content
large_stringlengths
0
6.46M
path
large_stringlengths
3
331
license_type
large_stringclasses
2 values
repo_name
large_stringlengths
5
125
language
large_stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.46M
extension
large_stringclasses
75 values
text
stringlengths
0
6.46M
#' @export getSleepdata <- function(token){ u <- sprintf("https://jawbone.com/nudge/api/v.1.1/users/@me/sleeps") res <- httr::GET(url = u, httr::config(token = token)) dat <- jsonlite::fromJSON(httr::content(res, as = "text")) result <- dat$data$items return(result) } #' @export getSleepTickdata <- function(date, token){ data_all <- getSleepdata(token) data_all$date <- as.Date(as.character(data_all$date), format="%Y%m%d") trg_id <- subset(data_all, date==date) u <- sprintf("https://jawbone.com/nudge/api/v.1.1/sleeps/%s/ticks", trg_id$xid) res <- httr::GET(url = u, httr::config(token = token)) dat <- jsonlite::fromJSON(httr::content(res, as = "text")) result <- dat$data$items result$time <- as.POSIXct(result$time, origin="1970-01-01") return(result) }
/R/get.R
no_license
dichika/myJawbone
R
false
false
828
r
#' @export getSleepdata <- function(token){ u <- sprintf("https://jawbone.com/nudge/api/v.1.1/users/@me/sleeps") res <- httr::GET(url = u, httr::config(token = token)) dat <- jsonlite::fromJSON(httr::content(res, as = "text")) result <- dat$data$items return(result) } #' @export getSleepTickdata <- function(date, token){ data_all <- getSleepdata(token) data_all$date <- as.Date(as.character(data_all$date), format="%Y%m%d") trg_id <- subset(data_all, date==date) u <- sprintf("https://jawbone.com/nudge/api/v.1.1/sleeps/%s/ticks", trg_id$xid) res <- httr::GET(url = u, httr::config(token = token)) dat <- jsonlite::fromJSON(httr::content(res, as = "text")) result <- dat$data$items result$time <- as.POSIXct(result$time, origin="1970-01-01") return(result) }
context('match_rules') test_that('it should create a regex match_rule', { rule <- match_regex('\\d', as.integer) expect_is(rule, 'match_rule') expect_is(rule, 'regex_rule') }) test_that('it should apply a regex_rule', { rule <- match_regex('^\\d+$', as.integer) result <- apply_rule(rule, '11') expect_is(result, 'rule_result') expect_true(result$applied) expect_equal(result$value, 11) result <- apply_rule(rule, 11) expect_false(result$applied) # regex_rule only handles character data result <- apply_rule(rule, 'a') expect_false(result$applied) result <- apply_rule(rule, '1.1') expect_false(result$applied) }) test_that('it should apply a regex_rule with a group', { rule <- match_regex('delta (\\d+)', function(data, match) { as.integer(match[,2]) }) res <- apply_rule(rule, c('delta 50', 'delta 25')) expect_equal(res$value, c(50, 25)) res <- apply_rule(rule, c('delta 50', NA, 'delta 25')) expect_equal(res$value, c(50, NA, 25)) }) test_that('it should apply a regex_rule if at least one element has been matched', { rule <- match_regex('\\d+', function(data, match) { as.integer(match[,1]) }, apply_to='any') res <- apply_rule(rule, c('50', '25', 'W')) expect_equal(res$value, c(50, 25, NA)) }) test_that('it should apply a regex_rule if all elements match', { rule <- match_regex('\\d+', function(data, match) { as.integer(match[,1]) }, apply_to='all') res <- apply_rule(rule, c('50', '25', 'W')) expect_false(res$applied) }) test_that('it should apply a regex_rule if all elements match', { rule <- match_regex('\\d+', function(data, match) { as.integer(match[,1]) }, apply_to='all') res <- apply_rule(rule, c('50', '25', 'W')) expect_false(res$applied) }) test_that('it should iterate thru a list of rules ', { rules <- list( match_regex('NA', identity), match_regex('1', identity, priority=1), match_regex('2', identity, priority=2), match_regex('NA2', identity) ) rules <- iter_rules(rules) expect_equal(take(rules, 'regex'), c('1', '2', 'NA', 'NA2')) }) test_that('it should create a check class_rule', { rule <- match_class('Date', as.character) expect_is(rule, 'match_rule') expect_is(rule, 'class_rule') }) test_that('it should apply a class_rule', { rule <- match_class('Date', as.character) result <- apply_rule(rule, '11') expect_is(result, 'rule_result') expect_false(result$applied) result <- apply_rule(rule, as.Date('2015-11-21')) expect_true(result$applied) expect_equal(result$value, '2015-11-21') }) test_that('it should apply a pred_rule', { rule <- match_predicate(is.na, function(x, idx, ...) { x[idx] <- 0 x }) result <- apply_rule(rule, '11') expect_is(result, 'rule_result') expect_false(result$applied) result <- apply_rule(rule, NA) expect_true(result$applied) expect_equal(result$value, 0) result <- apply_rule(rule, c(NA, 1)) expect_equal(result$value, c(0, 1)) })
/tests/testthat/test-match_rules.R
no_license
wilsonfreitas/transmute
R
false
false
2,977
r
context('match_rules') test_that('it should create a regex match_rule', { rule <- match_regex('\\d', as.integer) expect_is(rule, 'match_rule') expect_is(rule, 'regex_rule') }) test_that('it should apply a regex_rule', { rule <- match_regex('^\\d+$', as.integer) result <- apply_rule(rule, '11') expect_is(result, 'rule_result') expect_true(result$applied) expect_equal(result$value, 11) result <- apply_rule(rule, 11) expect_false(result$applied) # regex_rule only handles character data result <- apply_rule(rule, 'a') expect_false(result$applied) result <- apply_rule(rule, '1.1') expect_false(result$applied) }) test_that('it should apply a regex_rule with a group', { rule <- match_regex('delta (\\d+)', function(data, match) { as.integer(match[,2]) }) res <- apply_rule(rule, c('delta 50', 'delta 25')) expect_equal(res$value, c(50, 25)) res <- apply_rule(rule, c('delta 50', NA, 'delta 25')) expect_equal(res$value, c(50, NA, 25)) }) test_that('it should apply a regex_rule if at least one element has been matched', { rule <- match_regex('\\d+', function(data, match) { as.integer(match[,1]) }, apply_to='any') res <- apply_rule(rule, c('50', '25', 'W')) expect_equal(res$value, c(50, 25, NA)) }) test_that('it should apply a regex_rule if all elements match', { rule <- match_regex('\\d+', function(data, match) { as.integer(match[,1]) }, apply_to='all') res <- apply_rule(rule, c('50', '25', 'W')) expect_false(res$applied) }) test_that('it should apply a regex_rule if all elements match', { rule <- match_regex('\\d+', function(data, match) { as.integer(match[,1]) }, apply_to='all') res <- apply_rule(rule, c('50', '25', 'W')) expect_false(res$applied) }) test_that('it should iterate thru a list of rules ', { rules <- list( match_regex('NA', identity), match_regex('1', identity, priority=1), match_regex('2', identity, priority=2), match_regex('NA2', identity) ) rules <- iter_rules(rules) expect_equal(take(rules, 'regex'), c('1', '2', 'NA', 'NA2')) }) test_that('it should create a check class_rule', { rule <- match_class('Date', as.character) expect_is(rule, 'match_rule') expect_is(rule, 'class_rule') }) test_that('it should apply a class_rule', { rule <- match_class('Date', as.character) result <- apply_rule(rule, '11') expect_is(result, 'rule_result') expect_false(result$applied) result <- apply_rule(rule, as.Date('2015-11-21')) expect_true(result$applied) expect_equal(result$value, '2015-11-21') }) test_that('it should apply a pred_rule', { rule <- match_predicate(is.na, function(x, idx, ...) { x[idx] <- 0 x }) result <- apply_rule(rule, '11') expect_is(result, 'rule_result') expect_false(result$applied) result <- apply_rule(rule, NA) expect_true(result$applied) expect_equal(result$value, 0) result <- apply_rule(rule, c(NA, 1)) expect_equal(result$value, c(0, 1)) })
library(MASS) library(survival) library(mc2d) library(tmvtnorm) #for multivariate normal library(mvtnorm) library(MCMCpack) #for inverse whishart library(mvnfast) #for fast mvrnorm source("update_pos.R") #store all MCMC updates functions source("mcmc.R") #store the function to run MCMC source("Marginal_Surv.R") #store the function to compute the marginal survivals source("Estimand.R") #store the function to compute the causal estimand h(u) ##full_data: The first column is observed progression time, the second column is the observed ##survival time, the third column is delta (the censoring indicator for progress), ## and the last column is the xi (the censoring indicator for survival) ##delta=xi=1, we observe both progression time and death time ##delta=xi=0, we only have the censoring time C ##delta=1, xi=0, we observe progression time, but censored before observing death ##delta=0, xi=1, we observe death only, but neither progression nor death load("data.Rdata") ######################################################################## Niter = 5000 #the number of MCMC iterations burn.in = 2000 #the number of burn.in lag=10 #save samples every lag iterations nsave = (Niter-burn.in)/lag #the number of saved samples #Not run. The MCMC result is saved in the file "saved_mcmc.RData" #mcmc_result <- main_mcmc(Niter, burn.in, lag, full_data, Z) #Reproduce Figure 1 in Supplementary Material ##############Marginal load("saved_mcmc.RData") #NOT RUN. I save the results below in "Figure1.RData". # figure1_result<-Marginal_survival(full_data, Z, mcmc0, mcmc1) # fmean0_ave=figure1_result$fmean0_ave # fmean1_ave=figure1_result$fmean1_ave # fquantile0=figure1_result$fquantile0 # fquantile1=figure1_result$fquantile1 load("Figure1.RData") library(survival) pdf("brain_survival.pdf") tim = seq(0,10,0.3) mini.surv <- survfit(Surv(full_data[,2], full_data[,4])~ Z[,1], conf.type="none") plot(mini.surv, col=c(1, 2), xlab="log(Time)", ylab="Survival Probability") lines(tim, fmean0_ave, col=1,lty=2) lines(tim, fquantile0[1,], col=1, lty=3) lines(tim, fquantile0[2,], col=1, lty=3) lines(tim, fmean1_ave, col=2,lty=2) lines(tim, fquantile1[1,], col=2, lty=3) lines(tim, fquantile1[2,], col=2, lty=3) legend("topright", c("Treatment", "Control"), col = c(2,1),lty=1) dev.off() ########################################################## #Reproduce Figure 2 in Supplementary Material ##############h(u) #NOT RUN. I save hu_result in the file "hu_rho1.RDat" when rho=0.2; and hu_result1 in the file "hu_rho2.RDat" when rho=0.8. #rho = 0.2; hu_result <- Estimate_hu(rho, full_data, Z, mcmc0, mcmc1) #rho = 0.8;hu_result1 <- Estimate_hu(rho, full_data, Z, mcmc0, mcmc1) load("hu_rho1.RData") load("hu_rho2.RData") #####Figure 7 h(u) u_range = seq(0,6,0.5) ratio = matrix(0, length(u_range), 2) ratio_interval=array(0, c(2, length(u_range), 2)) tmp = ifelse(hu_result[,,1]<=0.05 & hu_result[,,2]<=0.05, 1, hu_result[,,2]/hu_result[,,1]) tmp1 = ifelse(hu_result1[,,1]<=0.05 & hu_result1[,,2]<=0.05, 1, hu_result1[,,2]/hu_result1[,,1]) for (u_index in 1:length(u_range)) { ratio[u_index,1] = mean(tmp[u_index,]) ratio_interval[, u_index, 1] = quantile(tmp[u_index,], c(0.025, 0.975)) ratio[u_index,2] = mean(tmp1[u_index,]) ratio_interval[, u_index, 2] = quantile(tmp1[u_index,], c(0.025, 0.975)) } pdf("hu.pdf") par(mar=c(5.1,5.1,4.1,2.1)) plot(u_range, predict(loess(ratio[,1]~u_range)),"l",xlab="log(Time) (u)", ylab=expression(paste("Estimate of", " ", tau, "(u)")),ylim=c(0, 2),cex.axis=2, cex.lab=2) lines(u_range, predict(loess(ratio_interval[1,,1]~u_range)),col=1,lty=2) lines(u_range, predict(loess(ratio_interval[2,,1]~u_range)),col=1,lty=2) lines(u_range, predict(loess(ratio[,2]~u_range)),col=2) lines(u_range, predict(loess(ratio_interval[1,,2]~u_range)),col=2,lty=2) lines(u_range, predict(loess(ratio_interval[2,,2]~u_range)),col=2,lty=2) legend("topright", c(expression(paste(rho, "=0.2")),expression(paste(rho, "=0.8"))), col = c(1, 2),lty=c(1,1,1)) dev.off()
/main.R
no_license
sommukh/BaySemiCompeting
R
false
false
4,014
r
