sigp, sum, na.rm=TRUE) #Show a matrix of these values cbind(meandat[seq(4,20,2)], pdat[seq(4,20,2)]) # maxswe # onsetdoy # preonsetTair # scovmat # meltdoy # novSWEmean # decSWEmean # janSWEmean # febSWEmean # Now do the weighted z transform (Whitlock 2005) to test if these # are significant in a combine sense for (i in 1:length(sites)) { # Subset pvalue data for the site tmp <- scovTs.lm[scovTs.lm$site==sites[i],] # Create a list of independent variables # peak SWE, onsetdoy, preonset Tair, nov & dec SWE #xlist <- data.frame(tmp$maxswe,tmp$onsetdoy,tmp$preonsetTair, # tmp$scovmat,tmp$meltdoy,tmp$novSWEmean,tmp$decSWEmean, # tmp$janSWEmean,tmp$febSWEmean) cols <- seq(3, 19, 2) for (j in 1:9) { p_mu <- meandat[cols[j] + 1] # Get the mean p value for that row wgtZ.lm[i,cols[j]] <- (p_mu - tmp[cols[j] + 1])/1 } } # Now we need to compute the numerator and denominator for the test #browser() # Now the nlme analysis y <- reg.dat$jasVWC50mean #reg.dat$snowcovTs5mean #jfm # df <- data.frame(reg.dat$maxswe,reg.dat$onsetdoy, # reg.dat$preonsetTair,reg.dat$scovmat,reg.dat$meltdoy, # reg.dat$novSWEmean,reg.dat$decSWEmean,reg.dat$janSWEmean, # reg.dat$febSWEmean) df <- data.frame(reg.dat$maxswe,reg.dat$meltdoy,reg.dat$jasMAT, reg.dat$JASprecip,reg.dat$jfmTs5mean) sitevec <- reg.dat$siteClim for (i in 1:9) { x <- df[,i] # Get the x variable from the list mod <- lme(y ~ x, random=~1 | sitevec, na.action = na.omit) print(i) print(anova(mod)) } # BELOW-SNOW VWC - Create a data frame to store regression values scovVWC.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Beta=0,x1Pval=0,x2Beta=0,x2Pval=0, x3Beta=0,x3Pval=0,x4Beta=0,x4Pval=0, x5Beta=0,x5Pval=0,x6Beta=0,x6Pval=0, x7Beta=0,x7Pval=0,x8Beta=0,x8Pval=0, x9Beta=0,x9Pval=0) for (i in 1:length(sites)) { # Subset for the site tmp <- reg.dat[reg.dat$siteClim==sites[i],] # Assign the independent variable y <- tmp$jfmVWC50mean # Create a list of independent variables # peak SWE, onsetdoy, preonset Tair, nov & dec SWE, etc xlist <- data.frame(tmp$maxswe,tmp$onsetdoy,tmp$preonsetTair, tmp$scovmat,tmp$meltdoy, tmp$novSWEmean,tmp$decSWEmean,tmp$janSWEmean,tmp$febSWEmean) cols <- seq(3, 19, 2) for (j in 1:9) { x <- xlist[,j] # Get the x variable from the list # Only do the linear model if there are 3 or more non-NA cases if (length(y)-sum(is.na(y))>3 & length(x)-sum(is.na(x))>3) { lm1 <- lm(y~x, na.action=na.omit) scovVWC.lm[i,cols[j]] <- lm1$coef[2] scovVWC.lm[i,cols[j]+1] <- summary(lm1)$coef[8] # Otherwise set NAs } else { scovVWC.lm[i,cols[j]] <- NA scovVWC.lm[i,cols[j]+1] <- NA } } } # Get the mean Betas for the x variables meandat <- sapply(scovVWC.lm, mean, na.rm=TRUE) # How many of these regressions are significant (5 10 50 indvar)? sigp <- as.data.frame(scovVWC.lm < 0.05) pdat <- sapply(sigp, sum, na.rm=TRUE) #Show a matrix of these values cbind(meandat[seq(4,20,2)], pdat[seq(4,20,2)]) # maxswe # onsetdoy # preonsetTair # scovmat # meltdoy # novSWEmean # decSWEmean # janSWEmean # febSWEmean # SUMMER (JAS) VWC - Create a data frame to store regression values jasVWC.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Beta=0,x1Pval=0,x2Beta=0,x2Pval=0, x3Beta=0,x3Pval=0,x4Beta=0,x4Pval=0, x5Beta=0,x5Pval=0) for (i in 1:length(sites)) { # Subset for the site tmp <- reg.dat[reg.dat$siteClim==sites[i],] # Assign the independent variable y <- tmp$jasVWC50mean # Create a list of independent variables # peak SWE, meltdoy, JAS Tair, JAS precip, winter Tsoil xlist <- data.frame(tmp$maxswe,tmp$meltdoy,tmp$jasMAT, tmp$JASprecip,tmp$jfmTs5mean) cols <- seq(3, 11, 2) for (j in 1:5) { x <- xlist[,j] # Get the x variable from the list # Only do the linear model if there are 3 or more non-NA cases if (length(y)-sum(is.na(y))>3 & length(x)-sum(is.na(x))>3) { lm1 <- lm(y~x, na.action=na.omit) jasVWC.lm[i,cols[j]] <- lm1$coef[2] jasVWC.lm[i,cols[j]+1] <- summary(lm1)$coef[8] # Otherwise set NAs } else { jasVWC.lm[i,cols[j]] <- NA jasVWC.lm[i,cols[j]+1] <- NA } } } # Get the mean Betas for the x variables meandat <- sapply(jasVWC.lm, mean, na.rm=TRUE) # How many of these regressions are significant (5 10 50 indvar)? sigp <- as.data.frame(jasVWC.lm < 0.05) pdat <- sapply(sigp, sum, na.rm=TRUE) #Show a matrix of these values cbind(meandat[seq(4,12,2)], pdat[seq(4,12,2)]) # maxswe # meltdoy # jasTair # jasPrecip # jfmTs5mean
/R/lm_site.r
no_license
gremau/SNOTELsoildata
R
false
false
7,381
r
source('getdata.r') library('nlme') options(contrasts=c("contr.sum","contr.poly")) # Make some dataframes to analyze with linear models reg.dat <- cbind(climData.sub[,c('siteClim','yearClim','maxswe','novSWEmean', 'decSWEmean','janSWEmean','febSWEmean','meltdoy','onsetdoy', 'totaldaysSC','maat','freemat','scovmat', 'jfmMAT','jasMAT','preonsetTair','JASprecip')], soilTData[,c('jfmTs5mean','jfmTs20mean','jfmTs50mean', 'snowcovTs5mean','snowcovTs20mean', 'snowcovTs50mean','preonsetTs5', 'preonsetTs20','preonsetTs50')], soilVWCData[,c('jasVWC5mean','jasVWC20mean','jasVWC50mean', 'jfmVWC5mean','jfmVWC20mean','jfmVWC50mean', 'preonsetVWC5','preonsetVWC20', 'preonsetVWC50')]) # List of sites sites <- unique(reg.dat$siteClim) # BELOW-SNOW Tsoil - Create a data frame to store regression values scovTs.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Beta=0,x1Pval=0,x2Beta=0,x2Pval=0, x3Beta=0,x3Pval=0,x4Beta=0,x4Pval=0, x5Beta=0,x5Pval=0,x6Beta=0,x6Pval=0, x7Beta=0,x7Pval=0,x8Beta=0,x8Pval=0, x9Beta=0,x9Pval=0) wgtZ.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Z=0,x1df=0,x2Z=0,x2df=0, x3Z=0,x3df=0,x4Z=0,x4df=0, x5Z=0,x5df=0,x6Z=0,x6df=0, x7Z=0,x7df=0,x8Z=0,x8df=0, x9Z=0,x9df=0) for (i in 1:length(sites)) { # Subset for the site tmp <- reg.dat[reg.dat$siteClim==sites[i],] # Assign the independent variable y <- tmp$snowcovTs50mean # Create a list of independent variables # peak SWE, onsetdoy, preonset Tair, nov & dec SWE xlist <- data.frame(tmp$maxswe,tmp$onsetdoy,tmp$preonsetTair, tmp$scovmat,tmp$meltdoy,tmp$novSWEmean,tmp$decSWEmean, tmp$janSWEmean,tmp$febSWEmean) cols <- seq(3, 19, 2) for (j in 1:9) { x <- xlist[,j] # Get the x variable from the list # Only do the linear model if there are 3 or more non-NA cases if (length(y)-sum(is.na(y))>3 & length(x)-sum(is.na(x))>3) { lm1 <- lm(y~x, na.action=na.omit) scovTs.lm[i,cols[j]] <- lm1$coef[2] scovTs.lm[i,cols[j]+1] <- summary(lm1)$coef[8] # Save the degrees of freedom to weight the combined test wgtZ.lm[i,cols[j]+1] <- lm1$df.residual # Otherwise set NAs } else { scovTs.lm[i,cols[j]] <- NA scovTs.lm[i,cols[j]+1] <- NA } } } # Get the mean Betas for the x variables meandat <- sapply(scovTs.lm, mean, na.rm=TRUE) # How many of these regressions are significant (5 10 50 indvar)? sigp <- as.data.frame(scovTs.lm < 0.05) pdat <- sapply(sigp, sum, na.rm=TRUE) #Show a matrix of these values cbind(meandat[seq(4,20,2)], pdat[seq(4,20,2)]) # maxswe # onsetdoy # preonsetTair # scovmat # meltdoy # novSWEmean # decSWEmean # janSWEmean # febSWEmean # Now do the weighted z transform (Whitlock 2005) to test if these # are significant in a combine sense for (i in 1:length(sites)) { # Subset pvalue data for the site tmp <- scovTs.lm[scovTs.lm$site==sites[i],] # Create a list of independent variables # peak SWE, onsetdoy, preonset Tair, nov & dec SWE #xlist <- data.frame(tmp$maxswe,tmp$onsetdoy,tmp$preonsetTair, # tmp$scovmat,tmp$meltdoy,tmp$novSWEmean,tmp$decSWEmean, # tmp$janSWEmean,tmp$febSWEmean) cols <- seq(3, 19, 2) for (j in 1:9) { p_mu <- meandat[cols[j] + 1] # Get the mean p value for that row wgtZ.lm[i,cols[j]] <- (p_mu - tmp[cols[j] + 1])/1 } } # Now we need to compute the numerator and denominator for the test #browser() # Now the nlme analysis y <- reg.dat$jasVWC50mean #reg.dat$snowcovTs5mean #jfm # df <- data.frame(reg.dat$maxswe,reg.dat$onsetdoy, # reg.dat$preonsetTair,reg.dat$scovmat,reg.dat$meltdoy, # reg.dat$novSWEmean,reg.dat$decSWEmean,reg.dat$janSWEmean, # reg.dat$febSWEmean) df <- data.frame(reg.dat$maxswe,reg.dat$meltdoy,reg.dat$jasMAT, reg.dat$JASprecip,reg.dat$jfmTs5mean) sitevec <- reg.dat$siteClim for (i in 1:9) { x <- df[,i] # Get the x variable from the list mod <- lme(y ~ x, random=~1 | sitevec, na.action = na.omit) print(i) print(anova(mod)) } # BELOW-SNOW VWC - Create a data frame to store regression values scovVWC.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Beta=0,x1Pval=0,x2Beta=0,x2Pval=0, x3Beta=0,x3Pval=0,x4Beta=0,x4Pval=0, x5Beta=0,x5Pval=0,x6Beta=0,x6Pval=0, x7Beta=0,x7Pval=0,x8Beta=0,x8Pval=0, x9Beta=0,x9Pval=0) for (i in 1:length(sites)) { # Subset for the site tmp <- reg.dat[reg.dat$siteClim==sites[i],] # Assign the independent variable y <- tmp$jfmVWC50mean # Create a list of independent variables # peak SWE, onsetdoy, preonset Tair, nov & dec SWE, etc xlist <- data.frame(tmp$maxswe,tmp$onsetdoy,tmp$preonsetTair, tmp$scovmat,tmp$meltdoy, tmp$novSWEmean,tmp$decSWEmean,tmp$janSWEmean,tmp$febSWEmean) cols <- seq(3, 19, 2) for (j in 1:9) { x <- xlist[,j] # Get the x variable from the list # Only do the linear model if there are 3 or more non-NA cases if (length(y)-sum(is.na(y))>3 & length(x)-sum(is.na(x))>3) { lm1 <- lm(y~x, na.action=na.omit) scovVWC.lm[i,cols[j]] <- lm1$coef[2] scovVWC.lm[i,cols[j]+1] <- summary(lm1)$coef[8] # Otherwise set NAs } else { scovVWC.lm[i,cols[j]] <- NA scovVWC.lm[i,cols[j]+1] <- NA } } } # Get the mean Betas for the x variables meandat <- sapply(scovVWC.lm, mean, na.rm=TRUE) # How many of these regressions are significant (5 10 50 indvar)? sigp <- as.data.frame(scovVWC.lm < 0.05) pdat <- sapply(sigp, sum, na.rm=TRUE) #Show a matrix of these values cbind(meandat[seq(4,20,2)], pdat[seq(4,20,2)]) # maxswe # onsetdoy # preonsetTair # scovmat # meltdoy # novSWEmean # decSWEmean # janSWEmean # febSWEmean # SUMMER (JAS) VWC - Create a data frame to store regression values jasVWC.lm <- data.frame(site=sites, nyrs=as.vector(table(reg.dat$siteClim)), x1Beta=0,x1Pval=0,x2Beta=0,x2Pval=0, x3Beta=0,x3Pval=0,x4Beta=0,x4Pval=0, x5Beta=0,x5Pval=0) for (i in 1:length(sites)) { # Subset for the site tmp <- reg.dat[reg.dat$siteClim==sites[i],] # Assign the independent variable y <- tmp$jasVWC50mean # Create a list of independent variables # peak SWE, meltdoy, JAS Tair, JAS precip, winter Tsoil xlist <- data.frame(tmp$maxswe,tmp$meltdoy,tmp$jasMAT, tmp$JASprecip,tmp$jfmTs5mean) cols <- seq(3, 11, 2) for (j in 1:5) { x <- xlist[,j] # Get the x variable from the list # Only do the linear model if there are 3 or more non-NA cases if (length(y)-sum(is.na(y))>3 & length(x)-sum(is.na(x))>3) { lm1 <- lm(y~x, na.action=na.omit) jasVWC.lm[i,cols[j]] <- lm1$coef[2] jasVWC.lm[i,cols[j]+1] <- summary(lm1)$coef[8] # Otherwise set NAs } else { jasVWC.lm[i,cols[j]] <- NA jasVWC.lm[i,cols[j]+1] <- NA } } } # Get the mean Betas for the x variables meandat <- sapply(jasVWC.lm, mean, na.rm=TRUE) # How many of these regressions are significant (5 10 50 indvar)? sigp <- as.data.frame(jasVWC.lm < 0.05) pdat <- sapply(sigp, sum, na.rm=TRUE) #Show a matrix of these values cbind(meandat[seq(4,12,2)], pdat[seq(4,12,2)]) # maxswe # meltdoy # jasTair # jasPrecip # jfmTs5mean
#install.packages("devtools") #devtools::install_github("MRCIEU/TwoSampleMR") library(TwoSampleMR) library(data.table) library(dplyr) library(gwasglue) library(gwasvcf) library(ieugwasr) library(genetics.binaRies) set_bcftools() args <- commandArgs(T) datadir <- args[1] resultsdir <- args[2] vcfdir <- args[3] out <- args[4] instr <- args[5] # ======================== Functions ============================== mr_analysis <- function(exp,d,r) { # outcome (always the same as r) of <- paste(resultsdir,"/",out,"/",r,".statsfile.txt.gz",sep="") opt <- fread(of,header=TRUE) opt <- as.data.frame(opt) if ("BETA" %in% colnames(opt)) { opt1 <- opt[,c("SNP","ALLELE1","ALLELE0","A1FREQ","BETA", "SE",tail(colnames(opt),1))] colnames(opt1) <- c("SNP", "effect_allele.outcome", "other_allele.outcome", "eaf.outcome", "beta.outcome", "se.outcome", "pval.outcome") opt2 <- opt1[order(opt1$SNP, opt1$pval.outcome), ] opt2 <- opt2[ !duplicated(opt2$SNP), ] opt3 <- cbind(opt2, "outcome"=rep("outcome",nrow(opt2)), "mr_keep.outcome"=rep("TRUE", nrow(opt2)), "pval_origin.outcome"=rep("reported", nrow(opt2)), "id.outcome"=rep(out, nrow(opt2)), "data_source.outcome"=rep("textfile", nrow(opt2))) out_gwas <- opt3 } else { out_gwas <- "NA" } # MR analysis if (!out_gwas=="NA") { print(paste("exposure=",exp)) # Read the results of GWAS df <- paste(resultsdir,"/",exp,"/",d,".statsfile.txt.gz",sep="") dsc <- fread(df,header=TRUE) dsc <- as.data.frame(dsc) rf <- paste(resultsdir,"/",exp,"/",r,".statsfile.txt.gz",sep="") rpc <- fread(rf,header=TRUE) rpc <- as.data.frame(rpc) if ("BETA" %in% colnames(dsc) & "BETA" %in% colnames(rpc)) { dsc1 <- dsc[,c("SNP","ALLELE1","ALLELE0","A1FREQ","BETA", "SE",tail(colnames(dsc),1))] colnames(dsc1) <- c("SNP", "effect_allele.exposure", "other_allele.exposure", "eaf.exposure", "beta.exposure", "se.exposure", "pval.exposure") dsc2 <- dsc1[order(dsc1$SNP, dsc1$pval.exposure), ] dsc2 <- dsc2[ !duplicated(dsc2$SNP), ] dsc3 <- cbind(dsc2, "exposure"=rep("exposure",nrow(dsc2)), "mr_keep.exposure"=rep("TRUE", nrow(dsc2)), "pval_origin.exposure"=rep("reported", nrow(dsc2)), "id.exposure"=rep(exp, nrow(dsc2)), "data_source.exposure"=rep("textfile", nrow(dsc2))) rpc1 <- rpc[,c("SNP","ALLELE1","ALLELE0","A1FREQ","BETA", "SE",tail(colnames(rpc),1))] colnames(rpc1) <- c("SNP", "effect_allele.exposure", "other_allele.exposure", "eaf.exposure", "beta.exposure", "se.exposure", "pval.exposure") rpc2 <- rpc1[order(rpc1$SNP, rpc1$pval.exposure), ] rpc2 <- rpc2[ !duplicated(rpc2$SNP), ] rpc3 <- cbind(rpc2, "exposure"=rep("exposure",nrow(rpc2)), "mr_keep.exposure"=rep("TRUE", nrow(rpc2)), "pval_origin.exposure"=rep("reported", nrow(rpc2)), "id.exposure"=rep(exp, nrow(rpc2)), "data_source.exposure"=rep("textfile", nrow(rpc2))) disc_gwas <- dsc3 repl_gwas <- rpc3 # Filtering SNPs for their presence in the phenotype and for p-val snp_exp <- as.character(subset(dat, id.exposure == exp)$SNP) ## Forward order disc_gwas_f <- subset(disc_gwas,SNP %in% snp_exp & pval.exposure < 5e-8) # Next two commands used to distinguish between weak instruments and weak instruments with wc. 10 is a threshold for weak instruments if (instr=="weak") { snplist <- subset(repl_gwas, SNP %in% disc_gwas_f$SNP & pval.exposure >= pf(10, 1, 10000, low=F))$SNP disc_gwas_f <- subset(disc_gwas_f, SNP %in% snplist) } repl_gwas_f <- subset(repl_gwas,SNP %in% disc_gwas_f$SNP) out_gwas_f <- subset(out_gwas,SNP %in% disc_gwas_f$SNP) ## Reverse order repl_gwas_s <- subset(repl_gwas,SNP %in% snp_exp & pval.exposure < 5e-8) # Next two commands used to distinguish between weak instruments and weak instruments with wc. 10 is a threshold for weak instruments if (instr=="weak") { snplist <- subset(disc_gwas, SNP %in% repl_gwas_s$SNP & pval.exposure >= pf(10, 1, 10000, low=F))$SNP repl_gwas_s <- subset(repl_gwas_s, SNP %in% snplist) } disc_gwas_s <- subset(disc_gwas,SNP %in% repl_gwas_s$SNP) out_gwas_s <- subset(out_gwas,SNP %in% repl_gwas_s$SNP) # DR and D scenarios if (!nrow(disc_gwas_f)==0) { # Harmonise the exposure and outcome data dat_dr <- harmonise_data(repl_gwas_f, out_gwas_f, action=1) dat_d <- harmonise_data(disc_gwas_f, out_gwas_f, action=1) # Perform MR on the replication data res_dr <- mr(dat_dr) if (nrow(res_dr)==0) { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- mr_heterogeneity(dat_dr) if (nrow(het_dr)==0) { het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) # Perform MR on the discovery sign data res_d <- mr(dat_d) if (nrow(res_d)==0) { res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- mr_heterogeneity(dat_d) if (nrow(het_d)==0) { het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) } else { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) } # RD and R scenario if (!nrow(repl_gwas_s)==0) { # Harmonise the exposure and outcome data dat_rd <- harmonise_data(disc_gwas_s, out_gwas_s, action=1) dat_r <- harmonise_data(repl_gwas_s, out_gwas_s, action=1) # Perform MR on the discovery data res_rd <- mr(dat_rd) if (nrow(res_rd)==0) { res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- mr_heterogeneity(dat_rd) if (nrow(het_rd)==0) { het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) # Perform MR on the replication sign data res_r <- mr(dat_r) if (nrow(res_r)==0) { res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- mr_heterogeneity(dat_r) if (nrow(het_r)==0) { het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } else { res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } } else { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } } else { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } mr_res <- rbind(res_dr,res_d,res_rd,res_r) mr_het <- rbind(het_dr,het_d,het_rd,het_r) res_list <- list("mr" = mr_res, "het" = mr_het) return(res_list) } # ======================== Run ============================== # Read all phenotype names and define each phenotype id phen_all <- fread(paste(datadir,"ukb-b-idlist.txt",sep="/"), header=FALSE) phen_all <- as.data.frame(phen_all) # ---------------------- Full MR ---------------------------- # Read instruments for all of the exposures load(paste(datadir,"MR_prep.RData",sep="/")) exposure_dat <- mybiglist$exp_dat chrpos <- mybiglist$chr_pos # Lookup from one dataset filename <- paste(vcfdir,"/",out,"/",out,".vcf.gz",sep="") out1 <- query_gwas(filename, chrompos=chrpos) out2 <- gwasglue::gwasvcf_to_TwoSampleMR(out1, "outcome") # Harmonise the exposure and outcome data dat <- harmonise_data(exposure_dat, out2, action=1) # testing for one exposure only: # dat <- dat[dat$id.exposure==exp,] # Perform full MR res <- mr(dat) if (nrow(res)==0) { res <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res <- res %>% mutate(outcome = tolower(outcome)) res$id.outcome <- res$outcome het <- mr_heterogeneity(dat) if (nrow(het)==0) { het <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het <- het %>% mutate(outcome = tolower(outcome)) het$id.outcome <- het$outcome # ---------------------- Replication ------------------------- mr_out <- c() het_out <- c() for (exp in phen_all[,1]) { mr_full <- subset(res, id.exposure==exp) if (nrow(mr_full)==0) { mr_full <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } mr_full <- cbind(mr_full,"data"=rep("full", nrow(mr_full))) mr_full <- cbind(mr_full,"dir"="NA") het_full <- subset(het, id.exposure==exp) if (nrow(het_full)==0) { het_full <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_full <- cbind(het_full,"data"=rep("full", nrow(het_full))) het_full <- cbind(het_full,"dir"="NA") mr_rep_AB <- mr_analysis(exp,"discovery","replication") mr_AB <- mr_rep_AB$mr mr_AB <- cbind(mr_AB,"dir"=rep("AB", nrow(mr_AB))) het_AB <- mr_rep_AB$het het_AB <- cbind(het_AB,"dir"=rep("AB", nrow(het_AB))) mr_rep_BA <- mr_analysis(exp,"replication","discovery") mr_BA <- mr_rep_BA$mr mr_BA <- cbind(mr_BA,"dir"=rep("BA", nrow(mr_BA))) het_BA <- mr_rep_BA$het het_BA <- cbind(het_BA,"dir"=rep("BA", nrow(het_BA))) mr_out <- rbind(mr_out,mr_full,mr_AB,mr_BA) het_out <- rbind(het_out,het_full,het_AB,het_BA) } # Save all results write.table(mr_out, file = paste(resultsdir,"/",out,"/MR_All_vs_All_",instr,".txt",sep=""), append = FALSE, quote = TRUE, sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = TRUE, qmethod = c("escape", "double"), fileEncoding = "") write.table(het_out, file = paste(resultsdir,"/",out,"/MR_Het_All_vs_All_",instr,".txt",sep=""), append = FALSE, quote = TRUE, sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = TRUE, qmethod = c("escape", "double"), fileEncoding = "")
/mr/scripts/mr_All_vs_All.r
no_license
isadreev/UKBB_replication
R
false
false
17,606
r
#install.packages("devtools") #devtools::install_github("MRCIEU/TwoSampleMR") library(TwoSampleMR) library(data.table) library(dplyr) library(gwasglue) library(gwasvcf) library(ieugwasr) library(genetics.binaRies) set_bcftools() args <- commandArgs(T) datadir <- args[1] resultsdir <- args[2] vcfdir <- args[3] out <- args[4] instr <- args[5] # ======================== Functions ============================== mr_analysis <- function(exp,d,r) { # outcome (always the same as r) of <- paste(resultsdir,"/",out,"/",r,".statsfile.txt.gz",sep="") opt <- fread(of,header=TRUE) opt <- as.data.frame(opt) if ("BETA" %in% colnames(opt)) { opt1 <- opt[,c("SNP","ALLELE1","ALLELE0","A1FREQ","BETA", "SE",tail(colnames(opt),1))] colnames(opt1) <- c("SNP", "effect_allele.outcome", "other_allele.outcome", "eaf.outcome", "beta.outcome", "se.outcome", "pval.outcome") opt2 <- opt1[order(opt1$SNP, opt1$pval.outcome), ] opt2 <- opt2[ !duplicated(opt2$SNP), ] opt3 <- cbind(opt2, "outcome"=rep("outcome",nrow(opt2)), "mr_keep.outcome"=rep("TRUE", nrow(opt2)), "pval_origin.outcome"=rep("reported", nrow(opt2)), "id.outcome"=rep(out, nrow(opt2)), "data_source.outcome"=rep("textfile", nrow(opt2))) out_gwas <- opt3 } else { out_gwas <- "NA" } # MR analysis if (!out_gwas=="NA") { print(paste("exposure=",exp)) # Read the results of GWAS df <- paste(resultsdir,"/",exp,"/",d,".statsfile.txt.gz",sep="") dsc <- fread(df,header=TRUE) dsc <- as.data.frame(dsc) rf <- paste(resultsdir,"/",exp,"/",r,".statsfile.txt.gz",sep="") rpc <- fread(rf,header=TRUE) rpc <- as.data.frame(rpc) if ("BETA" %in% colnames(dsc) & "BETA" %in% colnames(rpc)) { dsc1 <- dsc[,c("SNP","ALLELE1","ALLELE0","A1FREQ","BETA", "SE",tail(colnames(dsc),1))] colnames(dsc1) <- c("SNP", "effect_allele.exposure", "other_allele.exposure", "eaf.exposure", "beta.exposure", "se.exposure", "pval.exposure") dsc2 <- dsc1[order(dsc1$SNP, dsc1$pval.exposure), ] dsc2 <- dsc2[ !duplicated(dsc2$SNP), ] dsc3 <- cbind(dsc2, "exposure"=rep("exposure",nrow(dsc2)), "mr_keep.exposure"=rep("TRUE", nrow(dsc2)), "pval_origin.exposure"=rep("reported", nrow(dsc2)), "id.exposure"=rep(exp, nrow(dsc2)), "data_source.exposure"=rep("textfile", nrow(dsc2))) rpc1 <- rpc[,c("SNP","ALLELE1","ALLELE0","A1FREQ","BETA", "SE",tail(colnames(rpc),1))] colnames(rpc1) <- c("SNP", "effect_allele.exposure", "other_allele.exposure", "eaf.exposure", "beta.exposure", "se.exposure", "pval.exposure") rpc2 <- rpc1[order(rpc1$SNP, rpc1$pval.exposure), ] rpc2 <- rpc2[ !duplicated(rpc2$SNP), ] rpc3 <- cbind(rpc2, "exposure"=rep("exposure",nrow(rpc2)), "mr_keep.exposure"=rep("TRUE", nrow(rpc2)), "pval_origin.exposure"=rep("reported", nrow(rpc2)), "id.exposure"=rep(exp, nrow(rpc2)), "data_source.exposure"=rep("textfile", nrow(rpc2))) disc_gwas <- dsc3 repl_gwas <- rpc3 # Filtering SNPs for their presence in the phenotype and for p-val snp_exp <- as.character(subset(dat, id.exposure == exp)$SNP) ## Forward order disc_gwas_f <- subset(disc_gwas,SNP %in% snp_exp & pval.exposure < 5e-8) # Next two commands used to distinguish between weak instruments and weak instruments with wc. 10 is a threshold for weak instruments if (instr=="weak") { snplist <- subset(repl_gwas, SNP %in% disc_gwas_f$SNP & pval.exposure >= pf(10, 1, 10000, low=F))$SNP disc_gwas_f <- subset(disc_gwas_f, SNP %in% snplist) } repl_gwas_f <- subset(repl_gwas,SNP %in% disc_gwas_f$SNP) out_gwas_f <- subset(out_gwas,SNP %in% disc_gwas_f$SNP) ## Reverse order repl_gwas_s <- subset(repl_gwas,SNP %in% snp_exp & pval.exposure < 5e-8) # Next two commands used to distinguish between weak instruments and weak instruments with wc. 10 is a threshold for weak instruments if (instr=="weak") { snplist <- subset(disc_gwas, SNP %in% repl_gwas_s$SNP & pval.exposure >= pf(10, 1, 10000, low=F))$SNP repl_gwas_s <- subset(repl_gwas_s, SNP %in% snplist) } disc_gwas_s <- subset(disc_gwas,SNP %in% repl_gwas_s$SNP) out_gwas_s <- subset(out_gwas,SNP %in% repl_gwas_s$SNP) # DR and D scenarios if (!nrow(disc_gwas_f)==0) { # Harmonise the exposure and outcome data dat_dr <- harmonise_data(repl_gwas_f, out_gwas_f, action=1) dat_d <- harmonise_data(disc_gwas_f, out_gwas_f, action=1) # Perform MR on the replication data res_dr <- mr(dat_dr) if (nrow(res_dr)==0) { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- mr_heterogeneity(dat_dr) if (nrow(het_dr)==0) { het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) # Perform MR on the discovery sign data res_d <- mr(dat_d) if (nrow(res_d)==0) { res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- mr_heterogeneity(dat_d) if (nrow(het_d)==0) { het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) } else { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) } # RD and R scenario if (!nrow(repl_gwas_s)==0) { # Harmonise the exposure and outcome data dat_rd <- harmonise_data(disc_gwas_s, out_gwas_s, action=1) dat_r <- harmonise_data(repl_gwas_s, out_gwas_s, action=1) # Perform MR on the discovery data res_rd <- mr(dat_rd) if (nrow(res_rd)==0) { res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- mr_heterogeneity(dat_rd) if (nrow(het_rd)==0) { het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) # Perform MR on the replication sign data res_r <- mr(dat_r) if (nrow(res_r)==0) { res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- mr_heterogeneity(dat_r) if (nrow(het_r)==0) { het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } else { res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } } else { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } } else { res_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_dr <- cbind(res_dr,"data"=rep("DR", nrow(res_dr))) het_dr <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_dr <- cbind(het_dr,"data"=rep("DR", nrow(het_dr))) res_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_d <- cbind(res_d,"data"=rep("D", nrow(res_d))) het_d <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_d <- cbind(het_d,"data"=rep("D", nrow(het_d))) res_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_rd <- cbind(res_rd,"data"=rep("RD", nrow(res_rd))) het_rd <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_rd <- cbind(het_rd,"data"=rep("RD", nrow(het_rd))) res_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) res_r <- cbind(res_r,"data"=rep("R", nrow(res_r))) het_r <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) het_r <- cbind(het_r,"data"=rep("R", nrow(het_r))) } mr_res <- rbind(res_dr,res_d,res_rd,res_r) mr_het <- rbind(het_dr,het_d,het_rd,het_r) res_list <- list("mr" = mr_res, "het" = mr_het) return(res_list) } # ======================== Run ============================== # Read all phenotype names and define each phenotype id phen_all <- fread(paste(datadir,"ukb-b-idlist.txt",sep="/"), header=FALSE) phen_all <- as.data.frame(phen_all) # ---------------------- Full MR ---------------------------- # Read instruments for all of the exposures load(paste(datadir,"MR_prep.RData",sep="/")) exposure_dat <- mybiglist$exp_dat chrpos <- mybiglist$chr_pos # Lookup from one dataset filename <- paste(vcfdir,"/",out,"/",out,".vcf.gz",sep="") out1 <- query_gwas(filename, chrompos=chrpos) out2 <- gwasglue::gwasvcf_to_TwoSampleMR(out1, "outcome") # Harmonise the exposure and outcome data dat <- harmonise_data(exposure_dat, out2, action=1) # testing for one exposure only: # dat <- dat[dat$id.exposure==exp,] # Perform full MR res <- mr(dat) if (nrow(res)==0) { res <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } res <- res %>% mutate(outcome = tolower(outcome)) res$id.outcome <- res$outcome het <- mr_heterogeneity(dat) if (nrow(het)==0) { het <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het <- het %>% mutate(outcome = tolower(outcome)) het$id.outcome <- het$outcome # ---------------------- Replication ------------------------- mr_out <- c() het_out <- c() for (exp in phen_all[,1]) { mr_full <- subset(res, id.exposure==exp) if (nrow(mr_full)==0) { mr_full <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","nsnp"=NA,"b"=NA,"se"=NA,"pval"=NA) } mr_full <- cbind(mr_full,"data"=rep("full", nrow(mr_full))) mr_full <- cbind(mr_full,"dir"="NA") het_full <- subset(het, id.exposure==exp) if (nrow(het_full)==0) { het_full <- data.frame("id.exposure"=exp,"id.outcome"=out,"outcome"="NA", "exposure"="NA","method"="NA","Q"=NA,"Q_df"=NA,"Q_pval"=NA) } het_full <- cbind(het_full,"data"=rep("full", nrow(het_full))) het_full <- cbind(het_full,"dir"="NA") mr_rep_AB <- mr_analysis(exp,"discovery","replication") mr_AB <- mr_rep_AB$mr mr_AB <- cbind(mr_AB,"dir"=rep("AB", nrow(mr_AB))) het_AB <- mr_rep_AB$het het_AB <- cbind(het_AB,"dir"=rep("AB", nrow(het_AB))) mr_rep_BA <- mr_analysis(exp,"replication","discovery") mr_BA <- mr_rep_BA$mr mr_BA <- cbind(mr_BA,"dir"=rep("BA", nrow(mr_BA))) het_BA <- mr_rep_BA$het het_BA <- cbind(het_BA,"dir"=rep("BA", nrow(het_BA))) mr_out <- rbind(mr_out,mr_full,mr_AB,mr_BA) het_out <- rbind(het_out,het_full,het_AB,het_BA) } # Save all results write.table(mr_out, file = paste(resultsdir,"/",out,"/MR_All_vs_All_",instr,".txt",sep=""), append = FALSE, quote = TRUE, sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = TRUE, qmethod = c("escape", "double"), fileEncoding = "") write.table(het_out, file = paste(resultsdir,"/",out,"/MR_Het_All_vs_All_",instr,".txt",sep=""), append = FALSE, quote = TRUE, sep = " ", eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = TRUE, qmethod = c("escape", "double"), fileEncoding = "")
# Page No. 180 m_1 <- 1.75 * 10^-5 m_2 <- 1.772 * 10^-4 mH_mOH <- 1.008 * 10^-14 MH_MOH <- m_2 / m_1 mH <- sqrt(mH_mOH * MH_MOH) print(mH)
/Modern_Physical_Chemistry_A_Molecular_Approach_by_George_H_Duffey/CH8/EX8.6/Ex8_6.R
permissive
FOSSEE/R_TBC_Uploads
R
false
false
152
r
# Page No. 180 m_1 <- 1.75 * 10^-5 m_2 <- 1.772 * 10^-4 mH_mOH <- 1.008 * 10^-14 MH_MOH <- m_2 / m_1 mH <- sqrt(mH_mOH * MH_MOH) print(mH)
\name{phylo.toBackbone} \alias{phylo.toBackbone} \alias{backbone.toPhylo} \title{Converts tree to backbone or vice versa} \usage{ phylo.toBackbone(x, trans, ...) backbone.toPhylo(x) } \arguments{ \item{x}{an object of class \code{"phylo"} (for \code{phylo.toBackbone}); or an object of class \code{backbone.toPhylo} (for \code{backbone.toPhylo}).} \item{trans}{data frame containing the attributes necessary to translate a backbone tree to an object of class \code{"backbonePhylo"}. The data frame should contain the following variables: \code{tip.label}: the tip labels in the input tree (not all need be included); \code{clade.label}: labels for the unobserved subtrees; \code{N}: number of species in each subtree; and \code{depth}: desired depth of each subtree. \code{depth} for each terminal taxon in \code{x} cannot be greater than the terminal edge length for that taxon.} \item{...}{optional arguments.} } \description{ Converts between \code{"phylo"} and \code{"backbonePhylo"}. } \value{ Either an object of class \code{"phylo"} or an object of class \code{"backbonePhylo"}, depending on the method. } \references{ Revell, L. J. (2012) phytools: An R package for phylogenetic comparative biology (and other things). \emph{Methods Ecol. Evol.}, \bold{3}, 217-223. } \author{Liam Revell \email{liam.revell@umb.edu}} \seealso{ \code{\link{plot.backbonePhylo}} } \keyword{phylogenetics} \keyword{plotting}
/man/phylo.toBackbone.Rd
no_license
ianengelbrecht/phytools
R
false
false
1,421
rd
\name{phylo.toBackbone} \alias{phylo.toBackbone} \alias{backbone.toPhylo} \title{Converts tree to backbone or vice versa} \usage{ phylo.toBackbone(x, trans, ...) backbone.toPhylo(x) } \arguments{ \item{x}{an object of class \code{"phylo"} (for \code{phylo.toBackbone}); or an object of class \code{backbone.toPhylo} (for \code{backbone.toPhylo}).} \item{trans}{data frame containing the attributes necessary to translate a backbone tree to an object of class \code{"backbonePhylo"}. The data frame should contain the following variables: \code{tip.label}: the tip labels in the input tree (not all need be included); \code{clade.label}: labels for the unobserved subtrees; \code{N}: number of species in each subtree; and \code{depth}: desired depth of each subtree. \code{depth} for each terminal taxon in \code{x} cannot be greater than the terminal edge length for that taxon.} \item{...}{optional arguments.} } \description{ Converts between \code{"phylo"} and \code{"backbonePhylo"}. } \value{ Either an object of class \code{"phylo"} or an object of class \code{"backbonePhylo"}, depending on the method. } \references{ Revell, L. J. (2012) phytools: An R package for phylogenetic comparative biology (and other things). \emph{Methods Ecol. Evol.}, \bold{3}, 217-223. } \author{Liam Revell \email{liam.revell@umb.edu}} \seealso{ \code{\link{plot.backbonePhylo}} } \keyword{phylogenetics} \keyword{plotting}
set.seed(2014) args=commandArgs(TRUE) iBKfamF=args[1] gBKfamF=args[2] ifamF=args[3] gfamF=args[4] #common #iBKfamF="LBKcdiChip.fam" #gBKfamF="LBKcdgChip.fam" #ifamF="LcdiChip.fam" #gfamF="LcdgChip.fam" iBKfam=read.table(iBKfamF, as.is=T) gBKfam=read.table(gBKfamF, as.is=T) TrT=sample(nrow(iBKfam), nrow(iBKfam)) iTmat=matrix(1, nrow=nrow(iBKfam), ncol=8) iTmat[,1] = iBKfam[,1] iTmat[,2] = iBKfam[,2] iTmat[,3] = iBKfam[,6] TrT1=sample(nrow(gBKfam), nrow(gBKfam)) gTmat=matrix(1, nrow=nrow(gBKfam), ncol=8) gTmat[,1] = gBKfam[,1] gTmat[,2] = gBKfam[,2] gTmat[,3] = gBKfam[,6] len=ceiling(nrow(iBKfam)/5) for(i in 1:4) { iTmat[TrT[(1+(i-1)*len):(i*len)],3+i]="0" } iTmat[TrT[(1+i*len):length(TrT)],8]="0" len1=ceiling(nrow(gBKfam)/5) for(i in 1:4) { gTmat[TrT1[(1+(i-1)*len1):(i*len1)],3+i]="0" } gTmat[TrT1[(1+i*len1):length(TrT1)],8]="0" iBKfamOutF=sub("fam$", "trt", iBKfamF) gBKfamOutF=sub("fam$", "trt", gBKfamF) ifamOutF=sub("fam$", "trt", ifamF) gfamOutF=sub("fam$", "trt", gfamF) write.table(iTmat, iBKfamOutF, row.names=F, col.names=F, quote=F) write.table(gTmat, gBKfamOutF, row.names=F, col.names=F, quote=F) write.table(iTmat, ifamOutF, row.names=F, col.names=F, quote=F) write.table(gTmat, gfamOutF, row.names=F, col.names=F, quote=F)
/StG/GHG/5FoldCVSplit.R
no_license
gc5k/Notes
R
false
false
1,261
r
set.seed(2014) args=commandArgs(TRUE) iBKfamF=args[1] gBKfamF=args[2] ifamF=args[3] gfamF=args[4] #common #iBKfamF="LBKcdiChip.fam" #gBKfamF="LBKcdgChip.fam" #ifamF="LcdiChip.fam" #gfamF="LcdgChip.fam" iBKfam=read.table(iBKfamF, as.is=T) gBKfam=read.table(gBKfamF, as.is=T) TrT=sample(nrow(iBKfam), nrow(iBKfam)) iTmat=matrix(1, nrow=nrow(iBKfam), ncol=8) iTmat[,1] = iBKfam[,1] iTmat[,2] = iBKfam[,2] iTmat[,3] = iBKfam[,6] TrT1=sample(nrow(gBKfam), nrow(gBKfam)) gTmat=matrix(1, nrow=nrow(gBKfam), ncol=8) gTmat[,1] = gBKfam[,1] gTmat[,2] = gBKfam[,2] gTmat[,3] = gBKfam[,6] len=ceiling(nrow(iBKfam)/5) for(i in 1:4) { iTmat[TrT[(1+(i-1)*len):(i*len)],3+i]="0" } iTmat[TrT[(1+i*len):length(TrT)],8]="0" len1=ceiling(nrow(gBKfam)/5) for(i in 1:4) { gTmat[TrT1[(1+(i-1)*len1):(i*len1)],3+i]="0" } gTmat[TrT1[(1+i*len1):length(TrT1)],8]="0" iBKfamOutF=sub("fam$", "trt", iBKfamF) gBKfamOutF=sub("fam$", "trt", gBKfamF) ifamOutF=sub("fam$", "trt", ifamF) gfamOutF=sub("fam$", "trt", gfamF) write.table(iTmat, iBKfamOutF, row.names=F, col.names=F, quote=F) write.table(gTmat, gBKfamOutF, row.names=F, col.names=F, quote=F) write.table(iTmat, ifamOutF, row.names=F, col.names=F, quote=F) write.table(gTmat, gfamOutF, row.names=F, col.names=F, quote=F)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/spatgrid.R \name{grid2spts} \alias{grid2spts} \title{grid2spts function} \usage{ grid2spts(xgrid, ygrid, proj4string = CRS(as.character(NA))) } \arguments{ \item{xgrid}{vector of x centroids (equally spaced)} \item{ygrid}{vector of x centroids (equally spaced)} \item{proj4string}{an optional proj4string, projection string for the grid, set using the function CRS} } \value{ a SpatialPoints object } \description{ A function to convert a regular (x,y) grid of centroids into a SpatialPoints object }
/man/grid2spts.Rd
no_license
bentaylor1/spatsurv
R
false
true
582
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/spatgrid.R \name{grid2spts} \alias{grid2spts} \title{grid2spts function} \usage{ grid2spts(xgrid, ygrid, proj4string = CRS(as.character(NA))) } \arguments{ \item{xgrid}{vector of x centroids (equally spaced)} \item{ygrid}{vector of x centroids (equally spaced)} \item{proj4string}{an optional proj4string, projection string for the grid, set using the function CRS} } \value{ a SpatialPoints object } \description{ A function to convert a regular (x,y) grid of centroids into a SpatialPoints object }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gene_ann.R \name{get.largest.interval} \alias{get.largest.interval} \title{Get the largest interval for each gene, given multiple TSS and TTS annotations} \usage{ get.largest.interval(bed = NULL) } \arguments{ \item{bed}{A bed6 frame with comprehensive gene annotations, defaults to NULL} } \value{ A bed6 frame with the largest annotation for each gene } \description{ The input bed6 file can be derived from a gencode annotation file, as described in the vignette } \examples{ # get intervals for furthest TSS and TTS +/- interval bed.long = get.largest.interval(bed=dat0) }
/primaryTranscriptAnnotation/man/get.largest.interval.Rd
no_license
WarrenDavidAnderson/genomicsRpackage
R
false
true
655
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gene_ann.R \name{get.largest.interval} \alias{get.largest.interval} \title{Get the largest interval for each gene, given multiple TSS and TTS annotations} \usage{ get.largest.interval(bed = NULL) } \arguments{ \item{bed}{A bed6 frame with comprehensive gene annotations, defaults to NULL} } \value{ A bed6 frame with the largest annotation for each gene } \description{ The input bed6 file can be derived from a gencode annotation file, as described in the vignette } \examples{ # get intervals for furthest TSS and TTS +/- interval bed.long = get.largest.interval(bed=dat0) }
#' @examples #' \dontrun{ #' dat <- list(filterStatement=list('query'="WHERE status='ACTIVE'")) #' res <- dfp_getPlacementsByStatement(dat) #' }
/examples/examples-dfp_getPlacementsByStatement.R
no_license
StevenMMortimer/rdfp
R
false
false
148
r
#' @examples #' \dontrun{ #' dat <- list(filterStatement=list('query'="WHERE status='ACTIVE'")) #' res <- dfp_getPlacementsByStatement(dat) #' }
library(shiny) # Define UI for dataset viewer application shinyUI(pageWithSidebar( # Application title headerPanel("Learning by doing stats (t-test tutorial)"), # Sidebar sidebarPanel( p(strong("Group A:")), sliderInput("nx", " Sample size (n)", min =1, max = 500, 30), numericInput("mx", " Mean", 60.00), numericInput("sdx", " SD", 10.00), p(br()), p(strong("Group B:")), sliderInput("ny", " Sample size (n)", min =1, max = 500, 30), numericInput("my", " Mean", 50.00), numericInput("sdy", " SD", 10.00), p(br()), strong('Option:'), checkboxInput("varequal", "t-test with equal variances assumed", TRUE) ), mainPanel( tabsetPanel( tabPanel("Main", h3("Checking the data"), tableOutput("values"), br(), h3("Histogram of Group A"), plotOutput("distPlot"), br(), h3("Overlayed histograms of Group A and Group B"), plotOutput("overPlot"), br(), br(), h3("Group A と Group B の n, M, SD (variance) から t 値を算出"), a(img(src="http://mizumot.com/files/t-value.png"), target="_blank", href="http://mizumot.com/files/t-value.png"), h3("t-test"), verbatimTextOutput("ttest.out"), verbatimTextOutput("vartest.out"), verbatimTextOutput("difference.out"), br(), h3("t distribution"), p('黒点線よりも左右どちらかの外側に赤線(t値)があれば p < .05 になる'), plotOutput("t.distPlot", width="80%"), br(), h3("Plot of means and mean of the differences [95% CI]"), plotOutput("ciPlot", width="80%"), h3("Effect size indices"), verbatimTextOutput("es.out"), br() ), tabPanel("About", strong('Note'), p('This web application is developed with', a("Shiny.", href="http://www.rstudio.com/shiny/", target="_blank"), ''), br(), strong('List of Packages Used'), br(), code('library(shiny)'),br(), code('library(compute.es)'),br(), code('library(car)'),br(), br(), strong('Code'), p('Source code for this application is based on', a('"The handbook of Research in Foreign Language Learning and Teaching" (Takeuchi & Mizumoto, 2012).', href='http://mizumot.com/handbook/', target="_blank")), p('The code for this web application is available at', a('GitHub.', href='https://github.com/mizumot/tut', target="_blank")), p('If you want to run this code on your computer (in a local R session), run the code below:', br(), code('library(shiny)'),br(), code('runGitHub("tut","mizumot")') ), br(), strong('Citation in Publications'), p('Mizumoto, A. (2015). Langtest (Version 1.0) [Web application]. Retrieved from http://langtest.jp'), br(), strong('Article'), p('Mizumoto, A., & Plonsky, L. (2015).', a("R as a lingua franca: Advantages of using R for quantitative research in applied linguistics.", href='http://applij.oxfordjournals.org/content/early/2015/06/24/applin.amv025.abstract', target="_blank"), em('Applied Linguistics,'), 'Advance online publication. doi:10.1093/applin/amv025'), br(), strong('Recommended'), p('To learn more about R, I suggest this excellent and free e-book (pdf),', a("A Guide to Doing Statistics in Second Language Research Using R,", href="http://cw.routledge.com/textbooks/9780805861853/guide-to-R.asp", target="_blank"), 'written by Dr. Jenifer Larson-Hall.'), p('Also, if you are a cool Mac user and want to use R with GUI,', a("MacR", href="http://www.urano-ken.com/blog/2013/02/25/installing-and-using-macr/", target="_blank"), 'is defenitely the way to go!'), br(), strong('Author'), p(a("Atsushi MIZUMOTO,", href="http://mizumot.com", target="_blank"),' Ph.D.',br(), 'Associate Professor of Applied Linguistics',br(), 'Faculty of Foreign Language Studies /',br(), 'Graduate School of Foreign Language Education and Research,',br(), 'Kansai University, Osaka, Japan'), br(), a(img(src="http://i.creativecommons.org/p/mark/1.0/80x15.png"), target="_blank", href="http://creativecommons.org/publicdomain/mark/1.0/") ) ) ) ))
/ui.R
permissive
mizumot/tut
R
false
false
4,308
r
library(shiny) # Define UI for dataset viewer application shinyUI(pageWithSidebar( # Application title headerPanel("Learning by doing stats (t-test tutorial)"), # Sidebar sidebarPanel( p(strong("Group A:")), sliderInput("nx", " Sample size (n)", min =1, max = 500, 30), numericInput("mx", " Mean", 60.00), numericInput("sdx", " SD", 10.00), p(br()), p(strong("Group B:")), sliderInput("ny", " Sample size (n)", min =1, max = 500, 30), numericInput("my", " Mean", 50.00), numericInput("sdy", " SD", 10.00), p(br()), strong('Option:'), checkboxInput("varequal", "t-test with equal variances assumed", TRUE) ), mainPanel( tabsetPanel( tabPanel("Main", h3("Checking the data"), tableOutput("values"), br(), h3("Histogram of Group A"), plotOutput("distPlot"), br(), h3("Overlayed histograms of Group A and Group B"), plotOutput("overPlot"), br(), br(), h3("Group A と Group B の n, M, SD (variance) から t 値を算出"), a(img(src="http://mizumot.com/files/t-value.png"), target="_blank", href="http://mizumot.com/files/t-value.png"), h3("t-test"), verbatimTextOutput("ttest.out"), verbatimTextOutput("vartest.out"), verbatimTextOutput("difference.out"), br(), h3("t distribution"), p('黒点線よりも左右どちらかの外側に赤線(t値)があれば p < .05 になる'), plotOutput("t.distPlot", width="80%"), br(), h3("Plot of means and mean of the differences [95% CI]"), plotOutput("ciPlot", width="80%"), h3("Effect size indices"), verbatimTextOutput("es.out"), br() ), tabPanel("About", strong('Note'), p('This web application is developed with', a("Shiny.", href="http://www.rstudio.com/shiny/", target="_blank"), ''), br(), strong('List of Packages Used'), br(), code('library(shiny)'),br(), code('library(compute.es)'),br(), code('library(car)'),br(), br(), strong('Code'), p('Source code for this application is based on', a('"The handbook of Research in Foreign Language Learning and Teaching" (Takeuchi & Mizumoto, 2012).', href='http://mizumot.com/handbook/', target="_blank")), p('The code for this web application is available at', a('GitHub.', href='https://github.com/mizumot/tut', target="_blank")), p('If you want to run this code on your computer (in a local R session), run the code below:', br(), code('library(shiny)'),br(), code('runGitHub("tut","mizumot")') ), br(), strong('Citation in Publications'), p('Mizumoto, A. (2015). Langtest (Version 1.0) [Web application]. Retrieved from http://langtest.jp'), br(), strong('Article'), p('Mizumoto, A., & Plonsky, L. (2015).', a("R as a lingua franca: Advantages of using R for quantitative research in applied linguistics.", href='http://applij.oxfordjournals.org/content/early/2015/06/24/applin.amv025.abstract', target="_blank"), em('Applied Linguistics,'), 'Advance online publication. doi:10.1093/applin/amv025'), br(), strong('Recommended'), p('To learn more about R, I suggest this excellent and free e-book (pdf),', a("A Guide to Doing Statistics in Second Language Research Using R,", href="http://cw.routledge.com/textbooks/9780805861853/guide-to-R.asp", target="_blank"), 'written by Dr. Jenifer Larson-Hall.'), p('Also, if you are a cool Mac user and want to use R with GUI,', a("MacR", href="http://www.urano-ken.com/blog/2013/02/25/installing-and-using-macr/", target="_blank"), 'is defenitely the way to go!'), br(), strong('Author'), p(a("Atsushi MIZUMOTO,", href="http://mizumot.com", target="_blank"),' Ph.D.',br(), 'Associate Professor of Applied Linguistics',br(), 'Faculty of Foreign Language Studies /',br(), 'Graduate School of Foreign Language Education and Research,',br(), 'Kansai University, Osaka, Japan'), br(), a(img(src="http://i.creativecommons.org/p/mark/1.0/80x15.png"), target="_blank", href="http://creativecommons.org/publicdomain/mark/1.0/") ) ) ) ))
# some list l <- mapply(list, x=1:12, i=rep(1:3, 4), j=rep(1:4, each=3), SIMPLIFY = FALSE) # create a list array from a list la <- list_array(l, 3, 4) # a list array behaves like a matrix when subsetted la[1,1] la[1,1] <- 999 la la[2,1] <- list(1,2,3) # random list la la[2,4] <- mtcars # dataframe are also lists la # get and change dimensions dim(la) nrow(la) ncol(la) dim(la) <- c(4,3) la # more behavior # list_array will recycle the list passed to it # to fill the whole r x c array la <- list_array(list(a=1, b=2), 3, 4) # objects with any class other than list are wrapped # into a list and the recycled la <- list_array(mtcars, 3, 4)
/inst/examples/listarray-example.R
no_license
markheckmann/list-array
R
false
false
659
r
# some list l <- mapply(list, x=1:12, i=rep(1:3, 4), j=rep(1:4, each=3), SIMPLIFY = FALSE) # create a list array from a list la <- list_array(l, 3, 4) # a list array behaves like a matrix when subsetted la[1,1] la[1,1] <- 999 la la[2,1] <- list(1,2,3) # random list la la[2,4] <- mtcars # dataframe are also lists la # get and change dimensions dim(la) nrow(la) ncol(la) dim(la) <- c(4,3) la # more behavior # list_array will recycle the list passed to it # to fill the whole r x c array la <- list_array(list(a=1, b=2), 3, 4) # objects with any class other than list are wrapped # into a list and the recycled la <- list_array(mtcars, 3, 4)
## ---- warning=FALSE, message=FALSE--------------------------------------- library(tibbletime) library(dplyr) library(lubridate) series <- create_series('2013' ~ '2017', 'daily', class = "Date") %>% mutate(var = rnorm(1826)) series series %>% mutate(year = year(date), month = month(date)) %>% group_by(year, month) %>% summarise(mean_var = mean(var)) ## ------------------------------------------------------------------------ series %>% collapse_by("monthly") %>% group_by(date) %>% summarise(mean_var = mean(var)) ## ------------------------------------------------------------------------ second_series <- create_series('2013' ~ '2015', '5 second') second_series %>% mutate(var = rnorm(nrow(second_series))) %>% collapse_by("hourly") %>% group_by(date) %>% summarise(mean_var = mean(var)) ## ------------------------------------------------------------------------ set.seed(123) # Create price series of hourly movements for apple and facebook stock. apple <- create_series('2014' ~ '2016', period = '1 hour') %>% mutate(price = 100 + cumsum(rnorm(26304, mean = 0, sd = .5))) facebook <- create_series('2014' ~ '2016', period = '1 hour') %>% mutate(price = 150 + cumsum(rnorm(26304, mean = 0, sd = .5))) # Bind them together and create a symbol column to group on price_series <- bind_rows(list(apple = apple, facebook = facebook), .id = "symbol") %>% as_tbl_time(date) %>% group_by(symbol) # Collapse to daily and transform to OHLC (Open, High, Low, Close), a # common financial transformation price_series %>% collapse_by("daily") %>% group_by(date, add = TRUE) %>% summarise( open = first(price), high = max(price), low = min(price), close = last(price) ) %>% slice(1:5)
/revdep/library.noindex/tibbletime/old/tibbletime/doc/TT-04-use-with-dplyr.R
no_license
sstoeckl/tibbletime
R
false
false
1,752
r
## ---- warning=FALSE, message=FALSE--------------------------------------- library(tibbletime) library(dplyr) library(lubridate) series <- create_series('2013' ~ '2017', 'daily', class = "Date") %>% mutate(var = rnorm(1826)) series series %>% mutate(year = year(date), month = month(date)) %>% group_by(year, month) %>% summarise(mean_var = mean(var)) ## ------------------------------------------------------------------------ series %>% collapse_by("monthly") %>% group_by(date) %>% summarise(mean_var = mean(var)) ## ------------------------------------------------------------------------ second_series <- create_series('2013' ~ '2015', '5 second') second_series %>% mutate(var = rnorm(nrow(second_series))) %>% collapse_by("hourly") %>% group_by(date) %>% summarise(mean_var = mean(var)) ## ------------------------------------------------------------------------ set.seed(123) # Create price series of hourly movements for apple and facebook stock. apple <- create_series('2014' ~ '2016', period = '1 hour') %>% mutate(price = 100 + cumsum(rnorm(26304, mean = 0, sd = .5))) facebook <- create_series('2014' ~ '2016', period = '1 hour') %>% mutate(price = 150 + cumsum(rnorm(26304, mean = 0, sd = .5))) # Bind them together and create a symbol column to group on price_series <- bind_rows(list(apple = apple, facebook = facebook), .id = "symbol") %>% as_tbl_time(date) %>% group_by(symbol) # Collapse to daily and transform to OHLC (Open, High, Low, Close), a # common financial transformation price_series %>% collapse_by("daily") %>% group_by(date, add = TRUE) %>% summarise( open = first(price), high = max(price), low = min(price), close = last(price) ) %>% slice(1:5)
\name{makeGrid.death.r1} \alias{makeGrid.death.r1} \title{Evaluates expected deaths ODE over 2D grid of arguments} \usage{ makeGrid.death.r1(time, dt, s1.seq, s2.seq, lam, v, mu) } \arguments{ \item{time}{A number corresponding to the desired evaluation time of ODEs} \item{dt}{A number giving the increment length used in solving the ODE} \item{s1.seq}{A vector of complex numbers; initial values of the ODE G} \item{s2.seq}{A vector of complex numbers as inputs of s2.seq} \item{lam}{Birth rate} \item{v}{Shift rate} \item{mu}{Death rate} } \value{ A matrix of dimension length(s1.seq) by length(s2.seq) of the function values } \description{ Applies the function \code{\link{solve.death}} to a grid of inputs s1, s2 at one fixed time and r=1 } \examples{ time = 5; dt = 5; lam = .5; v = .2; mu = .4 gridLength = 32 s1.seq <- exp(2*pi*1i*seq(from = 0, to = (gridLength-1))/gridLength) s2.seq <- exp(2*pi*1i*seq(from = 0, to = (gridLength-1))/gridLength) makeGrid.death.r1(time,dt,s1.seq,s2.seq,lam,v,mu) }
/man/makeGrid.death.r1.Rd
no_license
shubhampachori12110095/bdsem
R
false
false
1,048
rd
\name{makeGrid.death.r1} \alias{makeGrid.death.r1} \title{Evaluates expected deaths ODE over 2D grid of arguments} \usage{ makeGrid.death.r1(time, dt, s1.seq, s2.seq, lam, v, mu) } \arguments{ \item{time}{A number corresponding to the desired evaluation time of ODEs} \item{dt}{A number giving the increment length used in solving the ODE} \item{s1.seq}{A vector of complex numbers; initial values of the ODE G} \item{s2.seq}{A vector of complex numbers as inputs of s2.seq} \item{lam}{Birth rate} \item{v}{Shift rate} \item{mu}{Death rate} } \value{ A matrix of dimension length(s1.seq) by length(s2.seq) of the function values } \description{ Applies the function \code{\link{solve.death}} to a grid of inputs s1, s2 at one fixed time and r=1 } \examples{ time = 5; dt = 5; lam = .5; v = .2; mu = .4 gridLength = 32 s1.seq <- exp(2*pi*1i*seq(from = 0, to = (gridLength-1))/gridLength) s2.seq <- exp(2*pi*1i*seq(from = 0, to = (gridLength-1))/gridLength) makeGrid.death.r1(time,dt,s1.seq,s2.seq,lam,v,mu) }
heatmap.3 <- function(x, Rowv = TRUE, Colv = if (symm) "Rowv" else TRUE, distfun = dist, hclustfun = hclust, dendrogram = c("both","row", "column", "none"), symm = FALSE, scale = c("none","row", "column"), na.rm = TRUE, revC = identical(Colv,"Rowv"), add.expr, breaks, symbreaks = max(x < 0, na.rm = TRUE) || scale != "none", col = "heat.colors", colsep, rowsep, sepcolor = "white", sepwidth = c(0.05, 0.05), cellnote, notecex = 1, notecol = "cyan", na.color = par("bg"), trace = c("none", "column","row", "both"), tracecol = "cyan", hline = median(breaks), vline = median(breaks), linecol = tracecol, margins = c(5,5), ColSideColors, RowSideColors, side.height.fraction=0.3, cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc), labRow = NULL, labCol = NULL, key = TRUE, keysize = 1.5, density.info = c("none", "histogram", "density"), denscol = tracecol, symkey = max(x < 0, na.rm = TRUE) || symbreaks, densadj = 0.25, main = NULL, xlab = NULL, ylab = NULL, lmat = NULL, lhei = NULL, lwid = NULL, ColSideColorsSize = 1, RowSideColorsSize = 1, KeyValueName="Value",...){ invalid <- function (x) { if (missing(x) || is.null(x) || length(x) == 0) return(TRUE) if (is.list(x)) return(all(sapply(x, invalid))) else if (is.vector(x)) return(all(is.na(x))) else return(FALSE) } x <- as.matrix(x) scale01 <- function(x, low = min(x), high = max(x)) { x <- (x - low)/(high - low) x } retval <- list() scale <- if (symm && missing(scale)) "none" else match.arg(scale) dendrogram <- match.arg(dendrogram) trace <- match.arg(trace) density.info <- match.arg(density.info) if (length(col) == 1 && is.character(col)) col <- get(col, mode = "function") if (!missing(breaks) && (scale != "none")) warning("Using scale=\"row\" or scale=\"column\" when breaks are", "specified can produce unpredictable results.", "Please consider using only one or the other.") if (is.null(Rowv) || is.na(Rowv)) Rowv <- FALSE if (is.null(Colv) || is.na(Colv)) Colv <- FALSE else if (Colv == "Rowv" && !isTRUE(Rowv)) Colv <- FALSE if (length(di <- dim(x)) != 2 || !is.numeric(x)) stop("`x' must be a numeric matrix") nr <- di[1] nc <- di[2] if (nr <= 1 || nc <= 1) stop("`x' must have at least 2 rows and 2 columns") if (!is.numeric(margins) || length(margins) != 2) stop("`margins' must be a numeric vector of length 2") if (missing(cellnote)) cellnote <- matrix("", ncol = ncol(x), nrow = nrow(x)) if (!inherits(Rowv, "dendrogram")) { if (((!isTRUE(Rowv)) || (is.null(Rowv))) && (dendrogram %in% c("both", "row"))) { if (is.logical(Colv) && (Colv)) dendrogram <- "column" else dedrogram <- "none" warning("Discrepancy: Rowv is FALSE, while dendrogram is `", dendrogram, "'. Omitting row dendogram.") } } if (!inherits(Colv, "dendrogram")) { if (((!isTRUE(Colv)) || (is.null(Colv))) && (dendrogram %in% c("both", "column"))) { if (is.logical(Rowv) && (Rowv)) dendrogram <- "row" else dendrogram <- "none" warning("Discrepancy: Colv is FALSE, while dendrogram is `", dendrogram, "'. Omitting column dendogram.") } } if (inherits(Rowv, "dendrogram")) { ddr <- Rowv rowInd <- order.dendrogram(ddr) } else if (is.integer(Rowv)) { hcr <- hclustfun(distfun(x)) ddr <- as.dendrogram(hcr) ddr <- reorder(ddr, Rowv) rowInd <- order.dendrogram(ddr) if (nr != length(rowInd)) stop("row dendrogram ordering gave index of wrong length") } else if (isTRUE(Rowv)) { Rowv <- rowMeans(x, na.rm = na.rm) hcr <- hclustfun(distfun(x)) ddr <- as.dendrogram(hcr) ddr <- reorder(ddr, Rowv) rowInd <- order.dendrogram(ddr) if (nr != length(rowInd)) stop("row dendrogram ordering gave index of wrong length") } else { rowInd <- nr:1 } if (inherits(Colv, "dendrogram")) { ddc <- Colv colInd <- order.dendrogram(ddc) } else if (identical(Colv, "Rowv")) { if (nr != nc) stop("Colv = \"Rowv\" but nrow(x) != ncol(x)") if (exists("ddr")) { ddc <- ddr colInd <- order.dendrogram(ddc) } else colInd <- rowInd } else if (is.integer(Colv)) { hcc <- hclustfun(distfun(if (symm) x else t(x))) ddc <- as.dendrogram(hcc) ddc <- reorder(ddc, Colv) colInd <- order.dendrogram(ddc) if (nc != length(colInd)) stop("column dendrogram ordering gave index of wrong length") } else if (isTRUE(Colv)) { Colv <- colMeans(x, na.rm = na.rm) hcc <- hclustfun(distfun(if (symm) x else t(x))) ddc <- as.dendrogram(hcc) ddc <- reorder(ddc, Colv) colInd <- order.dendrogram(ddc) if (nc != length(colInd)) stop("column dendrogram ordering gave index of wrong length") } else { colInd <- 1:nc } retval$rowInd <- rowInd retval$colInd <- colInd retval$call <- match.call() x <- x[rowInd, colInd] x.unscaled <- x cellnote <- cellnote[rowInd, colInd] if (is.null(labRow)) labRow <- if (is.null(rownames(x))) (1:nr)[rowInd] else rownames(x) else labRow <- labRow[rowInd] if (is.null(labCol)) labCol <- if (is.null(colnames(x))) (1:nc)[colInd] else colnames(x) else labCol <- labCol[colInd] if (scale == "row") { retval$rowMeans <- rm <- rowMeans(x, na.rm = na.rm) x <- sweep(x, 1, rm) retval$rowSDs <- sx <- apply(x, 1, sd, na.rm = na.rm) x <- sweep(x, 1, sx, "/") } else if (scale == "column") { retval$colMeans <- rm <- colMeans(x, na.rm = na.rm) x <- sweep(x, 2, rm) retval$colSDs <- sx <- apply(x, 2, sd, na.rm = na.rm) x <- sweep(x, 2, sx, "/") } if (missing(breaks) || is.null(breaks) || length(breaks) < 1) { if (missing(col) || is.function(col)) breaks <- 16 else breaks <- length(col) + 1 } if (length(breaks) == 1) { if (!symbreaks) breaks <- seq(min(x, na.rm = na.rm), max(x, na.rm = na.rm), length = breaks) else { extreme <- max(abs(x), na.rm = TRUE) breaks <- seq(-extreme, extreme, length = breaks) } } nbr <- length(breaks) ncol <- length(breaks) - 1 if (class(col) == "function") col <- col(ncol) min.breaks <- min(breaks) max.breaks <- max(breaks) x[x < min.breaks] <- min.breaks x[x > max.breaks] <- max.breaks if (missing(lhei) || is.null(lhei)) lhei <- c(keysize, 4) if (missing(lwid) || is.null(lwid)) lwid <- c(keysize, 4) if (missing(lmat) || is.null(lmat)) { lmat <- rbind(4:3, 2:1) if (!missing(ColSideColors)) { #if (!is.matrix(ColSideColors)) #stop("'ColSideColors' must be a matrix") if (!is.character(ColSideColors) || nrow(ColSideColors) != nc) stop("'ColSideColors' must be a matrix of nrow(x) rows") lmat <- rbind(lmat[1, ] + 1, c(NA, 1), lmat[2, ] + 1) #lhei <- c(lhei[1], 0.2, lhei[2]) lhei=c(lhei[1], side.height.fraction*ColSideColorsSize/2, lhei[2]) } if (!missing(RowSideColors)) { #if (!is.matrix(RowSideColors)) #stop("'RowSideColors' must be a matrix") if (!is.character(RowSideColors) || ncol(RowSideColors) != nr) stop("'RowSideColors' must be a matrix of ncol(x) columns") lmat <- cbind(lmat[, 1] + 1, c(rep(NA, nrow(lmat) - 1), 1), lmat[,2] + 1) #lwid <- c(lwid[1], 0.2, lwid[2]) lwid <- c(lwid[1], side.height.fraction*RowSideColorsSize/2, lwid[2]) } lmat[is.na(lmat)] <- 0 } if (length(lhei) != nrow(lmat)) stop("lhei must have length = nrow(lmat) = ", nrow(lmat)) if (length(lwid) != ncol(lmat)) stop("lwid must have length = ncol(lmat) =", ncol(lmat)) op <- par(no.readonly = TRUE) on.exit(par(op)) layout(lmat, widths = lwid, heights = lhei, respect = FALSE) if (!missing(RowSideColors)) { if (!is.matrix(RowSideColors)){ par(mar = c(margins[1], 0, 0, 0.5)) image(rbind(1:nr), col = RowSideColors[rowInd], axes = FALSE) } else { par(mar = c(margins[1], 0, 0, 0.5)) rsc = t(RowSideColors[,rowInd, drop=F]) rsc.colors = matrix() rsc.names = names(table(rsc)) rsc.i = 1 for (rsc.name in rsc.names) { rsc.colors[rsc.i] = rsc.name rsc[rsc == rsc.name] = rsc.i rsc.i = rsc.i + 1 } rsc = matrix(as.numeric(rsc), nrow = dim(rsc)[1]) image(t(rsc), col = as.vector(rsc.colors), axes = FALSE) if (length(rownames(RowSideColors)) > 0) { axis(1, 0:(dim(rsc)[2] - 1)/max(1,(dim(rsc)[2] - 1)), rownames(RowSideColors), las = 2, tick = FALSE) } } } if (!missing(ColSideColors)) { if (!is.matrix(ColSideColors)){ par(mar = c(0.5, 0, 0, margins[2])) image(cbind(1:nc), col = ColSideColors[colInd], axes = FALSE) } else { par(mar = c(0.5, 0, 0, margins[2])) csc = ColSideColors[colInd, , drop=F] csc.colors = matrix() csc.names = names(table(csc)) csc.i = 1 for (csc.name in csc.names) { csc.colors[csc.i] = csc.name csc[csc == csc.name] = csc.i csc.i = csc.i + 1 } csc = matrix(as.numeric(csc), nrow = dim(csc)[1]) image(csc, col = as.vector(csc.colors), axes = FALSE) if (length(colnames(ColSideColors)) > 0) { axis(2, 0:(dim(csc)[2] - 1)/max(1,(dim(csc)[2] - 1)), colnames(ColSideColors), las = 2, tick = FALSE) } } } par(mar = c(margins[1], 0, 0, margins[2])) x <- t(x) cellnote <- t(cellnote) if (revC) { iy <- nr:1 if (exists("ddr")) ddr <- rev(ddr) x <- x[, iy] cellnote <- cellnote[, iy] } else iy <- 1:nr image(1:nc, 1:nr, x, xlim = 0.5 + c(0, nc), ylim = 0.5 + c(0, nr), axes = FALSE, xlab = "", ylab = "", col = col, breaks = breaks, ...) retval$carpet <- x if (exists("ddr")) retval$rowDendrogram <- ddr if (exists("ddc")) retval$colDendrogram <- ddc retval$breaks <- breaks retval$col <- col if (!invalid(na.color) & any(is.na(x))) { # load library(gplots) mmat <- ifelse(is.na(x), 1, NA) image(1:nc, 1:nr, mmat, axes = FALSE, xlab = "", ylab = "", col = na.color, add = TRUE) } axis(1, 1:nc, labels = labCol, las = 2, line = -0.5, tick = 0, cex.axis = cexCol) if (!is.null(xlab)) mtext(xlab, side = 1, line = margins[1] - 1.25) axis(4, iy, labels = labRow, las = 2, line = -0.5, tick = 0, cex.axis = cexRow) if (!is.null(ylab)) mtext(ylab, side = 4, line = margins[2] - 1.25) if (!missing(add.expr)) eval(substitute(add.expr)) if (!missing(colsep)) for (csep in colsep) rect(xleft = csep + 0.5, ybottom = rep(0, length(csep)), xright = csep + 0.5 + sepwidth[1], ytop = rep(ncol(x) + 1, csep), lty = 1, lwd = 1, col = sepcolor, border = sepcolor) if (!missing(rowsep)) for (rsep in rowsep) rect(xleft = 0, ybottom = (ncol(x) + 1 - rsep) - 0.5, xright = nrow(x) + 1, ytop = (ncol(x) + 1 - rsep) - 0.5 - sepwidth[2], lty = 1, lwd = 1, col = sepcolor, border = sepcolor) min.scale <- min(breaks) max.scale <- max(breaks) x.scaled <- scale01(t(x), min.scale, max.scale) if (trace %in% c("both", "column")) { retval$vline <- vline vline.vals <- scale01(vline, min.scale, max.scale) for (i in colInd) { if (!is.null(vline)) { abline(v = i - 0.5 + vline.vals, col = linecol, lty = 2) } xv <- rep(i, nrow(x.scaled)) + x.scaled[, i] - 0.5 xv <- c(xv[1], xv) yv <- 1:length(xv) - 0.5 lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s") } } if (trace %in% c("both", "row")) { retval$hline <- hline hline.vals <- scale01(hline, min.scale, max.scale) for (i in rowInd) { if (!is.null(hline)) { abline(h = i + hline, col = linecol, lty = 2) } yv <- rep(i, ncol(x.scaled)) + x.scaled[i, ] - 0.5 yv <- rev(c(yv[1], yv)) xv <- length(yv):1 - 0.5 lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s") } } if (!missing(cellnote)) text(x = c(row(cellnote)), y = c(col(cellnote)), labels = c(cellnote), col = notecol, cex = notecex) par(mar = c(margins[1], 0, 0, 0)) if (dendrogram %in% c("both", "row")) { plot(ddr, horiz = TRUE, axes = FALSE, yaxs = "i", leaflab = "none") } else plot.new() par(mar = c(0, 0, if (!is.null(main)) 5 else 0, margins[2])) if (dendrogram %in% c("both", "column")) { plot(ddc, axes = FALSE, xaxs = "i", leaflab = "none") } else plot.new() if (!is.null(main)) title(main, cex.main = 1.5 * op[["cex.main"]]) if (key) { par(mar = c(5, 4, 2, 1), cex = 0.75) tmpbreaks <- breaks if (symkey) { max.raw <- max(abs(c(x, breaks)), na.rm = TRUE) min.raw <- -max.raw tmpbreaks[1] <- -max(abs(x), na.rm = TRUE) tmpbreaks[length(tmpbreaks)] <- max(abs(x), na.rm = TRUE) } else { min.raw <- min(x, na.rm = TRUE) max.raw <- max(x, na.rm = TRUE) } z <- seq(min.raw, max.raw, length = length(col)) image(z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks, xaxt = "n", yaxt = "n") par(usr = c(0, 1, 0, 1)) lv <- pretty(breaks) xv <- scale01(as.numeric(lv), min.raw, max.raw) axis(1, at = xv, labels = lv) if (scale == "row") mtext(side = 1, "Row Z-Score", line = 2) else if (scale == "column") mtext(side = 1, "Column Z-Score", line = 2) else mtext(side = 1, KeyValueName, line = 2) if (density.info == "density") { dens <- density(x, adjust = densadj, na.rm = TRUE) omit <- dens$x < min(breaks) | dens$x > max(breaks) dens$x <- dens$x[-omit] dens$y <- dens$y[-omit] dens$x <- scale01(dens$x, min.raw, max.raw) lines(dens$x, dens$y/max(dens$y) * 0.95, col = denscol, lwd = 1) axis(2, at = pretty(dens$y)/max(dens$y) * 0.95, pretty(dens$y)) title("Color Key\nand Density Plot") par(cex = 0.5) mtext(side = 2, "Density", line = 2) } else if (density.info == "histogram") { h <- hist(x, plot = FALSE, breaks = breaks) hx <- scale01(breaks, min.raw, max.raw) hy <- c(h$counts, h$counts[length(h$counts)]) lines(hx, hy/max(hy) * 0.95, lwd = 1, type = "s", col = denscol) axis(2, at = pretty(hy)/max(hy) * 0.95, pretty(hy)) title("Color Key\nand Histogram") par(cex = 0.5) mtext(side = 2, "Count", line = 2) } else title("Color Key") } else plot.new() retval$colorTable <- data.frame(low = retval$breaks[-length(retval$breaks)], high = retval$breaks[-1], color = retval$col) invisible(retval) } # Breast Normal Data Preparation meldat <- read.csv("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/Processed Matrices/GSE75688_BreastNor_RAW_CDF.csv", header = TRUE, stringsAsFactors = FALSE) sampleinfo <- read.csv("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/Processed Matrices/GSE75688_Breast_NorAnnotation.csv", header = TRUE, stringsAsFactors = F) sampleinfo <- sampleinfo[ order(sampleinfo[,1]), ] # Bcell=1 ; Tcell=2 ; Myeloid=3 ; Stromal=4 sampleinfo$Cell.Type <- sub("Bcell", 1, sampleinfo$Cell.Type) sampleinfo$Cell.Type <- sub("Tcell", 2, sampleinfo$Cell.Type) sampleinfo$Cell.Type <- sub("Myeloid", 3, sampleinfo$Cell.Type) sampleinfo$Cell.Type <- sub("Stromal", 4, sampleinfo$Cell.Type) meldat <- meldat[!duplicated(meldat[ , 1]), ] rownames(meldat) <- meldat$Gene meldat <- meldat[,-1] meldat <- rbind(as.numeric(sub("BC", "", sampleinfo$Patient)), as.numeric(sampleinfo$Cell.Type), meldat) rownames(meldat)[1:2] <- c("Patient_ID", "Cell_Type") meldat <- meldat[ ,order(meldat[2,], meldat[1,])] #Tumor ID arrange columns according to multiple row values meldat <- meldat[apply(meldat, 1, function(x) sum(is.na(x)) < (ncol(meldat)*(0.7))), ] ### Colors Customization library(RColorBrewer) grcol <- colorRampPalette(c("green","red"))(64) #heat maps color keys library(cluster) #General color Idex colors = c("#e6194B", "#3cb44b", "#ffe119", "#4363d8", "#f58231", "#911eb4", "#42d4f4", "#f032e6", "#bfef45", "#fabebe" , "#469990", "#e6beff", "#9A6324", "#800000", "#aaffc3", "#808000", "#ffd8b1", "#000075", "#a9a9a9", "#000000") ### Tumor Identity Colors labeling tumors_colors=rep(colors[1], 198) for(i in 2:length(table(as.numeric(meldat[1,])))){ tumors_colors[meldat[1, ]==names(table(as.numeric(meldat[1,])))[i]]=colors[i] } tumors_colors <- as.matrix(tumors_colors) # Legend Attached Form colorss = c("#ffe119", "#f58231", "#42d4f4", "#469990", "#800000", "#aaffc3") Cell_type <- rep(colorss[1], 198) for(i in 2:length(table(as.numeric(meldat[2,])))){ Cell_type[meldat[2, ]==names(table(as.numeric(meldat[2,])))[i]]=colorss[i] } Cell_type <- as.matrix(Cell_type) # Legend Attached Form clab <- cbind(Cell_type, tumors_colors) colnames(clab)=c("Cell_Type", "Tumor_ID") # Legend Label Name ### Duplicate input and convert NAs to "0" for "Zero version" AA <- meldat[3:nrow(meldat), ] AA[is.na(AA)]=0 # "AA" ready for Kmeans CC <- meldat[3:nrow(meldat), ] ### Duplicate input and convert NAs to "0" for "Mean version" AA <- meldat[3:nrow(meldat), ] for (i in 1:nrow(AA)) { AA[ i, is.na(AA[i, ])] <- mean(na.omit(as.numeric(AA[i, ]))) } CC <- meldat[3:nrow(meldat), ] ### TCGA Methods: ConsensusClusterPlus # try http:// if https:// URLs are not supported # source("https://bioconductor.org/biocLite.R") # biocLite("ConsensusClusterPlus") library(ConsensusClusterPlus) title=paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/ConsensusClusterPlus.Figures", sep = "") p_time <- proc.time() resultss = ConsensusClusterPlus(t(AA), maxK=12, reps=100, pItem=0.8, pFeature=1, title=title, clusterAlg="km", distance="euclidean", plot="png") icl = calcICL(resultss, title=title, plot="png") #icl[["clusterConsensus"]] #icl[["itemConsensus"]][1:5,] t_time <- proc.time()-p_time print(t_time) p_time <- proc.time() for(k in 2:12){ BB <- CC[order(resultss[[k]][["consensusClass"]]), ] main_title=paste("GSE75688_Breast_CCP_k=", k, sep = "") par(cex.main=0.5) CCP_colors <- resultss[[k]]$clrs[[3]] plot(1:k, col=CCP_colors, pch=16, cex=6) Cluster_Colors=rep(CCP_colors[1], 5957) for(j in 2:k){ Cluster_Colors[sort(resultss[[k]][["consensusClass"]])==j]=CCP_colors[j] } plot(1:length(Cluster_Colors), col=Cluster_Colors, pch=16, cex=3) Cluster_Colors <- as.matrix(t(Cluster_Colors)) rownames(Cluster_Colors)=c("Clusters") tiff(paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/K_Heatmaps/", main_title, ".tiff", sep=""), width=2200, height=1600, compression="lzw", res=300) heatmap.3(BB, na.rm = TRUE, scale="none", dendrogram="none", margins=c(6,12), RowSideColors=Cluster_Colors, Rowv=FALSE, Colv=FALSE, ColSideColors=clab, symbreaks=FALSE, key=TRUE, symkey=FALSE, density.info="none", trace="none", main=main_title, labCol=FALSE, labRow=FALSE, cexRow=1, col=grcol, ColSideColorsSize=2, RowSideColorsSize=1) par(xpd=T) legend("bottomleft",legend=c(paste("ConsenClus", 1:k, sep = "")), fill=CCP_colors[1:k], border=FALSE, bty="n", y.intersp = 1, cex=0.7) legend("topright",legend=c("Bcell", "Tcell", "Myeloid", "Stromal", "", names(table(as.numeric(meldat[1,])))), fill=c(colorss[1:4], "white", colors[1:length(names(table(as.character(meldat[1,]))))]), border=FALSE, bty="n", y.intersp = 1, cex=0.7) dev.off() for(y in 1:as.numeric(k)){ k <- as.numeric(k) y <- as.numeric(y) CGset <- rownames(CC)[resultss[[k]][["consensusClass"]]==y] if(as.numeric(k) < 10){ k <- as.numeric(k) k <- paste("0", k, sep = "") } if(as.numeric(y) < 10){ y <- paste("0", y, sep = "") } write.table(CGset, file = paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/ClusterGeneLists/GSE75688_Breast_ClusGenes_K", k, "C", y, ".csv", sep = ""), quote = F, row.names = F, sep = ",") } } t_time <- proc.time()-p_time print(t_time) # Extract clusters colors information for(i in 2:12){ g1 <- resultss[[i]][[3]] dfg1 <- data.frame(Gene = names(g1), Group = as.numeric(g1), stringsAsFactors = FALSE) col1 <- unlist(resultss[[i]][[5]][1]) dfg1$Col <- col1 if(i < 10){ i = paste("0",i,sep ="") } file1 <- paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/GeneColorsLists/GSE75688_Breast_CPP_K=", i, ".csv",sep = "") write.csv(dfg1, file1, row.names = FALSE) }
/CaseSpecific/GSE75688_Breast_NorMean_optiK.R
no_license
YuWei-Lin/scRNA
R
false
false
22,260
r