library(MASS) library(survival) library(mc2d) library(tmvtnorm) #for multivariate normal library(mvtnorm) library(MCMCpack) #for inverse whishart library(mvnfast) #for fast mvrnorm source("update_pos.R") #store all MCMC updates functions source("mcmc.R") #store the function to run MCMC source("Marginal_Surv.R") #store the function to compute the marginal survivals source("Estimand.R") #store the function to compute the causal estimand h(u) ##full_data: The first column is observed progression time, the second column is the observed ##survival time, the third column is delta (the censoring indicator for progress), ## and the last column is the xi (the censoring indicator for survival) ##delta=xi=1, we observe both progression time and death time ##delta=xi=0, we only have the censoring time C ##delta=1, xi=0, we observe progression time, but censored before observing death ##delta=0, xi=1, we observe death only, but neither progression nor death load("data.Rdata") ######################################################################## Niter = 5000 #the number of MCMC iterations burn.in = 2000 #the number of burn.in lag=10 #save samples every lag iterations nsave = (Niter-burn.in)/lag #the number of saved samples #Not run. The MCMC result is saved in the file "saved_mcmc.RData" #mcmc_result <- main_mcmc(Niter, burn.in, lag, full_data, Z) #Reproduce Figure 1 in Supplementary Material ##############Marginal load("saved_mcmc.RData") #NOT RUN. I save the results below in "Figure1.RData". # figure1_result<-Marginal_survival(full_data, Z, mcmc0, mcmc1) # fmean0_ave=figure1_result$fmean0_ave # fmean1_ave=figure1_result$fmean1_ave # fquantile0=figure1_result$fquantile0 # fquantile1=figure1_result$fquantile1 load("Figure1.RData") library(survival) pdf("brain_survival.pdf") tim = seq(0,10,0.3) mini.surv <- survfit(Surv(full_data[,2], full_data[,4])~ Z[,1], conf.type="none") plot(mini.surv, col=c(1, 2), xlab="log(Time)", ylab="Survival Probability") lines(tim, fmean0_ave, col=1,lty=2) lines(tim, fquantile0[1,], col=1, lty=3) lines(tim, fquantile0[2,], col=1, lty=3) lines(tim, fmean1_ave, col=2,lty=2) lines(tim, fquantile1[1,], col=2, lty=3) lines(tim, fquantile1[2,], col=2, lty=3) legend("topright", c("Treatment", "Control"), col = c(2,1),lty=1) dev.off() ########################################################## #Reproduce Figure 2 in Supplementary Material ##############h(u) #NOT RUN. I save hu_result in the file "hu_rho1.RDat" when rho=0.2; and hu_result1 in the file "hu_rho2.RDat" when rho=0.8. #rho = 0.2; hu_result <- Estimate_hu(rho, full_data, Z, mcmc0, mcmc1) #rho = 0.8;hu_result1 <- Estimate_hu(rho, full_data, Z, mcmc0, mcmc1) load("hu_rho1.RData") load("hu_rho2.RData") #####Figure 7 h(u) u_range = seq(0,6,0.5) ratio = matrix(0, length(u_range), 2) ratio_interval=array(0, c(2, length(u_range), 2)) tmp = ifelse(hu_result[,,1]<=0.05 & hu_result[,,2]<=0.05, 1, hu_result[,,2]/hu_result[,,1]) tmp1 = ifelse(hu_result1[,,1]<=0.05 & hu_result1[,,2]<=0.05, 1, hu_result1[,,2]/hu_result1[,,1]) for (u_index in 1:length(u_range)) { ratio[u_index,1] = mean(tmp[u_index,]) ratio_interval[, u_index, 1] = quantile(tmp[u_index,], c(0.025, 0.975)) ratio[u_index,2] = mean(tmp1[u_index,]) ratio_interval[, u_index, 2] = quantile(tmp1[u_index,], c(0.025, 0.975)) } pdf("hu.pdf") par(mar=c(5.1,5.1,4.1,2.1)) plot(u_range, predict(loess(ratio[,1]~u_range)),"l",xlab="log(Time) (u)", ylab=expression(paste("Estimate of", " ", tau, "(u)")),ylim=c(0, 2),cex.axis=2, cex.lab=2) lines(u_range, predict(loess(ratio_interval[1,,1]~u_range)),col=1,lty=2) lines(u_range, predict(loess(ratio_interval[2,,1]~u_range)),col=1,lty=2) lines(u_range, predict(loess(ratio[,2]~u_range)),col=2) lines(u_range, predict(loess(ratio_interval[1,,2]~u_range)),col=2,lty=2) lines(u_range, predict(loess(ratio_interval[2,,2]~u_range)),col=2,lty=2) legend("topright", c(expression(paste(rho, "=0.2")),expression(paste(rho, "=0.8"))), col = c(1, 2),lty=c(1,1,1)) dev.off()
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RFunctions_1_0_2.r \name{omit.history} \alias{omit.history} \title{Function to remove irrelevant covariate history from a tidy dataframe used to construct balance tables and plots. Takes input from lengthen(), balance() or diagnose().} \usage{ omit.history(input, omission, covariate.name, distance = NULL, times = NULL) } \arguments{ \item{input}{restructured tidy dataframe from lengthen() or a dataframe from balance() or diagnose()} \item{omission}{type of omission e.g. "fixed" or "relative" or "same.time"} \item{covariate.name}{root name of the covariate e.g. "m"} \item{distance}{the distance between exposure and covariate measurements e.g. 2} \item{times}{a vector of measurement times for the covariate e.g. c(1,2,3)} } \value{ A "tidy" dataframe where covariate measurements have been removed based on their fixed measurement time or relative distance from exposure measurements (at time t). The removed covariate measurements are typically ones chosen to be ones that do not support exchangeability assumptions at time t. } \description{ Function to remove irrelevant covariate history from a tidy dataframe used to construct balance tables and plots. Takes input from lengthen(), balance() or diagnose(). } \details{ Intended for use with Diagnostics 1 and 3. omit.history() will take the dataframe produced by lengthen() and remove covariate measurements based on their fixed measurement time or relative distance from exposure measurements (at time t) i.e. ones that do not support exchangeability assumptions at time t. The covariate.name argument is used to name the covariate whose history you wish to modify. To process the same manipulation for a set of covariates, simply supply a vector of covariate names to covariate.name. The omission argument determines whether the covariate history is (i) set to missing for certain covariate measurement times (omission ="fixed" with times=a vector of integers) or (ii) set to missing only for covariate measurement times at or before a certain distance k from exposure measurement times (omission ="relative" with distance=some integer) or (iii) set to missing only for covariate measurements that share the same timing as exposure measurements (omission ="same.time"). The removed values are set to missing. For example, using the "fixed" omission option for covariate "l" at time 2 will set all data on "l" at time 2 to missing, regardless of the exposure measurement time. In contrast, using the "relative" omission option for covariate "l" with distance 2 will only set to missing data on "l" that is measured two units or more before the exposure measurement time (i.e. t-2, t-3, t-4 and so on). Last, using the "same.time" omission option for covariate "l" will set to missing all data on "l" that is measured at the same time as the exposure. Missing data will be ignored when this dataframe is supplied to the balance() function. They will not contribute to the resulting covariate balance table, nor to plots produced by makeplot(), nor will they contribute to any summary metrics are estimated by averaging over person-time. Note that omit.history also accepts input from balance() and diagnose() when their scope argument has been set to "all" (i.e., not averaging over time or distance or selecting times based on recency of measurements). } \examples{ # Simulate the output of lengthen() id <- as.numeric(rep(c(1,1,1,2,2,2), 7)) time.exposure <- as.numeric(rep(c(0,1,2), 14)) a <- as.character(rep(c(0,1,1,1,1,0), 7)) h <- as.character(rep(c("H","H0","H01","H","H1","H11"), 7)) name.cov <- as.character(c(rep("n",6), rep("l",18), rep("m",18))) time.covariate <- as.numeric(c(rep(0,6), rep(c(rep(0,6), rep(1,6),rep(2,6)), 2))) value.cov <- as.numeric(c(rep(1,9), rep(0,3), rep(1,6), rep(0,3), rep(1,3), rep(0,12), rep(1,3), rep(0,3))) mydata.long <- data.frame(id, time.exposure, a, h, name.cov, time.covariate, value.cov) # Run the omit.history() function mydata.long.omit <- omit.history(input=mydata.long, omission="relative", covariate.name=c("l","m"), distance=1) }
/man/omit.history.Rd
no_license
jwjackson/confoundr
R
false
true
4,350
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RFunctions_1_0_2.r \name{omit.history} \alias{omit.history} \title{Function to remove irrelevant covariate history from a tidy dataframe used to construct balance tables and plots. Takes input from lengthen(), balance() or diagnose().} \usage{ omit.history(input, omission, covariate.name, distance = NULL, times = NULL) } \arguments{ \item{input}{restructured tidy dataframe from lengthen() or a dataframe from balance() or diagnose()} \item{omission}{type of omission e.g. "fixed" or "relative" or "same.time"} \item{covariate.name}{root name of the covariate e.g. "m"} \item{distance}{the distance between exposure and covariate measurements e.g. 2} \item{times}{a vector of measurement times for the covariate e.g. c(1,2,3)} } \value{ A "tidy" dataframe where covariate measurements have been removed based on their fixed measurement time or relative distance from exposure measurements (at time t). The removed covariate measurements are typically ones chosen to be ones that do not support exchangeability assumptions at time t. } \description{ Function to remove irrelevant covariate history from a tidy dataframe used to construct balance tables and plots. Takes input from lengthen(), balance() or diagnose(). } \details{ Intended for use with Diagnostics 1 and 3. omit.history() will take the dataframe produced by lengthen() and remove covariate measurements based on their fixed measurement time or relative distance from exposure measurements (at time t) i.e. ones that do not support exchangeability assumptions at time t. The covariate.name argument is used to name the covariate whose history you wish to modify. To process the same manipulation for a set of covariates, simply supply a vector of covariate names to covariate.name. The omission argument determines whether the covariate history is (i) set to missing for certain covariate measurement times (omission ="fixed" with times=a vector of integers) or (ii) set to missing only for covariate measurement times at or before a certain distance k from exposure measurement times (omission ="relative" with distance=some integer) or (iii) set to missing only for covariate measurements that share the same timing as exposure measurements (omission ="same.time"). The removed values are set to missing. For example, using the "fixed" omission option for covariate "l" at time 2 will set all data on "l" at time 2 to missing, regardless of the exposure measurement time. In contrast, using the "relative" omission option for covariate "l" with distance 2 will only set to missing data on "l" that is measured two units or more before the exposure measurement time (i.e. t-2, t-3, t-4 and so on). Last, using the "same.time" omission option for covariate "l" will set to missing all data on "l" that is measured at the same time as the exposure. Missing data will be ignored when this dataframe is supplied to the balance() function. They will not contribute to the resulting covariate balance table, nor to plots produced by makeplot(), nor will they contribute to any summary metrics are estimated by averaging over person-time. Note that omit.history also accepts input from balance() and diagnose() when their scope argument has been set to "all" (i.e., not averaging over time or distance or selecting times based on recency of measurements). } \examples{ # Simulate the output of lengthen() id <- as.numeric(rep(c(1,1,1,2,2,2), 7)) time.exposure <- as.numeric(rep(c(0,1,2), 14)) a <- as.character(rep(c(0,1,1,1,1,0), 7)) h <- as.character(rep(c("H","H0","H01","H","H1","H11"), 7)) name.cov <- as.character(c(rep("n",6), rep("l",18), rep("m",18))) time.covariate <- as.numeric(c(rep(0,6), rep(c(rep(0,6), rep(1,6),rep(2,6)), 2))) value.cov <- as.numeric(c(rep(1,9), rep(0,3), rep(1,6), rep(0,3), rep(1,3), rep(0,12), rep(1,3), rep(0,3))) mydata.long <- data.frame(id, time.exposure, a, h, name.cov, time.covariate, value.cov) # Run the omit.history() function mydata.long.omit <- omit.history(input=mydata.long, omission="relative", covariate.name=c("l","m"), distance=1) }
#' Matrix Inversion #' #' Performs a Moore-Penrose generalized inverse (also called the Pseudoinverse). #' #' @inheritParams cor_to_pcor #' @examples #' m <- cor(iris[1:4]) #' matrix_inverse(m) #' @param m Matrix for which the inverse is required. #' #' @return An inversed matrix. #' @seealso pinv from the pracma package #' @export matrix_inverse <- function(m, tol = .Machine$double.eps^(2 / 3)) { # valid matrix checks # valid matrix checks if (!isSquare(m)) { stop("The matrix should be a square matrix.", call. = FALSE) } stopifnot(is.numeric(m), length(dim(m)) == 2, is.matrix(m)) s <- svd(m) p <- (s$d > max(tol * s$d[1], 0)) if (all(p)) { mp <- s$v %*% (1 / s$d * t(s$u)) } else if (any(p)) { mp <- s$v[, p, drop = FALSE] %*% (1 / s$d[p] * t(s$u[, p, drop = FALSE])) } else { mp <- matrix(0, nrow = ncol(m), ncol = nrow(m)) } colnames(mp) <- colnames(m) row.names(mp) <- row.names(m) mp } #' @keywords internal .invert_matrix <- function(m, tol = .Machine$double.eps^(2 / 3)) { if (det(m) < tol) { # The inverse of variance-covariance matrix is calculated using # Moore-Penrose generalized matrix invers due to its determinant of zero. out <- matrix_inverse(m, tol) colnames(out) <- colnames(m) row.names(out) <- row.names(m) } else { out <- solve(m) } out }
/R/matrix_inverse.R
no_license
cran/correlation
R
false
false
1,404
r
#' Matrix Inversion #' #' Performs a Moore-Penrose generalized inverse (also called the Pseudoinverse). #' #' @inheritParams cor_to_pcor #' @examples #' m <- cor(iris[1:4]) #' matrix_inverse(m) #' @param m Matrix for which the inverse is required. #' #' @return An inversed matrix. #' @seealso pinv from the pracma package #' @export matrix_inverse <- function(m, tol = .Machine$double.eps^(2 / 3)) { # valid matrix checks # valid matrix checks if (!isSquare(m)) { stop("The matrix should be a square matrix.", call. = FALSE) } stopifnot(is.numeric(m), length(dim(m)) == 2, is.matrix(m)) s <- svd(m) p <- (s$d > max(tol * s$d[1], 0)) if (all(p)) { mp <- s$v %*% (1 / s$d * t(s$u)) } else if (any(p)) { mp <- s$v[, p, drop = FALSE] %*% (1 / s$d[p] * t(s$u[, p, drop = FALSE])) } else { mp <- matrix(0, nrow = ncol(m), ncol = nrow(m)) } colnames(mp) <- colnames(m) row.names(mp) <- row.names(m) mp } #' @keywords internal .invert_matrix <- function(m, tol = .Machine$double.eps^(2 / 3)) { if (det(m) < tol) { # The inverse of variance-covariance matrix is calculated using # Moore-Penrose generalized matrix invers due to its determinant of zero. out <- matrix_inverse(m, tol) colnames(out) <- colnames(m) row.names(out) <- row.names(m) } else { out <- solve(m) } out }
# Using Probability Simulation in R # February 15 2018 # Adrian Wiegman # stochastic vs deterministic models # install/load necessary packages library(ggplot2) #generate random uniform data testData <- runif(1000) qplot(x=testData) #creating a function in R to make custom graphs #functions must go at the top of programs so that #they can be compiled into the memory #///FUNCTIONS----------------------- #_Function Histo # better histogram plot # input xData = numeric vector # input fColor = fill color # output = corrected ggplot histogram # output = summary statistics # output = 95% interval Histo <- function(xData=runif(1000),fColor='salmon') {z <-qplot(x=xData,color=I('black'),fill=I(fColor),xlab='X',boundary=0) print(z) print(summary(xData)) print(quantile(x=xData,probs=c(0.025,0.975))) } #function(){} is an R function for building functions #qplot() is a ggplot function #I() is a variable for passing arguments????? #Function IHisto #works better than histo for integer values! #input xData = vector of integers #input fColor = fill color #output = summary of x data #output = 95% confidence interval iHisto <- function(xData=runif(1000),fColor='salmon') { z <-qplot(x=factor(xData),color=I('black'),fill=I(fColor),xlab='X',boundary=0) print(z) print(summary(xData)) print(quantile(x=xData,probs=c(0.025,0.975))) } #///MAIN PROGRAM------------------------- Histo() temp <- rnorm(1000) Histo(xData=temp,fColor='yellow1') iHisto() #DISCRETE PROBABILITY DISTRIBUTION #Poisson distribution temp2 <- rpois(n=1000,lambda=0.5) #poisson distribution, lamba represents the average rate of events per sampling interval #poisson gets more course as lambda approaches zero iHisto(temp2) iHisto(xData=temp2, fColor='springgreen') mean(temp2==0) # mean of a string of TRUE FALS that were coerced to integer # Binomial distribution # integer from 0 to number of trials # input parameters... # n= number of trials # size= number of replications per trial # p= probaility of success zz <- rbinom(n=1000,size=40,p=0.75) iHisto(xData=zz,fColor='slateblue') #poisson constant rate process z <- rpois(n=1000,lambda=1) iHisto(z) mean(z==0) #the negative binomial distribution fits environmental data nicely #range from 0 to infinity #n = number of replicates #size is number of trials per replicate # prob = probability of success with 1 trial z < rnbinom(n=1000, size=2, prob=0.5) iHisto(z) #number of failures until we get to a certain number of successes # imaging a string of coin toss results # success = 2 H # HH = 0 failure # THH = 1 failure # HTHH = 2 failures # THTHH = 3 failures #alternatively we can call mu #size = index of overdispersion #small size leads to high dispersion z <- rnbinom(n=1000, mu=1.1, size=0.7) iHisto(z) #special case where the number of trials = 1 and prob is low z <- rnbinom(n=1000, size=1, prob=0.05) iHisto(z) #probability is high z <- rnbinom(n=1000, size=1, prob=0.95) iHisto(z) #binomial distribution is a TRUE or FALS distribution #---------------------------- #multinomial distribution (greater than two posibilities) #"imagine balls in urns" # size = number of balls # prob = is a vector who's length is equal to the number of urns, containing the probability of a ball landing in each urn z <-rmultinom(n=1000, size=20,prob=c(0.2,0.7,0.1)) #don't print this out if larger than 10 rowSums(z) rowMeans(z) #creating a multinomial with sample z <- sample(x=LETTERS[1:3], size=20, prob=c(0.2,0.7,0.1), replace=TRUE) z table(z) # #CONTINOUS PROBABILITY DISTRIBUTIONS #uniform distribution z <- runif(n=1000, min=3, max=10.2) Histo(z) #normal distribution z <- rnorm(n=1000, mean=2.2, sd=6) Histo(z) #problematic for simulation because it gives negative values which don't normally occur in real life (e.g. biomass) #gamma distribution #distribution of waiting times for failure to occur #can only generate positve values #shape and scape parameters # mean = shape*scale # variance = shape*scale^2 z <- rgamma(n=1000, shape=1,scale=10) #exponential decay Histo(z) z <- rgamma(n=1000, shape=10,scale=10) #moves towards bell with increase in shape Histo(z) z <- rgamma(n=1000, shape=0.1,scale=10) # power decay Histo(z) #beta distribution #bounded between 0 and 1 # change boundary by adding or multiplying final vector # conjugate prior for a binomial distribution # binomial begins with underlying probability # generates a number of successes and failures # p is ~ success/(success + failure) # problem at small sample size # parameters # shape1 = number of successes + 1 # shape2 = number of failures + 1 #though experiment: # start with no data successes = 0 failures = 0 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # two coin tosses successes = 1 failures = 1 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # 10 coin tosses successes = 10 failures = 10 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # 100 coin tosses with a biassed coin successes = 90 failures = 10 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # small values coin tosses with a biassed coin z <- rbeta(n=1000,shape1=0.1,shape2=10) Histo(z) z <- rbeta(n=1000,shape1=0.1,shape2=0.1) Histo(z) #-------------------------------------------- # MAXIMUM LIKELIHOOD ESTIMATION IN R x<-rnorm(1000,mean=92.5,sd=2.5) Histo(x) library(MASS) #fit distribution function: #fit to normal zFit <- fitdistr(x,'normal') str(zFit) zFit$estimate # the dollar sign references a vector in a list #now fit a gamma zFit <- fitdistr(x,'gamma') zFit$estimate zNew <- rgamma(n=1000, shape=1449, rate=15.7) Histo(zNew) #gamma distribution replicates normal quite nicely summary(x) z <- runif(n=1000,min=85,max=100) Histo(z)
/R/ProbabilityDistributions.R
no_license
arhwiegman/Scripts
R
false
false
5,737
r
# Using Probability Simulation in R # February 15 2018 # Adrian Wiegman # stochastic vs deterministic models # install/load necessary packages library(ggplot2) #generate random uniform data testData <- runif(1000) qplot(x=testData) #creating a function in R to make custom graphs #functions must go at the top of programs so that #they can be compiled into the memory #///FUNCTIONS----------------------- #_Function Histo # better histogram plot # input xData = numeric vector # input fColor = fill color # output = corrected ggplot histogram # output = summary statistics # output = 95% interval Histo <- function(xData=runif(1000),fColor='salmon') {z <-qplot(x=xData,color=I('black'),fill=I(fColor),xlab='X',boundary=0) print(z) print(summary(xData)) print(quantile(x=xData,probs=c(0.025,0.975))) } #function(){} is an R function for building functions #qplot() is a ggplot function #I() is a variable for passing arguments????? #Function IHisto #works better than histo for integer values! #input xData = vector of integers #input fColor = fill color #output = summary of x data #output = 95% confidence interval iHisto <- function(xData=runif(1000),fColor='salmon') { z <-qplot(x=factor(xData),color=I('black'),fill=I(fColor),xlab='X',boundary=0) print(z) print(summary(xData)) print(quantile(x=xData,probs=c(0.025,0.975))) } #///MAIN PROGRAM------------------------- Histo() temp <- rnorm(1000) Histo(xData=temp,fColor='yellow1') iHisto() #DISCRETE PROBABILITY DISTRIBUTION #Poisson distribution temp2 <- rpois(n=1000,lambda=0.5) #poisson distribution, lamba represents the average rate of events per sampling interval #poisson gets more course as lambda approaches zero iHisto(temp2) iHisto(xData=temp2, fColor='springgreen') mean(temp2==0) # mean of a string of TRUE FALS that were coerced to integer # Binomial distribution # integer from 0 to number of trials # input parameters... # n= number of trials # size= number of replications per trial # p= probaility of success zz <- rbinom(n=1000,size=40,p=0.75) iHisto(xData=zz,fColor='slateblue') #poisson constant rate process z <- rpois(n=1000,lambda=1) iHisto(z) mean(z==0) #the negative binomial distribution fits environmental data nicely #range from 0 to infinity #n = number of replicates #size is number of trials per replicate # prob = probability of success with 1 trial z < rnbinom(n=1000, size=2, prob=0.5) iHisto(z) #number of failures until we get to a certain number of successes # imaging a string of coin toss results # success = 2 H # HH = 0 failure # THH = 1 failure # HTHH = 2 failures # THTHH = 3 failures #alternatively we can call mu #size = index of overdispersion #small size leads to high dispersion z <- rnbinom(n=1000, mu=1.1, size=0.7) iHisto(z) #special case where the number of trials = 1 and prob is low z <- rnbinom(n=1000, size=1, prob=0.05) iHisto(z) #probability is high z <- rnbinom(n=1000, size=1, prob=0.95) iHisto(z) #binomial distribution is a TRUE or FALS distribution #---------------------------- #multinomial distribution (greater than two posibilities) #"imagine balls in urns" # size = number of balls # prob = is a vector who's length is equal to the number of urns, containing the probability of a ball landing in each urn z <-rmultinom(n=1000, size=20,prob=c(0.2,0.7,0.1)) #don't print this out if larger than 10 rowSums(z) rowMeans(z) #creating a multinomial with sample z <- sample(x=LETTERS[1:3], size=20, prob=c(0.2,0.7,0.1), replace=TRUE) z