heatmap.3 <- function(x, Rowv = TRUE, Colv = if (symm) "Rowv" else TRUE, distfun = dist, hclustfun = hclust, dendrogram = c("both","row", "column", "none"), symm = FALSE, scale = c("none","row", "column"), na.rm = TRUE, revC = identical(Colv,"Rowv"), add.expr, breaks, symbreaks = max(x < 0, na.rm = TRUE) || scale != "none", col = "heat.colors", colsep, rowsep, sepcolor = "white", sepwidth = c(0.05, 0.05), cellnote, notecex = 1, notecol = "cyan", na.color = par("bg"), trace = c("none", "column","row", "both"), tracecol = "cyan", hline = median(breaks), vline = median(breaks), linecol = tracecol, margins = c(5,5), ColSideColors, RowSideColors, side.height.fraction=0.3, cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc), labRow = NULL, labCol = NULL, key = TRUE, keysize = 1.5, density.info = c("none", "histogram", "density"), denscol = tracecol, symkey = max(x < 0, na.rm = TRUE) || symbreaks, densadj = 0.25, main = NULL, xlab = NULL, ylab = NULL, lmat = NULL, lhei = NULL, lwid = NULL, ColSideColorsSize = 1, RowSideColorsSize = 1, KeyValueName="Value",...){ invalid <- function (x) { if (missing(x) || is.null(x) || length(x) == 0) return(TRUE) if (is.list(x)) return(all(sapply(x, invalid))) else if (is.vector(x)) return(all(is.na(x))) else return(FALSE) } x <- as.matrix(x) scale01 <- function(x, low = min(x), high = max(x)) { x <- (x - low)/(high - low) x } retval <- list() scale <- if (symm && missing(scale)) "none" else match.arg(scale) dendrogram <- match.arg(dendrogram) trace <- match.arg(trace) density.info <- match.arg(density.info) if (length(col) == 1 && is.character(col)) col <- get(col, mode = "function") if (!missing(breaks) && (scale != "none")) warning("Using scale=\"row\" or scale=\"column\" when breaks are", "specified can produce unpredictable results.", "Please consider using only one or the other.") if (is.null(Rowv) || is.na(Rowv)) Rowv <- FALSE if (is.null(Colv) || is.na(Colv)) Colv <- FALSE else if (Colv == "Rowv" && !isTRUE(Rowv)) Colv <- FALSE if (length(di <- dim(x)) != 2 || !is.numeric(x)) stop("`x' must be a numeric matrix") nr <- di[1] nc <- di[2] if (nr <= 1 || nc <= 1) stop("`x' must have at least 2 rows and 2 columns") if (!is.numeric(margins) || length(margins) != 2) stop("`margins' must be a numeric vector of length 2") if (missing(cellnote)) cellnote <- matrix("", ncol = ncol(x), nrow = nrow(x)) if (!inherits(Rowv, "dendrogram")) { if (((!isTRUE(Rowv)) || (is.null(Rowv))) && (dendrogram %in% c("both", "row"))) { if (is.logical(Colv) && (Colv)) dendrogram <- "column" else dedrogram <- "none" warning("Discrepancy: Rowv is FALSE, while dendrogram is `", dendrogram, "'. Omitting row dendogram.") } } if (!inherits(Colv, "dendrogram")) { if (((!isTRUE(Colv)) || (is.null(Colv))) && (dendrogram %in% c("both", "column"))) { if (is.logical(Rowv) && (Rowv)) dendrogram <- "row" else dendrogram <- "none" warning("Discrepancy: Colv is FALSE, while dendrogram is `", dendrogram, "'. Omitting column dendogram.") } } if (inherits(Rowv, "dendrogram")) { ddr <- Rowv rowInd <- order.dendrogram(ddr) } else if (is.integer(Rowv)) { hcr <- hclustfun(distfun(x)) ddr <- as.dendrogram(hcr) ddr <- reorder(ddr, Rowv) rowInd <- order.dendrogram(ddr) if (nr != length(rowInd)) stop("row dendrogram ordering gave index of wrong length") } else if (isTRUE(Rowv)) { Rowv <- rowMeans(x, na.rm = na.rm) hcr <- hclustfun(distfun(x)) ddr <- as.dendrogram(hcr) ddr <- reorder(ddr, Rowv) rowInd <- order.dendrogram(ddr) if (nr != length(rowInd)) stop("row dendrogram ordering gave index of wrong length") } else { rowInd <- nr:1 } if (inherits(Colv, "dendrogram")) { ddc <- Colv colInd <- order.dendrogram(ddc) } else if (identical(Colv, "Rowv")) { if (nr != nc) stop("Colv = \"Rowv\" but nrow(x) != ncol(x)") if (exists("ddr")) { ddc <- ddr colInd <- order.dendrogram(ddc) } else colInd <- rowInd } else if (is.integer(Colv)) { hcc <- hclustfun(distfun(if (symm) x else t(x))) ddc <- as.dendrogram(hcc) ddc <- reorder(ddc, Colv) colInd <- order.dendrogram(ddc) if (nc != length(colInd)) stop("column dendrogram ordering gave index of wrong length") } else if (isTRUE(Colv)) { Colv <- colMeans(x, na.rm = na.rm) hcc <- hclustfun(distfun(if (symm) x else t(x))) ddc <- as.dendrogram(hcc) ddc <- reorder(ddc, Colv) colInd <- order.dendrogram(ddc) if (nc != length(colInd)) stop("column dendrogram ordering gave index of wrong length") } else { colInd <- 1:nc } retval$rowInd <- rowInd retval$colInd <- colInd retval$call <- match.call() x <- x[rowInd, colInd] x.unscaled <- x cellnote <- cellnote[rowInd, colInd] if (is.null(labRow)) labRow <- if (is.null(rownames(x))) (1:nr)[rowInd] else rownames(x) else labRow <- labRow[rowInd] if (is.null(labCol)) labCol <- if (is.null(colnames(x))) (1:nc)[colInd] else colnames(x) else labCol <- labCol[colInd] if (scale == "row") { retval$rowMeans <- rm <- rowMeans(x, na.rm = na.rm) x <- sweep(x, 1, rm) retval$rowSDs <- sx <- apply(x, 1, sd, na.rm = na.rm) x <- sweep(x, 1, sx, "/") } else if (scale == "column") { retval$colMeans <- rm <- colMeans(x, na.rm = na.rm) x <- sweep(x, 2, rm) retval$colSDs <- sx <- apply(x, 2, sd, na.rm = na.rm) x <- sweep(x, 2, sx, "/") } if (missing(breaks) || is.null(breaks) || length(breaks) < 1) { if (missing(col) || is.function(col)) breaks <- 16 else breaks <- length(col) + 1 } if (length(breaks) == 1) { if (!symbreaks) breaks <- seq(min(x, na.rm = na.rm), max(x, na.rm = na.rm), length = breaks) else { extreme <- max(abs(x), na.rm = TRUE) breaks <- seq(-extreme, extreme, length = breaks) } } nbr <- length(breaks) ncol <- length(breaks) - 1 if (class(col) == "function") col <- col(ncol) min.breaks <- min(breaks) max.breaks <- max(breaks) x[x < min.breaks] <- min.breaks x[x > max.breaks] <- max.breaks if (missing(lhei) || is.null(lhei)) lhei <- c(keysize, 4) if (missing(lwid) || is.null(lwid)) lwid <- c(keysize, 4) if (missing(lmat) || is.null(lmat)) { lmat <- rbind(4:3, 2:1) if (!missing(ColSideColors)) { #if (!is.matrix(ColSideColors)) #stop("'ColSideColors' must be a matrix") if (!is.character(ColSideColors) || nrow(ColSideColors) != nc) stop("'ColSideColors' must be a matrix of nrow(x) rows") lmat <- rbind(lmat[1, ] + 1, c(NA, 1), lmat[2, ] + 1) #lhei <- c(lhei[1], 0.2, lhei[2]) lhei=c(lhei[1], side.height.fraction*ColSideColorsSize/2, lhei[2]) } if (!missing(RowSideColors)) { #if (!is.matrix(RowSideColors)) #stop("'RowSideColors' must be a matrix") if (!is.character(RowSideColors) || ncol(RowSideColors) != nr) stop("'RowSideColors' must be a matrix of ncol(x) columns") lmat <- cbind(lmat[, 1] + 1, c(rep(NA, nrow(lmat) - 1), 1), lmat[,2] + 1) #lwid <- c(lwid[1], 0.2, lwid[2]) lwid <- c(lwid[1], side.height.fraction*RowSideColorsSize/2, lwid[2]) } lmat[is.na(lmat)] <- 0 } if (length(lhei) != nrow(lmat)) stop("lhei must have length = nrow(lmat) = ", nrow(lmat)) if (length(lwid) != ncol(lmat)) stop("lwid must have length = ncol(lmat) =", ncol(lmat)) op <- par(no.readonly = TRUE) on.exit(par(op)) layout(lmat, widths = lwid, heights = lhei, respect = FALSE) if (!missing(RowSideColors)) { if (!is.matrix(RowSideColors)){ par(mar = c(margins[1], 0, 0, 0.5)) image(rbind(1:nr), col = RowSideColors[rowInd], axes = FALSE) } else { par(mar = c(margins[1], 0, 0, 0.5)) rsc = t(RowSideColors[,rowInd, drop=F]) rsc.colors = matrix() rsc.names = names(table(rsc)) rsc.i = 1 for (rsc.name in rsc.names) { rsc.colors[rsc.i] = rsc.name rsc[rsc == rsc.name] = rsc.i rsc.i = rsc.i + 1 } rsc = matrix(as.numeric(rsc), nrow = dim(rsc)[1]) image(t(rsc), col = as.vector(rsc.colors), axes = FALSE) if (length(rownames(RowSideColors)) > 0) { axis(1, 0:(dim(rsc)[2] - 1)/max(1,(dim(rsc)[2] - 1)), rownames(RowSideColors), las = 2, tick = FALSE) } } } if (!missing(ColSideColors)) { if (!is.matrix(ColSideColors)){ par(mar = c(0.5, 0, 0, margins[2])) image(cbind(1:nc), col = ColSideColors[colInd], axes = FALSE) } else { par(mar = c(0.5, 0, 0, margins[2])) csc = ColSideColors[colInd, , drop=F] csc.colors = matrix() csc.names = names(table(csc)) csc.i = 1 for (csc.name in csc.names) { csc.colors[csc.i] = csc.name csc[csc == csc.name] = csc.i csc.i = csc.i + 1 } csc = matrix(as.numeric(csc), nrow = dim(csc)[1]) image(csc, col = as.vector(csc.colors), axes = FALSE) if (length(colnames(ColSideColors)) > 0) { axis(2, 0:(dim(csc)[2] - 1)/max(1,(dim(csc)[2] - 1)), colnames(ColSideColors), las = 2, tick = FALSE) } } } par(mar = c(margins[1], 0, 0, margins[2])) x <- t(x) cellnote <- t(cellnote) if (revC) { iy <- nr:1 if (exists("ddr")) ddr <- rev(ddr) x <- x[, iy] cellnote <- cellnote[, iy] } else iy <- 1:nr image(1:nc, 1:nr, x, xlim = 0.5 + c(0, nc), ylim = 0.5 + c(0, nr), axes = FALSE, xlab = "", ylab = "", col = col, breaks = breaks, ...) retval$carpet <- x if (exists("ddr")) retval$rowDendrogram <- ddr if (exists("ddc")) retval$colDendrogram <- ddc retval$breaks <- breaks retval$col <- col if (!invalid(na.color) & any(is.na(x))) { # load library(gplots) mmat <- ifelse(is.na(x), 1, NA) image(1:nc, 1:nr, mmat, axes = FALSE, xlab = "", ylab = "", col = na.color, add = TRUE) } axis(1, 1:nc, labels = labCol, las = 2, line = -0.5, tick = 0, cex.axis = cexCol) if (!is.null(xlab)) mtext(xlab, side = 1, line = margins[1] - 1.25) axis(4, iy, labels = labRow, las = 2, line = -0.5, tick = 0, cex.axis = cexRow) if (!is.null(ylab)) mtext(ylab, side = 4, line = margins[2] - 1.25) if (!missing(add.expr)) eval(substitute(add.expr)) if (!missing(colsep)) for (csep in colsep) rect(xleft = csep + 0.5, ybottom = rep(0, length(csep)), xright = csep + 0.5 + sepwidth[1], ytop = rep(ncol(x) + 1, csep), lty = 1, lwd = 1, col = sepcolor, border = sepcolor) if (!missing(rowsep)) for (rsep in rowsep) rect(xleft = 0, ybottom = (ncol(x) + 1 - rsep) - 0.5, xright = nrow(x) + 1, ytop = (ncol(x) + 1 - rsep) - 0.5 - sepwidth[2], lty = 1, lwd = 1, col = sepcolor, border = sepcolor) min.scale <- min(breaks) max.scale <- max(breaks) x.scaled <- scale01(t(x), min.scale, max.scale) if (trace %in% c("both", "column")) { retval$vline <- vline vline.vals <- scale01(vline, min.scale, max.scale) for (i in colInd) { if (!is.null(vline)) { abline(v = i - 0.5 + vline.vals, col = linecol, lty = 2) } xv <- rep(i, nrow(x.scaled)) + x.scaled[, i] - 0.5 xv <- c(xv[1], xv) yv <- 1:length(xv) - 0.5 lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s") } } if (trace %in% c("both", "row")) { retval$hline <- hline hline.vals <- scale01(hline, min.scale, max.scale) for (i in rowInd) { if (!is.null(hline)) { abline(h = i + hline, col = linecol, lty = 2) } yv <- rep(i, ncol(x.scaled)) + x.scaled[i, ] - 0.5 yv <- rev(c(yv[1], yv)) xv <- length(yv):1 - 0.5 lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s") } } if (!missing(cellnote)) text(x = c(row(cellnote)), y = c(col(cellnote)), labels = c(cellnote), col = notecol, cex = notecex) par(mar = c(margins[1], 0, 0, 0)) if (dendrogram %in% c("both", "row")) { plot(ddr, horiz = TRUE, axes = FALSE, yaxs = "i", leaflab = "none") } else plot.new() par(mar = c(0, 0, if (!is.null(main)) 5 else 0, margins[2])) if (dendrogram %in% c("both", "column")) { plot(ddc, axes = FALSE, xaxs = "i", leaflab = "none") } else plot.new() if (!is.null(main)) title(main, cex.main = 1.5 * op[["cex.main"]]) if (key) { par(mar = c(5, 4, 2, 1), cex = 0.75) tmpbreaks <- breaks if (symkey) { max.raw <- max(abs(c(x, breaks)), na.rm = TRUE) min.raw <- -max.raw tmpbreaks[1] <- -max(abs(x), na.rm = TRUE) tmpbreaks[length(tmpbreaks)] <- max(abs(x), na.rm = TRUE) } else { min.raw <- min(x, na.rm = TRUE) max.raw <- max(x, na.rm = TRUE) } z <- seq(min.raw, max.raw, length = length(col)) image(z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks, xaxt = "n", yaxt = "n") par(usr = c(0, 1, 0, 1)) lv <- pretty(breaks) xv <- scale01(as.numeric(lv), min.raw, max.raw) axis(1, at = xv, labels = lv) if (scale == "row") mtext(side = 1, "Row Z-Score", line = 2) else if (scale == "column") mtext(side = 1, "Column Z-Score", line = 2) else mtext(side = 1, KeyValueName, line = 2) if (density.info == "density") { dens <- density(x, adjust = densadj, na.rm = TRUE) omit <- dens$x < min(breaks) | dens$x > max(breaks) dens$x <- dens$x[-omit] dens$y <- dens$y[-omit] dens$x <- scale01(dens$x, min.raw, max.raw) lines(dens$x, dens$y/max(dens$y) * 0.95, col = denscol, lwd = 1) axis(2, at = pretty(dens$y)/max(dens$y) * 0.95, pretty(dens$y)) title("Color Key\nand Density Plot") par(cex = 0.5) mtext(side = 2, "Density", line = 2) } else if (density.info == "histogram") { h <- hist(x, plot = FALSE, breaks = breaks) hx <- scale01(breaks, min.raw, max.raw) hy <- c(h$counts, h$counts[length(h$counts)]) lines(hx, hy/max(hy) * 0.95, lwd = 1, type = "s", col = denscol) axis(2, at = pretty(hy)/max(hy) * 0.95, pretty(hy)) title("Color Key\nand Histogram") par(cex = 0.5) mtext(side = 2, "Count", line = 2) } else title("Color Key") } else plot.new() retval$colorTable <- data.frame(low = retval$breaks[-length(retval$breaks)], high = retval$breaks[-1], color = retval$col) invisible(retval) } # Breast Normal Data Preparation meldat <- read.csv("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/Processed Matrices/GSE75688_BreastNor_RAW_CDF.csv", header = TRUE, stringsAsFactors = FALSE) sampleinfo <- read.csv("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/Processed Matrices/GSE75688_Breast_NorAnnotation.csv", header = TRUE, stringsAsFactors = F) sampleinfo <- sampleinfo[ order(sampleinfo[,1]), ] # Bcell=1 ; Tcell=2 ; Myeloid=3 ; Stromal=4 sampleinfo$Cell.Type <- sub("Bcell", 1, sampleinfo$Cell.Type) sampleinfo$Cell.Type <- sub("Tcell", 2, sampleinfo$Cell.Type) sampleinfo$Cell.Type <- sub("Myeloid", 3, sampleinfo$Cell.Type) sampleinfo$Cell.Type <- sub("Stromal", 4, sampleinfo$Cell.Type) meldat <- meldat[!duplicated(meldat[ , 1]), ] rownames(meldat) <- meldat$Gene meldat <- meldat[,-1] meldat <- rbind(as.numeric(sub("BC", "", sampleinfo$Patient)), as.numeric(sampleinfo$Cell.Type), meldat) rownames(meldat)[1:2] <- c("Patient_ID", "Cell_Type") meldat <- meldat[ ,order(meldat[2,], meldat[1,])] #Tumor ID arrange columns according to multiple row values meldat <- meldat[apply(meldat, 1, function(x) sum(is.na(x)) < (ncol(meldat)*(0.7))), ] ### Colors Customization library(RColorBrewer) grcol <- colorRampPalette(c("green","red"))(64) #heat maps color keys library(cluster) #General color Idex colors = c("#e6194B", "#3cb44b", "#ffe119", "#4363d8", "#f58231", "#911eb4", "#42d4f4", "#f032e6", "#bfef45", "#fabebe" , "#469990", "#e6beff", "#9A6324", "#800000", "#aaffc3", "#808000", "#ffd8b1", "#000075", "#a9a9a9", "#000000") ### Tumor Identity Colors labeling tumors_colors=rep(colors[1], 198) for(i in 2:length(table(as.numeric(meldat[1,])))){ tumors_colors[meldat[1, ]==names(table(as.numeric(meldat[1,])))[i]]=colors[i] } tumors_colors <- as.matrix(tumors_colors) # Legend Attached Form colorss = c("#ffe119", "#f58231", "#42d4f4", "#469990", "#800000", "#aaffc3") Cell_type <- rep(colorss[1], 198) for(i in 2:length(table(as.numeric(meldat[2,])))){ Cell_type[meldat[2, ]==names(table(as.numeric(meldat[2,])))[i]]=colorss[i] } Cell_type <- as.matrix(Cell_type) # Legend Attached Form clab <- cbind(Cell_type, tumors_colors) colnames(clab)=c("Cell_Type", "Tumor_ID") # Legend Label Name ### Duplicate input and convert NAs to "0" for "Zero version" AA <- meldat[3:nrow(meldat), ] AA[is.na(AA)]=0 # "AA" ready for Kmeans CC <- meldat[3:nrow(meldat), ] ### Duplicate input and convert NAs to "0" for "Mean version" AA <- meldat[3:nrow(meldat), ] for (i in 1:nrow(AA)) { AA[ i, is.na(AA[i, ])] <- mean(na.omit(as.numeric(AA[i, ]))) } CC <- meldat[3:nrow(meldat), ] ### TCGA Methods: ConsensusClusterPlus # try http:// if https:// URLs are not supported # source("https://bioconductor.org/biocLite.R") # biocLite("ConsensusClusterPlus") library(ConsensusClusterPlus) title=paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/ConsensusClusterPlus.Figures", sep = "") p_time <- proc.time() resultss = ConsensusClusterPlus(t(AA), maxK=12, reps=100, pItem=0.8, pFeature=1, title=title, clusterAlg="km", distance="euclidean", plot="png") icl = calcICL(resultss, title=title, plot="png") #icl[["clusterConsensus"]] #icl[["itemConsensus"]][1:5,] t_time <- proc.time()-p_time print(t_time) p_time <- proc.time() for(k in 2:12){ BB <- CC[order(resultss[[k]][["consensusClass"]]), ] main_title=paste("GSE75688_Breast_CCP_k=", k, sep = "") par(cex.main=0.5) CCP_colors <- resultss[[k]]$clrs[[3]] plot(1:k, col=CCP_colors, pch=16, cex=6) Cluster_Colors=rep(CCP_colors[1], 5957) for(j in 2:k){ Cluster_Colors[sort(resultss[[k]][["consensusClass"]])==j]=CCP_colors[j] } plot(1:length(Cluster_Colors), col=Cluster_Colors, pch=16, cex=3) Cluster_Colors <- as.matrix(t(Cluster_Colors)) rownames(Cluster_Colors)=c("Clusters") tiff(paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/K_Heatmaps/", main_title, ".tiff", sep=""), width=2200, height=1600, compression="lzw", res=300) heatmap.3(BB, na.rm = TRUE, scale="none", dendrogram="none", margins=c(6,12), RowSideColors=Cluster_Colors, Rowv=FALSE, Colv=FALSE, ColSideColors=clab, symbreaks=FALSE, key=TRUE, symkey=FALSE, density.info="none", trace="none", main=main_title, labCol=FALSE, labRow=FALSE, cexRow=1, col=grcol, ColSideColorsSize=2, RowSideColorsSize=1) par(xpd=T) legend("bottomleft",legend=c(paste("ConsenClus", 1:k, sep = "")), fill=CCP_colors[1:k], border=FALSE, bty="n", y.intersp = 1, cex=0.7) legend("topright",legend=c("Bcell", "Tcell", "Myeloid", "Stromal", "", names(table(as.numeric(meldat[1,])))), fill=c(colorss[1:4], "white", colors[1:length(names(table(as.character(meldat[1,]))))]), border=FALSE, bty="n", y.intersp = 1, cex=0.7) dev.off() for(y in 1:as.numeric(k)){ k <- as.numeric(k) y <- as.numeric(y) CGset <- rownames(CC)[resultss[[k]][["consensusClass"]]==y] if(as.numeric(k) < 10){ k <- as.numeric(k) k <- paste("0", k, sep = "") } if(as.numeric(y) < 10){ y <- paste("0", y, sep = "") } write.table(CGset, file = paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/ClusterGeneLists/GSE75688_Breast_ClusGenes_K", k, "C", y, ".csv", sep = ""), quote = F, row.names = F, sep = ",") } } t_time <- proc.time()-p_time print(t_time) # Extract clusters colors information for(i in 2:12){ g1 <- resultss[[i]][[3]] dfg1 <- data.frame(Gene = names(g1), Group = as.numeric(g1), stringsAsFactors = FALSE) col1 <- unlist(resultss[[i]][[5]][1]) dfg1$Col <- col1 if(i < 10){ i = paste("0",i,sep ="") } file1 <- paste("D:/SC Cases Completed/GSE75688_Breast_DATA/Normal/K.Means/Filled with Mean/GeneColorsLists/GSE75688_Breast_CPP_K=", i, ".csv",sep = "") write.csv(dfg1, file1, row.names = FALSE) }
#!/usr/bin/Rscript # # Bhishan Poudel # Jan 5, 2016 ################################################################################ # Function to set the current directory as the working directory set_default_wd <- function(wd = getwd(), overwrite = FALSE) { text <- paste0( 'local({ setwd("', wd, '") })') ## if (Sys.info()["sysname"] == "Windows") { write( text, file = paste0(Sys.getenv("HOME"), "\\.Rprofile"), append = !overwrite) } else { write( text, file = paste0(Sys.getenv("HOME"), "/.Rprofile"), append = !overwrite) } } ################################################################################ # for plotly account Sys.setenv("plotly_username"="bhishanpdl") Sys.setenv("plotly_api_key"="amq1tpxuig") ################################################################################ # for rstudio addins #' Insert texts. #' #' Call this function as an addin to insert at the cursor position. #' #' @export shebang <- function() { rstudioapi::insertText("#!/usr/bin/Rscript \n") rstudioapi::insertText("# Bhishan Poudel \n") rstudioapi::insertText("# \n") rstudioapi::insertText("\n\n") rstudioapi::insertText("# setting working directory \n") rstudioapi::insertText("set_default_wd() \n") } ################################################################################
/Programming_tips/R/RprofileUbuntu.txt
no_license
bpPrg/Tips
R
false
false
1,435
txt
#!/usr/bin/Rscript # # Bhishan Poudel # Jan 5, 2016 ################################################################################ # Function to set the current directory as the working directory set_default_wd <- function(wd = getwd(), overwrite = FALSE) { text <- paste0( 'local({ setwd("', wd, '") })') ## if (Sys.info()["sysname"] == "Windows") { write( text, file = paste0(Sys.getenv("HOME"), "\\.Rprofile"), append = !overwrite) } else { write( text, file = paste0(Sys.getenv("HOME"), "/.Rprofile"), append = !overwrite) } } ################################################################################ # for plotly account Sys.setenv("plotly_username"="bhishanpdl") Sys.setenv("plotly_api_key"="amq1tpxuig") ################################################################################ # for rstudio addins #' Insert texts. #' #' Call this function as an addin to insert at the cursor position. #' #' @export shebang <- function() { rstudioapi::insertText("#!/usr/bin/Rscript \n") rstudioapi::insertText("# Bhishan Poudel \n") rstudioapi::insertText("# \n") rstudioapi::insertText("\n\n") rstudioapi::insertText("# setting working directory \n") rstudioapi::insertText("set_default_wd() \n") } ################################################################################
# print()함수와 cat()함수 print(100) print(pi) data <- "가나다" print(data) print(data, quote=FALSE) v1 <- c("사과", "바나나", "포도") print(v1) print(v1, print.gap=10) cat(100) cat(100,200) cat(100,200,"\n") cat("aaa", "bbb", "ccc", "ddd", "\n") cat(v1, "\n") cat(v1, sep="-", "\n") print(paste("R", "은 통계분석", "전용 언어입니다.")) cat("R", "은 통계분석", "전용 언어입니다.", "\n") #제어문 #if else randomNum <-sample(1:10,1) if(randomNum>5){ cat(randomNum,":5보다 크군요","\n") }else{ cat(randomNum,":5보다 작거나 같군요","\n") } if(randomNum%%2 == 1){ cat(randomNum,";홀수\n") }else{ cat(randomNum,";짝수","\n") } if(randomNum%%2 == 1){ cat(randomNum,";홀수","\n") cat("종료") }else{ cat(randomNum,";짝수","\n") cat("종료") } if(randomNum%%2 == 1){ cat(randomNum,";홀수") cat("종료") }else{ cat(randomNum,";짝수") cat("종료") } score <- sample(0:100, 1) # 0~100 숫자 한 개를 무작위로 뽑아서 if (score >=90){ cat(score,"는 A등급입니다","\n") }else if (score >=80){ cat(score,"는 B등급입니다","\n") }else if (score >=70){ cat(score,"는 C등급입니다","\n") }else if (score >=60){ cat(score,"는 D등급입니다","\n") }else { cat(score,"는 F등급입니다","\n") } #for문 #for 실습 for(data in month.name) print(data) for(data in month.name)print(data);print("가나다") for(data in month.name){print(data);print("가나다")} for(n in 1:5) cat("hello?","\n") for(i in 1:5){ for(j in 1:5){ cat("i=",i,"j=",j,"\n") } } # 구구단 for(dan in 1:9){ for(num in 1:9){ cat(dan,"x",num,"=",dan*num,"\t") # \n : 개행문자, \t : 탭문자 } cat("\n") } bb <- F for(i in 1:9){ for(j in 1:9){ if(i*j>30){ bb<-T break } cat(i,"*",j,"=",i*j,"\t") } cat("\n") if(bb) #bb가 TRUE이면 break } for(i in 1:9){ for(j in 1:9){ if(i*j>30){ break } cat(i,"*",j,"=",i*j,"\t") } cat("\n") } #while문 i<-1 while(i <= 10){ cat(i,"\n") i <- i+1 } cat("종료 후 :",i,"\n") i<-1 while (i<=10) { cat(i,"\n") } i<-1 while (i<=10) { cat(i,"\n") i<-i+2 } i<-1 while (i<=10) { cat(i,"\n") i<-i+1 } #switch 문을 대신하는 함수 month <- sample(1:12,1) month <- paste(month,"월",sep="") # "3월" "3 월" result <- switch(EXPR=month, "12월"=,"1월"=,"2월"="겨울", "3월"=,"4월"=,"5월"="봄", "6월"=,"7월"=,"8월"="여름", "가을") cat(month,"은 ",result,"입니다\n",sep="") num <- sample(1:10,1) num switch(EXPR = num,"A","B","C","D") for(num in 1:10){ cat(num,":",switch(EXPR = num,"A","B","C","D"),"\n") } for(num in 1:10){ num <- as.character(num) cat(num,":",switch(EXPR = num, "7"="A","8"="B","9"="C","10"="D","ㅋ"),"\n") } for(data in month.name) print(data) for(data in month.name) cat(data) sum <- 0 for(i in 5:15){ if(i%%10==0){ break } sum <- sum + i print(paste(i,":",sum)) } sum <- 0 for(i in 5:15){ if(i%%10==0){ break } sum <- sum + i cat(i,":",sum,"\n") } sum <-0 for(i in 5:15){ if(i%%10==0){ next; #continue } sum <- sum + i print(paste(i,":",sum)) } sumNumber <- 0 while(sumNumber <= 20) { i <- sample(1:5, 1) sumNumber <-sumNumber+i; cat(sumNumber,"\n") } repeat { cat("ㅋㅋㅋ\n") } sumNumber <- 0 repeat { i <- sample(1:5, 1) sumNumber <-sumNumber+i; cat(sumNumber,"\n") if(sumNumber > 20) break; } # 파일 입력 ls() length(ls()) save(list=ls(),file="all.rda") # varience will save in "all.rda" of rexam rm(list=ls()) ls() load("all.rda") ls() #read file data nums <- scan("data/sample_num.txt") word_ansi <- scan("data/sample_ansi.txt",what="") words_utf8 <- scan("data/sample_utf8.txt", what="",encoding="UTF-8") words_utf8_new <- scan("data/sample_utf8.txt", what="") lines_ansi <- readLines("data/sample_ansi.txt") lines_utf8 <- readLines("data/sample_utf8.txt",encoding="UTF-8") df2 <- read.table("data/product_click.log", stringsAsFactors = T) str(df2) head(df2) summary(df2$V2)
/R-lecture/01_syntax/day04.R
no_license
yeonjooyou/learn-R
R
false
false
4,161
r
# print()함수와 cat()함수 print(100) print(pi) data <- "가나다" print(data) print(data, quote=FALSE) v1 <- c("사과", "바나나", "포도") print(v1) print(v1, print.gap=10) cat(100) cat(100,200) cat(100,200,"\n") cat("aaa", "bbb", "ccc", "ddd", "\n") cat(v1, "\n") cat(v1, sep="-", "\n") print(paste("R", "은 통계분석", "전용 언어입니다.")) cat("R", "은 통계분석", "전용 언어입니다.", "\n") #제어문 #if else randomNum <-sample(1:10,1) if(randomNum>5){ cat(randomNum,":5보다 크군요","\n") }else{ cat(randomNum,":5보다 작거나 같군요","\n") } if(randomNum%%2 == 1){ cat(randomNum,";홀수\n") }else{ cat(randomNum,";짝수","\n") } if(randomNum%%2 == 1){ cat(randomNum,";홀수","\n") cat("종료") }else{ cat(randomNum,";짝수","\n") cat("종료") } if(randomNum%%2 == 1){ cat(randomNum,";홀수") cat("종료") }else{ cat(randomNum,";짝수") cat("종료") } score <- sample(0:100, 1) # 0~100 숫자 한 개를 무작위로 뽑아서 if (score >=90){ cat(score,"는 A등급입니다","\n") }else if (score >=80){ cat(score,"는 B등급입니다","\n") }else if (score >=70){ cat(score,"는 C등급입니다","\n") }else if (score >=60){ cat(score,"는 D등급입니다","\n") }else { cat(score,"는 F등급입니다","\n") } #for문 #for 실습 for(data in month.name) print(data) for(data in month.name)print(data);print("가나다") for(data in month.name){print(data);print("가나다")} for(n in 1:5) cat("hello?","\n") for(i in 1:5){ for(j in 1:5){ cat("i=",i,"j=",j,"\n") } } # 구구단 for(dan in 1:9){ for(num in 1:9){ cat(dan,"x",num,"=",dan*num,"\t") # \n : 개행문자, \t : 탭문자 } cat("\n") } bb <- F for(i in 1:9){ for(j in 1:9){ if(i*j>30){ bb<-T break } cat(i,"*",j,"=",i*j,"\t") } cat("\n") if(bb) #bb가 TRUE이면 break } for(i in 1:9){ for(j in 1:9){ if(i*j>30){ break } cat(i,"*",j,"=",i*j,"\t") } cat("\n") } #while문 i<-1 while(i <= 10){ cat(i,"\n") i <- i+1 } cat("종료 후 :",i,"\n") i<-1 while (i<=10) { cat(i,"\n") } i<-1 while (i<=10) { cat(i,"\n") i<-i+2 } i<-1 while (i<=10) { cat(i,"\n") i<-i+1 } #switch 문을 대신하는 함수 month <- sample(1:12,1) month <- paste(month,"월",sep="") # "3월" "3 월" result <- switch(EXPR=month, "12월"=,"1월"=,"2월"="겨울", "3월"=,"4월"=,"5월"="봄", "6월"=,"7월"=,"8월"="여름", "가을") cat(month,"은 ",result,"입니다\n",sep="") num <- sample(1:10,1) num switch(EXPR = num,"A","B","C","D") for(num in 1:10){ cat(num,":",switch(EXPR = num,"A","B","C","D"),"\n") } for(num in 1:10){ num <- as.character(num) cat(num,":",switch(EXPR = num, "7"="A","8"="B","9"="C","10"="D","ㅋ"),"\n") } for(data in month.name) print(data) for(data in month.name) cat(data) sum <- 0 for(i in 5:15){ if(i%%10==0){ break } sum <- sum + i print(paste(i,":",sum)) } sum <- 0 for(i in 5:15){ if(i%%10==0){ break } sum <- sum + i cat(i,":",sum,"\n") } sum <-0 for(i in 5:15){ if(i%%10==0){ next; #continue } sum <- sum + i print(paste(i,":",sum)) } sumNumber <- 0 while(sumNumber <= 20) { i <- sample(1:5, 1) sumNumber <-sumNumber+i; cat(sumNumber,"\n") } repeat { cat("ㅋㅋㅋ\n") } sumNumber <- 0 repeat { i <- sample(1:5, 1) sumNumber <-sumNumber+i; cat(sumNumber,"\n") if(sumNumber > 20) break; } # 파일 입력 ls() length(ls()) save(list=ls(),file="all.rda") # varience will save in "all.rda" of rexam rm(list=ls()) ls() load("all.rda") ls() #read file data nums <- scan("data/sample_num.txt") word_ansi <- scan("data/sample_ansi.txt",what="") words_utf8 <- scan("data/sample_utf8.txt", what="",encoding="UTF-8") words_utf8_new <- scan("data/sample_utf8.txt", what="") lines_ansi <- readLines("data/sample_ansi.txt") lines_utf8 <- readLines("data/sample_utf8.txt",encoding="UTF-8") df2 <- read.table("data/product_click.log", stringsAsFactors = T) str(df2) head(df2) summary(df2$V2)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/hanlp.R \docType{data} \name{hanlp.naiveBayesClassify} \alias{hanlp.naiveBayesClassify} \title{Naive Bayes classifier.} \format{\code{\link{R6Class}} object.} \usage{ hanlp.naiveBayesClassify } \description{ a R6 class of naive Bayes classifier. } \details{ A R6class of naive Bayes classifier . } \section{Usage}{ For usage details see \bold{Methods, Arguments and Examples} sections. \preformatted{ naiveBayes = hanlp.naiveBayesClassify$new() naiveBayes$train(file_folder) naiveBayes$predict(text) naiveBayes$test(test_data) naiveBayes$getModel() } } \section{Methods}{ \describe{ \item{\code{$new()}}{Constructor for Naive Bayes classifier.} \item{\code{$train(file_folder)}}{Train Naive Bayes classifier,detail in https://github.com/hankcs/HanLP/wiki .} \item{\code{$predict(text)}}{Predict \code{text} category.} \item{\code{$test(test_data)}}{Predict a batch of text categories,\code{test_data} is a character vector.} \item{\code{$getModel()}}{Output some infomation of Naive Bayes model. } } } \examples{ \dontrun{ naiveBayes = hanlp.naiveBayesClassify$new() naiveBayes$train(file_folder) naiveBayes$predict(text) naiveBayes$test(test_data) naiveBayes$getModel() } } \author{ qxde01 } \keyword{datasets}
/man/hanlp.naiveBayesClassify.Rd
no_license
SimmsJeason/RHanLP
R
false
true
1,360
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/hanlp.R \docType{data} \name{hanlp.naiveBayesClassify} \alias{hanlp.naiveBayesClassify} \title{Naive Bayes classifier.} \format{\code{\link{R6Class}} object.} \usage{ hanlp.naiveBayesClassify } \description{ a R6 class of naive Bayes classifier. } \details{ A R6class of naive Bayes classifier . } \section{Usage}{ For usage details see \bold{Methods, Arguments and Examples} sections. \preformatted{ naiveBayes = hanlp.naiveBayesClassify$new() naiveBayes$train(file_folder) naiveBayes$predict(text) naiveBayes$test(test_data) naiveBayes$getModel() } } \section{Methods}{ \describe{ \item{\code{$new()}}{Constructor for Naive Bayes classifier.} \item{\code{$train(file_folder)}}{Train Naive Bayes classifier,detail in https://github.com/hankcs/HanLP/wiki .} \item{\code{$predict(text)}}{Predict \code{text} category.} \item{\code{$test(test_data)}}{Predict a batch of text categories,\code{test_data} is a character vector.} \item{\code{$getModel()}}{Output some infomation of Naive Bayes model. } } } \examples{ \dontrun{ naiveBayes = hanlp.naiveBayesClassify$new() naiveBayes$train(file_folder) naiveBayes$predict(text) naiveBayes$test(test_data) naiveBayes$getModel() } } \author{ qxde01 } \keyword{datasets}
#' Example dataset of WFD data interchange format #' #' A dataset containing ecology and chemistry data #' #' @format A data frame with 8477 rows and 20 variables: #' \describe{ #' \item{location_id}{location_id} #' \item{location_description}{location_description} #' \item{easting}{easting} #' \item{northing}{northing} #' \item{latitude}{latitude} #' \item{longitude}{longitude} #' \item{date_taken}{date_taken} #' \item{sample_id}{sample_id} #' \item{analysis_name}{analysis_name} #' \item{analysis_repname}{analysis_repname} #' \item{question}{question} #' \item{response}{response} #' \item{units}{units} #' \item{taxon}{taxon} #' \item{taxon_id}{taxon_id} #' \item{mean_alkalinity}{mean_alkalinity} #' \item{result_id}{result_id} #' \item{grid_reference}{grid_reference} #' \item{standard}{standard} #' \item{quality_element}{quality_element} #' } #' @source Agency sampling data "demo_input"
/R/demo-input.R
no_license
cmbenn/hera
R
false
false
940
r
#' Example dataset of WFD data interchange format #' #' A dataset containing ecology and chemistry data #' #' @format A data frame with 8477 rows and 20 variables: #' \describe{ #' \item{location_id}{location_id} #' \item{location_description}{location_description} #' \item{easting}{easting} #' \item{northing}{northing} #' \item{latitude}{latitude} #' \item{longitude}{longitude} #' \item{date_taken}{date_taken} #' \item{sample_id}{sample_id} #' \item{analysis_name}{analysis_name} #' \item{analysis_repname}{analysis_repname} #' \item{question}{question} #' \item{response}{response} #' \item{units}{units} #' \item{taxon}{taxon} #' \item{taxon_id}{taxon_id} #' \item{mean_alkalinity}{mean_alkalinity} #' \item{result_id}{result_id} #' \item{grid_reference}{grid_reference} #' \item{standard}{standard} #' \item{quality_element}{quality_element} #' } #' @source Agency sampling data "demo_input"
#' Interactive user interface for treemap #' #' This function is an interactive user interface for creating treemaps. Interaction is provided for the four main input arguments of (\code{\link{treemap}}) besides the data.frame itself, namely \code{index}, \code{vSize}, \code{vColor} and \code{type}. Zooming in and out is possible. Command line outputs are generated in the console. #' #' @param dtf a data.frame (\code{\link{treemap}}) If not provided, then the first data.frame in the global workspace is loaded. #' @param index index variables (up to four). See \code{\link{treemap}}. #' @param vSize name of the variable that determine the rectangle sizes. #' @param vColor name of the variable that determine the rectangle colors. See \code{\link{treemap}}. #' @param type treemap type. See \code{\link{treemap}}. #' @param height height of the plotted treemap in pixels. Tip: decrease this number if the treemap doesn't fit conveniently. #' @param command.line.output if \code{TRUE}, the command line output of the generated treemaps are provided in the console. #' @examples #' \dontrun{ #' data(business) #' itreemap(business) #' } #' @note This interface will no longer be maintained (except for small bugs), since there is a better interactive interface available: \url{https://github.com/timelyportfolio/d3treeR}. #' @import data.table #' @import grid #' @import gridBase #' @import shiny #' @export itreemap <- function(dtf=NULL, index=NULL, vSize=NULL, vColor=NULL, type=NULL, height=700, command.line.output=TRUE) { # get data.frame(s) obs <- ls(envir=.GlobalEnv) if (!length(obs)) stop("No data.frames loaded") dfs <- obs[sapply(obs, function(x)inherits(get(x, envir=.GlobalEnv), "data.frame"))] if (!length(dfs)) stop("No data.frames loaded") # get variable names dfvars <- lapply(dfs, function(x)names(get(x, envir=.GlobalEnv))) names(dfvars) <- dfs dfiscat <- lapply(dfs, function(x)sapply(get(x, envir=.GlobalEnv),function(y)is.factor(y)||is.logical(y)||is.character(y))) names(dfiscat) <- dfs dfcat <- lapply(dfiscat, function(x)if (any(x)) names(x[x]) else "<NA>") dfnum <- lapply(dfiscat, function(x)if (any(!x)) names(x[!x]) else "<NA>") ## check input parameters if (missing(dtf)) { dtfname <- dfs[1] } else { dtfname <- deparse(substitute(dtf)) if (!dtfname %in% dfs) stop(paste(dtfname, "is not a data.frame")) } if (missing(index)) { indexNames <- c(dfcat[[dtfname]][1], "<NA>", "<NA>", "<NA>") } else { if (!(all(index %in% dfcat[[dtfname]]))) stop("index variable(s) is(are) not categorical") indexNames <- if (length(index) < 4) c(index, rep.int("<NA>", 4-length(index))) else index[1:4] } if (missing(vSize)) { vSize <- dfnum[[dtfname]][1] } else { if (!(vSize %in% dfnum[[dtfname]])) stop("vSize is not numeric") } if (missing(type)) { typeName <- "index" } else { if (!(type %in% c("value", "categorical", "comp", "dens", "index", "depth"))) stop("Invalid type") typeName <- type } if (missing(vColor)) { if (typeName %in% c("value", "comp", "dens")) vColor <- dfnum[[dtfname]][1] if (typeName == "categorical") vColor <- dfcat[[dtfname]][1] } else { if (typeName %in% c("value", "comp", "dens") && (!(vColor %in% dfnum[[dtfname]]))) stop("vColor is not numeric") if (typeName == "categorical" && (!(vColor %in% dfcat[[dtfname]]))) stop("vColor is not categorical") } if (typeName %in% c("index", "depth")) vColor <- "<not needed>" ## administration is kept in this environment (maybe not the most elegant solution) e <- environment() back <- 0 #filters <- NULL #hcl <- list(tmSetHCLoptions()) x <- 0 y <- 0 count <- 0 size <- "" color <- "" type <- "" index <- rep("", 4) runApp(list( ui = pageWithSidebar( headerPanel("", windowTitle="Interactive Treemap"), sidebarPanel( uiOutput("df"), #uiOutput("filter"), uiOutput("ind1"), uiOutput("ind2"), uiOutput("ind3"), uiOutput("ind4"), uiOutput("size"), uiOutput("type"), uiOutput("color"), checkboxInput("fixscales", "Fix scales", value = TRUE), checkboxInput("fixasp", "Fix aspect ratio", value = TRUE), actionButton("back", "Zoom out") ), mainPanel( tabsetPanel( tabPanel("Treemap", plotOutput("plot", hover="hover", click="click", height=paste(height, "px", sep="")), tableOutput("summary")), tabPanel("Data", dataTableOutput("data")), tabPanel("Microdata", dataTableOutput("microdata")))) ), server = function(input, output, session){ values <- reactiveValues() values$update <- FALSE dataset <- reactive({ assign("filters", NULL, envir=e) assign("hcl", list(tmSetHCLoptions()), envir=e) assign("asp", NULL, envir=e) assign("range", NA, envir=e) assign("tm", NULL, envir=e) ifelse(is.null(input$df), dfs[1], input$df) }) getHoverID <- reactive({ p <- dataset() x <- input$hover$x y <- input$hover$y if (!is.null(tm)) { x <- (x - tm$vpCoorX[1]) / (tm$vpCoorX[2] - tm$vpCoorX[1]) y <- (y - tm$vpCoorY[1]) / (tm$vpCoorY[2] - tm$vpCoorY[1]) l <- tmLocate(list(x=x, y=y), tm) if (is.na(l[1,1])) { return(NULL) } else return(as.list(l[1,])) } else { return(NULL) } }) getClickID <- reactive({ p <- dataset() x.new <- input$click$x y.new <- input$click$y if (is.null(x.new) || is.null(y.new)) return(NULL) if (x.new==x && y.new==y) return(NULL) assign("x", x.new, envir=e) assign("y", y.new, envir=e) if (!is.null(tm)) { x <- (x - tm$vpCoorX[1]) / (tm$vpCoorX[2] - tm$vpCoorX[1]) y <- (y - tm$vpCoorY[1]) / (tm$vpCoorY[2] - tm$vpCoorY[1]) l <- tmLocate(list(x=x, y=y), tm) if (is.na(l[1,1])) { return(NULL) } else return(as.list(l[1,])) } else { return(NULL) } }) getFilter <- reactive({ p <- dataset() back.new <- input$back l <- getClickID() if (back.new == back) { if (!is.null(l)) if (!(l$x0==0 && l$y0==0 && l$w==1 && l$y==1)) { # mouse click on treemap filter <- as.character(l[[1]]) proceed <- is.null(filters) if (!proceed) proceed <- (!length(filters)) || (filter != filters[length(filters)]) # select all rectangles inside clicked rectangle if (proceed) { sel <- tm$tm[[1]] == filter #browser() # create hcl options cols <- tm$tm$color[sel] cols <- substr(cols, 1L, 7L) cols <- hex2RGB(cols) cols <- as(cols, "polarLUV") hues <- cols@coords[,3] hcl.last <- hcl[[length(hcl)]] hcl.last$hue_start <- min(hues) hcl.last$hue_end <- max(hues) notDeeper <- all(is.na(tm$tm[sel, 2])) if (length(l)>10 && !notDeeper) { hcl.last$chroma <- hcl.last$chroma + hcl.last$chroma_slope hcl.last$luminance <- hcl.last$luminance + hcl.last$luminance_slope } assign("hcl", c(hcl, list(hcl.last)), envir=e) # set aspect ratio x0 <- tm$tm$x0[sel] x1 <- x0 + tm$tm$w[sel] y0 <- tm$tm$y0[sel] y1 <- y0 + tm$tm$h[sel] w <- max(x1) - min(x0) h <- max(y1) - min(y0) asp.new <- tm$aspRatio assign("asp", if (is.null(asp)) c(asp.new, asp.new*(w/h)) else c(asp, asp.new*(w/h)), envir=e) # get range assign("range", tm$range, envir=e) # add filter assign("filters", c(filters, filter), envir=e) } } } else { if (!is.null(filters)) if (length(filters)) { # click on zoom out button assign("filters", filters[-(length(filters))], envir=e) assign("hcl", hcl[-(length(hcl))], envir=e) assign("asp", asp[-(length(asp))], envir=e) assign("range", tm$range, envir=e) } assign("back", back.new, envir=e) } filters }) getSummary <- reactive({ l <- getHoverID() if (!is.null(l)) { # create summary line on hover sizeID <- which(names(l)=="vSize") id <- switch(type, comp=sizeID+2, dens=sizeID+2, value=sizeID+1, index=sizeID, categorical=sizeID+1, depth=sizeID, color=sizeID) l <- l[1:id] names(l)[sizeID] <- size if (!(type %in% c("index", "depth", "color"))) names(l)[sizeID+1] <- color if (type=="comp") { names(l)[sizeID+2] <- paste("compared to", color, "(in %)") } else if (type=="dens") { names(l)[sizeID+2] <- paste(color, "per", size) } dt <- as.data.frame(l) row.names(dt) <- "" return(as.data.frame(dt)) } else { dt <- data.frame('...'="") row.names(dt) <- "" return(dt) } }) output$df <- renderUI({ selectInput("df", label="Dataset:", choices=dfs, selected=dtfname) }) output$ind1 <- renderUI({ p <- dataset() vars <- dfcat[[p]] selectInput("ind1", label="Index variables", choices=vars, selected=indexNames[1]) }) output$ind2 <- renderUI({ p <- dataset() vars <- c("<NA>", dfcat[[p]]) ind1 <- input$ind1 if (!is.null(ind1)) { vars <- setdiff(vars, ind1) selectInput("ind2", label="", choices=vars, selected=indexNames[2]) } }) output$ind3 <- renderUI({ p <- dataset() vars <- c("<NA>", dfcat[[p]]) ind1 <- input$ind1 ind2 <- input$ind2 if (!is.null(ind1) && !is.null(ind2)) { if (ind2=="<NA>") { vars <- "<NA>" } else { vars <- setdiff(vars, c(ind1, ind2)) } selectInput("ind3", label="", choices=vars, selected=indexNames[3]) } }) output$ind4 <- renderUI({ p <- dataset() vars <- c("<NA>", dfcat[[p]]) ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 if (!is.null(ind1) && !is.null(ind2) && !is.null(ind3)) { if (ind3=="<NA>") { vars <- "<NA>" } else { vars <- setdiff(vars, c(ind1, ind2, ind3)) } selectInput("ind4", label="", choices=vars, selected=indexNames[4]) } }) output$size <- renderUI({ p <- dataset() vars <- dfnum[[p]] selectInput("size", label="Size variable", choices=vars, selected=vSize) }) output$color <- renderUI({ p <- dataset() type <- input$type if (!is.null(type)) { vars <- if (type=="index") { "<not needed>" } else if (type=="value") { dfnum[[p]] } else if (type=="comp") { dfnum[[p]] } else if (type=="dens") { dfnum[[p]] } else if (type=="depth") { "<not needed>" } else if (type=="categorical") { dfcat[[p]] } selectInput("color", label="Color variable", choices=vars, selected=vColor) } }) output$type <- renderUI({ selectInput("type", label="Type", choices=c("index", "value", "comp", "dens", "depth", "categorical"), selected=typeName) }) output$plot <- renderPlot({ #.tm <- .range <- .count <- .size <- .color <- .type <- .index <- NULL # get input parameters filters <- getFilter() p <- dataset() size.new <- input$size color.new <- input$color type.new <- input$type ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 ind4 <- input$ind4 asp.new <- input$fixasp scales <- input$fixscales # check if all parameters are ready if (is.null(size.new) || is.null(color.new) || is.null(type.new) || is.null(ind1) || is.null(ind2) || is.null(ind3) || is.null(ind4) || is.null(asp.new) || is.null(scales)) return(NULL) # create index vector and get filter index.new <- c(ind1, ind2, ind3, ind4) if (all(index.new==index) && size.new ==size && color.new==color && type.new == type) { #cat("same variables\n") #return(NULL) } else { assign("range", NA, envir=e) } assign("size", size.new, envir=e) assign("color", color.new, envir=e) assign("type", type.new, envir=e) assign("index", index.new, envir=e) index.new <- index.new[index.new!="<NA>"] # determine zoom level zoomLevel <- if (is.null(filters)) 0 else length(filters) # check parameters if (!(anyDuplicated(index.new)) && ((color.new=="<not needed>" && (type.new %in% c("index", "depth"))) || ((color.new %in% dfnum[[p]]) && (type.new %in% c("value", "comp", "dens"))) || ((color.new %in% dfcat[[p]]) && (type.new == "categorical"))) && all(index.new %in% dfcat[[p]])) { # create empty base R plot to obtain hover and click info par(mar=c(0,0,0,0), xaxs='i', yaxs='i') plot(c(0,1), c(0,1),axes=F, col="white") vps <- baseViewports() # subset data and get aspect ratio #### TODO: in incomplete trees, the max zoom level is lower #### test: 53 Postal and courier activities dat <- get(p, envir=.GlobalEnv) if (zoomLevel>0) { filterString <- paste(paste(index.new[1:zoomLevel], paste("\"", filters, "\"", sep=""), sep=" == "), collapse=" & ") selection <- eval(parse(text=filterString), dat, parent.frame()) dat <- dat[selection,] # determine indices of treemap allNA <- sapply(dat[, index.new], function(x)all(is.na(x))) maxLevel <- ifelse(any(allNA), which(allNA)[1]-1, length(index.new)) minLevel <- min(maxLevel, zoomLevel+1, length(index.new)) if (length(index.new)>1) index.new <- index.new[(minLevel:maxLevel)] #if (maxLevel==zoomLevel) hcl aspRatio <- ifelse(asp.new, asp[length(asp)], NA) } else { aspRatio <- NA } # reset range if treemap is changed assign("count", count + 1, envir=e) #cat("draw", .count, " range", .range,"\n") # get range and hcl info assign("range", if(scales) range else NA, envir=e) hcl.new <- if(scales) as.list(hcl[[zoomLevel+1]]) else hcl[[1]] #require(data.table) values$update <- TRUE tm <- treemap(dat, index=index.new, vSize=size.new, vColor=color.new, type=type.new, vp=vps$plot, palette.HCL.options=hcl.new, aspRatio=aspRatio, range=range, title="") values$update <- FALSE assign("tm", tm, envir=e) tmString <- paste0("treemap(", ifelse(zoomLevel==0, p, paste0("subset(", p, ", subset=", filterString, ")")), ", index=", if(length(index.new)==1) paste0("\"", index.new, "\"") else paste0("c(", paste(paste0("\"", index.new, "\""), collapse=", "), ")"), ", vSize=\"", size.new, "\"", if (color.new!="<not needed>") paste0(", vColor=\"", color.new, "\""), ", type=\"", type.new, "\")") if (command.line.output) cat(tmString, "\n") } }) output$summary <- renderTable({ getSummary() }) output$microdata <- renderDataTable({ # get input parameters (to get attention) filters <- getFilter() p <- dataset() size <- input$size color <- input$color type <- input$type ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 ind4 <- input$ind4 asp.new <- input$fixasp scales <- input$fixscales update <- values$update dat <- get(p, envir=.GlobalEnv) index.new <- c(ind1, ind2, ind3, ind4) zoomLevel <- if (is.null(filters)) 0 else length(filters) if (zoomLevel>0) { # subset data filterString <- paste(paste(index[1:zoomLevel], paste("\"", filters, "\"", sep=""), sep=" == "), collapse=" & ") selection <- eval(parse(text=filterString), dat, parent.frame()) dat <- dat[selection,] } dat }) output$data <- renderDataTable({ # get input parameters (to get attention) p <- dataset() size.new <- input$size color.new <- input$color type.new <- input$type ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 ind4 <- input$ind4 asp <- input$fixasp scales <- input$fixscales update <- values$update tm <- tm$tm lvls <- tm$level dat <- tm[lvls==max(lvls), 1:(ncol(tm)-6)] sizeID <- which(names(dat)=="vSize") id <- switch(type, comp=sizeID+2, dens=sizeID+2, value=sizeID+1, index=sizeID, categorical=sizeID+1, depth=sizeID, color=sizeID) dat <- dat[, 1:id] names(dat)[sizeID] <- size if (!(type %in% c("index", "depth", "color"))) names(dat)[sizeID+1] <- color if (type=="comp") { names(dat)[sizeID+2] <- paste("compared to", color, "(in %)") } else if (type=="dens") { names(dat)[sizeID+2] <- paste(color, "per", size) } dat }) } )) }
/pkg/R/itreemap.R
no_license
timelyportfolio/treemap
R
false
false
23,544
r
#' Interactive user interface for treemap #' #' This function is an interactive user interface for creating treemaps. Interaction is provided for the four main input arguments of (\code{\link{treemap}}) besides the data.frame itself, namely \code{index}, \code{vSize}, \code{vColor} and \code{type}. Zooming in and out is possible. Command line outputs are generated in the console. #' #' @param dtf a data.frame (\code{\link{treemap}}) If not provided, then the first data.frame in the global workspace is loaded. #' @param index index variables (up to four). See \code{\link{treemap}}. #' @param vSize name of the variable that determine the rectangle sizes. #' @param vColor name of the variable that determine the rectangle colors. See \code{\link{treemap}}. #' @param type treemap type. See \code{\link{treemap}}. #' @param height height of the plotted treemap in pixels. Tip: decrease this number if the treemap doesn't fit conveniently. #' @param command.line.output if \code{TRUE}, the command line output of the generated treemaps are provided in the console. #' @examples #' \dontrun{ #' data(business) #' itreemap(business) #' } #' @note This interface will no longer be maintained (except for small bugs), since there is a better interactive interface available: \url{https://github.com/timelyportfolio/d3treeR}. #' @import data.table #' @import grid #' @import gridBase #' @import shiny #' @export itreemap <- function(dtf=NULL, index=NULL, vSize=NULL, vColor=NULL, type=NULL, height=700, command.line.output=TRUE) { # get data.frame(s) obs <- ls(envir=.GlobalEnv) if (!length(obs)) stop("No data.frames loaded") dfs <- obs[sapply(obs, function(x)inherits(get(x, envir=.GlobalEnv), "data.frame"))] if (!length(dfs)) stop("No data.frames loaded") # get variable names dfvars <- lapply(dfs, function(x)names(get(x, envir=.GlobalEnv))) names(dfvars) <- dfs dfiscat <- lapply(dfs, function(x)sapply(get(x, envir=.GlobalEnv),function(y)is.factor(y)||is.logical(y)||is.character(y))) names(dfiscat) <- dfs dfcat <- lapply(dfiscat, function(x)if (any(x)) names(x[x]) else "<NA>") dfnum <- lapply(dfiscat, function(x)if (any(!x)) names(x[!x]) else "<NA>") ## check input parameters if (missing(dtf)) { dtfname <- dfs[1] } else { dtfname <- deparse(substitute(dtf)) if (!dtfname %in% dfs) stop(paste(dtfname, "is not a data.frame")) } if (missing(index)) { indexNames <- c(dfcat[[dtfname]][1], "<NA>", "<NA>", "<NA>") } else { if (!(all(index %in% dfcat[[dtfname]]))) stop("index variable(s) is(are) not categorical") indexNames <- if (length(index) < 4) c(index, rep.int("<NA>", 4-length(index))) else index[1:4] } if (missing(vSize)) { vSize <- dfnum[[dtfname]][1] } else { if (!(vSize %in% dfnum[[dtfname]])) stop("vSize is not numeric") } if (missing(type)) { typeName <- "index" } else { if (!(type %in% c("value", "categorical", "comp", "dens", "index", "depth"))) stop("Invalid type") typeName <- type } if (missing(vColor)) { if (typeName %in% c("value", "comp", "dens")) vColor <- dfnum[[dtfname]][1] if (typeName == "categorical") vColor <- dfcat[[dtfname]][1] } else { if (typeName %in% c("value", "comp", "dens") && (!(vColor %in% dfnum[[dtfname]]))) stop("vColor is not numeric") if (typeName == "categorical" && (!(vColor %in% dfcat[[dtfname]]))) stop("vColor is not categorical") } if (typeName %in% c("index", "depth")) vColor <- "<not needed>" ## administration is kept in this environment (maybe not the most elegant solution) e <- environment() back <- 0 #filters <- NULL #hcl <- list(tmSetHCLoptions()) x <- 0 y <- 0 count <- 0 size <- "" color <- "" type <- "" index <- rep("", 4) runApp(list( ui = pageWithSidebar( headerPanel("", windowTitle="Interactive Treemap"), sidebarPanel( uiOutput("df"), #uiOutput("filter"), uiOutput("ind1"), uiOutput("ind2"), uiOutput("ind3"), uiOutput("ind4"), uiOutput("size"), uiOutput("type"), uiOutput("color"), checkboxInput("fixscales", "Fix scales", value = TRUE), checkboxInput("fixasp", "Fix aspect ratio", value = TRUE), actionButton("back", "Zoom out") ), mainPanel( tabsetPanel( tabPanel("Treemap", plotOutput("plot", hover="hover", click="click", height=paste(height, "px", sep="")), tableOutput("summary")), tabPanel("Data", dataTableOutput("data")), tabPanel("Microdata", dataTableOutput("microdata")))) ), server = function(input, output, session){ values <- reactiveValues() values$update <- FALSE dataset <- reactive({ assign("filters", NULL, envir=e) assign("hcl", list(tmSetHCLoptions()), envir=e) assign("asp", NULL, envir=e) assign("range", NA, envir=e) assign("tm", NULL, envir=e) ifelse(is.null(input$df), dfs[1], input$df) }) getHoverID <- reactive({ p <- dataset() x <- input$hover$x y <- input$hover$y if (!is.null(tm)) { x <- (x - tm$vpCoorX[1]) / (tm$vpCoorX[2] - tm$vpCoorX[1]) y <- (y - tm$vpCoorY[1]) / (tm$vpCoorY[2] - tm$vpCoorY[1]) l <- tmLocate(list(x=x, y=y), tm) if (is.na(l[1,1])) { return(NULL) } else return(as.list(l[1,])) } else { return(NULL) } }) getClickID <- reactive({ p <- dataset() x.new <- input$click$x y.new <- input$click$y if (is.null(x.new) || is.null(y.new)) return(NULL) if (x.new==x && y.new==y) return(NULL) assign("x", x.new, envir=e) assign("y", y.new, envir=e) if (!is.null(tm)) { x <- (x - tm$vpCoorX[1]) / (tm$vpCoorX[2] - tm$vpCoorX[1]) y <- (y - tm$vpCoorY[1]) / (tm$vpCoorY[2] - tm$vpCoorY[1]) l <- tmLocate(list(x=x, y=y), tm) if (is.na(l[1,1])) { return(NULL) } else return(as.list(l[1,])) } else { return(NULL) } }) getFilter <- reactive({ p <- dataset() back.new <- input$back l <- getClickID() if (back.new == back) { if (!is.null(l)) if (!(l$x0==0 && l$y0==0 && l$w==1 && l$y==1)) { # mouse click on treemap filter <- as.character(l[[1]]) proceed <- is.null(filters) if (!proceed) proceed <- (!length(filters)) || (filter != filters[length(filters)]) # select all rectangles inside clicked rectangle if (proceed) { sel <- tm$tm[[1]] == filter #browser() # create hcl options cols <- tm$tm$color[sel] cols <- substr(cols, 1L, 7L) cols <- hex2RGB(cols) cols <- as(cols, "polarLUV") hues <- cols@coords[,3] hcl.last <- hcl[[length(hcl)]] hcl.last$hue_start <- min(hues) hcl.last$hue_end <- max(hues) notDeeper <- all(is.na(tm$tm[sel, 2])) if (length(l)>10 && !notDeeper) { hcl.last$chroma <- hcl.last$chroma + hcl.last$chroma_slope hcl.last$luminance <- hcl.last$luminance + hcl.last$luminance_slope } assign("hcl", c(hcl, list(hcl.last)), envir=e) # set aspect ratio x0 <- tm$tm$x0[sel] x1 <- x0 + tm$tm$w[sel] y0 <- tm$tm$y0[sel] y1 <- y0 + tm$tm$h[sel] w <- max(x1) - min(x0) h <- max(y1) - min(y0) asp.new <- tm$aspRatio assign("asp", if (is.null(asp)) c(asp.new, asp.new*(w/h)) else c(asp, asp.new*(w/h)), envir=e) # get range assign("range", tm$range, envir=e) # add filter assign("filters", c(filters, filter), envir=e) } } } else { if (!is.null(filters)) if (length(filters)) { # click on zoom out button assign("filters", filters[-(length(filters))], envir=e) assign("hcl", hcl[-(length(hcl))], envir=e) assign("asp", asp[-(length(asp))], envir=e) assign("range", tm$range, envir=e) } assign("back", back.new, envir=e) } filters }) getSummary <- reactive({ l <- getHoverID() if (!is.null(l)) { # create summary line on hover sizeID <- which(names(l)=="vSize") id <- switch(type, comp=sizeID+2, dens=sizeID+2, value=sizeID+1, index=sizeID, categorical=sizeID+1, depth=sizeID, color=sizeID) l <- l[1:id] names(l)[sizeID] <- size if (!(type %in% c("index", "depth", "color"))) names(l)[sizeID+1] <- color if (type=="comp") { names(l)[sizeID+2] <- paste("compared to", color, "(in %)") } else if (type=="dens") { names(l)[sizeID+2] <- paste(color, "per", size) } dt <- as.data.frame(l) row.names(dt) <- "" return(as.data.frame(dt)) } else { dt <- data.frame('...'="") row.names(dt) <- "" return(dt) } }) output$df <- renderUI({ selectInput("df", label="Dataset:", choices=dfs, selected=dtfname) }) output$ind1 <- renderUI({ p <- dataset() vars <- dfcat[[p]] selectInput("ind1", label="Index variables", choices=vars, selected=indexNames[1]) }) output$ind2 <- renderUI({ p <- dataset() vars <- c("<NA>", dfcat[[p]]) ind1 <- input$ind1 if (!is.null(ind1)) { vars <- setdiff(vars, ind1) selectInput("ind2", label="", choices=vars, selected=indexNames[2]) } }) output$ind3 <- renderUI({ p <- dataset() vars <- c("<NA>", dfcat[[p]]) ind1 <- input$ind1 ind2 <- input$ind2 if (!is.null(ind1) && !is.null(ind2)) { if (ind2=="<NA>") { vars <- "<NA>" } else { vars <- setdiff(vars, c(ind1, ind2)) } selectInput("ind3", label="", choices=vars, selected=indexNames[3]) } }) output$ind4 <- renderUI({ p <- dataset() vars <- c("<NA>", dfcat[[p]]) ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 if (!is.null(ind1) && !is.null(ind2) && !is.null(ind3)) { if (ind3=="<NA>") { vars <- "<NA>" } else { vars <- setdiff(vars, c(ind1, ind2, ind3)) } selectInput("ind4", label="", choices=vars, selected=indexNames[4]) } }) output$size <- renderUI({ p <- dataset() vars <- dfnum[[p]] selectInput("size", label="Size variable", choices=vars, selected=vSize) }) output$color <- renderUI({ p <- dataset() type <- input$type if (!is.null(type)) { vars <- if (type=="index") { "<not needed>" } else if (type=="value") { dfnum[[p]] } else if (type=="comp") { dfnum[[p]] } else if (type=="dens") { dfnum[[p]] } else if (type=="depth") { "<not needed>" } else if (type=="categorical") { dfcat[[p]] } selectInput("color", label="Color variable", choices=vars, selected=vColor) } }) output$type <- renderUI({ selectInput("type", label="Type", choices=c("index", "value", "comp", "dens", "depth", "categorical"), selected=typeName) }) output$plot <- renderPlot({ #.tm <- .range <- .count <- .size <- .color <- .type <- .index <- NULL # get input parameters filters <- getFilter() p <- dataset() size.new <- input$size color.new <- input$color type.new <- input$type ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 ind4 <- input$ind4 asp.new <- input$fixasp scales <- input$fixscales # check if all parameters are ready if (is.null(size.new) || is.null(color.new) || is.null(type.new) || is.null(ind1) || is.null(ind2) || is.null(ind3) || is.null(ind4) || is.null(asp.new) || is.null(scales)) return(NULL) # create index vector and get filter index.new <- c(ind1, ind2, ind3, ind4) if (all(index.new==index) && size.new ==size && color.new==color && type.new == type) { #cat("same variables\n") #return(NULL) } else { assign("range", NA, envir=e) } assign("size", size.new, envir=e) assign("color", color.new, envir=e) assign("type", type.new, envir=e) assign("index", index.new, envir=e) index.new <- index.new[index.new!="<NA>"] # determine zoom level zoomLevel <- if (is.null(filters)) 0 else length(filters) # check parameters if (!(anyDuplicated(index.new)) && ((color.new=="<not needed>" && (type.new %in% c("index", "depth"))) || ((color.new %in% dfnum[[p]]) && (type.new %in% c("value", "comp", "dens"))) || ((color.new %in% dfcat[[p]]) && (type.new == "categorical"))) && all(index.new %in% dfcat[[p]])) { # create empty base R plot to obtain hover and click info par(mar=c(0,0,0,0), xaxs='i', yaxs='i') plot(c(0,1), c(0,1),axes=F, col="white") vps <- baseViewports() # subset data and get aspect ratio #### TODO: in incomplete trees, the max zoom level is lower #### test: 53 Postal and courier activities dat <- get(p, envir=.GlobalEnv) if (zoomLevel>0) { filterString <- paste(paste(index.new[1:zoomLevel], paste("\"", filters, "\"", sep=""), sep=" == "), collapse=" & ") selection <- eval(parse(text=filterString), dat, parent.frame()) dat <- dat[selection,] # determine indices of treemap allNA <- sapply(dat[, index.new], function(x)all(is.na(x))) maxLevel <- ifelse(any(allNA), which(allNA)[1]-1, length(index.new)) minLevel <- min(maxLevel, zoomLevel+1, length(index.new)) if (length(index.new)>1) index.new <- index.new[(minLevel:maxLevel)] #if (maxLevel==zoomLevel) hcl aspRatio <- ifelse(asp.new, asp[length(asp)], NA) } else { aspRatio <- NA } # reset range if treemap is changed assign("count", count + 1, envir=e) #cat("draw", .count, " range", .range,"\n") # get range and hcl info assign("range", if(scales) range else NA, envir=e) hcl.new <- if(scales) as.list(hcl[[zoomLevel+1]]) else hcl[[1]] #require(data.table) values$update <- TRUE tm <- treemap(dat, index=index.new, vSize=size.new, vColor=color.new, type=type.new, vp=vps$plot, palette.HCL.options=hcl.new, aspRatio=aspRatio, range=range, title="") values$update <- FALSE assign("tm", tm, envir=e) tmString <- paste0("treemap(", ifelse(zoomLevel==0, p, paste0("subset(", p, ", subset=", filterString, ")")), ", index=", if(length(index.new)==1) paste0("\"", index.new, "\"") else paste0("c(", paste(paste0("\"", index.new, "\""), collapse=", "), ")"), ", vSize=\"", size.new, "\"", if (color.new!="<not needed>") paste0(", vColor=\"", color.new, "\""), ", type=\"", type.new, "\")") if (command.line.output) cat(tmString, "\n") } }) output$summary <- renderTable({ getSummary() }) output$microdata <- renderDataTable({ # get input parameters (to get attention) filters <- getFilter() p <- dataset() size <- input$size color <- input$color type <- input$type ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 ind4 <- input$ind4 asp.new <- input$fixasp scales <- input$fixscales update <- values$update dat <- get(p, envir=.GlobalEnv) index.new <- c(ind1, ind2, ind3, ind4) zoomLevel <- if (is.null(filters)) 0 else length(filters) if (zoomLevel>0) { # subset data filterString <- paste(paste(index[1:zoomLevel], paste("\"", filters, "\"", sep=""), sep=" == "), collapse=" & ") selection <- eval(parse(text=filterString), dat, parent.frame()) dat <- dat[selection,] } dat }) output$data <- renderDataTable({ # get input parameters (to get attention) p <- dataset() size.new <- input$size color.new <- input$color type.new <- input$type ind1 <- input$ind1 ind2 <- input$ind2 ind3 <- input$ind3 ind4 <- input$ind4 asp <- input$fixasp scales <- input$fixscales update <- values$update tm <- tm$tm lvls <- tm$level dat <- tm[lvls==max(lvls), 1:(ncol(tm)-6)] sizeID <- which(names(dat)=="vSize") id <- switch(type, comp=sizeID+2, dens=sizeID+2, value=sizeID+1, index=sizeID, categorical=sizeID+1, depth=sizeID, color=sizeID) dat <- dat[, 1:id] names(dat)[sizeID] <- size if (!(type %in% c("index", "depth", "color"))) names(dat)[sizeID+1] <- color if (type=="comp") { names(dat)[sizeID+2] <- paste("compared to", color, "(in %)") } else if (type=="dens") { names(dat)[sizeID+2] <- paste(color, "per", size) } dat }) } )) }
################################################################# ## Univariate state-space models ## Example 5. The hidden x is a straight line ## This illustrates that you can reproduce a ## linear regression fit with a state-space model. ################################################################# library(MARSS) #x is the "hidden" trend we want to find intercept=1 #this is x at t=0 slope=0.5 r=1 n=10 t=1:n x=intercept + slope*t plot(x,xlim=c(1,n),ylim=c(0,n),type="l",ylab="time") #y is our observation of x with error y=x+rnorm(n,0,sqrt(r)) points(y) #Let's estimate the x fit = lm(y~t) fit #add fit to our plot abline(fit, col="red", lty=2, lwd=3) title("fit is red; true x is black") ##Preliminaries: how to write x=intercept+slope*t as a AR-1 x[1]=intercept+slope #this is x at t=1 for(i in 2:n) x[i]=x[i-1]+slope #n=10 from above plot(1:n,x,xlim=c(0,n),ylim=c(0,n),type="l",lwd=2,col="blue") lines(c(4,5),c(x[4],x[4])) lines(c(5,5),c(x[4],x[5])) text(5,x[4]+slope/2,"slope",pos=4) #Let's write x as a AR-1 model and y as an observation of that #x(t) = x(t-1) + slope + w(t), w(t)~N(0,0) so w(t)=0 #x(0) = intercept #y(t) = x(t) + v(t), v(t)~N(0,r) mod.list=list( U=matrix("slope"), x0=matrix("intercept"), B=matrix(1), Q=matrix(0), Z=matrix(1), A=matrix(0), R=matrix("r"), tinitx=0) fit2=MARSS(y,model=mod.list) plot(x,xlim=c(1,n),ylim=c(0,n),type="l",ylab="time") points(y) lines(fit2$states[1,], col="blue", lwd=2) abline(fit, col="red", lty=2, lwd=3) title("AR is blue; lm is red; true x is black") #parameter estimates est.slope=coef(fit2)$U[,1] est.intercept=coef(fit2)$x0[,1] est.r=coef(fit2)$R[,1] #Let's forecast our OBSERVATIONS forward 10 time steps #x(t+1)=x(t)+slope #y(t+1)=x(t+1)+v(t+1), v(t)~N(0,r) #First let's set up our estimated x #The last x at t=max(t) x.est.end = fit2$states[1,n] t.forward = 10 x.forecast = x.est.end + est.slope*(1:t.forward) #Let's first add the the real x and observations ylims=c(0,x[max(t)]+slope*t.forward+3*r) xlims=c(n-9,n+t.forward) plot((n-9):n, x[(n-9):n],xlim=xlims,ylim=ylims,type="l",ylab="y",xlab="t") points(y) title(paste("forecast with",n,"data points for estimation\nblue is estimate; red is true")) #Now let's forecast 1000 times using our estimates for(i in 1:1000){ y.forecast = x.forecast + rnorm(t.forward,0,sqrt(est.r)) jit=rnorm(1,0,.1)-.25 points(n+1:t.forward+jit,y.forecast,pch=".",col="blue") } #Now let's forecast 1000 times using truth x.end = x[max(t)] x.true.forecast = x.end + slope*(1:t.forward) for(i in 1:1000){ y.true.forecast = x.true.forecast + rnorm(t.forward,0,sqrt(r)) jit=rnorm(1,0,.1)+.25 points(n+1:t.forward+jit,y.true.forecast,pch=".",col="red") }
/docs/Lectures/Week 3/univariate_example_lm.R
no_license
atsa-es/atsa2019
R
false
false
2,726
r
################################################################# ## Univariate state-space models ## Example 5. The hidden x is a straight line ## This illustrates that you can reproduce a ## linear regression fit with a state-space model. ################################################################# library(MARSS) #x is the "hidden" trend we want to find intercept=1 #this is x at t=0 slope=0.5 r=1 n=10 t=1:n x=intercept + slope*t plot(x,xlim=c(1,n),ylim=c(0,n),type="l",ylab="time") #y is our observation of x with error y=x+rnorm(n,0,sqrt(r)) points(y) #Let's estimate the x fit = lm(y~t) fit #add fit to our plot abline(fit, col="red", lty=2, lwd=3) title("fit is red; true x is black") ##Preliminaries: how to write x=intercept+slope*t as a AR-1 x[1]=intercept+slope #this is x at t=1 for(i in 2:n) x[i]=x[i-1]+slope #n=10 from above plot(1:n,x,xlim=c(0,n),ylim=c(0,n),type="l",lwd=2,col="blue") lines(c(4,5),c(x[4],x[4])) lines(c(5,5),c(x[4],x[5])) text(5,x[4]+slope/2,"slope",pos=4) #Let's write x as a AR-1 model and y as an observation of that #x(t) = x(t-1) + slope + w(t), w(t)~N(0,0) so w(t)=0 #x(0) = intercept #y(t) = x(t) + v(t), v(t)~N(0,r) mod.list=list( U=matrix("slope"), x0=matrix("intercept"), B=matrix(1), Q=matrix(0), Z=matrix(1), A=matrix(0), R=matrix("r"), tinitx=0) fit2=MARSS(y,model=mod.list) plot(x,xlim=c(1,n),ylim=c(0,n),type="l",ylab="time") points(y) lines(fit2$states[1,], col="blue", lwd=2) abline(fit, col="red", lty=2, lwd=3) title("AR is blue; lm is red; true x is black") #parameter estimates est.slope=coef(fit2)$U[,1] est.intercept=coef(fit2)$x0[,1] est.r=coef(fit2)$R[,1] #Let's forecast our OBSERVATIONS forward 10 time steps #x(t+1)=x(t)+slope #y(t+1)=x(t+1)+v(t+1), v(t)~N(0,r) #First let's set up our estimated x #The last x at t=max(t) x.est.end = fit2$states[1,n] t.forward = 10 x.forecast = x.est.end + est.slope*(1:t.forward) #Let's first add the the real x and observations ylims=c(0,x[max(t)]+slope*t.forward+3*r) xlims=c(n-9,n+t.forward) plot((n-9):n, x[(n-9):n],xlim=xlims,ylim=ylims,type="l",ylab="y",xlab="t") points(y) title(paste("forecast with",n,"data points for estimation\nblue is estimate; red is true")) #Now let's forecast 1000 times using our estimates for(i in 1:1000){ y.forecast = x.forecast + rnorm(t.forward,0,sqrt(est.r)) jit=rnorm(1,0,.1)-.25 points(n+1:t.forward+jit,y.forecast,pch=".",col="blue") } #Now let's forecast 1000 times using truth x.end = x[max(t)] x.true.forecast = x.end + slope*(1:t.forward) for(i in 1:1000){ y.true.forecast = x.true.forecast + rnorm(t.forward,0,sqrt(r)) jit=rnorm(1,0,.1)+.25 points(n+1:t.forward+jit,y.true.forecast,pch=".",col="red") }
setwd("D:/Dropbox/Public/Sean's Stuff/Grad School/Research/Scrape Tutorial") #set WD library("rvest") library(purrr) library(plyr) library(dplyr) #loading packages ##### Create Page Holder page_holder <- rep(NA, 10) for (i in 1:length(page_holder)){ page_holder[i] <-(paste("https://www.politico.com/news/2020-elections",i)) } page_holder <- gsub("s ", "s/",page_holder) #minor adjustment to get formatting working ####### Create Functions ### URLFunction <- function(url){ Sys.sleep(1) read_html(url) %>% html_nodes("#main h1 a") %>% html_attr('href') } HeadlineFunction <- function(url){ Sys.sleep(1) as.character(html_text(html_nodes(read_html(url), '#main h1 a'))) } AuthorFunction <- function(url){ Sys.sleep(1) as.character(html_text(html_nodes(read_html(url),'.story-meta__authors .vcard'))) } DateFunction <- function(url){ Sys.sleep(1) as.character(html_text(html_nodes(read_html(url),'time'))) } TextFunction <- function(url){ Sys.sleep(1) (html_text(html_nodes(read_html(url), '.story-text__paragraph'))) } ##### Scraping ##### PoliticoURL <- sapply(page_holder, URLFunction) #Apply URL Function, will take some time PoliticoURL <- URLFunction(page_holder[1]) # PoliticoHeadline <- sapply(page_holder, HeadlineFunction) #Apply Headline function # PoliticoHeadline <- as.character(PoliticoHeadline) #put into one column PoliticoHeadline <- HeadlineFunction(page_holder[1]) Database <- as.data.frame(cbind(PoliticoHeadline, PoliticoURL)) #if you want to make sure they match up Dates <- rep(NA,length(Database$PoliticoHeadline)) #we are going from actual articles now, so using a loop to deal with formatting errors/lag for(i in 1:length(Dates)){ Dates[i] <- DateFunction(PoliticoURL[i]) print(i) } saveRDS(Dates, "Dates.rds") Author <- rep(NA,length(Database$PoliticoHeadline)) for(i in 1:length(Author)){ Author[i] <- AuthorFunction(PoliticoURL[i]) print(i) } saveRDS(Author, "Author.rds") Database$Date <- Dates Database$Author <- Author ###### Scraping the Text ### setwd("D:/Dropbox/Public/Sean's Stuff/Grad School/Research/Scrape Tutorial/Text") for (i in 1:length(Database$PoliticoURL)){ text_holder <- NA text_holder <- TextFunction(Database$PoliticoURL[i]) output <- paste0(i, ".txt") #create a name for each write.csv(text_holder, output) #saves file rm(text_holder) print(i) } #### Bringing Text Back In ### library(readr) setwd("D:/Dropbox/Public/Sean's Stuff/Grad School/Research/Scrape Tutorial/Text") file_list <- rep(NA, 20) x <- 0 for (i in 1:length(file_list)){ x <- 0 + i file_list[i] <- paste(x, ".txt") #creating list of the file names that we exported } file_list <- gsub(" .txt", ".txt", file_list) for (file in file_list){ if(exists("dataset")){ temp_dataset <- read_file(file) dataset<-rbind(dataset, temp_dataset) rm(temp_dataset) print(file) } if(!exists("dataset")){ dataset <- read_file(file) }} Database$Text <- dataset
/Scrape Tutorial.R
no_license
lorenc5/POSC-207
R
false
false
3,066
r
setwd("D:/Dropbox/Public/Sean's Stuff/Grad School/Research/Scrape Tutorial") #set WD library("rvest") library(purrr) library(plyr) library(dplyr) #loading packages ##### Create Page Holder page_holder <- rep(NA, 10) for (i in 1:length(page_holder)){ page_holder[i] <-(paste("https://www.politico.com/news/2020-elections",i)) } page_holder <- gsub("s ", "s/",page_holder) #minor adjustment to get formatting working ####### Create Functions ### URLFunction <- function(url){ Sys.sleep(1) read_html(url) %>% html_nodes("#main h1 a") %>% html_attr('href') } HeadlineFunction <- function(url){ Sys.sleep(1) as.character(html_text(html_nodes(read_html(url), '#main h1 a'))) } AuthorFunction <- function(url){ Sys.sleep(1) as.character(html_text(html_nodes(read_html(url),'.story-meta__authors .vcard'))) } DateFunction <- function(url){ Sys.sleep(1) as.character(html_text(html_nodes(read_html(url),'time'))) } TextFunction <- function(url){ Sys.sleep(1) (html_text(html_nodes(read_html(url), '.story-text__paragraph'))) } ##### Scraping ##### PoliticoURL <- sapply(page_holder, URLFunction) #Apply URL Function, will take some time PoliticoURL <- URLFunction(page_holder[1]) # PoliticoHeadline <- sapply(page_holder, HeadlineFunction) #Apply Headline function # PoliticoHeadline <- as.character(PoliticoHeadline) #put into one column PoliticoHeadline <- HeadlineFunction(page_holder[1]) Database <- as.data.frame(cbind(PoliticoHeadline, PoliticoURL)) #if you want to make sure they match up Dates <- rep(NA,length(Database$PoliticoHeadline)) #we are going from actual articles now, so using a loop to deal with formatting errors/lag for(i in 1:length(Dates)){ Dates[i] <- DateFunction(PoliticoURL[i]) print(i) } saveRDS(Dates, "Dates.rds") Author <- rep(NA,length(Database$PoliticoHeadline)) for(i in 1:length(Author)){ Author[i] <- AuthorFunction(PoliticoURL[i]) print(i) } saveRDS(Author, "Author.rds") Database$Date <- Dates Database$Author <- Author ###### Scraping the Text ### setwd("D:/Dropbox/Public/Sean's Stuff/Grad School/Research/Scrape Tutorial/Text") for (i in 1:length(Database$PoliticoURL)){ text_holder <- NA text_holder <- TextFunction(Database$PoliticoURL[i]) output <- paste0(i, ".txt") #create a name for each write.csv(text_holder, output) #saves file rm(text_holder) print(i) } #### Bringing Text Back In ### library(readr) setwd("D:/Dropbox/Public/Sean's Stuff/Grad School/Research/Scrape Tutorial/Text") file_list <- rep(NA, 20) x <- 0 for (i in 1:length(file_list)){ x <- 0 + i file_list[i] <- paste(x, ".txt") #creating list of the file names that we exported } file_list <- gsub(" .txt", ".txt", file_list) for (file in file_list){ if(exists("dataset")){ temp_dataset <- read_file(file) dataset<-rbind(dataset, temp_dataset) rm(temp_dataset) print(file) } if(!exists("dataset")){ dataset <- read_file(file) }} Database$Text <- dataset
rankhospital <- function(state, outcome, num) { ## Read outcome data df <- read.csv("outcome-of-care-measures.csv", colClasses = "character") ## Check that state and outcome are valid if(!state %in% unique(df$State)){ stop("invalid sate") } if(!outcome %in% c("heart attack","heart failure","pneumonia")){ stop("invalid outcome") } ## Return hospital name in that state with the given rank find_rank <- function(x){ df <- df[df[x] != "Not Available",] df <- df[df$State == state,] df[, x] <- as.numeric(df[, x]) df <- df[order(df[x], df$Hospital.Name),"Hospital.Name"] if(num == "best") df[1] else if(num == "worst") df[length(df)] else { if(num > length(df)) NA df[num] } } if(outcome == "heart attack"){ find_rank(11) } else if(outcome == "heart failure"){ find_rank(17) } else if(outcome == "pneumonia"){ find_rank(23) } }
/R_programming_week_4/rankhospital.R
no_license
nsakiotis/R_Repo
R
false
false
943
r
rankhospital <- function(state, outcome, num) { ## Read outcome data df <- read.csv("outcome-of-care-measures.csv", colClasses = "character") ## Check that state and outcome are valid if(!state %in% unique(df$State)){ stop("invalid sate") } if(!outcome %in% c("heart attack","heart failure","pneumonia")){ stop("invalid outcome") } ## Return hospital name in that state with the given rank find_rank <- function(x){ df <- df[df[x] != "Not Available",] df <- df[df$State == state,] df[, x] <- as.numeric(df[, x]) df <- df[order(df[x], df$Hospital.Name),"Hospital.Name"] if(num == "best") df[1] else if(num == "worst") df[length(df)] else { if(num > length(df)) NA df[num] } } if(outcome == "heart attack"){ find_rank(11) } else if(outcome == "heart failure"){ find_rank(17) } else if(outcome == "pneumonia"){ find_rank(23) } }
#' Internal simulation function to generate a matrix to weight the genotypes when estimating d and stickbreaking coefficients #' #' @param geno.matrix Genotype matrix generated in \code{\link{generate.geno.matrix}} #' @param fit.matrix Fitness matrix generated in \code{\link{simulate.stick.data}} #' @param wts Vector of weights to be applied of form c(singletons, multiples). Default \code{wts=c(2,1)}. #' @return weight.matrix #' @details To calculate the likelihood of the data under the stickbreaking model for a given value of d, #' we need to esimate the stickbreaking coefficients. The issue is whether all genotypes in the network provide equally good information #' about the coefficients. The default assumption is that the wild type fitness #' is know without error while all other genotypes have the same error strucutre. Coefficient estimates are based #' on comparing pairs of genotypes: with and without the mutation. Therefore, estimates based on comparing wild type to #' the single mutations (singletons) are expected to have half the variance of all other comparisions (i.e. multiples). This #' function generates the weights matrix that reflects this. To change this assumption, change the \code{wts} parameter. For example, #' if the wild type has the same error as all other genotypes, \code{wts = c(1,1)} would be appropriate. #' @examples Examples here #' @export generate.geno.weight.matrix <- function(geno.matrix, fit.matrix, wts=c(2,1)){ weight.matrix <- matrix(nrow=dim(geno.matrix)[1], ncol=dim(geno.matrix)[2]) wt.row <- which(rowSums(geno.matrix)==0) mult.rows <- which(rowSums(geno.matrix)>1) single.rows <- which(rowSums(geno.matrix)==1) n.muts <- length(geno.matrix[1,]) if (length(wts)==2){ for (geno.i in 1:dim(geno.matrix)[1]){ if (geno.i %in% single.rows){ weight.matrix[geno.i,which(geno.matrix[geno.i,]==1)] <- wts[1] } else if (geno.i %in% mult.rows){ weight.matrix[geno.i,which(geno.matrix[geno.i,]==1)] <- wts[2] } } } else{ # Using wts vector provided geno.sim.strings.h <- apply(geno.matrix, MARGIN=1, FUN=paste, collapse="") mut.i.genos <- apply(geno.matrix, 2, function(x) which(x==1)) if (is.list(mut.i.genos)==FALSE){ mut.i.genos <- as.list(as.data.frame(mut.i.genos)) } for (mut.i in 1:n.muts){ for (geno.i in 1:length(mut.i.genos[[mut.i]])){ # so geno.i is indexing mut.i.genos (not geno.matrix or fit.matrix) #geno.ii <- mut.i.genos[geno.i, mut.i] geno.ii <- mut.i.genos[[mut.i]][geno.i] geno <- geno.matrix[geno.ii,] geno.background <- geno geno.background[mut.i] <- 0 geno.back.string <- paste(geno.background, collapse="") back.id <- which(geno.sim.strings.h==geno.back.string) var.of.diff <- wts[geno.ii] + wts[back.id] weight.of.geno <- 1/var.of.diff weight.matrix[geno.ii, mut.i] <- weight.of.geno } #next geno.i } #next.mut.i } # Normalize columns (mutations) to sum to one for (mut.i in 1:dim(geno.matrix)[2]){ weight.matrix[,mut.i] <- weight.matrix[,mut.i]/sum(weight.matrix[,mut.i], na.rm=T) } return(weight.matrix) }
/R/fnxs_general.R
no_license
crussellmiller/Stickbreaker
R
false
false
3,189
r
#' Internal simulation function to generate a matrix to weight the genotypes when estimating d and stickbreaking coefficients #' #' @param geno.matrix Genotype matrix generated in \code{\link{generate.geno.matrix}} #' @param fit.matrix Fitness matrix generated in \code{\link{simulate.stick.data}} #' @param wts Vector of weights to be applied of form c(singletons, multiples). Default \code{wts=c(2,1)}. #' @return weight.matrix #' @details To calculate the likelihood of the data under the stickbreaking model for a given value of d, #' we need to esimate the stickbreaking coefficients. The issue is whether all genotypes in the network provide equally good information #' about the coefficients. The default assumption is that the wild type fitness #' is know without error while all other genotypes have the same error strucutre. Coefficient estimates are based #' on comparing pairs of genotypes: with and without the mutation. Therefore, estimates based on comparing wild type to #' the single mutations (singletons) are expected to have half the variance of all other comparisions (i.e. multiples). This #' function generates the weights matrix that reflects this. To change this assumption, change the \code{wts} parameter. For example, #' if the wild type has the same error as all other genotypes, \code{wts = c(1,1)} would be appropriate. #' @examples Examples here #' @export generate.geno.weight.matrix <- function(geno.matrix, fit.matrix, wts=c(2,1)){ weight.matrix <- matrix(nrow=dim(geno.matrix)[1], ncol=dim(geno.matrix)[2]) wt.row <- which(rowSums(geno.matrix)==0) mult.rows <- which(rowSums(geno.matrix)>1) single.rows <- which(rowSums(geno.matrix)==1) n.muts <- length(geno.matrix[1,]) if (length(wts)==2){ for (geno.i in 1:dim(geno.matrix)[1]){ if (geno.i %in% single.rows){ weight.matrix[geno.i,which(geno.matrix[geno.i,]==1)] <- wts[1] } else if (geno.i %in% mult.rows){ weight.matrix[geno.i,which(geno.matrix[geno.i,]==1)] <- wts[2] } } } else{ # Using wts vector provided geno.sim.strings.h <- apply(geno.matrix, MARGIN=1, FUN=paste, collapse="") mut.i.genos <- apply(geno.matrix, 2, function(x) which(x==1)) if (is.list(mut.i.genos)==FALSE){ mut.i.genos <- as.list(as.data.frame(mut.i.genos)) } for (mut.i in 1:n.muts){ for (geno.i in 1:length(mut.i.genos[[mut.i]])){ # so geno.i is indexing mut.i.genos (not geno.matrix or fit.matrix) #geno.ii <- mut.i.genos[geno.i, mut.i] geno.ii <- mut.i.genos[[mut.i]][geno.i] geno <- geno.matrix[geno.ii,] geno.background <- geno geno.background[mut.i] <- 0 geno.back.string <- paste(geno.background, collapse="") back.id <- which(geno.sim.strings.h==geno.back.string) var.of.diff <- wts[geno.ii] + wts[back.id] weight.of.geno <- 1/var.of.diff weight.matrix[geno.ii, mut.i] <- weight.of.geno } #next geno.i } #next.mut.i } # Normalize columns (mutations) to sum to one for (mut.i in 1:dim(geno.matrix)[2]){ weight.matrix[,mut.i] <- weight.matrix[,mut.i]/sum(weight.matrix[,mut.i], na.rm=T) } return(weight.matrix) }