table(z) # #CONTINOUS PROBABILITY DISTRIBUTIONS #uniform distribution z <- runif(n=1000, min=3, max=10.2) Histo(z) #normal distribution z <- rnorm(n=1000, mean=2.2, sd=6) Histo(z) #problematic for simulation because it gives negative values which don't normally occur in real life (e.g. biomass) #gamma distribution #distribution of waiting times for failure to occur #can only generate positve values #shape and scape parameters # mean = shape*scale # variance = shape*scale^2 z <- rgamma(n=1000, shape=1,scale=10) #exponential decay Histo(z) z <- rgamma(n=1000, shape=10,scale=10) #moves towards bell with increase in shape Histo(z) z <- rgamma(n=1000, shape=0.1,scale=10) # power decay Histo(z) #beta distribution #bounded between 0 and 1 # change boundary by adding or multiplying final vector # conjugate prior for a binomial distribution # binomial begins with underlying probability # generates a number of successes and failures # p is ~ success/(success + failure) # problem at small sample size # parameters # shape1 = number of successes + 1 # shape2 = number of failures + 1 #though experiment: # start with no data successes = 0 failures = 0 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # two coin tosses successes = 1 failures = 1 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # 10 coin tosses successes = 10 failures = 10 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # 100 coin tosses with a biassed coin successes = 90 failures = 10 z <- rbeta(n=1000,shape1=(successes+1),shape2=(failures+1)) Histo(z) # small values coin tosses with a biassed coin z <- rbeta(n=1000,shape1=0.1,shape2=10) Histo(z) z <- rbeta(n=1000,shape1=0.1,shape2=0.1) Histo(z) #-------------------------------------------- # MAXIMUM LIKELIHOOD ESTIMATION IN R x<-rnorm(1000,mean=92.5,sd=2.5) Histo(x) library(MASS) #fit distribution function: #fit to normal zFit <- fitdistr(x,'normal') str(zFit) zFit$estimate # the dollar sign references a vector in a list #now fit a gamma zFit <- fitdistr(x,'gamma') zFit$estimate zNew <- rgamma(n=1000, shape=1449, rate=15.7) Histo(zNew) #gamma distribution replicates normal quite nicely summary(x) z <- runif(n=1000,min=85,max=100) Histo(z)
## HCDB sampling locations and sample type ## library(dataone) #needed to run library(dplyr) ## Initialize a client to interact with DataONE cli <- D1Client("PROD", "urn:node:GOA") hcdb=read.csv("Total_Aromatic_Alkanes_PWS.csv",header=T) hcdb=hcdb %>% mutate(matr2=tolower(matrix)) %>% filter(!matr2=='fblank') %>% filter(!matr2=='blank') %>% filter(!matr2=='us') %>% filter(!matr2=='qcsed') ### mapping library(rworldmap) library(rworldxtra) library(rgdal) library(ggplot2) world=getMap('low',projection=NA) worldB=world[!is.na(world$continent),] world2=worldB[worldB$continent=='North America' & worldB$LON<0,] fWorld=fortify(world2) colMap=c('dimgrey','black') extDf=data.frame(xmin=-157,xmax=-143,ymin=56,ymax=62) ggplot(data=fWorld) + geom_map(map=fWorld,aes(x=long,y=lat,map_id=id))+ coord_map(xlim = c(-180, -123),ylim = c(34, 63))+ geom_point(data=hcdb,mapping=aes(x=as.numeric(LONG), y=as.numeric(LAT),colour=matr2),size=1,alpha=0.7, shape=20) + #scale_color_manual(values=tsColors,name='category')+ #,breaks=rev(cnLevels),labels=rev(cnLevels) #geom_rect(data=extDf,aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax),color='gray53',fill=NULL,lwd=0.5,alpha=0.75)+ ggtitle('Locations of HCDB samples in the Gulf of Alaska')+ xlab('lon')+ theme(axis.line=element_line(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position='none', axis.text=element_text(size=14), title=element_text(size=16,face="bold"))+ guides(colour = guide_legend(override.aes = list(size=6))) ggsave("./results/hcdbSamplesGOA.png", width=12, height=8) ### ZOOOOOM in: tempFilename <- "./results/akMapData.zip" akMapObject=getD1Object(cli,'df35d.431.1') ## shp file from dataONE akMapData <- getData(akMapObject) write(akMapData,file = "./results/akMapData") file.rename('./results/akMapData',tempFilename) unzip(tempFilename, list=FALSE) ### ERRORS, not sure why, line 21: Error in name == "GADM" : comparison (1) is possible only for atomic and list types state <- readOGR('GIS','statep010') stateDf=fortify(state) ## Colors: library('RColorBrewer') ggplot(data=stateDf, aes(y=lat, x=lon)) + geom_map(map=stateDf,aes(x=long,y=lat,map_id=id))+ coord_map(xlim = c(-157, -143),ylim = c(56, 62))+ #scale_fill_manual(values=colMap)+ geom_point(data=hcdb, aes(x=as.numeric(LONG), y=as.numeric(LAT),colour=matrix), size=2, shape=20,alpha=0.75) + scale_colour_brewer(palette='Set1',name='Sample type')+#,breaks=cnLevels,labels=cnLevels ggtitle('Locations of HCDB samples in Northern GOA')+ theme(axis.line=element_line('black'), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position='right', axis.text=element_text(size=14), title=element_text(size=16,face="bold"))+ guides(colour = guide_legend(override.aes = list(size=6))) ggsave("./results/hcdbSampleLocs.png", width=12, height=9) ############################################ ###########################################
/transparency/test/new_hcdbSites.R
no_license
shek21/DataONE_2018_Summer_Intern_Project1
R
false
false
3,224
r
## HCDB sampling locations and sample type ## library(dataone) #needed to run library(dplyr) ## Initialize a client to interact with DataONE cli <- D1Client("PROD", "urn:node:GOA") hcdb=read.csv("Total_Aromatic_Alkanes_PWS.csv",header=T) hcdb=hcdb %>% mutate(matr2=tolower(matrix)) %>% filter(!matr2=='fblank') %>% filter(!matr2=='blank') %>% filter(!matr2=='us') %>% filter(!matr2=='qcsed') ### mapping library(rworldmap) library(rworldxtra) library(rgdal) library(ggplot2) world=getMap('low',projection=NA) worldB=world[!is.na(world$continent),] world2=worldB[worldB$continent=='North America' & worldB$LON<0,] fWorld=fortify(world2) colMap=c('dimgrey','black') extDf=data.frame(xmin=-157,xmax=-143,ymin=56,ymax=62) ggplot(data=fWorld) + geom_map(map=fWorld,aes(x=long,y=lat,map_id=id))+ coord_map(xlim = c(-180, -123),ylim = c(34, 63))+ geom_point(data=hcdb,mapping=aes(x=as.numeric(LONG), y=as.numeric(LAT),colour=matr2),size=1,alpha=0.7, shape=20) + #scale_color_manual(values=tsColors,name='category')+ #,breaks=rev(cnLevels),labels=rev(cnLevels) #geom_rect(data=extDf,aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax),color='gray53',fill=NULL,lwd=0.5,alpha=0.75)+ ggtitle('Locations of HCDB samples in the Gulf of Alaska')+ xlab('lon')+ theme(axis.line=element_line(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position='none', axis.text=element_text(size=14), title=element_text(size=16,face="bold"))+ guides(colour = guide_legend(override.aes = list(size=6))) ggsave("./results/hcdbSamplesGOA.png", width=12, height=8) ### ZOOOOOM in: tempFilename <- "./results/akMapData.zip" akMapObject=getD1Object(cli,'df35d.431.1') ## shp file from dataONE akMapData <- getData(akMapObject) write(akMapData,file = "./results/akMapData") file.rename('./results/akMapData',tempFilename) unzip(tempFilename, list=FALSE) ### ERRORS, not sure why, line 21: Error in name == "GADM" : comparison (1) is possible only for atomic and list types state <- readOGR('GIS','statep010') stateDf=fortify(state) ## Colors: library('RColorBrewer') ggplot(data=stateDf, aes(y=lat, x=lon)) + geom_map(map=stateDf,aes(x=long,y=lat,map_id=id))+ coord_map(xlim = c(-157, -143),ylim = c(56, 62))+ #scale_fill_manual(values=colMap)+ geom_point(data=hcdb, aes(x=as.numeric(LONG), y=as.numeric(LAT),colour=matrix), size=2, shape=20,alpha=0.75) + scale_colour_brewer(palette='Set1',name='Sample type')+#,breaks=cnLevels,labels=cnLevels ggtitle('Locations of HCDB samples in Northern GOA')+ theme(axis.line=element_line('black'), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank(), legend.position='right', axis.text=element_text(size=14), title=element_text(size=16,face="bold"))+ guides(colour = guide_legend(override.aes = list(size=6))) ggsave("./results/hcdbSampleLocs.png", width=12, height=9) ############################################ ###########################################
############################################################# # Section 6.10 Analysis of the Stanford Heart Transplant Data ############################################################# library(LearnBayes) data(stanfordheart) start=c(0,3,-1) laplacefit=laplace(transplantpost,start,stanfordheart) laplacefit proposal=list(var=laplacefit$var,scale=2) s=rwmetrop(transplantpost,proposal,start,10000,stanfordheart) s$accept par(mfrow=c(2,2)) tau=exp(s$par[,1]) plot(density(tau),main="TAU") lambda=exp(s$par[,2]) plot(density(lambda),main="LAMBDA") p=exp(s$par[,3]) plot(density(p),main="P") apply(exp(s$par),2,quantile,c(.05,.5,.95)) par(mfrow=c(1,1)) t=seq(1,240) p5=0*t; p50=0*t; p95=0*t for (j in 1:240) { S=(lambda/(lambda+t[j]))^p q=quantile(S,c(.05,.5,.95)) p5[j]=q[1]; p50[j]=q[2]; p95[j]=q[3]} plot(t,p50,type="l",ylim=c(0,1),ylab="Prob(Survival)", xlab="time") lines(t,p5,lty=2) lines(t,p95,lty=2)
/04_Bayesian Statistics/New Folder With Items/bayesian_computation/Chapter.6.10.R
no_license
Yousuf28/Statistics_with_R_Coursera
R
false
false
944
r
############################################################# # Section 6.10 Analysis of the Stanford Heart Transplant Data ############################################################# library(LearnBayes) data(stanfordheart) start=c(0,3,-1) laplacefit=laplace(transplantpost,start,stanfordheart) laplacefit proposal=list(var=laplacefit$var,scale=2) s=rwmetrop(transplantpost,proposal,start,10000,stanfordheart) s$accept par(mfrow=c(2,2)) tau=exp(s$par[,1]) plot(density(tau),main="TAU") lambda=exp(s$par[,2]) plot(density(lambda),main="LAMBDA") p=exp(s$par[,3]) plot(density(p),main="P") apply(exp(s$par),2,quantile,c(.05,.5,.95)) par(mfrow=c(1,1)) t=seq(1,240) p5=0*t; p50=0*t; p95=0*t for (j in 1:240) { S=(lambda/(lambda+t[j]))^p q=quantile(S,c(.05,.5,.95)) p5[j]=q[1]; p50[j]=q[2]; p95[j]=q[3]} plot(t,p50,type="l",ylim=c(0,1),ylab="Prob(Survival)", xlab="time") lines(t,p5,lty=2) lines(t,p95,lty=2)
shinyplotsingle<- function(fit, xl, xu, ql, qu, ex){ plotlimits <- paste(xl, xu , sep = ",") # Determine set of suitable distributions if(fit$limits[ex, 1]>=0 & fit$limits[ex, 2] < Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Gamma" = 4, "log normal" = 5, "Log Student t" = 6, "Beta" = 7, "Best fitting" =8) } if(fit$limits[ex, 1]>=0 & fit$limits[ex, 2] == Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Gamma" = 4, "log normal" = 5, "Log Student t" = 6, "Best fitting" =8) } if(fit$limits[ex, 1]==-Inf & fit$limits[ex, 2] == Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Best fitting" =8) } if(fit$limits[ex, 1]>-Inf & fit$limits[ex, 1] < 0 & fit$limits[ex, 2] < Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Beta" = 7, "Best fitting" =8) } if(is.na(ql) == TRUE){ql <- 0.05} if(is.na(qu) == TRUE){qu <- 0.95} ### runApp(list( ui = shinyUI(fluidPage( # Application title titlePanel("Feedback"), sidebarLayout( sidebarPanel( textInput("xlimits", label = h5("x-axis limits"), value = plotlimits), radioButtons("radio", label = h5("Distribution"), choices = distributionchoices, selected = 1 ), numericInput("fq1", label = h5("lower feedback quantile"), value = ql, min=0, max=1), numericInput("fq2", label = h5("upper feedback quantile"), value = qu ,min=0, max=1) ), mainPanel( plotOutput("distPlot"), tableOutput("values") ) ) )), server = function(input, output) { output$distPlot <- renderPlot({ xlimits<-eval(parse(text=paste("c(",input$xlimits,")"))) dist<-c("hist","normal", "t", "gamma", "lognormal", "logt","beta", "best") drawdensity(fit, d=dist[as.numeric(input$radio)], ql=input$fq1, qu=input$fq2, xl=xlimits[1], xu=xlimits[2], ex=ex) }) ssq <- fit$ssq[1, is.na(fit$ssq[1,])==F] best.index <- which(ssq == min(ssq))[1] quantileValues <- reactive({ xlimits<-eval(parse(text=paste("c(",input$xlimits,")"))) pl<-xlimits[1] pu<-xlimits[2] if(as.numeric(input$radio)==8){index<-best.index}else{index<-as.numeric(input$radio) - 1} if(as.numeric(input$radio)==1){ if(pl == -Inf & fit$limits[ex,1] > -Inf){pl <- fit$limits[ex,1]} if(pu == Inf & fit$limits[ex,2] < Inf){pu <- fit$limits[ex,2] } if(pl == -Inf & fit$limits[ex,1] == -Inf){pl <- qnorm(0.001, fit$Normal[ex,1], fit$Normal[ex,2])} if(pu == Inf & fit$limits[ex,2] == Inf){pu <- qnorm(0.999, fit$Normal[ex,1], fit$Normal[ex,2])} p <- c(0, fit$probs[ex,], 1) x <- c(pl, fit$vals[ex,], pu) values <- qhist(c(input$fq1,input$fq2), x, p) } if(as.numeric(input$radio)>1){ temp<-feedback(fit, quantiles=c(input$fq1,input$fq2), ex=ex) values=temp$fitted.quantiles[,index] } data.frame(quantiles=c(input$fq1,input$fq2), values=values) }) output$values <- renderTable({ quantileValues() }) } )) }
/SHELF/R/shinyplotsingle.R
no_license
ingted/R-Examples
R
false
false
3,232
r
shinyplotsingle<- function(fit, xl, xu, ql, qu, ex){ plotlimits <- paste(xl, xu , sep = ",") # Determine set of suitable distributions if(fit$limits[ex, 1]>=0 & fit$limits[ex, 2] < Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Gamma" = 4, "log normal" = 5, "Log Student t" = 6, "Beta" = 7, "Best fitting" =8) } if(fit$limits[ex, 1]>=0 & fit$limits[ex, 2] == Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Gamma" = 4, "log normal" = 5, "Log Student t" = 6, "Best fitting" =8) } if(fit$limits[ex, 1]==-Inf & fit$limits[ex, 2] == Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Best fitting" =8) } if(fit$limits[ex, 1]>-Inf & fit$limits[ex, 1] < 0 & fit$limits[ex, 2] < Inf){ distributionchoices <- list("Histogram" = 1, "Normal" = 2, "Student t" = 3, "Beta" = 7, "Best fitting" =8) } if(is.na(ql) == TRUE){ql <- 0.05} if(is.na(qu) == TRUE){qu <- 0.95} ### runApp(list( ui = shinyUI(fluidPage( # Application title titlePanel("Feedback"), sidebarLayout( sidebarPanel( textInput("xlimits", label = h5("x-axis limits"), value = plotlimits), radioButtons("radio", label = h5("Distribution"), choices = distributionchoices, selected = 1 ), numericInput("fq1", label = h5("lower feedback quantile"), value = ql, min=0, max=1), numericInput("fq2", label = h5("upper feedback quantile"), value = qu ,min=0, max=1) ), mainPanel( plotOutput("distPlot"), tableOutput("values") ) ) )), server = function(input, output) { output$distPlot <- renderPlot({ xlimits<-eval(parse(text=paste("c(",input$xlimits,")"))) dist<-c("hist","normal", "t", "gamma", "lognormal", "logt","beta", "best") drawdensity(fit, d=dist[as.numeric(input$radio)], ql=input$fq1, qu=input$fq2, xl=xlimits[1], xu=xlimits[2], ex=ex) }) ssq <- fit$ssq[1, is.na(fit$ssq[1,])==F] best.index <- which(ssq == min(ssq))[1] quantileValues <- reactive({ xlimits<-eval(parse(text=paste("c(",input$xlimits,")"))) pl<-xlimits[1] pu<-xlimits[2] if(as.numeric(input$radio)==8){index<-best.index}else{index<-as.numeric(input$radio) - 1} if(as.numeric(input$radio)==1){ if(pl == -Inf & fit$limits[ex,1] > -Inf){pl <- fit$limits[ex,1]} if(pu == Inf & fit$limits[ex,2] < Inf){pu <- fit$limits[ex,2] } if(pl == -Inf & fit$limits[ex,1] == -Inf){pl <- qnorm(0.001, fit$Normal[ex,1], fit$Normal[ex,2])} if(pu == Inf & fit$limits[ex,2] == Inf){pu <- qnorm(0.999, fit$Normal[ex,1], fit$Normal[ex,2])} p <- c(0, fit$probs[ex,], 1) x <- c(pl, fit$vals[ex,], pu) values <- qhist(c(input$fq1,input$fq2), x, p) } if(as.numeric(input$radio)>1){ temp<-feedback(fit, quantiles=c(input$fq1,input$fq2), ex=ex) values=temp$fitted.quantiles[,index] } data.frame(quantiles=c(input$fq1,input$fq2), values=values) }) output$values <- renderTable({ quantileValues() }) } )) }
library(e1071) library(LiblineaR) set.seed(1) x <- matrix(rnorm(20*2), ncol = 2) y <- c(rep(-1,10), rep(1,10)) x[ y== 1, ] <- x[y == 1,] + 1 plot(x, col = (3-y)) data <- data.frame(x = x, y = as.factor(y)) # must set as a factor!!! svm_fit_10 <- svm(y~., data = data, kernel = "linear", cost = 10, scale = FALSE) # scale = FALSE --> tedo not scale each feature to have mean zero or SD of 1 plot(svm_fit_10, data) str(svm_fit_10) svm_fit_10$index summary(svm_fit_10) # Run with a smaller cost parameters svm_fit_0.1 <- svm(y~., data = data, kernel = "linear", cost = 0.1, scale = FALSE) # scale = FALSE --> tedo not scale each feature to have mean zero or SD of 1 plot(svm_fit_0.1, data) str(svm_fit_0.1) svm_fit_0.1$index summary(svm_fit_0.1) # Let's compare SVMs with a linear kernel comparing a range of values of the cost parameter tune_out <- tune(svm, y~., data = data, kernel = "linear", ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100))) summary(tune_out) best_svm <- tune_out$best.model summary(best_svm) # Making predictions xtest <- matrix(rnorm(20*2), ncol = 2) ytest <- sample(c(-1,1), 20, rep = TRUE) xtest[ytest == 1, ] <- xtest[ytest == 1,] + 1 test_data <- data.frame(x = xtest, y = as.factor(ytest)) y_prediction_0.1 <- predict(best_svm, test_data) table(predict = y_prediction_0.1, truth = test_data$y) # If we had used a cost of 0.01 instead svm_fit_0.01 <- svm(y~., data = data, kernel = "linear", cost = 0.01, scale = FALSE) y_prediction_0.01 <- predict(svm_fit_0.01, test_data) table(predict = y_prediction_0.01, truth = test_data$y) # separating hyperplane # let's further separate the results x[ y== 1, ] <- x[y == 1,] + 0.5 plot(x[,2],x[,1],col=(y+5)/2,pch=19) data <- data.frame(x = x, y = as.factor(y)) # must set as a factor!!! svm_fit_large_cost <- svm(y~., data = data, kernel = "linear", cost = 1e5, scale = FALSE) plot(svm_fit_large_cost, data) summary(svm_fit_large_cost) svm_fit_1 <- svm(y~., data=data, kernel ="linear", cost =1, scale = FALSE) summary(svm_fit_1 ) plot(svm_fit_1, data) ## Support Vector Machine set.seed(1) x <- matrix(rnorm (200*2) , ncol =2) x[1:100, ] <- x[1:100,] + 2 x[101:150, ] <- x[101:150, ] - 2 y <- c(rep(1,150), rep(2 ,50)) data <- data.frame(x = x ,y = as.factor(y)) plot(x, col=y, pch=19) train <- sample(200 ,100) # Radial kernel svm_fit_radial_1 <- svm(y~., data=data[train ,], kernel ="radial", gamma =1, cost =1) plot(svm_fit_radial_1 , data[train ,]) summary(svm_fit_radial_1) # increase the cost svm_fit_radial_1e5 <- svm(y~., data=data[train ,], kernel ="radial", gamma =1, cost =1e5) plot(svm_fit_radial_1e5 , data[train ,]) summary(svmfit) # Perform cross-validation to select the best choice of gamma and cost for a radial kernel set.seed (1) tune_out_radial <- tune(svm,y~.,data=data[train ,],kernel ="radial", ranges =list(cost=c(0.1 ,1 ,10 ,100 ,1000), gamma=c(0.5,1,2,3,4) )) summary(tune_out_radial) # Error rate = 10% table(true=data[-train ,"y"], pred=predict(tune_out_radial$best.model,newdata =data[-train,])) ```{r plots}
/svm.R
permissive
marschmi/STATS415_DataMining
R
false
false
3,057
r
library(e1071) library(LiblineaR) set.seed(1) x <- matrix(rnorm(20*2), ncol = 2) y <- c(rep(-1,10), rep(1,10)) x[ y== 1, ] <- x[y == 1,] + 1 plot(x, col = (3-y)) data <- data.frame(x = x, y = as.factor(y)) # must set as a factor!!! svm_fit_10 <- svm(y~., data = data, kernel = "linear", cost = 10, scale = FALSE) # scale = FALSE --> tedo not scale each feature to have mean zero or SD of 1 plot(svm_fit_10, data) str(svm_fit_10) svm_fit_10$index summary(svm_fit_10) # Run with a smaller cost parameters svm_fit_0.1 <- svm(y~., data = data, kernel = "linear", cost = 0.1, scale = FALSE) # scale = FALSE --> tedo not scale each feature to have mean zero or SD of 1 plot(svm_fit_0.1, data) str(svm_fit_0.1) svm_fit_0.1$index summary(svm_fit_0.1) # Let's compare SVMs with a linear kernel comparing a range of values of the cost parameter tune_out <- tune(svm, y~., data = data, kernel = "linear", ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100))) summary(tune_out) best_svm <- tune_out$best.model summary(best_svm) # Making predictions xtest <- matrix(rnorm(20*2), ncol = 2) ytest <- sample(c(-1,1), 20, rep = TRUE) xtest[ytest == 1, ] <- xtest[ytest == 1,] + 1 test_data <- data.frame(x = xtest, y = as.factor(ytest)) y_prediction_0.1 <- predict(best_svm, test_data) table(predict = y_prediction_0.1, truth = test_data$y) # If we had used a cost of 0.01 instead svm_fit_0.01 <- svm(y~., data = data, kernel = "linear", cost = 0.01, scale = FALSE) y_prediction_0.01 <- predict(svm_fit_0.01, test_data) table(predict = y_prediction_0.01, truth = test_data$y) # separating hyperplane # let's further separate the results x[ y== 1, ] <- x[y == 1,] + 0.5 plot(x[,2],x[,1],col=(y+5)/2,pch=19) data <- data.frame(x = x, y = as.factor(y)) # must set as a factor!!! svm_fit_large_cost <- svm(y~., data = data, kernel = "linear", cost = 1e5, scale = FALSE) plot(svm_fit_large_cost, data) summary(svm_fit_large_cost) svm_fit_1 <- svm(y~., data=data, kernel ="linear", cost =1, scale = FALSE) summary(svm_fit_1 ) plot(svm_fit_1, data) ## Support Vector Machine set.seed(1) x <- matrix(rnorm (200*2) , ncol =2) x[1:100, ] <- x[1:100,] + 2 x[101:150, ] <- x[101:150, ] - 2 y <- c(rep(1,150), rep(2 ,50)) data <- data.frame(x = x ,y = as.factor(y)) plot(x, col=y, pch=19) train <- sample(200 ,100) # Radial kernel svm_fit_radial_1 <- svm(y~., data=data[train ,], kernel ="radial", gamma =1, cost =1) plot(svm_fit_radial_1 , data[train ,]) summary(svm_fit_radial_1) # increase the cost svm_fit_radial_1e5 <- svm(y~., data=data[train ,], kernel ="radial", gamma =1, cost =1e5) plot(svm_fit_radial_1e5 , data[train ,]) summary(svmfit) # Perform cross-validation to select the best choice of gamma and cost for a radial kernel set.seed (1) tune_out_radial <- tune(svm,y~.,data=data[train ,],kernel ="radial", ranges =list(cost=c(0.1 ,1 ,10 ,100 ,1000), gamma=c(0.5,1,2,3,4) )) summary(tune_out_radial) # Error rate = 10% table(true=data[-train ,"y"], pred=predict(tune_out_radial$best.model,newdata =data[-train,])) ```{r plots}
#!/usr/bin/env Rscript group1 = c(0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0) group2 = c(1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4) p_value_studentt = t.test(x, y, var.equal=T)$p.value print(p_value_studentt) # => 0.07939414
/statistical_test/t_student.R
permissive
nishimoto/py_r_stats
R
false
false
244
r
#!/usr/bin/env Rscript group1 = c(0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0) group2 = c(1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4) p_value_studentt = t.test(x, y, var.equal=T)$p.value print(p_value_studentt) # => 0.07939414
library(glmnet) mydata = read.table("../../../../TrainingSet/FullSet/AvgRank/upper_aerodigestive_tract.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mse",alpha=0.25,family="gaussian",standardize=TRUE) sink('./upper_aerodigestive_tract_037.txt',append=TRUE) print(glm$glmnet.fit) sink()
/Model/EN/AvgRank/upper_aerodigestive_tract/upper_aerodigestive_tract_037.R
no_license
esbgkannan/QSMART
R
false
false
384
r
library(glmnet) mydata = read.table("../../../../TrainingSet/FullSet/AvgRank/upper_aerodigestive_tract.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mse",alpha=0.25,family="gaussian",standardize=TRUE) sink('./upper_aerodigestive_tract_037.txt',append=TRUE) print(glm$glmnet.fit) sink()