estimateComplex_2x2 <- function(x, ...) { UseMethod("estimateComplex_2x2") } estimateComplex_2x2.numeric <- function(means = c(NULL), sds = c(NULL), ns = c(NULL), alabels = c("A1", "A2"), blabels = c("B1", "B2"), aname = "A", bname = "B", conf.level = .95) { # Setup 5 common contrasts for a 2x2 design contrast1 <- c(-1/2, -1/2, 1/2, 1/2) contrast2 <- c(-1/2, 1/2, -1/2, 1/2) contrast3 <- c(1, -1, -1, 1) contrast4 <- c(-1, 1, 0, 0) contrast5 <- c(0,0,-1, 1) myconstrasts <- list(contrast1, contrast2, contrast3, contrast4, contrast5) # Check if variable labels have been passed, otherwise set to generic A*B labels if(is.null(alabels)) { alabels <- c("A1", "A2") } if(is.null(blabels)) { blabels <- c("B1", "B2") } if(is.null(aname)) { aname <- "A" } if(is.null(bname)) { bname <- "B" } # Make cross labels for each cell labels <- paste(rep(alabels, each = length(blabels)), blabels, sep = "\n") celllabels <- paste(rep(alabels, each = length(blabels)), blabels, sep = ".") # Now make labels for each of the main contrasts clabel1 <- c(alabels[2], alabels[1], paste("Main effect\n of ", aname, ":\n(", alabels[2], " - ", alabels[1], ")", sep = "")) clabel2 <- c(blabels[2], blabels[1], paste("Main effect\n of ", bname, ":\n(", blabels[2], " - ", blabels[1], ")", sep = "")) clabel3 <- c("G2", "G1", paste("Interaction\n of ", aname, " and ", bname, ":\n(", celllabels[4], " - ", celllabels[3], ") - (", celllabels[2], " - ", celllabels[1], ")", sep = "" ) ) clabel4 <- c(labels[2], labels[1], paste("Simple effect:\n(", blabels[2], " - ", blabels[1], ")\n at ", alabels[1], sep="")) clabel5 <- c(labels[4], labels[3], paste("Simple effect:\n(", blabels[2], " - ", blabels[1], ")\n at ", alabels[2], sep="")) clabels <- list(clabel1, clabel2, clabel3, clabel4, clabel5) # Use estimate contrasts to obtain estimate for each contrast estimate <- estimateContrasts.numeric(means, sds, ns, myconstrasts, labels, clabels, conf.level = conf.level) # Stitch together the interaction contrast--we will copy each simple effect in estimate$contrast_table[7, ] <- estimate$contrast_table[15, ] estimate$contrast_table[8, ] <- estimate$contrast_table[12, ] estimate$contrast_table[7, "contrast_number"] <- 3 estimate$contrast_table[8, "contrast_number"] <- 3 # Fix the labels in the contrast table to remove line breaks levels(estimate$contrast_table$label) <- gsub("\n", "", levels(estimate$contrast_table$label)) levels(estimate$means_table$label) <- gsub("\n", "", levels(estimate$means_table$label)) # Fix the interaction plot estimate$plot_table <- estimate$plot_table[!(estimate$plot_table$contrast_number == 3 & estimate$plot_table$plot_labels != "Difference"), ] estimate$plot_table[estimate$plot_table$contrast_number == 3, ]$plot_labels <- "Interaction" estimate$plot_table[estimate$plot_table$contrast_number == 3, ]$x <- 5.5 estimate$error_table <- estimate$error_table[!(estimate$error_table$contrast_number == 3 & estimate$error_table$label != "Difference"), ] estimate$error_table[estimate$error_table$contrast_number == 3, ]$label <- "Interaction" estimate$error_table[estimate$error_table$contrast_number == 3, ]$x <- 5.5 #Fix the incorrect offset of the error table wrong_offset <- mean(means[which(contrast3 > 0)]) estimate$error_table[estimate$error_table$contrast_number == 3, ]$m <- estimate$error_table[estimate$error_table$contrast_number == 3, ]$m - wrong_offset + means[4] return(estimate) } estimateComplex_2x2.default <- function(data, dv, iv1, iv2, conf.level = .95) { # Initialization --------------------------- # Create quosures and quonames. # Stolen directly from dabestr dv_enquo <- rlang::enquo(dv) dv_quoname <- rlang::quo_name(dv_enquo) iv1_enquo <- rlang::enquo(iv1) iv1_quoname <- rlang::quo_name(iv1_enquo) iv2_enquo <- rlang::enquo(iv2) iv2_quoname <- rlang::quo_name(iv2_enquo) # Validate inputs --------------------------- # check CI. if (conf.level < 0.50 | conf.level >= 1) { err_string <- stringr::str_interp( "`conf.level` must be between 0.50 and 1, not ${conf.level}" ) stop(err_string) } # Check data is a dataframe if(!is.data.frame(data)) { err_string <- stringr::str_interp( "`data` must be a data frame, not ${class(data)}" ) stop(err_string) } #Check data has more than 8 rows if(nrow(data)<8) { err_string <- stringr::str_interp( "`data` must have more than 7 rows, not ${nrow(data)}" ) stop(err_string) } #Check that dv column exists if(dv_quoname %in% colnames(data)) { } else { err_string <- stringr::str_interp( "Must pass a column name that exists, not ${dv_quoname}" ) stop(err_string) } #Check that iv1 column exists if(iv1_quoname %in% colnames(data)) { } else { err_string <- stringr::str_interp( "Must pass a column name that exists, not ${iv1_quoname}" ) stop(err_string) } #Check that iv1 column exists if(iv2_quoname %in% colnames(data)) { } else { err_string <- stringr::str_interp( "Must pass a column name that exists, not ${iv2_quoname}" ) stop(err_string) } # Check if dv is numeric if(!is.numeric(data[[dv_quoname]])) { err_string <- stringr::str_interp( "dv (${dv_quoname}) must be numeric, not ${class(data[[dv_quoname]])}. Try making a numeric colum with as.numeric" ) stop(err_string) } # Data cleanup --------------------------- # Make duplicate copies that can be addressed using $ notation..cause I like it? data$iv1 <- data[[iv1_quoname]] data$iv2 <- data[[iv2_quoname]] data$dv <- data[[dv_quoname]] # Reduce down to only the iv and dv columns. Since we're passing this data back, best to limit its size, I think keeps <- c("iv1", "iv2", "dv") data <- data[keeps] # Now remove NAs from data data <- data[!is.na(data$dv), ] data <- data[!is.na(data$iv1), ] data <- data[!is.na(data$iv2), ] data$x <- 0 #Now get summary data by group means <- c(NULL) sds <- c(NULL) ns <- c(NULL) labels <- c(NULL) this_index <- 0 for (this_group in levels(data$iv1)) { for(that_group in levels(data$iv2)) { group_only <- data[data$iv1 == this_group & data$iv2 == that_group, ] if (nrow(group_only) > 0) { this_index <- this_index + 1 data[data$iv1 == this_group & data$iv2 == that_group, ]$x <- this_index-0.5 means[this_index] <- mean(group_only$dv) sds[this_index] <- sd(group_only$dv) ns[this_index] <- nrow(group_only) labels[this_index] <- this_group } } } ### Now pass along to summary data version res <- estimateComplex_2x2.numeric(means = means,sds = sds, ns = ns, alabels = levels(data$iv1), blabels = levels(data$iv2), aname = iv1_quoname, bname = iv2_quoname, conf.level = conf.level ) data$cell_labels <- as.factor(paste(data$iv1, data$iv2, sep=".")) contrast_count <- 0 for (contrast in res$contrasts) { contrast_count <- contrast_count + 1 contrast_column <- paste("contrast", contrast_count) data[data$cell_labels %in% levels(data$cell_labels)[which(contrast > 0)], contrast_column] <- "G1" data[data$cell_labels %in% levels(data$cell_labels)[which(contrast < 0)], contrast_column] <- "G2" data[data$cell_labels %in% levels(data$cell_labels)[which(contrast == 0)], contrast_column] <- "Unused" } res$raw_data <- data ### Prepare for return return(res) } ## Raw data test # testd <- data.frame(duration = c(rep("morning", 100), rep("evening", 100)), # activity = c(rep("Sleep", 50), rep("Wake", 50), rep("Sleep", 50), rep("Wake", 50)), # memory = c(rnorm(n = 50, mean= 1.5, sd = 1.38), rnorm(n = 50, mean= 1.14, sd = 0.96), rnorm(n = 50, mean= 1.38, sd = 1.5), rnorm(n = 50, mean= 2.22, sd = 1.68)) # ) # # estimate <- estimateComplex_2x2(testd, memory, duration, activity) # myplot <- plotContrast(estimate, contrast_number = 3) # myplot ### # # Temp assignments for debugging # means <- c(1.5, 1.14, 1.38, 2.22) # sds <- c(1.38, 0.96, 1.5, 1.68) # ns <- c(26, 26, 25, 26) # alabels <- c("Evening", "Morning") # blabels <- c("Sleep", "No Sleep") # aname <- "Time" # bname <- "Activity" # conf.level = .95 # # estimate <- estimateComplex_2x2(means, sds, ns, alabels, blabels, aname, bname) # # myplot <- plotContrast(estimate, contrast_number = 2, ylab = "Memory Score") # myplot
/R/estimateInteraction.R
no_license
MelinaPB/esci
R
false
false
9,358
r
estimateComplex_2x2 <- function(x, ...) { UseMethod("estimateComplex_2x2") } estimateComplex_2x2.numeric <- function(means = c(NULL), sds = c(NULL), ns = c(NULL), alabels = c("A1", "A2"), blabels = c("B1", "B2"), aname = "A", bname = "B", conf.level = .95) { # Setup 5 common contrasts for a 2x2 design contrast1 <- c(-1/2, -1/2, 1/2, 1/2) contrast2 <- c(-1/2, 1/2, -1/2, 1/2) contrast3 <- c(1, -1, -1, 1) contrast4 <- c(-1, 1, 0, 0) contrast5 <- c(0,0,-1, 1) myconstrasts <- list(contrast1, contrast2, contrast3, contrast4, contrast5) # Check if variable labels have been passed, otherwise set to generic A*B labels if(is.null(alabels)) { alabels <- c("A1", "A2") } if(is.null(blabels)) { blabels <- c("B1", "B2") } if(is.null(aname)) { aname <- "A" } if(is.null(bname)) { bname <- "B" } # Make cross labels for each cell labels <- paste(rep(alabels, each = length(blabels)), blabels, sep = "\n") celllabels <- paste(rep(alabels, each = length(blabels)), blabels, sep = ".") # Now make labels for each of the main contrasts clabel1 <- c(alabels[2], alabels[1], paste("Main effect\n of ", aname, ":\n(", alabels[2], " - ", alabels[1], ")", sep = "")) clabel2 <- c(blabels[2], blabels[1], paste("Main effect\n of ", bname, ":\n(", blabels[2], " - ", blabels[1], ")", sep = "")) clabel3 <- c("G2", "G1", paste("Interaction\n of ", aname, " and ", bname, ":\n(", celllabels[4], " - ", celllabels[3], ") - (", celllabels[2], " - ", celllabels[1], ")", sep = "" ) ) clabel4 <- c(labels[2], labels[1], paste("Simple effect:\n(", blabels[2], " - ", blabels[1], ")\n at ", alabels[1], sep="")) clabel5 <- c(labels[4], labels[3], paste("Simple effect:\n(", blabels[2], " - ", blabels[1], ")\n at ", alabels[2], sep="")) clabels <- list(clabel1, clabel2, clabel3, clabel4, clabel5) # Use estimate contrasts to obtain estimate for each contrast estimate <- estimateContrasts.numeric(means, sds, ns, myconstrasts, labels, clabels, conf.level = conf.level) # Stitch together the interaction contrast--we will copy each simple effect in estimate$contrast_table[7, ] <- estimate$contrast_table[15, ] estimate$contrast_table[8, ] <- estimate$contrast_table[12, ] estimate$contrast_table[7, "contrast_number"] <- 3 estimate$contrast_table[8, "contrast_number"] <- 3 # Fix the labels in the contrast table to remove line breaks levels(estimate$contrast_table$label) <- gsub("\n", "", levels(estimate$contrast_table$label)) levels(estimate$means_table$label) <- gsub("\n", "", levels(estimate$means_table$label)) # Fix the interaction plot estimate$plot_table <- estimate$plot_table[!(estimate$plot_table$contrast_number == 3 & estimate$plot_table$plot_labels != "Difference"), ] estimate$plot_table[estimate$plot_table$contrast_number == 3, ]$plot_labels <- "Interaction" estimate$plot_table[estimate$plot_table$contrast_number == 3, ]$x <- 5.5 estimate$error_table <- estimate$error_table[!(estimate$error_table$contrast_number == 3 & estimate$error_table$label != "Difference"), ] estimate$error_table[estimate$error_table$contrast_number == 3, ]$label <- "Interaction" estimate$error_table[estimate$error_table$contrast_number == 3, ]$x <- 5.5 #Fix the incorrect offset of the error table wrong_offset <- mean(means[which(contrast3 > 0)]) estimate$error_table[estimate$error_table$contrast_number == 3, ]$m <- estimate$error_table[estimate$error_table$contrast_number == 3, ]$m - wrong_offset + means[4] return(estimate) } estimateComplex_2x2.default <- function(data, dv, iv1, iv2, conf.level = .95) { # Initialization --------------------------- # Create quosures and quonames. # Stolen directly from dabestr dv_enquo <- rlang::enquo(dv) dv_quoname <- rlang::quo_name(dv_enquo) iv1_enquo <- rlang::enquo(iv1) iv1_quoname <- rlang::quo_name(iv1_enquo) iv2_enquo <- rlang::enquo(iv2) iv2_quoname <- rlang::quo_name(iv2_enquo) # Validate inputs --------------------------- # check CI. if (conf.level < 0.50 | conf.level >= 1) { err_string <- stringr::str_interp( "`conf.level` must be between 0.50 and 1, not ${conf.level}" ) stop(err_string) } # Check data is a dataframe if(!is.data.frame(data)) { err_string <- stringr::str_interp( "`data` must be a data frame, not ${class(data)}" ) stop(err_string) } #Check data has more than 8 rows if(nrow(data)<8) { err_string <- stringr::str_interp( "`data` must have more than 7 rows, not ${nrow(data)}" ) stop(err_string) } #Check that dv column exists if(dv_quoname %in% colnames(data)) { } else { err_string <- stringr::str_interp( "Must pass a column name that exists, not ${dv_quoname}" ) stop(err_string) } #Check that iv1 column exists if(iv1_quoname %in% colnames(data)) { } else { err_string <- stringr::str_interp( "Must pass a column name that exists, not ${iv1_quoname}" ) stop(err_string) } #Check that iv1 column exists if(iv2_quoname %in% colnames(data)) { } else { err_string <- stringr::str_interp( "Must pass a column name that exists, not ${iv2_quoname}" ) stop(err_string) } # Check if dv is numeric if(!is.numeric(data[[dv_quoname]])) { err_string <- stringr::str_interp( "dv (${dv_quoname}) must be numeric, not ${class(data[[dv_quoname]])}. Try making a numeric colum with as.numeric" ) stop(err_string) } # Data cleanup --------------------------- # Make duplicate copies that can be addressed using $ notation..cause I like it? data$iv1 <- data[[iv1_quoname]] data$iv2 <- data[[iv2_quoname]] data$dv <- data[[dv_quoname]] # Reduce down to only the iv and dv columns. Since we're passing this data back, best to limit its size, I think keeps <- c("iv1", "iv2", "dv") data <- data[keeps] # Now remove NAs from data data <- data[!is.na(data$dv), ] data <- data[!is.na(data$iv1), ] data <- data[!is.na(data$iv2), ] data$x <- 0 #Now get summary data by group means <- c(NULL) sds <- c(NULL) ns <- c(NULL) labels <- c(NULL) this_index <- 0 for (this_group in levels(data$iv1)) { for(that_group in levels(data$iv2)) { group_only <- data[data$iv1 == this_group & data$iv2 == that_group, ] if (nrow(group_only) > 0) { this_index <- this_index + 1 data[data$iv1 == this_group & data$iv2 == that_group, ]$x <- this_index-0.5 means[this_index] <- mean(group_only$dv) sds[this_index] <- sd(group_only$dv) ns[this_index] <- nrow(group_only) labels[this_index] <- this_group } } } ### Now pass along to summary data version res <- estimateComplex_2x2.numeric(means = means,sds = sds, ns = ns, alabels = levels(data$iv1), blabels = levels(data$iv2), aname = iv1_quoname, bname = iv2_quoname, conf.level = conf.level ) data$cell_labels <- as.factor(paste(data$iv1, data$iv2, sep=".")) contrast_count <- 0 for (contrast in res$contrasts) { contrast_count <- contrast_count + 1 contrast_column <- paste("contrast", contrast_count) data[data$cell_labels %in% levels(data$cell_labels)[which(contrast > 0)], contrast_column] <- "G1" data[data$cell_labels %in% levels(data$cell_labels)[which(contrast < 0)], contrast_column] <- "G2" data[data$cell_labels %in% levels(data$cell_labels)[which(contrast == 0)], contrast_column] <- "Unused" } res$raw_data <- data ### Prepare for return return(res) } ## Raw data test # testd <- data.frame(duration = c(rep("morning", 100), rep("evening", 100)), # activity = c(rep("Sleep", 50), rep("Wake", 50), rep("Sleep", 50), rep("Wake", 50)), # memory = c(rnorm(n = 50, mean= 1.5, sd = 1.38), rnorm(n = 50, mean= 1.14, sd = 0.96), rnorm(n = 50, mean= 1.38, sd = 1.5), rnorm(n = 50, mean= 2.22, sd = 1.68)) # ) # # estimate <- estimateComplex_2x2(testd, memory, duration, activity) # myplot <- plotContrast(estimate, contrast_number = 3) # myplot ### # # Temp assignments for debugging # means <- c(1.5, 1.14, 1.38, 2.22) # sds <- c(1.38, 0.96, 1.5, 1.68) # ns <- c(26, 26, 25, 26) # alabels <- c("Evening", "Morning") # blabels <- c("Sleep", "No Sleep") # aname <- "Time" # bname <- "Activity" # conf.level = .95 # # estimate <- estimateComplex_2x2(means, sds, ns, alabels, blabels, aname, bname) # # myplot <- plotContrast(estimate, contrast_number = 2, ylab = "Memory Score") # myplot
# this script plots the PR counties and will eventually add the ARIA dammage points for Hurriacane Maria print("starting") # first, add some libraries library(sp) library(raster) library(rgdal) library(maptools) # partial path to the ARIA data path_vec_east <- c("20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_04_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_05_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_06_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_07_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_08_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_05_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_06_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_07_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_08_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_09_c0.7g1_T1H0B0U1_dpm.tif") path_vec_west <- c("20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_01_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_02_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_03_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_04_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_01_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_02_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_03_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_04_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_10_c0.6g1_T1H0B0U1_dpm.tif") path_vec_all <- c(path_vec_east, path_vec_west) # open the shapefile of county boundaries PR_counties <- readOGR(dsn="/Users/mschwall/Desktop/hurricane_maria/nhgis0042_shapefile_tl2016_us_county_2016", layer="US_county_2016") # ingest the shapefile lat_lon_projection <- CRS("+proj=longlat +datum=WGS84") # the basic geographic lat,lon projections PR_counties_latlon <- spTransform(PR_counties, lat_lon_projection) # convert the nhgis0042_shapefile_tl2016_us_county_2016 projection to geographic lat,lon plot(PR_counties_latlon, xlim=c(-67.5, -64.5), ylim=c(17.5, 18.5 ), xlab="longitude degrees", ylab="latitude degrees") box() # put a box around the plot axis(1) # and add the axis ticks axis(2) # now open each of the geotiffs (there are 10 for the eastern part & 9 for the western part) and plot their points on the map use_this_vec <- path_vec_all num_tifs <- length(use_this_vec) for (ii in 1:num_tifs) { print(c("starting iteration", ii)) tiff_name <- paste("/Users/mschwall/Desktop/hurricane_maria/", use_this_vec[ii], sep="") # open 4th band of the tiff as a raster because I found that this band has the largest number of hits that I'm guessing are equivalent to Maria damage hotspots PR_tiff1 <- raster(tiff_name, band=2) crs(PR_tiff1) <- lat_lon_projection # use the same projections for the raster PR_data <- rasterToPoints(PR_tiff1) # convert the raster to a lon,lat,value matrix points(PR_data[which(PR_data[,3] < 255),1], PR_data[which(PR_data[,3] < 255),2], pch=19, col = rgb(red=1, green=0, blue=0, alpha=0.5), cex=0.01) # plot the location of the points with values > 0 }
/ARIA_hurricane_maria_analysis_v3.R
no_license
mschwaller/R_code
R
false
false
3,861
r
# this script plots the PR counties and will eventually add the ARIA dammage points for Hurriacane Maria print("starting") # first, add some libraries library(sp) library(raster) library(rgdal) library(maptools) # partial path to the ARIA data path_vec_east <- c("20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_04_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_05_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_06_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_07_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s2_08_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_05_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_06_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_07_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_08_c0.7g1_T1H0B0U1_dpm.tif","20170921_1014z_PuertoRico_S1_DPM_NASA_ARIA_v0.4_geotiff/DPM_Maria_S1_s3_09_c0.7g1_T1H0B0U1_dpm.tif") path_vec_west <- c("20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_01_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_02_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_03_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s1_04_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_01_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_02_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_03_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_04_c0.6g1_T1H0B0U1_dpm.tif","20170926_1023z_PuertoRicoWest_S1_DPM_NASA_ARIA_v0.5_geotiff/DPM_Maria_S1_s2_10_c0.6g1_T1H0B0U1_dpm.tif") path_vec_all <- c(path_vec_east, path_vec_west) # open the shapefile of county boundaries PR_counties <- readOGR(dsn="/Users/mschwall/Desktop/hurricane_maria/nhgis0042_shapefile_tl2016_us_county_2016", layer="US_county_2016") # ingest the shapefile lat_lon_projection <- CRS("+proj=longlat +datum=WGS84") # the basic geographic lat,lon projections PR_counties_latlon <- spTransform(PR_counties, lat_lon_projection) # convert the nhgis0042_shapefile_tl2016_us_county_2016 projection to geographic lat,lon plot(PR_counties_latlon, xlim=c(-67.5, -64.5), ylim=c(17.5, 18.5 ), xlab="longitude degrees", ylab="latitude degrees") box() # put a box around the plot axis(1) # and add the axis ticks axis(2) # now open each of the geotiffs (there are 10 for the eastern part & 9 for the western part) and plot their points on the map use_this_vec <- path_vec_all num_tifs <- length(use_this_vec) for (ii in 1:num_tifs) { print(c("starting iteration", ii)) tiff_name <- paste("/Users/mschwall/Desktop/hurricane_maria/", use_this_vec[ii], sep="") # open 4th band of the tiff as a raster because I found that this band has the largest number of hits that I'm guessing are equivalent to Maria damage hotspots PR_tiff1 <- raster(tiff_name, band=2) crs(PR_tiff1) <- lat_lon_projection # use the same projections for the raster PR_data <- rasterToPoints(PR_tiff1) # convert the raster to a lon,lat,value matrix points(PR_data[which(PR_data[,3] < 255),1], PR_data[which(PR_data[,3] < 255),2], pch=19, col = rgb(red=1, green=0, blue=0, alpha=0.5), cex=0.01) # plot the location of the points with values > 0 }
# prior distribution for theta #' Prior distribution for time-to-event outcomes #' #' If we do not assume the treatment effects to be fixed, i.e. `fixed = FALSE`, #' the function `prior_tte` allows us to model the treatment effect following a prior distribution. #' For more details concerning the definition of a prior distribution, see the \href{https://sterniii3.github.io/drugdevelopR/articles/Introduction-to-drugdevelopR.html}{vignette on priors} #' as well as the \href{https://web.imbi.uni-heidelberg.de/prior/}{Shiny app}. #' #' @param x integration variable #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @return The output of the functions `Epgo_tte()` is the expected number of participants in phase III with conservative decision rule and sample size calculation. #' @examples res <- prior_tte(x = 0.5, w = 0.5, hr1 = 0.69, hr2 = 0.88, id1 = 240, id2 = 420) #' @export #' @keywords internal prior_tte<-function(x, w, hr1, hr2, id1, id2){ w * dnorm(x, -log(hr1), sqrt(4/id1)) + (1 - w) * dnorm(x, -log(hr2), sqrt(4/id2)) } # 10000 realizations of the prior distribution box_tte<-function(w, hr1, hr2, id1, id2){ w * rnorm(1000000, -log(hr1),sqrt(4/id1)) + (1 - w) * rnorm(1000000, -log(hr2), sqrt(4/id2)) } # expected probability to go to phase III #' Expected probability to go to phase III for time-to-event outcomes #' #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total number of events for phase II; must be even number #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the functions `Epgo_tte()` is the expected probability to go to phase III. #' @examples res <- Epgo_tte(HRgo = 0.8, d2 = 50, #' w = 0.3, hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, fixed = FALSE) #' @export #' @keywords internal Epgo_tte <- function(HRgo, d2, w, hr1, hr2, id1, id2, fixed){ if(!fixed){ return( integrate(function(x){ sapply(x, function(x){ pnorm((log(HRgo) + x)/sqrt(4/d2))* prior_tte(x, w, hr1, hr2, id1, id2) }) }, - Inf, Inf)$value ) }else{ return( pnorm((log(HRgo) - log(hr1))/sqrt(4/d2)) ) } } # expected number of events for phase III # in before phase II perspective #' Expected sample size for phase III for time-to-event outcomes #' #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total events for phase II; must be even number #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the the functions `Ed3_tte` is the expected number of events in phase III. #' @examples res <- Ed3_tte(HRgo = 0.8, d2 = 50, #' alpha = 0.025, beta = 0.1, w = 0.3, #' hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, fixed = FALSE) #' @export #' @keywords internal Ed3_tte <- function(HRgo, d2, alpha, beta, w, hr1, hr2, id1, id2, fixed){ if(!fixed){ return( integrate(function(x){ sapply(x, function(x){ integrate(function(y){ ((4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(y^2))* dnorm(y, mean = x, sd = sqrt(4/d2))* prior_tte(x, w, hr1, hr2, id1, id2) }, -log(HRgo), Inf)$value }) }, - Inf, Inf)$value ) }else{ return( integrate(function(y){ ((4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(y^2))* dnorm(y, mean = -log(hr1), sd = sqrt(4/d2)) }, -log(HRgo), Inf)$value ) } } # expected probability of a successful program #' Expected probability of a successful program for time-to-event outcomes #' #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total events for phase II; must be even number #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param step1 lower boundary for effect size #' @param step2 upper boundary for effect size #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param gamma difference in treatment effect due to different population structures in phase II and III #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the functions `EPsProg_tte()` is the expected probability of a successful program. #' @examples res <- EPsProg_tte(HRgo = 0.8, d2 = 50, #' alpha = 0.025, beta = 0.1, #' step1 = 1, step2 = 0.95, #' w = 0.3, hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, #' gamma = 0, fixed = FALSE) #' @export #' @keywords internal EPsProg_tte <- function(HRgo, d2, alpha, beta, step1, step2, w, hr1, hr2, id1, id2, gamma, fixed){ c = (qnorm(1 - alpha) + qnorm(1 - beta))^2 if(!fixed){ return( integrate(function(x){ sapply(x, function(x){ integrate(function(y){ (pnorm(qnorm(1-alpha)-log(step2)/(sqrt(y^2/c)), mean = (x+gamma)/(sqrt(y^2/c)), sd = 1) - pnorm(qnorm(1-alpha)-log(step1)/(sqrt(y^2/c)), mean = (x+gamma)/(sqrt(y^2/c)), sd = 1) )* dnorm(y, mean = x, sd = sqrt(4/d2))* prior_tte(x, w, hr1, hr2, id1, id2) }, -log(HRgo), Inf)$value }) }, - Inf, Inf)$value ) }else{ return( integrate(function(y){ (pnorm(qnorm(1-alpha)-log(step2)/(sqrt(y^2/c)), mean = (-log(hr1)+gamma)/(sqrt(y^2/c)), sd = 1) - pnorm(qnorm(1-alpha)-log(step1)/(sqrt(y^2/c)), mean = (-log(hr1)+gamma)/(sqrt(y^2/c)), sd = 1))* dnorm(y, mean = -log(hr1), sd = sqrt(4/d2)) }, - log(HRgo), Inf)$value ) } } # utility function #' Utility function for time-to-event outcomes. #' #' The utility function calculates the expected utility of our drug development program and is given as gains minus costs and depends on the parameters and the expected probability of a successful program. #' The utility is in a further step maximized by the `optimal_tte()` function. #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total events for phase II; must be even number #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param xi2 event rate for phase II #' @param xi3 event rate for phase III #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param c2 variable per-patient cost for phase II #' @param c3 variable per-patient cost for phase III #' @param c02 fixed cost for phase II #' @param c03 fixed cost for phase III #' @param K constraint on the costs of the program, default: Inf, e.g. no constraint #' @param N constraint on the total expected sample size of the program, default: Inf, e.g. no constraint #' @param S constraint on the expected probability of a successful program, default: -Inf, e.g. no constraint #' @param steps1 lower boundary for effect size category `"small"` in RR scale, default: 1 #' @param stepm1 lower boundary for effect size category `"medium"` in RR scale = upper boundary for effect size category "small" in RR scale, default: 0.95 #' @param stepl1 lower boundary for effect size category `"large"` in RR scale = upper boundary for effect size category "medium" in RR scale, default: 0.85 #' @param b1 expected gain for effect size category `"small"` #' @param b2 expected gain for effect size category `"medium"` #' @param b3 expected gain for effect size category `"large"` #' @param gamma difference in treatment effect due to different population structures in phase II and III #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the functions `utility_tte()` is the expected utility of the program. #' @examples res <- utility_tte(d2 = 50, HRgo = 0.8, w = 0.3, #' hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, xi2 = 0.7, xi3 = 0.7, #' alpha = 0.025, beta = 0.1, #' c2 = 0.75, c3 = 1, c02 = 100, c03 = 150, #' K = Inf, N = Inf, S = -Inf, #' steps1 = 1, stepm1 = 0.95, stepl1 = 0.85, #' b1 = 1000, b2 = 2000, b3 = 3000, #' gamma = 0, fixed = TRUE) #' @export #' @keywords internal utility_tte <- function(d2, HRgo, w, hr1, hr2, id1, id2, alpha, beta, xi2, xi3, c2, c3, c02, c03, K, N, S, steps1, stepm1, stepl1, b1, b2, b3, gamma, fixed){ steps2 <- stepm1 stepm2 <- stepl1 stepl2 <- 0 d3 <- Ed3_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, fixed = fixed) # sample size is rounded up to next even natural number n2 <- ceiling(d2*(1/xi2)) if(round(n2/2) != n2 / 2) {n2 <- n2 + 1} n3 <- ceiling(d3 * (1/xi3)) if(round(n3/2) != n3 / 2) {n3 <- n3 + 1} # expected number of events is rounded to natural number d3 <- ceiling(d3) if(n2+n3>N){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ pg <- Epgo_tte(HRgo = HRgo, d2 = d2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, fixed = fixed) K2 <- c02 + c2 * n2 # cost phase II K3 <- c03 * pg + c3 * n3 # cost phase III if(K2+K3>K){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ # probability of a successful program: # small, medium and large effect size prob1 <- EPsProg_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, step1 = steps1, step2 = steps2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob2 <- EPsProg_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, step1 = stepm1, step2 = stepm2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob3 <- EPsProg_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, step1 = stepl1, step2 = stepl2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) SP <- prob1 + prob2 + prob3 if(SP<S){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ G <- b1 * prob1 + b2 * prob2 + b3 * prob3 EU <- - K2 - K3 + G return( c(EU, d3, SP, pg, K2, K3, prob1, prob2, prob3, n2, n3) ) } } } } ################# # skip phase II # ################# # number of events for phase III based on median_prior #' Expected probability to go to phase III for time-to-event outcomes #' #' If choosing `skipII = TRUE`, the program calculates the expected utility for the case when phase #' II is skipped and compares it to the situation when phase II is not skipped. #' This function calculates the expected sample size for phase III for time-to-event outcomes using a median prior. #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param median_prior the median_prior is given as -log(hr1), the assumed true treatment effect #' @return The output of the functions `d3_skipII_tte()` is the expected number of events in phase III when skipping phase II. #' @examples res <- d3_skipII_tte(alpha = 0.05, beta = 0.1, median_prior = 0.35) #' @export #' @keywords internal d3_skipII_tte <-function(alpha, beta, median_prior){ return( (4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(median_prior^2) ) } # expected probability of a successful program # based on median_prior EPsProg_skipII_tte <-function(alpha, beta, step1, step2, median_prior, w, hr1, hr2, id1, id2, gamma, fixed){ c=(qnorm(1-alpha)+qnorm(1-beta))^2 if(!fixed){ return( integrate(function(x){ sapply(x,function(x){ (pnorm(qnorm(1-alpha)- log(step2)/(sqrt(median_prior^2/c)), mean=(x+gamma)/(sqrt(median_prior^2/c)), sd=1)- pnorm(qnorm(1-alpha)- log(step1)/(sqrt(median_prior^2/c)), mean=(x+gamma)/(sqrt(median_prior^2/c)), sd=1))* prior_tte(x, w, hr1, hr2, id1, id2) }) }, -Inf, Inf)$value ) }else{ return( pnorm(qnorm(1-alpha)- log(step2)/(sqrt(median_prior^2/c)), mean=(-log(hr1)+gamma)/(sqrt(median_prior^2/c)), sd=1)- pnorm(qnorm(1-alpha)- log(step1)/(sqrt(median_prior^2/c)), mean=(-log(hr1)+gamma)/(sqrt(median_prior^2/c)), sd=1) ) } } #utility function utility_skipII_tte <-function(alpha, beta, xi3, c03, c3, b1, b2, b3, median_prior, K, N, S, steps1, stepm1, stepl1, w, hr1, hr2, id1, id2, gamma, fixed){ steps2 <- stepm1 stepm2 <- stepl1 stepl2 <- 0 d3 <- d3_skipII_tte(alpha = alpha, beta = beta, median_prior = median_prior) n3 <- ceiling(d3*(1/xi3)) if(round(n3/2) != n3 / 2) {n3 = n3 + 1} d3 <- ceiling(d3) if(n3>N){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ K2 <- 0 K3 <- c03 + c3*n3 if(K2+K3>K){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ # probability of a successful program: # small, medium, large effect size prob1 <- EPsProg_skipII_tte(alpha = alpha, beta = beta, step1 = steps1, step2 = steps2, median_prior = median_prior, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob2 <- EPsProg_skipII_tte(alpha = alpha, beta = beta, step1 = stepm1, step2 = stepm2, median_prior = median_prior, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob3 <- EPsProg_skipII_tte(alpha = alpha, beta = beta, step1 = stepl1, step2 = stepl2, median_prior = median_prior, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) SP <- prob1 + prob2 + prob3 if(SP<S){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ G <- b1 * prob1 + b2 * prob2 + b3 * prob3 EU <- - K2 - K3 + G return( c(EU, d3, n3, SP, K3, prob1, prob2, prob3) ) } } } }
/R/functions_tte.R
permissive
Sterniii3/drugdevelopR
R
false
false
18,523
r
# prior distribution for theta #' Prior distribution for time-to-event outcomes #' #' If we do not assume the treatment effects to be fixed, i.e. `fixed = FALSE`, #' the function `prior_tte` allows us to model the treatment effect following a prior distribution. #' For more details concerning the definition of a prior distribution, see the \href{https://sterniii3.github.io/drugdevelopR/articles/Introduction-to-drugdevelopR.html}{vignette on priors} #' as well as the \href{https://web.imbi.uni-heidelberg.de/prior/}{Shiny app}. #' #' @param x integration variable #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @return The output of the functions `Epgo_tte()` is the expected number of participants in phase III with conservative decision rule and sample size calculation. #' @examples res <- prior_tte(x = 0.5, w = 0.5, hr1 = 0.69, hr2 = 0.88, id1 = 240, id2 = 420) #' @export #' @keywords internal prior_tte<-function(x, w, hr1, hr2, id1, id2){ w * dnorm(x, -log(hr1), sqrt(4/id1)) + (1 - w) * dnorm(x, -log(hr2), sqrt(4/id2)) } # 10000 realizations of the prior distribution box_tte<-function(w, hr1, hr2, id1, id2){ w * rnorm(1000000, -log(hr1),sqrt(4/id1)) + (1 - w) * rnorm(1000000, -log(hr2), sqrt(4/id2)) } # expected probability to go to phase III #' Expected probability to go to phase III for time-to-event outcomes #' #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total number of events for phase II; must be even number #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the functions `Epgo_tte()` is the expected probability to go to phase III. #' @examples res <- Epgo_tte(HRgo = 0.8, d2 = 50, #' w = 0.3, hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, fixed = FALSE) #' @export #' @keywords internal Epgo_tte <- function(HRgo, d2, w, hr1, hr2, id1, id2, fixed){ if(!fixed){ return( integrate(function(x){ sapply(x, function(x){ pnorm((log(HRgo) + x)/sqrt(4/d2))* prior_tte(x, w, hr1, hr2, id1, id2) }) }, - Inf, Inf)$value ) }else{ return( pnorm((log(HRgo) - log(hr1))/sqrt(4/d2)) ) } } # expected number of events for phase III # in before phase II perspective #' Expected sample size for phase III for time-to-event outcomes #' #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total events for phase II; must be even number #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the the functions `Ed3_tte` is the expected number of events in phase III. #' @examples res <- Ed3_tte(HRgo = 0.8, d2 = 50, #' alpha = 0.025, beta = 0.1, w = 0.3, #' hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, fixed = FALSE) #' @export #' @keywords internal Ed3_tte <- function(HRgo, d2, alpha, beta, w, hr1, hr2, id1, id2, fixed){ if(!fixed){ return( integrate(function(x){ sapply(x, function(x){ integrate(function(y){ ((4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(y^2))* dnorm(y, mean = x, sd = sqrt(4/d2))* prior_tte(x, w, hr1, hr2, id1, id2) }, -log(HRgo), Inf)$value }) }, - Inf, Inf)$value ) }else{ return( integrate(function(y){ ((4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(y^2))* dnorm(y, mean = -log(hr1), sd = sqrt(4/d2)) }, -log(HRgo), Inf)$value ) } } # expected probability of a successful program #' Expected probability of a successful program for time-to-event outcomes #' #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total events for phase II; must be even number #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param step1 lower boundary for effect size #' @param step2 upper boundary for effect size #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param gamma difference in treatment effect due to different population structures in phase II and III #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the functions `EPsProg_tte()` is the expected probability of a successful program. #' @examples res <- EPsProg_tte(HRgo = 0.8, d2 = 50, #' alpha = 0.025, beta = 0.1, #' step1 = 1, step2 = 0.95, #' w = 0.3, hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, #' gamma = 0, fixed = FALSE) #' @export #' @keywords internal EPsProg_tte <- function(HRgo, d2, alpha, beta, step1, step2, w, hr1, hr2, id1, id2, gamma, fixed){ c = (qnorm(1 - alpha) + qnorm(1 - beta))^2 if(!fixed){ return( integrate(function(x){ sapply(x, function(x){ integrate(function(y){ (pnorm(qnorm(1-alpha)-log(step2)/(sqrt(y^2/c)), mean = (x+gamma)/(sqrt(y^2/c)), sd = 1) - pnorm(qnorm(1-alpha)-log(step1)/(sqrt(y^2/c)), mean = (x+gamma)/(sqrt(y^2/c)), sd = 1) )* dnorm(y, mean = x, sd = sqrt(4/d2))* prior_tte(x, w, hr1, hr2, id1, id2) }, -log(HRgo), Inf)$value }) }, - Inf, Inf)$value ) }else{ return( integrate(function(y){ (pnorm(qnorm(1-alpha)-log(step2)/(sqrt(y^2/c)), mean = (-log(hr1)+gamma)/(sqrt(y^2/c)), sd = 1) - pnorm(qnorm(1-alpha)-log(step1)/(sqrt(y^2/c)), mean = (-log(hr1)+gamma)/(sqrt(y^2/c)), sd = 1))* dnorm(y, mean = -log(hr1), sd = sqrt(4/d2)) }, - log(HRgo), Inf)$value ) } } # utility function #' Utility function for time-to-event outcomes. #' #' The utility function calculates the expected utility of our drug development program and is given as gains minus costs and depends on the parameters and the expected probability of a successful program. #' The utility is in a further step maximized by the `optimal_tte()` function. #' @param HRgo threshold value for the go/no-go decision rule #' @param d2 total events for phase II; must be even number #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param xi2 event rate for phase II #' @param xi3 event rate for phase III #' @param w weight for mixture prior distribution #' @param hr1 first assumed true treatment effect on HR scale for prior distribution #' @param hr2 second assumed true treatment effect on HR scale for prior distribution #' @param id1 amount of information for `hr1` in terms of number of events #' @param id2 amount of information for `hr2` in terms of number of events #' @param c2 variable per-patient cost for phase II #' @param c3 variable per-patient cost for phase III #' @param c02 fixed cost for phase II #' @param c03 fixed cost for phase III #' @param K constraint on the costs of the program, default: Inf, e.g. no constraint #' @param N constraint on the total expected sample size of the program, default: Inf, e.g. no constraint #' @param S constraint on the expected probability of a successful program, default: -Inf, e.g. no constraint #' @param steps1 lower boundary for effect size category `"small"` in RR scale, default: 1 #' @param stepm1 lower boundary for effect size category `"medium"` in RR scale = upper boundary for effect size category "small" in RR scale, default: 0.95 #' @param stepl1 lower boundary for effect size category `"large"` in RR scale = upper boundary for effect size category "medium" in RR scale, default: 0.85 #' @param b1 expected gain for effect size category `"small"` #' @param b2 expected gain for effect size category `"medium"` #' @param b3 expected gain for effect size category `"large"` #' @param gamma difference in treatment effect due to different population structures in phase II and III #' @param fixed choose if true treatment effects are fixed or random, if TRUE `hr1` is used as fixed effect #' @return The output of the functions `utility_tte()` is the expected utility of the program. #' @examples res <- utility_tte(d2 = 50, HRgo = 0.8, w = 0.3, #' hr1 = 0.69, hr2 = 0.81, #' id1 = 280, id2 = 420, xi2 = 0.7, xi3 = 0.7, #' alpha = 0.025, beta = 0.1, #' c2 = 0.75, c3 = 1, c02 = 100, c03 = 150, #' K = Inf, N = Inf, S = -Inf, #' steps1 = 1, stepm1 = 0.95, stepl1 = 0.85, #' b1 = 1000, b2 = 2000, b3 = 3000, #' gamma = 0, fixed = TRUE) #' @export #' @keywords internal utility_tte <- function(d2, HRgo, w, hr1, hr2, id1, id2, alpha, beta, xi2, xi3, c2, c3, c02, c03, K, N, S, steps1, stepm1, stepl1, b1, b2, b3, gamma, fixed){ steps2 <- stepm1 stepm2 <- stepl1 stepl2 <- 0 d3 <- Ed3_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, fixed = fixed) # sample size is rounded up to next even natural number n2 <- ceiling(d2*(1/xi2)) if(round(n2/2) != n2 / 2) {n2 <- n2 + 1} n3 <- ceiling(d3 * (1/xi3)) if(round(n3/2) != n3 / 2) {n3 <- n3 + 1} # expected number of events is rounded to natural number d3 <- ceiling(d3) if(n2+n3>N){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ pg <- Epgo_tte(HRgo = HRgo, d2 = d2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, fixed = fixed) K2 <- c02 + c2 * n2 # cost phase II K3 <- c03 * pg + c3 * n3 # cost phase III if(K2+K3>K){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ # probability of a successful program: # small, medium and large effect size prob1 <- EPsProg_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, step1 = steps1, step2 = steps2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob2 <- EPsProg_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, step1 = stepm1, step2 = stepm2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob3 <- EPsProg_tte(HRgo = HRgo, d2 = d2, alpha = alpha, beta = beta, step1 = stepl1, step2 = stepl2, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) SP <- prob1 + prob2 + prob3 if(SP<S){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ G <- b1 * prob1 + b2 * prob2 + b3 * prob3 EU <- - K2 - K3 + G return( c(EU, d3, SP, pg, K2, K3, prob1, prob2, prob3, n2, n3) ) } } } } ################# # skip phase II # ################# # number of events for phase III based on median_prior #' Expected probability to go to phase III for time-to-event outcomes #' #' If choosing `skipII = TRUE`, the program calculates the expected utility for the case when phase #' II is skipped and compares it to the situation when phase II is not skipped. #' This function calculates the expected sample size for phase III for time-to-event outcomes using a median prior. #' @param alpha significance level #' @param beta `1-beta` power for calculation of sample size for phase III #' @param median_prior the median_prior is given as -log(hr1), the assumed true treatment effect #' @return The output of the functions `d3_skipII_tte()` is the expected number of events in phase III when skipping phase II. #' @examples res <- d3_skipII_tte(alpha = 0.05, beta = 0.1, median_prior = 0.35) #' @export #' @keywords internal d3_skipII_tte <-function(alpha, beta, median_prior){ return( (4*(qnorm(1-alpha)+qnorm(1-beta))^2)/(median_prior^2) ) } # expected probability of a successful program # based on median_prior EPsProg_skipII_tte <-function(alpha, beta, step1, step2, median_prior, w, hr1, hr2, id1, id2, gamma, fixed){ c=(qnorm(1-alpha)+qnorm(1-beta))^2 if(!fixed){ return( integrate(function(x){ sapply(x,function(x){ (pnorm(qnorm(1-alpha)- log(step2)/(sqrt(median_prior^2/c)), mean=(x+gamma)/(sqrt(median_prior^2/c)), sd=1)- pnorm(qnorm(1-alpha)- log(step1)/(sqrt(median_prior^2/c)), mean=(x+gamma)/(sqrt(median_prior^2/c)), sd=1))* prior_tte(x, w, hr1, hr2, id1, id2) }) }, -Inf, Inf)$value ) }else{ return( pnorm(qnorm(1-alpha)- log(step2)/(sqrt(median_prior^2/c)), mean=(-log(hr1)+gamma)/(sqrt(median_prior^2/c)), sd=1)- pnorm(qnorm(1-alpha)- log(step1)/(sqrt(median_prior^2/c)), mean=(-log(hr1)+gamma)/(sqrt(median_prior^2/c)), sd=1) ) } } #utility function utility_skipII_tte <-function(alpha, beta, xi3, c03, c3, b1, b2, b3, median_prior, K, N, S, steps1, stepm1, stepl1, w, hr1, hr2, id1, id2, gamma, fixed){ steps2 <- stepm1 stepm2 <- stepl1 stepl2 <- 0 d3 <- d3_skipII_tte(alpha = alpha, beta = beta, median_prior = median_prior) n3 <- ceiling(d3*(1/xi3)) if(round(n3/2) != n3 / 2) {n3 = n3 + 1} d3 <- ceiling(d3) if(n3>N){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ K2 <- 0 K3 <- c03 + c3*n3 if(K2+K3>K){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ # probability of a successful program: # small, medium, large effect size prob1 <- EPsProg_skipII_tte(alpha = alpha, beta = beta, step1 = steps1, step2 = steps2, median_prior = median_prior, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob2 <- EPsProg_skipII_tte(alpha = alpha, beta = beta, step1 = stepm1, step2 = stepm2, median_prior = median_prior, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) prob3 <- EPsProg_skipII_tte(alpha = alpha, beta = beta, step1 = stepl1, step2 = stepl2, median_prior = median_prior, w = w, hr1 = hr1, hr2 = hr2, id1 = id1, id2 = id2, gamma = gamma, fixed = fixed) SP <- prob1 + prob2 + prob3 if(SP<S){ return(c(-9999, -9999, -9999, -9999, -9999, -9999, -9999, -9999)) }else{ G <- b1 * prob1 + b2 * prob2 + b3 * prob3 EU <- - K2 - K3 + G return( c(EU, d3, n3, SP, K3, prob1, prob2, prob3) ) } } } }
testlist <- list(nmod = NULL, id = NULL, score = NULL, rsp = NULL, id = NULL, score = NULL, nbr = NULL, id = NULL, bk_nmod = integer(0), booklet_id = c(1192022832L, -996667132L, 432518541L, 815996035L, 1157250652L, 751417555L, 116882132L, 1085030516L, 1202941484L, 15623892L, -1665580313L, NA, NA, 1254131289L, 749806690L, -1501899956L, -1876835267L), booklet_score = integer(0), include_rsp = integer(0), item_id = c(1415150763L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), item_score = integer(0), module_nbr = c(992888811L, -1345548849L, -449112064L, NA, 1678998078L, 759393453L, 786045775L, 453135142L, 455895826L, -1331816706L, 391475866L, 1748544614L, 19691586L, 1176953756L, 349411874L, 2121585973L, -301177052L, 1082896916L, -450872028L, -636931467L, -53289638L), person_id = c(16777216L, 0L, 1409351680L, 682962941L, 1615462481L, 167774546L, 1801886528L, -1519479597L, -158300141L, 1701913732L, 1152883163L, 35860266L, 1969689444L, -1318203443L, -2131865434L, 1632280887L, 637082149L, 260799231L, 1754027460L, -1055514020L, -1311932986L)) result <- do.call(dexterMST:::make_booklets_unsafe,testlist) str(result)
/dexterMST/inst/testfiles/make_booklets_unsafe/AFL_make_booklets_unsafe/make_booklets_unsafe_valgrind_files/1615943472-test.R
no_license
akhikolla/updatedatatype-list1
R
false
false
1,558
r
testlist <- list(nmod = NULL, id = NULL, score = NULL, rsp = NULL, id = NULL, score = NULL, nbr = NULL, id = NULL, bk_nmod = integer(0), booklet_id = c(1192022832L, -996667132L, 432518541L, 815996035L, 1157250652L, 751417555L, 116882132L, 1085030516L, 1202941484L, 15623892L, -1665580313L, NA, NA, 1254131289L, 749806690L, -1501899956L, -1876835267L), booklet_score = integer(0), include_rsp = integer(0), item_id = c(1415150763L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), item_score = integer(0), module_nbr = c(992888811L, -1345548849L, -449112064L, NA, 1678998078L, 759393453L, 786045775L, 453135142L, 455895826L, -1331816706L, 391475866L, 1748544614L, 19691586L, 1176953756L, 349411874L, 2121585973L, -301177052L, 1082896916L, -450872028L, -636931467L, -53289638L), person_id = c(16777216L, 0L, 1409351680L, 682962941L, 1615462481L, 167774546L, 1801886528L, -1519479597L, -158300141L, 1701913732L, 1152883163L, 35860266L, 1969689444L, -1318203443L, -2131865434L, 1632280887L, 637082149L, 260799231L, 1754027460L, -1055514020L, -1311932986L)) result <- do.call(dexterMST:::make_booklets_unsafe,testlist) str(result)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/tidying_functions.R \name{ipsatize} \alias{ipsatize} \title{Ipsatize circumplex items using deviation scoring across variables} \usage{ ipsatize(.data, items, na.rm = TRUE, overwrite = FALSE) } \arguments{ \item{.data}{Required. A data frame containing at least circumplex scales.} \item{items}{Required. The variable names or column numbers for the variables in \code{.data} that contain circumplex items to be ipsatized.} \item{na.rm}{Optional. A logical that determines whether missing values should be ignored during the calculation of the mean during ipsatization (default = TRUE).} \item{overwrite}{Optional. A logical that determines whether the variables specified in \code{items} should be overwritten with ipsatized versions or alternatively preserved and new variables ending with "_i" should be added to the data frame (default = FALSE).} } \value{ A data frame that matches \code{.data} except that the variables specified in \code{items} have been rescored using ipsatization. } \description{ Rescore each circumplex item using deviation scoring across variables. In other words, subtract each observation's mean response from each response. This effectively removes the presence of a general factor, which can make certain circumplex fit analyses more powerful. } \examples{ data("raw_iipsc") ipsatize(raw_iipsc, IIP01:IIP32) } \seealso{ Other tidying functions: \code{\link{score}()}, \code{\link{standardize}()} } \concept{tidying functions}
/man/ipsatize.Rd
no_license
cran/circumplex
R
false
true
1,584
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/tidying_functions.R \name{ipsatize} \alias{ipsatize} \title{Ipsatize circumplex items using deviation scoring across variables} \usage{ ipsatize(.data, items, na.rm = TRUE, overwrite = FALSE) } \arguments{ \item{.data}{Required. A data frame containing at least circumplex scales.} \item{items}{Required. The variable names or column numbers for the variables in \code{.data} that contain circumplex items to be ipsatized.} \item{na.rm}{Optional. A logical that determines whether missing values should be ignored during the calculation of the mean during ipsatization (default = TRUE).} \item{overwrite}{Optional. A logical that determines whether the variables specified in \code{items} should be overwritten with ipsatized versions or alternatively preserved and new variables ending with "_i" should be added to the data frame (default = FALSE).} } \value{ A data frame that matches \code{.data} except that the variables specified in \code{items} have been rescored using ipsatization. } \description{ Rescore each circumplex item using deviation scoring across variables. In other words, subtract each observation's mean response from each response. This effectively removes the presence of a general factor, which can make certain circumplex fit analyses more powerful. } \examples{ data("raw_iipsc") ipsatize(raw_iipsc, IIP01:IIP32) } \seealso{ Other tidying functions: \code{\link{score}()}, \code{\link{standardize}()} } \concept{tidying functions}
\name{QGmvicc} \alias{QGmvicc} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Intra - Class Correlation coefficients (ICC) on the observed data scale (multivariate analysis). } \description{ Function to estimate the variance-covariance matrix of a variance component on the observed scale based on estimates on the latent scale. Contrary to the univariate function, this one cannot use the analytical closed forms and yields a list of paramaters instead of a data.frame. } \usage{ QGmvicc(mu = NULL, vcv.comp, vcv.P, models, predict = NULL, rel.acc = 0.001, width = 10, n.obs = NULL, theta = NULL, verbose = TRUE, mask = NULL) } \arguments{ \item{mu}{Vector of latent intercepts estimated from a GLMM (ignored if predict is not \code{NULL}). (numeric)} \item{vcv.comp}{Component variance-covariance matrix (G-matrix - like). (numeric)} \item{vcv.P}{Total phenotypic variance-covariance matrix. Usually, the sum of all the estimated variance-covariance matrices. (numeric)} \item{models}{A vector containing the names of the model used or a list which elements contain the list of the functions needed (inverse-link, distribution variance and derivative of the inverse-link, as stated in the output of \code{QGlink.funcs()}). (character vector or list of lists of functions) Available model names are : \itemize{ \item{"Gaussian"} Gaussian distribution with identity link (e.g. LMM) \item{"binom1.probit"} Binomial with 1 trial (binary data) with a probit link \item{"binomN.probit"} Binomial with N tria with a probit link (require the parameter \code{n.obs}) \item{"binom1.logit"} Binomial with 1 trial (binary) with a logit link \item{"binomN.logit"} Binomial with N trial with a logit link (require the parameter \code{n.obs}) \item{"Poisson.log"} Poisson distribution wiht a log link \item{"Poisson.sqrt"} Poisson distribution with a square - root link \item{"negbin.log"} Negative - Binomial distribution wiht a log link (require the parameter \code{theta}) \item{"negbin.sqrt"} Negative - Binomial distribution with a square - root link (require the parameter \code{theta}) } } \item{rel.acc}{Relative accuracy of the integral approximation. (numeric)} \item{width}{Parameter for the integral computation. The default value is 10, which should be sensible for most models. (numeric)} \item{predict}{Optional matrix of predicted values on the latent scale (each trait in each column). The latent predicted values must be computed while only accounting for the fixed effects (marginal to the random effects). (numeric)} \item{n.obs}{Number of "trials" for each "binomN" distribution. (numeric, length equal to the number of "binomN" models)} \item{theta}{Dispersion parameter for the Negative Binomial distribution. The parameter \code{theta} should be such as the variance of the distribution is \code{mean + mean^2 / theta}. (numeric, length equal to the number of "negbin" models)} \item{verbose}{Should the function be verbose? (boolean)} \item{mask}{Masking filter for removing predictions that don't exist in the population (e.g. female predictions for males for a sex - based bivariate model). Should the same dimensions as \code{predict} and values should be \code{FALSE} when the predictions should be filtered out.} } \details{ The function typically uses integral numerical approximation provided by the R2Cuba package to compute multivariate quantitative genetics parameters on the observed scale, from latent estimates yielded by a GLMM. It cannot use closed form solutions. Only the most typical distribution/link function couples are implemented through the \code{models} argument. If you used an "exotic" GLMM, you can provide a list containg lists of functions corresponding to the model. The list of functions should be implemented as is the output of \code{QGlink.funcs()}, i.e. three elements: the inverse link functions named \code{inv.link}, the derivative of this function named \code{d.inv.link} and the distribution variance named \code{var.func} (see Example below). Some distributions require extra-arguments. This is the case for "binomN", which require the number of trials N, passed with the argument \code{n.obs}. The distribution "negbin" requires a dispersion parameter \code{theta}, such as the variance of the distribution is \code{mean + mean^2 / theta} (mean/dispersion parametrisation). For now, the arguments \code{n.obs} and \code{theta} can be used for ONE distribution only. If fixed effects (apart from the intercept) have been included in the GLMM, they can be included through the argument \code{predict} as a matrix of the marginal predicted values, i.e. predicted values excluding the random effects, for each trait (one trait per column of the matrix, see Example below).Note that computation can be extremely slow in that case. } \value{ The function yields a list containing the following values: \item{mean.obs}{Vector of phenotypic means on the observed scale.} \item{vcv.P.obs}{Phenotypic variance-covariance matrix on the observed scale.} \item{vcv.comp.obs}{Component variance-covariance (G-matrix - like, but broad - sense) on the observed scale.} } \author{ Pierre de Villemereuil & Michael B. Morrissey } \seealso{ \code{\link{QGmvparams}}, \code{\link{QGlink.funcs}}, \code{\link{QGmvmean}}, \code{\link{QGvcov}}, \code{\link{QGmvpsi}} } \examples{ ## Example using a bivariate model (Binary trait/Gaussian trait) # Parameters mu <- c(0, 1) G <- diag(c(0.5, 2)) M <- diag(c(0.2, 1)) # Maternal effect VCV matrix P <- diag(c(1, 4)) # Broad - sense "G-matrix" on observed data scale \dontrun{QGmvicc(mu = mu, vcv.comp = G, vcv.P = P, models = c("binom1.probit", "Gaussian"))} # Maternal effect VCV matrix on observed data scale \dontrun{QGmvicc(mu = mu, vcv.comp = M, vcv.P = P, models = c("binom1.probit", "Gaussian"))} # Reminder: the results are the same here because we have no correlation between the two traits # Defining the model "by hand" using the list list.models = list( model1 = list(inv.link = function(x){pnorm(x)}, d.inv.link = function(x){dnorm(x)}, var.func = function(x){pnorm(x) * (1 - pnorm(x))}), model2 = list(inv.link = function(x){x}, d.inv.link = function(x){1}, var.func = function(x){0}) ) # Running the same analysis than above QGmvicc(mu = mu, vcv.comp = M, vcv.P = P, models = list.models) # Using predicted values # Say we have 100 individuals n <- 100 # Let's simulate predicted values p <- matrix(c(runif(n), runif(n)), ncol = 2) # Note that p has as many as columns as we have traits (i.e. two) # Multivariate analysis with predicted values \dontrun{QGmvicc(predict = p, vcv.comp = M, vcv.P = P, models = c("binom1.probit", "Gaussian"))} # That can be a bit long to run! }
/man/QGmvicc.Rd
no_license
cran/QGglmm
R
false
false
6,869
rd
\name{QGmvicc} \alias{QGmvicc} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Intra - Class Correlation coefficients (ICC) on the observed data scale (multivariate analysis). } \description{ Function to estimate the variance-covariance matrix of a variance component on the observed scale based on estimates on the latent scale. Contrary to the univariate function, this one cannot use the analytical closed forms and yields a list of paramaters instead of a data.frame. } \usage{ QGmvicc(mu = NULL, vcv.comp, vcv.P, models, predict = NULL, rel.acc = 0.001, width = 10, n.obs = NULL, theta = NULL, verbose = TRUE, mask = NULL) } \arguments{ \item{mu}{Vector of latent intercepts estimated from a GLMM (ignored if predict is not \code{NULL}). (numeric)} \item{vcv.comp}{Component variance-covariance matrix (G-matrix - like). (numeric)} \item{vcv.P}{Total phenotypic variance-covariance matrix. Usually, the sum of all the estimated variance-covariance matrices. (numeric)} \item{models}{A vector containing the names of the model used or a list which elements contain the list of the functions needed (inverse-link, distribution variance and derivative of the inverse-link, as stated in the output of \code{QGlink.funcs()}). (character vector or list of lists of functions) Available model names are : \itemize{ \item{"Gaussian"} Gaussian distribution with identity link (e.g. LMM) \item{"binom1.probit"} Binomial with 1 trial (binary data) with a probit link \item{"binomN.probit"} Binomial with N tria with a probit link (require the parameter \code{n.obs}) \item{"binom1.logit"} Binomial with 1 trial (binary) with a logit link \item{"binomN.logit"} Binomial with N trial with a logit link (require the parameter \code{n.obs}) \item{"Poisson.log"} Poisson distribution wiht a log link \item{"Poisson.sqrt"} Poisson distribution with a square - root link \item{"negbin.log"} Negative - Binomial distribution wiht a log link (require the parameter \code{theta}) \item{"negbin.sqrt"} Negative - Binomial distribution with a square - root link (require the parameter \code{theta}) } } \item{rel.acc}{Relative accuracy of the integral approximation. (numeric)} \item{width}{Parameter for the integral computation. The default value is 10, which should be sensible for most models. (numeric)} \item{predict}{Optional matrix of predicted values on the latent scale (each trait in each column). The latent predicted values must be computed while only accounting for the fixed effects (marginal to the random effects). (numeric)} \item{n.obs}{Number of "trials" for each "binomN" distribution. (numeric, length equal to the number of "binomN" models)} \item{theta}{Dispersion parameter for the Negative Binomial distribution. The parameter \code{theta} should be such as the variance of the distribution is \code{mean + mean^2 / theta}. (numeric, length equal to the number of "negbin" models)} \item{verbose}{Should the function be verbose? (boolean)} \item{mask}{Masking filter for removing predictions that don't exist in the population (e.g. female predictions for males for a sex - based bivariate model). Should the same dimensions as \code{predict} and values should be \code{FALSE} when the predictions should be filtered out.} } \details{ The function typically uses integral numerical approximation provided by the R2Cuba package to compute multivariate quantitative genetics parameters on the observed scale, from latent estimates yielded by a GLMM. It cannot use closed form solutions. Only the most typical distribution/link function couples are implemented through the \code{models} argument. If you used an "exotic" GLMM, you can provide a list containg lists of functions corresponding to the model. The list of functions should be implemented as is the output of \code{QGlink.funcs()}, i.e. three elements: the inverse link functions named \code{inv.link}, the derivative of this function named \code{d.inv.link} and the distribution variance named \code{var.func} (see Example below). Some distributions require extra-arguments. This is the case for "binomN", which require the number of trials N, passed with the argument \code{n.obs}. The distribution "negbin" requires a dispersion parameter \code{theta}, such as the variance of the distribution is \code{mean + mean^2 / theta} (mean/dispersion parametrisation). For now, the arguments \code{n.obs} and \code{theta} can be used for ONE distribution only. If fixed effects (apart from the intercept) have been included in the GLMM, they can be included through the argument \code{predict} as a matrix of the marginal predicted values, i.e. predicted values excluding the random effects, for each trait (one trait per column of the matrix, see Example below).Note that computation can be extremely slow in that case. } \value{ The function yields a list containing the following values: \item{mean.obs}{Vector of phenotypic means on the observed scale.} \item{vcv.P.obs}{Phenotypic variance-covariance matrix on the observed scale.} \item{vcv.comp.obs}{Component variance-covariance (G-matrix - like, but broad - sense) on the observed scale.} } \author{ Pierre de Villemereuil & Michael B. Morrissey } \seealso{ \code{\link{QGmvparams}}, \code{\link{QGlink.funcs}}, \code{\link{QGmvmean}}, \code{\link{QGvcov}}, \code{\link{QGmvpsi}} } \examples{ ## Example using a bivariate model (Binary trait/Gaussian trait) # Parameters mu <- c(0, 1) G <- diag(c(0.5, 2)) M <- diag(c(0.2, 1)) # Maternal effect VCV matrix P <- diag(c(1, 4)) # Broad - sense "G-matrix" on observed data scale \dontrun{QGmvicc(mu = mu, vcv.comp = G, vcv.P = P, models = c("binom1.probit", "Gaussian"))} # Maternal effect VCV matrix on observed data scale \dontrun{QGmvicc(mu = mu, vcv.comp = M, vcv.P = P, models = c("binom1.probit", "Gaussian"))} # Reminder: the results are the same here because we have no correlation between the two traits # Defining the model "by hand" using the list list.models = list( model1 = list(inv.link = function(x){pnorm(x)}, d.inv.link = function(x){dnorm(x)}, var.func = function(x){pnorm(x) * (1 - pnorm(x))}), model2 = list(inv.link = function(x){x}, d.inv.link = function(x){1}, var.func = function(x){0}) ) # Running the same analysis than above QGmvicc(mu = mu, vcv.comp = M, vcv.P = P, models = list.models) # Using predicted values # Say we have 100 individuals n <- 100 # Let's simulate predicted values p <- matrix(c(runif(n), runif(n)), ncol = 2) # Note that p has as many as columns as we have traits (i.e. two) # Multivariate analysis with predicted values \dontrun{QGmvicc(predict = p, vcv.comp = M, vcv.P = P, models = c("binom1.probit", "Gaussian"))} # That can be a bit long to run! }
"asymean" <- function(xgrid=seq(0,1,length=21),ygrid=seq(0,1,length=21),binsize=32){ zetam1m2<-matrix(0,length(xgrid),length(ygrid)) for (i in 1:length(xgrid)){ for (j in 1:length(xgrid)){ zetam1m2[i,j]<-(ygrid[j]-xgrid[i])/sqrt((ygrid[j]+xgrid[i])*(2-(ygrid[j]+xgrid[i]))/(2*binsize)) } } zetam1m2[which(abs(zetam1m2)==Inf)]<-0 zetam1m2[which(is.na(zetam1m2))]<-0 zetam1m2 }
/R/asymean.R
no_license
nunesmatt/binhf
R
false
false
380
r
"asymean" <- function(xgrid=seq(0,1,length=21),ygrid=seq(0,1,length=21),binsize=32){ zetam1m2<-matrix(0,length(xgrid),length(ygrid)) for (i in 1:length(xgrid)){ for (j in 1:length(xgrid)){ zetam1m2[i,j]<-(ygrid[j]-xgrid[i])/sqrt((ygrid[j]+xgrid[i])*(2-(ygrid[j]+xgrid[i]))/(2*binsize)) } } zetam1m2[which(abs(zetam1m2)==Inf)]<-0 zetam1m2[which(is.na(zetam1m2))]<-0 zetam1m2 }
genConfNorm <- function (file, pop, t0, np) { cat (paste(t0, np, sep=' '), file=file, sep="\n") for (i in 1:pop) { x = 0 x = rnorm(1, 1.5, 1) x = x cat (paste(rnorm (1, 0, pi/6), x, sep=' '), file = file, append = TRUE, sep="\n") } } genConfUnif <- function (file, pop, t0, np) { cat (paste(t0, np, sep=' '), file=file, sep="\n") for (i in 1:pop) { x = 0 while (x == 0) { x = runif(1, -1, 1) } cat (paste(runif (1, 0, 1), x, sep=' '), file = file, append = TRUE, sep="\n") } }
/src/genConf.r
permissive
ldorelli/tcc
R
false
false
505
r
genConfNorm <- function (file, pop, t0, np) { cat (paste(t0, np, sep=' '), file=file, sep="\n") for (i in 1:pop) { x = 0 x = rnorm(1, 1.5, 1) x = x cat (paste(rnorm (1, 0, pi/6), x, sep=' '), file = file, append = TRUE, sep="\n") } } genConfUnif <- function (file, pop, t0, np) { cat (paste(t0, np, sep=' '), file=file, sep="\n") for (i in 1:pop) { x = 0 while (x == 0) { x = runif(1, -1, 1) } cat (paste(runif (1, 0, 1), x, sep=' '), file = file, append = TRUE, sep="\n") } }
library(ggplot2) library(ggsci) A11 <- "A" A12 <- "G" A21 <- "C" A22 <- "T" df <- read.table("genotype.raw", header=TRUE) snp1 <- colnames(df)[3] snp2 <- colnames(df)[4] colnames(df)[3] <- "SNP1" colnames(df)[4] <- "SNP2" df$barhgt <- ifelse(df$PHENO<0, 0.4, -0.4) df$barhgt2 <- ifelse(df$PHENO<0, 0.10, -0.1) df$GT1 <- ifelse(df$SNP1 == 0, paste0(A11,A11), ifelse(df$SNP1==1, paste0(A11,A12), paste0(A12,A12))) df$GT2 <- ifelse(df$SNP2 == 0, paste0(A21,A21), ifelse(df$SNP2==1, paste0(A21,A22), paste0(A22,A22))) df$Shade <- ifelse(df$PHENO<0, "Run", "Not run") #Redo colors pal <- c("#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02") names(pal) <- c(unique(df$GT1), unique(df$GT2)) #Single p <- ggplot(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=PHENO)) p <- p + geom_bar(stat="identity") p <- p + theme_minimal() p <- p + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) + xlab("Sample") + ggtitle(paste(colnames(df)[1], "by", snp1)) p <- p + geom_point(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=barhgt2, colour=GT2), size=3) p <- p + scale_color_tron() p <- p + guides(color=guide_legend(snp1)) ggsave(p, file="singleSNP.png", dpi=300, height=6, width=4, units="in") #Interactions p <- ggplot(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=PHENO, fill=Shade)) + geom_bar(stat="identity") p <- p + theme_minimal() p <- p + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) + xlab("Sample") + ggtitle("Significant SNPxSNP Interaction") p <- p + geom_point(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=barhgt, colour=GT1), size=3) p <- p + geom_point(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=barhgt2, colour=GT2), size=3) p <- p + scale_color_manual(values=pal) p <- p + scale_fill_manual(values=c("#AAAAAA", "#a6761d")) p <- p + guides(fill=guide_legend(""), color=guide_legend("Genotype")) ggsave(p, file="GxG.png", dpi=300, height=5, width=7, units="in")
/geno-pheno_plot.R
no_license
anastasia-lucas/genopheno-plot
R
false
false
2,128
r
library(ggplot2) library(ggsci) A11 <- "A" A12 <- "G" A21 <- "C" A22 <- "T" df <- read.table("genotype.raw", header=TRUE) snp1 <- colnames(df)[3] snp2 <- colnames(df)[4] colnames(df)[3] <- "SNP1" colnames(df)[4] <- "SNP2" df$barhgt <- ifelse(df$PHENO<0, 0.4, -0.4) df$barhgt2 <- ifelse(df$PHENO<0, 0.10, -0.1) df$GT1 <- ifelse(df$SNP1 == 0, paste0(A11,A11), ifelse(df$SNP1==1, paste0(A11,A12), paste0(A12,A12))) df$GT2 <- ifelse(df$SNP2 == 0, paste0(A21,A21), ifelse(df$SNP2==1, paste0(A21,A22), paste0(A22,A22))) df$Shade <- ifelse(df$PHENO<0, "Run", "Not run") #Redo colors pal <- c("#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02") names(pal) <- c(unique(df$GT1), unique(df$GT2)) #Single p <- ggplot(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=PHENO)) p <- p + geom_bar(stat="identity") p <- p + theme_minimal() p <- p + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) + xlab("Sample") + ggtitle(paste(colnames(df)[1], "by", snp1)) p <- p + geom_point(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=barhgt2, colour=GT2), size=3) p <- p + scale_color_tron() p <- p + guides(color=guide_legend(snp1)) ggsave(p, file="singleSNP.png", dpi=300, height=6, width=4, units="in") #Interactions p <- ggplot(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=PHENO, fill=Shade)) + geom_bar(stat="identity") p <- p + theme_minimal() p <- p + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) + xlab("Sample") + ggtitle("Significant SNPxSNP Interaction") p <- p + geom_point(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=barhgt, colour=GT1), size=3) p <- p + geom_point(data=df[order(df$PHENO),], aes(x=factor(ID, levels=unique(ID)), y=barhgt2, colour=GT2), size=3) p <- p + scale_color_manual(values=pal) p <- p + scale_fill_manual(values=c("#AAAAAA", "#a6761d")) p <- p + guides(fill=guide_legend(""), color=guide_legend("Genotype")) ggsave(p, file="GxG.png", dpi=300, height=5, width=7, units="in")
rRandomLocation <- function(X, ReferenceType = "", CheckArguments = TRUE) { if (CheckArguments) CheckdbmssArguments() if (ReferenceType != "") { # Retain a single point type X.reduced <- X[X$marks$PointType == ReferenceType] RandomizedX <- rlabel(X.reduced) } else { RandomizedX <- rlabel(X) } class(RandomizedX) <- c("wmppp", "ppp") return (RandomizedX) }
/dbmss/R/rRandomLocation.R
no_license
ingted/R-Examples
R
false
false
415
r
rRandomLocation <- function(X, ReferenceType = "", CheckArguments = TRUE) { if (CheckArguments) CheckdbmssArguments() if (ReferenceType != "") { # Retain a single point type X.reduced <- X[X$marks$PointType == ReferenceType] RandomizedX <- rlabel(X.reduced) } else { RandomizedX <- rlabel(X) } class(RandomizedX) <- c("wmppp", "ppp") return (RandomizedX) }
# Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 mv_multgen_ <- function(mat, vec) { .Call('_sdbmsABC_mv_multgen_', PACKAGE = 'sdbmsABC', mat, vec) } mv_multcm_ <- function(mat, vec) { .Call('_sdbmsABC_mv_multcm_', PACKAGE = 'sdbmsABC', mat, vec) } mv_multdm_ <- function(mat, vec) { .Call('_sdbmsABC_mv_multdm_', PACKAGE = 'sdbmsABC', mat, vec) } sigmoid_Cpp_ <- function(x, vmax, v0, r) { .Call('_sdbmsABC_sigmoid_Cpp_', PACKAGE = 'sdbmsABC', x, vmax, v0, r) } SDE_Cpp_gen_ <- function(vec, dm, cm, randvec) { .Call('_sdbmsABC_SDE_Cpp_gen_', PACKAGE = 'sdbmsABC', vec, dm, cm, randvec) } SDE_Cpp_ <- function(vec, dm, cm, randvec) { .Call('_sdbmsABC_SDE_Cpp_', PACKAGE = 'sdbmsABC', vec, dm, cm, randvec) } ODE_Cpp_ <- function(vec, h, Aa, mu, BbC, C1, C2, C3, vmax, v0, r) { .Call('_sdbmsABC_ODE_Cpp_', PACKAGE = 'sdbmsABC', vec, h, Aa, mu, BbC, C1, C2, C3, vmax, v0, r) } Splitting_JRNMM_gen_Cpp_ <- function(h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) { .Call('_sdbmsABC_Splitting_JRNMM_gen_Cpp_', PACKAGE = 'sdbmsABC', h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) } Splitting_JRNMM_Cpp_ <- function(h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) { .Call('_sdbmsABC_Splitting_JRNMM_Cpp_', PACKAGE = 'sdbmsABC', h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) } Splitting_JRNMM_output_Cpp_ <- function(h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) { .Call('_sdbmsABC_Splitting_JRNMM_output_Cpp_', PACKAGE = 'sdbmsABC', h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) }
/R/RcppExports.R
no_license
massimilianotamborrino/sdbmpABC
R
false
false
1,736
r
# Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 mv_multgen_ <- function(mat, vec) { .Call('_sdbmsABC_mv_multgen_', PACKAGE = 'sdbmsABC', mat, vec) } mv_multcm_ <- function(mat, vec) { .Call('_sdbmsABC_mv_multcm_', PACKAGE = 'sdbmsABC', mat, vec) } mv_multdm_ <- function(mat, vec) { .Call('_sdbmsABC_mv_multdm_', PACKAGE = 'sdbmsABC', mat, vec) } sigmoid_Cpp_ <- function(x, vmax, v0, r) { .Call('_sdbmsABC_sigmoid_Cpp_', PACKAGE = 'sdbmsABC', x, vmax, v0, r) } SDE_Cpp_gen_ <- function(vec, dm, cm, randvec) { .Call('_sdbmsABC_SDE_Cpp_gen_', PACKAGE = 'sdbmsABC', vec, dm, cm, randvec) } SDE_Cpp_ <- function(vec, dm, cm, randvec) { .Call('_sdbmsABC_SDE_Cpp_', PACKAGE = 'sdbmsABC', vec, dm, cm, randvec) } ODE_Cpp_ <- function(vec, h, Aa, mu, BbC, C1, C2, C3, vmax, v0, r) { .Call('_sdbmsABC_ODE_Cpp_', PACKAGE = 'sdbmsABC', vec, h, Aa, mu, BbC, C1, C2, C3, vmax, v0, r) } Splitting_JRNMM_gen_Cpp_ <- function(h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) { .Call('_sdbmsABC_Splitting_JRNMM_gen_Cpp_', PACKAGE = 'sdbmsABC', h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) } Splitting_JRNMM_Cpp_ <- function(h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) { .Call('_sdbmsABC_Splitting_JRNMM_Cpp_', PACKAGE = 'sdbmsABC', h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) } Splitting_JRNMM_output_Cpp_ <- function(h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) { .Call('_sdbmsABC_Splitting_JRNMM_output_Cpp_', PACKAGE = 'sdbmsABC', h_i, startv, grid_i, dm_i, cm_i, mu_i, C_i, A, B, a, b, v0, r, vmax) }
\name{createTable} \Rdversion{1.5} \alias{createTable} \title{Function to create an output table} \description{ This function reports the results from the Frequentist and Bayesian model for hmax and for h2. It also creates an output table with the results for all the thresholds in a csv format, so the user can select additional thresholds of interest. } \usage{ createTable(output.ratio, output.bay, dir = getwd(),h=NULL) } \arguments{ \item{output.ratio}{ \code{The output object from the Frequentist model (ratio function)} } \item{output.bay}{ \code{The output object from the Bayesian model (baymod function)} } \item{dir}{ \code{Directory for storing the table} } \item{h}{\code{Additional thresholds in the form of a vector}} } \details{ To select a list of interesting features from the Bayesian model we suggest two decision rules in the paper: 1) the maximum of Median(R(h)) only for the subset of credibility intervals which do not include 1; 2) the largest threshold h for which the ratio R(h) il bigger than 2. The first one is pointing out the strongest deviation from independence, whilst the second is the largest threshold where the number of features called in common at least doubles the number of features in common under independence. } \value{ \item{max }{The results of the R(hmax) statistic} \item{rule2 }{The results using the rule R(h) larger than 2 (see details)} \item{ruleh}{The results using additional thresholds} } \references{ 1. M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments , Genome Biology, 8, R54 } \author{ Alberto Cassese, Marta Blangiardo } \examples{ data = simulation(n=500,GammaA=1,GammaB=1,r1=0.5,r2=0.8, DEfirst=300,DEsecond=200,DEcommon=100) Th<- ratio(data=data$Pval) Rh<- baymod(iter=100,output.ratio=Th) output.table <- createTable(output.ratio=Th,output.bay=Rh) }
/man/createTable.Rd
no_license
AlbertoCassese/sdef
R
false
false
1,962
rd
\name{createTable} \Rdversion{1.5} \alias{createTable} \title{Function to create an output table} \description{ This function reports the results from the Frequentist and Bayesian model for hmax and for h2. It also creates an output table with the results for all the thresholds in a csv format, so the user can select additional thresholds of interest. } \usage{ createTable(output.ratio, output.bay, dir = getwd(),h=NULL) } \arguments{ \item{output.ratio}{ \code{The output object from the Frequentist model (ratio function)} } \item{output.bay}{ \code{The output object from the Bayesian model (baymod function)} } \item{dir}{ \code{Directory for storing the table} } \item{h}{\code{Additional thresholds in the form of a vector}} } \details{ To select a list of interesting features from the Bayesian model we suggest two decision rules in the paper: 1) the maximum of Median(R(h)) only for the subset of credibility intervals which do not include 1; 2) the largest threshold h for which the ratio R(h) il bigger than 2. The first one is pointing out the strongest deviation from independence, whilst the second is the largest threshold where the number of features called in common at least doubles the number of features in common under independence. } \value{ \item{max }{The results of the R(hmax) statistic} \item{rule2 }{The results using the rule R(h) larger than 2 (see details)} \item{ruleh}{The results using additional thresholds} } \references{ 1. M.Blangiardo and S.Richardson (2007) Statistical tools for synthesizing lists of differentially expressed features in related experiments , Genome Biology, 8, R54 } \author{ Alberto Cassese, Marta Blangiardo } \examples{ data = simulation(n=500,GammaA=1,GammaB=1,r1=0.5,r2=0.8, DEfirst=300,DEsecond=200,DEcommon=100) Th<- ratio(data=data$Pval) Rh<- baymod(iter=100,output.ratio=Th) output.table <- createTable(output.ratio=Th,output.bay=Rh) }
#!/usr/bin/Rscript require(bigmemory) require(bigalgebra) require(irlba) con <- file("mat.txt", open = "a") replicate(1, { x <- matrix(rnorm(5 * 5), nrow = 5) write.table(x, file = 'mat.txt', append = TRUE, row.names = FALSE, col.names = FALSE) }) file.info("mat.txt")$size close(con)
/examples/dateGen/mGen.rs
permissive
pomadchin/hadoop-dg-decomp
R
false
false
308
rs
#!/usr/bin/Rscript require(bigmemory) require(bigalgebra) require(irlba) con <- file("mat.txt", open = "a") replicate(1, { x <- matrix(rnorm(5 * 5), nrow = 5) write.table(x, file = 'mat.txt', append = TRUE, row.names = FALSE, col.names = FALSE) }) file.info("mat.txt")$size close(con)
library(shiny) shinyUI(fluidPage( titlePanel("Demonstration of submitButton()"), sidebarLayout( sidebarPanel( selectInput("dataset","Choose a dataset:",choices = c("iris","pressure","mtcars")), numericInput("obs", "Number of observations:", 6), submitButton("Update!"), p("In this example, changing the user input (dataset or number of observations) will not reflect in the output until the Update button is clicked"), p("submitButton is used to control the reactiveness of the change in the user input") ), mainPanel( h4(textOutput("dataname")), verbatimTextOutput("structure"), h4(textOutput("observation")), tableOutput("view") ) ) ))
/shiny/submitButton/example/ui.R
no_license
ChanningC12/Machine-Learning-with-R
R
false
false
857
r
library(shiny) shinyUI(fluidPage( titlePanel("Demonstration of submitButton()"), sidebarLayout( sidebarPanel( selectInput("dataset","Choose a dataset:",choices = c("iris","pressure","mtcars")), numericInput("obs", "Number of observations:", 6), submitButton("Update!"), p("In this example, changing the user input (dataset or number of observations) will not reflect in the output until the Update button is clicked"), p("submitButton is used to control the reactiveness of the change in the user input") ), mainPanel( h4(textOutput("dataname")), verbatimTextOutput("structure"), h4(textOutput("observation")), tableOutput("view") ) ) ))
testlist <- list(A = structure(c(2.31584307392677e+77, 9.53818252170339e+295, 1.22810536106829e+146, 4.12396251261199e-221, 0, 0, 0), .Dim = c(1L, 7L)), B = structure(0, .Dim = c(1L, 1L))) result <- do.call(multivariance:::match_rows,testlist) str(result)
/multivariance/inst/testfiles/match_rows/AFL_match_rows/match_rows_valgrind_files/1613111889-test.R
no_license
akhikolla/updatedatatype-list3
R
false
false
257
r
testlist <- list(A = structure(c(2.31584307392677e+77, 9.53818252170339e+295, 1.22810536106829e+146, 4.12396251261199e-221, 0, 0, 0), .Dim = c(1L, 7L)), B = structure(0, .Dim = c(1L, 1L))) result <- do.call(multivariance:::match_rows,testlist) str(result)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{validation.data} \alias{validation.data} \title{Sample validation data} \format{ An object of class \code{\link[sf]{sf}} with 8 rows and 3 variables \describe{ \item{sight}{1's and 0's indicating species presence/absence} \item{count}{number of individuals observed at each point} \item{geometry}{simple feature list column representing validation data points} } } \usage{ validation.data } \description{ Sample validation data created by cropping Validation_data.csv to the SoCal_bite.csv region (.csv files from ...) } \keyword{datasets}
/man/validation.data.Rd
no_license
cran/eSDM
R
false
true
676
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{validation.data} \alias{validation.data} \title{Sample validation data} \format{ An object of class \code{\link[sf]{sf}} with 8 rows and 3 variables \describe{ \item{sight}{1's and 0's indicating species presence/absence} \item{count}{number of individuals observed at each point} \item{geometry}{simple feature list column representing validation data points} } } \usage{ validation.data } \description{ Sample validation data created by cropping Validation_data.csv to the SoCal_bite.csv region (.csv files from ...) } \keyword{datasets}
#' Exponential Weighted Moving Average (EWMA) Mean Volitility #' #' @param x returns of the portfolio #' @param nstart #' @param robMean if the robust mean is used, default is T #' @param robVol if the robust vol is used, default is T #' @param cc #' @param lambdaMean #' @param lambdaVol #' @param Dyn #' @param lambdaMeanDyn #' @param lambdaVolDyn #' #' @return #' #' @details The robust EWMA mean algorithm has the form #\hat{\mu}_t = \hat{\mu}_{t-1} + (1-\lambda)\hat{\sigma}_{t-1}\psi_{\texttt{hub}} #\left(\frac{x_t-\hat{\mu}_{t-1}}{\hat{\sigma}_{t-1}}\right) #' #' @examples #' @export ewmaMeanVol <- function(x,nstart = 10,robMean = T,robVol = T,cc = 2.5, lambdaMean = 0.9,lambdaVol = 0.9, Dyn = F, lambdaMeanDyn = 0.7,lambdaVolDyn = 0.7) { n <- length(x) index = index(x) x <- coredata(x) # Compute initial robust mean and vol estimates mean.start <- median(x[1:nstart]) vol.start <- mad(x[1:nstart]) # Create output vectors with initial estimates and zeros ewmaMean <- c(rep(mean.start, nstart), rep(0, n - nstart)) ewmaVol <- c(rep(vol.start, nstart), rep(0, n - nstart)) # EWMA recursion ewmaMean.old <- mean.start ewmaVol.old <-vol.start ns1 <- nstart + 1 for(i in ns1:n) { resid <- x[i]-ewmaMean.old #if(robMean) {resid <- ewmaVol.old*psi_modOpt(resid/ewmaVol.old, # cc = c(0.01316352,1.05753107,3.00373939,1.0))} if(robMean) { resid <- ewmaVol.old*psiHuber(resid/ewmaVol.old,cc = cc) } if(Dyn & abs(resid/ewmaVol.old) >= cc) { lambda = lambdaMeanDyn } else { lambda = lambdaMean } ewmaMean.new <- ewmaMean.old + (1 - lambda) * resid ewmaMean[i] <- ewmaMean.new residNew <- x[i]-ewmaMean.new ewmaVar.old <- ewmaVol.old^2 residVar <- residNew^2 - ewmaVar.old #if(robVol) {sPsi <- ewmaVol.old*psi_modOpt(resid/ewmaVol.old, # cc = c(0.01316352,1.05753107,3.00373939,1.0)) # residVar <- sPsi^2 - ewmaVar.old} if(robVol) { sPsi <- ewmaVol.old*psiHuber(resid/ewmaVol.old,cc = cc) residVar <- sPsi^2 - ewmaVar.old } if(Dyn & abs(resid/ewmaVol.old) >= cc) { lambda = lambdaVolDyn } else { lambda = lambdaVol } ewmaVar.new <- ewmaVar.old + (1-lambda)*residVar ewmaVol.new <- sqrt(ewmaVar.new) ewmaVol[i] <- ewmaVol.new ewmaMean.old <- ewmaMean.new ewmaVol.old <- ewmaVol.new } ewmaMeanVol <- xts(cbind(ewmaMean,ewmaVol),order.by = index) return(ewmaMeanVol) }
/R/ewmaMeanVol.R
permissive
kecoli/PCRM
R
false
false
2,657
r
#' Exponential Weighted Moving Average (EWMA) Mean Volitility #' #' @param x returns of the portfolio #' @param nstart #' @param robMean if the robust mean is used, default is T #' @param robVol if the robust vol is used, default is T #' @param cc #' @param lambdaMean #' @param lambdaVol #' @param Dyn #' @param lambdaMeanDyn #' @param lambdaVolDyn #' #' @return #' #' @details The robust EWMA mean algorithm has the form #\hat{\mu}_t = \hat{\mu}_{t-1} + (1-\lambda)\hat{\sigma}_{t-1}\psi_{\texttt{hub}} #\left(\frac{x_t-\hat{\mu}_{t-1}}{\hat{\sigma}_{t-1}}\right) #' #' @examples #' @export ewmaMeanVol <- function(x,nstart = 10,robMean = T,robVol = T,cc = 2.5, lambdaMean = 0.9,lambdaVol = 0.9, Dyn = F, lambdaMeanDyn = 0.7,lambdaVolDyn = 0.7) { n <- length(x) index = index(x) x <- coredata(x) # Compute initial robust mean and vol estimates mean.start <- median(x[1:nstart]) vol.start <- mad(x[1:nstart]) # Create output vectors with initial estimates and zeros ewmaMean <- c(rep(mean.start, nstart), rep(0, n - nstart)) ewmaVol <- c(rep(vol.start, nstart), rep(0, n - nstart)) # EWMA recursion ewmaMean.old <- mean.start ewmaVol.old <-vol.start ns1 <- nstart + 1 for(i in ns1:n) { resid <- x[i]-ewmaMean.old #if(robMean) {resid <- ewmaVol.old*psi_modOpt(resid/ewmaVol.old, # cc = c(0.01316352,1.05753107,3.00373939,1.0))} if(robMean) { resid <- ewmaVol.old*psiHuber(resid/ewmaVol.old,cc = cc) } if(Dyn & abs(resid/ewmaVol.old) >= cc) { lambda = lambdaMeanDyn } else { lambda = lambdaMean } ewmaMean.new <- ewmaMean.old + (1 - lambda) * resid ewmaMean[i] <- ewmaMean.new residNew <- x[i]-ewmaMean.new ewmaVar.old <- ewmaVol.old^2 residVar <- residNew^2 - ewmaVar.old #if(robVol) {sPsi <- ewmaVol.old*psi_modOpt(resid/ewmaVol.old, # cc = c(0.01316352,1.05753107,3.00373939,1.0)) # residVar <- sPsi^2 - ewmaVar.old} if(robVol) { sPsi <- ewmaVol.old*psiHuber(resid/ewmaVol.old,cc = cc) residVar <- sPsi^2 - ewmaVar.old } if(Dyn & abs(resid/ewmaVol.old) >= cc) { lambda = lambdaVolDyn } else { lambda = lambdaVol } ewmaVar.new <- ewmaVar.old + (1-lambda)*residVar ewmaVol.new <- sqrt(ewmaVar.new) ewmaVol[i] <- ewmaVol.new ewmaMean.old <- ewmaMean.new ewmaVol.old <- ewmaVol.new } ewmaMeanVol <- xts(cbind(ewmaMean,ewmaVol),order.by = index) return(ewmaMeanVol) }
library(dplyr) data<-read.csv("Movies_Distance_Matrix_2.csv",header=T) raw<-read.csv("oscar_nominations.csv",header=T) oscar<-filter(data,movies %in% raw$Title) oscar_index<-oscar[,1]+1 n<-length(oscar_index) distance_matrix<-data[oscar_index,] distance_matrix<-distance_matrix[,-1] distance_matrix<-distance_matrix[,oscar_index] title<-data.frame(index=1:78,title=data[oscar_index,]$movies) save(distance_matrix,title,file="distance_matrix.RData") load("distance_matrix.RData") distance_matrix<-distance_matrix[-28,-28] title<-title[-28,] title$index<-1:77 movie$index<-1:77 save(movie,distance_matrix,file="oscars_summary.RData") load("oscars_summary.RData")
/lib/matrix_process.R
no_license
TZstatsADS/Spr2016-Proj4-Grp5
R
false
false
691
r
library(dplyr) data<-read.csv("Movies_Distance_Matrix_2.csv",header=T) raw<-read.csv("oscar_nominations.csv",header=T) oscar<-filter(data,movies %in% raw$Title) oscar_index<-oscar[,1]+1 n<-length(oscar_index) distance_matrix<-data[oscar_index,] distance_matrix<-distance_matrix[,-1] distance_matrix<-distance_matrix[,oscar_index] title<-data.frame(index=1:78,title=data[oscar_index,]$movies) save(distance_matrix,title,file="distance_matrix.RData") load("distance_matrix.RData") distance_matrix<-distance_matrix[-28,-28] title<-title[-28,] title$index<-1:77 movie$index<-1:77 save(movie,distance_matrix,file="oscars_summary.RData") load("oscars_summary.RData")
#' @name prepSim #' #' @title SCE preparation for \code{\link{simData}} #' #' @description \code{prepSim} prepares an input SCE for simulation #' with \code{muscat}'s \code{\link{simData}} function by #' \enumerate{ #' \item{basic filtering of genes and cells} #' \item{(optional) filtering of subpopulation-sample instances} #' \item{estimation of cell (library sizes) and gene parameters #' (dispersions and sample-specific means), respectively.} #' } #' #' @param x a \code{\link[SingleCellExperiment]{SingleCellExperiment}}. #' @param min_count,min_cells used for filtering of genes; only genes with #' a count > \code{min_count} in >= \code{min_cells} will be retained. #' @param min_genes used for filtering cells; #' only cells with a count > 0 in >= \code{min_genes} will be retained. #' @param min_size used for filtering subpopulation-sample combinations; #' only instances with >= \code{min_size} cells will be retained. #' Specifying \code{min_size = NULL} skips this step. #' @param group_keep character string; if \code{nlevels(x$group_id) > 1}, #' specifies which group of samples to keep (see details). The default #' NULL retains samples from \code{levels(x$group_id)[1]}; otherwise, #' if `colData(x)$group_id` is not specified, all samples will be kept. #' @param verbose logical; should information on progress be reported? #' #' @details For each gene \eqn{g}, \code{prepSim} fits a model to estimate #' sample-specific means \eqn{\beta_g^s}, for each sample \eqn{s}, #' and dispersion parameters \eqn{\phi_g} using \code{edgeR}'s #' \code{\link[edgeR]{estimateDisp}} function with default parameters. #' Thus, the reference count data is modeled as NB distributed: #' \deqn{Y_{gc} \sim NB(\mu_{gc}, \phi_g)} #' for gene \eqn{g} and cell \eqn{c}, where the mean #' \eqn{\mu_{gc} = \exp(\beta_{g}^{s(c)}) \cdot \lambda_c}. Here, #' \eqn{\beta_{g}^{s(c)}} is the relative abundance of gene \eqn{g} #' in sample \eqn{s(c)}, \eqn{\lambda_c} is the library size #' (total number of counts), and \eqn{\phi_g} is the dispersion. #' #' @return a \code{\link[SingleCellExperiment]{SingleCellExperiment}} #' containing, for each cell, library size (\code{colData(x)$offset}) #' and, for each gene, dispersion and sample-specific mean estimates #' (\code{rowData(x)$dispersion} and \code{$beta.sample_id}, respectively). #' #' @examples #' # estimate simulation parameters #' data(example_sce) #' ref <- prepSim(example_sce) #' #' # tabulate number of genes/cells before vs. after #' ns <- cbind( #' before = dim(example_sce), #' after = dim(ref)) #' rownames(ns) <- c("#genes", "#cells") #' ns #' #' library(SingleCellExperiment) #' head(rowData(ref)) # gene parameters #' head(colData(ref)) # cell parameters #' #' @author Helena L Crowell #' #' @references #' Crowell, HL, Soneson, C, Germain, P-L, Calini, D, #' Collin, L, Raposo, C, Malhotra, D & Robinson, MD: #' On the discovery of population-specific state transitions from #' multi-sample multi-condition single-cell RNA sequencing data. #' \emph{bioRxiv} \strong{713412} (2018). #' doi: \url{https://doi.org/10.1101/713412} #' #' @importFrom edgeR DGEList estimateDisp glmFit #' @importFrom Matrix colSums rowSums #' @importFrom matrixStats rowAnyNAs #' @importFrom SingleCellExperiment SingleCellExperiment counts #' @importFrom SummarizedExperiment colData rowData<- #' @importFrom stats model.matrix #' @importFrom S4Vectors DataFrame #' @export prepSim <- function(x, min_count = 1, min_cells = 10, min_genes = 100, min_size = 100, group_keep = NULL, verbose = TRUE) { .check_sce(x, req_group = FALSE) stopifnot(is.numeric(min_count), is.numeric(min_cells), is.numeric(min_genes), is.null(min_size) || is.numeric(min_size), is.logical(verbose), length(verbose) == 1) # get model variables vars <- c("sample_id", "cluster_id") names(vars) <- vars <- intersect(vars, names(colData(x))) # assure these are factors for (v in vars) { # drop singular variables n <- length(unique(x[[v]])) if (n == 1) { x[[v]] <- NULL rmv <- grep(v, vars) vars <- vars[-rmv] next } if (!is.factor(x[[v]])) x[[v]] <- as.factor(x[[v]]) x[[v]] <- droplevels(x[[v]]) } n_cells0 <- ncol(x) x <- .update_sce(x) if (is.null(group_keep)) { if ("group_id" %in% colnames(colData(x))) { group_keep <- levels(x$group_id)[1] if (verbose) { fmt <- paste( "Argument `group_keep` unspecified;", "defaulting to retaining %s-group samples.") message(sprintf(fmt, dQuote(group_keep))) } cells_keep <- x$group_id == group_keep } else { cells_keep <- seq_len(ncol(x)) } } else { stopifnot(is.character(group_keep), group_keep %in% levels(x$group_id)) cells_keep <- x$group_id %in% group_keep } x <- x[, cells_keep] x <- .update_sce(x) # keep genes w/ count > `min_count` in at least `min_cells`; # keep cells w/ at least `min_genes` detected genes if (verbose) message("Filtering...") genes_keep <- rowSums(counts(x) > min_count) >= min_cells cells_keep <- colSums(counts(x) > 0) >= min_genes if (verbose) message(sprintf( "- %s/%s genes and %s/%s cells retained.", sum(genes_keep), nrow(x), sum(cells_keep), n_cells0)) x <- x[genes_keep, cells_keep, drop = FALSE] # keep cluster-samples w/ at least 'min_size' cells if (!is.null(min_size)) { n_cells <- table(x$cluster_id, x$sample_id) n_cells <- .filter_matrix(n_cells, n = min_size) if (ncol(n_cells) == 1) stop("Current 'min_size' retains only 1 sample,\nbut", " mean-dispersion estimation requires at least 2.") if (verbose) message(sprintf( "- %s/%s subpopulations and %s/%s samples retained.", nrow(n_cells), nlevels(x$cluster_id), ncol(n_cells), nlevels(x$sample_id))) x <- .filter_sce(x, rownames(n_cells), colnames(n_cells)) } if (is.null(rownames(x))) rownames(x) <- paste0("gene", seq(nrow(x))) if (is.null(colnames(x))) colnames(x) <- paste0("cell", seq(ncol(x))) # construct model formula f <- "~ 1" for (v in vars) f <- paste(f, v, sep = "+") cd <- as.data.frame(droplevels(colData(x))) mm <- model.matrix(as.formula(f), data = cd) # fit NB model if (verbose) message("Estimating gene and cell parameters...") y <- DGEList(counts(x)) y <- calcNormFactors(y) y <- estimateDisp(y, mm) y <- glmFit(y, prior.count = 0) # drop genes for which estimation failed cs <- y$coefficients x <- x[!rowAnyNAs(cs), ] # group betas by variable bs <- DataFrame( beta0 = cs[, 1], row.names = rownames(x)) for (v in vars) { pat <- paste0("^", v) i <- grep(pat, colnames(cs)) df <- DataFrame(cs[, i]) nms <- colnames(cs)[i] names(df) <- gsub(pat, "", nms) bs[[v]] <- df } rowData(x)$beta <- bs # store dispersions in row- & offsets in colData ds <- y$dispersion names(ds) <- rownames(x) rowData(x)$disp <- ds os <- c(y$offset) names(os) <- colnames(x) x$offset <- os # return SCE return(x) }
/R/prepSim.R
no_license
retogerber/muscat
R
false
false
7,580
r
#' @name prepSim #' #' @title SCE preparation for \code{\link{simData}} #' #' @description \code{prepSim} prepares an input SCE for simulation #' with \code{muscat}'s \code{\link{simData}} function by #' \enumerate{ #' \item{basic filtering of genes and cells} #' \item{(optional) filtering of subpopulation-sample instances} #' \item{estimation of cell (library sizes) and gene parameters #' (dispersions and sample-specific means), respectively.} #' } #' #' @param x a \code{\link[SingleCellExperiment]{SingleCellExperiment}}. #' @param min_count,min_cells used for filtering of genes; only genes with #' a count > \code{min_count} in >= \code{min_cells} will be retained. #' @param min_genes used for filtering cells; #' only cells with a count > 0 in >= \code{min_genes} will be retained. #' @param min_size used for filtering subpopulation-sample combinations; #' only instances with >= \code{min_size} cells will be retained. #' Specifying \code{min_size = NULL} skips this step. #' @param group_keep character string; if \code{nlevels(x$group_id) > 1}, #' specifies which group of samples to keep (see details). The default #' NULL retains samples from \code{levels(x$group_id)[1]}; otherwise, #' if `colData(x)$group_id` is not specified, all samples will be kept. #' @param verbose logical; should information on progress be reported? #' #' @details For each gene \eqn{g}, \code{prepSim} fits a model to estimate #' sample-specific means \eqn{\beta_g^s}, for each sample \eqn{s}, #' and dispersion parameters \eqn{\phi_g} using \code{edgeR}'s #' \code{\link[edgeR]{estimateDisp}} function with default parameters. #' Thus, the reference count data is modeled as NB distributed: #' \deqn{Y_{gc} \sim NB(\mu_{gc}, \phi_g)} #' for gene \eqn{g} and cell \eqn{c}, where the mean #' \eqn{\mu_{gc} = \exp(\beta_{g}^{s(c)}) \cdot \lambda_c}. Here, #' \eqn{\beta_{g}^{s(c)}} is the relative abundance of gene \eqn{g} #' in sample \eqn{s(c)}, \eqn{\lambda_c} is the library size #' (total number of counts), and \eqn{\phi_g} is the dispersion. #' #' @return a \code{\link[SingleCellExperiment]{SingleCellExperiment}} #' containing, for each cell, library size (\code{colData(x)$offset}) #' and, for each gene, dispersion and sample-specific mean estimates #' (\code{rowData(x)$dispersion} and \code{$beta.sample_id}, respectively). #' #' @examples #' # estimate simulation parameters #' data(example_sce) #' ref <- prepSim(example_sce) #' #' # tabulate number of genes/cells before vs. after #' ns <- cbind( #' before = dim(example_sce), #' after = dim(ref)) #' rownames(ns) <- c("#genes", "#cells") #' ns #' #' library(SingleCellExperiment) #' head(rowData(ref)) # gene parameters #' head(colData(ref)) # cell parameters #' #' @author Helena L Crowell #' #' @references #' Crowell, HL, Soneson, C, Germain, P-L, Calini, D, #' Collin, L, Raposo, C, Malhotra, D & Robinson, MD: #' On the discovery of population-specific state transitions from #' multi-sample multi-condition single-cell RNA sequencing data. #' \emph{bioRxiv} \strong{713412} (2018). #' doi: \url{https://doi.org/10.1101/713412} #' #' @importFrom edgeR DGEList estimateDisp glmFit #' @importFrom Matrix colSums rowSums #' @importFrom matrixStats rowAnyNAs #' @importFrom SingleCellExperiment SingleCellExperiment counts #' @importFrom SummarizedExperiment colData rowData<- #' @importFrom stats model.matrix #' @importFrom S4Vectors DataFrame #' @export prepSim <- function(x, min_count = 1, min_cells = 10, min_genes = 100, min_size = 100, group_keep = NULL, verbose = TRUE) { .check_sce(x, req_group = FALSE) stopifnot(is.numeric(min_count), is.numeric(min_cells), is.numeric(min_genes), is.null(min_size) || is.numeric(min_size), is.logical(verbose), length(verbose) == 1) # get model variables vars <- c("sample_id", "cluster_id") names(vars) <- vars <- intersect(vars, names(colData(x))) # assure these are factors for (v in vars) { # drop singular variables n <- length(unique(x[[v]])) if (n == 1) { x[[v]] <- NULL rmv <- grep(v, vars) vars <- vars[-rmv] next } if (!is.factor(x[[v]])) x[[v]] <- as.factor(x[[v]]) x[[v]] <- droplevels(x[[v]]) } n_cells0 <- ncol(x) x <- .update_sce(x) if (is.null(group_keep)) { if ("group_id" %in% colnames(colData(x))) { group_keep <- levels(x$group_id)[1] if (verbose) { fmt <- paste( "Argument `group_keep` unspecified;", "defaulting to retaining %s-group samples.") message(sprintf(fmt, dQuote(group_keep))) } cells_keep <- x$group_id == group_keep } else { cells_keep <- seq_len(ncol(x)) } } else { stopifnot(is.character(group_keep), group_keep %in% levels(x$group_id)) cells_keep <- x$group_id %in% group_keep } x <- x[, cells_keep] x <- .update_sce(x) # keep genes w/ count > `min_count` in at least `min_cells`; # keep cells w/ at least `min_genes` detected genes if (verbose) message("Filtering...") genes_keep <- rowSums(counts(x) > min_count) >= min_cells cells_keep <- colSums(counts(x) > 0) >= min_genes if (verbose) message(sprintf( "- %s/%s genes and %s/%s cells retained.", sum(genes_keep), nrow(x), sum(cells_keep), n_cells0)) x <- x[genes_keep, cells_keep, drop = FALSE] # keep cluster-samples w/ at least 'min_size' cells if (!is.null(min_size)) { n_cells <- table(x$cluster_id, x$sample_id) n_cells <- .filter_matrix(n_cells, n = min_size) if (ncol(n_cells) == 1) stop("Current 'min_size' retains only 1 sample,\nbut", " mean-dispersion estimation requires at least 2.") if (verbose) message(sprintf( "- %s/%s subpopulations and %s/%s samples retained.", nrow(n_cells), nlevels(x$cluster_id), ncol(n_cells), nlevels(x$sample_id))) x <- .filter_sce(x, rownames(n_cells), colnames(n_cells)) } if (is.null(rownames(x))) rownames(x) <- paste0("gene", seq(nrow(x))) if (is.null(colnames(x))) colnames(x) <- paste0("cell", seq(ncol(x))) # construct model formula f <- "~ 1" for (v in vars) f <- paste(f, v, sep = "+") cd <- as.data.frame(droplevels(colData(x))) mm <- model.matrix(as.formula(f), data = cd) # fit NB model if (verbose) message("Estimating gene and cell parameters...") y <- DGEList(counts(x)) y <- calcNormFactors(y) y <- estimateDisp(y, mm) y <- glmFit(y, prior.count = 0) # drop genes for which estimation failed cs <- y$coefficients x <- x[!rowAnyNAs(cs), ] # group betas by variable bs <- DataFrame( beta0 = cs[, 1], row.names = rownames(x)) for (v in vars) { pat <- paste0("^", v) i <- grep(pat, colnames(cs)) df <- DataFrame(cs[, i]) nms <- colnames(cs)[i] names(df) <- gsub(pat, "", nms) bs[[v]] <- df } rowData(x)$beta <- bs # store dispersions in row- & offsets in colData ds <- y$dispersion names(ds) <- rownames(x) rowData(x)$disp <- ds os <- c(y$offset) names(os) <- colnames(x) x$offset <- os # return SCE return(x) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/algorithm_sc10Z.R \name{sc10Z} \alias{sc10Z} \title{Spectral Clustering by Zhang et al. (2010)} \usage{ sc10Z(data, k = 2, ...) } \arguments{ \item{data}{an \eqn{(n\times p)} matrix of row-stacked observations or S3 \code{dist} object of \eqn{n} observations.} \item{k}{the number of clusters (default: 2).} \item{...}{extra parameters including \describe{ \item{algclust}{method to perform clustering on embedded data; either \code{"kmeans"} (default) or \code{"GMM"}.} \item{maxiter}{the maximum number of iterations (default: 10).} }} } \value{ a named list of S3 class \code{T4cluster} containing \describe{ \item{cluster}{a length-\eqn{n} vector of class labels (from \eqn{1:k}).} \item{eigval}{eigenvalues of the graph laplacian's spectral decomposition.} \item{embeds}{an \eqn{(n\times k)} low-dimensional embedding.} \item{algorithm}{name of the algorithm.} } } \description{ The algorithm defines a set of data-driven bandwidth parameters \eqn{p_{ij}} by constructing a similarity matrix. Then the affinity matrix is defined as \deqn{A_{ij} = \exp(-d(x_i, d_j)^2 / 2 p_{ij}} and the standard spectral clustering of Ng, Jordan, and Weiss (\code{\link{scNJW}}) is applied. } \examples{ # ------------------------------------------------------------- # clustering with 'iris' dataset # ------------------------------------------------------------- ## PREPARE data(iris) X = as.matrix(iris[,1:4]) lab = as.integer(as.factor(iris[,5])) ## EMBEDDING WITH PCA X2d = Rdimtools::do.pca(X, ndim=2)$Y ## CLUSTERING WITH DIFFERENT K VALUES cl2 = sc10Z(X, k=2)$cluster cl3 = sc10Z(X, k=3)$cluster cl4 = sc10Z(X, k=4)$cluster ## VISUALIZATION opar <- par(no.readonly=TRUE) par(mfrow=c(1,4), pty="s") plot(X2d, col=lab, pch=19, main="true label") plot(X2d, col=cl2, pch=19, main="sc10Z: k=2") plot(X2d, col=cl3, pch=19, main="sc10Z: k=3") plot(X2d, col=cl4, pch=19, main="sc10Z: k=4") par(opar) } \references{ \insertRef{zhang_spectral_2010}{T4cluster} } \concept{algorithm}
/T4cluster/man/sc10Z.Rd
no_license
akhikolla/TestedPackages-NoIssues
R
false
true
2,071
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/algorithm_sc10Z.R \name{sc10Z} \alias{sc10Z} \title{Spectral Clustering by Zhang et al. (2010)} \usage{ sc10Z(data, k = 2, ...) } \arguments{ \item{data}{an \eqn{(n\times p)} matrix of row-stacked observations or S3 \code{dist} object of \eqn{n} observations.} \item{k}{the number of clusters (default: 2).} \item{...}{extra parameters including \describe{ \item{algclust}{method to perform clustering on embedded data; either \code{"kmeans"} (default) or \code{"GMM"}.} \item{maxiter}{the maximum number of iterations (default: 10).} }} } \value{ a named list of S3 class \code{T4cluster} containing \describe{ \item{cluster}{a length-\eqn{n} vector of class labels (from \eqn{1:k}).} \item{eigval}{eigenvalues of the graph laplacian's spectral decomposition.} \item{embeds}{an \eqn{(n\times k)} low-dimensional embedding.} \item{algorithm}{name of the algorithm.} } } \description{ The algorithm defines a set of data-driven bandwidth parameters \eqn{p_{ij}} by constructing a similarity matrix. Then the affinity matrix is defined as \deqn{A_{ij} = \exp(-d(x_i, d_j)^2 / 2 p_{ij}} and the standard spectral clustering of Ng, Jordan, and Weiss (\code{\link{scNJW}}) is applied. } \examples{ # ------------------------------------------------------------- # clustering with 'iris' dataset # ------------------------------------------------------------- ## PREPARE data(iris) X = as.matrix(iris[,1:4]) lab = as.integer(as.factor(iris[,5])) ## EMBEDDING WITH PCA X2d = Rdimtools::do.pca(X, ndim=2)$Y ## CLUSTERING WITH DIFFERENT K VALUES cl2 = sc10Z(X, k=2)$cluster cl3 = sc10Z(X, k=3)$cluster cl4 = sc10Z(X, k=4)$cluster ## VISUALIZATION opar <- par(no.readonly=TRUE) par(mfrow=c(1,4), pty="s") plot(X2d, col=lab, pch=19, main="true label") plot(X2d, col=cl2, pch=19, main="sc10Z: k=2") plot(X2d, col=cl3, pch=19, main="sc10Z: k=3") plot(X2d, col=cl4, pch=19, main="sc10Z: k=4") par(opar) } \references{ \insertRef{zhang_spectral_2010}{T4cluster} } \concept{algorithm}
#calcualte LM dir.create("./results/R2/") stages <- read.csv("./data/raw_data/stages.csv") #--------------------- #unimodal #--------------------- simulated <- read.csv("./results/compiled_LBGs/unimodal_simulated.csv") sampled <- read.csv("./results/compiled_LBGs/unimodal_sampled.csv") rarefied <- read.csv("./results/compiled_LBGs/unimodal_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i sim <- subset(simulated, name == i) samp <- subset(sampled, name == i) rare <- subset(rarefied, name == i) sampled_r2 <- summary(lm(sim$prop_richness~samp$prop_richness))$r.squared sampled_pval <- summary(lm(sim$prop_richness~samp$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(sim$prop_richness~rare$prop_richness))$r.squared rarefied_pval <- summary(lm(sim$prop_richness~rare$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/unimodal_temporal_R2.csv", row.names = FALSE) #--------------------- #bimodal #--------------------- simulated <- read.csv("./results/compiled_LBGs/bimodal_simulated.csv") sampled <- read.csv("./results/compiled_LBGs/bimodal_sampled.csv") rarefied <- read.csv("./results/compiled_LBGs/bimodal_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i sim <- subset(simulated, name == i) samp <- subset(sampled, name == i) rare <- subset(rarefied, name == i) sampled_r2 <- summary(lm(sim$prop_richness~samp$prop_richness))$r.squared sampled_pval <- summary(lm(sim$prop_richness~samp$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(sim$prop_richness~rare$prop_richness))$r.squared rarefied_pval <- summary(lm(sim$prop_richness~rare$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/bimodal_temporal_R2.csv", row.names = FALSE) #--------------------- #flat #--------------------- simulated <- read.csv("./results/compiled_LBGs/flat_simulated.csv") sampled <- read.csv("./results/compiled_LBGs/flat_sampled.csv") rarefied <- read.csv("./results/compiled_LBGs/flat_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i sim <- subset(simulated, name == i) samp <- subset(sampled, name == i) rare <- subset(rarefied, name == i) sampled_r2 <- summary(lm(sim$prop_richness~samp$prop_richness))$r.squared sampled_pval <- summary(lm(sim$prop_richness~samp$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(sim$prop_richness~rare$prop_richness))$r.squared rarefied_pval <- summary(lm(sim$prop_richness~rare$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/flat_temporal_R2.csv", row.names = FALSE) #--------------------- #LBG type #--------------------- unimodal_sim <- read.csv("./results/compiled_LBGs/unimodal_simulated.csv") bimodal_sim <- read.csv("./results/compiled_LBGs/bimodal_simulated.csv") unimodal_samp <- read.csv("./results/compiled_LBGs/unimodal_sampled.csv") bimodal_samp <- read.csv("./results/compiled_LBGs/bimodal_sampled.csv") unimodal_rare <- read.csv("./results/compiled_LBGs/unimodal_rarefied.csv") bimodal_rare <- read.csv("./results/compiled_LBGs/bimodal_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i simulated_r2 <- summary(lm(subset(unimodal_sim, name == i)$prop_richness~subset(bimodal_sim, name == i)$prop_richness))$r.squared simulated_pval <- summary(lm(subset(unimodal_sim, name == i)$prop_richness~subset(bimodal_sim, name == i)$prop_richness))$coefficients[8] sampled_r2 <- summary(lm(subset(unimodal_samp, name == i)$prop_richness~subset(bimodal_samp, name == i)$prop_richness))$r.squared sampled_pval <- summary(lm(subset(unimodal_samp, name == i)$prop_richness~subset(bimodal_samp, name == i)$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(subset(unimodal_rare, name == i)$prop_richness~subset(bimodal_rare, name == i)$prop_richness))$r.squared rarefied_pval <- summary(lm(subset(unimodal_rare, name == i)$prop_richness~subset(bimodal_rare, name == i)$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, simulated_r2, simulated_pval, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/LBG_type_R2.csv", row.names = FALSE)
/R/subscripts/calculate_R2.R
permissive
LewisAJones/LBG_sim
R
false
false
5,075
r
#calcualte LM dir.create("./results/R2/") stages <- read.csv("./data/raw_data/stages.csv") #--------------------- #unimodal #--------------------- simulated <- read.csv("./results/compiled_LBGs/unimodal_simulated.csv") sampled <- read.csv("./results/compiled_LBGs/unimodal_sampled.csv") rarefied <- read.csv("./results/compiled_LBGs/unimodal_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i sim <- subset(simulated, name == i) samp <- subset(sampled, name == i) rare <- subset(rarefied, name == i) sampled_r2 <- summary(lm(sim$prop_richness~samp$prop_richness))$r.squared sampled_pval <- summary(lm(sim$prop_richness~samp$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(sim$prop_richness~rare$prop_richness))$r.squared rarefied_pval <- summary(lm(sim$prop_richness~rare$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/unimodal_temporal_R2.csv", row.names = FALSE) #--------------------- #bimodal #--------------------- simulated <- read.csv("./results/compiled_LBGs/bimodal_simulated.csv") sampled <- read.csv("./results/compiled_LBGs/bimodal_sampled.csv") rarefied <- read.csv("./results/compiled_LBGs/bimodal_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i sim <- subset(simulated, name == i) samp <- subset(sampled, name == i) rare <- subset(rarefied, name == i) sampled_r2 <- summary(lm(sim$prop_richness~samp$prop_richness))$r.squared sampled_pval <- summary(lm(sim$prop_richness~samp$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(sim$prop_richness~rare$prop_richness))$r.squared rarefied_pval <- summary(lm(sim$prop_richness~rare$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/bimodal_temporal_R2.csv", row.names = FALSE) #--------------------- #flat #--------------------- simulated <- read.csv("./results/compiled_LBGs/flat_simulated.csv") sampled <- read.csv("./results/compiled_LBGs/flat_sampled.csv") rarefied <- read.csv("./results/compiled_LBGs/flat_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i sim <- subset(simulated, name == i) samp <- subset(sampled, name == i) rare <- subset(rarefied, name == i) sampled_r2 <- summary(lm(sim$prop_richness~samp$prop_richness))$r.squared sampled_pval <- summary(lm(sim$prop_richness~samp$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(sim$prop_richness~rare$prop_richness))$r.squared rarefied_pval <- summary(lm(sim$prop_richness~rare$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/flat_temporal_R2.csv", row.names = FALSE) #--------------------- #LBG type #--------------------- unimodal_sim <- read.csv("./results/compiled_LBGs/unimodal_simulated.csv") bimodal_sim <- read.csv("./results/compiled_LBGs/bimodal_simulated.csv") unimodal_samp <- read.csv("./results/compiled_LBGs/unimodal_sampled.csv") bimodal_samp <- read.csv("./results/compiled_LBGs/bimodal_sampled.csv") unimodal_rare <- read.csv("./results/compiled_LBGs/unimodal_rarefied.csv") bimodal_rare <- read.csv("./results/compiled_LBGs/bimodal_rarefied.csv") master <- data.frame() for(i in stages$name){ name <- i simulated_r2 <- summary(lm(subset(unimodal_sim, name == i)$prop_richness~subset(bimodal_sim, name == i)$prop_richness))$r.squared simulated_pval <- summary(lm(subset(unimodal_sim, name == i)$prop_richness~subset(bimodal_sim, name == i)$prop_richness))$coefficients[8] sampled_r2 <- summary(lm(subset(unimodal_samp, name == i)$prop_richness~subset(bimodal_samp, name == i)$prop_richness))$r.squared sampled_pval <- summary(lm(subset(unimodal_samp, name == i)$prop_richness~subset(bimodal_samp, name == i)$prop_richness))$coefficients[8] rarefied_r2 <- summary(lm(subset(unimodal_rare, name == i)$prop_richness~subset(bimodal_rare, name == i)$prop_richness))$r.squared rarefied_pval <- summary(lm(subset(unimodal_rare, name == i)$prop_richness~subset(bimodal_rare, name == i)$prop_richness))$coefficients[8] tmp <- cbind.data.frame(name, simulated_r2, simulated_pval, sampled_r2, sampled_pval, rarefied_r2, rarefied_pval) master <- rbind.data.frame(master, tmp) } master <- plyr::join(master, stages, by = "name", type = "left") master <- master[order(master$max_age),] write.csv(master, "./results/R2/LBG_type_R2.csv", row.names = FALSE)
.onewrq <- function(form, tau, data, Y, X1, X2, subject, death, time, interval.death, impute, weight, wcompute, seed, intermittent) { ## graine set.seed(seed) ## sujet dans data numeros <- unique(data[,subject]) n <- length(numeros) ## poids dans l'echantillon de depart poidsechdepart <- data[,weight] if(wcompute!=1) { data$poidsechdepart <- data[,weight] data <- data[,-which(colnames(data)==weight)] } ## echantillon boot num_b <- sample(numeros, size=n, replace=TRUE) j_b <- sapply(num_b,function(i) which(data[,subject]==i,useNames=FALSE)) j_b <- unlist(j_b,use.names=FALSE) nbmes_b <- sapply(num_b,function(i) length(which(data[,subject]==i)),USE.NAMES=FALSE) ech_b <- data[j_b,] ech_b[,subject] <- rep(1:n,nbmes_b) ## estimation des modeles if(wcompute==0) ## on ne recalcule pas { ## modeles si on ne recalcule pas les poids mold <- rq(formula=form,tau=tau,data=ech_b,weights=poidsechdepart) } else { if(wcompute==1) ## on recalcule { ## ajout des nouveaux poids if(intermittent==FALSE) { dataw <- weightsMMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,interval.death=interval.death)$data } if(intermittent==TRUE) { dataw <- weightsIMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,impute=impute)$data } ## modeles mnew <- rq(formula=form,tau=tau,data=dataw,weights=weight) } else ## on fait les 2 { ## modeles si on ne recalcule pas les poids mold <- rq(formula=form,tau=tau,data=ech_b,weights=poidsechdepart) ## ajout des poids if(intermittent==FALSE) { dataw <- weightsMMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,interval.death=interval.death)$data } if(intermittent==TRUE) { dataw <- weightsIMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,impute=impute)$data } ## modeles mnew <- rq(formula=form,tau=tau,data=dataw,weights=weight) } } ## garder les coef coef_b0 <- NULL nbcoef0 <- 0 nomcoef0 <- NULL if(exists("mold")) { coef_b0 <- mold$coefficients if(length(tau)==1) { nbcoef0 <- length(coef_b0) nomcoef0 <- paste("calc0",rep(tau,each=nbcoef0),names(coef_b0),sep="_") } else { nbcoef0 <- nrow(coef_b0) nomcoef0 <- paste("calc0",rep(tau,each=nbcoef0),rownames(coef_b0),sep="_") } } coef_b1 <- NULL nbcoef1 <- 0 nomcoef1 <- NULL if(exists("mnew")) { coef_b1 <- mnew$coefficients if(length(tau)==1) { nbcoef1 <- length(coef_b1) nomcoef1 <- paste("calc1",rep(tau,each=nbcoef1),names(coef_b1),sep="_") } else { nbcoef1 <- nrow(coef_b1) nomcoef1 <- paste("calc1",rep(tau,each=nbcoef1),rownames(coef_b1),sep="_") } } coef_b <- c(coef_b0,coef_b1) nomcoef <- c(nomcoef0,nomcoef1) res <- c(as.vector(coef_b),seed) names(res) <- c(nomcoef,"seed") return(res) }
/R/onewrq.R
no_license
VivianePhilipps/weightQuant
R
false
false
4,463
r
.onewrq <- function(form, tau, data, Y, X1, X2, subject, death, time, interval.death, impute, weight, wcompute, seed, intermittent) { ## graine set.seed(seed) ## sujet dans data numeros <- unique(data[,subject]) n <- length(numeros) ## poids dans l'echantillon de depart poidsechdepart <- data[,weight] if(wcompute!=1) { data$poidsechdepart <- data[,weight] data <- data[,-which(colnames(data)==weight)] } ## echantillon boot num_b <- sample(numeros, size=n, replace=TRUE) j_b <- sapply(num_b,function(i) which(data[,subject]==i,useNames=FALSE)) j_b <- unlist(j_b,use.names=FALSE) nbmes_b <- sapply(num_b,function(i) length(which(data[,subject]==i)),USE.NAMES=FALSE) ech_b <- data[j_b,] ech_b[,subject] <- rep(1:n,nbmes_b) ## estimation des modeles if(wcompute==0) ## on ne recalcule pas { ## modeles si on ne recalcule pas les poids mold <- rq(formula=form,tau=tau,data=ech_b,weights=poidsechdepart) } else { if(wcompute==1) ## on recalcule { ## ajout des nouveaux poids if(intermittent==FALSE) { dataw <- weightsMMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,interval.death=interval.death)$data } if(intermittent==TRUE) { dataw <- weightsIMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,impute=impute)$data } ## modeles mnew <- rq(formula=form,tau=tau,data=dataw,weights=weight) } else ## on fait les 2 { ## modeles si on ne recalcule pas les poids mold <- rq(formula=form,tau=tau,data=ech_b,weights=poidsechdepart) ## ajout des poids if(intermittent==FALSE) { dataw <- weightsMMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,interval.death=interval.death)$data } if(intermittent==TRUE) { dataw <- weightsIMD(data=ech_b,Y=Y,X1=X1,X2=X2,subject=subject,death=death,time=time,impute=impute)$data } ## modeles mnew <- rq(formula=form,tau=tau,data=dataw,weights=weight) } } ## garder les coef coef_b0 <- NULL nbcoef0 <- 0 nomcoef0 <- NULL if(exists("mold")) { coef_b0 <- mold$coefficients if(length(tau)==1) { nbcoef0 <- length(coef_b0) nomcoef0 <- paste("calc0",rep(tau,each=nbcoef0),names(coef_b0),sep="_") } else { nbcoef0 <- nrow(coef_b0) nomcoef0 <- paste("calc0",rep(tau,each=nbcoef0),rownames(coef_b0),sep="_") } } coef_b1 <- NULL nbcoef1 <- 0 nomcoef1 <- NULL if(exists("mnew")) { coef_b1 <- mnew$coefficients if(length(tau)==1) { nbcoef1 <- length(coef_b1) nomcoef1 <- paste("calc1",rep(tau,each=nbcoef1),names(coef_b1),sep="_") } else { nbcoef1 <- nrow(coef_b1) nomcoef1 <- paste("calc1",rep(tau,each=nbcoef1),rownames(coef_b1),sep="_") } } coef_b <- c(coef_b0,coef_b1) nomcoef <- c(nomcoef0,nomcoef1) res <- c(as.vector(coef_b),seed) names(res) <- c(nomcoef,"seed") return(res) }
# Ready Graduate - IB # Evan Kramer # 5/2/2019 options(java.parameters = "-Xmx16G") library(tidyverse) library(lubridate) library(haven) library(RJDBC) setwd("N:/") # Switches data = T clean = T compile = T check = F domain = "ib" # Load data and connect to database if(data == T) { con = dbConnect( JDBC("oracle.jdbc.OracleDriver", classPath="C:/Users/CA19130/Downloads/ojdbc6.jar"), readRegistry("Environment", hive = "HCU")$EIS_MGR_CXN_STR[1], "EIS_MGR", readRegistry("Environment", hive = "HCU")$EIS_MGR_PWD[1] ) # Correlation of course codes cc = readxl::read_excel("C:/Users/CA19130/Downloads/ed2356_course_code_2018-19.xlsx", sheet = 1) course_codes = cc$`Course Code`[str_detect(cc$`Course Title`, str_to_upper(domain))] # Cohort cohort = read_csv(str_c("ORP_accountability/data/", year(today()) - 1, "_graduation_rate/student_level.csv"), col_types = "dccccTccTdcccccccdcdddcddcTcccdccccccdcTcccdTc") # Exam records exams = read_delim("ORP_accountability/data/2018_Assessment_Files/2014 cohort AP SDC IB CLEP raw.txt", delim = "\t", col_types = "ddcccccccccccccccc") %>% janitor::clean_names() %>% filter(str_detect(test_administration_cd, str_c(str_to_upper(domain), "_"))) # Exam crosswalk xw = read_csv("ORP_accountability/projects/2019_ready_graduate/Code/Crosswalks/epso_course_codes_exams.csv") # Students taking courses enrollments = as.tbl(dbGetQuery(con, str_c( "select courses.isp_id, courses.student_key, courses.type_of_service, courses.first_name, courses.middle_name, courses.last_name, courses.date_of_birth, courses.isp_school_year, courses.withdrawal_reason, courses.begin_date, courses.end_date, courses.sca_school_year, courses.sca_begin_date, courses.sca_end_date, courses.cs_school_year, courses.sca_local_class_number, courses.course_code, courses.cs_begin_date, courses.cs_end_date, courses.state_dual_credit, courses.local_dual_credit, courses.dual_enrollment, courses.school_bu_id, instructional_days.district_no, instructional_days.school_no, instructional_days.id_date from ( select distinct student_key from studentcohortdata_historic where cohortyear = extract(year from sysdate) - 5 and completion_type in (1, 11, 12, 13) ) cohort left outer join ( select isp.isp_id, isp.student_key, isp.type_of_service, isp.first_name, isp.middle_name, isp.last_name, isp.date_of_birth, isp.school_year as isp_school_year, isp.withdrawal_reason, isp.begin_date, isp.end_date, sca.school_year as sca_school_year, sca.sca_begin_date, sca.sca_end_date, cs.school_year as cs_school_year, sca.local_class_number as sca_local_class_number, course_code, cs_begin_date, cs_end_date, state_dual_credit, local_dual_credit, dual_enrollment, isp.school_bu_id from instructional_service_period isp join student_class_assignment sca on sca.isp_id = isp.isp_id join class_section cs on sca.instructional_program_num = cs.instructional_program_num and sca.local_class_number = cs.local_class_number and sca.school_bu_id = cs.school_bu_id and sca.school_year = cs.school_year where cs.course_code in (", str_flatten(course_codes, ","), ") ) courses on cohort.student_key = courses.student_key left outer join ( select school_year, s.school_bu_id, s.district_no, s.school_no, sid.id_date from scal_id_days sid join school s on s.school_bu_id = sid.school_bu_id where school_year >= extract(year from sysdate) - 5 ) instructional_days on ( courses.school_bu_id = instructional_days.school_bu_id and courses.isp_school_year = instructional_days.school_year )" ))) %>% janitor::clean_names() %>% group_by(isp_school_year, course_code) %>% mutate( # Account for missing end dates max_id_date = max(id_date, na.rm = T), # Create instructional day variables cs_end_date = ifelse(!is.na(cs_end_date), cs_end_date, ifelse(!is.na(sca_end_date), sca_end_date, max_id_date)), sca_end_date = ifelse(!is.na(sca_end_date), sca_end_date, max_id_date), course_instructional_days = as.numeric(id_date >= cs_begin_date & id_date <= cs_end_date), enrolled_instructional_days = as.numeric(id_date >= sca_begin_date & id_date <= sca_end_date) ) %>% arrange(isp_id, student_key) %>% group_by(isp_id, student_key, course_code, begin_date, end_date, sca_begin_date, sca_end_date, cs_begin_date, cs_end_date) %>% # Sum course and enrolled instructional days by course code, all begin and end dates summarize(first_name = first(first_name), middle_name = first(middle_name), last_name = first(last_name), date_of_birth = first(date_of_birth), type_of_service = first(type_of_service), isp_school_year = first(isp_school_year), withdrawal_reason = first(withdrawal_reason), sca_school_year = first(sca_school_year), cs_school_year = first(cs_school_year), sca_local_class_number = first(sca_local_class_number), state_dual_credit = first(state_dual_credit), local_dual_credit = first(local_dual_credit), dual_enrollment = first(dual_enrollment), course_instructional_days = sum(course_instructional_days, na.rm = T), enrolled_instructional_days = sum(enrolled_instructional_days, na.rm = T)) %>% ungroup() } else { rm(data) } # Clean data if(clean == T) { # Course enrollments c = filter(cohort, included_in_cohort == "Y" & completion_type %in% c(1, 11, 12, 13)) %>% # Start with the cohort select(student_key) %>% # Join to enrollments left_join(enrollments, by = "student_key") %>% # 127211 observations # Remove students in the cohort with no AP enrollments filter(!is.na(isp_id)) %>% # 81213 observations # Must not be withdrawn filter(is.na(withdrawal_reason)) %>% # 80152 observations # Remove if enrollment end_date is after course assignment end date filter(is.na(end_date) | ymd_hms(end_date) <= ymd_hms(sca_end_date)) %>% # same # Take latest enrollment end, begin, course assignment end, begin, class section end, begin arrange(student_key, course_code, desc(is.na(end_date)), desc(end_date), desc(begin_date), desc(is.na(sca_end_date)), desc(sca_end_date), desc(sca_begin_date), desc(is.na(cs_end_date)), desc(cs_end_date), desc(cs_begin_date)) %>% group_by(student_key, course_code) %>% arrange(begin_date, end_date, sca_begin_date, sca_end_date, cs_begin_date, cs_end_date) %>% # Summarize by student and course code summarize(first_name = first(first_name), middle_name = first(middle_name), last_name = first(last_name), isp_school_year = first(isp_school_year), enrolled_instructional_days = sum(enrolled_instructional_days, na.rm = T), course_instructional_days = max(course_instructional_days, na.rm = T)) %>% # 985 observations ungroup() %>% # Remove students enrolled for less than half the course filter(enrolled_instructional_days / course_instructional_days >= 0.5) %>% # XXX observations # Join course names from correlation left_join(group_by(mutate(cc, course_code = as.numeric(`Course Code`)), course_code) %>% summarize(course_title = first(`Course Title`)), by = "course_code") %>% # Join to exam data -- only keep if course and test match left_join(transmute(xw, course_code, exam_name), by = "course_code") %>% # 909 observations left_join(transmute(exams, student_id, exam_name = sublevel2_shortname, performance_level = assessment_result_number_score), by = c("student_key" = "student_id", "exam_name")) %>% # 909 observations # Remove students who do not have a valid performance level filter(!is.na(performance_level)) %>% # observations filter(!is.na(exam_name)) %>% # observations # Remove exam records with no corresponding course codes filter(!is.na(course_code)) %>% # 854 observations # Collapse to student_level count of courses group_by(student_key) %>% summarize(epso_type = domain, n_courses = n_distinct(course_code)) %>% # 12932 observations ungroup() #%>% filter(student_key == 3073966) } else { rm(clean) } # Analyze and compile data if(compile == T) { # Define path and filename path = str_c(getwd(), "ORP_accountability/projects/", ifelse(between(month(today()), 1, 10), year(today()), year(today()) + 1), "_ready_graduate/Data/") file = str_c(domain, "_student_level.csv") if(file %in% list.files(path)) { if(!dir.exists(str_c(path, "Previous"))) { dir.create(str_c(path, "Previous")) dir.create(str_c(path, "Previous/", str_replace_all(now(), "[-:]", ""))) } if(!dir.exists(str_c(path, "Previous/", str_replace_all(now(), "[-:]", "")))) { dir.create(str_c(path, "Previous/", str_replace_all(now(), "[-:]", ""))) } file.rename(str_c(path, file), str_c(path, "Previous/", str_replace_all(now(), "[-:]", ""), "/", file)) } write_csv(c, str_c(path, file), na = "") } else { rm(compile) } # Checks if(check) { # Missing sca_end_dates full_join( c, read_csv( str_c( "ORP_accountability/projects/", year(now()), "_ready_graduate/Data/", domain, "_student_level.csv" ) ), by = c("student_key", "epso_type") ) %>% mutate_at(vars(starts_with("n_courses")), funs(ifelse(is.na(.), 0, .))) %>% mutate(diff = n_courses.x - n_courses.y) %>% group_by(diff) %>% summarize(n = n()) %>% ungroup() %>% mutate(pct = round(100 * n / sum(n), 1)) # Hamilton County hamilton = readxl::read_excel("C:/Users/CA19130/Downloads/Copy of HCS_IB records class of 2018.xlsx") %>% janitor::clean_names() left_join( hamilton, filter(exams, student_id %in% hamilton$student_key), by = c("student_key" = "student_id") ) } else { rm(check) }
/ib.R
no_license
evan-kramer/ready_graduate
R
false
false
10,208
r
# Ready Graduate - IB # Evan Kramer # 5/2/2019 options(java.parameters = "-Xmx16G") library(tidyverse) library(lubridate) library(haven) library(RJDBC) setwd("N:/") # Switches data = T clean = T compile = T check = F domain = "ib" # Load data and connect to database if(data == T) { con = dbConnect( JDBC("oracle.jdbc.OracleDriver", classPath="C:/Users/CA19130/Downloads/ojdbc6.jar"), readRegistry("Environment", hive = "HCU")$EIS_MGR_CXN_STR[1], "EIS_MGR", readRegistry("Environment", hive = "HCU")$EIS_MGR_PWD[1] ) # Correlation of course codes cc = readxl::read_excel("C:/Users/CA19130/Downloads/ed2356_course_code_2018-19.xlsx", sheet = 1) course_codes = cc$`Course Code`[str_detect(cc$`Course Title`, str_to_upper(domain))] # Cohort cohort = read_csv(str_c("ORP_accountability/data/", year(today()) - 1, "_graduation_rate/student_level.csv"), col_types = "dccccTccTdcccccccdcdddcddcTcccdccccccdcTcccdTc") # Exam records exams = read_delim("ORP_accountability/data/2018_Assessment_Files/2014 cohort AP SDC IB CLEP raw.txt", delim = "\t", col_types = "ddcccccccccccccccc") %>% janitor::clean_names() %>% filter(str_detect(test_administration_cd, str_c(str_to_upper(domain), "_"))) # Exam crosswalk xw = read_csv("ORP_accountability/projects/2019_ready_graduate/Code/Crosswalks/epso_course_codes_exams.csv") # Students taking courses enrollments = as.tbl(dbGetQuery(con, str_c( "select courses.isp_id, courses.student_key, courses.type_of_service, courses.first_name, courses.middle_name, courses.last_name, courses.date_of_birth, courses.isp_school_year, courses.withdrawal_reason, courses.begin_date, courses.end_date, courses.sca_school_year, courses.sca_begin_date, courses.sca_end_date, courses.cs_school_year, courses.sca_local_class_number, courses.course_code, courses.cs_begin_date, courses.cs_end_date, courses.state_dual_credit, courses.local_dual_credit, courses.dual_enrollment, courses.school_bu_id, instructional_days.district_no, instructional_days.school_no, instructional_days.id_date from ( select distinct student_key from studentcohortdata_historic where cohortyear = extract(year from sysdate) - 5 and completion_type in (1, 11, 12, 13) ) cohort left outer join ( select isp.isp_id, isp.student_key, isp.type_of_service, isp.first_name, isp.middle_name, isp.last_name, isp.date_of_birth, isp.school_year as isp_school_year, isp.withdrawal_reason, isp.begin_date, isp.end_date, sca.school_year as sca_school_year, sca.sca_begin_date, sca.sca_end_date, cs.school_year as cs_school_year, sca.local_class_number as sca_local_class_number, course_code, cs_begin_date, cs_end_date, state_dual_credit, local_dual_credit, dual_enrollment, isp.school_bu_id from instructional_service_period isp join student_class_assignment sca on sca.isp_id = isp.isp_id join class_section cs on sca.instructional_program_num = cs.instructional_program_num and sca.local_class_number = cs.local_class_number and sca.school_bu_id = cs.school_bu_id and sca.school_year = cs.school_year where cs.course_code in (", str_flatten(course_codes, ","), ") ) courses on cohort.student_key = courses.student_key left outer join ( select school_year, s.school_bu_id, s.district_no, s.school_no, sid.id_date from scal_id_days sid join school s on s.school_bu_id = sid.school_bu_id where school_year >= extract(year from sysdate) - 5 ) instructional_days on ( courses.school_bu_id = instructional_days.school_bu_id and courses.isp_school_year = instructional_days.school_year )" ))) %>% janitor::clean_names() %>% group_by(isp_school_year, course_code) %>% mutate( # Account for missing end dates max_id_date = max(id_date, na.rm = T), # Create instructional day variables cs_end_date = ifelse(!is.na(cs_end_date), cs_end_date, ifelse(!is.na(sca_end_date), sca_end_date, max_id_date)), sca_end_date = ifelse(!is.na(sca_end_date), sca_end_date, max_id_date), course_instructional_days = as.numeric(id_date >= cs_begin_date & id_date <= cs_end_date), enrolled_instructional_days = as.numeric(id_date >= sca_begin_date & id_date <= sca_end_date) ) %>% arrange(isp_id, student_key) %>% group_by(isp_id, student_key, course_code, begin_date, end_date, sca_begin_date, sca_end_date, cs_begin_date, cs_end_date) %>% # Sum course and enrolled instructional days by course code, all begin and end dates summarize(first_name = first(first_name), middle_name = first(middle_name), last_name = first(last_name), date_of_birth = first(date_of_birth), type_of_service = first(type_of_service), isp_school_year = first(isp_school_year), withdrawal_reason = first(withdrawal_reason), sca_school_year = first(sca_school_year), cs_school_year = first(cs_school_year), sca_local_class_number = first(sca_local_class_number), state_dual_credit = first(state_dual_credit), local_dual_credit = first(local_dual_credit), dual_enrollment = first(dual_enrollment), course_instructional_days = sum(course_instructional_days, na.rm = T), enrolled_instructional_days = sum(enrolled_instructional_days, na.rm = T)) %>% ungroup() } else { rm(data) } # Clean data if(clean == T) { # Course enrollments c = filter(cohort, included_in_cohort == "Y" & completion_type %in% c(1, 11, 12, 13)) %>% # Start with the cohort select(student_key) %>% # Join to enrollments left_join(enrollments, by = "student_key") %>% # 127211 observations # Remove students in the cohort with no AP enrollments filter(!is.na(isp_id)) %>% # 81213 observations # Must not be withdrawn filter(is.na(withdrawal_reason)) %>% # 80152 observations # Remove if enrollment end_date is after course assignment end date filter(is.na(end_date) | ymd_hms(end_date) <= ymd_hms(sca_end_date)) %>% # same # Take latest enrollment end, begin, course assignment end, begin, class section end, begin arrange(student_key, course_code, desc(is.na(end_date)), desc(end_date), desc(begin_date), desc(is.na(sca_end_date)), desc(sca_end_date), desc(sca_begin_date), desc(is.na(cs_end_date)), desc(cs_end_date), desc(cs_begin_date)) %>% group_by(student_key, course_code) %>% arrange(begin_date, end_date, sca_begin_date, sca_end_date, cs_begin_date, cs_end_date) %>% # Summarize by student and course code summarize(first_name = first(first_name), middle_name = first(middle_name), last_name = first(last_name), isp_school_year = first(isp_school_year), enrolled_instructional_days = sum(enrolled_instructional_days, na.rm = T), course_instructional_days = max(course_instructional_days, na.rm = T)) %>% # 985 observations ungroup() %>% # Remove students enrolled for less than half the course filter(enrolled_instructional_days / course_instructional_days >= 0.5) %>% # XXX observations # Join course names from correlation left_join(group_by(mutate(cc, course_code = as.numeric(`Course Code`)), course_code) %>% summarize(course_title = first(`Course Title`)), by = "course_code") %>% # Join to exam data -- only keep if course and test match left_join(transmute(xw, course_code, exam_name), by = "course_code") %>% # 909 observations left_join(transmute(exams, student_id, exam_name = sublevel2_shortname, performance_level = assessment_result_number_score), by = c("student_key" = "student_id", "exam_name")) %>% # 909 observations # Remove students who do not have a valid performance level filter(!is.na(performance_level)) %>% # observations filter(!is.na(exam_name)) %>% # observations # Remove exam records with no corresponding course codes filter(!is.na(course_code)) %>% # 854 observations # Collapse to student_level count of courses group_by(student_key) %>% summarize(epso_type = domain, n_courses = n_distinct(course_code)) %>% # 12932 observations ungroup() #%>% filter(student_key == 3073966) } else { rm(clean) } # Analyze and compile data if(compile == T) { # Define path and filename path = str_c(getwd(), "ORP_accountability/projects/", ifelse(between(month(today()), 1, 10), year(today()), year(today()) + 1), "_ready_graduate/Data/") file = str_c(domain, "_student_level.csv") if(file %in% list.files(path)) { if(!dir.exists(str_c(path, "Previous"))) { dir.create(str_c(path, "Previous")) dir.create(str_c(path, "Previous/", str_replace_all(now(), "[-:]", ""))) } if(!dir.exists(str_c(path, "Previous/", str_replace_all(now(), "[-:]", "")))) { dir.create(str_c(path, "Previous/", str_replace_all(now(), "[-:]", ""))) } file.rename(str_c(path, file), str_c(path, "Previous/", str_replace_all(now(), "[-:]", ""), "/", file)) } write_csv(c, str_c(path, file), na = "") } else { rm(compile) } # Checks if(check) { # Missing sca_end_dates full_join( c, read_csv( str_c( "ORP_accountability/projects/", year(now()), "_ready_graduate/Data/", domain, "_student_level.csv" ) ), by = c("student_key", "epso_type") ) %>% mutate_at(vars(starts_with("n_courses")), funs(ifelse(is.na(.), 0, .))) %>% mutate(diff = n_courses.x - n_courses.y) %>% group_by(diff) %>% summarize(n = n()) %>% ungroup() %>% mutate(pct = round(100 * n / sum(n), 1)) # Hamilton County hamilton = readxl::read_excel("C:/Users/CA19130/Downloads/Copy of HCS_IB records class of 2018.xlsx") %>% janitor::clean_names() left_join( hamilton, filter(exams, student_id %in% hamilton$student_key), by = c("student_key" = "student_id") ) } else { rm(check) }
library(tidyverse) flower_breeding_sheet <- "https://docs.google.com/spreadsheets/d/e/2PACX-1vTdwUI4iZE1wdfZv1xdi2qJtldnWS2iiQdjRjKP-4oKoH0R8a07vaVFxZHSwFiDlwzb6gZAE8U5C_vG/pubhtml#" source_html <- xml2::read_html(flower_breeding_sheet) source_tbl <- source_html %>% rvest::xml_node("#588946015 > div > table") %>% rvest::html_table() flower_tbl <- source_tbl %>% janitor::row_to_names(1) %>% janitor::clean_names() %>% drop_na() %>% select(-x1) %>% rename(colour = color) %>% mutate( across(where(is.character), tolower), across(starts_with("gene"), ~case_when( . == 0 ~ "00", . == 1 ~ "01", . == 2 ~ "11")), seed_bag = if_else(seed_bag == 1, TRUE, FALSE), gene_4 = if_else(species != "rose", NA_character_, gene_4), geneotype = if_else( species == "rose", paste0(gene_1, gene_2, gene_3, gene_4), paste0(gene_1, gene_2, gene_3) ), flower_id = paste0(species, "_", strtoi(geneotype, 2)) )
/data_setup.R
permissive
mattkerlogue/anch_flowers
R
false
false
1,013
r
library(tidyverse) flower_breeding_sheet <- "https://docs.google.com/spreadsheets/d/e/2PACX-1vTdwUI4iZE1wdfZv1xdi2qJtldnWS2iiQdjRjKP-4oKoH0R8a07vaVFxZHSwFiDlwzb6gZAE8U5C_vG/pubhtml#" source_html <- xml2::read_html(flower_breeding_sheet) source_tbl <- source_html %>% rvest::xml_node("#588946015 > div > table") %>% rvest::html_table() flower_tbl <- source_tbl %>% janitor::row_to_names(1) %>% janitor::clean_names() %>% drop_na() %>% select(-x1) %>% rename(colour = color) %>% mutate( across(where(is.character), tolower), across(starts_with("gene"), ~case_when( . == 0 ~ "00", . == 1 ~ "01", . == 2 ~ "11")), seed_bag = if_else(seed_bag == 1, TRUE, FALSE), gene_4 = if_else(species != "rose", NA_character_, gene_4), geneotype = if_else( species == "rose", paste0(gene_1, gene_2, gene_3, gene_4), paste0(gene_1, gene_2, gene_3) ), flower_id = paste0(species, "_", strtoi(geneotype, 2)) )
################# ## 시계열 분석 ## ################# # 1. 시계열 자료 # 시간의 흐름에 따라서 관찰된 데이터 # 2. 정상성 # 대부분의 시계열 자료는 다루기 어려운 비정상성 시계열 자료 # 분석하기 쉬운 정상성 시계열 자료로 변환해야함 # 정상성 조건 # - 평균이 일정해야 함 # 평균이 일정하지 않은 시계열은 차분(difference)을 통해 정상화 # - 분산이 시점에 의존하지 않음 # 분산이 일정하지 않은 시계열은 변환(transformation)을 통해 정상화 # - 공분산도 시차에만 의존할 뿐, 특정 시점에는 의존하지 않음 # 3. 시계열 모형 # 3.1 자기회귀 모형(Autogressive model, AR) # P 시점 이전의 자료가 현재 자료에 영향을 줌 # 오차항 = 백색잡음과정(white noise process) # 자기상관함수(Autocorrelation Function, ACF) : k 기간 떨어진 값들의 상관계수 # 부분자기상관함수(partial ACF) : 서로 다른 두 시점의 중간에 있는 값들의 영향을 제외시킨 상관계수 # ACF 빠르게 감소, PACF는 어느 시점에서 절단점을 가짐 # PACF가 2시점에서 절단점을 가지면 AR(1) 모형 # 3.2 이동평균 모형(Moving average model, MA) # 유한한 개수의 백색잡음 결합이므로 항상 정상성 만족 # ACF가 절단점을 갖고, PACF는 빠르게 감소 # 자기회귀누적이동평균 모형 (Autoregressive integrated moving average model, ARIMA) # 비정상 시계열 모형 # 차분이나 변환을 통해 AR, MA, 또는 이 둘을 합한 ARMA 모형으로 정상화 # ARIMA(p, d, q) - d : 차분 차수 / p : AR 모형 차수 / q : MA 모형 차수 # 분해 시계열 # 시계열에 영향을 주는 일반적인 요인을 시계열에서 분리해 분석하는 방법 # 계절 요인(seasonal factor), 순환 요인(cyclical), 추세 요인(trend), 불규칙 요인(random) # 1) 소스 데이터를 시계열 데이터로 변환 ts(data, frequency = n, start = c(시작년도, 월)) # 2) 시계열 데이터를 x, trend, seasonal, random 값으로 분해 decompose(data) # 3) 시계열 데이터를 이동평균한 값 생성 SMA(data, n = 이동평균수) # 4) 시계열 데이터를 차분 diff(data, differences = 차분횟수) # 5) ACF 값과 그래프를 통해 래그 절단값을 확인 acf(data, lag.max = 래그수) # 6) PACF 값과 그래프를 통해 래그 절단값을 확인 pacf(data, lag.max = 래그수) # 7) 데이터를 활용하여 최적의 ARIMA 모형을 선택 auto.arima(data) # 8) 선정된 ARIMA 모형으로 데이터를 보정(fitting) arima(data, order = c(p, d, q)) # 9) ARIMA 모형에 의해 보정된 데이터를 통해 미래값을 예측 forecast.Arima(fittedData, h = 미래예측수) # 10) 시계열 데이터를 그래프로 표현 plot.ts(시계열데이터) # 11) 예측된 시계열 데이터를 그래프로 표현 plot.forecast(예측된시계열데이터) ########################################## ## 시계열 실습 - 영국왕들의 사망시 나이 ## ########################################## library(TTR) library(forecast) # 영국왕들의 사망시 나이 kings <- scan("http://robjhyndman.com/tsdldata/misc/kings.dat", skip = 3) kings kings_ts <- ts(kings) kings_ts plot.ts(kings_ts) # 이동평균 kings_sma3 <- SMA(kings_ts, n = 3) kings_sma8 <- SMA(kings_ts, n = 8) kings_sma12 <- SMA(kings_ts, n = 12) par(mfrow = c(2,2)) plot.ts(kings_ts) plot.ts(kings_sma3) plot.ts(kings_sma8) plot.ts(kings_sma12) # 차분을 통해 데이터 정상화 kings_diff1 <- diff(kings_ts, differences = 1) kings_diff2 <- diff(kings_ts, differences = 2) kings_diff3 <- diff(kings_ts, differences = 3) plot.ts(kings_ts) plot.ts(kings_diff1) # 1차 차분만 해도 어느정도 정상화 패턴을 보임 plot.ts(kings_diff2) plot.ts(kings_diff3) par(mfrow = c(1,1)) mean(kings_diff1); sd(kings_diff1) # 1차 차분한 데이터로 ARIMA 모형 확인 acf(kings_diff1, lag.max = 20) # lag 2부터 점선 안에 존재. lag 절단값 = 2. --> MA(1) pacf(kings_diff1, lag.max = 20) # lag 4에서 절단값 --> AR(3) # --> ARIMA(3,1,1) --> AR(3), I(1), MA(1) : (3,1,1) # 자동으로 ARIMA 모형 확인 auto.arima(kings) # --> ARIMA(0,1,1) # 예측 kings_arima <- arima(kings_ts, order = c(3,1,1)) # 차분통해 확인한 값 적용 kings_arima # 미래 5개의 예측값 사용 kings_fcast <- forecast(kings_arima, h = 5) kings_fcast plot(kings_fcast) kings_arima1 <- arima(kings_ts, order = c(0,1,1)) # auto.arima 추천값 적용 kings_arima1 kings_fcast1 <- forecast(kings_arima1, h = 5) kings_fcast1 plot(kings_fcast) plot(kings_fcast1) ############################################ ## 시계열 실습 - 리조트 기념품매장 매출액 ## ############################################ data <- scan("http://robjhyndman.com/tsdldata/data/fancy.dat") fancy <- ts(data, frequency = 12, start = c(1987, 1)) fancy plot.ts(fancy) # 분산이 증가하는 경향 --> log 변환으로 분산 조정 fancy_log <- log(fancy) plot.ts(fancy_log) fancy_diff <- diff(fancy_log, differences = 1) plot.ts(fancy_diff) # 평균은 어느정도 일정하지만 특정 시기에 분산이 크다 # --> ARIMA 보다는 다른 모형 적용 추천 acf(fancy_diff, lag.max = 100) pacf(fancy_diff, lag.max = 100) auto.arima(fancy) # ARIMA(1,1,1)(0,1,1)[12] fancy_arima <- arima(fancy, order = c(1,1,1), seasonal = list(order = c(0,1,1), period = 12)) fancy_fcast <- forecast.Arima(fancy_arima) plot(fancy_fcast)
/JB_timeSeries.R
no_license
doeungim/ADP-1
R
false
false
5,706
r
################# ## 시계열 분석 ## ################# # 1. 시계열 자료 # 시간의 흐름에 따라서 관찰된 데이터 # 2. 정상성 # 대부분의 시계열 자료는 다루기 어려운 비정상성 시계열 자료 # 분석하기 쉬운 정상성 시계열 자료로 변환해야함 # 정상성 조건 # - 평균이 일정해야 함 # 평균이 일정하지 않은 시계열은 차분(difference)을 통해 정상화 # - 분산이 시점에 의존하지 않음 # 분산이 일정하지 않은 시계열은 변환(transformation)을 통해 정상화 # - 공분산도 시차에만 의존할 뿐, 특정 시점에는 의존하지 않음 # 3. 시계열 모형 # 3.1 자기회귀 모형(Autogressive model, AR) # P 시점 이전의 자료가 현재 자료에 영향을 줌 # 오차항 = 백색잡음과정(white noise process) # 자기상관함수(Autocorrelation Function, ACF) : k 기간 떨어진 값들의 상관계수 # 부분자기상관함수(partial ACF) : 서로 다른 두 시점의 중간에 있는 값들의 영향을 제외시킨 상관계수 # ACF 빠르게 감소, PACF는 어느 시점에서 절단점을 가짐 # PACF가 2시점에서 절단점을 가지면 AR(1) 모형 # 3.2 이동평균 모형(Moving average model, MA) # 유한한 개수의 백색잡음 결합이므로 항상 정상성 만족 # ACF가 절단점을 갖고, PACF는 빠르게 감소 # 자기회귀누적이동평균 모형 (Autoregressive integrated moving average model, ARIMA) # 비정상 시계열 모형 # 차분이나 변환을 통해 AR, MA, 또는 이 둘을 합한 ARMA 모형으로 정상화 # ARIMA(p, d, q) - d : 차분 차수 / p : AR 모형 차수 / q : MA 모형 차수 # 분해 시계열 # 시계열에 영향을 주는 일반적인 요인을 시계열에서 분리해 분석하는 방법 # 계절 요인(seasonal factor), 순환 요인(cyclical), 추세 요인(trend), 불규칙 요인(random) # 1) 소스 데이터를 시계열 데이터로 변환 ts(data, frequency = n, start = c(시작년도, 월)) # 2) 시계열 데이터를 x, trend, seasonal, random 값으로 분해 decompose(data) # 3) 시계열 데이터를 이동평균한 값 생성 SMA(data, n = 이동평균수) # 4) 시계열 데이터를 차분 diff(data, differences = 차분횟수) # 5) ACF 값과 그래프를 통해 래그 절단값을 확인 acf(data, lag.max = 래그수) # 6) PACF 값과 그래프를 통해 래그 절단값을 확인 pacf(data, lag.max = 래그수) # 7) 데이터를 활용하여 최적의 ARIMA 모형을 선택 auto.arima(data) # 8) 선정된 ARIMA 모형으로 데이터를 보정(fitting) arima(data, order = c(p, d, q)) # 9) ARIMA 모형에 의해 보정된 데이터를 통해 미래값을 예측 forecast.Arima(fittedData, h = 미래예측수) # 10) 시계열 데이터를 그래프로 표현 plot.ts(시계열데이터) # 11) 예측된 시계열 데이터를 그래프로 표현 plot.forecast(예측된시계열데이터) ########################################## ## 시계열 실습 - 영국왕들의 사망시 나이 ## ########################################## library(TTR) library(forecast) # 영국왕들의 사망시 나이 kings <- scan("http://robjhyndman.com/tsdldata/misc/kings.dat", skip = 3) kings kings_ts <- ts(kings) kings_ts plot.ts(kings_ts) # 이동평균 kings_sma3 <- SMA(kings_ts, n = 3) kings_sma8 <- SMA(kings_ts, n = 8) kings_sma12 <- SMA(kings_ts, n = 12) par(mfrow = c(2,2)) plot.ts(kings_ts) plot.ts(kings_sma3) plot.ts(kings_sma8) plot.ts(kings_sma12) # 차분을 통해 데이터 정상화 kings_diff1 <- diff(kings_ts, differences = 1) kings_diff2 <- diff(kings_ts, differences = 2) kings_diff3 <- diff(kings_ts, differences = 3) plot.ts(kings_ts) plot.ts(kings_diff1) # 1차 차분만 해도 어느정도 정상화 패턴을 보임 plot.ts(kings_diff2) plot.ts(kings_diff3) par(mfrow = c(1,1)) mean(kings_diff1); sd(kings_diff1) # 1차 차분한 데이터로 ARIMA 모형 확인 acf(kings_diff1, lag.max = 20) # lag 2부터 점선 안에 존재. lag 절단값 = 2. --> MA(1) pacf(kings_diff1, lag.max = 20) # lag 4에서 절단값 --> AR(3) # --> ARIMA(3,1,1) --> AR(3), I(1), MA(1) : (3,1,1) # 자동으로 ARIMA 모형 확인 auto.arima(kings) # --> ARIMA(0,1,1) # 예측 kings_arima <- arima(kings_ts, order = c(3,1,1)) # 차분통해 확인한 값 적용 kings_arima # 미래 5개의 예측값 사용 kings_fcast <- forecast(kings_arima, h = 5) kings_fcast plot(kings_fcast) kings_arima1 <- arima(kings_ts, order = c(0,1,1)) # auto.arima 추천값 적용 kings_arima1 kings_fcast1 <- forecast(kings_arima1, h = 5) kings_fcast1 plot(kings_fcast) plot(kings_fcast1) ############################################ ## 시계열 실습 - 리조트 기념품매장 매출액 ## ############################################ data <- scan("http://robjhyndman.com/tsdldata/data/fancy.dat") fancy <- ts(data, frequency = 12, start = c(1987, 1)) fancy plot.ts(fancy) # 분산이 증가하는 경향 --> log 변환으로 분산 조정 fancy_log <- log(fancy) plot.ts(fancy_log) fancy_diff <- diff(fancy_log, differences = 1) plot.ts(fancy_diff) # 평균은 어느정도 일정하지만 특정 시기에 분산이 크다 # --> ARIMA 보다는 다른 모형 적용 추천 acf(fancy_diff, lag.max = 100) pacf(fancy_diff, lag.max = 100) auto.arima(fancy) # ARIMA(1,1,1)(0,1,1)[12] fancy_arima <- arima(fancy, order = c(1,1,1), seasonal = list(order = c(0,1,1), period = 12)) fancy_fcast <- forecast.Arima(fancy_arima) plot(fancy_fcast)
# What's a factor and why would you use it? ##################################################################################################################### # # In this chapter you dive into the wonderful world of factors. # # The term factor refers to a statistical data type used to store categorical variables. # The difference between a categorical variable and a continuous variable is that a categorical variable can # belong to a limited number of categories. A continuous variable, on the other hand, # can correspond to an infinite number of values. # # It is important that R knows whether it is dealing with a continuous or a categorical variable, # as the statistical models you will develop in the future treat both types differently. # (You will see later why this is the case.) # # A good example of a categorical variable is the variable 'Gender'. # A human individual can either be "Male" or "Female", making abstraction of intersexes. # So here "Male" and "Female" are, in a simplified sense, the two values of the categorical variable "Gender", # and every observation can be assigned to either the value "Male" of "Female". # ##################################################################################################################### theory <- "R uses factors for categorical variables!"