#' Print method for crosstab #' #' The cross tabulation is rendered as a html, which can be viewed in RStudio's #' viewer pane. #' #' @param x A crosstab object. #' @keywords internal #' @method print crosstab #' @export print.crosstab <- function(x, ...) { html_page <- combine_parts(x) # output the page to temporary html_file html_page %>% browsable() %>% html_print() invisible(x) } #' Knit print method for crosstab #' #' @keywords internal #' @export knit_print.crosstab <- function(x, ...) { html_page <- combine_parts(x) deps <- htmltools::findDependencies(html_page) knitr::asis_output(htmltools::htmlPreserve(as.character(html_page)), meta = deps) } # Helper functions ----------- combine_parts <- function(x) { # compute table tab_out <- build_tab(x) # prepare test statistics html_tests <- prepare_stats(x) # create html table html_table <- prepare_table(tab_out) # add headings html_table <- add_headings(html_table, tab_out, x) # create html page html_page <- create_page(html_table, html_tests) html_page } #' HTML parts of page #' #' This function currently serves to prepare the pagelayout. #' #' Later on this function should be more flexible insofar as the content of the #' page should be dependent on the content of the table. #' #' @param table A bare HTML table, created with \code{htmlTable}. #' @param stats Character output from a statistical test. #' @return A \code{tagList} with registered dependencies. #' @keywords internal create_page <- function(table, stats) { # create link to stylesheet style_link <- htmltools::htmlDependency( name = "crosstabr", version = as.character(utils::packageVersion("crosstabr")), src = system.file(package = "crosstabr"), stylesheet = "css/crosstabr.css" ) # Create page without statistics if (is.null(stats)) { html <- tagList( tags$body( div(id = "tables", div(id = "two-way", HTML(table) ) ) ) ) } else if (!is.null(stats)) { # Create page with statistics style_link$stylesheet <- c(style_link$stylesheet, "css/with_stats.css") html <- tagList( tags$body( div(id = "tables", div(id = "two-way", HTML(table) ) ), div(id = "stats", HTML(stats) ) ) ) } html <- attachDependencies(html, style_link) html } #' Creates a HTML table #' #' @param x A matrix, created by \code{build_tab}. #' @return A table in HTML format, without inline styling. #' @keywords internal prepare_table <- function(x) { # create html_table x <- utils::capture.output( print(htmlTable::htmlTable(x), useViewer = F) ) # pattern to remove inline css-styles style_pattern <- "(style).*(?=;).{2}" # remove inline css x %>% stringr::str_replace_all(style_pattern, "") %>% stringr::str_c(collapse = "") } #' @keywords internal add_headings <- function(html_table, tab_out, x) { # insert heading into original table html_table <- stringr::str_replace(html_table, "<th >", paste0("<th>", x$dependent)) # find number of cols and rows (excluding total col) dimensions <- dim(tab_out) - 1 cols <- dimensions[2] rows <- dimensions[1] top <- paste0("<table id='outer_table'><tbody><tr id='headings'><td></td>", "<td id='independent' colspan='", cols, "'>", x$independent, "</td><td></td></tr><tr><td colspan='", cols + 2, "'>") bottom <- "</td></tr></tbody></table>" result <- paste(top, html_table, bottom) result }
/R/print.R
no_license
tklebel/crosstabr
R
false
false
3,751
r
#' Print method for crosstab #' #' The cross tabulation is rendered as a html, which can be viewed in RStudio's #' viewer pane. #' #' @param x A crosstab object. #' @keywords internal #' @method print crosstab #' @export print.crosstab <- function(x, ...) { html_page <- combine_parts(x) # output the page to temporary html_file html_page %>% browsable() %>% html_print() invisible(x) } #' Knit print method for crosstab #' #' @keywords internal #' @export knit_print.crosstab <- function(x, ...) { html_page <- combine_parts(x) deps <- htmltools::findDependencies(html_page) knitr::asis_output(htmltools::htmlPreserve(as.character(html_page)), meta = deps) } # Helper functions ----------- combine_parts <- function(x) { # compute table tab_out <- build_tab(x) # prepare test statistics html_tests <- prepare_stats(x) # create html table html_table <- prepare_table(tab_out) # add headings html_table <- add_headings(html_table, tab_out, x) # create html page html_page <- create_page(html_table, html_tests) html_page } #' HTML parts of page #' #' This function currently serves to prepare the pagelayout. #' #' Later on this function should be more flexible insofar as the content of the #' page should be dependent on the content of the table. #' #' @param table A bare HTML table, created with \code{htmlTable}. #' @param stats Character output from a statistical test. #' @return A \code{tagList} with registered dependencies. #' @keywords internal create_page <- function(table, stats) { # create link to stylesheet style_link <- htmltools::htmlDependency( name = "crosstabr", version = as.character(utils::packageVersion("crosstabr")), src = system.file(package = "crosstabr"), stylesheet = "css/crosstabr.css" ) # Create page without statistics if (is.null(stats)) { html <- tagList( tags$body( div(id = "tables", div(id = "two-way", HTML(table) ) ) ) ) } else if (!is.null(stats)) { # Create page with statistics style_link$stylesheet <- c(style_link$stylesheet, "css/with_stats.css") html <- tagList( tags$body( div(id = "tables", div(id = "two-way", HTML(table) ) ), div(id = "stats", HTML(stats) ) ) ) } html <- attachDependencies(html, style_link) html } #' Creates a HTML table #' #' @param x A matrix, created by \code{build_tab}. #' @return A table in HTML format, without inline styling. #' @keywords internal prepare_table <- function(x) { # create html_table x <- utils::capture.output( print(htmlTable::htmlTable(x), useViewer = F) ) # pattern to remove inline css-styles style_pattern <- "(style).*(?=;).{2}" # remove inline css x %>% stringr::str_replace_all(style_pattern, "") %>% stringr::str_c(collapse = "") } #' @keywords internal add_headings <- function(html_table, tab_out, x) { # insert heading into original table html_table <- stringr::str_replace(html_table, "<th >", paste0("<th>", x$dependent)) # find number of cols and rows (excluding total col) dimensions <- dim(tab_out) - 1 cols <- dimensions[2] rows <- dimensions[1] top <- paste0("<table id='outer_table'><tbody><tr id='headings'><td></td>", "<td id='independent' colspan='", cols, "'>", x$independent, "</td><td></td></tr><tr><td colspan='", cols + 2, "'>") bottom <- "</td></tr></tbody></table>" result <- paste(top, html_table, bottom) result }
testlist <- list(ends = c(-1125300777L, 765849512L, -1760774663L, 791623263L, 1358782356L, -128659642L, -14914341L, 1837701012L, NA, 1632068659L ), pts = c(1758370433L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L ), starts = c(16777216L, 0L, 738263040L, 682962941L, 1612840977L, 150997320L, 747898999L, -1195392662L, 2024571419L, 808515032L, 1373469055L, -282236997L, -207881465L, -237801926L, -168118689L, -1090227888L, 235129118L, 949454105L, 1651285440L, -1119277667L, -1328604284L), members = NULL, total_members = 0L) result <- do.call(IntervalSurgeon:::rcpp_pile,testlist) str(result)
/IntervalSurgeon/inst/testfiles/rcpp_pile/AFL_rcpp_pile/rcpp_pile_valgrind_files/1609875408-test.R
no_license
akhikolla/updated-only-Issues
R
false
false
720
r
testlist <- list(ends = c(-1125300777L, 765849512L, -1760774663L, 791623263L, 1358782356L, -128659642L, -14914341L, 1837701012L, NA, 1632068659L ), pts = c(1758370433L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L ), starts = c(16777216L, 0L, 738263040L, 682962941L, 1612840977L, 150997320L, 747898999L, -1195392662L, 2024571419L, 808515032L, 1373469055L, -282236997L, -207881465L, -237801926L, -168118689L, -1090227888L, 235129118L, 949454105L, 1651285440L, -1119277667L, -1328604284L), members = NULL, total_members = 0L) result <- do.call(IntervalSurgeon:::rcpp_pile,testlist) str(result)
#' @importFrom ggplot2 aes ggtitle guides theme guide_legend #' @importFrom ggplot2 scale_size scale_color_manual #' @importFrom ggplot2 GeomSegment GeomText GeomPoint #' @importFrom ggrepel geom_label_repel #' @importFrom tidytree groupOTU #' @importFrom ggtree ggtree geom_point2 geom_tiplab #' @rdname plotSingleSite #' @title Color the tree by a single site #' @description Plot and color the tree according to amino acid/nucleotide of #' the selected site. The color scheme depends on the \code{seqType} set in #' \code{\link{addMSA}} function. #' @param x The object to plot. #' @param site For \code{lineagePath}, it can be any site within sequence #' length. For \code{fixationSites} and \code{parallelSites}, it is restrained #' to a predicted fixation site. The numbering is consistent with the #' reference defined by \code{\link{setSiteNumbering}}. #' @param ... Other arguments. Since 1.5.4, the function uses #' \code{\link{ggtree}} as the base function to make plots so the arguments in #' \code{plot.phylo} will no longer work. #' @return Since 1.5.4, the function returns a ggplot object so on longer #' behaviors like the generic \code{\link{plot}} function. #' @seealso \code{\link{plot.sitePath}} #' @export #' @examples #' data(zikv_tree) #' data(zikv_align) #' tree <- addMSA(zikv_tree, alignment = zikv_align) #' paths <- lineagePath(tree) #' plotSingleSite(paths, 139) plotSingleSite <- function(x, site, ...) { UseMethod("plotSingleSite") } #' @rdname plotSingleSite #' @description For \code{\link{lineagePath}}, the tree will be colored #' according to the amino acid of the site. The color scheme tries to assign #' distinguishable color for each amino acid. #' @param showPath If plot the lineage result from \code{\link{lineagePath}}. #' The default is \code{TRUE}. #' @param showTips Whether to plot the tip labels. The default is \code{FALSE}. #' @export plotSingleSite.lineagePath <- function(x, site, showPath = TRUE, showTips = FALSE, ...) { seqType <- attr(x, "seqType") group <- extractTips.lineagePath(x, site) # Use different color scheme depending on the sequence type names(group) <- toupper(names(group)) groupColors <- .siteColorScheme(seqType) tree <- attr(x, "tree") group <- groupOTU(as_tibble(tree), group) group <- group[["group"]] size <- NULL sizeRange <- c(GeomSegment[["default_aes"]][["size"]], 1.5) # Set lineage nodes and non-lineage nodes as separate group if (showPath) { pathNodes <- unique(unlist(x)) pathLabel <- ".lineage" # Color the path node black levels(group) <- c(levels(group), pathLabel) group[pathNodes] <- pathLabel lineageColor <- "black" names(lineageColor) <- pathLabel groupColors <- c(groupColors, lineageColor) # Set the size of the lineage nodes size <- rep(1, times = length(group)) size[pathNodes] <- 2 } if (seqType == "AA") { legendTitle <- "Amino acid" } else { legendTitle <- "Nucleotide" } p <- ggtree(tree, aes(color = group, size = size)) + scale_size(range = sizeRange, guide = "none") + scale_color_manual(values = groupColors, limits = unique(group)) + guides(color = guide_legend(title = legendTitle, override.aes = list(size = 3))) + theme(legend.position = "left") + ggtitle(site) if (showTips) { p <- p + geom_tiplab() } return(p) } .siteColorScheme <- function(seqType) { if (seqType == "AA") { groupColors <- vapply( X = AA_FULL_NAMES, FUN = function(i) { AA_COLORS[[i]] }, FUN.VALUE = character(1) ) } else { groupColors <- NT_COLORS } names(groupColors) <- toupper(names(groupColors)) groupColors[["hide"]] <- NA return(groupColors) } #' @rdname plotSingleSite #' @export plotSingleSite.sitesMinEntropy <- function(x, site, ...) { tree <- as.phylo.sitesMinEntropy(x) allPaths <- attr(x, "paths") # Specify the color of mutations by pre-defined color set. sitePaths <- lapply(x, "[[", as.character(site)) seqType <- attr(allPaths, "seqType") groupColors <- .siteColorScheme(seqType) if (seqType == "AA") { legendTitle <- "Amino acid" } else { legendTitle <- "Nucleotide" } # Collect the fixation mutation for each evolutionary pathway group <- list() for (seg in sitePaths) { for (tips in seg) { fixedAA <- attr(tips, "AA") if (fixedAA %in% names(group)) { group[[fixedAA]] <- c(group[[fixedAA]], tips) } else { group[[fixedAA]] <- tips } } } tree <- groupOTU(tree, group) # Just in case the fixation mutation name is too long # Annotate the mutation on the tree p <- ggtree(tree, aes(color = group)) + scale_color_manual(values = groupColors, limits = names(group)) + guides(linetype = "none", color = guide_legend(title = legendTitle, override.aes = list(size = 3))) + theme(legend.position = "left") + ggtitle(site) return(p) } #' @rdname plotSingleSite #' @description For \code{\link{parallelSites}}, the tree will be colored #' according to the amino acid of the site if the mutation is not fixed. #' @export plotSingleSite.parallelSites <- function(x, site, showPath = TRUE, ...) { paths <- attr(x, "paths") tree <- attr(paths, "tree") tipNames <- tree[["tip.label"]] nNodes <- length(tipNames) + tree[["Nnode"]] parallelMut <- extractTips.parallelSites(x, site) fixationMut <- character() sporadicTip <- rep(FALSE, nNodes) for (node in names(parallelMut)) { tips <- parallelMut[[node]] if (attr(tips, "fixed")) { fixationMut[node] <- attr(tips, "mutName")[4] } else { sporadicTip[which(tipNames == node)] <- TRUE } } if (length(fixationMut) != 0) { attr(paths, "tree") <- .annotateSNPonTree(tree, fixationMut) p <- plotSingleSite.lineagePath( x = paths, site = site, showPath = showPath, showTips = FALSE ) + geom_label_repel( aes(x = branch, label = SNPs), fill = 'lightgreen', color = "black", min.segment.length = 0, na.rm = TRUE, size = GeomText[["default_aes"]][["size"]] ) } else { p <- plotSingleSite.lineagePath( x = paths, site = site, showPath = showPath, showTips = FALSE ) } if (any(sporadicTip)) { p <- p + geom_point2(aes(subset = sporadicTip, size = GeomPoint[["default_aes"]][["size"]])) } return(p) } #' @rdname plotSingleSite #' @description For \code{\link{fixationSites}}, it will color the ancestral #' tips in red, descendant tips in blue and excluded tips in grey. #' @param select Select which fixation path in to plot. The default is NULL #' which will plot all the fixations. #' @export #' @examples #' fixations <- fixationSites(paths) #' plotSingleSite(fixations, 139) plotSingleSite.fixationSites <- function(x, site, select = NULL, ...) { plot.sitePath(x = .actualExtractSite(x, site), y = TRUE, select = select, ...) }