/dataCamp/introductionToR/4_factors/1_WhatsAFactorAndWhyWouldYouUseIt.R
permissive
odonnmi/learnNPractice
R
false
false
1,578
r
# What's a factor and why would you use it? ##################################################################################################################### # # In this chapter you dive into the wonderful world of factors. # # The term factor refers to a statistical data type used to store categorical variables. # The difference between a categorical variable and a continuous variable is that a categorical variable can # belong to a limited number of categories. A continuous variable, on the other hand, # can correspond to an infinite number of values. # # It is important that R knows whether it is dealing with a continuous or a categorical variable, # as the statistical models you will develop in the future treat both types differently. # (You will see later why this is the case.) # # A good example of a categorical variable is the variable 'Gender'. # A human individual can either be "Male" or "Female", making abstraction of intersexes. # So here "Male" and "Female" are, in a simplified sense, the two values of the categorical variable "Gender", # and every observation can be assigned to either the value "Male" of "Female". # ##################################################################################################################### theory <- "R uses factors for categorical variables!"
## Getting the full dataset on household power consumption data_full <- read.csv("./Data/household_power_consumption.txt", header=T, sep=';', na.strings="?", nrows=2075259, check.names=F, stringsAsFactors=F, comment.char="", quote='\"') data_full$Date <- as.Date(data_full$Date, format="%d/%m/%Y") ## Subsetting the data data <- subset(data_full, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) rm(data_full) ## Converting the dates as required datetime <- paste(as.Date(data$Date), data$Time) data$Datetime <- as.POSIXct(datetime) ## Creating Plot 1 hist(data$Global_active_power, main="Global Active Power", xlab="Global Active Power (kilowatts)", ylab="Frequency", col="Red") ## Saving Plot1 to file dev.copy(png, file="plot1.png", height=480, width=480) dev.off()
/plot1.R
no_license
dghosal15/ExData_Plotting1
R
false
false
806
r
## Getting the full dataset on household power consumption data_full <- read.csv("./Data/household_power_consumption.txt", header=T, sep=';', na.strings="?", nrows=2075259, check.names=F, stringsAsFactors=F, comment.char="", quote='\"') data_full$Date <- as.Date(data_full$Date, format="%d/%m/%Y") ## Subsetting the data data <- subset(data_full, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) rm(data_full) ## Converting the dates as required datetime <- paste(as.Date(data$Date), data$Time) data$Datetime <- as.POSIXct(datetime) ## Creating Plot 1 hist(data$Global_active_power, main="Global Active Power", xlab="Global Active Power (kilowatts)", ylab="Frequency", col="Red") ## Saving Plot1 to file dev.copy(png, file="plot1.png", height=480, width=480) dev.off()
# --------------------------------------------------------------------- # length.R # return the number of keys in a hash # NB: # - This doesn't work: env.profile(x@.xData)$nchains # --------------------------------------------------------------------- setMethod( "length" , "hash" , function(x) length( x@.xData ) )
/R/length.R
no_license
cran/hash
R
false
false
342
r
# --------------------------------------------------------------------- # length.R # return the number of keys in a hash # NB: # - This doesn't work: env.profile(x@.xData)$nchains # --------------------------------------------------------------------- setMethod( "length" , "hash" , function(x) length( x@.xData ) )
### This script is for extra analyses on the most interesting select loci (1p36.1, 7q32 and 12p13.1) #install.packages("devtools") #library(devtools) #install_github("jrs95/hyprcoloc", build_opts = c("--no-resave-data", "--no-manual"), build_vignettes = F) #browseVignettes("hyprcoloc") The install kept failing when trying to build the vignettes, so I disabled that. #devtools::install_github("boxiangliu/locuscomparer") library(hyprcoloc) library(locuscomparer) setwd("YOUR WORKING DIRECTORY") # Read in the LD matrices, and the GWAS and QTL data. The file locations are relative to your working directory, so adjust accordingly. bmi=read.table("./Meta-analysis_Locke_et_al+UKBiobank_2018_UPDATED.txt",sep = "\t",header = T) t2d=read.table("./Mahajan.NatGenet2018b.T2Dbmiadj.European.with.rsIDs.txt",sep = "\t",header = T) hdl=read.table("./jointGwasMc_HDL.txt",sep = "\t",header = T) triG=read.table("./jointGwasMc_TG.txt",sep = "\t",header = T) cis_eqtl=read.table("./Eurobats_adipose_select_loci_cis-eQTLs_from_INT_logTPM.txt",sep = "\t",header = T) cis_aqtl=read.table("./Eurobats_adipose_select_loci_cis-aQTLs_from_unnormalized_activities.txt",sep = "\t",header = T) trans_bmi_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_BMI_MRs.txt",sep = "\t",header = T) trans_bmi_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_BMI_MRs.txt",sep = "\t",header = T) trans_t2d_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_HOMA-IR_MRs.txt",sep = "\t",header = T) trans_t2d_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_HOMA-IR_MRs.txt",sep = "\t",header = T) trans_hdl_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_HDL_MRs.txt",sep = "\t",header = T) trans_hdl_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_HDL_MRs.txt",sep = "\t",header = T) trans_triG_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_TriG_MRs.txt",sep = "\t",header = T) trans_triG_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_TriG_MRs.txt",sep = "\t",header = T) ld_files=c("Eurobats_chr1p36.1_LD_matrix.txt","Eurobats_chr7q32_LD_matrix.txt","Eurobats_chr12p13.33_LD_matrix.txt","Eurobats_chr12p13.1_LD_matrix.txt") ld=list() index=1 for(i in ld_files){ ld[[index]]=read.table(paste("./",i,sep=""),sep = "\t",header = F) rownames(ld[[index]])=ld[[index]][,3] ld[[index]]=ld[[index]][,-c(1:5)] colnames(ld[[index]])=rownames(ld[[index]]) index=index+1 } # The HDL GWAS data has coordinates for hg18 and hg 19, but I need to have CHR and POS columns (based on hg19) instead. colnames(hdl)=c("CHR","POS","SNP","A1","A2","BETA","SE","N","P","Freq.A1.1000G.EUR") hdl$CHR=gsub("chr","",hdl$CHR) hdl$CHR=as.numeric(gsub(":.*","",hdl$CHR)) # This introduced NAs, but only for 3 SNPs without rsIDs (labeled only as ".") hdl=hdl[!is.na(hdl$CHR),] hdl$POS=as.numeric(gsub("chr.*:","",hdl$POS)) # The TriG GWAS data has coordinates for hg18 and hg 19, but I need to have CHR and POS columns (based on hg19) instead. colnames(triG)=c("CHR","POS","SNP","A1","A2","BETA","SE","N","P","Freq.A1.1000G.EUR") triG$CHR=gsub("chr","",triG$CHR) triG$CHR=as.numeric(gsub(":.*","",triG$CHR)) # This introduced NAs, but only for 3 SNPs without rsIDs (labeled only as ".") triG=triG[!is.na(triG$CHR),] triG$POS=as.numeric(gsub("chr.*:","",triG$POS)) # Filter GWAS, QTL and LD data to the same SNPs filt_bmi=bmi[na.omit(match(c(rownames(ld[[1]]),rownames(ld[[2]]),rownames(ld[[3]]),rownames(ld[[4]])),bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(unique(cis_eqtl$snps),filt_bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(t2d$rsID,filt_bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(hdl$SNP,filt_bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(triG$SNP,filt_bmi$SNP)),] filt_t2d=t2d[na.omit(match(filt_bmi$SNP,t2d$rsID)),] filt_hdl=hdl[na.omit(match(filt_bmi$SNP,hdl$SNP)),] filt_triG=triG[na.omit(match(filt_bmi$SNP,triG$SNP)),] filt_cis_eqtl=cis_eqtl[cis_eqtl$snps %in% filt_bmi$SNP,] filt_cis_aqtl=cis_aqtl[cis_aqtl$snps %in% filt_bmi$SNP,] filt_trans_bmi_eqtl=trans_bmi_eqtl[trans_bmi_eqtl$snps %in% filt_bmi$SNP,] filt_trans_bmi_aqtl=trans_bmi_aqtl[trans_bmi_aqtl$snps %in% filt_bmi$SNP,] filt_trans_t2d_eqtl=trans_t2d_eqtl[trans_t2d_eqtl$snps %in% filt_t2d$rsID,] filt_trans_t2d_aqtl=trans_t2d_aqtl[trans_t2d_aqtl$snps %in% filt_t2d$rsID,] filt_trans_hdl_eqtl=trans_hdl_eqtl[trans_hdl_eqtl$snps %in% filt_hdl$SNP,] filt_trans_hdl_aqtl=trans_hdl_aqtl[trans_hdl_aqtl$snps %in% filt_hdl$SNP,] filt_trans_triG_eqtl=trans_triG_eqtl[trans_triG_eqtl$snps %in% filt_triG$SNP,] filt_trans_triG_aqtl=trans_triG_aqtl[trans_triG_aqtl$snps %in% filt_triG$SNP,] filt_ld=list() filt_ld[[1]]=ld[[1]][filt_bmi$SNP[filt_bmi$CHR==1],filt_bmi$SNP[filt_bmi$CHR==1]] filt_ld[[2]]=ld[[2]][filt_bmi$SNP[filt_bmi$CHR==7],filt_bmi$SNP[filt_bmi$CHR==7]] filt_ld[[3]]=ld[[3]][filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS<1400000],filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS<1400000]] filt_ld[[4]]=ld[[4]][filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS>1400000],filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS>1400000]] # Let's free up some memory by dropping the huge trans-QTL data.frames rm(trans_bmi_eqtl) rm(trans_bmi_aqtl) rm(trans_t2d_eqtl) rm(trans_t2d_aqtl) rm(trans_hdl_eqtl) rm(trans_hdl_aqtl) rm(trans_triG_eqtl) rm(trans_triG_aqtl) # Add chromosome and position to the QTLs for sorting filt_cis_eqtl$chr=filt_bmi[match(filt_cis_eqtl$snps,filt_bmi$SNP),1] filt_cis_aqtl$chr=filt_bmi[match(filt_cis_aqtl$snps,filt_bmi$SNP),1] filt_trans_bmi_eqtl$chr=filt_bmi[match(filt_trans_bmi_eqtl$snps,filt_bmi$SNP),1] filt_trans_bmi_aqtl$chr=filt_bmi[match(filt_trans_bmi_aqtl$snps,filt_bmi$SNP),1] filt_trans_t2d_eqtl$chr=filt_bmi[match(filt_trans_t2d_eqtl$snps,filt_bmi$SNP),1] filt_trans_t2d_aqtl$chr=filt_bmi[match(filt_trans_t2d_aqtl$snps,filt_bmi$SNP),1] filt_trans_hdl_eqtl$chr=filt_bmi[match(filt_trans_hdl_eqtl$snps,filt_bmi$SNP),1] filt_trans_hdl_aqtl$chr=filt_bmi[match(filt_trans_hdl_aqtl$snps,filt_bmi$SNP),1] filt_trans_triG_eqtl$chr=filt_bmi[match(filt_trans_triG_eqtl$snps,filt_bmi$SNP),1] filt_trans_triG_aqtl$chr=filt_bmi[match(filt_trans_triG_aqtl$snps,filt_bmi$SNP),1] filt_cis_eqtl$position=filt_bmi[match(filt_cis_eqtl$snps,filt_bmi$SNP),2] filt_cis_aqtl$position=filt_bmi[match(filt_cis_aqtl$snps,filt_bmi$SNP),2] filt_trans_bmi_eqtl$position=filt_bmi[match(filt_trans_bmi_eqtl$snps,filt_bmi$SNP),2] filt_trans_bmi_aqtl$position=filt_bmi[match(filt_trans_bmi_aqtl$snps,filt_bmi$SNP),2] filt_trans_t2d_eqtl$position=filt_bmi[match(filt_trans_t2d_eqtl$snps,filt_bmi$SNP),2] filt_trans_t2d_aqtl$position=filt_bmi[match(filt_trans_t2d_aqtl$snps,filt_bmi$SNP),2] filt_trans_hdl_eqtl$position=filt_bmi[match(filt_trans_hdl_eqtl$snps,filt_bmi$SNP),2] filt_trans_hdl_aqtl$position=filt_bmi[match(filt_trans_hdl_aqtl$snps,filt_bmi$SNP),2] filt_trans_triG_eqtl$position=filt_bmi[match(filt_trans_triG_eqtl$snps,filt_bmi$SNP),2] filt_trans_triG_aqtl$position=filt_bmi[match(filt_trans_triG_aqtl$snps,filt_bmi$SNP),2] # Sort by chr and position filt_bmi=filt_bmi[order(filt_bmi$CHR,filt_bmi$POS),] filt_t2d=filt_t2d[order(filt_t2d$Chr,filt_t2d$Pos),] filt_hdl=filt_hdl[order(filt_hdl$CHR,filt_hdl$POS),] filt_triG=filt_triG[order(filt_triG$CHR,filt_triG$POS),] filt_cis_eqtl=filt_cis_eqtl[order(filt_cis_eqtl$chr,filt_cis_eqtl$position),] filt_cis_aqtl=filt_cis_aqtl[order(filt_cis_aqtl$chr,filt_cis_aqtl$position),] filt_trans_bmi_eqtl=filt_trans_bmi_eqtl[order(filt_trans_bmi_eqtl$chr,filt_trans_bmi_eqtl$position),] filt_trans_bmi_aqtl=filt_trans_bmi_aqtl[order(filt_trans_bmi_aqtl$chr,filt_trans_bmi_aqtl$position),] filt_trans_t2d_eqtl=filt_trans_t2d_eqtl[order(filt_trans_t2d_eqtl$chr,filt_trans_t2d_eqtl$position),] filt_trans_t2d_aqtl=filt_trans_t2d_aqtl[order(filt_trans_t2d_aqtl$chr,filt_trans_t2d_aqtl$position),] filt_trans_hdl_eqtl=filt_trans_hdl_eqtl[order(filt_trans_hdl_eqtl$chr,filt_trans_hdl_eqtl$position),] filt_trans_hdl_aqtl=filt_trans_hdl_aqtl[order(filt_trans_hdl_aqtl$chr,filt_trans_hdl_aqtl$position),] filt_trans_triG_eqtl=filt_trans_triG_eqtl[order(filt_trans_triG_eqtl$chr,filt_trans_triG_eqtl$position),] filt_trans_triG_eqtl=filt_trans_triG_eqtl[order(filt_trans_triG_eqtl$chr,filt_trans_triG_eqtl$position),] ### LocusCompare plots ## 1p36.1 # First, grab the necessary P-values for the SNPs used in the HyPrColoc analyses for the traits of interest bmi1=filt_bmi[filt_bmi$CHR==1,c(3,9)] loc1_eEPHB2=filt_cis_eqtl[filt_cis_eqtl$gene=="EPHB2",c(1,4)] loc1_aEPHB2=filt_cis_aqtl[filt_cis_aqtl$gene=="EPHB2",c(1,4)] loc1_eZNF436=filt_cis_eqtl[filt_cis_eqtl$gene=="ZNF436",c(1,4)] loc1_aZNF436=filt_cis_aqtl[filt_cis_aqtl$gene=="ZNF436",c(1,4)] loc1_eTCEA3=filt_cis_eqtl[filt_cis_eqtl$gene=="TCEA3",c(1,4)] loc1_aTCEA3=filt_cis_aqtl[filt_cis_aqtl$gene=="TCEA3",c(1,4)] loc1_eLASP1=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="LASP1" & filt_trans_bmi_eqtl$chr==1,c(1,4)] loc1_aLASP1=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="LASP1" & filt_trans_bmi_aqtl$chr==1,c(1,4)] loc1_eRASSF4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="RASSF4" & filt_trans_bmi_eqtl$chr==1,c(1,4)] loc1_aRASSF4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="RASSF4" & filt_trans_bmi_aqtl$chr==1,c(1,4)] loc1_aGNA14=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="GNA14" & filt_trans_bmi_aqtl$chr==1,c(1,4)] loc1_aDOK5=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="DOK5" & filt_trans_bmi_aqtl$chr==1,c(1,4)] colnames(bmi1)=c("rsid","pval") colnames(loc1_eEPHB2)=c("rsid","pval") colnames(loc1_aEPHB2)=c("rsid","pval") colnames(loc1_eZNF436)=c("rsid","pval") colnames(loc1_aZNF436)=c("rsid","pval") colnames(loc1_eTCEA3)=c("rsid","pval") colnames(loc1_aTCEA3)=c("rsid","pval") colnames(loc1_eLASP1)=c("rsid","pval") colnames(loc1_aLASP1)=c("rsid","pval") colnames(loc1_eRASSF4)=c("rsid","pval") colnames(loc1_aRASSF4)=c("rsid","pval") colnames(loc1_aGNA14)=c("rsid","pval") colnames(loc1_aDOK5)=c("rsid","pval") rownames(bmi1)=bmi1$rsid rownames(loc1_eEPHB2)=loc1_eEPHB2$rsid rownames(loc1_aEPHB2)=loc1_aEPHB2$rsid rownames(loc1_eZNF436)=loc1_eZNF436$rsid rownames(loc1_aZNF436)=loc1_aZNF436$rsid rownames(loc1_eTCEA3)=loc1_eTCEA3$rsid rownames(loc1_aTCEA3)=loc1_aTCEA3$rsid rownames(loc1_eLASP1)=loc1_eLASP1$rsid rownames(loc1_aLASP1)=loc1_aLASP1$rsid rownames(loc1_eRASSF4)=loc1_eRASSF4$rsid rownames(loc1_aRASSF4)=loc1_aRASSF4$rsid rownames(loc1_aGNA14)=loc1_aGNA14$rsid rownames(loc1_aDOK5)=loc1_aDOK5$rsid # Check out some relevant LocusCompare plots before picking the which to write to file locuscompare(in_fn1=bmi1,in_fn2=loc1_eEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-eQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs12408468") # Potential 3rd BMI signal? locuscompare(in_fn1=loc1_eEPHB2,in_fn2=loc1_aEPHB2,title1 = "EPHB2 cis-eQTL", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-eQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_eZNF436,in_fn2=loc1_aZNF436,title1 = "ZNF436 cis-eQTL", title2 = "ZNF436 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eTCEA3,title1 = "BMI GWAS", title2 = "TCEA3 cis-eQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aTCEA3,title1 = "BMI GWAS", title2 = "TCEA3 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eLASP1,title1 = "BMI GWAS", title2 = "LASP1 trans-eQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aLASP1,title1 = "EPHB2 cis-aQTL", title2 = "LASP1 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aLASP1,title1 = "EPHB2 cis-aQTL", title2 = "LASP1 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 trans-eQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aRASSF4,title1 = "EPHB2 cis-aQTL", title2 = "RASSF4 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aRASSF4,title1 = "EPHB2 cis-aQTL", title2 = "RASSF4 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aGNA14,title1 = "EPHB2 cis-aQTL", title2 = "GNA14 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aGNA14,title1 = "EPHB2 cis-aQTL", title2 = "GNA14 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aDOK5,title1 = "EPHB2 cis-aQTL", title2 = "DOK5 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aDOK5,title1 = "EPHB2 cis-aQTL", title2 = "DOK5 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_eEPHB2,in_fn2=loc1_aEPHB2,title1 = "EPHB2 cis-eQTL", title2 = "EPHB2 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP # This locus is complex and consequently difficult to interpret. The EPHB2 cis-aQTL and various BMI MR trans-aQTL signals suggest 2 functional signals # represented by rs6692586 (the top BMI GWAS SNP) and rs4654828 (the top trans-aQTL signal for many BMI MRs). The EPHB2 cis-aQTL has these two SNPs # at roughly equal strength while rs6692586 is clearly stronger for BMI and rs4654828 is clearly stronger for the trans-aQTLs. Perhaps the best # hypothetical explanations for these observations is that rs6692586 operates in cis thru effects on EPHB2 expression and activity, while rs4654828 # has an alternative proximal effect that distally affects the activities of many correlated BMI MRs, including EPHB2, which shows up as a bump in # in the EPHB2 aQTL signal. The proximal effect of rs4654828 might be on ZNF436 activity, but this probably cannot be mediated via expression levels # since there is an extremely strong cis-eQTL for ZNF436 at this locus that does not overlap the BMI signal or the cis-aQTL signal. I looked into the # the position of rs4654828, but it is quite far away from ZNF436 in a LACTBL1 intron. LACTBL1 is apparently not expressed in our adipose tissue, so # it is hard to imagine how it could be mediating the effect on BMI within adipose. It is best expressed in testis, which does have a sig eQTL # between rs4654828-LACTBL1, but this also doesn't seem relevant to BMI. So if rs4654828 does affect ZNF436 activity in adipose, it is mediated # some other way. Interestingly, rs4654828 in GTEx does show sig eQTLs with ZNF436 in other tissue types (Skin, Aorta, Tibial Artery, Esophagus, # Tibial Nerve and Thyroid). It's hard to imagine how ZNF436 expression effects in other tissues could be relevant to ZNF436 activity in adipose. # There are also rs4654828-TCEA3 eQTLs in Skin and Skeletal Muscle, and a TCEA3 splicing QTL in skin. The TCEA3 eQTL/aQTL LocusCompare plots do # not look like TCEA3 is relevant to either BMI signal in adipose. Regardless, this sort of scenario might manifest epistatic effects on BMI and # EPHB2 between these two SNPs. This is easy enough to test for EPHB2 activity, but I can't test it for BMI. # Let's write some to PDFs pdf("rs6692586-EPHB2_eQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_eEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-eQTL",snp = "rs6692586") dev.off() pdf("rs6692586-EPHB2_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-EPHB2_eQTL_and_aQTL_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_eEPHB2,in_fn2=loc1_aEPHB2,title1 = "EPHB2 cis-eQTL", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-EPHB2_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-ZNF436_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-ZNF436_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-DOK5_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-DOK5_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-RASSF4_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-RASSF4_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-GNA14_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-GNA14_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-LASP1_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-LASP1_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-LASP1_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aLASP1,title1 = "EPHB2 cis-aQTL", title2 = "LASP1 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-GNA14_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aGNA14,title1 = "EPHB2 cis-aQTL", title2 = "GNA14 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-RASSF4_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aRASSF4,title1 = "EPHB2 cis-aQTL", title2 = "RASSF4 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-DOK5_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aDOK5,title1 = "EPHB2 cis-aQTL", title2 = "DOK5 cis-aQTL",snp = "rs6692586") dev.off() ## 7q32 # First, grab the necessary P-values for the SNPs used in the HyPrColoc analyses for the traits of interest bmi2=filt_bmi[filt_bmi$CHR==7,c(3,9)] t2d2=filt_t2d[filt_t2d$Chr==7,c(1,9)] hdl2=filt_hdl[filt_hdl$CHR==7,c(3,9)] triG2=filt_triG[filt_triG$CHR==7,c(3,9)] loc2_eLINC=filt_cis_eqtl[filt_cis_eqtl$gene=="LINC-PINT",c(1,4)] loc2_aLINC=filt_cis_aqtl[filt_cis_aqtl$gene=="LINC-PINT",c(1,4)] loc2_eKLF14=filt_cis_eqtl[filt_cis_eqtl$gene=="KLF14",c(1,4)] loc2_aKLF14=filt_cis_aqtl[filt_cis_aqtl$gene=="KLF14",c(1,4)] loc2_eAC=filt_cis_eqtl[filt_cis_eqtl$gene=="AC016831.7",c(1,4)] loc2_eTBX4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="TBX4" & filt_trans_bmi_eqtl$chr==7,c(1,4)] loc2_aTBX4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="TBX4" & filt_trans_bmi_aqtl$chr==7,c(1,4)] loc2_eGNB1=filt_trans_t2d_eqtl[filt_trans_t2d_eqtl$gene=="GNB1" & filt_trans_t2d_eqtl$chr==7,c(1,4)] loc2_aGNB1=filt_trans_t2d_aqtl[filt_trans_t2d_aqtl$gene=="GNB1" & filt_trans_t2d_aqtl$chr==7,c(1,4)] loc2_eESR2=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$gene=="ESR2" & filt_trans_hdl_eqtl$chr==7,c(1,4)] loc2_aESR2=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$gene=="ESR2" & filt_trans_hdl_aqtl$chr==7,c(1,4)] loc2_eNR2F1=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$gene=="NR2F1" & filt_trans_hdl_eqtl$chr==7,c(1,4)] loc2_aNR2F1=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$gene=="NR2F1" & filt_trans_hdl_aqtl$chr==7,c(1,4)] loc2_eAGT=filt_trans_triG_eqtl[filt_trans_triG_eqtl$gene=="AGT" & filt_trans_triG_eqtl$chr==7,c(1,4)] loc2_aAGT=filt_trans_triG_aqtl[filt_trans_triG_aqtl$gene=="AGT" & filt_trans_triG_aqtl$chr==7,c(1,4)] loc2_eRABIF=filt_trans_triG_eqtl[filt_trans_triG_eqtl$gene=="RABIF" & filt_trans_triG_eqtl$chr==7,c(1,4)] loc2_aRABIF=filt_trans_triG_aqtl[filt_trans_triG_aqtl$gene=="RABIF" & filt_trans_triG_aqtl$chr==7,c(1,4)] colnames(bmi2)=c("rsid","pval") colnames(t2d2)=c("rsid","pval") colnames(hdl2)=c("rsid","pval") colnames(triG2)=c("rsid","pval") colnames(loc2_eLINC)=c("rsid","pval") colnames(loc2_aLINC)=c("rsid","pval") colnames(loc2_eKLF14)=c("rsid","pval") colnames(loc2_aKLF14)=c("rsid","pval") colnames(loc2_eAC)=c("rsid","pval") colnames(loc2_eTBX4)=c("rsid","pval") colnames(loc2_aTBX4)=c("rsid","pval") colnames(loc2_eGNB1)=c("rsid","pval") colnames(loc2_aGNB1)=c("rsid","pval") colnames(loc2_eESR2)=c("rsid","pval") colnames(loc2_aESR2)=c("rsid","pval") colnames(loc2_eNR2F1)=c("rsid","pval") colnames(loc2_aNR2F1)=c("rsid","pval") colnames(loc2_eAGT)=c("rsid","pval") colnames(loc2_aAGT)=c("rsid","pval") colnames(loc2_eRABIF)=c("rsid","pval") colnames(loc2_aRABIF)=c("rsid","pval") rownames(bmi2)=bmi2$rsid rownames(t2d2)=t2d2$rsid rownames(hdl2)=hdl2$rsid rownames(triG2)=triG2$rsid rownames(loc2_eLINC)=loc2_eLINC$rsid rownames(loc2_aLINC)=loc2_aLINC$rsid rownames(loc2_eKLF14)=loc2_eKLF14$rsid rownames(loc2_aKLF14)=loc2_aKLF14$rsid rownames(loc2_eAC)=loc2_eAC$rsid rownames(loc2_eTBX4)=loc2_eTBX4$rsid rownames(loc2_aTBX4)=loc2_aTBX4$rsid rownames(loc2_eGNB1)=loc2_eGNB1$rsid rownames(loc2_aGNB1)=loc2_aGNB1$rsid rownames(loc2_eESR2)=loc2_eESR2$rsid rownames(loc2_aESR2)=loc2_aESR2$rsid rownames(loc2_eNR2F1)=loc2_eNR2F1$rsid rownames(loc2_aNR2F1)=loc2_aNR2F1$rsid rownames(loc2_eAGT)=loc2_eAGT$rsid rownames(loc2_aAGT)=loc2_aAGT$rsid rownames(loc2_eRABIF)=loc2_eRABIF$rsid rownames(loc2_aRABIF)=loc2_aRABIF$rsid # Check out some relevant LocusCompare plots before picking the which to write to file locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eLINC,title1 = "BMI GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=loc2_eLINC,in_fn2=loc2_aLINC,title1 = "LINC-PINT cis-eQTL", title2 = "LINC-PINT cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eLINC,title1 = "T2D GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eLINC,title1 = "HDL GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eLINC,title1 = "Triglycerides GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_aKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_aKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-aQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_aKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs738134") # Top BMI GWAS SNP locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs287621") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eAC,title1 = "BMI GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eAC,title1 = "T2D GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eAC,title1 = "HDL GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eAC,title1 = "Triglycerides GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eTBX4,title1 = "BMI GWAS", title2 = "TBX4 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eTBX4,title1 = "T2D GWAS", title2 = "TBX4 trans-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eTBX4,title1 = "HDL GWAS", title2 = "TBX4 trans-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eTBX4,title1 = "Triglycerides GWAS", title2 = "TBX4 trans-eQTL",snp = "rs287621") # Top HDL GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_aTBX4,title1 = "BMI GWAS", title2 = "TBX4 trans-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_aTBX4,title1 = "T2D GWAS", title2 = "TBX4 trans-aQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_aTBX4,title1 = "HDL GWAS", title2 = "TBX4 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aTBX4,title1 = "Triglycerides GWAS", title2 = "TBX4 trans-aQTL",snp = "rs287621") # Top HDL GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eGNB1,title1 = "T2D GWAS", title2 = "GNB1 trans-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=t2d2,in_fn2=loc2_aGNB1,title1 = "T2D GWAS", title2 = "GNB1 trans-aQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eESR2,title1 = "HDL GWAS", title2 = "ESR2 trans-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=loc2_aESR2,title1 = "HDL GWAS", title2 = "ESR2 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=loc2_eNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=loc2_aNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=loc2_eNR2F1,in_fn2=loc2_aNR2F1,title1 = "NR2F1 trans-eQTL", title2 = "NR2F1 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eRABIF,title1 = "Triglycerides GWAS", title2 = "RABIF trans-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aRABIF,title1 = "Triglycerides GWAS", title2 = "RABIF trans-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs972283") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs738134") # Top TriG GWAS SNP # I never ran HyPrColoc on just cis-e_KLF14 and cis-a_KLF14 alone. First I need to calculate the SEs and format the data. filt_cis_eqtl$SE=filt_cis_eqtl$beta/filt_cis_eqtl$statistic filt_cis_aqtl$SE=filt_cis_aqtl$beta/filt_cis_aqtl$statistic all(filt_cis_eqtl$snps[filt_cis_eqtl$gene=="KLF14"]==filt_cis_aqtl$snps[filt_cis_aqtl$gene=="KLF14"]) # TRUE betas2=cbind("cis-e_KLF14"=filt_cis_eqtl[filt_cis_eqtl$gene=="KLF14","beta"],"cis-a_KLF14"=filt_cis_aqtl[filt_cis_aqtl$gene=="KLF14","beta"]) ses2=cbind("cis-e_KLF14"=filt_cis_eqtl[filt_cis_eqtl$gene=="KLF14","SE"],"cis-a_KLF14"=filt_cis_aqtl[filt_cis_aqtl$gene=="KLF14","SE"]) rownames(betas2)=filt_cis_aqtl$snps[filt_cis_aqtl$gene=="KLF14"] rownames(ses2)=filt_cis_aqtl$snps[filt_cis_aqtl$gene=="KLF14"] all(rownames(betas2)==rownames(filt_ld[[2]])) # TRUE all(rownames(ses2)==rownames(filt_ld[[2]])) # TRUE eKLF14_aKLF14=hyprcoloc(as.matrix(betas2),as.matrix(ses2), trait.names=colnames(betas2),snp.id=rownames(betas2),ld.matrix = filt_ld[[2]], trait.subset = c("cis-e_KLF14","cis-a_KLF14"),snpscores = T) # KLF14 eQTL and aQTL colocalize with a PP=0.9094 that is best explained by rs4731702. # Now let's do the same sort of analysis for NR2F1 and AGT. filt_trans_hdl_eqtl$SE=filt_trans_hdl_eqtl$beta/filt_trans_hdl_eqtl$statistic filt_trans_hdl_aqtl$SE=filt_trans_hdl_aqtl$beta/filt_trans_hdl_aqtl$statistic temp_e=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$chr==7 & filt_trans_hdl_eqtl$gene=="NR2F1",] temp_a=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$chr==7 & filt_trans_hdl_aqtl$gene=="NR2F1",] all(rownames(betas2)==temp_e$snps) # TRUE all(rownames(betas2)==temp_a$snps) # TRUE betas2=cbind(betas2,"trans-e_NR2F1"=temp_e$beta,"trans-a_NR2F1"=temp_a$beta) ses2=cbind(ses2,"trans-e_NR2F1"=temp_e$SE,"trans-a_NR2F1"=temp_a$SE) filt_trans_triG_eqtl$SE=filt_trans_triG_eqtl$beta/filt_trans_triG_eqtl$statistic filt_trans_triG_aqtl$SE=filt_trans_triG_aqtl$beta/filt_trans_triG_aqtl$statistic temp_e=filt_trans_triG_eqtl[filt_trans_triG_eqtl$chr==7 & filt_trans_triG_eqtl$gene=="AGT",] temp_a=filt_trans_triG_aqtl[filt_trans_triG_aqtl$chr==7 & filt_trans_triG_aqtl$gene=="AGT",] all(rownames(betas2)==temp_e$snps) # TRUE all(rownames(betas2)==temp_a$snps) # FALSE temp_a=temp_a[match(rownames(betas2),temp_a$snps),] all(rownames(betas2)==temp_a$snps) # TRUE betas2=cbind(betas2,"trans-e_AGT"=temp_e$beta,"trans-a_AGT"=temp_a$beta) ses2=cbind(ses2,"trans-e_AGT"=temp_e$SE,"trans-a_AGT"=temp_a$SE) eNR2F1_aNR2F1=hyprcoloc(as.matrix(betas2),as.matrix(ses2), trait.names=colnames(betas2),snp.id=rownames(betas2),ld.matrix = filt_ld[[2]], trait.subset = c("trans-e_NR2F1","trans-a_NR2F1"),snpscores = T) # NR2F1 eQTL and aQTL colocalize with a PP=0.8700 that is best explained by rs738134. eAGT_aAGT=hyprcoloc(as.matrix(betas2),as.matrix(ses2), trait.names=colnames(betas2),snp.id=rownames(betas2),ld.matrix = filt_ld[[2]], trait.subset = c("trans-e_AGT","trans-a_AGT"),snpscores = T) # AGT eQTL and aQTL colocalize with a PP=0.6451 that is best explained by rs11765979. # Let's write some to PDFs pdf("BMI_T2D_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("BMI_T2D_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("BMI_T2D_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) dev.off() pdf("BMI_HDL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("BMI_HDL_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("BMI_HDL_7q32_LocusCompare_rs11765979.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP dev.off() pdf("BMI_TriG_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("BMI_TriG_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("T2D_HDL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("T2D_HDL_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) dev.off() pdf("T2D_HDL_7q32_LocusCompare_rs11765979.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP dev.off() pdf("T2D_TriG_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("T2D_TriG_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) dev.off() pdf("T2D_TriG_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("HDL_TriG_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("HDL_TriG_7q32_LocusCompare_rs11765979.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs11765979") # Top HDL GWAS SNP dev.off() pdf("HDL_TriG_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./BMI/BMI_e_LINC-PINT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eLINC,title1 = "BMI GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_LINC-PINT_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eLINC,title1 = "T2D GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_LINC-PINT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eLINC,title1 = "HDL GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_LINC-PINT_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eLINC,title1 = "Triglycerides GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./LINC-PINT_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eLINC,in_fn2=loc2_aLINC,title1 = "LINC-PINT cis-eQTL", title2 = "LINC-PINT cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./BMI/BMI_e_AC016831.7_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eAC,title1 = "BMI GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_AC016831.7_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eAC,title1 = "T2D GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_AC016831.7_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eAC,title1 = "HDL GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_AC016831.7_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eAC,title1 = "Triglycerides GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./BMI/BMI_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_KLF14_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_KLF14_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./BMI/BMI_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_aKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_aKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_a_KLF14_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_aKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-aQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_aKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_aKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_a_KLF14_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_aKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-aQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./KLF14_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./BMI/BMI_e_TBX4_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eTBX4,title1 = "BMI GWAS", title2 = "TBX4 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_TBX4_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eTBX4,title1 = "T2D GWAS", title2 = "TBX4 trans-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_TBX4_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eTBX4,title1 = "HDL GWAS", title2 = "TBX4 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_TBX4_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eTBX4,title1 = "Triglycerides GWAS", title2 = "TBX4 trans-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./TBX4_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eTBX4,in_fn2=loc2_aTBX4,title1 = "TBX4 cis-eQTL", title2 = "TBX4 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./HDL/HDL_e_NR2F1_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./HDL/HDL_a_NR2F1_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_aNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./NR2F1_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eNR2F1,in_fn2=loc2_aNR2F1,title1 = "NR2F1 trans-eQTL", title2 = "NR2F1 trans-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_AGT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-eQTL",snp = "rs287621") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_a_AGT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_aAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-aQTL",snp = "rs287621") # Top BMI GWAS SNP dev.off() pdf("./AGT_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs287621") # Top BMI GWAS SNP dev.off() ## 12p13.1 # First, grab the necessary P-values for the SNPs used in the HyPrColoc analyses for the traits of interest bmi4=filt_bmi[match(rownames(filt_ld[[4]]),filt_bmi$SNP),c(3,9)] loc4_eANG=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="ANG",c(1,4)] loc4_aANG=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="ANG",c(1,4)] loc4_eID2=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="ID2",c(1,4)] loc4_aID2=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="ID2",c(1,4)] loc4_ePTPRJ=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="PTPRJ",c(1,4)] loc4_aPTPRJ=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="PTPRJ",c(1,4)] loc4_eTENM4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="TENM4",c(1,4)] loc4_aTENM4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="TENM4",c(1,4)] loc4_eEPHB2=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="EPHB2",c(1,4)] loc4_aEPHB2=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="EPHB2",c(1,4)] colnames(bmi4)=c("rsid","pval") colnames(loc4_eANG)=c("rsid","pval") colnames(loc4_aANG)=c("rsid","pval") colnames(loc4_eID2)=c("rsid","pval") colnames(loc4_aID2)=c("rsid","pval") colnames(loc4_ePTPRJ)=c("rsid","pval") colnames(loc4_aPTPRJ)=c("rsid","pval") colnames(loc4_eTENM4)=c("rsid","pval") colnames(loc4_aTENM4)=c("rsid","pval") colnames(loc4_eEPHB2)=c("rsid","pval") colnames(loc4_aEPHB2)=c("rsid","pval") rownames(bmi4)=bmi4$rsid rownames(loc4_eANG)=loc4_eANG$rsid rownames(loc4_aANG)=loc4_aANG$rsid rownames(loc4_eID2)=loc4_eID2$rsid rownames(loc4_aID2)=loc4_aID2$rsid rownames(loc4_ePTPRJ)=loc4_ePTPRJ$rsid rownames(loc4_aPTPRJ)=loc4_aPTPRJ$rsid rownames(loc4_eTENM4)=loc4_eTENM4$rsid rownames(loc4_aTENM4)=loc4_aTENM4$rsid rownames(loc4_eEPHB2)=loc4_eEPHB2$rsid rownames(loc4_aEPHB2)=loc4_aEPHB2$rsid # Check out some relevant LocusCompare plots before picking the which to write to file locuscompare(in_fn1=bmi4,in_fn2=loc4_eEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_eANG,title1 = "BMI GWAS", title2 = "ANG trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aANG,title1 = "BMI GWAS", title2 = "ANG trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_eID2,title1 = "BMI GWAS", title2 = "ID2 trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aID2,title1 = "BMI GWAS", title2 = "ID2 trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_ePTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aPTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_eTENM4,title1 = "BMI GWAS", title2 = "TENM4 trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aTENM4,title1 = "BMI GWAS", title2 = "TENM4 trans-aQTL",snp = "rs12422552") # Top GWAS SNP # Let's write some to PDFs pdf("./BMI/rs12422552-ANG_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_eANG,title1 = "BMI GWAS", title2 = "ANG cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-ANG_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aANG,title1 = "BMI GWAS", title2 = "ANG cis-aQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-ID2_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_eID2,title1 = "BMI GWAS", title2 = "ID2 cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-ID2_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aID2,title1 = "BMI GWAS", title2 = "ID2 cis-aQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-PTPRJ_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_ePTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-PTPRJ_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aPTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ cis-aQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-TENM4_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_eTENM4,title1 = "BMI GWAS", title2 = "TENM4 cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-TENM4_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aTENM4,title1 = "BMI GWAS", title2 = "TENM4 cis-aQTL",snp = "rs12422552") dev.off() ### Let's switch to pulling out data for Cytoscape network visualizations # Read in data bmi_pairColoc=read.table("./BMI/Pairwise_HyPrColoc_between_BMI_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) t2d_pairColoc=read.table("./T2D/Pairwise_HyPrColoc_between_BMIadjT2D_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) hdl_pairColoc=read.table("./HDL/Pairwise_HyPrColoc_between_HDL_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) triG_pairColoc=read.table("./Triglycerides/Pairwise_HyPrColoc_between_TriG_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) ephb2_pairColoc=read.table("./BMI/Pairwise_HyPrColoc_between_EPHB2_aQTL_and_each_other_QTL_for_1p36.txt",sep = "\t",header = T) bmi_mrs=read.table("./BMI/Eurobats_adipose_time-matched_BMI_MRs_from_RF_modeling.txt",header = F) homair_mrs=read.table("./HOMA-IR/Eurobats_adipose_time-matched_HOMA-IR_MRs_from_RF_modeling.txt",header = F) hdl_mrs=read.table("./HDL/Eurobats_adipose_time-matched_HDL_MRs_from_RF_modeling.txt",header = F) triG_mrs=read.table("./Triglycerides/Eurobats_adipose_time-matched_Triglycerides_MRs_from_RF_modeling.txt",header = F) interactome=read.table("../Adipose expression data/FINAL_logTPMs_and_activities/Eurobats_adipose_900boots_regulon_with_LINC-PINT.txt",sep = "\t",header = T) tpm=read.table("../Adipose expression data/FINAL_logTPMs_and_activities/Filtered_Eurobats_adipose_qnorm_INT_logTPMs_for_all_expressed_genes.txt", sep = "\t",header = T,row.names = 1) vip=read.table("../Adipose expression data/FINAL_logTPMs_and_activities/Filtered_Eurobats_adipose_unnormalized_activities_from_logTPM_for_4213_regulators.txt", sep = "\t",header = T,row.names = 1) phenos=read.table("../Eurobats phenotypes/Amendment_time-matched_phenotypes_E886_02082019_with_HOMA.txt",sep="\t",header = T,row.names = 1) filt_pheno=phenos[na.omit(match(colnames(vip),rownames(phenos))),] all(colnames(vip)==colnames(tpm)) # TRUE all(colnames(vip)==rownames(filt_pheno)) # TRUE sig_bmi=filt_bmi[filt_bmi$P<=5E-8,] sig_t2d=filt_t2d[filt_t2d$Pvalue<=5E-8,] sig_hdl=filt_hdl[filt_hdl$P<=5E-8,] sig_triG=filt_triG[filt_triG$P<=5E-8,] # Grab relevant sub-interactomes bmi_MRregs=interactome[interactome$Target %in% bmi_mrs[,1],] bmi_MRMR=bmi_MRregs[bmi_MRregs$Regulator %in% bmi_mrs[,1],] homair_MRregs=interactome[interactome$Target %in% homair_mrs[,1],] homair_MRMR=homair_MRregs[homair_MRregs$Regulator %in% homair_mrs[,1],] hdl_MRregs=interactome[interactome$Target %in% hdl_mrs[,1],] hdl_MRMR=hdl_MRregs[hdl_MRregs$Regulator %in% hdl_mrs[,1],] triG_MRregs=interactome[interactome$Target %in% triG_mrs[,1],] triG_MRMR=triG_MRregs[triG_MRregs$Regulator %in% triG_mrs[,1],] # 1p36 # Grab interactions between EPHB2 and MRs in adipose interactome EPHB2mrs=bmi_MRregs[bmi_MRregs$Regulator=="EPHB2",] mrsEPHB2=interactome[(interactome$Regulator %in% bmi_mrs[,1]) & (interactome$Target=="EPHB2"),] interactome1p36=rbind(bmi_MRMR,EPHB2mrs,mrsEPHB2) # Grab pairwise colocalizations with PP>0.5 between BMI and QTLs and EPHB2 aQTL and trans-QTLs bmi_pairColoc1p36=bmi_pairColoc[bmi_pairColoc$locus=="1p36.1" & bmi_pairColoc$posterior_prob>0.5,c(2,3,5)] bmi_pairColoc1p36$traits=gsub("BMI, ","",bmi_pairColoc1p36$traits) bmi_pairColoc1p36=cbind("trait1"=rep("BMI",dim(bmi_pairColoc1p36)[1]),bmi_pairColoc1p36) bmi_e_pairColoc1=bmi_pairColoc1p36[grepl("-e_",bmi_pairColoc1p36$traits),] bmi_a_pairColoc1=bmi_pairColoc1p36[grepl("-a_",bmi_pairColoc1p36$traits),] bmi_e_pairColoc1$traits=gsub(".*_","",bmi_e_pairColoc1$traits) bmi_a_pairColoc1$traits=gsub(".*_","",bmi_a_pairColoc1$traits) bmi_netPair1p36=rbind(bmi_e_pairColoc1,bmi_a_pairColoc1) bmi_netPair1p36=bmi_netPair1p36[!duplicated(bmi_netPair1p36$traits),-c(3,4)] bmi_netPair1p36$eQTL_PP=bmi_e_pairColoc1[match(bmi_netPair1p36$traits,bmi_e_pairColoc1$traits),3] bmi_netPair1p36$eQTL_SNP=bmi_e_pairColoc1[match(bmi_netPair1p36$traits,bmi_e_pairColoc1$traits),4] bmi_netPair1p36$aQTL_PP=bmi_a_pairColoc1[match(bmi_netPair1p36$traits,bmi_a_pairColoc1$traits),3] bmi_netPair1p36$aQTL_SNP=bmi_a_pairColoc1[match(bmi_netPair1p36$traits,bmi_a_pairColoc1$traits),4] ephb2Coloc1=ephb2_pairColoc[!is.na(ephb2_pairColoc$candidate_snp),c(2,3,5)] ephb2Coloc1=ephb2Coloc1[ephb2Coloc1$posterior_prob>0.5,] ephb2Coloc1$traits=gsub("cis-a_EPHB2, ","",ephb2Coloc1$traits) ephb2Coloc1=cbind("trait1"=rep("EPHB2",dim(ephb2Coloc1)[1]),ephb2Coloc1) e_ephb2Coloc1=ephb2Coloc1[grepl("-e_",ephb2Coloc1$traits),] a_ephb2Coloc1=ephb2Coloc1[grepl("-a_",ephb2Coloc1$traits),] e_ephb2Coloc1$traits=gsub(".*_","",e_ephb2Coloc1$traits) a_ephb2Coloc1$traits=gsub(".*_","",a_ephb2Coloc1$traits) netEPHB2=rbind(e_ephb2Coloc1,a_ephb2Coloc1) netEPHB2=netEPHB2[!duplicated(netEPHB2$traits),-c(3,4)] netEPHB2$eQTL_PP=e_ephb2Coloc1[match(netEPHB2$traits,e_ephb2Coloc1$traits),3] netEPHB2$eQTL_SNP=e_ephb2Coloc1[match(netEPHB2$traits,e_ephb2Coloc1$traits),4] netEPHB2$aQTL_PP=a_ephb2Coloc1[match(netEPHB2$traits,a_ephb2Coloc1$traits),3] netEPHB2$aQTL_SNP=a_ephb2Coloc1[match(netEPHB2$traits,a_ephb2Coloc1$traits),4] colocNet1p36=rbind(bmi_netPair1p36,netEPHB2) colocNet1p36[is.na(colocNet1p36)]=0 # Grab the -log10(Pmin) and betas for the eQTLs and aQTLs among BMI GWAS significant SNPs at the 1p36.1 locus # Actually, though I originally made networks with nodes shaded according to their minP QTLs, I've since decided # that for the manuscript I need to stick to a single SNP for all QTLs to avoid allele switching issues and to # facilitate discussion in the manuscript. Therefore, for this locus I will focus on rs4654828 since it tends to # be among the top SNPs for EPHB2 cis-aQTL and all BMI MR trans-aQTLs. However, since subsequent lines of code # refer to the variables as min_cisE1, etc. I will keep that naming even though it's not an adequate description. cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==1,] cisE1=cisE1[cisE1$snps %in% sig_bmi$SNP,] cisE1=cisE1[order(cisE1$pvalue),] #min_cisE1=cisE1[!duplicated(cisE1$gene),] min_cisE1=cisE1[cisE1$snps=="rs4654828",] cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==1,] cisA1=cisA1[cisA1$snps %in% sig_bmi$SNP,] cisA1=cisA1[order(cisA1$pvalue),] #min_cisA1=cisA1[!duplicated(cisA1$gene),] min_cisA1=cisA1[cisA1$snps=="rs4654828",] transE1=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$chr==1,] transE1=transE1[transE1$snps %in% sig_bmi$SNP,] transE1=transE1[order(transE1$pvalue),] #min_transE1=transE1[!duplicated(transE1$gene),] min_transE1=transE1[transE1$snps=="rs4654828",] transA1=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$chr==1,] transA1=transA1[transA1$snps %in% sig_bmi$SNP,] transA1=transA1[order(transA1$pvalue),] #min_transA1=transA1[!duplicated(transA1$gene),] min_transA1=transA1[transA1$snps=="rs4654828",] # Make node tables for 1p36 networks inter_nodes1p36=data.frame("Node"=as.character(unique(interactome1p36$Regulator)),"BMI_exp_cor"=rep(0,length(unique(interactome1p36$Regulator))), "BMI_act_cor"=rep(0,length(unique(interactome1p36$Regulator))),"rs4654828_eQTL_Beta"=rep(0,length(unique(interactome1p36$Regulator))), "rs4654828_eQTL_logP"=rep(0,length(unique(interactome1p36$Regulator))),"rs4654828_aQTL_Beta"=rep(0,length(unique(interactome1p36$Regulator))), "rs4654828_aQTL_logP"=rep(0,length(unique(interactome1p36$Regulator)))) for(i in 1:dim(inter_nodes1p36)[1]){ inter_nodes1p36$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(inter_nodes1p36$Node[i]),]),filt_pheno$BMI) inter_nodes1p36$BMI_act_cor[i]=cor(as.numeric(vip[as.character(inter_nodes1p36$Node[i]),]),filt_pheno$BMI) inter_nodes1p36$rs4654828_eQTL_Beta[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transE1$gene, min_transE1[min_transE1$gene==as.character(inter_nodes1p36$Node[i]),"beta"], 0) inter_nodes1p36$rs4654828_eQTL_logP[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transE1$gene, -log10(min_transE1[min_transE1$gene==as.character(inter_nodes1p36$Node[i]),"pvalue"]), 0) inter_nodes1p36$rs4654828_aQTL_Beta[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transA1$gene, min_transA1[min_transA1$gene==as.character(inter_nodes1p36$Node[i]),"beta"], 0) inter_nodes1p36$rs4654828_aQTL_logP[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transA1$gene, -log10(min_transA1[min_transA1$gene==as.character(inter_nodes1p36$Node[i]),"pvalue"]), 0) } coloc_nodes1p36=data.frame("Node"=as.character(unique(colocNet1p36$traits)),"BMI_exp_cor"=rep(0,length(unique(colocNet1p36$traits))), "BMI_act_cor"=rep(0,length(unique(colocNet1p36$traits))),"rs4654828_eQTL_Beta"=rep(0,length(unique(colocNet1p36$traits))), "rs4654828_eQTL_logP"=rep(0,length(unique(colocNet1p36$traits))),"rs4654828_aQTL_Beta"=rep(0,length(unique(colocNet1p36$traits))), "rs4654828_aQTL_logP"=rep(0,length(unique(colocNet1p36$traits)))) for(i in 1:dim(coloc_nodes1p36)[1]){ coloc_nodes1p36$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(coloc_nodes1p36$Node[i]),]),filt_pheno$BMI) coloc_nodes1p36$BMI_act_cor[i]=cor(as.numeric(vip[as.character(coloc_nodes1p36$Node[i]),]),filt_pheno$BMI) coloc_nodes1p36$rs4654828_eQTL_Beta[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transE1$gene, min_transE1[min_transE1$gene==as.character(coloc_nodes1p36$Node[i]),"beta"], 0) coloc_nodes1p36$rs4654828_eQTL_logP[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transE1$gene, -log10(min_transE1[min_transE1$gene==as.character(coloc_nodes1p36$Node[i]),"pvalue"]), 0) coloc_nodes1p36$rs4654828_aQTL_Beta[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transA1$gene, min_transA1[min_transA1$gene==as.character(coloc_nodes1p36$Node[i]),"beta"], 0) coloc_nodes1p36$rs4654828_aQTL_logP[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transA1$gene, -log10(min_transA1[min_transA1$gene==as.character(coloc_nodes1p36$Node[i]),"pvalue"]), 0) } # Since EPHB2 is the only cis gene here, I'll just deal with it manually inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_eQTL_Beta"]=min_cisE1[min_cisE1$gene=="EPHB2","beta"] inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_eQTL_logP"]=-log10(min_cisE1[min_cisE1$gene=="EPHB2","pvalue"]) inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_aQTL_Beta"]=min_cisA1[min_cisA1$gene=="EPHB2","beta"] inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_aQTL_logP"]=-log10(min_cisA1[min_cisA1$gene=="EPHB2","pvalue"]) coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_eQTL_Beta"]=min_cisE1[min_cisE1$gene=="EPHB2","beta"] coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_eQTL_logP"]=-log10(min_cisE1[min_cisE1$gene=="EPHB2","pvalue"]) coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_aQTL_Beta"]=min_cisA1[min_cisA1$gene=="EPHB2","beta"] coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_aQTL_logP"]=-log10(min_cisA1[min_cisA1$gene=="EPHB2","pvalue"]) # I think it may be more convenient to merge the networks into one and then just change which attributes I visualize in Cytoscape # Start with 2 temporary columns concatinating the regulator-target and target-regulator for easier matching. interactome1p36$temp1=paste(interactome1p36$Regulator,interactome1p36$Target) interactome1p36$temp2=paste(interactome1p36$Target,interactome1p36$Regulator) colocNet1p36$temp1=paste(colocNet1p36$trait1,colocNet1p36$traits) colocNet1p36$temp2=paste(colocNet1p36$traits,colocNet1p36$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(interactome1p36)[1],ncol = 4)) for(i in 1:dim(interactome1p36)[1]){ temp[i,1:4]=colocNet1p36[ifelse(is.na(match(interactome1p36$temp1[i],colocNet1p36$temp1)), match(interactome1p36$temp1[i],colocNet1p36$temp2), match(interactome1p36$temp1[i],colocNet1p36$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the BMI colocalizations colnames(temp)=colnames(colocNet1p36)[3:6] temp=rbind(temp,colocNet1p36[colocNet1p36$trait1=="BMI",3:6]) # Then add rows for BMI-Gene connections with 0 for MoA and likelihood full1p36=interactome1p36[,1:4] temp2=colocNet1p36[colocNet1p36$trait1=="BMI",1:4] colnames(temp2)=colnames(interactome1p36)[1:4] temp2[,3:4]=0 full1p36=rbind(full1p36,temp2) # Finally, combine the colocalization columns with the interactome columns full1p36=cbind(full1p36,temp) # The nodes data also needs to be combined and duplicate rows removed full1p36_nodes=rbind(inter_nodes1p36,coloc_nodes1p36) full1p36_nodes=full1p36_nodes[!duplicated(full1p36_nodes$Node),] # Write networks and node data to file for Cytoscape visualizations write.table(interactome1p36,"Chr1p36_EPHB2_and_BMI_MRs_interactome.txt",sep = "\t",quote = F,row.names = F) write.table(inter_nodes1p36,"Chr1p36_EPHB2_and_BMI_MRs_interactome_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(colocNet1p36,"Chr1p36_BMI_EPHB2_and_BMI_MRs_pairwise_colocalization_network.txt",sep = "\t",quote = F,row.names = F) write.table(coloc_nodes1p36,"Chr1p36_BMI_EPHB2_and_BMI_MRs_pairwise_colocalization_network_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(full1p36,"Chr1p36_EPHB2_and_BMI_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(full1p36_nodes,"Chr1p36_EPHB2_and_BMI_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) # 7q32 # Grab interactions between LINC-PINT, KLF14 and MRs in adipose interactome linc_bmi_mrs=bmi_MRregs[bmi_MRregs$Regulator=="LINC-PINT",] linc_homair_mrs=homair_MRregs[homair_MRregs$Regulator=="LINC-PINT",] linc_hdl_mrs=hdl_MRregs[hdl_MRregs$Regulator=="LINC-PINT",] linc_triG_mrs=triG_MRregs[triG_MRregs$Regulator=="LINC-PINT",] bmi_mrsLINC=interactome[(interactome$Regulator %in% bmi_mrs[,1]) & (interactome$Target=="LINC-PINT"),] homair_mrsLINC=interactome[(interactome$Regulator %in% homair_mrs[,1]) & (interactome$Target=="LINC-PINT"),] hdl_mrsLINC=interactome[(interactome$Regulator %in% hdl_mrs[,1]) & (interactome$Target=="LINC-PINT"),] triG_mrsLINC=interactome[(interactome$Regulator %in% triG_mrs[,1]) & (interactome$Target=="LINC-PINT"),] klf14_bmi_mrs=bmi_MRregs[bmi_MRregs$Regulator=="KLF14",] klf14_homair_mrs=homair_MRregs[homair_MRregs$Regulator=="KLF14",] klf14_hdl_mrs=hdl_MRregs[hdl_MRregs$Regulator=="KLF14",] klf14_triG_mrs=triG_MRregs[triG_MRregs$Regulator=="KLF14",] bmi_mrsKLF14=interactome[(interactome$Regulator %in% bmi_mrs[,1]) & (interactome$Target=="KLF14"),] homair_mrsKLF14=interactome[(interactome$Regulator %in% homair_mrs[,1]) & (interactome$Target=="KLF14"),] hdl_mrsKLF14=interactome[(interactome$Regulator %in% hdl_mrs[,1]) & (interactome$Target=="KLF14"),] triG_mrsKLF14=interactome[(interactome$Regulator %in% triG_mrs[,1]) & (interactome$Target=="KLF14"),] bmi_interactome7q32=rbind(bmi_MRMR,linc_bmi_mrs,bmi_mrsLINC,klf14_bmi_mrs,bmi_mrsKLF14) homair_interactome7q32=rbind(homair_MRMR,linc_homair_mrs,homair_mrsLINC,klf14_homair_mrs,homair_mrsKLF14) hdl_interactome7q32=rbind(hdl_MRMR,linc_hdl_mrs,hdl_mrsLINC,klf14_hdl_mrs,hdl_mrsKLF14) triG_interactome7q32=rbind(triG_MRMR,linc_triG_mrs,triG_mrsLINC,klf14_triG_mrs,triG_mrsKLF14) # Grab pairwise colocalizations with PP>0.5 between each GWAS and QTLs. I did not run pairwise colocalization analyses for LINC-PINT or KLF14 yet. bmi_pairColoc7q32=bmi_pairColoc[bmi_pairColoc$locus=="7q32" & bmi_pairColoc$posterior_prob>0.5,c(2,3,5)] bmi_pairColoc7q32$traits=gsub("BMI, ","",bmi_pairColoc7q32$traits) bmi_pairColoc7q32=cbind("trait1"=rep("BMI",dim(bmi_pairColoc7q32)[1]),bmi_pairColoc7q32) bmi_e_pairColoc1=bmi_pairColoc7q32[grepl("-e_",bmi_pairColoc7q32$traits),] bmi_a_pairColoc1=bmi_pairColoc7q32[grepl("-a_",bmi_pairColoc7q32$traits),] bmi_e_pairColoc1$traits=gsub(".*_","",bmi_e_pairColoc1$traits) bmi_a_pairColoc1$traits=gsub(".*_","",bmi_a_pairColoc1$traits) bmi_netPair7q32=rbind(bmi_e_pairColoc1,bmi_a_pairColoc1) bmi_netPair7q32=bmi_netPair7q32[!duplicated(bmi_netPair7q32$traits),-c(3,4)] bmi_netPair7q32$eQTL_PP=bmi_e_pairColoc1[match(bmi_netPair7q32$traits,bmi_e_pairColoc1$traits),3] bmi_netPair7q32$eQTL_SNP=bmi_e_pairColoc1[match(bmi_netPair7q32$traits,bmi_e_pairColoc1$traits),4] bmi_netPair7q32$aQTL_PP=bmi_a_pairColoc1[match(bmi_netPair7q32$traits,bmi_a_pairColoc1$traits),3] bmi_netPair7q32$aQTL_SNP=bmi_a_pairColoc1[match(bmi_netPair7q32$traits,bmi_a_pairColoc1$traits),4] bmi_netPair7q32[is.na(bmi_netPair7q32)]=0 t2d_pairColoc7q32=t2d_pairColoc[t2d_pairColoc$locus=="7q32" & t2d_pairColoc$posterior_prob>0.5,c(2,3,5)] t2d_pairColoc7q32$traits=gsub("T2D, ","",t2d_pairColoc7q32$traits) t2d_pairColoc7q32=cbind("trait1"=rep("T2D",dim(t2d_pairColoc7q32)[1]),t2d_pairColoc7q32) t2d_e_pairColoc1=t2d_pairColoc7q32[grepl("-e_",t2d_pairColoc7q32$traits),] t2d_a_pairColoc1=t2d_pairColoc7q32[grepl("-a_",t2d_pairColoc7q32$traits),] t2d_e_pairColoc1$traits=gsub(".*_","",t2d_e_pairColoc1$traits) t2d_a_pairColoc1$traits=gsub(".*_","",t2d_a_pairColoc1$traits) t2d_netPair7q32=rbind(t2d_e_pairColoc1,t2d_a_pairColoc1) t2d_netPair7q32=t2d_netPair7q32[!duplicated(t2d_netPair7q32$traits),-c(3,4)] t2d_netPair7q32$eQTL_PP=t2d_e_pairColoc1[match(t2d_netPair7q32$traits,t2d_e_pairColoc1$traits),3] t2d_netPair7q32$eQTL_SNP=t2d_e_pairColoc1[match(t2d_netPair7q32$traits,t2d_e_pairColoc1$traits),4] t2d_netPair7q32$aQTL_PP=t2d_a_pairColoc1[match(t2d_netPair7q32$traits,t2d_a_pairColoc1$traits),3] t2d_netPair7q32$aQTL_SNP=t2d_a_pairColoc1[match(t2d_netPair7q32$traits,t2d_a_pairColoc1$traits),4] t2d_netPair7q32[is.na(t2d_netPair7q32)]=0 hdl_pairColoc7q32=hdl_pairColoc[hdl_pairColoc$locus=="7q32" & hdl_pairColoc$posterior_prob>0.5,c(2,3,5)] hdl_pairColoc7q32$traits=gsub("HDL, ","",hdl_pairColoc7q32$traits) hdl_pairColoc7q32=cbind("trait1"=rep("HDL",dim(hdl_pairColoc7q32)[1]),hdl_pairColoc7q32) hdl_e_pairColoc1=hdl_pairColoc7q32[grepl("-e_",hdl_pairColoc7q32$traits),] hdl_a_pairColoc1=hdl_pairColoc7q32[grepl("-a_",hdl_pairColoc7q32$traits),] hdl_e_pairColoc1$traits=gsub(".*_","",hdl_e_pairColoc1$traits) hdl_a_pairColoc1$traits=gsub(".*_","",hdl_a_pairColoc1$traits) hdl_netPair7q32=rbind(hdl_e_pairColoc1,hdl_a_pairColoc1) hdl_netPair7q32=hdl_netPair7q32[!duplicated(hdl_netPair7q32$traits),-c(3,4)] hdl_netPair7q32$eQTL_PP=hdl_e_pairColoc1[match(hdl_netPair7q32$traits,hdl_e_pairColoc1$traits),3] hdl_netPair7q32$eQTL_SNP=hdl_e_pairColoc1[match(hdl_netPair7q32$traits,hdl_e_pairColoc1$traits),4] hdl_netPair7q32$aQTL_PP=hdl_a_pairColoc1[match(hdl_netPair7q32$traits,hdl_a_pairColoc1$traits),3] hdl_netPair7q32$aQTL_SNP=hdl_a_pairColoc1[match(hdl_netPair7q32$traits,hdl_a_pairColoc1$traits),4] hdl_netPair7q32[is.na(hdl_netPair7q32)]=0 triG_pairColoc7q32=triG_pairColoc[triG_pairColoc$locus=="7q32" & triG_pairColoc$posterior_prob>0.5,c(2,3,5)] triG_pairColoc7q32$traits=gsub("TriG, ","",triG_pairColoc7q32$traits) triG_pairColoc7q32=cbind("trait1"=rep("TriG",dim(triG_pairColoc7q32)[1]),triG_pairColoc7q32) triG_e_pairColoc1=triG_pairColoc7q32[grepl("-e_",triG_pairColoc7q32$traits),] triG_a_pairColoc1=triG_pairColoc7q32[grepl("-a_",triG_pairColoc7q32$traits),] triG_e_pairColoc1$traits=gsub(".*_","",triG_e_pairColoc1$traits) triG_a_pairColoc1$traits=gsub(".*_","",triG_a_pairColoc1$traits) triG_netPair7q32=rbind(triG_e_pairColoc1,triG_a_pairColoc1) triG_netPair7q32=triG_netPair7q32[!duplicated(triG_netPair7q32$traits),-c(3,4)] triG_netPair7q32$eQTL_PP=triG_e_pairColoc1[match(triG_netPair7q32$traits,triG_e_pairColoc1$traits),3] triG_netPair7q32$eQTL_SNP=triG_e_pairColoc1[match(triG_netPair7q32$traits,triG_e_pairColoc1$traits),4] triG_netPair7q32$aQTL_PP=triG_a_pairColoc1[match(triG_netPair7q32$traits,triG_a_pairColoc1$traits),3] triG_netPair7q32$aQTL_SNP=triG_a_pairColoc1[match(triG_netPair7q32$traits,triG_a_pairColoc1$traits),4] triG_netPair7q32[is.na(triG_netPair7q32)]=0 # Grab the -log10(Pmin) and betas for the eQTLs and aQTLs among GWAS significant SNPs at the 7q32 locus bmi_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] bmi_cisE1=bmi_cisE1[bmi_cisE1$snps %in% sig_bmi$SNP,] bmi_cisE1=bmi_cisE1[order(bmi_cisE1$pvalue),] min_bmi_cisE1=bmi_cisE1[!duplicated(bmi_cisE1$gene),] bmi_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] bmi_cisA1=bmi_cisA1[bmi_cisA1$snps %in% sig_bmi$SNP,] bmi_cisA1=bmi_cisA1[order(bmi_cisA1$pvalue),] min_bmi_cisA1=bmi_cisA1[!duplicated(bmi_cisA1$gene),] bmi_transE1=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$chr==7,] bmi_transE1=bmi_transE1[bmi_transE1$snps %in% sig_bmi$SNP,] bmi_transE1=bmi_transE1[order(bmi_transE1$pvalue),] min_bmi_transE1=bmi_transE1[!duplicated(bmi_transE1$gene),] bmi_transA1=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$chr==7,] bmi_transA1=bmi_transA1[bmi_transA1$snps %in% sig_bmi$SNP,] bmi_transA1=bmi_transA1[order(bmi_transA1$pvalue),] min_bmi_transA1=bmi_transA1[!duplicated(bmi_transA1$gene),] t2d_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] t2d_cisE1=t2d_cisE1[t2d_cisE1$snps %in% sig_t2d$rsID,] t2d_cisE1=t2d_cisE1[order(t2d_cisE1$pvalue),] min_t2d_cisE1=t2d_cisE1[!duplicated(t2d_cisE1$gene),] t2d_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] t2d_cisA1=t2d_cisA1[t2d_cisA1$snps %in% sig_t2d$rsID,] t2d_cisA1=t2d_cisA1[order(t2d_cisA1$pvalue),] min_t2d_cisA1=t2d_cisA1[!duplicated(t2d_cisA1$gene),] t2d_transE1=filt_trans_t2d_eqtl[filt_trans_t2d_eqtl$chr==7,] t2d_transE1=t2d_transE1[t2d_transE1$snps %in% sig_t2d$rsID,] t2d_transE1=t2d_transE1[order(t2d_transE1$pvalue),] min_t2d_transE1=t2d_transE1[!duplicated(t2d_transE1$gene),] t2d_transA1=filt_trans_t2d_aqtl[filt_trans_t2d_aqtl$chr==7,] t2d_transA1=t2d_transA1[t2d_transA1$snps %in% sig_t2d$rsID,] t2d_transA1=t2d_transA1[order(t2d_transA1$pvalue),] min_t2d_transA1=t2d_transA1[!duplicated(t2d_transA1$gene),] hdl_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] hdl_cisE1=hdl_cisE1[hdl_cisE1$snps %in% sig_hdl$SNP,] hdl_cisE1=hdl_cisE1[order(hdl_cisE1$pvalue),] min_hdl_cisE1=hdl_cisE1[!duplicated(hdl_cisE1$gene),] hdl_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] hdl_cisA1=hdl_cisA1[hdl_cisA1$snps %in% sig_hdl$SNP,] hdl_cisA1=hdl_cisA1[order(hdl_cisA1$pvalue),] min_hdl_cisA1=hdl_cisA1[!duplicated(hdl_cisA1$gene),] hdl_transE1=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$chr==7,] hdl_transE1=hdl_transE1[hdl_transE1$snps %in% sig_hdl$SNP,] hdl_transE1=hdl_transE1[order(hdl_transE1$pvalue),] min_hdl_transE1=hdl_transE1[!duplicated(hdl_transE1$gene),] hdl_transA1=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$chr==7,] hdl_transA1=hdl_transA1[hdl_transA1$snps %in% sig_hdl$SNP,] hdl_transA1=hdl_transA1[order(hdl_transA1$pvalue),] min_hdl_transA1=hdl_transA1[!duplicated(hdl_transA1$gene),] triG_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] triG_cisE1=triG_cisE1[triG_cisE1$snps %in% sig_triG$SNP,] triG_cisE1=triG_cisE1[order(triG_cisE1$pvalue),] min_triG_cisE1=triG_cisE1[!duplicated(triG_cisE1$gene),] triG_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] triG_cisA1=triG_cisA1[triG_cisA1$snps %in% sig_triG$SNP,] triG_cisA1=triG_cisA1[order(triG_cisA1$pvalue),] min_triG_cisA1=triG_cisA1[!duplicated(triG_cisA1$gene),] triG_transE1=filt_trans_triG_eqtl[filt_trans_triG_eqtl$chr==7,] triG_transE1=triG_transE1[triG_transE1$snps %in% sig_triG$SNP,] triG_transE1=triG_transE1[order(triG_transE1$pvalue),] min_triG_transE1=triG_transE1[!duplicated(triG_transE1$gene),] triG_transA1=filt_trans_triG_aqtl[filt_trans_triG_aqtl$chr==7,] triG_transA1=triG_transA1[triG_transA1$snps %in% sig_triG$SNP,] triG_transA1=triG_transA1[order(triG_transA1$pvalue),] min_triG_transA1=triG_transA1[!duplicated(triG_transA1$gene),] # Make node tables for 7q32 networks for each GWAS. Note that some GWAS (T2D and TriG) failed to have their MRs connect at all with LINC-PINT or KLF14, # so I manually added those to the node lists when needed. # BMI bmi_inter_nodes7q32=data.frame("Node"=as.character(unique(bmi_interactome7q32$Regulator)),"BMI_exp_cor"=rep(0,length(unique(bmi_interactome7q32$Regulator))), "BMI_act_cor"=rep(0,length(unique(bmi_interactome7q32$Regulator))),"Best_eQTL_Beta"=rep(0,length(unique(bmi_interactome7q32$Regulator))), "Best_eQTL_logP"=rep(0,length(unique(bmi_interactome7q32$Regulator))),"Best_aQTL_Beta"=rep(0,length(unique(bmi_interactome7q32$Regulator))), "Best_aQTL_logP"=rep(0,length(unique(bmi_interactome7q32$Regulator)))) bmi_coloc_nodes7q32=data.frame("Node"=as.character(unique(bmi_netPair7q32$traits)),"BMI_exp_cor"=rep(0,length(unique(bmi_netPair7q32$traits))), "BMI_act_cor"=rep(0,length(unique(bmi_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(bmi_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(bmi_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(bmi_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(bmi_netPair7q32$traits)))) for(i in 1:dim(bmi_inter_nodes7q32)[1]){ bmi_inter_nodes7q32$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(bmi_inter_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_inter_nodes7q32$BMI_act_cor[i]=cor(as.numeric(vip[as.character(bmi_inter_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transE1$gene, min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"beta"], 0) bmi_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transE1$gene, -log10(min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"pvalue"]), 0) bmi_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transA1$gene, min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"beta"], 0) bmi_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transA1$gene, -log10(min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(bmi_coloc_nodes7q32)[1]){ bmi_coloc_nodes7q32$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(bmi_coloc_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_coloc_nodes7q32$BMI_act_cor[i]=cor(as.numeric(vip[as.character(bmi_coloc_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transE1$gene, min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"beta"], 0) bmi_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transE1$gene, -log10(min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"pvalue"]), 0) bmi_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transA1$gene, min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"beta"], 0) bmi_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transA1$gene, -log10(min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # T2D t2d_inter_nodes7q32=data.frame("Node"=c(as.character(unique(homair_interactome7q32$Regulator)),"LINC-PINT"),"HOMA.IR_exp_cor"=rep(0,length(unique(homair_interactome7q32$Regulator))+1), "HOMA.IR_act_cor"=rep(0,length(unique(homair_interactome7q32$Regulator))+1),"Best_eQTL_Beta"=rep(0,length(unique(homair_interactome7q32$Regulator))+1), "Best_eQTL_logP"=rep(0,length(unique(homair_interactome7q32$Regulator))+1),"Best_aQTL_Beta"=rep(0,length(unique(homair_interactome7q32$Regulator))+1), "Best_aQTL_logP"=rep(0,length(unique(homair_interactome7q32$Regulator))+1)) t2d_coloc_nodes7q32=data.frame("Node"=as.character(unique(t2d_netPair7q32$traits)),"HOMA.IR_exp_cor"=rep(0,length(unique(t2d_netPair7q32$traits))), "HOMA.IR_act_cor"=rep(0,length(unique(t2d_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(t2d_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(t2d_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(t2d_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(t2d_netPair7q32$traits)))) for(i in 1:dim(t2d_inter_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HOMA.IR)] t2d_inter_nodes7q32$HOMA.IR_exp_cor[i]=cor(as.numeric(tpm[as.character(t2d_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_inter_nodes7q32$HOMA.IR_act_cor[i]=cor(as.numeric(vip[as.character(t2d_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transE1$gene, min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"beta"], 0) t2d_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transE1$gene, -log10(min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"pvalue"]), 0) t2d_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transA1$gene, min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"beta"], 0) t2d_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transA1$gene, -log10(min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(t2d_coloc_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HOMA.IR)] t2d_coloc_nodes7q32$HOMA.IR_exp_cor[i]=cor(as.numeric(tpm[as.character(t2d_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_coloc_nodes7q32$HOMA.IR_act_cor[i]=cor(as.numeric(vip[as.character(t2d_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transE1$gene, min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"beta"], 0) t2d_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transE1$gene, -log10(min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"pvalue"]), 0) t2d_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transA1$gene, min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"beta"], 0) t2d_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transA1$gene, -log10(min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # HDL hdl_inter_nodes7q32=data.frame("Node"=as.character(unique(hdl_interactome7q32$Regulator)),"HDL_exp_cor"=rep(0,length(unique(hdl_interactome7q32$Regulator))), "HDL_act_cor"=rep(0,length(unique(hdl_interactome7q32$Regulator))),"Best_eQTL_Beta"=rep(0,length(unique(hdl_interactome7q32$Regulator))), "Best_eQTL_logP"=rep(0,length(unique(hdl_interactome7q32$Regulator))),"Best_aQTL_Beta"=rep(0,length(unique(hdl_interactome7q32$Regulator))), "Best_aQTL_logP"=rep(0,length(unique(hdl_interactome7q32$Regulator)))) hdl_coloc_nodes7q32=data.frame("Node"=as.character(unique(hdl_netPair7q32$traits)),"HDL_exp_cor"=rep(0,length(unique(hdl_netPair7q32$traits))), "HDL_act_cor"=rep(0,length(unique(hdl_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(hdl_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(hdl_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(hdl_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(hdl_netPair7q32$traits)))) for(i in 1:dim(hdl_inter_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HDLcholesterol)] hdl_inter_nodes7q32$HDL_exp_cor[i]=cor(as.numeric(tpm[as.character(hdl_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_inter_nodes7q32$HDL_act_cor[i]=cor(as.numeric(vip[as.character(hdl_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transE1$gene, min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"beta"], 0) hdl_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transE1$gene, -log10(min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"pvalue"]), 0) hdl_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transA1$gene, min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"beta"], 0) hdl_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transA1$gene, -log10(min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(hdl_coloc_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HDLcholesterol)] hdl_coloc_nodes7q32$HDL_exp_cor[i]=cor(as.numeric(tpm[as.character(hdl_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_coloc_nodes7q32$HDL_act_cor[i]=cor(as.numeric(vip[as.character(hdl_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transE1$gene, min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"beta"], 0) hdl_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transE1$gene, -log10(min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"pvalue"]), 0) hdl_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transA1$gene, min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"beta"], 0) hdl_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transA1$gene, -log10(min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # TriG triG_inter_nodes7q32=data.frame("Node"=c(as.character(unique(triG_interactome7q32$Regulator)),"LINC-PINT","KLF14"),"TriG_exp_cor"=rep(0,length(unique(triG_interactome7q32$Regulator))+2), "TriG_act_cor"=rep(0,length(unique(triG_interactome7q32$Regulator))+2),"Best_eQTL_Beta"=rep(0,length(unique(triG_interactome7q32$Regulator))+2), "Best_eQTL_logP"=rep(0,length(unique(triG_interactome7q32$Regulator))+2),"Best_aQTL_Beta"=rep(0,length(unique(triG_interactome7q32$Regulator))+2), "Best_aQTL_logP"=rep(0,length(unique(triG_interactome7q32$Regulator))+2)) triG_coloc_nodes7q32=data.frame("Node"=as.character(unique(triG_netPair7q32$traits)),"TriG_exp_cor"=rep(0,length(unique(triG_netPair7q32$traits))), "TriG_act_cor"=rep(0,length(unique(triG_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(triG_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(triG_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(triG_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(triG_netPair7q32$traits)))) for(i in 1:dim(triG_inter_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$TotalTriglycerides)] triG_inter_nodes7q32$TriG_exp_cor[i]=cor(as.numeric(tpm[as.character(triG_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_inter_nodes7q32$TriG_act_cor[i]=cor(as.numeric(vip[as.character(triG_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transE1$gene, min_triG_transE1[min_triG_transE1$gene==as.character(triG_inter_nodes7q32$Node[i]),"beta"], 0) triG_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transE1$gene, -log10(min_triG_transE1[min_triG_transE1$gene==as.character(triG_inter_nodes7q32$Node[i]),"pvalue"]), 0) triG_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transA1$gene, min_triG_transA1[min_triG_transA1$gene==as.character(triG_inter_nodes7q32$Node[i]),"beta"], 0) triG_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transA1$gene, -log10(min_triG_transA1[min_triG_transA1$gene==as.character(triG_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(triG_coloc_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$TotalTriglycerides)] triG_coloc_nodes7q32$TriG_exp_cor[i]=cor(as.numeric(tpm[as.character(triG_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_coloc_nodes7q32$TriG_act_cor[i]=cor(as.numeric(vip[as.character(triG_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transE1$gene, min_triG_transE1[min_triG_transE1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"beta"], 0) triG_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transE1$gene, -log10(min_triG_transE1[min_triG_transE1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"pvalue"]), 0) triG_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transA1$gene, min_triG_transA1[min_triG_transA1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"beta"], 0) triG_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transA1$gene, -log10(min_triG_transA1[min_triG_transA1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # I think it may be more convenient to merge the networks into one and then just change which attributes I visualize in Cytoscape # Start with 2 temporary columns concatinating the regulator-target and target-regulator for easier matching. # BMI bmi_interactome7q32$temp1=paste(bmi_interactome7q32$Regulator,bmi_interactome7q32$Target) bmi_interactome7q32$temp2=paste(bmi_interactome7q32$Target,bmi_interactome7q32$Regulator) bmi_netPair7q32$temp1=paste(bmi_netPair7q32$trait1,bmi_netPair7q32$traits) bmi_netPair7q32$temp2=paste(bmi_netPair7q32$traits,bmi_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(bmi_interactome7q32)[1],ncol = 4)) for(i in 1:dim(bmi_interactome7q32)[1]){ temp[i,1:4]=bmi_netPair7q32[ifelse(is.na(match(bmi_interactome7q32$temp1[i],bmi_netPair7q32$temp1)), match(bmi_interactome7q32$temp1[i],bmi_netPair7q32$temp2), match(bmi_interactome7q32$temp1[i],bmi_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the BMI colocalizations colnames(temp)=colnames(bmi_netPair7q32)[3:6] temp=rbind(temp,bmi_netPair7q32[bmi_netPair7q32$trait1=="BMI",3:6]) # Then add rows for BMI-Gene connections with 0 for MoA and likelihood bmi_full7q32=bmi_interactome7q32[,1:4] temp2=bmi_netPair7q32[bmi_netPair7q32$trait1=="BMI",1:4] colnames(temp2)=colnames(bmi_interactome7q32)[1:4] temp2[,3:4]=0 bmi_full7q32=rbind(bmi_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns bmi_full7q32=cbind(bmi_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed bmi_full7q32_nodes=rbind(bmi_inter_nodes7q32,bmi_coloc_nodes7q32) bmi_full7q32_nodes=bmi_full7q32_nodes[!duplicated(bmi_full7q32_nodes$Node),] # T2D homair_interactome7q32$temp1=paste(homair_interactome7q32$Regulator,homair_interactome7q32$Target) homair_interactome7q32$temp2=paste(homair_interactome7q32$Target,homair_interactome7q32$Regulator) t2d_netPair7q32$temp1=paste(t2d_netPair7q32$trait1,t2d_netPair7q32$traits) t2d_netPair7q32$temp2=paste(t2d_netPair7q32$traits,t2d_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(homair_interactome7q32)[1],ncol = 4)) for(i in 1:dim(homair_interactome7q32)[1]){ temp[i,1:4]=t2d_netPair7q32[ifelse(is.na(match(homair_interactome7q32$temp1[i],t2d_netPair7q32$temp1)), match(homair_interactome7q32$temp1[i],t2d_netPair7q32$temp2), match(homair_interactome7q32$temp1[i],t2d_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the T2D colocalizations colnames(temp)=colnames(t2d_netPair7q32)[3:6] temp=rbind(temp,t2d_netPair7q32[t2d_netPair7q32$trait1=="T2D",3:6]) # Then add rows for T2D-Gene connections with 0 for MoA and likelihood t2d_full7q32=homair_interactome7q32[,1:4] temp2=t2d_netPair7q32[t2d_netPair7q32$trait1=="T2D",1:4] colnames(temp2)=colnames(homair_interactome7q32)[1:4] temp2[,3:4]=0 t2d_full7q32=rbind(t2d_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns t2d_full7q32=cbind(t2d_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed t2d_full7q32_nodes=rbind(t2d_inter_nodes7q32,t2d_coloc_nodes7q32) t2d_full7q32_nodes=t2d_full7q32_nodes[!duplicated(t2d_full7q32_nodes$Node),] # HDL hdl_interactome7q32$temp1=paste(hdl_interactome7q32$Regulator,hdl_interactome7q32$Target) hdl_interactome7q32$temp2=paste(hdl_interactome7q32$Target,hdl_interactome7q32$Regulator) hdl_netPair7q32$temp1=paste(hdl_netPair7q32$trait1,hdl_netPair7q32$traits) hdl_netPair7q32$temp2=paste(hdl_netPair7q32$traits,hdl_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(hdl_interactome7q32)[1],ncol = 4)) for(i in 1:dim(hdl_interactome7q32)[1]){ temp[i,1:4]=hdl_netPair7q32[ifelse(is.na(match(hdl_interactome7q32$temp1[i],hdl_netPair7q32$temp1)), match(hdl_interactome7q32$temp1[i],hdl_netPair7q32$temp2), match(hdl_interactome7q32$temp1[i],hdl_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the HDL colocalizations colnames(temp)=colnames(hdl_netPair7q32)[3:6] temp=rbind(temp,hdl_netPair7q32[hdl_netPair7q32$trait1=="HDL",3:6]) # Then add rows for HDL-Gene connections with 0 for MoA and likelihood hdl_full7q32=hdl_interactome7q32[,1:4] temp2=hdl_netPair7q32[hdl_netPair7q32$trait1=="HDL",1:4] colnames(temp2)=colnames(hdl_interactome7q32)[1:4] temp2[,3:4]=0 hdl_full7q32=rbind(hdl_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns hdl_full7q32=cbind(hdl_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed hdl_full7q32_nodes=rbind(hdl_inter_nodes7q32,hdl_coloc_nodes7q32) hdl_full7q32_nodes=hdl_full7q32_nodes[!duplicated(hdl_full7q32_nodes$Node),] # TriG triG_interactome7q32$temp1=paste(triG_interactome7q32$Regulator,triG_interactome7q32$Target) triG_interactome7q32$temp2=paste(triG_interactome7q32$Target,triG_interactome7q32$Regulator) triG_netPair7q32$temp1=paste(triG_netPair7q32$trait1,triG_netPair7q32$traits) triG_netPair7q32$temp2=paste(triG_netPair7q32$traits,triG_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(triG_interactome7q32)[1],ncol = 4)) for(i in 1:dim(triG_interactome7q32)[1]){ temp[i,1:4]=triG_netPair7q32[ifelse(is.na(match(triG_interactome7q32$temp1[i],triG_netPair7q32$temp1)), match(triG_interactome7q32$temp1[i],triG_netPair7q32$temp2), match(triG_interactome7q32$temp1[i],triG_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the TriG colocalizations colnames(temp)=colnames(triG_netPair7q32)[3:6] temp=rbind(temp,triG_netPair7q32[triG_netPair7q32$trait1=="TriG",3:6]) # Then add rows for TriG-Gene connections with 0 for MoA and likelihood triG_full7q32=triG_interactome7q32[,1:4] temp2=triG_netPair7q32[triG_netPair7q32$trait1=="TriG",1:4] colnames(temp2)=colnames(triG_interactome7q32)[1:4] temp2[,3:4]=0 triG_full7q32=rbind(triG_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns triG_full7q32=cbind(triG_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed triG_full7q32_nodes=rbind(triG_inter_nodes7q32,triG_coloc_nodes7q32) triG_full7q32_nodes=triG_full7q32_nodes[!duplicated(triG_full7q32_nodes$Node),] # Since LINC-PINT, KLF14 and AC016831.7 is the only cis gene here, I'll just deal with them manually bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_bmi_cisE1[min_bmi_cisE1$gene=="LINC-PINT","beta"] bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_bmi_cisE1[min_bmi_cisE1$gene=="LINC-PINT","pvalue"]) bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_bmi_cisE1[min_bmi_cisE1$gene=="KLF14","beta"] bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_bmi_cisE1[min_bmi_cisE1$gene=="KLF14","pvalue"]) bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_bmi_cisE1[min_bmi_cisE1$gene=="AC016831.7","beta"] bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_bmi_cisE1[min_bmi_cisE1$gene=="AC016831.7","pvalue"]) t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_t2d_cisE1[min_t2d_cisE1$gene=="LINC-PINT","beta"] t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_t2d_cisE1[min_t2d_cisE1$gene=="LINC-PINT","pvalue"]) t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_t2d_cisE1[min_t2d_cisE1$gene=="KLF14","beta"] t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_t2d_cisE1[min_t2d_cisE1$gene=="KLF14","pvalue"]) t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_t2d_cisE1[min_t2d_cisE1$gene=="AC016831.7","beta"] t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_t2d_cisE1[min_t2d_cisE1$gene=="AC016831.7","pvalue"]) hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_hdl_cisE1[min_hdl_cisE1$gene=="LINC-PINT","beta"] hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_hdl_cisE1[min_hdl_cisE1$gene=="LINC-PINT","pvalue"]) hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_hdl_cisE1[min_hdl_cisE1$gene=="KLF14","beta"] hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_hdl_cisE1[min_hdl_cisE1$gene=="KLF14","pvalue"]) hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_hdl_cisE1[min_hdl_cisE1$gene=="AC016831.7","beta"] hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_hdl_cisE1[min_hdl_cisE1$gene=="AC016831.7","pvalue"]) triG_full7q32_nodes[triG_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_triG_cisE1[min_triG_cisE1$gene=="LINC-PINT","beta"] triG_full7q32_nodes[triG_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_triG_cisE1[min_triG_cisE1$gene=="LINC-PINT","pvalue"]) triG_full7q32_nodes[triG_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_triG_cisE1[min_triG_cisE1$gene=="KLF14","beta"] triG_full7q32_nodes[triG_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_triG_cisE1[min_triG_cisE1$gene=="KLF14","pvalue"]) triG_full7q32_nodes[triG_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_triG_cisE1[min_triG_cisE1$gene=="AC016831.7","beta"] triG_full7q32_nodes[triG_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_triG_cisE1[min_triG_cisE1$gene=="AC016831.7","pvalue"]) # Final touches by replacing NA with 0 bmi_full7q32_nodes[is.na(bmi_full7q32_nodes)]=0 t2d_full7q32_nodes[is.na(t2d_full7q32_nodes)]=0 hdl_full7q32_nodes[is.na(hdl_full7q32_nodes)]=0 triG_full7q32_nodes[is.na(triG_full7q32_nodes)]=0 # Write networks and node data to file for Cytoscape visualizations write.table(bmi_full7q32,"./BMI/Chr7q32_cis-Genes_and_BMI_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(bmi_full7q32_nodes,"./BMI/Chr7q32_cis-Genes_and_BMI_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(t2d_full7q32,"./T2D/Chr7q32_cis-Genes_and_HOMA-IR_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(t2d_full7q32_nodes,"./T2D/Chr7q32_cis-Genes_and_HOMA-IR_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(hdl_full7q32,"./HDL/Chr7q32_cis-Genes_and_HDL_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(hdl_full7q32_nodes,"./HDL/Chr7q32_cis-Genes_and_HDL_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(triG_full7q32,"./Triglycerides/Chr7q32_cis-Genes_and_Triglycerides_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(triG_full7q32_nodes,"./Triglycerides/Chr7q32_cis-Genes_and_Triglycerides_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) # 12p13.1 interactome12p13=bmi_MRMR # Grab pairwise colocalizations with PP>0.5 between BMI and QTLs and EPHB2 aQTL and trans-QTLs bmi_pairColoc12p13=bmi_pairColoc[bmi_pairColoc$locus=="12p13.1" & bmi_pairColoc$posterior_prob>0.5,c(2,3,5)] bmi_pairColoc12p13$traits=gsub("BMI, ","",bmi_pairColoc12p13$traits) bmi_pairColoc12p13=cbind("trait1"=rep("BMI",dim(bmi_pairColoc12p13)[1]),bmi_pairColoc12p13) bmi_e_pairColoc12p13=bmi_pairColoc12p13[grepl("-e_",bmi_pairColoc12p13$traits),] bmi_a_pairColoc12p13=bmi_pairColoc12p13[grepl("-a_",bmi_pairColoc12p13$traits),] bmi_e_pairColoc12p13$traits=gsub(".*_","",bmi_e_pairColoc12p13$traits) bmi_a_pairColoc12p13$traits=gsub(".*_","",bmi_a_pairColoc12p13$traits) bmi_netPair12p13=rbind(bmi_e_pairColoc12p13,bmi_a_pairColoc12p13) bmi_netPair12p13=bmi_netPair12p13[!duplicated(bmi_netPair12p13$traits),-c(3,4)] bmi_netPair12p13$eQTL_PP=bmi_e_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_e_pairColoc12p13$traits),3] bmi_netPair12p13$eQTL_SNP=bmi_e_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_e_pairColoc12p13$traits),4] bmi_netPair12p13$aQTL_PP=bmi_a_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_a_pairColoc12p13$traits),3] bmi_netPair12p13$aQTL_SNP=bmi_a_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_a_pairColoc12p13$traits),4] colocNet12p13=bmi_netPair12p13 colocNet12p13[is.na(colocNet12p13)]=0 # Grab the -log10(Pmin) and betas for the eQTLs and aQTLs among BMI GWAS significant SNPs at the 12p13.1 locus transE4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$chr==12 & filt_trans_bmi_eqtl$position>13900000 & filt_trans_bmi_eqtl$position<15000000,] transE4=transE4[transE4$snps %in% sig_bmi$SNP,] transE4=transE4[order(transE4$pvalue),] min_transE4=transE4[!duplicated(transE4$gene),] transA4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$chr==12 & filt_trans_bmi_aqtl$position>13900000 & filt_trans_bmi_aqtl$position<15000000,] transA4=transA4[transA4$snps %in% sig_bmi$SNP,] transA4=transA4[order(transA4$pvalue),] min_transA4=transA4[!duplicated(transA4$gene),] # Make node tables for 12p13 networks inter_nodes12p13=data.frame("Node"=as.character(unique(interactome12p13$Regulator)),"BMI_exp_cor"=rep(0,length(unique(interactome12p13$Regulator))), "BMI_act_cor"=rep(0,length(unique(interactome12p13$Regulator))),"Best_eQTL_Beta"=rep(0,length(unique(interactome12p13$Regulator))), "Best_eQTL_logP"=rep(0,length(unique(interactome12p13$Regulator))),"Best_aQTL_Beta"=rep(0,length(unique(interactome12p13$Regulator))), "Best_aQTL_logP"=rep(0,length(unique(interactome12p13$Regulator)))) for(i in 1:dim(inter_nodes12p13)[1]){ inter_nodes12p13$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(inter_nodes12p13$Node[i]),]),filt_pheno$BMI) inter_nodes12p13$BMI_act_cor[i]=cor(as.numeric(vip[as.character(inter_nodes12p13$Node[i]),]),filt_pheno$BMI) inter_nodes12p13$Best_eQTL_Beta[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transE4$gene, min_transE4[min_transE4$gene==as.character(inter_nodes12p13$Node[i]),"beta"], 0) inter_nodes12p13$Best_eQTL_logP[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transE4$gene, -log10(min_transE4[min_transE4$gene==as.character(inter_nodes12p13$Node[i]),"pvalue"]), 0) inter_nodes12p13$Best_aQTL_Beta[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transA4$gene, min_transA4[min_transA4$gene==as.character(inter_nodes12p13$Node[i]),"beta"], 0) inter_nodes12p13$Best_aQTL_logP[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transA4$gene, -log10(min_transA4[min_transA4$gene==as.character(inter_nodes12p13$Node[i]),"pvalue"]), 0) } coloc_nodes12p13=data.frame("Node"=as.character(unique(colocNet12p13$traits)),"BMI_exp_cor"=rep(0,length(unique(colocNet12p13$traits))), "BMI_act_cor"=rep(0,length(unique(colocNet12p13$traits))),"Best_eQTL_Beta"=rep(0,length(unique(colocNet12p13$traits))), "Best_eQTL_logP"=rep(0,length(unique(colocNet12p13$traits))),"Best_aQTL_Beta"=rep(0,length(unique(colocNet12p13$traits))), "Best_aQTL_logP"=rep(0,length(unique(colocNet12p13$traits)))) for(i in 1:dim(coloc_nodes12p13)[1]){ coloc_nodes12p13$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(coloc_nodes12p13$Node[i]),]),filt_pheno$BMI) coloc_nodes12p13$BMI_act_cor[i]=cor(as.numeric(vip[as.character(coloc_nodes12p13$Node[i]),]),filt_pheno$BMI) coloc_nodes12p13$Best_eQTL_Beta[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transE4$gene, min_transE4[min_transE4$gene==as.character(coloc_nodes12p13$Node[i]),"beta"], 0) coloc_nodes12p13$Best_eQTL_logP[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transE4$gene, -log10(min_transE4[min_transE4$gene==as.character(coloc_nodes12p13$Node[i]),"pvalue"]), 0) coloc_nodes12p13$Best_aQTL_Beta[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transA4$gene, min_transA4[min_transA4$gene==as.character(coloc_nodes12p13$Node[i]),"beta"], 0) coloc_nodes12p13$Best_aQTL_logP[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transA4$gene, -log10(min_transA4[min_transA4$gene==as.character(coloc_nodes12p13$Node[i]),"pvalue"]), 0) } # I think it may be more convenient to merge the networks into one and then just change which attributes I visualize in Cytoscape # Start with 2 temporary columns concatinating the regulator-target and target-regulator for easier matching. interactome12p13$temp1=paste(interactome12p13$Regulator,interactome12p13$Target) interactome12p13$temp2=paste(interactome12p13$Target,interactome12p13$Regulator) colocNet12p13$temp1=paste(colocNet12p13$trait1,colocNet12p13$traits) colocNet12p13$temp2=paste(colocNet12p13$traits,colocNet12p13$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(interactome12p13)[1],ncol = 4)) for(i in 1:dim(interactome12p13)[1]){ temp[i,1:4]=colocNet12p13[ifelse(is.na(match(interactome12p13$temp1[i],colocNet12p13$temp1)), match(interactome12p13$temp1[i],colocNet12p13$temp2), match(interactome12p13$temp1[i],colocNet12p13$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the BMI colocalizations colnames(temp)=colnames(colocNet12p13)[3:6] temp=rbind(temp,colocNet12p13[colocNet12p13$trait1=="BMI",3:6]) # Then add rows for BMI-Gene connections with 0 for MoA and likelihood full12p13=interactome12p13[,1:4] temp2=colocNet12p13[colocNet12p13$trait1=="BMI",1:4] colnames(temp2)=colnames(interactome12p13)[1:4] temp2[,3:4]=0 full12p13=rbind(full12p13,temp2) # Finally, combine the colocalization columns with the interactome columns full12p13=cbind(full12p13,temp) # The nodes data also needs to be combined and duplicate rows removed full12p13_nodes=rbind(inter_nodes12p13,coloc_nodes12p13) full12p13_nodes=full12p13_nodes[!duplicated(full12p13_nodes$Node),] # Write networks and node data to file for Cytoscape visualizations write.table(interactome12p13,"Chr12p13_BMI_MRs_interactome.txt",sep = "\t",quote = F,row.names = F) write.table(inter_nodes12p13,"Chr12p13_BMI_MRs_interactome_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(colocNet12p13,"Chr12p13_BMI_and_BMI_MRs_pairwise_colocalization_network.txt",sep = "\t",quote = F,row.names = F) write.table(coloc_nodes12p13,"Chr12p13_BMI_and_BMI_MRs_pairwise_colocalization_network_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(full12p13,"Chr12p13_BMI_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(full12p13_nodes,"Chr12p13_BMI_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F)
/Colocalization_analyses/R_script_for_LocusCompare_plots_and_network_extractions_for_select_loci.R
no_license
hoskinsjw/aQTL2021
R
false
false
111,008
r
### This script is for extra analyses on the most interesting select loci (1p36.1, 7q32 and 12p13.1) #install.packages("devtools") #library(devtools) #install_github("jrs95/hyprcoloc", build_opts = c("--no-resave-data", "--no-manual"), build_vignettes = F) #browseVignettes("hyprcoloc") The install kept failing when trying to build the vignettes, so I disabled that. #devtools::install_github("boxiangliu/locuscomparer") library(hyprcoloc) library(locuscomparer) setwd("YOUR WORKING DIRECTORY") # Read in the LD matrices, and the GWAS and QTL data. The file locations are relative to your working directory, so adjust accordingly. bmi=read.table("./Meta-analysis_Locke_et_al+UKBiobank_2018_UPDATED.txt",sep = "\t",header = T) t2d=read.table("./Mahajan.NatGenet2018b.T2Dbmiadj.European.with.rsIDs.txt",sep = "\t",header = T) hdl=read.table("./jointGwasMc_HDL.txt",sep = "\t",header = T) triG=read.table("./jointGwasMc_TG.txt",sep = "\t",header = T) cis_eqtl=read.table("./Eurobats_adipose_select_loci_cis-eQTLs_from_INT_logTPM.txt",sep = "\t",header = T) cis_aqtl=read.table("./Eurobats_adipose_select_loci_cis-aQTLs_from_unnormalized_activities.txt",sep = "\t",header = T) trans_bmi_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_BMI_MRs.txt",sep = "\t",header = T) trans_bmi_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_BMI_MRs.txt",sep = "\t",header = T) trans_t2d_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_HOMA-IR_MRs.txt",sep = "\t",header = T) trans_t2d_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_HOMA-IR_MRs.txt",sep = "\t",header = T) trans_hdl_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_HDL_MRs.txt",sep = "\t",header = T) trans_hdl_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_HDL_MRs.txt",sep = "\t",header = T) trans_triG_eqtl=read.table("./Eurobats_adipose_select_loci_trans-eQTLs_for_TriG_MRs.txt",sep = "\t",header = T) trans_triG_aqtl=read.table("./Eurobats_adipose_select_loci_trans-aQTLs_for_TriG_MRs.txt",sep = "\t",header = T) ld_files=c("Eurobats_chr1p36.1_LD_matrix.txt","Eurobats_chr7q32_LD_matrix.txt","Eurobats_chr12p13.33_LD_matrix.txt","Eurobats_chr12p13.1_LD_matrix.txt") ld=list() index=1 for(i in ld_files){ ld[[index]]=read.table(paste("./",i,sep=""),sep = "\t",header = F) rownames(ld[[index]])=ld[[index]][,3] ld[[index]]=ld[[index]][,-c(1:5)] colnames(ld[[index]])=rownames(ld[[index]]) index=index+1 } # The HDL GWAS data has coordinates for hg18 and hg 19, but I need to have CHR and POS columns (based on hg19) instead. colnames(hdl)=c("CHR","POS","SNP","A1","A2","BETA","SE","N","P","Freq.A1.1000G.EUR") hdl$CHR=gsub("chr","",hdl$CHR) hdl$CHR=as.numeric(gsub(":.*","",hdl$CHR)) # This introduced NAs, but only for 3 SNPs without rsIDs (labeled only as ".") hdl=hdl[!is.na(hdl$CHR),] hdl$POS=as.numeric(gsub("chr.*:","",hdl$POS)) # The TriG GWAS data has coordinates for hg18 and hg 19, but I need to have CHR and POS columns (based on hg19) instead. colnames(triG)=c("CHR","POS","SNP","A1","A2","BETA","SE","N","P","Freq.A1.1000G.EUR") triG$CHR=gsub("chr","",triG$CHR) triG$CHR=as.numeric(gsub(":.*","",triG$CHR)) # This introduced NAs, but only for 3 SNPs without rsIDs (labeled only as ".") triG=triG[!is.na(triG$CHR),] triG$POS=as.numeric(gsub("chr.*:","",triG$POS)) # Filter GWAS, QTL and LD data to the same SNPs filt_bmi=bmi[na.omit(match(c(rownames(ld[[1]]),rownames(ld[[2]]),rownames(ld[[3]]),rownames(ld[[4]])),bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(unique(cis_eqtl$snps),filt_bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(t2d$rsID,filt_bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(hdl$SNP,filt_bmi$SNP)),] filt_bmi=filt_bmi[na.omit(match(triG$SNP,filt_bmi$SNP)),] filt_t2d=t2d[na.omit(match(filt_bmi$SNP,t2d$rsID)),] filt_hdl=hdl[na.omit(match(filt_bmi$SNP,hdl$SNP)),] filt_triG=triG[na.omit(match(filt_bmi$SNP,triG$SNP)),] filt_cis_eqtl=cis_eqtl[cis_eqtl$snps %in% filt_bmi$SNP,] filt_cis_aqtl=cis_aqtl[cis_aqtl$snps %in% filt_bmi$SNP,] filt_trans_bmi_eqtl=trans_bmi_eqtl[trans_bmi_eqtl$snps %in% filt_bmi$SNP,] filt_trans_bmi_aqtl=trans_bmi_aqtl[trans_bmi_aqtl$snps %in% filt_bmi$SNP,] filt_trans_t2d_eqtl=trans_t2d_eqtl[trans_t2d_eqtl$snps %in% filt_t2d$rsID,] filt_trans_t2d_aqtl=trans_t2d_aqtl[trans_t2d_aqtl$snps %in% filt_t2d$rsID,] filt_trans_hdl_eqtl=trans_hdl_eqtl[trans_hdl_eqtl$snps %in% filt_hdl$SNP,] filt_trans_hdl_aqtl=trans_hdl_aqtl[trans_hdl_aqtl$snps %in% filt_hdl$SNP,] filt_trans_triG_eqtl=trans_triG_eqtl[trans_triG_eqtl$snps %in% filt_triG$SNP,] filt_trans_triG_aqtl=trans_triG_aqtl[trans_triG_aqtl$snps %in% filt_triG$SNP,] filt_ld=list() filt_ld[[1]]=ld[[1]][filt_bmi$SNP[filt_bmi$CHR==1],filt_bmi$SNP[filt_bmi$CHR==1]] filt_ld[[2]]=ld[[2]][filt_bmi$SNP[filt_bmi$CHR==7],filt_bmi$SNP[filt_bmi$CHR==7]] filt_ld[[3]]=ld[[3]][filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS<1400000],filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS<1400000]] filt_ld[[4]]=ld[[4]][filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS>1400000],filt_bmi$SNP[filt_bmi$CHR==12 & filt_bmi$POS>1400000]] # Let's free up some memory by dropping the huge trans-QTL data.frames rm(trans_bmi_eqtl) rm(trans_bmi_aqtl) rm(trans_t2d_eqtl) rm(trans_t2d_aqtl) rm(trans_hdl_eqtl) rm(trans_hdl_aqtl) rm(trans_triG_eqtl) rm(trans_triG_aqtl) # Add chromosome and position to the QTLs for sorting filt_cis_eqtl$chr=filt_bmi[match(filt_cis_eqtl$snps,filt_bmi$SNP),1] filt_cis_aqtl$chr=filt_bmi[match(filt_cis_aqtl$snps,filt_bmi$SNP),1] filt_trans_bmi_eqtl$chr=filt_bmi[match(filt_trans_bmi_eqtl$snps,filt_bmi$SNP),1] filt_trans_bmi_aqtl$chr=filt_bmi[match(filt_trans_bmi_aqtl$snps,filt_bmi$SNP),1] filt_trans_t2d_eqtl$chr=filt_bmi[match(filt_trans_t2d_eqtl$snps,filt_bmi$SNP),1] filt_trans_t2d_aqtl$chr=filt_bmi[match(filt_trans_t2d_aqtl$snps,filt_bmi$SNP),1] filt_trans_hdl_eqtl$chr=filt_bmi[match(filt_trans_hdl_eqtl$snps,filt_bmi$SNP),1] filt_trans_hdl_aqtl$chr=filt_bmi[match(filt_trans_hdl_aqtl$snps,filt_bmi$SNP),1] filt_trans_triG_eqtl$chr=filt_bmi[match(filt_trans_triG_eqtl$snps,filt_bmi$SNP),1] filt_trans_triG_aqtl$chr=filt_bmi[match(filt_trans_triG_aqtl$snps,filt_bmi$SNP),1] filt_cis_eqtl$position=filt_bmi[match(filt_cis_eqtl$snps,filt_bmi$SNP),2] filt_cis_aqtl$position=filt_bmi[match(filt_cis_aqtl$snps,filt_bmi$SNP),2] filt_trans_bmi_eqtl$position=filt_bmi[match(filt_trans_bmi_eqtl$snps,filt_bmi$SNP),2] filt_trans_bmi_aqtl$position=filt_bmi[match(filt_trans_bmi_aqtl$snps,filt_bmi$SNP),2] filt_trans_t2d_eqtl$position=filt_bmi[match(filt_trans_t2d_eqtl$snps,filt_bmi$SNP),2] filt_trans_t2d_aqtl$position=filt_bmi[match(filt_trans_t2d_aqtl$snps,filt_bmi$SNP),2] filt_trans_hdl_eqtl$position=filt_bmi[match(filt_trans_hdl_eqtl$snps,filt_bmi$SNP),2] filt_trans_hdl_aqtl$position=filt_bmi[match(filt_trans_hdl_aqtl$snps,filt_bmi$SNP),2] filt_trans_triG_eqtl$position=filt_bmi[match(filt_trans_triG_eqtl$snps,filt_bmi$SNP),2] filt_trans_triG_aqtl$position=filt_bmi[match(filt_trans_triG_aqtl$snps,filt_bmi$SNP),2] # Sort by chr and position filt_bmi=filt_bmi[order(filt_bmi$CHR,filt_bmi$POS),] filt_t2d=filt_t2d[order(filt_t2d$Chr,filt_t2d$Pos),] filt_hdl=filt_hdl[order(filt_hdl$CHR,filt_hdl$POS),] filt_triG=filt_triG[order(filt_triG$CHR,filt_triG$POS),] filt_cis_eqtl=filt_cis_eqtl[order(filt_cis_eqtl$chr,filt_cis_eqtl$position),] filt_cis_aqtl=filt_cis_aqtl[order(filt_cis_aqtl$chr,filt_cis_aqtl$position),] filt_trans_bmi_eqtl=filt_trans_bmi_eqtl[order(filt_trans_bmi_eqtl$chr,filt_trans_bmi_eqtl$position),] filt_trans_bmi_aqtl=filt_trans_bmi_aqtl[order(filt_trans_bmi_aqtl$chr,filt_trans_bmi_aqtl$position),] filt_trans_t2d_eqtl=filt_trans_t2d_eqtl[order(filt_trans_t2d_eqtl$chr,filt_trans_t2d_eqtl$position),] filt_trans_t2d_aqtl=filt_trans_t2d_aqtl[order(filt_trans_t2d_aqtl$chr,filt_trans_t2d_aqtl$position),] filt_trans_hdl_eqtl=filt_trans_hdl_eqtl[order(filt_trans_hdl_eqtl$chr,filt_trans_hdl_eqtl$position),] filt_trans_hdl_aqtl=filt_trans_hdl_aqtl[order(filt_trans_hdl_aqtl$chr,filt_trans_hdl_aqtl$position),] filt_trans_triG_eqtl=filt_trans_triG_eqtl[order(filt_trans_triG_eqtl$chr,filt_trans_triG_eqtl$position),] filt_trans_triG_eqtl=filt_trans_triG_eqtl[order(filt_trans_triG_eqtl$chr,filt_trans_triG_eqtl$position),] ### LocusCompare plots ## 1p36.1 # First, grab the necessary P-values for the SNPs used in the HyPrColoc analyses for the traits of interest bmi1=filt_bmi[filt_bmi$CHR==1,c(3,9)] loc1_eEPHB2=filt_cis_eqtl[filt_cis_eqtl$gene=="EPHB2",c(1,4)] loc1_aEPHB2=filt_cis_aqtl[filt_cis_aqtl$gene=="EPHB2",c(1,4)] loc1_eZNF436=filt_cis_eqtl[filt_cis_eqtl$gene=="ZNF436",c(1,4)] loc1_aZNF436=filt_cis_aqtl[filt_cis_aqtl$gene=="ZNF436",c(1,4)] loc1_eTCEA3=filt_cis_eqtl[filt_cis_eqtl$gene=="TCEA3",c(1,4)] loc1_aTCEA3=filt_cis_aqtl[filt_cis_aqtl$gene=="TCEA3",c(1,4)] loc1_eLASP1=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="LASP1" & filt_trans_bmi_eqtl$chr==1,c(1,4)] loc1_aLASP1=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="LASP1" & filt_trans_bmi_aqtl$chr==1,c(1,4)] loc1_eRASSF4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="RASSF4" & filt_trans_bmi_eqtl$chr==1,c(1,4)] loc1_aRASSF4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="RASSF4" & filt_trans_bmi_aqtl$chr==1,c(1,4)] loc1_aGNA14=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="GNA14" & filt_trans_bmi_aqtl$chr==1,c(1,4)] loc1_aDOK5=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="DOK5" & filt_trans_bmi_aqtl$chr==1,c(1,4)] colnames(bmi1)=c("rsid","pval") colnames(loc1_eEPHB2)=c("rsid","pval") colnames(loc1_aEPHB2)=c("rsid","pval") colnames(loc1_eZNF436)=c("rsid","pval") colnames(loc1_aZNF436)=c("rsid","pval") colnames(loc1_eTCEA3)=c("rsid","pval") colnames(loc1_aTCEA3)=c("rsid","pval") colnames(loc1_eLASP1)=c("rsid","pval") colnames(loc1_aLASP1)=c("rsid","pval") colnames(loc1_eRASSF4)=c("rsid","pval") colnames(loc1_aRASSF4)=c("rsid","pval") colnames(loc1_aGNA14)=c("rsid","pval") colnames(loc1_aDOK5)=c("rsid","pval") rownames(bmi1)=bmi1$rsid rownames(loc1_eEPHB2)=loc1_eEPHB2$rsid rownames(loc1_aEPHB2)=loc1_aEPHB2$rsid rownames(loc1_eZNF436)=loc1_eZNF436$rsid rownames(loc1_aZNF436)=loc1_aZNF436$rsid rownames(loc1_eTCEA3)=loc1_eTCEA3$rsid rownames(loc1_aTCEA3)=loc1_aTCEA3$rsid rownames(loc1_eLASP1)=loc1_eLASP1$rsid rownames(loc1_aLASP1)=loc1_aLASP1$rsid rownames(loc1_eRASSF4)=loc1_eRASSF4$rsid rownames(loc1_aRASSF4)=loc1_aRASSF4$rsid rownames(loc1_aGNA14)=loc1_aGNA14$rsid rownames(loc1_aDOK5)=loc1_aDOK5$rsid # Check out some relevant LocusCompare plots before picking the which to write to file locuscompare(in_fn1=bmi1,in_fn2=loc1_eEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-eQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs12408468") # Potential 3rd BMI signal? locuscompare(in_fn1=loc1_eEPHB2,in_fn2=loc1_aEPHB2,title1 = "EPHB2 cis-eQTL", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-eQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_eZNF436,in_fn2=loc1_aZNF436,title1 = "ZNF436 cis-eQTL", title2 = "ZNF436 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eTCEA3,title1 = "BMI GWAS", title2 = "TCEA3 cis-eQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aTCEA3,title1 = "BMI GWAS", title2 = "TCEA3 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eLASP1,title1 = "BMI GWAS", title2 = "LASP1 trans-eQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aLASP1,title1 = "EPHB2 cis-aQTL", title2 = "LASP1 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aLASP1,title1 = "EPHB2 cis-aQTL", title2 = "LASP1 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_eRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 trans-eQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aRASSF4,title1 = "EPHB2 cis-aQTL", title2 = "RASSF4 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aRASSF4,title1 = "EPHB2 cis-aQTL", title2 = "RASSF4 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aGNA14,title1 = "EPHB2 cis-aQTL", title2 = "GNA14 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aGNA14,title1 = "EPHB2 cis-aQTL", title2 = "GNA14 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aDOK5,title1 = "EPHB2 cis-aQTL", title2 = "DOK5 trans-aQTL",snp = "rs6692586") # Top GWAS SNP locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aDOK5,title1 = "EPHB2 cis-aQTL", title2 = "DOK5 trans-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP locuscompare(in_fn1=loc1_eEPHB2,in_fn2=loc1_aEPHB2,title1 = "EPHB2 cis-eQTL", title2 = "EPHB2 cis-aQTL",snp = "rs4654828") # Top multi-QTL cluster SNP # This locus is complex and consequently difficult to interpret. The EPHB2 cis-aQTL and various BMI MR trans-aQTL signals suggest 2 functional signals # represented by rs6692586 (the top BMI GWAS SNP) and rs4654828 (the top trans-aQTL signal for many BMI MRs). The EPHB2 cis-aQTL has these two SNPs # at roughly equal strength while rs6692586 is clearly stronger for BMI and rs4654828 is clearly stronger for the trans-aQTLs. Perhaps the best # hypothetical explanations for these observations is that rs6692586 operates in cis thru effects on EPHB2 expression and activity, while rs4654828 # has an alternative proximal effect that distally affects the activities of many correlated BMI MRs, including EPHB2, which shows up as a bump in # in the EPHB2 aQTL signal. The proximal effect of rs4654828 might be on ZNF436 activity, but this probably cannot be mediated via expression levels # since there is an extremely strong cis-eQTL for ZNF436 at this locus that does not overlap the BMI signal or the cis-aQTL signal. I looked into the # the position of rs4654828, but it is quite far away from ZNF436 in a LACTBL1 intron. LACTBL1 is apparently not expressed in our adipose tissue, so # it is hard to imagine how it could be mediating the effect on BMI within adipose. It is best expressed in testis, which does have a sig eQTL # between rs4654828-LACTBL1, but this also doesn't seem relevant to BMI. So if rs4654828 does affect ZNF436 activity in adipose, it is mediated # some other way. Interestingly, rs4654828 in GTEx does show sig eQTLs with ZNF436 in other tissue types (Skin, Aorta, Tibial Artery, Esophagus, # Tibial Nerve and Thyroid). It's hard to imagine how ZNF436 expression effects in other tissues could be relevant to ZNF436 activity in adipose. # There are also rs4654828-TCEA3 eQTLs in Skin and Skeletal Muscle, and a TCEA3 splicing QTL in skin. The TCEA3 eQTL/aQTL LocusCompare plots do # not look like TCEA3 is relevant to either BMI signal in adipose. Regardless, this sort of scenario might manifest epistatic effects on BMI and # EPHB2 between these two SNPs. This is easy enough to test for EPHB2 activity, but I can't test it for BMI. # Let's write some to PDFs pdf("rs6692586-EPHB2_eQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_eEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-eQTL",snp = "rs6692586") dev.off() pdf("rs6692586-EPHB2_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-EPHB2_eQTL_and_aQTL_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_eEPHB2,in_fn2=loc1_aEPHB2,title1 = "EPHB2 cis-eQTL", title2 = "EPHB2 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-EPHB2_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-ZNF436_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-ZNF436_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aZNF436,title1 = "BMI GWAS", title2 = "ZNF436 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-DOK5_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-DOK5_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aDOK5,title1 = "BMI GWAS", title2 = "DOK5 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-RASSF4_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-RASSF4_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aRASSF4,title1 = "BMI GWAS", title2 = "RASSF4 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-GNA14_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-GNA14_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aGNA14,title1 = "BMI GWAS", title2 = "GNA14 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-LASP1_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs4654828-LASP1_aQTL_and_BMI_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi1,in_fn2=loc1_aLASP1,title1 = "BMI GWAS", title2 = "LASP1 cis-aQTL",snp = "rs4654828") dev.off() pdf("rs6692586-LASP1_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aLASP1,title1 = "EPHB2 cis-aQTL", title2 = "LASP1 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-GNA14_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aGNA14,title1 = "EPHB2 cis-aQTL", title2 = "GNA14 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-RASSF4_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aRASSF4,title1 = "EPHB2 cis-aQTL", title2 = "RASSF4 cis-aQTL",snp = "rs6692586") dev.off() pdf("rs6692586-DOK5_aQTL_and_EPHB2_aQTL_1p36_LocusCompare.pdf",width = 10) locuscompare(in_fn1=loc1_aEPHB2,in_fn2=loc1_aDOK5,title1 = "EPHB2 cis-aQTL", title2 = "DOK5 cis-aQTL",snp = "rs6692586") dev.off() ## 7q32 # First, grab the necessary P-values for the SNPs used in the HyPrColoc analyses for the traits of interest bmi2=filt_bmi[filt_bmi$CHR==7,c(3,9)] t2d2=filt_t2d[filt_t2d$Chr==7,c(1,9)] hdl2=filt_hdl[filt_hdl$CHR==7,c(3,9)] triG2=filt_triG[filt_triG$CHR==7,c(3,9)] loc2_eLINC=filt_cis_eqtl[filt_cis_eqtl$gene=="LINC-PINT",c(1,4)] loc2_aLINC=filt_cis_aqtl[filt_cis_aqtl$gene=="LINC-PINT",c(1,4)] loc2_eKLF14=filt_cis_eqtl[filt_cis_eqtl$gene=="KLF14",c(1,4)] loc2_aKLF14=filt_cis_aqtl[filt_cis_aqtl$gene=="KLF14",c(1,4)] loc2_eAC=filt_cis_eqtl[filt_cis_eqtl$gene=="AC016831.7",c(1,4)] loc2_eTBX4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="TBX4" & filt_trans_bmi_eqtl$chr==7,c(1,4)] loc2_aTBX4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="TBX4" & filt_trans_bmi_aqtl$chr==7,c(1,4)] loc2_eGNB1=filt_trans_t2d_eqtl[filt_trans_t2d_eqtl$gene=="GNB1" & filt_trans_t2d_eqtl$chr==7,c(1,4)] loc2_aGNB1=filt_trans_t2d_aqtl[filt_trans_t2d_aqtl$gene=="GNB1" & filt_trans_t2d_aqtl$chr==7,c(1,4)] loc2_eESR2=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$gene=="ESR2" & filt_trans_hdl_eqtl$chr==7,c(1,4)] loc2_aESR2=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$gene=="ESR2" & filt_trans_hdl_aqtl$chr==7,c(1,4)] loc2_eNR2F1=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$gene=="NR2F1" & filt_trans_hdl_eqtl$chr==7,c(1,4)] loc2_aNR2F1=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$gene=="NR2F1" & filt_trans_hdl_aqtl$chr==7,c(1,4)] loc2_eAGT=filt_trans_triG_eqtl[filt_trans_triG_eqtl$gene=="AGT" & filt_trans_triG_eqtl$chr==7,c(1,4)] loc2_aAGT=filt_trans_triG_aqtl[filt_trans_triG_aqtl$gene=="AGT" & filt_trans_triG_aqtl$chr==7,c(1,4)] loc2_eRABIF=filt_trans_triG_eqtl[filt_trans_triG_eqtl$gene=="RABIF" & filt_trans_triG_eqtl$chr==7,c(1,4)] loc2_aRABIF=filt_trans_triG_aqtl[filt_trans_triG_aqtl$gene=="RABIF" & filt_trans_triG_aqtl$chr==7,c(1,4)] colnames(bmi2)=c("rsid","pval") colnames(t2d2)=c("rsid","pval") colnames(hdl2)=c("rsid","pval") colnames(triG2)=c("rsid","pval") colnames(loc2_eLINC)=c("rsid","pval") colnames(loc2_aLINC)=c("rsid","pval") colnames(loc2_eKLF14)=c("rsid","pval") colnames(loc2_aKLF14)=c("rsid","pval") colnames(loc2_eAC)=c("rsid","pval") colnames(loc2_eTBX4)=c("rsid","pval") colnames(loc2_aTBX4)=c("rsid","pval") colnames(loc2_eGNB1)=c("rsid","pval") colnames(loc2_aGNB1)=c("rsid","pval") colnames(loc2_eESR2)=c("rsid","pval") colnames(loc2_aESR2)=c("rsid","pval") colnames(loc2_eNR2F1)=c("rsid","pval") colnames(loc2_aNR2F1)=c("rsid","pval") colnames(loc2_eAGT)=c("rsid","pval") colnames(loc2_aAGT)=c("rsid","pval") colnames(loc2_eRABIF)=c("rsid","pval") colnames(loc2_aRABIF)=c("rsid","pval") rownames(bmi2)=bmi2$rsid rownames(t2d2)=t2d2$rsid rownames(hdl2)=hdl2$rsid rownames(triG2)=triG2$rsid rownames(loc2_eLINC)=loc2_eLINC$rsid rownames(loc2_aLINC)=loc2_aLINC$rsid rownames(loc2_eKLF14)=loc2_eKLF14$rsid rownames(loc2_aKLF14)=loc2_aKLF14$rsid rownames(loc2_eAC)=loc2_eAC$rsid rownames(loc2_eTBX4)=loc2_eTBX4$rsid rownames(loc2_aTBX4)=loc2_aTBX4$rsid rownames(loc2_eGNB1)=loc2_eGNB1$rsid rownames(loc2_aGNB1)=loc2_aGNB1$rsid rownames(loc2_eESR2)=loc2_eESR2$rsid rownames(loc2_aESR2)=loc2_aESR2$rsid rownames(loc2_eNR2F1)=loc2_eNR2F1$rsid rownames(loc2_aNR2F1)=loc2_aNR2F1$rsid rownames(loc2_eAGT)=loc2_eAGT$rsid rownames(loc2_aAGT)=loc2_aAGT$rsid rownames(loc2_eRABIF)=loc2_eRABIF$rsid rownames(loc2_aRABIF)=loc2_aRABIF$rsid # Check out some relevant LocusCompare plots before picking the which to write to file locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eLINC,title1 = "BMI GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=loc2_eLINC,in_fn2=loc2_aLINC,title1 = "LINC-PINT cis-eQTL", title2 = "LINC-PINT cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eLINC,title1 = "T2D GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eLINC,title1 = "HDL GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eLINC,title1 = "Triglycerides GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_aKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_aKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-aQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_aKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs738134") # Top BMI GWAS SNP locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs287621") # Top BMI GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eAC,title1 = "BMI GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eAC,title1 = "T2D GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eAC,title1 = "HDL GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eAC,title1 = "Triglycerides GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_eTBX4,title1 = "BMI GWAS", title2 = "TBX4 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eTBX4,title1 = "T2D GWAS", title2 = "TBX4 trans-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eTBX4,title1 = "HDL GWAS", title2 = "TBX4 trans-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eTBX4,title1 = "Triglycerides GWAS", title2 = "TBX4 trans-eQTL",snp = "rs287621") # Top HDL GWAS SNP locuscompare(in_fn1=bmi2,in_fn2=loc2_aTBX4,title1 = "BMI GWAS", title2 = "TBX4 trans-aQTL",snp = "rs972283") # Top BMI GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_aTBX4,title1 = "T2D GWAS", title2 = "TBX4 trans-aQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_aTBX4,title1 = "HDL GWAS", title2 = "TBX4 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aTBX4,title1 = "Triglycerides GWAS", title2 = "TBX4 trans-aQTL",snp = "rs287621") # Top HDL GWAS SNP locuscompare(in_fn1=t2d2,in_fn2=loc2_eGNB1,title1 = "T2D GWAS", title2 = "GNB1 trans-eQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=t2d2,in_fn2=loc2_aGNB1,title1 = "T2D GWAS", title2 = "GNB1 trans-aQTL",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) locuscompare(in_fn1=hdl2,in_fn2=loc2_eESR2,title1 = "HDL GWAS", title2 = "ESR2 trans-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=loc2_aESR2,title1 = "HDL GWAS", title2 = "ESR2 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=loc2_eNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-eQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=hdl2,in_fn2=loc2_aNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=loc2_eNR2F1,in_fn2=loc2_aNR2F1,title1 = "NR2F1 trans-eQTL", title2 = "NR2F1 trans-aQTL",snp = "rs11765979") # Top HDL GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eRABIF,title1 = "Triglycerides GWAS", title2 = "RABIF trans-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aRABIF,title1 = "Triglycerides GWAS", title2 = "RABIF trans-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_eAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-eQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=triG2,in_fn2=loc2_aAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs287621") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs972283") # Top TriG GWAS SNP locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs738134") # Top TriG GWAS SNP # I never ran HyPrColoc on just cis-e_KLF14 and cis-a_KLF14 alone. First I need to calculate the SEs and format the data. filt_cis_eqtl$SE=filt_cis_eqtl$beta/filt_cis_eqtl$statistic filt_cis_aqtl$SE=filt_cis_aqtl$beta/filt_cis_aqtl$statistic all(filt_cis_eqtl$snps[filt_cis_eqtl$gene=="KLF14"]==filt_cis_aqtl$snps[filt_cis_aqtl$gene=="KLF14"]) # TRUE betas2=cbind("cis-e_KLF14"=filt_cis_eqtl[filt_cis_eqtl$gene=="KLF14","beta"],"cis-a_KLF14"=filt_cis_aqtl[filt_cis_aqtl$gene=="KLF14","beta"]) ses2=cbind("cis-e_KLF14"=filt_cis_eqtl[filt_cis_eqtl$gene=="KLF14","SE"],"cis-a_KLF14"=filt_cis_aqtl[filt_cis_aqtl$gene=="KLF14","SE"]) rownames(betas2)=filt_cis_aqtl$snps[filt_cis_aqtl$gene=="KLF14"] rownames(ses2)=filt_cis_aqtl$snps[filt_cis_aqtl$gene=="KLF14"] all(rownames(betas2)==rownames(filt_ld[[2]])) # TRUE all(rownames(ses2)==rownames(filt_ld[[2]])) # TRUE eKLF14_aKLF14=hyprcoloc(as.matrix(betas2),as.matrix(ses2), trait.names=colnames(betas2),snp.id=rownames(betas2),ld.matrix = filt_ld[[2]], trait.subset = c("cis-e_KLF14","cis-a_KLF14"),snpscores = T) # KLF14 eQTL and aQTL colocalize with a PP=0.9094 that is best explained by rs4731702. # Now let's do the same sort of analysis for NR2F1 and AGT. filt_trans_hdl_eqtl$SE=filt_trans_hdl_eqtl$beta/filt_trans_hdl_eqtl$statistic filt_trans_hdl_aqtl$SE=filt_trans_hdl_aqtl$beta/filt_trans_hdl_aqtl$statistic temp_e=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$chr==7 & filt_trans_hdl_eqtl$gene=="NR2F1",] temp_a=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$chr==7 & filt_trans_hdl_aqtl$gene=="NR2F1",] all(rownames(betas2)==temp_e$snps) # TRUE all(rownames(betas2)==temp_a$snps) # TRUE betas2=cbind(betas2,"trans-e_NR2F1"=temp_e$beta,"trans-a_NR2F1"=temp_a$beta) ses2=cbind(ses2,"trans-e_NR2F1"=temp_e$SE,"trans-a_NR2F1"=temp_a$SE) filt_trans_triG_eqtl$SE=filt_trans_triG_eqtl$beta/filt_trans_triG_eqtl$statistic filt_trans_triG_aqtl$SE=filt_trans_triG_aqtl$beta/filt_trans_triG_aqtl$statistic temp_e=filt_trans_triG_eqtl[filt_trans_triG_eqtl$chr==7 & filt_trans_triG_eqtl$gene=="AGT",] temp_a=filt_trans_triG_aqtl[filt_trans_triG_aqtl$chr==7 & filt_trans_triG_aqtl$gene=="AGT",] all(rownames(betas2)==temp_e$snps) # TRUE all(rownames(betas2)==temp_a$snps) # FALSE temp_a=temp_a[match(rownames(betas2),temp_a$snps),] all(rownames(betas2)==temp_a$snps) # TRUE betas2=cbind(betas2,"trans-e_AGT"=temp_e$beta,"trans-a_AGT"=temp_a$beta) ses2=cbind(ses2,"trans-e_AGT"=temp_e$SE,"trans-a_AGT"=temp_a$SE) eNR2F1_aNR2F1=hyprcoloc(as.matrix(betas2),as.matrix(ses2), trait.names=colnames(betas2),snp.id=rownames(betas2),ld.matrix = filt_ld[[2]], trait.subset = c("trans-e_NR2F1","trans-a_NR2F1"),snpscores = T) # NR2F1 eQTL and aQTL colocalize with a PP=0.8700 that is best explained by rs738134. eAGT_aAGT=hyprcoloc(as.matrix(betas2),as.matrix(ses2), trait.names=colnames(betas2),snp.id=rownames(betas2),ld.matrix = filt_ld[[2]], trait.subset = c("trans-e_AGT","trans-a_AGT"),snpscores = T) # AGT eQTL and aQTL colocalize with a PP=0.6451 that is best explained by rs11765979. # Let's write some to PDFs pdf("BMI_T2D_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("BMI_T2D_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("BMI_T2D_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=t2d2,title1 = "BMI GWAS", title2 = "T2D GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) dev.off() pdf("BMI_HDL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("BMI_HDL_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("BMI_HDL_7q32_LocusCompare_rs11765979.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=hdl2,title1 = "BMI GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP dev.off() pdf("BMI_TriG_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("BMI_TriG_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=triG2,title1 = "BMI GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("T2D_HDL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("T2D_HDL_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) dev.off() pdf("T2D_HDL_7q32_LocusCompare_rs11765979.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=hdl2,title1 = "T2D GWAS", title2 = "HDL GWAS",snp = "rs11765979") # Top HDL GWAS SNP dev.off() pdf("T2D_TriG_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("T2D_TriG_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs738134") # Near top T2D GWAS SNP (top SNP did not overlap other GWAS) dev.off() pdf("T2D_TriG_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=triG2,title1 = "T2D GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("HDL_TriG_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("HDL_TriG_7q32_LocusCompare_rs11765979.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs11765979") # Top HDL GWAS SNP dev.off() pdf("HDL_TriG_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=triG2,title1 = "HDL GWAS", title2 = "Triglycerides GWAS",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./BMI/BMI_e_LINC-PINT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eLINC,title1 = "BMI GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_LINC-PINT_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eLINC,title1 = "T2D GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_LINC-PINT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eLINC,title1 = "HDL GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_LINC-PINT_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eLINC,title1 = "Triglycerides GWAS", title2 = "LINC-PINT cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./LINC-PINT_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eLINC,in_fn2=loc2_aLINC,title1 = "LINC-PINT cis-eQTL", title2 = "LINC-PINT cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./BMI/BMI_e_AC016831.7_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eAC,title1 = "BMI GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_AC016831.7_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eAC,title1 = "T2D GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_AC016831.7_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eAC,title1 = "HDL GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_AC016831.7_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eAC,title1 = "Triglycerides GWAS", title2 = "AC016831.7 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./BMI/BMI_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_KLF14_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_KLF14_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./BMI/BMI_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_aKLF14,title1 = "BMI GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_aKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_a_KLF14_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_aKLF14,title1 = "T2D GWAS", title2 = "KLF14 cis-aQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_aKLF14,title1 = "HDL GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_a_KLF14_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_aKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_a_KLF14_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_aKLF14,title1 = "Triglycerides GWAS", title2 = "KLF14 cis-aQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./KLF14_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eKLF14,in_fn2=loc2_aKLF14,title1 = "KLF14 cis-eQTL", title2 = "KLF14 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./BMI/BMI_e_TBX4_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=bmi2,in_fn2=loc2_eTBX4,title1 = "BMI GWAS", title2 = "TBX4 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./T2D/T2D_e_TBX4_7q32_LocusCompare_rs738134.pdf",width = 10) locuscompare(in_fn1=t2d2,in_fn2=loc2_eTBX4,title1 = "T2D GWAS", title2 = "TBX4 trans-eQTL",snp = "rs738134") # Near top T2D GWAS SNP dev.off() pdf("./HDL/HDL_e_TBX4_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eTBX4,title1 = "HDL GWAS", title2 = "TBX4 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_TBX4_7q32_LocusCompare_rs287621.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eTBX4,title1 = "Triglycerides GWAS", title2 = "TBX4 trans-eQTL",snp = "rs287621") # Top TriG GWAS SNP dev.off() pdf("./TBX4_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eTBX4,in_fn2=loc2_aTBX4,title1 = "TBX4 cis-eQTL", title2 = "TBX4 cis-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./HDL/HDL_e_NR2F1_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_eNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-eQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./HDL/HDL_a_NR2F1_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=hdl2,in_fn2=loc2_aNR2F1,title1 = "HDL GWAS", title2 = "NR2F1 trans-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./NR2F1_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eNR2F1,in_fn2=loc2_aNR2F1,title1 = "NR2F1 trans-eQTL", title2 = "NR2F1 trans-aQTL",snp = "rs972283") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_e_AGT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_eAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-eQTL",snp = "rs287621") # Top BMI GWAS SNP dev.off() pdf("./Triglycerides/TriG_a_AGT_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=triG2,in_fn2=loc2_aAGT,title1 = "Triglycerides GWAS", title2 = "AGT trans-aQTL",snp = "rs287621") # Top BMI GWAS SNP dev.off() pdf("./AGT_eQTL_aQTL_7q32_LocusCompare_rs972283.pdf",width = 10) locuscompare(in_fn1=loc2_eAGT,in_fn2=loc2_aAGT,title1 = "AGT trans-eQTL", title2 = "AGT trans-aQTL",snp = "rs287621") # Top BMI GWAS SNP dev.off() ## 12p13.1 # First, grab the necessary P-values for the SNPs used in the HyPrColoc analyses for the traits of interest bmi4=filt_bmi[match(rownames(filt_ld[[4]]),filt_bmi$SNP),c(3,9)] loc4_eANG=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="ANG",c(1,4)] loc4_aANG=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="ANG",c(1,4)] loc4_eID2=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="ID2",c(1,4)] loc4_aID2=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="ID2",c(1,4)] loc4_ePTPRJ=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="PTPRJ",c(1,4)] loc4_aPTPRJ=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="PTPRJ",c(1,4)] loc4_eTENM4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="TENM4",c(1,4)] loc4_aTENM4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="TENM4",c(1,4)] loc4_eEPHB2=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$gene=="EPHB2",c(1,4)] loc4_aEPHB2=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$gene=="EPHB2",c(1,4)] colnames(bmi4)=c("rsid","pval") colnames(loc4_eANG)=c("rsid","pval") colnames(loc4_aANG)=c("rsid","pval") colnames(loc4_eID2)=c("rsid","pval") colnames(loc4_aID2)=c("rsid","pval") colnames(loc4_ePTPRJ)=c("rsid","pval") colnames(loc4_aPTPRJ)=c("rsid","pval") colnames(loc4_eTENM4)=c("rsid","pval") colnames(loc4_aTENM4)=c("rsid","pval") colnames(loc4_eEPHB2)=c("rsid","pval") colnames(loc4_aEPHB2)=c("rsid","pval") rownames(bmi4)=bmi4$rsid rownames(loc4_eANG)=loc4_eANG$rsid rownames(loc4_aANG)=loc4_aANG$rsid rownames(loc4_eID2)=loc4_eID2$rsid rownames(loc4_aID2)=loc4_aID2$rsid rownames(loc4_ePTPRJ)=loc4_ePTPRJ$rsid rownames(loc4_aPTPRJ)=loc4_aPTPRJ$rsid rownames(loc4_eTENM4)=loc4_eTENM4$rsid rownames(loc4_aTENM4)=loc4_aTENM4$rsid rownames(loc4_eEPHB2)=loc4_eEPHB2$rsid rownames(loc4_aEPHB2)=loc4_aEPHB2$rsid # Check out some relevant LocusCompare plots before picking the which to write to file locuscompare(in_fn1=bmi4,in_fn2=loc4_eEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aEPHB2,title1 = "BMI GWAS", title2 = "EPHB2 trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_eANG,title1 = "BMI GWAS", title2 = "ANG trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aANG,title1 = "BMI GWAS", title2 = "ANG trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_eID2,title1 = "BMI GWAS", title2 = "ID2 trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aID2,title1 = "BMI GWAS", title2 = "ID2 trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_ePTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aPTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ trans-aQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_eTENM4,title1 = "BMI GWAS", title2 = "TENM4 trans-eQTL",snp = "rs12422552") # Top GWAS SNP locuscompare(in_fn1=bmi4,in_fn2=loc4_aTENM4,title1 = "BMI GWAS", title2 = "TENM4 trans-aQTL",snp = "rs12422552") # Top GWAS SNP # Let's write some to PDFs pdf("./BMI/rs12422552-ANG_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_eANG,title1 = "BMI GWAS", title2 = "ANG cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-ANG_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aANG,title1 = "BMI GWAS", title2 = "ANG cis-aQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-ID2_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_eID2,title1 = "BMI GWAS", title2 = "ID2 cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-ID2_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aID2,title1 = "BMI GWAS", title2 = "ID2 cis-aQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-PTPRJ_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_ePTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-PTPRJ_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aPTPRJ,title1 = "BMI GWAS", title2 = "PTPRJ cis-aQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-TENM4_eQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_eTENM4,title1 = "BMI GWAS", title2 = "TENM4 cis-eQTL",snp = "rs12422552") dev.off() pdf("./BMI/rs12422552-TENM4_aQTL_and_BMI_12p13.1_LocusCompare.pdf",width = 10) locuscompare(in_fn1=bmi4,in_fn2=loc4_aTENM4,title1 = "BMI GWAS", title2 = "TENM4 cis-aQTL",snp = "rs12422552") dev.off() ### Let's switch to pulling out data for Cytoscape network visualizations # Read in data bmi_pairColoc=read.table("./BMI/Pairwise_HyPrColoc_between_BMI_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) t2d_pairColoc=read.table("./T2D/Pairwise_HyPrColoc_between_BMIadjT2D_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) hdl_pairColoc=read.table("./HDL/Pairwise_HyPrColoc_between_HDL_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) triG_pairColoc=read.table("./Triglycerides/Pairwise_HyPrColoc_between_TriG_and_each_QTL_for_select_loci.txt",sep = "\t",header = T) ephb2_pairColoc=read.table("./BMI/Pairwise_HyPrColoc_between_EPHB2_aQTL_and_each_other_QTL_for_1p36.txt",sep = "\t",header = T) bmi_mrs=read.table("./BMI/Eurobats_adipose_time-matched_BMI_MRs_from_RF_modeling.txt",header = F) homair_mrs=read.table("./HOMA-IR/Eurobats_adipose_time-matched_HOMA-IR_MRs_from_RF_modeling.txt",header = F) hdl_mrs=read.table("./HDL/Eurobats_adipose_time-matched_HDL_MRs_from_RF_modeling.txt",header = F) triG_mrs=read.table("./Triglycerides/Eurobats_adipose_time-matched_Triglycerides_MRs_from_RF_modeling.txt",header = F) interactome=read.table("../Adipose expression data/FINAL_logTPMs_and_activities/Eurobats_adipose_900boots_regulon_with_LINC-PINT.txt",sep = "\t",header = T) tpm=read.table("../Adipose expression data/FINAL_logTPMs_and_activities/Filtered_Eurobats_adipose_qnorm_INT_logTPMs_for_all_expressed_genes.txt", sep = "\t",header = T,row.names = 1) vip=read.table("../Adipose expression data/FINAL_logTPMs_and_activities/Filtered_Eurobats_adipose_unnormalized_activities_from_logTPM_for_4213_regulators.txt", sep = "\t",header = T,row.names = 1) phenos=read.table("../Eurobats phenotypes/Amendment_time-matched_phenotypes_E886_02082019_with_HOMA.txt",sep="\t",header = T,row.names = 1) filt_pheno=phenos[na.omit(match(colnames(vip),rownames(phenos))),] all(colnames(vip)==colnames(tpm)) # TRUE all(colnames(vip)==rownames(filt_pheno)) # TRUE sig_bmi=filt_bmi[filt_bmi$P<=5E-8,] sig_t2d=filt_t2d[filt_t2d$Pvalue<=5E-8,] sig_hdl=filt_hdl[filt_hdl$P<=5E-8,] sig_triG=filt_triG[filt_triG$P<=5E-8,] # Grab relevant sub-interactomes bmi_MRregs=interactome[interactome$Target %in% bmi_mrs[,1],] bmi_MRMR=bmi_MRregs[bmi_MRregs$Regulator %in% bmi_mrs[,1],] homair_MRregs=interactome[interactome$Target %in% homair_mrs[,1],] homair_MRMR=homair_MRregs[homair_MRregs$Regulator %in% homair_mrs[,1],] hdl_MRregs=interactome[interactome$Target %in% hdl_mrs[,1],] hdl_MRMR=hdl_MRregs[hdl_MRregs$Regulator %in% hdl_mrs[,1],] triG_MRregs=interactome[interactome$Target %in% triG_mrs[,1],] triG_MRMR=triG_MRregs[triG_MRregs$Regulator %in% triG_mrs[,1],] # 1p36 # Grab interactions between EPHB2 and MRs in adipose interactome EPHB2mrs=bmi_MRregs[bmi_MRregs$Regulator=="EPHB2",] mrsEPHB2=interactome[(interactome$Regulator %in% bmi_mrs[,1]) & (interactome$Target=="EPHB2"),] interactome1p36=rbind(bmi_MRMR,EPHB2mrs,mrsEPHB2) # Grab pairwise colocalizations with PP>0.5 between BMI and QTLs and EPHB2 aQTL and trans-QTLs bmi_pairColoc1p36=bmi_pairColoc[bmi_pairColoc$locus=="1p36.1" & bmi_pairColoc$posterior_prob>0.5,c(2,3,5)] bmi_pairColoc1p36$traits=gsub("BMI, ","",bmi_pairColoc1p36$traits) bmi_pairColoc1p36=cbind("trait1"=rep("BMI",dim(bmi_pairColoc1p36)[1]),bmi_pairColoc1p36) bmi_e_pairColoc1=bmi_pairColoc1p36[grepl("-e_",bmi_pairColoc1p36$traits),] bmi_a_pairColoc1=bmi_pairColoc1p36[grepl("-a_",bmi_pairColoc1p36$traits),] bmi_e_pairColoc1$traits=gsub(".*_","",bmi_e_pairColoc1$traits) bmi_a_pairColoc1$traits=gsub(".*_","",bmi_a_pairColoc1$traits) bmi_netPair1p36=rbind(bmi_e_pairColoc1,bmi_a_pairColoc1) bmi_netPair1p36=bmi_netPair1p36[!duplicated(bmi_netPair1p36$traits),-c(3,4)] bmi_netPair1p36$eQTL_PP=bmi_e_pairColoc1[match(bmi_netPair1p36$traits,bmi_e_pairColoc1$traits),3] bmi_netPair1p36$eQTL_SNP=bmi_e_pairColoc1[match(bmi_netPair1p36$traits,bmi_e_pairColoc1$traits),4] bmi_netPair1p36$aQTL_PP=bmi_a_pairColoc1[match(bmi_netPair1p36$traits,bmi_a_pairColoc1$traits),3] bmi_netPair1p36$aQTL_SNP=bmi_a_pairColoc1[match(bmi_netPair1p36$traits,bmi_a_pairColoc1$traits),4] ephb2Coloc1=ephb2_pairColoc[!is.na(ephb2_pairColoc$candidate_snp),c(2,3,5)] ephb2Coloc1=ephb2Coloc1[ephb2Coloc1$posterior_prob>0.5,] ephb2Coloc1$traits=gsub("cis-a_EPHB2, ","",ephb2Coloc1$traits) ephb2Coloc1=cbind("trait1"=rep("EPHB2",dim(ephb2Coloc1)[1]),ephb2Coloc1) e_ephb2Coloc1=ephb2Coloc1[grepl("-e_",ephb2Coloc1$traits),] a_ephb2Coloc1=ephb2Coloc1[grepl("-a_",ephb2Coloc1$traits),] e_ephb2Coloc1$traits=gsub(".*_","",e_ephb2Coloc1$traits) a_ephb2Coloc1$traits=gsub(".