/R/plotSingleSite.R
permissive
wuaipinglab/sitePath
R
false
false
8,127
r
#' @importFrom ggplot2 aes ggtitle guides theme guide_legend #' @importFrom ggplot2 scale_size scale_color_manual #' @importFrom ggplot2 GeomSegment GeomText GeomPoint #' @importFrom ggrepel geom_label_repel #' @importFrom tidytree groupOTU #' @importFrom ggtree ggtree geom_point2 geom_tiplab #' @rdname plotSingleSite #' @title Color the tree by a single site #' @description Plot and color the tree according to amino acid/nucleotide of #' the selected site. The color scheme depends on the \code{seqType} set in #' \code{\link{addMSA}} function. #' @param x The object to plot. #' @param site For \code{lineagePath}, it can be any site within sequence #' length. For \code{fixationSites} and \code{parallelSites}, it is restrained #' to a predicted fixation site. The numbering is consistent with the #' reference defined by \code{\link{setSiteNumbering}}. #' @param ... Other arguments. Since 1.5.4, the function uses #' \code{\link{ggtree}} as the base function to make plots so the arguments in #' \code{plot.phylo} will no longer work. #' @return Since 1.5.4, the function returns a ggplot object so on longer #' behaviors like the generic \code{\link{plot}} function. #' @seealso \code{\link{plot.sitePath}} #' @export #' @examples #' data(zikv_tree) #' data(zikv_align) #' tree <- addMSA(zikv_tree, alignment = zikv_align) #' paths <- lineagePath(tree) #' plotSingleSite(paths, 139) plotSingleSite <- function(x, site, ...) { UseMethod("plotSingleSite") } #' @rdname plotSingleSite #' @description For \code{\link{lineagePath}}, the tree will be colored #' according to the amino acid of the site. The color scheme tries to assign #' distinguishable color for each amino acid. #' @param showPath If plot the lineage result from \code{\link{lineagePath}}. #' The default is \code{TRUE}. #' @param showTips Whether to plot the tip labels. The default is \code{FALSE}. #' @export plotSingleSite.lineagePath <- function(x, site, showPath = TRUE, showTips = FALSE, ...) { seqType <- attr(x, "seqType") group <- extractTips.lineagePath(x, site) # Use different color scheme depending on the sequence type names(group) <- toupper(names(group)) groupColors <- .siteColorScheme(seqType) tree <- attr(x, "tree") group <- groupOTU(as_tibble(tree), group) group <- group[["group"]] size <- NULL sizeRange <- c(GeomSegment[["default_aes"]][["size"]], 1.5) # Set lineage nodes and non-lineage nodes as separate group if (showPath) { pathNodes <- unique(unlist(x)) pathLabel <- ".lineage" # Color the path node black levels(group) <- c(levels(group), pathLabel) group[pathNodes] <- pathLabel lineageColor <- "black" names(lineageColor) <- pathLabel groupColors <- c(groupColors, lineageColor) # Set the size of the lineage nodes size <- rep(1, times = length(group)) size[pathNodes] <- 2 } if (seqType == "AA") { legendTitle <- "Amino acid" } else { legendTitle <- "Nucleotide" } p <- ggtree(tree, aes(color = group, size = size)) + scale_size(range = sizeRange, guide = "none") + scale_color_manual(values = groupColors, limits = unique(group)) + guides(color = guide_legend(title = legendTitle, override.aes = list(size = 3))) + theme(legend.position = "left") + ggtitle(site) if (showTips) { p <- p + geom_tiplab() } return(p) } .siteColorScheme <- function(seqType) { if (seqType == "AA") { groupColors <- vapply( X = AA_FULL_NAMES, FUN = function(i) { AA_COLORS[[i]] }, FUN.VALUE = character(1) ) } else { groupColors <- NT_COLORS } names(groupColors) <- toupper(names(groupColors)) groupColors[["hide"]] <- NA return(groupColors) } #' @rdname plotSingleSite #' @export plotSingleSite.sitesMinEntropy <- function(x, site, ...) { tree <- as.phylo.sitesMinEntropy(x) allPaths <- attr(x, "paths") # Specify the color of mutations by pre-defined color set. sitePaths <- lapply(x, "[[", as.character(site)) seqType <- attr(allPaths, "seqType") groupColors <- .siteColorScheme(seqType) if (seqType == "AA") { legendTitle <- "Amino acid" } else { legendTitle <- "Nucleotide" } # Collect the fixation mutation for each evolutionary pathway group <- list() for (seg in sitePaths) { for (tips in seg) { fixedAA <- attr(tips, "AA") if (fixedAA %in% names(group)) { group[[fixedAA]] <- c(group[[fixedAA]], tips) } else { group[[fixedAA]] <- tips } } } tree <- groupOTU(tree, group) # Just in case the fixation mutation name is too long # Annotate the mutation on the tree p <- ggtree(tree, aes(color = group)) + scale_color_manual(values = groupColors, limits = names(group)) + guides(linetype = "none", color = guide_legend(title = legendTitle, override.aes = list(size = 3))) + theme(legend.position = "left") + ggtitle(site) return(p) } #' @rdname plotSingleSite #' @description For \code{\link{parallelSites}}, the tree will be colored #' according to the amino acid of the site if the mutation is not fixed. #' @export plotSingleSite.parallelSites <- function(x, site, showPath = TRUE, ...) { paths <- attr(x, "paths") tree <- attr(paths, "tree") tipNames <- tree[["tip.label"]] nNodes <- length(tipNames) + tree[["Nnode"]] parallelMut <- extractTips.parallelSites(x, site) fixationMut <- character() sporadicTip <- rep(FALSE, nNodes) for (node in names(parallelMut)) { tips <- parallelMut[[node]] if (attr(tips, "fixed")) { fixationMut[node] <- attr(tips, "mutName")[4] } else { sporadicTip[which(tipNames == node)] <- TRUE } } if (length(fixationMut) != 0) { attr(paths, "tree") <- .annotateSNPonTree(tree, fixationMut) p <- plotSingleSite.lineagePath( x = paths, site = site, showPath = showPath, showTips = FALSE ) + geom_label_repel( aes(x = branch, label = SNPs), fill = 'lightgreen', color = "black", min.segment.length = 0, na.rm = TRUE, size = GeomText[["default_aes"]][["size"]] ) } else { p <- plotSingleSite.lineagePath( x = paths, site = site, showPath = showPath, showTips = FALSE ) } if (any(sporadicTip)) { p <- p + geom_point2(aes(subset = sporadicTip, size = GeomPoint[["default_aes"]][["size"]])) } return(p) } #' @rdname plotSingleSite #' @description For \code{\link{fixationSites}}, it will color the ancestral #' tips in red, descendant tips in blue and excluded tips in grey. #' @param select Select which fixation path in to plot. The default is NULL #' which will plot all the fixations. #' @export #' @examples #' fixations <- fixationSites(paths) #' plotSingleSite(fixations, 139) plotSingleSite.fixationSites <- function(x, site, select = NULL, ...) { plot.sitePath(x = .actualExtractSite(x, site), y = TRUE, select = select, ...) }
# GBM # Rscript cmp_before_after_coexprDist.R GSE105194_ENCFF027IEO_astroCerebellum_vs_GSE105957_ENCFF715HDW_astroSpinal TCGAgbm_classical_mesenchymal # # Rscript cmp_before_after_coexprDist.R GSE105194_ENCFF027IEO_astroCerebellum_vs_GSE105957_ENCFF715HDW_astroSpinal TCGAgbm_classical_neural # # Rscript cmp_before_after_coexprDist.R GSE105194_ENCFF027IEO_astroCerebellum_vs_GSE105957_ENCFF715HDW_astroSpinal TCGAgbm_classical_proneural # # COLORECTAL # Rscript cmp_before_after_coexprDist.R GSE105318_ENCFF439QFU_DLD1 TCGAcoad_msi_mss # no change # BREAST # Rscript cmp_before_after_coexprDist.R GSM1631185_MCF7_vs_GSE75070_MCF7_shGFP TCGAbrca_lum_bas # # KIDNEY # Rscript cmp_before_after_coexprDist.R GSE105465_ENCFF777DUA_Caki2_vs_GSE105235_ENCFF235TGH_G401 TCGAkich_norm_kich # # LUNG # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAluad_mutKRAS_mutEGFR # # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAluad_nonsmoker_smoker # # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAluad_wt_mutKRAS # # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAlusc_norm_lusc # # SKIN # Rscript cmp_before_after_coexprDist.R GSE106022_ENCFF614EKT_RPMI7951_vs_GSE105491_ENCFF458OWO_SKMEL5 TCGAskcm_lowInf_highInf # # Rscript cmp_before_after_coexprDist.R GSE106022_ENCFF614EKT_RPMI7951_vs_GSE105491_ENCFF458OWO_SKMEL5 TCGAskcm_wt_mutBRAF # # Rscript cmp_before_after_coexprDist.R GSE106022_ENCFF614EKT_RPMI7951_vs_GSE105491_ENCFF458OWO_SKMEL5 TCGAskcm_wt_mutCTNNB1 # # PANCREAS # Rscript cmp_before_after_coexprDist.R GSE105566_ENCFF358MNA_Panc1 TCGApaad_wt_mutKRAS dataset="GSE105318_ENCFF439QFU_DLD1" exprds="TCGAcoad_msi_mss" cat("> START ", "cmp_before_after_coexprDist.R", "\n") # Rscript cmp_before_after_coexprDist.R GSE105318_ENCFF439QFU_DLD1 TCGAcoad_msi_mss_hgnc args <- commandArgs(trailingOnly = TRUE) stopifnot(length(args) == 2) dataset=args[1] exprds=args[2] exprds=paste0(exprds, "_hgnc") cat("... START: ", dataset, " - ", exprds, "\n") cat("load genefam0 \n") genefam0 = eval(parse(text=load("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/PREP_GENE_FAMILIES_TAD_DATA/hgnc_entrezID_family_TAD_DT.Rdata"))) cat("load samefam0 \n") samefam0 = eval(parse(text=load("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/CREATE_SAME_FAMILY_SORTNODUP/hgnc_family_all_family_pairs.Rdata"))) cat("load dist0 \n") dist0 = eval(parse(text=load("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/CREATE_DIST_SORTNODUP/all_dist_pairs.Rdata"))) cat("load coexpr0 \n") coexpr0 = eval(parse(text=load(paste0("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/CREATE_COEXPR_SORTNODUP/", gsub("hgnc", "", exprds), "pearson/coexprDT.Rdata")))) cat("load genefam1 \n") genefam1 = eval(parse(text=load(paste0("PREP_GENE_FAMILIES_TAD_DATA/", dataset, "/hgnc_entrezID_family_TAD_DT.Rdata")))) cat("load samefam1 \n") samefam1 = eval(parse(text=load(paste0("CREATE_SAME_FAMILY_SORTNODUP/", dataset, "/hgnc_family_short_all_family_pairs.Rdata")))) cat("load dist1 \n") dist1 = eval(parse(text=load(paste0( "CREATE_DIST_SORTNODUP/", dataset, "/all_dist_pairs.Rdata")))) cat("load coexpr1 \n") coexpr1 = eval(parse(text=load(paste0( "CREATE_COEXPR_SORTNODUP/", dataset, "/", gsub("hgnc", "", exprds), "pearson/coexprDT.Rdata")))) cat("... dim(genefam0) = ", dim(genefam0), "\n") cat("... dim(genefam1) = ", dim(genefam1), "\n") cat("... dim(samefam0) = ", dim(samefam0), "\n") cat("... dim(samefam1) = ", dim(samefam1), "\n") cat("... dim(dist0) = ", dim(dist0), "\n") cat("... dim(dist1) = ", dim(dist1), "\n") cat("... dim(coexpr0) = ", dim(coexpr0), "\n") cat("... dim(coexpr1) = ", dim(coexpr1), "\n") ### FOR THE RATIO RESULTS cat("load ratio0 \n") # AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/GSE105318_ENCFF439QFU_DLD1/TCGAcoad_msi_mss_hgnc/hgnc_family_short/auc_values.Rdata ratioFile0 <- paste0("AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/", dataset, "/", exprds, "/hgnc_family_short/auc_values.Rdata") ratio0 = eval(parse(text=load(ratioFile0))) # AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/GSE105318_ENCFF439QFU_DLD1/TCGAcoad_msi_mss_hgnc_hgnc/hgnc_family_short/auc_values.Rdata # AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/GSE105318_ENCFF439QFU_DLD1/TCGAcoad_msi_mss_hgnc/hgnc_family_short/auc_values.Rdata") cat("load ratio1 \n") ratio1 = eval(parse(text=load(paste0("AUC_COEXPRDIST_WITHFAM_SORTNODUP/", dataset, "/", exprds, "/hgnc_family_short/auc_values.Rdata")))) all_vars <- c( "auc_diffTAD_distVect", "auc_sameTAD_distVect", "auc_ratio_same_over_diff_distVect", "auc_diffTAD_obsDist", "auc_sameTAD_obsDist", "auc_ratio_same_over_diff_obsDist", "auc_sameFamDiffTAD_distVect", "auc_sameFamSameTAD_distVect", "auc_ratio_sameFam_same_over_diff_distVect", "auc_sameFamDiffTAD_obsDist", "auc_sameFamSameTAD_obsDist", "auc_ratio_sameFam_same_over_diff_obsDist" ) var="auc_ratio_sameFam_same_over_diff_obsDist" for(var in all_vars) { if(ratio0[[paste0(var)]] != ratio1[[paste0(var)]]){ cat(paste0("...... ", var, "\nratio0=", ratio0[[paste0(var)]] , "\nratio1=",ratio1[[paste0(var)]], "\n" )) } else{ cat(paste0("...... ", var, "\nratio0==ratio1\n" )) } }
/cmp_before_after_coexprDist.R