*_","",a_ephb2Coloc1$traits) netEPHB2=rbind(e_ephb2Coloc1,a_ephb2Coloc1) netEPHB2=netEPHB2[!duplicated(netEPHB2$traits),-c(3,4)] netEPHB2$eQTL_PP=e_ephb2Coloc1[match(netEPHB2$traits,e_ephb2Coloc1$traits),3] netEPHB2$eQTL_SNP=e_ephb2Coloc1[match(netEPHB2$traits,e_ephb2Coloc1$traits),4] netEPHB2$aQTL_PP=a_ephb2Coloc1[match(netEPHB2$traits,a_ephb2Coloc1$traits),3] netEPHB2$aQTL_SNP=a_ephb2Coloc1[match(netEPHB2$traits,a_ephb2Coloc1$traits),4] colocNet1p36=rbind(bmi_netPair1p36,netEPHB2) colocNet1p36[is.na(colocNet1p36)]=0 # Grab the -log10(Pmin) and betas for the eQTLs and aQTLs among BMI GWAS significant SNPs at the 1p36.1 locus # Actually, though I originally made networks with nodes shaded according to their minP QTLs, I've since decided # that for the manuscript I need to stick to a single SNP for all QTLs to avoid allele switching issues and to # facilitate discussion in the manuscript. Therefore, for this locus I will focus on rs4654828 since it tends to # be among the top SNPs for EPHB2 cis-aQTL and all BMI MR trans-aQTLs. However, since subsequent lines of code # refer to the variables as min_cisE1, etc. I will keep that naming even though it's not an adequate description. cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==1,] cisE1=cisE1[cisE1$snps %in% sig_bmi$SNP,] cisE1=cisE1[order(cisE1$pvalue),] #min_cisE1=cisE1[!duplicated(cisE1$gene),] min_cisE1=cisE1[cisE1$snps=="rs4654828",] cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==1,] cisA1=cisA1[cisA1$snps %in% sig_bmi$SNP,] cisA1=cisA1[order(cisA1$pvalue),] #min_cisA1=cisA1[!duplicated(cisA1$gene),] min_cisA1=cisA1[cisA1$snps=="rs4654828",] transE1=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$chr==1,] transE1=transE1[transE1$snps %in% sig_bmi$SNP,] transE1=transE1[order(transE1$pvalue),] #min_transE1=transE1[!duplicated(transE1$gene),] min_transE1=transE1[transE1$snps=="rs4654828",] transA1=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$chr==1,] transA1=transA1[transA1$snps %in% sig_bmi$SNP,] transA1=transA1[order(transA1$pvalue),] #min_transA1=transA1[!duplicated(transA1$gene),] min_transA1=transA1[transA1$snps=="rs4654828",] # Make node tables for 1p36 networks inter_nodes1p36=data.frame("Node"=as.character(unique(interactome1p36$Regulator)),"BMI_exp_cor"=rep(0,length(unique(interactome1p36$Regulator))), "BMI_act_cor"=rep(0,length(unique(interactome1p36$Regulator))),"rs4654828_eQTL_Beta"=rep(0,length(unique(interactome1p36$Regulator))), "rs4654828_eQTL_logP"=rep(0,length(unique(interactome1p36$Regulator))),"rs4654828_aQTL_Beta"=rep(0,length(unique(interactome1p36$Regulator))), "rs4654828_aQTL_logP"=rep(0,length(unique(interactome1p36$Regulator)))) for(i in 1:dim(inter_nodes1p36)[1]){ inter_nodes1p36$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(inter_nodes1p36$Node[i]),]),filt_pheno$BMI) inter_nodes1p36$BMI_act_cor[i]=cor(as.numeric(vip[as.character(inter_nodes1p36$Node[i]),]),filt_pheno$BMI) inter_nodes1p36$rs4654828_eQTL_Beta[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transE1$gene, min_transE1[min_transE1$gene==as.character(inter_nodes1p36$Node[i]),"beta"], 0) inter_nodes1p36$rs4654828_eQTL_logP[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transE1$gene, -log10(min_transE1[min_transE1$gene==as.character(inter_nodes1p36$Node[i]),"pvalue"]), 0) inter_nodes1p36$rs4654828_aQTL_Beta[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transA1$gene, min_transA1[min_transA1$gene==as.character(inter_nodes1p36$Node[i]),"beta"], 0) inter_nodes1p36$rs4654828_aQTL_logP[i]=ifelse(inter_nodes1p36$Node[i] %in% min_transA1$gene, -log10(min_transA1[min_transA1$gene==as.character(inter_nodes1p36$Node[i]),"pvalue"]), 0) } coloc_nodes1p36=data.frame("Node"=as.character(unique(colocNet1p36$traits)),"BMI_exp_cor"=rep(0,length(unique(colocNet1p36$traits))), "BMI_act_cor"=rep(0,length(unique(colocNet1p36$traits))),"rs4654828_eQTL_Beta"=rep(0,length(unique(colocNet1p36$traits))), "rs4654828_eQTL_logP"=rep(0,length(unique(colocNet1p36$traits))),"rs4654828_aQTL_Beta"=rep(0,length(unique(colocNet1p36$traits))), "rs4654828_aQTL_logP"=rep(0,length(unique(colocNet1p36$traits)))) for(i in 1:dim(coloc_nodes1p36)[1]){ coloc_nodes1p36$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(coloc_nodes1p36$Node[i]),]),filt_pheno$BMI) coloc_nodes1p36$BMI_act_cor[i]=cor(as.numeric(vip[as.character(coloc_nodes1p36$Node[i]),]),filt_pheno$BMI) coloc_nodes1p36$rs4654828_eQTL_Beta[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transE1$gene, min_transE1[min_transE1$gene==as.character(coloc_nodes1p36$Node[i]),"beta"], 0) coloc_nodes1p36$rs4654828_eQTL_logP[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transE1$gene, -log10(min_transE1[min_transE1$gene==as.character(coloc_nodes1p36$Node[i]),"pvalue"]), 0) coloc_nodes1p36$rs4654828_aQTL_Beta[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transA1$gene, min_transA1[min_transA1$gene==as.character(coloc_nodes1p36$Node[i]),"beta"], 0) coloc_nodes1p36$rs4654828_aQTL_logP[i]=ifelse(coloc_nodes1p36$Node[i] %in% min_transA1$gene, -log10(min_transA1[min_transA1$gene==as.character(coloc_nodes1p36$Node[i]),"pvalue"]), 0) } # Since EPHB2 is the only cis gene here, I'll just deal with it manually inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_eQTL_Beta"]=min_cisE1[min_cisE1$gene=="EPHB2","beta"] inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_eQTL_logP"]=-log10(min_cisE1[min_cisE1$gene=="EPHB2","pvalue"]) inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_aQTL_Beta"]=min_cisA1[min_cisA1$gene=="EPHB2","beta"] inter_nodes1p36[inter_nodes1p36$Node=="EPHB2","rs4654828_aQTL_logP"]=-log10(min_cisA1[min_cisA1$gene=="EPHB2","pvalue"]) coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_eQTL_Beta"]=min_cisE1[min_cisE1$gene=="EPHB2","beta"] coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_eQTL_logP"]=-log10(min_cisE1[min_cisE1$gene=="EPHB2","pvalue"]) coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_aQTL_Beta"]=min_cisA1[min_cisA1$gene=="EPHB2","beta"] coloc_nodes1p36[coloc_nodes1p36$Node=="EPHB2","rs4654828_aQTL_logP"]=-log10(min_cisA1[min_cisA1$gene=="EPHB2","pvalue"]) # I think it may be more convenient to merge the networks into one and then just change which attributes I visualize in Cytoscape # Start with 2 temporary columns concatinating the regulator-target and target-regulator for easier matching. interactome1p36$temp1=paste(interactome1p36$Regulator,interactome1p36$Target) interactome1p36$temp2=paste(interactome1p36$Target,interactome1p36$Regulator) colocNet1p36$temp1=paste(colocNet1p36$trait1,colocNet1p36$traits) colocNet1p36$temp2=paste(colocNet1p36$traits,colocNet1p36$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(interactome1p36)[1],ncol = 4)) for(i in 1:dim(interactome1p36)[1]){ temp[i,1:4]=colocNet1p36[ifelse(is.na(match(interactome1p36$temp1[i],colocNet1p36$temp1)), match(interactome1p36$temp1[i],colocNet1p36$temp2), match(interactome1p36$temp1[i],colocNet1p36$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the BMI colocalizations colnames(temp)=colnames(colocNet1p36)[3:6] temp=rbind(temp,colocNet1p36[colocNet1p36$trait1=="BMI",3:6]) # Then add rows for BMI-Gene connections with 0 for MoA and likelihood full1p36=interactome1p36[,1:4] temp2=colocNet1p36[colocNet1p36$trait1=="BMI",1:4] colnames(temp2)=colnames(interactome1p36)[1:4] temp2[,3:4]=0 full1p36=rbind(full1p36,temp2) # Finally, combine the colocalization columns with the interactome columns full1p36=cbind(full1p36,temp) # The nodes data also needs to be combined and duplicate rows removed full1p36_nodes=rbind(inter_nodes1p36,coloc_nodes1p36) full1p36_nodes=full1p36_nodes[!duplicated(full1p36_nodes$Node),] # Write networks and node data to file for Cytoscape visualizations write.table(interactome1p36,"Chr1p36_EPHB2_and_BMI_MRs_interactome.txt",sep = "\t",quote = F,row.names = F) write.table(inter_nodes1p36,"Chr1p36_EPHB2_and_BMI_MRs_interactome_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(colocNet1p36,"Chr1p36_BMI_EPHB2_and_BMI_MRs_pairwise_colocalization_network.txt",sep = "\t",quote = F,row.names = F) write.table(coloc_nodes1p36,"Chr1p36_BMI_EPHB2_and_BMI_MRs_pairwise_colocalization_network_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(full1p36,"Chr1p36_EPHB2_and_BMI_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(full1p36_nodes,"Chr1p36_EPHB2_and_BMI_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) # 7q32 # Grab interactions between LINC-PINT, KLF14 and MRs in adipose interactome linc_bmi_mrs=bmi_MRregs[bmi_MRregs$Regulator=="LINC-PINT",] linc_homair_mrs=homair_MRregs[homair_MRregs$Regulator=="LINC-PINT",] linc_hdl_mrs=hdl_MRregs[hdl_MRregs$Regulator=="LINC-PINT",] linc_triG_mrs=triG_MRregs[triG_MRregs$Regulator=="LINC-PINT",] bmi_mrsLINC=interactome[(interactome$Regulator %in% bmi_mrs[,1]) & (interactome$Target=="LINC-PINT"),] homair_mrsLINC=interactome[(interactome$Regulator %in% homair_mrs[,1]) & (interactome$Target=="LINC-PINT"),] hdl_mrsLINC=interactome[(interactome$Regulator %in% hdl_mrs[,1]) & (interactome$Target=="LINC-PINT"),] triG_mrsLINC=interactome[(interactome$Regulator %in% triG_mrs[,1]) & (interactome$Target=="LINC-PINT"),] klf14_bmi_mrs=bmi_MRregs[bmi_MRregs$Regulator=="KLF14",] klf14_homair_mrs=homair_MRregs[homair_MRregs$Regulator=="KLF14",] klf14_hdl_mrs=hdl_MRregs[hdl_MRregs$Regulator=="KLF14",] klf14_triG_mrs=triG_MRregs[triG_MRregs$Regulator=="KLF14",] bmi_mrsKLF14=interactome[(interactome$Regulator %in% bmi_mrs[,1]) & (interactome$Target=="KLF14"),] homair_mrsKLF14=interactome[(interactome$Regulator %in% homair_mrs[,1]) & (interactome$Target=="KLF14"),] hdl_mrsKLF14=interactome[(interactome$Regulator %in% hdl_mrs[,1]) & (interactome$Target=="KLF14"),] triG_mrsKLF14=interactome[(interactome$Regulator %in% triG_mrs[,1]) & (interactome$Target=="KLF14"),] bmi_interactome7q32=rbind(bmi_MRMR,linc_bmi_mrs,bmi_mrsLINC,klf14_bmi_mrs,bmi_mrsKLF14) homair_interactome7q32=rbind(homair_MRMR,linc_homair_mrs,homair_mrsLINC,klf14_homair_mrs,homair_mrsKLF14) hdl_interactome7q32=rbind(hdl_MRMR,linc_hdl_mrs,hdl_mrsLINC,klf14_hdl_mrs,hdl_mrsKLF14) triG_interactome7q32=rbind(triG_MRMR,linc_triG_mrs,triG_mrsLINC,klf14_triG_mrs,triG_mrsKLF14) # Grab pairwise colocalizations with PP>0.5 between each GWAS and QTLs. I did not run pairwise colocalization analyses for LINC-PINT or KLF14 yet. bmi_pairColoc7q32=bmi_pairColoc[bmi_pairColoc$locus=="7q32" & bmi_pairColoc$posterior_prob>0.5,c(2,3,5)] bmi_pairColoc7q32$traits=gsub("BMI, ","",bmi_pairColoc7q32$traits) bmi_pairColoc7q32=cbind("trait1"=rep("BMI",dim(bmi_pairColoc7q32)[1]),bmi_pairColoc7q32) bmi_e_pairColoc1=bmi_pairColoc7q32[grepl("-e_",bmi_pairColoc7q32$traits),] bmi_a_pairColoc1=bmi_pairColoc7q32[grepl("-a_",bmi_pairColoc7q32$traits),] bmi_e_pairColoc1$traits=gsub(".*_","",bmi_e_pairColoc1$traits) bmi_a_pairColoc1$traits=gsub(".*_","",bmi_a_pairColoc1$traits) bmi_netPair7q32=rbind(bmi_e_pairColoc1,bmi_a_pairColoc1) bmi_netPair7q32=bmi_netPair7q32[!duplicated(bmi_netPair7q32$traits),-c(3,4)] bmi_netPair7q32$eQTL_PP=bmi_e_pairColoc1[match(bmi_netPair7q32$traits,bmi_e_pairColoc1$traits),3] bmi_netPair7q32$eQTL_SNP=bmi_e_pairColoc1[match(bmi_netPair7q32$traits,bmi_e_pairColoc1$traits),4] bmi_netPair7q32$aQTL_PP=bmi_a_pairColoc1[match(bmi_netPair7q32$traits,bmi_a_pairColoc1$traits),3] bmi_netPair7q32$aQTL_SNP=bmi_a_pairColoc1[match(bmi_netPair7q32$traits,bmi_a_pairColoc1$traits),4] bmi_netPair7q32[is.na(bmi_netPair7q32)]=0 t2d_pairColoc7q32=t2d_pairColoc[t2d_pairColoc$locus=="7q32" & t2d_pairColoc$posterior_prob>0.5,c(2,3,5)] t2d_pairColoc7q32$traits=gsub("T2D, ","",t2d_pairColoc7q32$traits) t2d_pairColoc7q32=cbind("trait1"=rep("T2D",dim(t2d_pairColoc7q32)[1]),t2d_pairColoc7q32) t2d_e_pairColoc1=t2d_pairColoc7q32[grepl("-e_",t2d_pairColoc7q32$traits),] t2d_a_pairColoc1=t2d_pairColoc7q32[grepl("-a_",t2d_pairColoc7q32$traits),] t2d_e_pairColoc1$traits=gsub(".*_","",t2d_e_pairColoc1$traits) t2d_a_pairColoc1$traits=gsub(".*_","",t2d_a_pairColoc1$traits) t2d_netPair7q32=rbind(t2d_e_pairColoc1,t2d_a_pairColoc1) t2d_netPair7q32=t2d_netPair7q32[!duplicated(t2d_netPair7q32$traits),-c(3,4)] t2d_netPair7q32$eQTL_PP=t2d_e_pairColoc1[match(t2d_netPair7q32$traits,t2d_e_pairColoc1$traits),3] t2d_netPair7q32$eQTL_SNP=t2d_e_pairColoc1[match(t2d_netPair7q32$traits,t2d_e_pairColoc1$traits),4] t2d_netPair7q32$aQTL_PP=t2d_a_pairColoc1[match(t2d_netPair7q32$traits,t2d_a_pairColoc1$traits),3] t2d_netPair7q32$aQTL_SNP=t2d_a_pairColoc1[match(t2d_netPair7q32$traits,t2d_a_pairColoc1$traits),4] t2d_netPair7q32[is.na(t2d_netPair7q32)]=0 hdl_pairColoc7q32=hdl_pairColoc[hdl_pairColoc$locus=="7q32" & hdl_pairColoc$posterior_prob>0.5,c(2,3,5)] hdl_pairColoc7q32$traits=gsub("HDL, ","",hdl_pairColoc7q32$traits) hdl_pairColoc7q32=cbind("trait1"=rep("HDL",dim(hdl_pairColoc7q32)[1]),hdl_pairColoc7q32) hdl_e_pairColoc1=hdl_pairColoc7q32[grepl("-e_",hdl_pairColoc7q32$traits),] hdl_a_pairColoc1=hdl_pairColoc7q32[grepl("-a_",hdl_pairColoc7q32$traits),] hdl_e_pairColoc1$traits=gsub(".*_","",hdl_e_pairColoc1$traits) hdl_a_pairColoc1$traits=gsub(".*_","",hdl_a_pairColoc1$traits) hdl_netPair7q32=rbind(hdl_e_pairColoc1,hdl_a_pairColoc1) hdl_netPair7q32=hdl_netPair7q32[!duplicated(hdl_netPair7q32$traits),-c(3,4)] hdl_netPair7q32$eQTL_PP=hdl_e_pairColoc1[match(hdl_netPair7q32$traits,hdl_e_pairColoc1$traits),3] hdl_netPair7q32$eQTL_SNP=hdl_e_pairColoc1[match(hdl_netPair7q32$traits,hdl_e_pairColoc1$traits),4] hdl_netPair7q32$aQTL_PP=hdl_a_pairColoc1[match(hdl_netPair7q32$traits,hdl_a_pairColoc1$traits),3] hdl_netPair7q32$aQTL_SNP=hdl_a_pairColoc1[match(hdl_netPair7q32$traits,hdl_a_pairColoc1$traits),4] hdl_netPair7q32[is.na(hdl_netPair7q32)]=0 triG_pairColoc7q32=triG_pairColoc[triG_pairColoc$locus=="7q32" & triG_pairColoc$posterior_prob>0.5,c(2,3,5)] triG_pairColoc7q32$traits=gsub("TriG, ","",triG_pairColoc7q32$traits) triG_pairColoc7q32=cbind("trait1"=rep("TriG",dim(triG_pairColoc7q32)[1]),triG_pairColoc7q32) triG_e_pairColoc1=triG_pairColoc7q32[grepl("-e_",triG_pairColoc7q32$traits),] triG_a_pairColoc1=triG_pairColoc7q32[grepl("-a_",triG_pairColoc7q32$traits),] triG_e_pairColoc1$traits=gsub(".*_","",triG_e_pairColoc1$traits) triG_a_pairColoc1$traits=gsub(".*_","",triG_a_pairColoc1$traits) triG_netPair7q32=rbind(triG_e_pairColoc1,triG_a_pairColoc1) triG_netPair7q32=triG_netPair7q32[!duplicated(triG_netPair7q32$traits),-c(3,4)] triG_netPair7q32$eQTL_PP=triG_e_pairColoc1[match(triG_netPair7q32$traits,triG_e_pairColoc1$traits),3] triG_netPair7q32$eQTL_SNP=triG_e_pairColoc1[match(triG_netPair7q32$traits,triG_e_pairColoc1$traits),4] triG_netPair7q32$aQTL_PP=triG_a_pairColoc1[match(triG_netPair7q32$traits,triG_a_pairColoc1$traits),3] triG_netPair7q32$aQTL_SNP=triG_a_pairColoc1[match(triG_netPair7q32$traits,triG_a_pairColoc1$traits),4] triG_netPair7q32[is.na(triG_netPair7q32)]=0 # Grab the -log10(Pmin) and betas for the eQTLs and aQTLs among GWAS significant SNPs at the 7q32 locus bmi_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] bmi_cisE1=bmi_cisE1[bmi_cisE1$snps %in% sig_bmi$SNP,] bmi_cisE1=bmi_cisE1[order(bmi_cisE1$pvalue),] min_bmi_cisE1=bmi_cisE1[!duplicated(bmi_cisE1$gene),] bmi_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] bmi_cisA1=bmi_cisA1[bmi_cisA1$snps %in% sig_bmi$SNP,] bmi_cisA1=bmi_cisA1[order(bmi_cisA1$pvalue),] min_bmi_cisA1=bmi_cisA1[!duplicated(bmi_cisA1$gene),] bmi_transE1=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$chr==7,] bmi_transE1=bmi_transE1[bmi_transE1$snps %in% sig_bmi$SNP,] bmi_transE1=bmi_transE1[order(bmi_transE1$pvalue),] min_bmi_transE1=bmi_transE1[!duplicated(bmi_transE1$gene),] bmi_transA1=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$chr==7,] bmi_transA1=bmi_transA1[bmi_transA1$snps %in% sig_bmi$SNP,] bmi_transA1=bmi_transA1[order(bmi_transA1$pvalue),] min_bmi_transA1=bmi_transA1[!duplicated(bmi_transA1$gene),] t2d_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] t2d_cisE1=t2d_cisE1[t2d_cisE1$snps %in% sig_t2d$rsID,] t2d_cisE1=t2d_cisE1[order(t2d_cisE1$pvalue),] min_t2d_cisE1=t2d_cisE1[!duplicated(t2d_cisE1$gene),] t2d_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] t2d_cisA1=t2d_cisA1[t2d_cisA1$snps %in% sig_t2d$rsID,] t2d_cisA1=t2d_cisA1[order(t2d_cisA1$pvalue),] min_t2d_cisA1=t2d_cisA1[!duplicated(t2d_cisA1$gene),] t2d_transE1=filt_trans_t2d_eqtl[filt_trans_t2d_eqtl$chr==7,] t2d_transE1=t2d_transE1[t2d_transE1$snps %in% sig_t2d$rsID,] t2d_transE1=t2d_transE1[order(t2d_transE1$pvalue),] min_t2d_transE1=t2d_transE1[!duplicated(t2d_transE1$gene),] t2d_transA1=filt_trans_t2d_aqtl[filt_trans_t2d_aqtl$chr==7,] t2d_transA1=t2d_transA1[t2d_transA1$snps %in% sig_t2d$rsID,] t2d_transA1=t2d_transA1[order(t2d_transA1$pvalue),] min_t2d_transA1=t2d_transA1[!duplicated(t2d_transA1$gene),] hdl_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] hdl_cisE1=hdl_cisE1[hdl_cisE1$snps %in% sig_hdl$SNP,] hdl_cisE1=hdl_cisE1[order(hdl_cisE1$pvalue),] min_hdl_cisE1=hdl_cisE1[!duplicated(hdl_cisE1$gene),] hdl_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] hdl_cisA1=hdl_cisA1[hdl_cisA1$snps %in% sig_hdl$SNP,] hdl_cisA1=hdl_cisA1[order(hdl_cisA1$pvalue),] min_hdl_cisA1=hdl_cisA1[!duplicated(hdl_cisA1$gene),] hdl_transE1=filt_trans_hdl_eqtl[filt_trans_hdl_eqtl$chr==7,] hdl_transE1=hdl_transE1[hdl_transE1$snps %in% sig_hdl$SNP,] hdl_transE1=hdl_transE1[order(hdl_transE1$pvalue),] min_hdl_transE1=hdl_transE1[!duplicated(hdl_transE1$gene),] hdl_transA1=filt_trans_hdl_aqtl[filt_trans_hdl_aqtl$chr==7,] hdl_transA1=hdl_transA1[hdl_transA1$snps %in% sig_hdl$SNP,] hdl_transA1=hdl_transA1[order(hdl_transA1$pvalue),] min_hdl_transA1=hdl_transA1[!duplicated(hdl_transA1$gene),] triG_cisE1=filt_cis_eqtl[filt_cis_eqtl$chr==7,] triG_cisE1=triG_cisE1[triG_cisE1$snps %in% sig_triG$SNP,] triG_cisE1=triG_cisE1[order(triG_cisE1$pvalue),] min_triG_cisE1=triG_cisE1[!duplicated(triG_cisE1$gene),] triG_cisA1=filt_cis_aqtl[filt_cis_aqtl$chr==7,] triG_cisA1=triG_cisA1[triG_cisA1$snps %in% sig_triG$SNP,] triG_cisA1=triG_cisA1[order(triG_cisA1$pvalue),] min_triG_cisA1=triG_cisA1[!duplicated(triG_cisA1$gene),] triG_transE1=filt_trans_triG_eqtl[filt_trans_triG_eqtl$chr==7,] triG_transE1=triG_transE1[triG_transE1$snps %in% sig_triG$SNP,] triG_transE1=triG_transE1[order(triG_transE1$pvalue),] min_triG_transE1=triG_transE1[!duplicated(triG_transE1$gene),] triG_transA1=filt_trans_triG_aqtl[filt_trans_triG_aqtl$chr==7,] triG_transA1=triG_transA1[triG_transA1$snps %in% sig_triG$SNP,] triG_transA1=triG_transA1[order(triG_transA1$pvalue),] min_triG_transA1=triG_transA1[!duplicated(triG_transA1$gene),] # Make node tables for 7q32 networks for each GWAS. Note that some GWAS (T2D and TriG) failed to have their MRs connect at all with LINC-PINT or KLF14, # so I manually added those to the node lists when needed. # BMI bmi_inter_nodes7q32=data.frame("Node"=as.character(unique(bmi_interactome7q32$Regulator)),"BMI_exp_cor"=rep(0,length(unique(bmi_interactome7q32$Regulator))), "BMI_act_cor"=rep(0,length(unique(bmi_interactome7q32$Regulator))),"Best_eQTL_Beta"=rep(0,length(unique(bmi_interactome7q32$Regulator))), "Best_eQTL_logP"=rep(0,length(unique(bmi_interactome7q32$Regulator))),"Best_aQTL_Beta"=rep(0,length(unique(bmi_interactome7q32$Regulator))), "Best_aQTL_logP"=rep(0,length(unique(bmi_interactome7q32$Regulator)))) bmi_coloc_nodes7q32=data.frame("Node"=as.character(unique(bmi_netPair7q32$traits)),"BMI_exp_cor"=rep(0,length(unique(bmi_netPair7q32$traits))), "BMI_act_cor"=rep(0,length(unique(bmi_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(bmi_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(bmi_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(bmi_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(bmi_netPair7q32$traits)))) for(i in 1:dim(bmi_inter_nodes7q32)[1]){ bmi_inter_nodes7q32$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(bmi_inter_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_inter_nodes7q32$BMI_act_cor[i]=cor(as.numeric(vip[as.character(bmi_inter_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transE1$gene, min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"beta"], 0) bmi_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transE1$gene, -log10(min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"pvalue"]), 0) bmi_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transA1$gene, min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"beta"], 0) bmi_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(bmi_inter_nodes7q32$Node[i] %in% min_bmi_transA1$gene, -log10(min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(bmi_coloc_nodes7q32)[1]){ bmi_coloc_nodes7q32$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(bmi_coloc_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_coloc_nodes7q32$BMI_act_cor[i]=cor(as.numeric(vip[as.character(bmi_coloc_nodes7q32$Node[i]),]),filt_pheno$BMI) bmi_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transE1$gene, min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"beta"], 0) bmi_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transE1$gene, -log10(min_bmi_transE1[min_bmi_transE1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"pvalue"]), 0) bmi_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transA1$gene, min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"beta"], 0) bmi_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(bmi_coloc_nodes7q32$Node[i] %in% min_bmi_transA1$gene, -log10(min_bmi_transA1[min_bmi_transA1$gene==as.character(bmi_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # T2D t2d_inter_nodes7q32=data.frame("Node"=c(as.character(unique(homair_interactome7q32$Regulator)),"LINC-PINT"),"HOMA.IR_exp_cor"=rep(0,length(unique(homair_interactome7q32$Regulator))+1), "HOMA.IR_act_cor"=rep(0,length(unique(homair_interactome7q32$Regulator))+1),"Best_eQTL_Beta"=rep(0,length(unique(homair_interactome7q32$Regulator))+1), "Best_eQTL_logP"=rep(0,length(unique(homair_interactome7q32$Regulator))+1),"Best_aQTL_Beta"=rep(0,length(unique(homair_interactome7q32$Regulator))+1), "Best_aQTL_logP"=rep(0,length(unique(homair_interactome7q32$Regulator))+1)) t2d_coloc_nodes7q32=data.frame("Node"=as.character(unique(t2d_netPair7q32$traits)),"HOMA.IR_exp_cor"=rep(0,length(unique(t2d_netPair7q32$traits))), "HOMA.IR_act_cor"=rep(0,length(unique(t2d_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(t2d_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(t2d_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(t2d_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(t2d_netPair7q32$traits)))) for(i in 1:dim(t2d_inter_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HOMA.IR)] t2d_inter_nodes7q32$HOMA.IR_exp_cor[i]=cor(as.numeric(tpm[as.character(t2d_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_inter_nodes7q32$HOMA.IR_act_cor[i]=cor(as.numeric(vip[as.character(t2d_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transE1$gene, min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"beta"], 0) t2d_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transE1$gene, -log10(min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"pvalue"]), 0) t2d_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transA1$gene, min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"beta"], 0) t2d_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(t2d_inter_nodes7q32$Node[i] %in% min_t2d_transA1$gene, -log10(min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(t2d_coloc_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HOMA.IR)] t2d_coloc_nodes7q32$HOMA.IR_exp_cor[i]=cor(as.numeric(tpm[as.character(t2d_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_coloc_nodes7q32$HOMA.IR_act_cor[i]=cor(as.numeric(vip[as.character(t2d_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HOMA.IR"]) t2d_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transE1$gene, min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"beta"], 0) t2d_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transE1$gene, -log10(min_t2d_transE1[min_t2d_transE1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"pvalue"]), 0) t2d_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transA1$gene, min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"beta"], 0) t2d_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(t2d_coloc_nodes7q32$Node[i] %in% min_t2d_transA1$gene, -log10(min_t2d_transA1[min_t2d_transA1$gene==as.character(t2d_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # HDL hdl_inter_nodes7q32=data.frame("Node"=as.character(unique(hdl_interactome7q32$Regulator)),"HDL_exp_cor"=rep(0,length(unique(hdl_interactome7q32$Regulator))), "HDL_act_cor"=rep(0,length(unique(hdl_interactome7q32$Regulator))),"Best_eQTL_Beta"=rep(0,length(unique(hdl_interactome7q32$Regulator))), "Best_eQTL_logP"=rep(0,length(unique(hdl_interactome7q32$Regulator))),"Best_aQTL_Beta"=rep(0,length(unique(hdl_interactome7q32$Regulator))), "Best_aQTL_logP"=rep(0,length(unique(hdl_interactome7q32$Regulator)))) hdl_coloc_nodes7q32=data.frame("Node"=as.character(unique(hdl_netPair7q32$traits)),"HDL_exp_cor"=rep(0,length(unique(hdl_netPair7q32$traits))), "HDL_act_cor"=rep(0,length(unique(hdl_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(hdl_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(hdl_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(hdl_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(hdl_netPair7q32$traits)))) for(i in 1:dim(hdl_inter_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HDLcholesterol)] hdl_inter_nodes7q32$HDL_exp_cor[i]=cor(as.numeric(tpm[as.character(hdl_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_inter_nodes7q32$HDL_act_cor[i]=cor(as.numeric(vip[as.character(hdl_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transE1$gene, min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"beta"], 0) hdl_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transE1$gene, -log10(min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"pvalue"]), 0) hdl_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transA1$gene, min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"beta"], 0) hdl_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(hdl_inter_nodes7q32$Node[i] %in% min_hdl_transA1$gene, -log10(min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(hdl_coloc_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$HDLcholesterol)] hdl_coloc_nodes7q32$HDL_exp_cor[i]=cor(as.numeric(tpm[as.character(hdl_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_coloc_nodes7q32$HDL_act_cor[i]=cor(as.numeric(vip[as.character(hdl_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"HDLcholesterol"]) hdl_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transE1$gene, min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"beta"], 0) hdl_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transE1$gene, -log10(min_hdl_transE1[min_hdl_transE1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"pvalue"]), 0) hdl_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transA1$gene, min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"beta"], 0) hdl_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(hdl_coloc_nodes7q32$Node[i] %in% min_hdl_transA1$gene, -log10(min_hdl_transA1[min_hdl_transA1$gene==as.character(hdl_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # TriG triG_inter_nodes7q32=data.frame("Node"=c(as.character(unique(triG_interactome7q32$Regulator)),"LINC-PINT","KLF14"),"TriG_exp_cor"=rep(0,length(unique(triG_interactome7q32$Regulator))+2), "TriG_act_cor"=rep(0,length(unique(triG_interactome7q32$Regulator))+2),"Best_eQTL_Beta"=rep(0,length(unique(triG_interactome7q32$Regulator))+2), "Best_eQTL_logP"=rep(0,length(unique(triG_interactome7q32$Regulator))+2),"Best_aQTL_Beta"=rep(0,length(unique(triG_interactome7q32$Regulator))+2), "Best_aQTL_logP"=rep(0,length(unique(triG_interactome7q32$Regulator))+2)) triG_coloc_nodes7q32=data.frame("Node"=as.character(unique(triG_netPair7q32$traits)),"TriG_exp_cor"=rep(0,length(unique(triG_netPair7q32$traits))), "TriG_act_cor"=rep(0,length(unique(triG_netPair7q32$traits))),"Best_eQTL_Beta"=rep(0,length(unique(triG_netPair7q32$traits))), "Best_eQTL_logP"=rep(0,length(unique(triG_netPair7q32$traits))),"Best_aQTL_Beta"=rep(0,length(unique(triG_netPair7q32$traits))), "Best_aQTL_logP"=rep(0,length(unique(triG_netPair7q32$traits)))) for(i in 1:dim(triG_inter_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$TotalTriglycerides)] triG_inter_nodes7q32$TriG_exp_cor[i]=cor(as.numeric(tpm[as.character(triG_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_inter_nodes7q32$TriG_act_cor[i]=cor(as.numeric(vip[as.character(triG_inter_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_inter_nodes7q32$Best_eQTL_Beta[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transE1$gene, min_triG_transE1[min_triG_transE1$gene==as.character(triG_inter_nodes7q32$Node[i]),"beta"], 0) triG_inter_nodes7q32$Best_eQTL_logP[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transE1$gene, -log10(min_triG_transE1[min_triG_transE1$gene==as.character(triG_inter_nodes7q32$Node[i]),"pvalue"]), 0) triG_inter_nodes7q32$Best_aQTL_Beta[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transA1$gene, min_triG_transA1[min_triG_transA1$gene==as.character(triG_inter_nodes7q32$Node[i]),"beta"], 0) triG_inter_nodes7q32$Best_aQTL_logP[i]=ifelse(triG_inter_nodes7q32$Node[i] %in% min_triG_transA1$gene, -log10(min_triG_transA1[min_triG_transA1$gene==as.character(triG_inter_nodes7q32$Node[i]),"pvalue"]), 0) } for(i in 1:dim(triG_coloc_nodes7q32)[1]){ noNA_samples=rownames(filt_pheno)[!is.na(filt_pheno$TotalTriglycerides)] triG_coloc_nodes7q32$TriG_exp_cor[i]=cor(as.numeric(tpm[as.character(triG_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_coloc_nodes7q32$TriG_act_cor[i]=cor(as.numeric(vip[as.character(triG_coloc_nodes7q32$Node[i]),noNA_samples]),filt_pheno[noNA_samples,"TotalTriglycerides"]) triG_coloc_nodes7q32$Best_eQTL_Beta[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transE1$gene, min_triG_transE1[min_triG_transE1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"beta"], 0) triG_coloc_nodes7q32$Best_eQTL_logP[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transE1$gene, -log10(min_triG_transE1[min_triG_transE1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"pvalue"]), 0) triG_coloc_nodes7q32$Best_aQTL_Beta[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transA1$gene, min_triG_transA1[min_triG_transA1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"beta"], 0) triG_coloc_nodes7q32$Best_aQTL_logP[i]=ifelse(triG_coloc_nodes7q32$Node[i] %in% min_triG_transA1$gene, -log10(min_triG_transA1[min_triG_transA1$gene==as.character(triG_coloc_nodes7q32$Node[i]),"pvalue"]), 0) } # I think it may be more convenient to merge the networks into one and then just change which attributes I visualize in Cytoscape # Start with 2 temporary columns concatinating the regulator-target and target-regulator for easier matching. # BMI bmi_interactome7q32$temp1=paste(bmi_interactome7q32$Regulator,bmi_interactome7q32$Target) bmi_interactome7q32$temp2=paste(bmi_interactome7q32$Target,bmi_interactome7q32$Regulator) bmi_netPair7q32$temp1=paste(bmi_netPair7q32$trait1,bmi_netPair7q32$traits) bmi_netPair7q32$temp2=paste(bmi_netPair7q32$traits,bmi_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(bmi_interactome7q32)[1],ncol = 4)) for(i in 1:dim(bmi_interactome7q32)[1]){ temp[i,1:4]=bmi_netPair7q32[ifelse(is.na(match(bmi_interactome7q32$temp1[i],bmi_netPair7q32$temp1)), match(bmi_interactome7q32$temp1[i],bmi_netPair7q32$temp2), match(bmi_interactome7q32$temp1[i],bmi_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the BMI colocalizations colnames(temp)=colnames(bmi_netPair7q32)[3:6] temp=rbind(temp,bmi_netPair7q32[bmi_netPair7q32$trait1=="BMI",3:6]) # Then add rows for BMI-Gene connections with 0 for MoA and likelihood bmi_full7q32=bmi_interactome7q32[,1:4] temp2=bmi_netPair7q32[bmi_netPair7q32$trait1=="BMI",1:4] colnames(temp2)=colnames(bmi_interactome7q32)[1:4] temp2[,3:4]=0 bmi_full7q32=rbind(bmi_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns bmi_full7q32=cbind(bmi_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed bmi_full7q32_nodes=rbind(bmi_inter_nodes7q32,bmi_coloc_nodes7q32) bmi_full7q32_nodes=bmi_full7q32_nodes[!duplicated(bmi_full7q32_nodes$Node),] # T2D homair_interactome7q32$temp1=paste(homair_interactome7q32$Regulator,homair_interactome7q32$Target) homair_interactome7q32$temp2=paste(homair_interactome7q32$Target,homair_interactome7q32$Regulator) t2d_netPair7q32$temp1=paste(t2d_netPair7q32$trait1,t2d_netPair7q32$traits) t2d_netPair7q32$temp2=paste(t2d_netPair7q32$traits,t2d_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(homair_interactome7q32)[1],ncol = 4)) for(i in 1:dim(homair_interactome7q32)[1]){ temp[i,1:4]=t2d_netPair7q32[ifelse(is.na(match(homair_interactome7q32$temp1[i],t2d_netPair7q32$temp1)), match(homair_interactome7q32$temp1[i],t2d_netPair7q32$temp2), match(homair_interactome7q32$temp1[i],t2d_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the T2D colocalizations colnames(temp)=colnames(t2d_netPair7q32)[3:6] temp=rbind(temp,t2d_netPair7q32[t2d_netPair7q32$trait1=="T2D",3:6]) # Then add rows for T2D-Gene connections with 0 for MoA and likelihood t2d_full7q32=homair_interactome7q32[,1:4] temp2=t2d_netPair7q32[t2d_netPair7q32$trait1=="T2D",1:4] colnames(temp2)=colnames(homair_interactome7q32)[1:4] temp2[,3:4]=0 t2d_full7q32=rbind(t2d_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns t2d_full7q32=cbind(t2d_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed t2d_full7q32_nodes=rbind(t2d_inter_nodes7q32,t2d_coloc_nodes7q32) t2d_full7q32_nodes=t2d_full7q32_nodes[!duplicated(t2d_full7q32_nodes$Node),] # HDL hdl_interactome7q32$temp1=paste(hdl_interactome7q32$Regulator,hdl_interactome7q32$Target) hdl_interactome7q32$temp2=paste(hdl_interactome7q32$Target,hdl_interactome7q32$Regulator) hdl_netPair7q32$temp1=paste(hdl_netPair7q32$trait1,hdl_netPair7q32$traits) hdl_netPair7q32$temp2=paste(hdl_netPair7q32$traits,hdl_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(hdl_interactome7q32)[1],ncol = 4)) for(i in 1:dim(hdl_interactome7q32)[1]){ temp[i,1:4]=hdl_netPair7q32[ifelse(is.na(match(hdl_interactome7q32$temp1[i],hdl_netPair7q32$temp1)), match(hdl_interactome7q32$temp1[i],hdl_netPair7q32$temp2), match(hdl_interactome7q32$temp1[i],hdl_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the HDL colocalizations colnames(temp)=colnames(hdl_netPair7q32)[3:6] temp=rbind(temp,hdl_netPair7q32[hdl_netPair7q32$trait1=="HDL",3:6]) # Then add rows for HDL-Gene connections with 0 for MoA and likelihood hdl_full7q32=hdl_interactome7q32[,1:4] temp2=hdl_netPair7q32[hdl_netPair7q32$trait1=="HDL",1:4] colnames(temp2)=colnames(hdl_interactome7q32)[1:4] temp2[,3:4]=0 hdl_full7q32=rbind(hdl_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns hdl_full7q32=cbind(hdl_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed hdl_full7q32_nodes=rbind(hdl_inter_nodes7q32,hdl_coloc_nodes7q32) hdl_full7q32_nodes=hdl_full7q32_nodes[!duplicated(hdl_full7q32_nodes$Node),] # TriG triG_interactome7q32$temp1=paste(triG_interactome7q32$Regulator,triG_interactome7q32$Target) triG_interactome7q32$temp2=paste(triG_interactome7q32$Target,triG_interactome7q32$Regulator) triG_netPair7q32$temp1=paste(triG_netPair7q32$trait1,triG_netPair7q32$traits) triG_netPair7q32$temp2=paste(triG_netPair7q32$traits,triG_netPair7q32$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(triG_interactome7q32)[1],ncol = 4)) for(i in 1:dim(triG_interactome7q32)[1]){ temp[i,1:4]=triG_netPair7q32[ifelse(is.na(match(triG_interactome7q32$temp1[i],triG_netPair7q32$temp1)), match(triG_interactome7q32$temp1[i],triG_netPair7q32$temp2), match(triG_interactome7q32$temp1[i],triG_netPair7q32$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the TriG colocalizations colnames(temp)=colnames(triG_netPair7q32)[3:6] temp=rbind(temp,triG_netPair7q32[triG_netPair7q32$trait1=="TriG",3:6]) # Then add rows for TriG-Gene connections with 0 for MoA and likelihood triG_full7q32=triG_interactome7q32[,1:4] temp2=triG_netPair7q32[triG_netPair7q32$trait1=="TriG",1:4] colnames(temp2)=colnames(triG_interactome7q32)[1:4] temp2[,3:4]=0 triG_full7q32=rbind(triG_full7q32,temp2) # Finally, combine the colocalization columns with the interactome columns triG_full7q32=cbind(triG_full7q32,temp) # The nodes data also needs to be combined and duplicate rows removed triG_full7q32_nodes=rbind(triG_inter_nodes7q32,triG_coloc_nodes7q32) triG_full7q32_nodes=triG_full7q32_nodes[!duplicated(triG_full7q32_nodes$Node),] # Since LINC-PINT, KLF14 and AC016831.7 is the only cis gene here, I'll just deal with them manually bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_bmi_cisE1[min_bmi_cisE1$gene=="LINC-PINT","beta"] bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_bmi_cisE1[min_bmi_cisE1$gene=="LINC-PINT","pvalue"]) bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_bmi_cisE1[min_bmi_cisE1$gene=="KLF14","beta"] bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_bmi_cisE1[min_bmi_cisE1$gene=="KLF14","pvalue"]) bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_bmi_cisE1[min_bmi_cisE1$gene=="AC016831.7","beta"] bmi_full7q32_nodes[bmi_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_bmi_cisE1[min_bmi_cisE1$gene=="AC016831.7","pvalue"]) t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_t2d_cisE1[min_t2d_cisE1$gene=="LINC-PINT","beta"] t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_t2d_cisE1[min_t2d_cisE1$gene=="LINC-PINT","pvalue"]) t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_t2d_cisE1[min_t2d_cisE1$gene=="KLF14","beta"] t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_t2d_cisE1[min_t2d_cisE1$gene=="KLF14","pvalue"]) t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_t2d_cisE1[min_t2d_cisE1$gene=="AC016831.7","beta"] t2d_full7q32_nodes[t2d_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_t2d_cisE1[min_t2d_cisE1$gene=="AC016831.7","pvalue"]) hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_hdl_cisE1[min_hdl_cisE1$gene=="LINC-PINT","beta"] hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_hdl_cisE1[min_hdl_cisE1$gene=="LINC-PINT","pvalue"]) hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_hdl_cisE1[min_hdl_cisE1$gene=="KLF14","beta"] hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_hdl_cisE1[min_hdl_cisE1$gene=="KLF14","pvalue"]) hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_hdl_cisE1[min_hdl_cisE1$gene=="AC016831.7","beta"] hdl_full7q32_nodes[hdl_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_hdl_cisE1[min_hdl_cisE1$gene=="AC016831.7","pvalue"]) triG_full7q32_nodes[triG_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_Beta"]=min_triG_cisE1[min_triG_cisE1$gene=="LINC-PINT","beta"] triG_full7q32_nodes[triG_full7q32_nodes$Node=="LINC-PINT","Best_eQTL_logP"]=-log10(min_triG_cisE1[min_triG_cisE1$gene=="LINC-PINT","pvalue"]) triG_full7q32_nodes[triG_full7q32_nodes$Node=="KLF14","Best_eQTL_Beta"]=min_triG_cisE1[min_triG_cisE1$gene=="KLF14","beta"] triG_full7q32_nodes[triG_full7q32_nodes$Node=="KLF14","Best_eQTL_logP"]=-log10(min_triG_cisE1[min_triG_cisE1$gene=="KLF14","pvalue"]) triG_full7q32_nodes[triG_full7q32_nodes$Node=="AC016831.7","Best_eQTL_Beta"]=min_triG_cisE1[min_triG_cisE1$gene=="AC016831.7","beta"] triG_full7q32_nodes[triG_full7q32_nodes$Node=="AC016831.7","Best_eQTL_logP"]=-log10(min_triG_cisE1[min_triG_cisE1$gene=="AC016831.7","pvalue"]) # Final touches by replacing NA with 0 bmi_full7q32_nodes[is.na(bmi_full7q32_nodes)]=0 t2d_full7q32_nodes[is.na(t2d_full7q32_nodes)]=0 hdl_full7q32_nodes[is.na(hdl_full7q32_nodes)]=0 triG_full7q32_nodes[is.na(triG_full7q32_nodes)]=0 # Write networks and node data to file for Cytoscape visualizations write.table(bmi_full7q32,"./BMI/Chr7q32_cis-Genes_and_BMI_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(bmi_full7q32_nodes,"./BMI/Chr7q32_cis-Genes_and_BMI_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(t2d_full7q32,"./T2D/Chr7q32_cis-Genes_and_HOMA-IR_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(t2d_full7q32_nodes,"./T2D/Chr7q32_cis-Genes_and_HOMA-IR_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(hdl_full7q32,"./HDL/Chr7q32_cis-Genes_and_HDL_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(hdl_full7q32_nodes,"./HDL/Chr7q32_cis-Genes_and_HDL_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(triG_full7q32,"./Triglycerides/Chr7q32_cis-Genes_and_Triglycerides_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(triG_full7q32_nodes,"./Triglycerides/Chr7q32_cis-Genes_and_Triglycerides_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F) # 12p13.1 interactome12p13=bmi_MRMR # Grab pairwise colocalizations with PP>0.5 between BMI and QTLs and EPHB2 aQTL and trans-QTLs bmi_pairColoc12p13=bmi_pairColoc[bmi_pairColoc$locus=="12p13.1" & bmi_pairColoc$posterior_prob>0.5,c(2,3,5)] bmi_pairColoc12p13$traits=gsub("BMI, ","",bmi_pairColoc12p13$traits) bmi_pairColoc12p13=cbind("trait1"=rep("BMI",dim(bmi_pairColoc12p13)[1]),bmi_pairColoc12p13) bmi_e_pairColoc12p13=bmi_pairColoc12p13[grepl("-e_",bmi_pairColoc12p13$traits),] bmi_a_pairColoc12p13=bmi_pairColoc12p13[grepl("-a_",bmi_pairColoc12p13$traits),] bmi_e_pairColoc12p13$traits=gsub(".*_","",bmi_e_pairColoc12p13$traits) bmi_a_pairColoc12p13$traits=gsub(".*_","",bmi_a_pairColoc12p13$traits) bmi_netPair12p13=rbind(bmi_e_pairColoc12p13,bmi_a_pairColoc12p13) bmi_netPair12p13=bmi_netPair12p13[!duplicated(bmi_netPair12p13$traits),-c(3,4)] bmi_netPair12p13$eQTL_PP=bmi_e_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_e_pairColoc12p13$traits),3] bmi_netPair12p13$eQTL_SNP=bmi_e_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_e_pairColoc12p13$traits),4] bmi_netPair12p13$aQTL_PP=bmi_a_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_a_pairColoc12p13$traits),3] bmi_netPair12p13$aQTL_SNP=bmi_a_pairColoc12p13[match(bmi_netPair12p13$traits,bmi_a_pairColoc12p13$traits),4] colocNet12p13=bmi_netPair12p13 colocNet12p13[is.na(colocNet12p13)]=0 # Grab the -log10(Pmin) and betas for the eQTLs and aQTLs among BMI GWAS significant SNPs at the 12p13.1 locus transE4=filt_trans_bmi_eqtl[filt_trans_bmi_eqtl$chr==12 & filt_trans_bmi_eqtl$position>13900000 & filt_trans_bmi_eqtl$position<15000000,] transE4=transE4[transE4$snps %in% sig_bmi$SNP,] transE4=transE4[order(transE4$pvalue),] min_transE4=transE4[!duplicated(transE4$gene),] transA4=filt_trans_bmi_aqtl[filt_trans_bmi_aqtl$chr==12 & filt_trans_bmi_aqtl$position>13900000 & filt_trans_bmi_aqtl$position<15000000,] transA4=transA4[transA4$snps %in% sig_bmi$SNP,] transA4=transA4[order(transA4$pvalue),] min_transA4=transA4[!duplicated(transA4$gene),] # Make node tables for 12p13 networks inter_nodes12p13=data.frame("Node"=as.character(unique(interactome12p13$Regulator)),"BMI_exp_cor"=rep(0,length(unique(interactome12p13$Regulator))), "BMI_act_cor"=rep(0,length(unique(interactome12p13$Regulator))),"Best_eQTL_Beta"=rep(0,length(unique(interactome12p13$Regulator))), "Best_eQTL_logP"=rep(0,length(unique(interactome12p13$Regulator))),"Best_aQTL_Beta"=rep(0,length(unique(interactome12p13$Regulator))), "Best_aQTL_logP"=rep(0,length(unique(interactome12p13$Regulator)))) for(i in 1:dim(inter_nodes12p13)[1]){ inter_nodes12p13$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(inter_nodes12p13$Node[i]),]),filt_pheno$BMI) inter_nodes12p13$BMI_act_cor[i]=cor(as.numeric(vip[as.character(inter_nodes12p13$Node[i]),]),filt_pheno$BMI) inter_nodes12p13$Best_eQTL_Beta[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transE4$gene, min_transE4[min_transE4$gene==as.character(inter_nodes12p13$Node[i]),"beta"], 0) inter_nodes12p13$Best_eQTL_logP[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transE4$gene, -log10(min_transE4[min_transE4$gene==as.character(inter_nodes12p13$Node[i]),"pvalue"]), 0) inter_nodes12p13$Best_aQTL_Beta[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transA4$gene, min_transA4[min_transA4$gene==as.character(inter_nodes12p13$Node[i]),"beta"], 0) inter_nodes12p13$Best_aQTL_logP[i]=ifelse(inter_nodes12p13$Node[i] %in% min_transA4$gene, -log10(min_transA4[min_transA4$gene==as.character(inter_nodes12p13$Node[i]),"pvalue"]), 0) } coloc_nodes12p13=data.frame("Node"=as.character(unique(colocNet12p13$traits)),"BMI_exp_cor"=rep(0,length(unique(colocNet12p13$traits))), "BMI_act_cor"=rep(0,length(unique(colocNet12p13$traits))),"Best_eQTL_Beta"=rep(0,length(unique(colocNet12p13$traits))), "Best_eQTL_logP"=rep(0,length(unique(colocNet12p13$traits))),"Best_aQTL_Beta"=rep(0,length(unique(colocNet12p13$traits))), "Best_aQTL_logP"=rep(0,length(unique(colocNet12p13$traits)))) for(i in 1:dim(coloc_nodes12p13)[1]){ coloc_nodes12p13$BMI_exp_cor[i]=cor(as.numeric(tpm[as.character(coloc_nodes12p13$Node[i]),]),filt_pheno$BMI) coloc_nodes12p13$BMI_act_cor[i]=cor(as.numeric(vip[as.character(coloc_nodes12p13$Node[i]),]),filt_pheno$BMI) coloc_nodes12p13$Best_eQTL_Beta[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transE4$gene, min_transE4[min_transE4$gene==as.character(coloc_nodes12p13$Node[i]),"beta"], 0) coloc_nodes12p13$Best_eQTL_logP[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transE4$gene, -log10(min_transE4[min_transE4$gene==as.character(coloc_nodes12p13$Node[i]),"pvalue"]), 0) coloc_nodes12p13$Best_aQTL_Beta[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transA4$gene, min_transA4[min_transA4$gene==as.character(coloc_nodes12p13$Node[i]),"beta"], 0) coloc_nodes12p13$Best_aQTL_logP[i]=ifelse(coloc_nodes12p13$Node[i] %in% min_transA4$gene, -log10(min_transA4[min_transA4$gene==as.character(coloc_nodes12p13$Node[i]),"pvalue"]), 0) } # I think it may be more convenient to merge the networks into one and then just change which attributes I visualize in Cytoscape # Start with 2 temporary columns concatinating the regulator-target and target-regulator for easier matching. interactome12p13$temp1=paste(interactome12p13$Regulator,interactome12p13$Target) interactome12p13$temp2=paste(interactome12p13$Target,interactome12p13$Regulator) colocNet12p13$temp1=paste(colocNet12p13$trait1,colocNet12p13$traits) colocNet12p13$temp2=paste(colocNet12p13$traits,colocNet12p13$trait1) # Then grab colocalization data for gene pairs in interactome temp=as.data.frame(matrix(nrow = dim(interactome12p13)[1],ncol = 4)) for(i in 1:dim(interactome12p13)[1]){ temp[i,1:4]=colocNet12p13[ifelse(is.na(match(interactome12p13$temp1[i],colocNet12p13$temp1)), match(interactome12p13$temp1[i],colocNet12p13$temp2), match(interactome12p13$temp1[i],colocNet12p13$temp1)),3:6] } temp[is.na(temp)]=0 # Then combine with the BMI colocalizations colnames(temp)=colnames(colocNet12p13)[3:6] temp=rbind(temp,colocNet12p13[colocNet12p13$trait1=="BMI",3:6]) # Then add rows for BMI-Gene connections with 0 for MoA and likelihood full12p13=interactome12p13[,1:4] temp2=colocNet12p13[colocNet12p13$trait1=="BMI",1:4] colnames(temp2)=colnames(interactome12p13)[1:4] temp2[,3:4]=0 full12p13=rbind(full12p13,temp2) # Finally, combine the colocalization columns with the interactome columns full12p13=cbind(full12p13,temp) # The nodes data also needs to be combined and duplicate rows removed full12p13_nodes=rbind(inter_nodes12p13,coloc_nodes12p13) full12p13_nodes=full12p13_nodes[!duplicated(full12p13_nodes$Node),] # Write networks and node data to file for Cytoscape visualizations write.table(interactome12p13,"Chr12p13_BMI_MRs_interactome.txt",sep = "\t",quote = F,row.names = F) write.table(inter_nodes12p13,"Chr12p13_BMI_MRs_interactome_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(colocNet12p13,"Chr12p13_BMI_and_BMI_MRs_pairwise_colocalization_network.txt",sep = "\t",quote = F,row.names = F) write.table(coloc_nodes12p13,"Chr12p13_BMI_and_BMI_MRs_pairwise_colocalization_network_node_info.txt",sep = "\t",quote = F,row.names = F) write.table(full12p13,"Chr12p13_BMI_MRs_interactome_and_pairwise_colocalization.txt",sep = "\t",quote = F,row.names = F) write.table(full12p13_nodes,"Chr12p13_BMI_MRs_interactome_and_pairwise_colocalization_node_info.txt",sep = "\t",quote = F,row.names = F)
## Testing the edit family of functions require(apsimx) extd.dir <- system.file("extdata", package = "apsimx") run.test.edit.apsimx.replacement <- get(".run.local.tests", envir = apsimx.options) tmp.dir <- tempdir() if(run.test.edit.apsimx.replacement){ ## Inspect, edit, inspect inspect_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, node = "Soybean", node.child = "Leaf", parm = "Gsmax350") edit_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, wrt.dir = tmp.dir, node = "Soybean", node.child = "Leaf", parm = "Gsmax350", value = 0.009, verbose = FALSE) inspect_apsimx_replacement("MaizeSoybean-edited.apsimx", src.dir = tmp.dir, node = "Soybean", node.child = "Leaf", parm = "Gsmax350") ## Example for RUE ## Inspect, edit, inspect inspect_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, node = "Soybean", node.child = "Leaf", node.subchild = "Photosynthesis", node.subsubchild = "RUE", parm = "FixedValue") edit_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, wrt.dir = tmp.dir, node = "Soybean", node.child = "Leaf", node.subchild = "Photosynthesis", node.subsubchild = "RUE", parm = "FixedValue", value = 1, verbose = FALSE) inspect_apsimx_replacement("MaizeSoybean-edited.apsimx", src.dir = tmp.dir, node = "Soybean", node.child = "Leaf", node.subchild = "Photosynthesis", node.subsubchild = "RUE", parm = "FixedValue") #### Looking at Soybean inspect_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, node = "Soybean", node.child = "Stephens_MG40", parm = "Vegetative", print.path = TRUE) # edit_apsim }
/tests/test_edit_apsimx_replacement.R
no_license
dcammarano/apsimx
R
false
false
2,493
r
## Testing the edit family of functions require(apsimx) extd.dir <- system.file("extdata", package = "apsimx") run.test.edit.apsimx.replacement <- get(".run.local.tests", envir = apsimx.options) tmp.dir <- tempdir() if(run.test.edit.apsimx.replacement){ ## Inspect, edit, inspect inspect_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, node = "Soybean", node.child = "Leaf", parm = "Gsmax350") edit_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, wrt.dir = tmp.dir, node = "Soybean", node.child = "Leaf", parm = "Gsmax350", value = 0.009, verbose = FALSE) inspect_apsimx_replacement("MaizeSoybean-edited.apsimx", src.dir = tmp.dir, node = "Soybean", node.child = "Leaf", parm = "Gsmax350") ## Example for RUE ## Inspect, edit, inspect inspect_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, node = "Soybean", node.child = "Leaf", node.subchild = "Photosynthesis", node.subsubchild = "RUE", parm = "FixedValue") edit_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, wrt.dir = tmp.dir, node = "Soybean", node.child = "Leaf", node.subchild = "Photosynthesis", node.subsubchild = "RUE", parm = "FixedValue", value = 1, verbose = FALSE) inspect_apsimx_replacement("MaizeSoybean-edited.apsimx", src.dir = tmp.dir, node = "Soybean", node.child = "Leaf", node.subchild = "Photosynthesis", node.subsubchild = "RUE", parm = "FixedValue") #### Looking at Soybean inspect_apsimx_replacement("MaizeSoybean.apsimx", src.dir = extd.dir, node = "Soybean", node.child = "Stephens_MG40", parm = "Vegetative", print.path = TRUE) # edit_apsim }
test_that("Handle n when it isn't an integer", { file <- tempfile() # write the Educational Attainment GWAS to a temp file for testing eduAttainOkbay <- readLines(system.file("extdata", "eduAttainOkbay.txt", package = "MungeSumstats" )) writeLines(eduAttainOkbay, con = file) # read it in and make N sumstats_dt <- data.table::fread(file) # Add N column and make it not an integer sumstats_dt[, N := 10 * runif(nrow(sumstats_dt))] sumstats_dt[, N_fixed := round(N, 0)] data.table::fwrite(x = sumstats_dt, file = file, sep = "\t") # Run MungeSumstats code reformatted <- MungeSumstats::format_sumstats(file, ref_genome = "GRCh37", on_ref_genome = FALSE, strand_ambig_filter = FALSE, bi_allelic_filter = FALSE, allele_flip_check = FALSE ) # In results if N = N_fixed it worked res_dt <- data.table::fread(reformatted) expect_equal(res_dt$N, res_dt$N_FIXED) })
/tests/testthat/test-n_not_integer.R
no_license
daklab/MungeSumstats
R
false
false
974
r
test_that("Handle n when it isn't an integer", { file <- tempfile() # write the Educational Attainment GWAS to a temp file for testing eduAttainOkbay <- readLines(system.file("extdata", "eduAttainOkbay.txt", package = "MungeSumstats" )) writeLines(eduAttainOkbay, con = file) # read it in and make N sumstats_dt <- data.table::fread(file) # Add N column and make it not an integer sumstats_dt[, N := 10 * runif(nrow(sumstats_dt))] sumstats_dt[, N_fixed := round(N, 0)] data.table::fwrite(x = sumstats_dt, file = file, sep = "\t") # Run MungeSumstats code reformatted <- MungeSumstats::format_sumstats(file, ref_genome = "GRCh37", on_ref_genome = FALSE, strand_ambig_filter = FALSE, bi_allelic_filter = FALSE, allele_flip_check = FALSE ) # In results if N = N_fixed it worked res_dt <- data.table::fread(reformatted) expect_equal(res_dt$N, res_dt$N_FIXED) })
testlist <- list(data = structure(0, .Dim = c(1L, 1L)), x = structure(c(4.19867256723183e-140, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(7L, 3L))) result <- do.call(distr6:::C_EmpiricalMVCdf,testlist) str(result)
/distr6/inst/testfiles/C_EmpiricalMVCdf/libFuzzer_C_EmpiricalMVCdf/C_EmpiricalMVCdf_valgrind_files/1610383515-test.R
no_license
akhikolla/updated-only-Issues
R
false
false
242
r
testlist <- list(data = structure(0, .Dim = c(1L, 1L)), x = structure(c(4.19867256723183e-140, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(7L, 3L))) result <- do.call(distr6:::C_EmpiricalMVCdf,testlist) str(result)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assign.tip.colors.R \name{assign.tip.colors} \alias{assign.tip.colors} \title{Assign colors to tips} \usage{ assign.tip.colors(tree, tip2category, na.col = "black", unassigned.col = "gray", palette = NULL) } \arguments{ \item{tree}{a tree object of class "phylo"} \item{tip2category}{a named vector. Each entry of the vector is a level and each name is a tip name.} } \value{ a list of two entries: colors with the vector of colors and legend with a vector associating color to levels. Legend is useful to add the legned to the plot. } \description{ Given a tree of class "phylo" and a named vector with a category, returns a vector of colors to color the tips on the plots } \examples{ require(ape) ### From Saitou and Nei (1987, Table 1): x <- c(7, 8, 11, 13, 16, 13, 17, 5, 8, 10, 13, 10, 14, 5, 7, 10, 7, 11, 8, 11, 8, 12, 5, 6, 10, 9, 13, 8) M <- matrix(0, 8, 8) M[lower.tri(M)] <- x M <- t(M) M [lower.tri(M)] <- x dimnames(M) <- list(1:8, 1:8) tr <- nj(M) ### Suppose that tips 1 to 4 are h.sapiens, 5 and 6 are m.musculs, 7 is NA and 8 is unassigned. tip2category = c(rep(c("h.sapiens","m.musculs"),c(4,2)), NA) names(tip2category) = 1:7 colors = assign.tip.colors(tr, tip2category, na.col="black", unassigned.col="gray")[["colors"]] legenda = assign.tip.colors(tr, tip2category, na.col="black", unassigned.col="gray")[["legend"]] plot(tr, "u", tip.color=colors, cex=2) legend("bottomleft", legenda, pch=20, col=names(legenda)) }
/man/assign.tip.colors.Rd
no_license
abrozzi/SplitstRee
R
false
true
1,519
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/assign.tip.colors.R \name{assign.tip.colors} \alias{assign.tip.colors} \title{Assign colors to tips} \usage{ assign.tip.colors(tree, tip2category, na.col = "black", unassigned.col = "gray", palette = NULL) } \arguments{ \item{tree}{a tree object of class "phylo"} \item{tip2category}{a named vector. Each entry of the vector is a level and each name is a tip name.} } \value{ a list of two entries: colors with the vector of colors and legend with a vector associating color to levels. Legend is useful to add the legned to the plot. } \description{ Given a tree of class "phylo" and a named vector with a category, returns a vector of colors to color the tips on the plots } \examples{ require(ape) ### From Saitou and Nei (1987, Table 1): x <- c(7, 8, 11, 13, 16, 13, 17, 5, 8, 10, 13, 10, 14, 5, 7, 10, 7, 11, 8, 11, 8, 12, 5, 6, 10, 9, 13, 8) M <- matrix(0, 8, 8) M[lower.tri(M)] <- x M <- t(M) M [lower.tri(M)] <- x dimnames(M) <- list(1:8, 1:8) tr <- nj(M) ### Suppose that tips 1 to 4 are h.sapiens, 5 and 6 are m.musculs, 7 is NA and 8 is unassigned. tip2category = c(rep(c("h.sapiens","m.musculs"),c(4,2)), NA) names(tip2category) = 1:7 colors = assign.tip.colors(tr, tip2category, na.col="black", unassigned.col="gray")[["colors"]] legenda = assign.tip.colors(tr, tip2category, na.col="black", unassigned.col="gray")[["legend"]] plot(tr, "u", tip.color=colors, cex=2) legend("bottomleft", legenda, pch=20, col=names(legenda)) }
####################################### # toLongName (code) # requires the three letter community code as listed in COMM_CODE # field of the data set # # Returns the full name of the community # # eg. HPK returns HIGHLAND PARK toLongName <- function(code) { code <- as.character(code) if (exists("rawCommData")) { longName <- as.character( rawCommData[rawCommData$COMM_CODE==code,]$NAME[1] ) } else { longName <- "No matching community code" } longName <- simpleCap(longName) return (longName) } ####################################### # toCommCode (code) # requires the full community name as listed in NAMES # field of the data set # # Returns the community code # # eg. HIGHLAND PARK returns HPK toCommCode <- function(commName) { commName <- toupper(as.character(commName)) if (exists("rawCommData")) { shortName<- as.character( rawCommData[rawCommData$NAME==commName,]$COMM_CODE[1] ) } else { shortName <- "XXX" } return (shortName) } ####################################### # simpleCap (x) # # Simple fuction to capitalize the first letter of a word # # Copied from: http://stackoverflow.com/questions/6364783/capitalize-the-first-letter-of-both-words-in-a-two-word-string simpleCap <- function(x) { x <- tolower(x) s <- strsplit(x, " ")[[1]] paste(toupper(substring(s, 1,1)), substring(s, 2), sep="", collapse=" ") } ####################################### # graphName (gName) # # Produce the file name for the graph to be output # name will be prepended with Community Shorr Code # and assumes the file type is png # graphName <- function (gName) { gName <- paste (gName,config$communityCode,sep="_") gName <- paste (gName,"png",sep=".") gName <- file.path (config$graphDir,gName) if (config$verbose == TRUE) {print (gName)} return (gName) } ####################################### # getCommunityCodes (df) # # returns a list of community codes based on the data frame passed in # getCommunityCodes <- function (df=rawCommData) { codes <- as.vector(unique(df$COMM_CODE)) return(codes) } ####################################### # getCommunityNames (df) # # returns a list of community codes based on the data frame passed in # getCommunityNames <- function (df=rawCommData) { names <- as.vector(unique(df$NAME)) return(names) } ####################################### # getCommunityClasses (df) # # returns a list of community codes based on the data frame passed in # getCommunityClasses <- function (df=rawCommData) { classes <- as.vector(unique(df$CLASS)) return(classes) } ######################################## # getCensusYears (df) # # returns a list of census years bases on the data frame passed in # getCensusYears <- function (df=rawCommData) { years <- as.vector(unique(df$CNSS_YR)) return(years) } ####################################### # savePlot (p,pName="MyPlot) savePlot <- function (p,pName="MyPlot") { png(filename=graphName(pName), width = config$plotWidth, height = config$plotHeight) plot(p) dev.off() }
/lib/helpers.R
permissive
pengler/YYC_census
R
false
false
3,069
r
####################################### # toLongName (code) # requires the three letter community code as listed in COMM_CODE # field of the data set # # Returns the full name of the community # # eg. HPK returns HIGHLAND PARK toLongName <- function(code) { code <- as.character(code) if (exists("rawCommData")) { longName <- as.character( rawCommData[rawCommData$COMM_CODE==code,]$NAME[1] ) } else { longName <- "No matching community code" } longName <- simpleCap(longName) return (longName) } ####################################### # toCommCode (code) # requires the full community name as listed in NAMES # field of the data set # # Returns the community code # # eg. HIGHLAND PARK returns HPK toCommCode <- function(commName) { commName <- toupper(as.character(commName)) if (exists("rawCommData")) { shortName<- as.character( rawCommData[rawCommData$NAME==commName,]$COMM_CODE[1] ) } else { shortName <- "XXX" } return (shortName) } ####################################### # simpleCap (x) # # Simple fuction to capitalize the first letter of a word # # Copied from: http://stackoverflow.com/questions/6364783/capitalize-the-first-letter-of-both-words-in-a-two-word-string simpleCap <- function(x) { x <- tolower(x) s <- strsplit(x, " ")[[1]] paste(toupper(substring(s, 1,1)), substring(s, 2), sep="", collapse=" ") } ####################################### # graphName (gName) # # Produce the file name for the graph to be output # name will be prepended with Community Shorr Code # and assumes the file type is png # graphName <- function (gName) { gName <- paste (gName,config$communityCode,sep="_") gName <- paste (gName,"png",sep=".") gName <- file.path (config$graphDir,gName) if (config$verbose == TRUE) {print (gName)} return (gName) } ####################################### # getCommunityCodes (df) # # returns a list of community codes based on the data frame passed in # getCommunityCodes <- function (df=rawCommData) { codes <- as.vector(unique(df$COMM_CODE)) return(codes) } ####################################### # getCommunityNames (df) # # returns a list of community codes based on the data frame passed in # getCommunityNames <- function (df=rawCommData) { names <- as.vector(unique(df$NAME)) return(names) } ####################################### # getCommunityClasses (df) # # returns a list of community codes based on the data frame passed in # getCommunityClasses <- function (df=rawCommData) { classes <- as.vector(unique(df$CLASS)) return(classes) } ######################################## # getCensusYears (df) # # returns a list of census years bases on the data frame passed in # getCensusYears <- function (df=rawCommData) { years <- as.vector(unique(df$CNSS_YR)) return(years) } ####################################### # savePlot (p,pName="MyPlot) savePlot <- function (p,pName="MyPlot") { png(filename=graphName(pName), width = config$plotWidth, height = config$plotHeight) plot(p) dev.off() }
# title: Fairness functions # created: 07/17/2018 # updated: 01/25/2019 # description: Functions used to run fairness analysis # Net compensation penalty - penalize models with rev less than cost penalty<-function(beta){ avg_rev_mh<-((t(grp) %*% (X_scale %*% beta))/n_grp) fair<-(mhsud_cost_scale - avg_rev_mh) } # Mean residual difference penalty penalty2<-function(beta){ avg_rev_mh<-((t(grp) %*% (X_scale %*% beta))/n_grp) avg_rev_ref<-((t(ref) %*% (X_scale %*% beta))/n_ref) fair<-( (mhsud_cost_scale-ref_cost_scale) - (avg_rev_mh - avg_rev_ref) )^2 } # rescale y values rescale<-function(y_scale,pred){ newpred<-pred*attr(y_scale,'scaled:scale')+attr(y_scale,'scaled:center') } # get predictions for test dataset and rescale them get_preds<-function(beta){ pred_scaled<-as.matrix(X_test_scale) %*% beta pred<-as.data.frame(rescale(y_scale, pred_scaled)) return(pred$V1) } # r-squared rsquared<-function(y,predy){ SSR = sum((y-predy)^2) SST = sum((y-mean(y))^2) R2 = 1-SSR/SST return(R2) } # mse mse<-function(y,predy){ SSR = sum((y-predy)^2) MSE = SSR/length(y) return(MSE) } # calculate average revenue for the group grp_rev<-function(predy){ tmp<-as.data.frame(cbind(flag_mh, predy)) names(tmp)<-c('mh','pred') grp_rev<-mean(tmp[tmp$mh==1,'pred']) ref_rev<-mean(tmp[tmp$mh==0,'pred']) rev_list<-list("grp"=grp_rev, "ref"=ref_rev) return(rev_list) } # net compensation overunder<-function(predy){ rev<-grp_rev(predy) mhsud_rev<-rev$grp ref_rev<-rev$ref grp_ou<-mhsud_rev - mhsud_cost ref_ou<-ref_rev - ref_cost ou_list<-list("grp"=grp_ou, "ref"=ref_ou) return(ou_list) } # predicted ratio predratio<-function(y,predy) { rev<-grp_rev(predy) mhsud_rev<-rev$grp ref_rev<-rev$ref grp_pr<-mhsud_rev/mhsud_cost ref_pr<-ref_rev/ref_cost pr_list<-list("grp"=grp_pr, "ref"=ref_pr) return(pr_list) } # corr btw grp and error grpcorr<-function(y,predy){ cval = cor(flag_mh, y-predy) } # cov btw grp and error grpcov<-function(y,predy){ cval_cov = cov(flag_mh, y-predy) } # call evaluation metrics and return df with metrics all_metrics<-function(y,ypred,model){ r2<-round(rsquared(y,ypred),3) mse<-round(mse(y,ypred),3) ou<-overunder(ypred) ou_grp<-round(ou$grp,3) ou_ref<-round(ou$ref,3) pr<-predratio(y,ypred) pr_grp<-round(pr$grp,3) pr_ref<-round(pr$ref,3) gc<-round(grpcorr(y,ypred),3) gcov<-round(grpcov(y,ypred),3) name<-model # create data frame to return (can combine later for print) df<-cbind(model, r2, mse, ou_grp, ou_ref, pr_grp, pr_ref, gc, gcov) return(df) }
/fairness_functions.R
no_license
wangzilongri/MarketScan-Fair
R
false
false
2,591
r
# title: Fairness functions # created: 07/17/2018 # updated: 01/25/2019 # description: Functions used to run fairness analysis # Net compensation penalty - penalize models with rev less than cost penalty<-function(beta){ avg_rev_mh<-((t(grp) %*% (X_scale %*% beta))/n_grp) fair<-(mhsud_cost_scale - avg_rev_mh) } # Mean residual difference penalty penalty2<-function(beta){ avg_rev_mh<-((t(grp) %*% (X_scale %*% beta))/n_grp) avg_rev_ref<-((t(ref) %*% (X_scale %*% beta))/n_ref) fair<-( (mhsud_cost_scale-ref_cost_scale) - (avg_rev_mh - avg_rev_ref) )^2 } # rescale y values rescale<-function(y_scale,pred){ newpred<-pred*attr(y_scale,'scaled:scale')+attr(y_scale,'scaled:center') } # get predictions for test dataset and rescale them get_preds<-function(beta){ pred_scaled<-as.matrix(X_test_scale) %*% beta pred<-as.data.frame(rescale(y_scale, pred_scaled)) return(pred$V1) } # r-squared rsquared<-function(y,predy){ SSR = sum((y-predy)^2) SST = sum((y-mean(y))^2) R2 = 1-SSR/SST return(R2) } # mse mse<-function(y,predy){ SSR = sum((y-predy)^2) MSE = SSR/length(y) return(MSE) } # calculate average revenue for the group grp_rev<-function(predy){ tmp<-as.data.frame(cbind(flag_mh, predy)) names(tmp)<-c('mh','pred') grp_rev<-mean(tmp[tmp$mh==1,'pred']) ref_rev<-mean(tmp[tmp$mh==0,'pred']) rev_list<-list("grp"=grp_rev, "ref"=ref_rev) return(rev_list) } # net compensation overunder<-function(predy){ rev<-grp_rev(predy) mhsud_rev<-rev$grp ref_rev<-rev$ref grp_ou<-mhsud_rev - mhsud_cost ref_ou<-ref_rev - ref_cost ou_list<-list("grp"=grp_ou, "ref"=ref_ou) return(ou_list) } # predicted ratio predratio<-function(y,predy) { rev<-grp_rev(predy) mhsud_rev<-rev$grp ref_rev<-rev$ref grp_pr<-mhsud_rev/mhsud_cost ref_pr<-ref_rev/ref_cost pr_list<-list("grp"=grp_pr, "ref"=ref_pr) return(pr_list) } # corr btw grp and error grpcorr<-function(y,predy){ cval = cor(flag_mh, y-predy) } # cov btw grp and error grpcov<-function(y,predy){ cval_cov = cov(flag_mh, y-predy) } # call evaluation metrics and return df with metrics all_metrics<-function(y,ypred,model){ r2<-round(rsquared(y,ypred),3) mse<-round(mse(y,ypred),3) ou<-overunder(ypred) ou_grp<-round(ou$grp,3) ou_ref<-round(ou$ref,3) pr<-predratio(y,ypred) pr_grp<-round(pr$grp,3) pr_ref<-round(pr$ref,3) gc<-round(grpcorr(y,ypred),3) gcov<-round(grpcov(y,ypred),3) name<-model # create data frame to return (can combine later for print) df<-cbind(model, r2, mse, ou_grp, ou_ref, pr_grp, pr_ref, gc, gcov) return(df) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/item_upload_files.R \name{item_publish_cloud} \alias{item_publish_cloud} \title{Publish file to public cloud S3 bucket} \usage{ item_publish_cloud(sb_id, files, ..., session = current_session()) } \arguments{ \item{sb_id}{An \code{\link{sbitem}} object or a character ScienceBase ID corresponding to the item} \item{files}{A string vector of paths to files to be uploaded} \item{...}{Additional parameters are passed on to \code{\link[httr]{GET}}, \code{\link[httr]{POST}}, \code{\link[httr]{HEAD}}, \code{\link[httr]{PUT}}, or \code{\link[httr]{DELETE}}} \item{session}{Session object from \code{\link{authenticate_sb}}. Defaults to anonymous or last authenticated session} } \value{ web service response invisibly. } \description{ moves a cloud file from the S3 bucket only available via ScienceBase authenticated services to a public S3 bucket. } \examples{ \dontrun{ res <- item_create(user_id(), "testing 123") cat("foo bar", file = "foobar.txt") item_upload_cloud(res$id, "foobar.txt") item_publish_cloud(res$id, "foobar.txt") } }
/man/item_publish_cloud.Rd
permissive
dblodgett-usgs/sbtools
R
false
true
1,121
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/item_upload_files.R \name{item_publish_cloud} \alias{item_publish_cloud} \title{Publish file to public cloud S3 bucket} \usage{ item_publish_cloud(sb_id, files, ..., session = current_session()) } \arguments{ \item{sb_id}{An \code{\link{sbitem}} object or a character ScienceBase ID corresponding to the item} \item{files}{A string vector of paths to files to be uploaded} \item{...}{Additional parameters are passed on to \code{\link[httr]{GET}}, \code{\link[httr]{POST}}, \code{\link[httr]{HEAD}}, \code{\link[httr]{PUT}}, or \code{\link[httr]{DELETE}}} \item{session}{Session object from \code{\link{authenticate_sb}}. Defaults to anonymous or last authenticated session} } \value{ web service response invisibly. } \description{ moves a cloud file from the S3 bucket only available via ScienceBase authenticated services to a public S3 bucket. } \examples{ \dontrun{ res <- item_create(user_id(), "testing 123") cat("foo bar", file = "foobar.txt") item_upload_cloud(res$id, "foobar.txt") item_publish_cloud(res$id, "foobar.txt") } }
"glm.diag" <- function (glmfit) { if (is.null(glmfit$prior.weights)) w <- rep(1, length(glmfit$residuals)) else w <- glmfit$prior.weights sd <- sqrt(summary(glmfit)$dispersion) dev <- residuals(glmfit, type = "deviance")/sd pear <- residuals(glmfit, type = "pearson")/sd h <- rep(0, length(w)) h[w != 0] <- lm.influence(glmfit)$hat p <- glmfit$rank rp <- pear/sqrt(1 - h) rd <- dev/sqrt(1 - h) cook <- (h * rp^2)/((1 - h) * p) res <- sign(dev) * sqrt(dev^2 + h * rp^2) list(res = res, rd = rd, rp = rp, cook = cook, h = h, sd = sd) }
/R/glm.diag.R
no_license
cran/SMPracticals
R
false
false
597
r
"glm.diag" <- function (glmfit) { if (is.null(glmfit$prior.weights)) w <- rep(1, length(glmfit$residuals)) else w <- glmfit$prior.weights sd <- sqrt(summary(glmfit)$dispersion) dev <- residuals(glmfit, type = "deviance")/sd pear <- residuals(glmfit, type = "pearson")/sd h <- rep(0, length(w)) h[w != 0] <- lm.influence(glmfit)$hat p <- glmfit$rank rp <- pear/sqrt(1 - h) rd <- dev/sqrt(1 - h) cook <- (h * rp^2)/((1 - h) * p) res <- sign(dev) * sqrt(dev^2 + h * rp^2) list(res = res, rd = rd, rp = rp, cook = cook, h = h, sd = sd) }
myapp <- function(){ x<-list(a=1:5,b=rnorm(10)) lapply(x,mean) } myapp1 <- function(){ x<-list(a=1:5,b=rnorm(10),c=rnorm(10),d=rnorm(10)) lapply(x,mean) } myapp2 <- function(){ x<-1:5 lapply(x,runif) } myapp3 <- function(){ x<-1:4 lapply(x,runif,min=0,max=10) } myapp4 <- function(){ x<-list(a=matrix(1:4,2,2), matrix(1:6,3,2)) x } myapp5 <- function(){ lapply(myapp4(), function(elt) elt[,1]) } myapp6 <- function(){ lapply(myapp4(), function(elt) elt[,1]) } myapp7 <- function(){ x<-list(a=1:5,b=rnorm(10),c=rnorm(10),d=rnorm(10)) sapply(x,mean) } myapp8 <- function(){ x<-list(a=1:5,b=rnorm(10),c=rnorm(10),d=rnorm(10)) sapply(x,mean) } library(datasets) data(iris) data(mtcars) q1<-function(){ mean( subset(iris,Species == "virginica")$Sepal.Length, na.rm=TRUE) } q11 <-function(){ with(iris,Sepal.Length[Sepal.Width== max(Sepal.Width[Species=="setosa"])]) #with(df, d[v== max(v[c=="foo"])]) } q2<-function(){ apply(iris[,1:4],2,mean,na.rm=TRUE) } q3<-function(){ #tapply(mtcars$mpg, mtcars$cyl,mean) with(mtcars, tapply(mpg, cyl,mean)) #sapply(mtcars, cyl,mean) #lapply(mtcars, mean) #mean(mtcars$mpg,mtcars$cyl) } q4<-function(){ tapply(mtcars$hp, mtcars$cyl,mean) #sapply(mtcars, cyl,mean) #lapply(mtcars, mean) #mean(mtcars$mpg,mtcars$cyl) #abs(x[1]-x[3]) } myapp9 <-function(){ x<- matrix(rnorm(200), 20,10) #collaps dim 2, keep col, collaps rows apply(x,2,mean) } myapp10 <-function() { x<- matrix(rnorm(200), 20,10) colMeans(x) colSum(x) rowMeans(x) rowSum(x) } myapp11 <-function() { x<- matrix(rnorm(200), 20,10) apply(x,1,quantile, probs = c(0.25,0.75)) } myapp12 <- function() { a <- array(rnorm(2*2*10), c(2,2,10)) apply(a,c(1,2),mean) rowMeans(a, dims=2) } myapp13 <- function() { a <- array(rnorm(2*2*10), c(2,2,10)) apply(a,c(1,2),mean) rowMeans(a, dims=2) } myapp14 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) tapply(a,f,mean, simplify=FALSE) } myapp15 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) tapply(a,f,range, simplify=FALSE) } myapp16 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) tapply(a,f,range, simplify=FALSE) } myapp17 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) split(a,f) } myapp18 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) lapply(split(a,f),mean) } myapp19 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) lapply(split(a,f),mean) } myapp20 <- function() { s <- split(airquality, airquality$Month) lapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")])) } myapp21 <- function() { s <- split(airquality, airquality$Month) sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")])) } myapp22 <- function() { s <- split(airquality, airquality$Month) sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")],na.rm=TRUE)) } myapp23 <- function() { x <- rnorm(10) f1<-gl(2,5) f2 <- gl(5,2) interaction(f1,f2) str(split(x,list(f1,f2),drop=TRUE)) f1 f2 interaction(f1,f2) } myapp24 <- function() { list(rep(1,4),rep(2,3),rep(3,2),rep(4,1)) mapply(rep,1:4,4:1) } noise <- function(n,mean,sd) { rnorm(n,mean,sd) } myapp25 <- function() { noise(5,1,2) mapply(noise,1:5,1:5,2) list(noise(1,1,2),noise(2,2,2),noise(3,3,2),noise(4,5,2),noise(5,5,2)) } pmsg <- function(x){ if (is.na(x)) print ("x is a missing value") else if (x > 0){ print("x is greater than zero") print(x) } else print ("x is less than or equal zero") invisible(x) } myapp26 <- function() { x <- matrix(1:12, 4) colMins(x) rowMins(x) colRanges(x) }
/lect3.R
no_license
kennethchung/HopkinsDataScience
R
false
false
3,702
r
myapp <- function(){ x<-list(a=1:5,b=rnorm(10)) lapply(x,mean) } myapp1 <- function(){ x<-list(a=1:5,b=rnorm(10),c=rnorm(10),d=rnorm(10)) lapply(x,mean) } myapp2 <- function(){ x<-1:5 lapply(x,runif) } myapp3 <- function(){ x<-1:4 lapply(x,runif,min=0,max=10) } myapp4 <- function(){ x<-list(a=matrix(1:4,2,2), matrix(1:6,3,2)) x } myapp5 <- function(){ lapply(myapp4(), function(elt) elt[,1]) } myapp6 <- function(){ lapply(myapp4(), function(elt) elt[,1]) } myapp7 <- function(){ x<-list(a=1:5,b=rnorm(10),c=rnorm(10),d=rnorm(10)) sapply(x,mean) } myapp8 <- function(){ x<-list(a=1:5,b=rnorm(10),c=rnorm(10),d=rnorm(10)) sapply(x,mean) } library(datasets) data(iris) data(mtcars) q1<-function(){ mean( subset(iris,Species == "virginica")$Sepal.Length, na.rm=TRUE) } q11 <-function(){ with(iris,Sepal.Length[Sepal.Width== max(Sepal.Width[Species=="setosa"])]) #with(df, d[v== max(v[c=="foo"])]) } q2<-function(){ apply(iris[,1:4],2,mean,na.rm=TRUE) } q3<-function(){ #tapply(mtcars$mpg, mtcars$cyl,mean) with(mtcars, tapply(mpg, cyl,mean)) #sapply(mtcars, cyl,mean) #lapply(mtcars, mean) #mean(mtcars$mpg,mtcars$cyl) } q4<-function(){ tapply(mtcars$hp, mtcars$cyl,mean) #sapply(mtcars, cyl,mean) #lapply(mtcars, mean) #mean(mtcars$mpg,mtcars$cyl) #abs(x[1]-x[3]) } myapp9 <-function(){ x<- matrix(rnorm(200), 20,10) #collaps dim 2, keep col, collaps rows apply(x,2,mean) } myapp10 <-function() { x<- matrix(rnorm(200), 20,10) colMeans(x) colSum(x) rowMeans(x) rowSum(x) } myapp11 <-function() { x<- matrix(rnorm(200), 20,10) apply(x,1,quantile, probs = c(0.25,0.75)) } myapp12 <- function() { a <- array(rnorm(2*2*10), c(2,2,10)) apply(a,c(1,2),mean) rowMeans(a, dims=2) } myapp13 <- function() { a <- array(rnorm(2*2*10), c(2,2,10)) apply(a,c(1,2),mean) rowMeans(a, dims=2) } myapp14 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) tapply(a,f,mean, simplify=FALSE) } myapp15 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) tapply(a,f,range, simplify=FALSE) } myapp16 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) tapply(a,f,range, simplify=FALSE) } myapp17 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) split(a,f) } myapp18 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) lapply(split(a,f),mean) } myapp19 <- function() { a <- c(rnorm(10),runif(10),rnorm(10,1)) f<-gl(3,10) lapply(split(a,f),mean) } myapp20 <- function() { s <- split(airquality, airquality$Month) lapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")])) } myapp21 <- function() { s <- split(airquality, airquality$Month) sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")])) } myapp22 <- function() { s <- split(airquality, airquality$Month) sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")],na.rm=TRUE)) } myapp23 <- function() { x <- rnorm(10) f1<-gl(2,5) f2 <- gl(5,2) interaction(f1,f2) str(split(x,list(f1,f2),drop=TRUE)) f1 f2 interaction(f1,f2) } myapp24 <- function() { list(rep(1,4),rep(2,3),rep(3,2),rep(4,1)) mapply(rep,1:4,4:1) } noise <- function(n,mean,sd) { rnorm(n,mean,sd) } myapp25 <- function() { noise(5,1,2) mapply(noise,1:5,1:5,2) list(noise(1,1,2),noise(2,2,2),noise(3,3,2),noise(4,5,2),noise(5,5,2)) } pmsg <- function(x){ if (is.na(x)) print ("x is a missing value") else if (x > 0){ print("x is greater than zero") print(x) } else print ("x is less than or equal zero") invisible(x) } myapp26 <- function() { x <- matrix(1:12, 4) colMins(x) rowMins(x) colRanges(x) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/s1_proc_inputs.R \name{as.dets} \alias{as.dets} \title{Coerce a \code{data.frame} to class \code{dets}} \usage{ as.dets(x, crs = 4326) } \arguments{ \item{x}{A \code{data.frame} to coerce to a \code{dets} object.} \item{crs}{Coordinate Reference System to use for the detections. Passed to \code{\link[sf:st_crs]{sf::st_crs}()} to set CRS for sf object. Defaults to \code{4326}, longitude/latitude on the WGS84 spheroid.} } \description{ Coerces a \code{data.frame} to a \code{dets} object } \examples{ #Load a CSV of already processed detections proc.det.csv <- read.csv( system.file("extdata", "processed_detections.csv", package = "ADePTR")) #Coerce to dets proc.det2 <- as.dets(proc.det.csv) }
/man/as.dets.Rd
no_license
bsmity13/ADePTR
R
false
true
827
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/s1_proc_inputs.R \name{as.dets} \alias{as.dets} \title{Coerce a \code{data.frame} to class \code{dets}} \usage{ as.dets(x, crs = 4326) } \arguments{ \item{x}{A \code{data.frame} to coerce to a \code{dets} object.} \item{crs}{Coordinate Reference System to use for the detections. Passed to \code{\link[sf:st_crs]{sf::st_crs}()} to set CRS for sf object. Defaults to \code{4326}, longitude/latitude on the WGS84 spheroid.} } \description{ Coerces a \code{data.frame} to a \code{dets} object } \examples{ #Load a CSV of already processed detections proc.det.csv <- read.csv( system.file("extdata", "processed_detections.csv", package = "ADePTR")) #Coerce to dets proc.det2 <- as.dets(proc.det.csv) }
### Load data objects, rename and set names (if necessary) # Load GenomicRanges library library(GenomicRanges) ## GENES load("summarized_overlaps_hg19_genes_abyzov_ipsc_and_parental.R") # Rename object genes <- overlaps ## EXONS # Load exon data object load("summarized_overlaps_hg19_exons_abyzov_ipsc_and_parental.R") # Rename object exons <- overlaps # Set names attribute names(rowData(exons)) <- rowData(exons)$name ### ### Define sample groups parental <- c(1,5,9,10,14,18,22) iPSC <- c(2:4,6:8,11:13,15:17,19:21,23:25) ### ### Prepare count tables ## Extract counts counts_genes_parental <- assays(genes)$counts[,parental] counts_genes_iPSC <- assays(genes)$counts[,iPSC] counts_exons_parental <- assays(exons)$counts[,parental] counts_exons_iPSC <- assays(exons)$counts[,iPSC] ## Shorten column names colnames(counts_genes_parental) <- sub("segemehl_", "", basename(colnames(counts_genes_parental))) colnames(counts_genes_iPSC) <- sub("segemehl_", "", basename(colnames(counts_genes_iPSC))) colnames(counts_exons_parental) <- sub("segemehl_", "", basename(colnames(counts_exons_parental))) colnames(counts_exons_iPSC) <- sub("segemehl_", "", basename(colnames(counts_exons_iPSC))) ### # Remove unused objects rm(overlaps, exons, genes, parental, iPSC) ## Save count tables save(counts_genes_parental, counts_genes_iPSC, counts_exons_parental, counts_exons_iPSC, file="count_tables_abyzov.R") write.table(counts_genes_parental, file = "counts_genes_parental", quote=FALSE, sep = "\t") write.table(counts_genes_iPSC, file = "counts_genes_iPSC", quote=FALSE, sep = "\t") write.table(counts_exons_parental, file = "counts_exons_parental", quote=FALSE, sep = "\t") write.table(counts_exons_iPSC, file = "counts_exons_iPSC", quote=FALSE, sep = "\t") ## Load count tables load("count_tables_abyzov.R") counts_genes_parental <- as.matrix(read.table("counts_genes_parental")) counts_genes_iPSC <- as.matrix(read.table("counts_genes_iPSC")) counts_exons_parental <- as.matrix(read.table("counts_exons_parental")) counts_exons_iPSC <- as.matrix(read.table("counts_exons_iPSC")) ### Prepare DGE list objects and save # Load edgeR library library(edgeR) ## Genes counts_genes <- cbind(counts_genes_parental, counts_genes_iPSC) genes_dge_l <- DGEList(counts=counts_genes, group=c(rep("parental",7),rep("iPSC",18))) save(genes_dge_l, file="genes_dge_list_abyzov.R") ## Exons counts_exons <- cbind(counts_exons_parental, counts_exons_iPSC) exons_dge_l <- DGEList(counts=counts_exons, group=c(rep("parental",7),rep("iPSC",18))) save(exons_dge_l, file="exons_dge_list_abyzov.R") ### ### STARTING POINT: Load library and objects library(edgeR) load("genes_dge_list_abyzov.R") load("exons_dge_list_abyzov.R") ### ### Differential gene expression analysis (edgeR) ## GENES genes_norm_fact <- calcNormFactors(genes_dge_l) # Calculate common dispersion and genes_comm_disp <- estimateCommonDisp(genes_norm_fact) # Calculate tagwise dispersion genes_tag_wise_disp <- estimateTagwiseDisp(genes_comm_disp) # Exact negative binomial tagwise tests genes_exact_test <- exactTest(genes_tag_wise_disp) # Calculate differentially expressed summ_de_genes <- summary(decideTestsDGE(genes_exact_test)) # Subset top tags (FDR < 0.05) tags_de_genes <- topTags(genes_exact_test, n=sum(summ_de_genes[c(1,3)])) # Get count table normalized to counts per million cpm_de_genes <- cpm(genes_tag_wise_disp)[rownames(tags_de_genes),] ## Write tables write.table(genes_dge_l$counts, file="counts_raw_genes.tsv", quote=FALSE, sep="\t") write.table(genes_comm_disp$pseudo.counts, file="counts_norm_genes.tsv", quote=FALSE, sep="\t") write.table(cpm_de_genes, file="counts_norm_cpm_genes.tsv", quote=FALSE, sep="\t") write.table(genes_exact_test$table, file="diff_expr_all_genes.tsv", quote=FALSE, sep="\t") write.table(tags_de_genes$table, file="diff_exp_fdr_cutoff_genes.tsv", quote=FALSE, sep="\t") ## Tagwise dispersion vs log2(cpm) pdf(file="BCV_plot_genes.pdf", width = 6, height = 6) plotBCV(genes_tag_wise_disp, cex=0.4) dev.off() ## Tagwise log2(FC) vs log2(cpm) (~MA plot) pdf(file="smear_plot_genes.pdf", width = 6, height = 6) detags <- rownames(genes_tag_wise_disp)[as.logical(decideTestsDGE(genes_exact_test))] plotSmear(genes_exact_test, de.tags=detags) abline(h = c(-1, 1), col = "blue") dev.off() ## EXONS exons_norm_fact <- calcNormFactors(exons_dge_l) # Calculate common dispersion and exons_comm_disp <- estimateCommonDisp(exons_norm_fact) # Calculate tagwise dispersion exons_tag_wise_disp <- estimateTagwiseDisp(exons_comm_disp) # Exact negative binomial tagwise tests exons_exact_test <- exactTest(exons_tag_wise_disp) # Calculate differentially expressed summ_de_exons <- summary(decideTestsDGE(exons_exact_test)) # Subset top tags (FDR < 0.05) tags_de_exons <- topTags(exons_exact_test, n=sum(summ_de_exons[c(1,3)])) # Get count table normalized to counts per million cpm_de_exons <- cpm(exons_tag_wise_disp)[rownames(tags_de_exons),] ## Sample comparison pdf(file="MDS_plot_exons.pdf", width = 6, height = 6) plotMDS(exons_comm_disp) dev.off() ## Write tables write.table(exons_dge_l$counts, file="counts_raw_exons.tsv", quote=FALSE, sep="\t") write.table(exons_comm_disp$pseudo.counts, file="counts_norm_exons.tsv", quote=FALSE, sep="\t") write.table(cpm_de_exons, file="counts_norm_cpm_exons.tsv", quote=FALSE, sep="\t") write.table(exons_exact_test$table, file="diff_expr_all_exons.tsv", quote=FALSE, sep="\t") write.table(tags_de_exons$table, file="diff_exp_fdr_cutoff_exons.tsv", quote=FALSE, sep="\t") ## Tagwise dispersion vs log2(cpm) pdf(file="BCV_plot_exons.pdf", width = 6, height = 6) plotBCV(exons_tag_wise_disp, cex=0.4) dev.off() ## Tagwise log2(FC) vs log2(cpm) (~MA plot) pdf(file="smear_plot_exons.pdf", width = 6, height = 6) detags <- rownames(exons_tag_wise_disp)[as.logical(decideTestsDGE(exons_exact_test))] plotSmear(exibs_exact_test, de.tags=detags) abline(h = c(-1, 1), col = "blue") dev.off() ### #### LEFTOVERS #### ## Sample comparison pdf(file="MDS_plot_genes.pdf", width = 6, height = 6) plotMDS(genes_comm_disp) dev.off() mean_counts_genes_parental <- rowMeans(counts_genes_parental) mean_counts_genes_iPSC <- rowMeans(counts_genes_iPSC) mean_counts_exons_parental <- rowMeans(counts_exons_parental) mean_counts_exons_iPSC <- rowMeans(counts_exons_iPSC) sd_counts_genes_parental <- apply(counts_genes_parental, 1, sd) sd_counts_genes_iPSC <- apply(counts_genes_iPSC, 1, sd) sd_counts_exons_parental <- apply(counts_exons_parental, 1, sd) sd_counts_exons_iPSC <- apply(counts_exons_iPSC, 1, sd) ####
/scripts/UNFINISHED_count_tables_AS.R
permissive
uniqueg/scripts
R
false
false
6,582
r
### Load data objects, rename and set names (if necessary) # Load GenomicRanges library library(GenomicRanges) ## GENES load("summarized_overlaps_hg19_genes_abyzov_ipsc_and_parental.R") # Rename object genes <- overlaps ## EXONS # Load exon data object load("summarized_overlaps_hg19_exons_abyzov_ipsc_and_parental.R") # Rename object exons <- overlaps # Set names attribute names(rowData(exons)) <- rowData(exons)$name ### ### Define sample groups parental <- c(1,5,9,10,14,18,22) iPSC <- c(2:4,6:8,11:13,15:17,19:21,23:25) ### ### Prepare count tables ## Extract counts counts_genes_parental <- assays(genes)$counts[,parental] counts_genes_iPSC <- assays(genes)$counts[,iPSC] counts_exons_parental <- assays(exons)$counts[,parental] counts_exons_iPSC <- assays(exons)$counts[,iPSC] ## Shorten column names colnames(counts_genes_parental) <- sub("segemehl_", "", basename(colnames(counts_genes_parental))) colnames(counts_genes_iPSC) <- sub("segemehl_", "", basename(colnames(counts_genes_iPSC))) colnames(counts_exons_parental) <- sub("segemehl_", "", basename(colnames(counts_exons_parental))) colnames(counts_exons_iPSC) <- sub("segemehl_", "", basename(colnames(counts_exons_iPSC))) ### # Remove unused objects rm(overlaps, exons, genes, parental, iPSC) ## Save count tables save(counts_genes_parental, counts_genes_iPSC, counts_exons_parental, counts_exons_iPSC, file="count_tables_abyzov.R") write.table(counts_genes_parental, file = "counts_genes_parental", quote=FALSE, sep = "\t") write.table(counts_genes_iPSC, file = "counts_genes_iPSC", quote=FALSE, sep = "\t") write.table(counts_exons_parental, file = "counts_exons_parental", quote=FALSE, sep = "\t") write.table(counts_exons_iPSC, file = "counts_exons_iPSC", quote=FALSE, sep = "\t") ## Load count tables load("count_tables_abyzov.R") counts_genes_parental <- as.matrix(read.table("counts_genes_parental")) counts_genes_iPSC <- as.matrix(read.table("counts_genes_iPSC")) counts_exons_parental <- as.matrix(read.table("counts_exons_parental")) counts_exons_iPSC <- as.matrix(read.table("counts_exons_iPSC")) ### Prepare DGE list objects and save # Load edgeR library library(edgeR) ## Genes counts_genes <- cbind(counts_genes_parental, counts_genes_iPSC) genes_dge_l <- DGEList(counts=counts_genes, group=c(rep("parental",7),rep("iPSC",18))) save(genes_dge_l, file="genes_dge_list_abyzov.R") ## Exons counts_exons <- cbind(counts_exons_parental, counts_exons_iPSC) exons_dge_l <- DGEList(counts=counts_exons, group=c(rep("parental",7),rep("iPSC",18))) save(exons_dge_l, file="exons_dge_list_abyzov.R") ### ### STARTING POINT: Load library and objects library(edgeR) load("genes_dge_list_abyzov.R") load("exons_dge_list_abyzov.R") ### ### Differential gene expression analysis (edgeR) ## GENES genes_norm_fact <- calcNormFactors(genes_dge_l) # Calculate common dispersion and genes_comm_disp <- estimateCommonDisp(genes_norm_fact) # Calculate tagwise dispersion genes_tag_wise_disp <- estimateTagwiseDisp(genes_comm_disp) # Exact negative binomial tagwise tests genes_exact_test <- exactTest(genes_tag_wise_disp) # Calculate differentially expressed summ_de_genes <- summary(decideTestsDGE(genes_exact_test)) # Subset top tags (FDR < 0.05) tags_de_genes <- topTags(genes_exact_test, n=sum(summ_de_genes[c(1,3)])) # Get count table normalized to counts per million cpm_de_genes <- cpm(genes_tag_wise_disp)[rownames(tags_de_genes),] ## Write tables write.table(genes_dge_l$counts, file="counts_raw_genes.tsv", quote=FALSE, sep="\t") write.table(genes_comm_disp$pseudo.counts, file="counts_norm_genes.tsv", quote=FALSE, sep="\t") write.table(cpm_de_genes, file="counts_norm_cpm_genes.tsv", quote=FALSE, sep="\t") write.table(genes_exact_test$table, file="diff_expr_all_genes.tsv", quote=FALSE, sep="\t") write.table(tags_de_genes$table, file="diff_exp_fdr_cutoff_genes.tsv", quote=FALSE, sep="\t") ## Tagwise dispersion vs log2(cpm) pdf(file="BCV_plot_genes.pdf", width = 6, height = 6) plotBCV(genes_tag_wise_disp, cex=0.4) dev.off() ## Tagwise log2(FC) vs log2(cpm) (~MA plot) pdf(file="smear_plot_genes.pdf", width = 6, height = 6) detags <- rownames(genes_tag_wise_disp)[as.logical(decideTestsDGE(genes_exact_test))] plotSmear(genes_exact_test, de.tags=detags) abline(h = c(-1, 1), col = "blue") dev.off() ## EXONS exons_norm_fact <- calcNormFactors(exons_dge_l) # Calculate common dispersion and exons_comm_disp <- estimateCommonDisp(exons_norm_fact) # Calculate tagwise dispersion exons_tag_wise_disp <- estimateTagwiseDisp(exons_comm_disp) # Exact negative binomial tagwise tests exons_exact_test <- exactTest(exons_tag_wise_disp) # Calculate differentially expressed summ_de_exons <- summary(decideTestsDGE(exons_exact_test)) # Subset top tags (FDR < 0.05) tags_de_exons <- topTags(exons_exact_test, n=sum(summ_de_exons[c(1,3)])) # Get count table normalized to counts per million cpm_de_exons <- cpm(exons_tag_wise_disp)[rownames(tags_de_exons),] ## Sample comparison pdf(file="MDS_plot_exons.pdf", width = 6, height = 6) plotMDS(exons_comm_disp) dev.off() ## Write tables write.table(exons_dge_l$counts, file="counts_raw_exons.tsv", quote=FALSE, sep="\t") write.table(exons_comm_disp$pseudo.counts, file="counts_norm_exons.tsv", quote=FALSE, sep="\t") write.table(cpm_de_exons, file="counts_norm_cpm_exons.tsv", quote=FALSE, sep="\t") write.table(exons_exact_test$table, file="diff_expr_all_exons.tsv", quote=FALSE, sep="\t") write.table(tags_de_exons$table, file="diff_exp_fdr_cutoff_exons.tsv", quote=FALSE, sep="\t") ## Tagwise dispersion vs log2(cpm) pdf(file="BCV_plot_exons.pdf", width = 6, height = 6) plotBCV(exons_tag_wise_disp, cex=0.4) dev.off() ## Tagwise log2(FC) vs log2(cpm) (~MA plot) pdf(file="smear_plot_exons.pdf", width = 6, height = 6) detags <- rownames(exons_tag_wise_disp)[as.logical(decideTestsDGE(exons_exact_test))] plotSmear(exibs_exact_test, de.tags=detags) abline(h = c(-1, 1), col = "blue") dev.off() ### #### LEFTOVERS #### ## Sample comparison pdf(file="MDS_plot_genes.pdf", width = 6, height = 6) plotMDS(genes_comm_disp) dev.off() mean_counts_genes_parental <- rowMeans(counts_genes_parental) mean_counts_genes_iPSC <- rowMeans(counts_genes_iPSC) mean_counts_exons_parental <- rowMeans(counts_exons_parental) mean_counts_exons_iPSC <- rowMeans(counts_exons_iPSC) sd_counts_genes_parental <- apply(counts_genes_parental, 1, sd) sd_counts_genes_iPSC <- apply(counts_genes_iPSC, 1, sd) sd_counts_exons_parental <- apply(counts_exons_parental, 1, sd) sd_counts_exons_iPSC <- apply(counts_exons_iPSC, 1, sd) ####
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.r \docType{data} \name{bathy.arctic} \alias{bathy.arctic} \title{Arctic Bathymetry A Matrix containing elevation data taken from NOAA via marmap.} \format{ A matrix containing 2160 x 1080 values of elevation. Depth is given in negative. Resolution is 10 arc minutes (1/6th degree). } \source{ NOAA Bathymetric Database } \usage{ bathy.arctic } \description{ Arctic Bathymetry A Matrix containing elevation data taken from NOAA via marmap. } \keyword{datasets}
/man/bathy.arctic.Rd
no_license
tbrycekelly/TheSource
R
false
true
543
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.r \docType{data} \name{bathy.arctic} \alias{bathy.arctic} \title{Arctic Bathymetry A Matrix containing elevation data taken from NOAA via marmap.} \format{ A matrix containing 2160 x 1080 values of elevation. Depth is given in negative. Resolution is 10 arc minutes (1/6th degree). } \source{ NOAA Bathymetric Database } \usage{ bathy.arctic } \description{ Arctic Bathymetry A Matrix containing elevation data taken from NOAA via marmap. } \keyword{datasets}
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/covariance.R \name{grl} \alias{grl} \title{Approximating effective-counts as proposed by Greenland & Longnecker} \usage{ grl(y, v, cases, n, type, data, tol = 1e-05) } \arguments{ \item{y}{a vector, defining the (reported) log relative risks.} \item{v}{a vector, defining the variances of the reported log relative risks.} \item{cases}{a vector, defining the number of cases for each exposure level.} \item{n}{a vector, defining the total number of subjects for each exposure level. For incidence-rate data \code{n} indicates the amount of person-time within each exposure level.} \item{type}{a vector (or a character string), specifying the design of the study. Options are \code{cc}, \code{ir}, and \code{ci}, for case-control, incidence-rate, and cumulative incidence data, respectively.} \item{data}{an optional data frame (or object coercible by \code{\link{as.data.frame}} to a data frame) containing the variables in the previous arguments.} \item{tol}{define the tolerance.} } \value{ The results are returned structured in a matrix \tabular{ll}{ \code{A} \tab approximated number of effective cases. \cr \code{N} \tab approximated total number of effective subjects. \cr } } \description{ Reconstructs the set of pseudo-numbers (or 'effective' numbers) of cases and non-cases consistent with the input data (log relative risks). The method was first proposed in 1992 by Greenland and Longnecker. } \details{ The function reconstructs the effective counts corresponding to the multivariable adjusted log relative risks as well as their standard errors. A unique solution is guaranteed by keeping the margins of the table of pseudo-counts equal to the margins of the crude or unadjusted data (Greenland and Longnecker 1992). See the referenced article for a complete description of the algorithm implementation. } \examples{ ## Loading data data("alcohol_cvd") ## Obtaining pseudo-counts for the first study (id = 1) grl(y = logrr, v = I(se^2), cases = cases, n = n, type = type, data = subset(alcohol_cvd, id == 1)) ## Obtaining pseudo-counts for all study by(alcohol_cvd, alcohol_cvd$id, function(x) grl(y = logrr, v = I(se^2), cases = cases, n = n, type = type, data = x)) ## Restructuring the previous results in a matrix do.call("rbind", by(alcohol_cvd, alcohol_cvd$id, function(x) grl(y = logrr, v = I(se^2), cases = cases, n = n, type = type, data = x))) } \references{ Greenland, S., Longnecker, M. P. (1992). Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. American journal of epidemiology, 135(11), 1301-1309. Orsini, N., Li, R., Wolk, A., Khudyakov, P., Spiegelman, D. (2012). Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. American journal of epidemiology, 175(1), 66-73. } \seealso{ \code{\link{covar.logrr}}, \code{\link{hamling}} } \author{ Alessio Crippa, \email{alessio.crippa@ki.se} }
/man/grl.Rd
no_license
alecri/dosresmeta
R
false
true
3,042
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/covariance.R \name{grl} \alias{grl} \title{Approximating effective-counts as proposed by Greenland & Longnecker} \usage{ grl(y, v, cases, n, type, data, tol = 1e-05) } \arguments{ \item{y}{a vector, defining the (reported) log relative risks.} \item{v}{a vector, defining the variances of the reported log relative risks.} \item{cases}{a vector, defining the number of cases for each exposure level.} \item{n}{a vector, defining the total number of subjects for each exposure level. For incidence-rate data \code{n} indicates the amount of person-time within each exposure level.} \item{type}{a vector (or a character string), specifying the design of the study. Options are \code{cc}, \code{ir}, and \code{ci}, for case-control, incidence-rate, and cumulative incidence data, respectively.} \item{data}{an optional data frame (or object coercible by \code{\link{as.data.frame}} to a data frame) containing the variables in the previous arguments.} \item{tol}{define the tolerance.} } \value{ The results are returned structured in a matrix \tabular{ll}{ \code{A} \tab approximated number of effective cases. \cr \code{N} \tab approximated total number of effective subjects. \cr } } \description{ Reconstructs the set of pseudo-numbers (or 'effective' numbers) of cases and non-cases consistent with the input data (log relative risks). The method was first proposed in 1992 by Greenland and Longnecker. } \details{ The function reconstructs the effective counts corresponding to the multivariable adjusted log relative risks as well as their standard errors. A unique solution is guaranteed by keeping the margins of the table of pseudo-counts equal to the margins of the crude or unadjusted data (Greenland and Longnecker 1992). See the referenced article for a complete description of the algorithm implementation. } \examples{ ## Loading data data("alcohol_cvd") ## Obtaining pseudo-counts for the first study (id = 1) grl(y = logrr, v = I(se^2), cases = cases, n = n, type = type, data = subset(alcohol_cvd, id == 1)) ## Obtaining pseudo-counts for all study by(alcohol_cvd, alcohol_cvd$id, function(x) grl(y = logrr, v = I(se^2), cases = cases, n = n, type = type, data = x)) ## Restructuring the previous results in a matrix do.call("rbind", by(alcohol_cvd, alcohol_cvd$id, function(x) grl(y = logrr, v = I(se^2), cases = cases, n = n, type = type, data = x))) } \references{ Greenland, S., Longnecker, M. P. (1992). Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. American journal of epidemiology, 135(11), 1301-1309. Orsini, N., Li, R., Wolk, A., Khudyakov, P., Spiegelman, D. (2012). Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. American journal of epidemiology, 175(1), 66-73. } \seealso{ \code{\link{covar.logrr}}, \code{\link{hamling}} } \author{ Alessio Crippa, \email{alessio.crippa@ki.se} }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/audit_output_spec.R \name{is_audit_output_spec} \alias{is_audit_output_spec} \title{Test if the object is an audit_output_spec} \usage{ is_audit_output_spec(x) } \arguments{ \item{x}{An object} } \value{ `TRUE` if the object inherits from the `audit_output_spec` class. } \description{ This function returns `TRUE` for audit_output_specs }
/man/is_audit_output_spec.Rd
no_license
md0u80c9/SSNAPStats
R
false
true
418
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/audit_output_spec.R \name{is_audit_output_spec} \alias{is_audit_output_spec} \title{Test if the object is an audit_output_spec} \usage{ is_audit_output_spec(x) } \arguments{ \item{x}{An object} } \value{ `TRUE` if the object inherits from the `audit_output_spec` class. } \description{ This function returns `TRUE` for audit_output_specs }
############################################################################################################## ################################ NEW DATASETS ################################################################ ############################################################################################################### load("../../koen2010/koen2010_orig.eqn-Koen_2010_pure.csv.RData") results1_2 <- results load("../../koen2010/koen2010_qrest.eqn-Koen_2010_pure.csv.RData") results2_2 <- results load("../../koen2010/koen2010_rrest.eqn-Koen_2010_pure.csv.RData") results3_2 <- results load("../../koen2011/koen2011_orig.eqn-Koen_2011.csv.RData") results1_3 <- results load("../../koen2011/koen2011_qrest.eqn-Koen_2011.csv.RData") results2_3 <- results load("../../koen2011/koen2011_rrest.eqn-Koen_2011.csv.RData") results3_3 <- results load("../../koen2013full/koen2013f_orig.eqn-Koen-2013_full.csv.RData") results1_4 <- results load("../../koen2013full/koen2013f_qrest.eqn-Koen-2013_full.csv.RData") results2_4 <- results load("../../koen2013full/koen2013f_rrest.eqn-Koen-2013_full.csv.RData") results3_4 <- results load("../../pratte2010/pratte_orig.eqn-Pratte_2010.csv.RData") results1_5 <- results load("../../pratte2010/pratte_qrest.eqn-Pratte_2010.csv.RData") results2_5 <- results load("../../pratte2010/pratte_rrest.eqn-Pratte_2010.csv.RData") results3_5 <- results load("../../smith2004/smith_orig.eqn-Smith_2004.csv.RData") results1_6 <- results load("../../smith2004/smith_qrest.eqn-Smith_2004.csv.RData") results2_6 <- results load("../../smith2004/smith_rrest.eqn-Smith_2004.csv.RData") results3_6 <- results load("../../jang2009/jang_orig.eqn-Jang_2009.csv.RData") results1_7 <- results load("../../jang2009/jang_qrest.eqn-Jang_2009.csv.RData") results2_7 <- results load("../../jang2009/jang_rrest.eqn-Jang_2009.csv.RData") results3_7 <- results gof_a <- bind_rows( unnest(results1_2, gof), unnest(results2_2, gof), unnest(results3_2, gof), unnest(results1_3, gof), unnest(results2_3, gof), unnest(results3_3, gof), unnest(results1_4, gof), unnest(results2_4, gof), unnest(results3_4, gof), unnest(results1_5, gof), unnest(results2_5, gof), unnest(results3_5, gof), unnest(results1_6, gof), unnest(results2_6, gof), unnest(results3_6, gof), unnest(results1_7, gof), unnest(results2_7, gof), unnest(results3_7, gof), ) gof_a$pooling <- factor(gof_a$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) gof_a$package <- factor(gof_a$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) gof_a$method <- factor(gof_a$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) gof_a$inter <- with(gof_a, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(gof_a$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") gof_a$focus <- factor(gof_a$focus, levels = c('cov', 'mean'), labels = c('Covariance', 'Mean')) gof_a$model <- ifelse(gof_a$model=="jang_orig.eqn"|gof_a$model=="koen2010_orig.eqn"|gof_a$model=="koen2011_orig.eqn"|gof_a$model=="koen2013f_orig.eqn"|gof_a$model=="pratte_orig.eqn"|gof_a$model=="smith_orig.eqn", 'Q & R Restr.', ifelse(gof_a$model=="jang_qrest.eqn"|gof_a$model=="koen2010_qrest.eqn"|gof_a$model=="koen2011_qrest.eqn"|gof_a$model=="koen2013f_qrest.eqn"|gof_a$model=="pratte_qrest.eqn"|gof_a$model=="smith_qrest.eqn", 'Q Restricted', ifelse(gof_a$model=="jang_rrest.eqn"|gof_a$model=="koen2010_rrest.eqn"|gof_a$model=="koen2011_rrest.eqn"|gof_a$model=="koen2013f_rrest.eqn"|gof_a$model=="pratte_rrest.eqn"|gof_a$model=="smith_rrest.eqn", 'R Restricted', gof_a$model))) gof_a$dataset <- factor(gof_a$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)")) gof_all <- filter(gof_a, focus %in% c("Mean")) ggplot(gof_all, aes(y = p, x = inter, col=dataset)) + geom_point(size=5) + geom_hline(yintercept = .05, lty = 2)+ theme_bw() + coord_flip() + facet_wrap(~model,ncol = 3) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0", "0.5", "1")) + labs(x='Analysis approach',y= expression(italic(p)), color='Dataset', title='Goodness of fit')+ theme(text=element_text(size = 22))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5)) params <- bind_rows( unnest(results1_2, est_group), unnest(results2_2, est_group), unnest(results3_2, est_group), unnest(results1_3, est_group), unnest(results2_3, est_group), unnest(results3_3, est_group), unnest(results1_4, est_group), unnest(results2_4, est_group), unnest(results3_4, est_group), unnest(results1_5, est_group), unnest(results2_5, est_group), unnest(results3_5, est_group), unnest(results1_6, est_group), unnest(results2_6, est_group), unnest(results3_6, est_group), unnest(results1_7, est_group), unnest(results2_7, est_group), unnest(results3_7, est_group), ) params$pooling <- factor(params$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) params$package <- factor(params$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) params$method <- factor(params$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) params$inter <- with(params, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(params$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") params$model <- ifelse(params$model=="jang_orig.eqn"|params$model=="koen2010_orig.eqn"|params$model=="koen2011_orig.eqn"|params$model=="koen2013f_orig.eqn"|params$model=="pratte_orig.eqn"|params$model=="smith_orig.eqn", 'Q & R Restr.', ifelse(params$model=="jang_qrest.eqn"|params$model=="koen2010_qrest.eqn"|params$model=="koen2011_qrest.eqn"|params$model=="koen2013f_qrest.eqn"|params$model=="pratte_qrest.eqn"|params$model=="smith_qrest.eqn", 'Q Restricted', ifelse(params$model=="jang_rrest.eqn"|params$model=="koen2010_rrest.eqn"|params$model=="koen2011_rrest.eqn"|params$model=="koen2013f_rrest.eqn"|params$model=="pratte_rrest.eqn"|params$model=="smith_rrest.eqn", 'R Restricted', params$model))) params$dataset <- factor(params$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)")) Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() #################################################################################################################### ######################### ALL DATASETS ############################################################################# #################################################################################################################### ##################################################################################################################### load("../../koen2010/koen2010_orig.eqn-Koen_2010_pure.csv.RData") results1_2 <- results load("../../koen2010/koen2010_qrest.eqn-Koen_2010_pure.csv.RData") results2_2 <- results load("../../koen2010/koen2010_rrest.eqn-Koen_2010_pure.csv.RData") results3_2 <- results load("../../koen2011/koen2011_orig.eqn-Koen_2011.csv.RData") results1_3 <- results load("../../koen2011/koen2011_qrest.eqn-Koen_2011.csv.RData") results2_3 <- results load("../../koen2011/koen2011_rrest.eqn-Koen_2011.csv.RData") results3_3 <- results load("../../koen2013full/koen2013f_orig.eqn-Koen-2013_full.csv.RData") results1_4 <- results load("../../koen2013full/koen2013f_qrest.eqn-Koen-2013_full.csv.RData") results2_4 <- results load("../../koen2013full/koen2013f_rrest.eqn-Koen-2013_full.csv.RData") results3_4 <- results load("../../pratte2010/pratte_orig.eqn-Pratte_2010.csv.RData") results1_5 <- results load("../../pratte2010/pratte_qrest.eqn-Pratte_2010.csv.RData") results2_5 <- results load("../../pratte2010/pratte_rrest.eqn-Pratte_2010.csv.RData") results3_5 <- results load("../../smith2004/smith_orig.eqn-Smith_2004.csv.RData") results1_6 <- results load("../../smith2004/smith_qrest.eqn-Smith_2004.csv.RData") results2_6 <- results load("../../smith2004/smith_rrest.eqn-Smith_2004.csv.RData") results3_6 <- results load("../../jang2009/jang_orig.eqn-Jang_2009.csv.RData") results1_7 <- results load("../../jang2009/jang_qrest.eqn-Jang_2009.csv.RData") results2_7 <- results load("../../jang2009/jang_rrest.eqn-Jang_2009.csv.RData") results3_7 <- results load("../../dube2012p/dubep_orig.eqn-Dube_2012-P.csv.RData") results1_8 <- results load("../../dube2012p/dubep_qrest.eqn-Dube_2012-P.csv.RData") results2_8 <- results load("../../dube2012p/dubep_rrest.eqn-Dube_2012-P.csv.RData") results3_8 <- results load("../../dube2012w/dubew_orig.eqn-Dube_2012-W.csv.RData") results1_9 <- results load("../../dube2012w/dubeW_qrest.eqn-Dube_2012-W.csv.RData") results2_9 <- results load("../../dube2012w/dubeW_rrest.eqn-Dube_2012-W.csv.RData") results3_9 <- results load("../../heathcote2006e1/heathcote_orig.eqn-Heathcote_2006_e1.csv.RData") results1_10 <- results load("../../heathcote2006e1/heathcote_qrest.eqn-Heathcote_2006_e1.csv.RData") results2_10 <- results load("../../heathcote2006e1/heathcote_rrest.eqn-Heathcote_2006_e1.csv.RData") results3_10 <- results load("../../heathcote2006e2/heathcote2_orig.eqn-Heathcote_2006_e2.csv.RData") results1_11 <- results load("../../heathcote2006e2/heathcote2_qrest.eqn-Heathcote_2006_e2.csv.RData") results2_11 <- results load("../../heathcote2006e2/heathcote2_rrest.eqn-Heathcote_2006_e2.csv.RData") results3_11 <- results load("../../jaeger2012/jaeger_orig.eqn-Jaeger_2012.csv.RData") results1_12 <- results load("../../jaeger2012/jaeger_qrest.eqn-Jaeger_2012.csv.RData") results2_12 <- results load("../../jaeger2012/jaeger_rrest.eqn-Jaeger_2012.csv.RData") results3_12 <- results load("../../koen2013/koen_orig.eqn-Koen_2013_immediate.csv.RData") results1_13 <- results load("../../koen2013/koen_qrest.eqn-Koen_2013_immediate.csv.RData") results2_13 <- results load("../../koen2013/koen_rrest.eqn-Koen_2013_immediate.csv.RData") results3_13 <- results gof_a <- bind_rows( unnest(results1_2, gof), unnest(results2_2, gof), unnest(results3_2, gof), unnest(results1_3, gof), unnest(results2_3, gof), unnest(results3_3, gof), unnest(results1_4, gof), unnest(results2_4, gof), unnest(results3_4, gof), unnest(results1_5, gof), unnest(results2_5, gof), unnest(results3_5, gof), unnest(results1_6, gof), unnest(results2_6, gof), unnest(results3_6, gof), unnest(results1_7, gof), unnest(results2_7, gof), unnest(results3_7, gof), unnest(results1_8, gof), unnest(results2_8, gof), unnest(results3_8, gof), unnest(results1_9, gof), unnest(results2_9, gof), unnest(results3_9, gof), unnest(results1_10, gof), unnest(results2_10, gof), unnest(results3_10, gof), unnest(results1_11, gof), unnest(results2_11, gof), unnest(results3_11, gof), unnest(results1_12, gof), unnest(results2_12, gof), unnest(results3_12, gof), unnest(results1_13, gof), unnest(results2_13, gof), unnest(results3_13, gof), ) gof_a$pooling <- factor(gof_a$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) gof_a$package <- factor(gof_a$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) gof_a$method <- factor(gof_a$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) gof_a$inter <- with(gof_a, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(gof_a$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") gof_a$focus <- factor(gof_a$focus, levels = c('cov', 'mean'), labels = c('Covariance', 'Mean')) gof_a$model <- ifelse(gof_a$model=="jang_orig.eqn"|gof_a$model=="koen2010_orig.eqn"|gof_a$model=="koen2011_orig.eqn"|gof_a$model=="koen2013f_orig.eqn"|gof_a$model=="pratte_orig.eqn"|gof_a$model=="smith_orig.eqn"|gof_a$model=="dubep_orig.eqn"|gof_a$model=="jaeger_orig.eqn"|gof_a$model=="koen_orig.eqn"|gof_a$model=="koen_orig.eqn"|gof_a$model=="koen_orig.eqn"|gof_a$model=="heathcote_orig.eqn"|gof_a$model=="heathcote_orig.eqn"|gof_a$model=="dubew_orig.eqn"|gof_a$model=="heathcote2_orig.eqn"|gof_a$model=="koen_orig.eqn", 'Q & R Restr.', ifelse(gof_a$model=="jang_qrest.eqn"|gof_a$model=="koen2010_qrest.eqn"|gof_a$model=="koen2011_qrest.eqn"|gof_a$model=="koen2013f_qrest.eqn"|gof_a$model=="pratte_qrest.eqn"|gof_a$model=="smith_qrest.eqn"|gof_a$model=="dubep_qrest.eqn"|gof_a$model=="jaeger_qrest.eqn"|gof_a$model=="koen_qrest.eqn"|gof_a$model=="heathcote_qrest.eqn"|gof_a$model=="dubew_qrest.eqn"|gof_a$model=="heathcote2_qrest.eqn"|gof_a$model=="koen_qrest.eqn", 'Q Restricted', ifelse(gof_a$model=="jang_rrest.eqn"|gof_a$model=="koen2010_rrest.eqn"|gof_a$model=="koen2011_rrest.eqn"|gof_a$model=="koen2013f_rrest.eqn"|gof_a$model=="pratte_rrest.eqn"|gof_a$model=="smith_rrest.eqn"|gof_a$model=="dubep_rrest.eqn"|gof_a$model=="jaeger_rrest.eqn"|gof_a$model=="koen_rrest.eqn"|gof_a$model=="heathcote_rrest.eqn"|gof_a$model=="dubew_rrest.eqn"|gof_a$model=="heathcote2_rrest.eqn"|gof_a$model=="koen_rrest.eqn", 'R Restricted', gof_a$model))) gof_a$dataset <- factor(gof_a$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv", "exp1.txt", "Dube_2012-P.csv", "Dube_2012-W.csv", "Heathcote_2006_e1.csv", "Heathcote_2006_e2.csv", "Jaeger_2012.csv", "Koen_2013_immediate.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)","Broeder et al. (2013)", "Dube & Rotello (2012, P)", "Dube & Rotello (2012, W)","Heathcote et al. (2006, 1)","Heathcote et al. (2006, 2)","Jaeger et al. (2012)","Koen et al. (2013)")) gof_all <- filter(gof_a, focus %in% c("Mean")) ggplot(gof_all, aes(y = p, x = inter, col=dataset)) + geom_point(size=5) + geom_hline(yintercept = .05, lty = 2)+ theme_bw() + coord_flip() + facet_wrap(~model,ncol = 3) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0", "0.5", "1")) + labs(x='Analysis approach',y= expression(italic(p)), color='Dataset', title='Goodness of fit')+ theme(text=element_text(size = 22))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5)) params <- bind_rows( unnest(results1_2, est_group), unnest(results2_2, est_group), unnest(results3_2, est_group), unnest(results1_3, est_group), unnest(results2_3, est_group), unnest(results3_3, est_group), unnest(results1_4, est_group), unnest(results2_4, est_group), unnest(results3_4, est_group), unnest(results1_5, est_group), unnest(results2_5, est_group), unnest(results3_5, est_group), unnest(results1_6, est_group), unnest(results2_6, est_group), unnest(results3_6, est_group), unnest(results1_7, est_group), unnest(results2_7, est_group), unnest(results3_7, est_group), unnest(results1_8, est_group), unnest(results2_8, est_group), unnest(results3_8, est_group), unnest(results1_9, est_group), unnest(results2_9, est_group), unnest(results3_9, est_group), unnest(results1_10, est_group), unnest(results2_10, est_group), unnest(results3_10, est_group), unnest(results1_11, est_group), unnest(results2_11, est_group), unnest(results3_11, est_group), unnest(results1_12, est_group), unnest(results2_12, est_group), unnest(results3_12, est_group), unnest(results1_13, est_group), unnest(results2_13, est_group), unnest(results3_13, est_group), ) params$pooling <- factor(params$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) params$package <- factor(params$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) params$method <- factor(params$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) params$inter <- with(params, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(params$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") params$model <- ifelse(params$model=="jang_orig.eqn"|params$model=="koen2010_orig.eqn"|params$model=="koen2011_orig.eqn"|params$model=="koen2013f_orig.eqn"|params$model=="pratte_orig.eqn"|params$model=="smith_orig.eqn"|params$model=="dubep_orig.eqn"|params$model=="jaeger_orig.eqn"|params$model=="koen_orig.eqn"|params$model=="koen_orig.eqn"|params$model=="koen_orig.eqn"|params$model=="heathcote_orig.eqn"|params$model=="heathcote_orig.eqn"|params$model=="dubew_orig.eqn"|params$model=="heathcote2_orig.eqn"|params$model=="koen_orig.eqn", 'Q & R Restr.', ifelse(params$model=="jang_qrest.eqn"|params$model=="koen2010_qrest.eqn"|params$model=="koen2011_qrest.eqn"|params$model=="koen2013f_qrest.eqn"|params$model=="pratte_qrest.eqn"|params$model=="smith_qrest.eqn"|params$model=="dubep_qrest.eqn"|params$model=="jaeger_qrest.eqn"|params$model=="koen_qrest.eqn"|params$model=="heathcote_qrest.eqn"|params$model=="dubew_qrest.eqn"|params$model=="heathcote2_qrest.eqn"|params$model=="koen_qrest.eqn", 'Q Restricted', ifelse(params$model=="jang_rrest.eqn"|params$model=="koen2010_rrest.eqn"|params$model=="koen2011_rrest.eqn"|params$model=="koen2013f_rrest.eqn"|params$model=="pratte_rrest.eqn"|params$model=="smith_rrest.eqn"|params$model=="dubep_rrest.eqn"|params$model=="jaeger_rrest.eqn"|params$model=="koen_rrest.eqn"|params$model=="heathcote_rrest.eqn"|params$model=="dubew_rrest.eqn"|params$model=="heathcote2_rrest.eqn"|params$model=="koen_rrest.eqn", 'R Restricted', params$model))) params$dataset <- factor(params$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv", "exp1.txt", "Dube_2012-P.csv", "Dube_2012-W.csv", "Heathcote_2006_e1.csv", "Heathcote_2006_e2.csv", "Jaeger_2012.csv", "Koen_2013_immediate.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)","Broeder et al. (2013)", "Dube & Rotello (2012, P)", "Dube & Rotello (2012, W)","Heathcote et al. (2006, 1)","Heathcote et al. (2006, 2)","Jaeger et al. (2012)","Koen et al. (2013)")) Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2","r_5", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2", "r_5", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip()
/presentations/mpt-meeting-april-2018/not_used_files/new_datasets_results.R
no_license
singmann/mptmultiverse-2htm
R
false
false
29,843
r
############################################################################################################## ################################ NEW DATASETS ################################################################ ############################################################################################################### load("../../koen2010/koen2010_orig.eqn-Koen_2010_pure.csv.RData") results1_2 <- results load("../../koen2010/koen2010_qrest.eqn-Koen_2010_pure.csv.RData") results2_2 <- results load("../../koen2010/koen2010_rrest.eqn-Koen_2010_pure.csv.RData") results3_2 <- results load("../../koen2011/koen2011_orig.eqn-Koen_2011.csv.RData") results1_3 <- results load("../../koen2011/koen2011_qrest.eqn-Koen_2011.csv.RData") results2_3 <- results load("../../koen2011/koen2011_rrest.eqn-Koen_2011.csv.RData") results3_3 <- results load("../../koen2013full/koen2013f_orig.eqn-Koen-2013_full.csv.RData") results1_4 <- results load("../../koen2013full/koen2013f_qrest.eqn-Koen-2013_full.csv.RData") results2_4 <- results load("../../koen2013full/koen2013f_rrest.eqn-Koen-2013_full.csv.RData") results3_4 <- results load("../../pratte2010/pratte_orig.eqn-Pratte_2010.csv.RData") results1_5 <- results load("../../pratte2010/pratte_qrest.eqn-Pratte_2010.csv.RData") results2_5 <- results load("../../pratte2010/pratte_rrest.eqn-Pratte_2010.csv.RData") results3_5 <- results load("../../smith2004/smith_orig.eqn-Smith_2004.csv.RData") results1_6 <- results load("../../smith2004/smith_qrest.eqn-Smith_2004.csv.RData") results2_6 <- results load("../../smith2004/smith_rrest.eqn-Smith_2004.csv.RData") results3_6 <- results load("../../jang2009/jang_orig.eqn-Jang_2009.csv.RData") results1_7 <- results load("../../jang2009/jang_qrest.eqn-Jang_2009.csv.RData") results2_7 <- results load("../../jang2009/jang_rrest.eqn-Jang_2009.csv.RData") results3_7 <- results gof_a <- bind_rows( unnest(results1_2, gof), unnest(results2_2, gof), unnest(results3_2, gof), unnest(results1_3, gof), unnest(results2_3, gof), unnest(results3_3, gof), unnest(results1_4, gof), unnest(results2_4, gof), unnest(results3_4, gof), unnest(results1_5, gof), unnest(results2_5, gof), unnest(results3_5, gof), unnest(results1_6, gof), unnest(results2_6, gof), unnest(results3_6, gof), unnest(results1_7, gof), unnest(results2_7, gof), unnest(results3_7, gof), ) gof_a$pooling <- factor(gof_a$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) gof_a$package <- factor(gof_a$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) gof_a$method <- factor(gof_a$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) gof_a$inter <- with(gof_a, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(gof_a$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") gof_a$focus <- factor(gof_a$focus, levels = c('cov', 'mean'), labels = c('Covariance', 'Mean')) gof_a$model <- ifelse(gof_a$model=="jang_orig.eqn"|gof_a$model=="koen2010_orig.eqn"|gof_a$model=="koen2011_orig.eqn"|gof_a$model=="koen2013f_orig.eqn"|gof_a$model=="pratte_orig.eqn"|gof_a$model=="smith_orig.eqn", 'Q & R Restr.', ifelse(gof_a$model=="jang_qrest.eqn"|gof_a$model=="koen2010_qrest.eqn"|gof_a$model=="koen2011_qrest.eqn"|gof_a$model=="koen2013f_qrest.eqn"|gof_a$model=="pratte_qrest.eqn"|gof_a$model=="smith_qrest.eqn", 'Q Restricted', ifelse(gof_a$model=="jang_rrest.eqn"|gof_a$model=="koen2010_rrest.eqn"|gof_a$model=="koen2011_rrest.eqn"|gof_a$model=="koen2013f_rrest.eqn"|gof_a$model=="pratte_rrest.eqn"|gof_a$model=="smith_rrest.eqn", 'R Restricted', gof_a$model))) gof_a$dataset <- factor(gof_a$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)")) gof_all <- filter(gof_a, focus %in% c("Mean")) ggplot(gof_all, aes(y = p, x = inter, col=dataset)) + geom_point(size=5) + geom_hline(yintercept = .05, lty = 2)+ theme_bw() + coord_flip() + facet_wrap(~model,ncol = 3) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0", "0.5", "1")) + labs(x='Analysis approach',y= expression(italic(p)), color='Dataset', title='Goodness of fit')+ theme(text=element_text(size = 22))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5)) params <- bind_rows( unnest(results1_2, est_group), unnest(results2_2, est_group), unnest(results3_2, est_group), unnest(results1_3, est_group), unnest(results2_3, est_group), unnest(results3_3, est_group), unnest(results1_4, est_group), unnest(results2_4, est_group), unnest(results3_4, est_group), unnest(results1_5, est_group), unnest(results2_5, est_group), unnest(results3_5, est_group), unnest(results1_6, est_group), unnest(results2_6, est_group), unnest(results3_6, est_group), unnest(results1_7, est_group), unnest(results2_7, est_group), unnest(results3_7, est_group), ) params$pooling <- factor(params$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) params$package <- factor(params$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) params$method <- factor(params$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) params$inter <- with(params, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(params$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") params$model <- ifelse(params$model=="jang_orig.eqn"|params$model=="koen2010_orig.eqn"|params$model=="koen2011_orig.eqn"|params$model=="koen2013f_orig.eqn"|params$model=="pratte_orig.eqn"|params$model=="smith_orig.eqn", 'Q & R Restr.', ifelse(params$model=="jang_qrest.eqn"|params$model=="koen2010_qrest.eqn"|params$model=="koen2011_qrest.eqn"|params$model=="koen2013f_qrest.eqn"|params$model=="pratte_qrest.eqn"|params$model=="smith_qrest.eqn", 'Q Restricted', ifelse(params$model=="jang_rrest.eqn"|params$model=="koen2010_rrest.eqn"|params$model=="koen2011_rrest.eqn"|params$model=="koen2013f_rrest.eqn"|params$model=="pratte_rrest.eqn"|params$model=="smith_rrest.eqn", 'R Restricted', params$model))) params$dataset <- factor(params$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)")) Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() #################################################################################################################### ######################### ALL DATASETS ############################################################################# #################################################################################################################### ##################################################################################################################### load("../../koen2010/koen2010_orig.eqn-Koen_2010_pure.csv.RData") results1_2 <- results load("../../koen2010/koen2010_qrest.eqn-Koen_2010_pure.csv.RData") results2_2 <- results load("../../koen2010/koen2010_rrest.eqn-Koen_2010_pure.csv.RData") results3_2 <- results load("../../koen2011/koen2011_orig.eqn-Koen_2011.csv.RData") results1_3 <- results load("../../koen2011/koen2011_qrest.eqn-Koen_2011.csv.RData") results2_3 <- results load("../../koen2011/koen2011_rrest.eqn-Koen_2011.csv.RData") results3_3 <- results load("../../koen2013full/koen2013f_orig.eqn-Koen-2013_full.csv.RData") results1_4 <- results load("../../koen2013full/koen2013f_qrest.eqn-Koen-2013_full.csv.RData") results2_4 <- results load("../../koen2013full/koen2013f_rrest.eqn-Koen-2013_full.csv.RData") results3_4 <- results load("../../pratte2010/pratte_orig.eqn-Pratte_2010.csv.RData") results1_5 <- results load("../../pratte2010/pratte_qrest.eqn-Pratte_2010.csv.RData") results2_5 <- results load("../../pratte2010/pratte_rrest.eqn-Pratte_2010.csv.RData") results3_5 <- results load("../../smith2004/smith_orig.eqn-Smith_2004.csv.RData") results1_6 <- results load("../../smith2004/smith_qrest.eqn-Smith_2004.csv.RData") results2_6 <- results load("../../smith2004/smith_rrest.eqn-Smith_2004.csv.RData") results3_6 <- results load("../../jang2009/jang_orig.eqn-Jang_2009.csv.RData") results1_7 <- results load("../../jang2009/jang_qrest.eqn-Jang_2009.csv.RData") results2_7 <- results load("../../jang2009/jang_rrest.eqn-Jang_2009.csv.RData") results3_7 <- results load("../../dube2012p/dubep_orig.eqn-Dube_2012-P.csv.RData") results1_8 <- results load("../../dube2012p/dubep_qrest.eqn-Dube_2012-P.csv.RData") results2_8 <- results load("../../dube2012p/dubep_rrest.eqn-Dube_2012-P.csv.RData") results3_8 <- results load("../../dube2012w/dubew_orig.eqn-Dube_2012-W.csv.RData") results1_9 <- results load("../../dube2012w/dubeW_qrest.eqn-Dube_2012-W.csv.RData") results2_9 <- results load("../../dube2012w/dubeW_rrest.eqn-Dube_2012-W.csv.RData") results3_9 <- results load("../../heathcote2006e1/heathcote_orig.eqn-Heathcote_2006_e1.csv.RData") results1_10 <- results load("../../heathcote2006e1/heathcote_qrest.eqn-Heathcote_2006_e1.csv.RData") results2_10 <- results load("../../heathcote2006e1/heathcote_rrest.eqn-Heathcote_2006_e1.csv.RData") results3_10 <- results load("../../heathcote2006e2/heathcote2_orig.eqn-Heathcote_2006_e2.csv.RData") results1_11 <- results load("../../heathcote2006e2/heathcote2_qrest.eqn-Heathcote_2006_e2.csv.RData") results2_11 <- results load("../../heathcote2006e2/heathcote2_rrest.eqn-Heathcote_2006_e2.csv.RData") results3_11 <- results load("../../jaeger2012/jaeger_orig.eqn-Jaeger_2012.csv.RData") results1_12 <- results load("../../jaeger2012/jaeger_qrest.eqn-Jaeger_2012.csv.RData") results2_12 <- results load("../../jaeger2012/jaeger_rrest.eqn-Jaeger_2012.csv.RData") results3_12 <- results load("../../koen2013/koen_orig.eqn-Koen_2013_immediate.csv.RData") results1_13 <- results load("../../koen2013/koen_qrest.eqn-Koen_2013_immediate.csv.RData") results2_13 <- results load("../../koen2013/koen_rrest.eqn-Koen_2013_immediate.csv.RData") results3_13 <- results gof_a <- bind_rows( unnest(results1_2, gof), unnest(results2_2, gof), unnest(results3_2, gof), unnest(results1_3, gof), unnest(results2_3, gof), unnest(results3_3, gof), unnest(results1_4, gof), unnest(results2_4, gof), unnest(results3_4, gof), unnest(results1_5, gof), unnest(results2_5, gof), unnest(results3_5, gof), unnest(results1_6, gof), unnest(results2_6, gof), unnest(results3_6, gof), unnest(results1_7, gof), unnest(results2_7, gof), unnest(results3_7, gof), unnest(results1_8, gof), unnest(results2_8, gof), unnest(results3_8, gof), unnest(results1_9, gof), unnest(results2_9, gof), unnest(results3_9, gof), unnest(results1_10, gof), unnest(results2_10, gof), unnest(results3_10, gof), unnest(results1_11, gof), unnest(results2_11, gof), unnest(results3_11, gof), unnest(results1_12, gof), unnest(results2_12, gof), unnest(results3_12, gof), unnest(results1_13, gof), unnest(results2_13, gof), unnest(results3_13, gof), ) gof_a$pooling <- factor(gof_a$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) gof_a$package <- factor(gof_a$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) gof_a$method <- factor(gof_a$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) gof_a$inter <- with(gof_a, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(gof_a$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") gof_a$focus <- factor(gof_a$focus, levels = c('cov', 'mean'), labels = c('Covariance', 'Mean')) gof_a$model <- ifelse(gof_a$model=="jang_orig.eqn"|gof_a$model=="koen2010_orig.eqn"|gof_a$model=="koen2011_orig.eqn"|gof_a$model=="koen2013f_orig.eqn"|gof_a$model=="pratte_orig.eqn"|gof_a$model=="smith_orig.eqn"|gof_a$model=="dubep_orig.eqn"|gof_a$model=="jaeger_orig.eqn"|gof_a$model=="koen_orig.eqn"|gof_a$model=="koen_orig.eqn"|gof_a$model=="koen_orig.eqn"|gof_a$model=="heathcote_orig.eqn"|gof_a$model=="heathcote_orig.eqn"|gof_a$model=="dubew_orig.eqn"|gof_a$model=="heathcote2_orig.eqn"|gof_a$model=="koen_orig.eqn", 'Q & R Restr.', ifelse(gof_a$model=="jang_qrest.eqn"|gof_a$model=="koen2010_qrest.eqn"|gof_a$model=="koen2011_qrest.eqn"|gof_a$model=="koen2013f_qrest.eqn"|gof_a$model=="pratte_qrest.eqn"|gof_a$model=="smith_qrest.eqn"|gof_a$model=="dubep_qrest.eqn"|gof_a$model=="jaeger_qrest.eqn"|gof_a$model=="koen_qrest.eqn"|gof_a$model=="heathcote_qrest.eqn"|gof_a$model=="dubew_qrest.eqn"|gof_a$model=="heathcote2_qrest.eqn"|gof_a$model=="koen_qrest.eqn", 'Q Restricted', ifelse(gof_a$model=="jang_rrest.eqn"|gof_a$model=="koen2010_rrest.eqn"|gof_a$model=="koen2011_rrest.eqn"|gof_a$model=="koen2013f_rrest.eqn"|gof_a$model=="pratte_rrest.eqn"|gof_a$model=="smith_rrest.eqn"|gof_a$model=="dubep_rrest.eqn"|gof_a$model=="jaeger_rrest.eqn"|gof_a$model=="koen_rrest.eqn"|gof_a$model=="heathcote_rrest.eqn"|gof_a$model=="dubew_rrest.eqn"|gof_a$model=="heathcote2_rrest.eqn"|gof_a$model=="koen_rrest.eqn", 'R Restricted', gof_a$model))) gof_a$dataset <- factor(gof_a$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv", "exp1.txt", "Dube_2012-P.csv", "Dube_2012-W.csv", "Heathcote_2006_e1.csv", "Heathcote_2006_e2.csv", "Jaeger_2012.csv", "Koen_2013_immediate.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)","Broeder et al. (2013)", "Dube & Rotello (2012, P)", "Dube & Rotello (2012, W)","Heathcote et al. (2006, 1)","Heathcote et al. (2006, 2)","Jaeger et al. (2012)","Koen et al. (2013)")) gof_all <- filter(gof_a, focus %in% c("Mean")) ggplot(gof_all, aes(y = p, x = inter, col=dataset)) + geom_point(size=5) + geom_hline(yintercept = .05, lty = 2)+ theme_bw() + coord_flip() + facet_wrap(~model,ncol = 3) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0", "0.5", "1")) + labs(x='Analysis approach',y= expression(italic(p)), color='Dataset', title='Goodness of fit')+ theme(text=element_text(size = 22))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5)) params <- bind_rows( unnest(results1_2, est_group), unnest(results2_2, est_group), unnest(results3_2, est_group), unnest(results1_3, est_group), unnest(results2_3, est_group), unnest(results3_3, est_group), unnest(results1_4, est_group), unnest(results2_4, est_group), unnest(results3_4, est_group), unnest(results1_5, est_group), unnest(results2_5, est_group), unnest(results3_5, est_group), unnest(results1_6, est_group), unnest(results2_6, est_group), unnest(results3_6, est_group), unnest(results1_7, est_group), unnest(results2_7, est_group), unnest(results3_7, est_group), unnest(results1_8, est_group), unnest(results2_8, est_group), unnest(results3_8, est_group), unnest(results1_9, est_group), unnest(results2_9, est_group), unnest(results3_9, est_group), unnest(results1_10, est_group), unnest(results2_10, est_group), unnest(results3_10, est_group), unnest(results1_11, est_group), unnest(results2_11, est_group), unnest(results3_11, est_group), unnest(results1_12, est_group), unnest(results2_12, est_group), unnest(results3_12, est_group), unnest(results1_13, est_group), unnest(results2_13, est_group), unnest(results3_13, est_group), ) params$pooling <- factor(params$pooling, levels = c("no", "complete", "partial"), labels = c("No", "Comp", "PP")) params$package <- factor(params$package, levels = c("MPTinR", "TreeBUGS"), labels = c("MR", "TB")) params$method <- factor(params$method, levels = c("PB/MLE", "asymptotic", "simple", "trait", "trait_uncorrelated","beta"), labels = c("PB", "asy", "ss", "trait", "trait_u","beta")) params$inter <- with(params, interaction(method, pooling, package, drop = TRUE, sep = " ")) levels(params$inter) <- c("No.PB", "No.asy", "Comp.asy", "No.Bayes", "Comp.Bayes", "Trait.PP", "Trait_u.PP","Beta.PP") params$model <- ifelse(params$model=="jang_orig.eqn"|params$model=="koen2010_orig.eqn"|params$model=="koen2011_orig.eqn"|params$model=="koen2013f_orig.eqn"|params$model=="pratte_orig.eqn"|params$model=="smith_orig.eqn"|params$model=="dubep_orig.eqn"|params$model=="jaeger_orig.eqn"|params$model=="koen_orig.eqn"|params$model=="koen_orig.eqn"|params$model=="koen_orig.eqn"|params$model=="heathcote_orig.eqn"|params$model=="heathcote_orig.eqn"|params$model=="dubew_orig.eqn"|params$model=="heathcote2_orig.eqn"|params$model=="koen_orig.eqn", 'Q & R Restr.', ifelse(params$model=="jang_qrest.eqn"|params$model=="koen2010_qrest.eqn"|params$model=="koen2011_qrest.eqn"|params$model=="koen2013f_qrest.eqn"|params$model=="pratte_qrest.eqn"|params$model=="smith_qrest.eqn"|params$model=="dubep_qrest.eqn"|params$model=="jaeger_qrest.eqn"|params$model=="koen_qrest.eqn"|params$model=="heathcote_qrest.eqn"|params$model=="dubew_qrest.eqn"|params$model=="heathcote2_qrest.eqn"|params$model=="koen_qrest.eqn", 'Q Restricted', ifelse(params$model=="jang_rrest.eqn"|params$model=="koen2010_rrest.eqn"|params$model=="koen2011_rrest.eqn"|params$model=="koen2013f_rrest.eqn"|params$model=="pratte_rrest.eqn"|params$model=="smith_rrest.eqn"|params$model=="dubep_rrest.eqn"|params$model=="jaeger_rrest.eqn"|params$model=="koen_rrest.eqn"|params$model=="heathcote_rrest.eqn"|params$model=="dubew_rrest.eqn"|params$model=="heathcote2_rrest.eqn"|params$model=="koen_rrest.eqn", 'R Restricted', params$model))) params$dataset <- factor(params$dataset, levels = c("Jang_2009.csv", "Koen_2010_pure.csv", "Koen_2011.csv", "Koen-2013_full.csv", "Pratte_2010.csv", "Smith_2004.csv", "exp1.txt", "Dube_2012-P.csv", "Dube_2012-W.csv", "Heathcote_2006_e1.csv", "Heathcote_2006_e2.csv", "Jaeger_2012.csv", "Koen_2013_immediate.csv"), labels = c("Jang et al. (2009)", "Koen & Yonelinas (2010)", "Koen & Yonelinas (2011)","Koen et al. (2013, F)","Pratte et al. (2010)","Smith & Duncan (2004, Exp. 2)","Broeder et al. (2013)", "Dube & Rotello (2012, P)", "Dube & Rotello (2012, W)","Heathcote et al. (2006, 1)","Heathcote et al. (2006, 2)","Jaeger et al. (2012)","Koen et al. (2013)")) Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Core_all <- filter(params, parameter %in% c("Dn","Do","g") & model %in% c('R Restricted')) ggplot(Core_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=3) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Core Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() Q_all <- filter(params, parameter %in% c("q_1", "q_2", "q_5", "q_6") & model %in% c('R Restricted')) ggplot(Q_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='Q Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2","r_5", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = inter, color=dataset)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Analysis approach', y='Estimate', color='Dataset', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 24))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip() R_all <- filter(params, parameter %in% c("r_1", "r_2", "r_5", "r_6") & model %in% c('R Restricted')) ggplot(R_all, aes(y = est, x = dataset, color=inter, shape=inter)) + facet_wrap( ~parameter, ncol=4) + geom_errorbar(aes(ymin = est-se, ymax = est+se), position = dd, width = 0.6)+ geom_point(position = dd, size = 3.5) + scale_shape_manual(values=shapes) + scale_y_continuous(breaks=seq(0,1,by=.5),limits=c(0,1), labels = c("0","0.5", "1")) + labs(x='Dataset', y='Estimate', color='Analysis approach', shape='Analysis approach', title='R Parameters Across Data sets for R Restricted')+ theme_bw() + theme(text=element_text(size = 20))+ theme(plot.title=element_text(face = 'bold',size=24, hjust = 0.5))+ coord_flip()