no_license
marzuf/Dixon2018_integrative_data
R
false
false
5,577
r
# GBM # Rscript cmp_before_after_coexprDist.R GSE105194_ENCFF027IEO_astroCerebellum_vs_GSE105957_ENCFF715HDW_astroSpinal TCGAgbm_classical_mesenchymal # # Rscript cmp_before_after_coexprDist.R GSE105194_ENCFF027IEO_astroCerebellum_vs_GSE105957_ENCFF715HDW_astroSpinal TCGAgbm_classical_neural # # Rscript cmp_before_after_coexprDist.R GSE105194_ENCFF027IEO_astroCerebellum_vs_GSE105957_ENCFF715HDW_astroSpinal TCGAgbm_classical_proneural # # COLORECTAL # Rscript cmp_before_after_coexprDist.R GSE105318_ENCFF439QFU_DLD1 TCGAcoad_msi_mss # no change # BREAST # Rscript cmp_before_after_coexprDist.R GSM1631185_MCF7_vs_GSE75070_MCF7_shGFP TCGAbrca_lum_bas # # KIDNEY # Rscript cmp_before_after_coexprDist.R GSE105465_ENCFF777DUA_Caki2_vs_GSE105235_ENCFF235TGH_G401 TCGAkich_norm_kich # # LUNG # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAluad_mutKRAS_mutEGFR # # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAluad_nonsmoker_smoker # # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAluad_wt_mutKRAS # # Rscript cmp_before_after_coexprDist.R GSE105600_ENCFF852YOE_A549_vs_GSE105725_ENCFF697NNX_NCIH460 TCGAlusc_norm_lusc # # SKIN # Rscript cmp_before_after_coexprDist.R GSE106022_ENCFF614EKT_RPMI7951_vs_GSE105491_ENCFF458OWO_SKMEL5 TCGAskcm_lowInf_highInf # # Rscript cmp_before_after_coexprDist.R GSE106022_ENCFF614EKT_RPMI7951_vs_GSE105491_ENCFF458OWO_SKMEL5 TCGAskcm_wt_mutBRAF # # Rscript cmp_before_after_coexprDist.R GSE106022_ENCFF614EKT_RPMI7951_vs_GSE105491_ENCFF458OWO_SKMEL5 TCGAskcm_wt_mutCTNNB1 # # PANCREAS # Rscript cmp_before_after_coexprDist.R GSE105566_ENCFF358MNA_Panc1 TCGApaad_wt_mutKRAS dataset="GSE105318_ENCFF439QFU_DLD1" exprds="TCGAcoad_msi_mss" cat("> START ", "cmp_before_after_coexprDist.R", "\n") # Rscript cmp_before_after_coexprDist.R GSE105318_ENCFF439QFU_DLD1 TCGAcoad_msi_mss_hgnc args <- commandArgs(trailingOnly = TRUE) stopifnot(length(args) == 2) dataset=args[1] exprds=args[2] exprds=paste0(exprds, "_hgnc") cat("... START: ", dataset, " - ", exprds, "\n") cat("load genefam0 \n") genefam0 = eval(parse(text=load("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/PREP_GENE_FAMILIES_TAD_DATA/hgnc_entrezID_family_TAD_DT.Rdata"))) cat("load samefam0 \n") samefam0 = eval(parse(text=load("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/CREATE_SAME_FAMILY_SORTNODUP/hgnc_family_all_family_pairs.Rdata"))) cat("load dist0 \n") dist0 = eval(parse(text=load("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/CREATE_DIST_SORTNODUP/all_dist_pairs.Rdata"))) cat("load coexpr0 \n") coexpr0 = eval(parse(text=load(paste0("/mnt/ed4/marie/scripts/TAD_DE_pipeline_v2_TopDom/CREATE_COEXPR_SORTNODUP/", gsub("hgnc", "", exprds), "pearson/coexprDT.Rdata")))) cat("load genefam1 \n") genefam1 = eval(parse(text=load(paste0("PREP_GENE_FAMILIES_TAD_DATA/", dataset, "/hgnc_entrezID_family_TAD_DT.Rdata")))) cat("load samefam1 \n") samefam1 = eval(parse(text=load(paste0("CREATE_SAME_FAMILY_SORTNODUP/", dataset, "/hgnc_family_short_all_family_pairs.Rdata")))) cat("load dist1 \n") dist1 = eval(parse(text=load(paste0( "CREATE_DIST_SORTNODUP/", dataset, "/all_dist_pairs.Rdata")))) cat("load coexpr1 \n") coexpr1 = eval(parse(text=load(paste0( "CREATE_COEXPR_SORTNODUP/", dataset, "/", gsub("hgnc", "", exprds), "pearson/coexprDT.Rdata")))) cat("... dim(genefam0) = ", dim(genefam0), "\n") cat("... dim(genefam1) = ", dim(genefam1), "\n") cat("... dim(samefam0) = ", dim(samefam0), "\n") cat("... dim(samefam1) = ", dim(samefam1), "\n") cat("... dim(dist0) = ", dim(dist0), "\n") cat("... dim(dist1) = ", dim(dist1), "\n") cat("... dim(coexpr0) = ", dim(coexpr0), "\n") cat("... dim(coexpr1) = ", dim(coexpr1), "\n") ### FOR THE RATIO RESULTS cat("load ratio0 \n") # AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/GSE105318_ENCFF439QFU_DLD1/TCGAcoad_msi_mss_hgnc/hgnc_family_short/auc_values.Rdata ratioFile0 <- paste0("AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/", dataset, "/", exprds, "/hgnc_family_short/auc_values.Rdata") ratio0 = eval(parse(text=load(ratioFile0))) # AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/GSE105318_ENCFF439QFU_DLD1/TCGAcoad_msi_mss_hgnc_hgnc/hgnc_family_short/auc_values.Rdata # AUC_COEXPRDIST_WITHFAM_SORTNODUP_BEFORE08.01.19_sameTAD_sameFamFile/GSE105318_ENCFF439QFU_DLD1/TCGAcoad_msi_mss_hgnc/hgnc_family_short/auc_values.Rdata") cat("load ratio1 \n") ratio1 = eval(parse(text=load(paste0("AUC_COEXPRDIST_WITHFAM_SORTNODUP/", dataset, "/", exprds, "/hgnc_family_short/auc_values.Rdata")))) all_vars <- c( "auc_diffTAD_distVect", "auc_sameTAD_distVect", "auc_ratio_same_over_diff_distVect", "auc_diffTAD_obsDist", "auc_sameTAD_obsDist", "auc_ratio_same_over_diff_obsDist", "auc_sameFamDiffTAD_distVect", "auc_sameFamSameTAD_distVect", "auc_ratio_sameFam_same_over_diff_distVect", "auc_sameFamDiffTAD_obsDist", "auc_sameFamSameTAD_obsDist", "auc_ratio_sameFam_same_over_diff_obsDist" ) var="auc_ratio_sameFam_same_over_diff_obsDist" for(var in all_vars) { if(ratio0[[paste0(var)]] != ratio1[[paste0(var)]]){ cat(paste0("...... ", var, "\nratio0=", ratio0[[paste0(var)]] , "\nratio1=",ratio1[[paste0(var)]], "\n" )) } else{ cat(paste0("...... ", var, "\nratio0==ratio1\n" )) } }
######################################## input_file_name = "data/data_2020_05_28/application_sample.csv" output_file_name = "data/data_2020_05_28/application_whole_track.csv" layers <- c(1:10) input <- read.csv(input_file_name) application <- input[, c(1, c(11:120)) ] column_names <- c("hit_id", "x", "y", "z", "rho", "eta", "phi", "volume_id", "layer_id", "module_id", "value") colnames(application)[1] <- "sample_id" count.column = 2 for( l in layers ){ for( c in 1:length(column_names) ){ column.name <- paste0(column_names[c], "_", l) colnames(application)[count.column] <- column.name count.column = count.column + 1 } } write.csv( application, file=output_file_name, row.names=FALSE )
/create_application_whole_track.R
no_license
AngeloSantos/TrackML
R
false
false
728
r
######################################## input_file_name = "data/data_2020_05_28/application_sample.csv" output_file_name = "data/data_2020_05_28/application_whole_track.csv" layers <- c(1:10) input <- read.csv(input_file_name) application <- input[, c(1, c(11:120)) ] column_names <- c("hit_id", "x", "y", "z", "rho", "eta", "phi", "volume_id", "layer_id", "module_id", "value") colnames(application)[1] <- "sample_id" count.column = 2 for( l in layers ){ for( c in 1:length(column_names) ){ column.name <- paste0(column_names[c], "_", l) colnames(application)[count.column] <- column.name count.column = count.column + 1 } } write.csv( application, file=output_file_name, row.names=FALSE )
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/entrez_info.r \name{entrez_db_searchable} \alias{entrez_db_searchable} \title{List available search fields for a given database} \usage{ entrez_db_searchable(db, config = NULL) } \arguments{ \item{db}{character, name of database to get search field from} \item{config}{config vector passed to \code{httr::GET}} } \value{ An eInfoSearch object (subclassed from list) summarising linked-datbases. Can be coerced to a data-frame with \code{as.data.frame}. Printing the object shows only the names of each available search field. } \description{ Can be used in conjunction with \code{\link{entrez_search}} to find available search fields to include in the \code{term} argument of that function. } \examples{ \donttest{ (pmc_fields <- entrez_db_searchable("pmc")) pmc_fields[["AFFL"]] entrez_search(db="pmc", term="Otago[AFFL]", retmax=0) entrez_search(db="pmc", term="Auckland[AFFL]", retmax=0) sra_fields <- entrez_db_searchable("sra") as.data.frame(sra_fields) } } \seealso{ \code{\link{entrez_search}} Other einfo: \code{\link{entrez_db_links}}; \code{\link{entrez_db_summary}}; \code{\link{entrez_dbs}}; \code{\link{entrez_info}} }
/man/entrez_db_searchable.Rd
no_license
F-104S/rentrez
R
false
false
1,226
rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/entrez_info.r \name{entrez_db_searchable} \alias{entrez_db_searchable} \title{List available search fields for a given database} \usage{ entrez_db_searchable(db, config = NULL) } \arguments{ \item{db}{character, name of database to get search field from} \item{config}{config vector passed to \code{httr::GET}} } \value{ An eInfoSearch object (subclassed from list) summarising linked-datbases. Can be coerced to a data-frame with \code{as.data.frame}. Printing the object shows only the names of each available search field. } \description{ Can be used in conjunction with \code{\link{entrez_search}} to find available search fields to include in the \code{term} argument of that function. } \examples{ \donttest{ (pmc_fields <- entrez_db_searchable("pmc")) pmc_fields[["AFFL"]] entrez_search(db="pmc", term="Otago[AFFL]", retmax=0) entrez_search(db="pmc", term="Auckland[AFFL]", retmax=0) sra_fields <- entrez_db_searchable("sra") as.data.frame(sra_fields) } } \seealso{ \code{\link{entrez_search}} Other einfo: \code{\link{entrez_db_links}}; \code{\link{entrez_db_summary}}; \code{\link{entrez_dbs}}; \code{\link{entrez_info}} }
flights %>% group_by(month, day) %>% summarize( cancelled = sum(is.na(arr_delay)), avg_dep_delay = mean(dep_delay, na.rm = TRUE), avg_arr_delay = mean(arr_delay, na.rm = TRUE) ) %>% filter(cancelled > 0) %>% arrange(desc(cancelled))
/cap05/arrange09.R
permissive
vcwild/r4ds
R
false
false
281
r
flights %>% group_by(month, day) %>% summarize( cancelled = sum(is.na(arr_delay)), avg_dep_delay = mean(dep_delay, na.rm = TRUE), avg_arr_delay = mean(arr_delay, na.rm = TRUE) ) %>% filter(cancelled > 0) %>% arrange(desc(cancelled))
# Data pre-processing before feeding into the model dataset <- readRDS("data/dataset.rds") centering <- readRDS("data/stats.rds") utils <- new.env() source("utilities.r", local = utils) # 1-1. Permuting rows of the dataset before train-test split set.seed(2021-3-8) permuted_rows <- sample(nrow(dataset$Z)) z <- dataset$Z[permuted_rows, ] y <- dataset$Y[permuted_rows, ] labels <- dataset$group[permuted_rows] J <- max(dataset$id) # no. of patients jj <- dataset$id[permuted_rows] J_train <- round(J * .7) jj_train <- jj <= J_train jj_test <- jj > J_train N_train <- sum(jj_train) N_test <- sum(jj_test) N <- N_train + N_test # 1-2. Exclusion of the nasal quadrant QUADRANT_NO <- ncol(dataset$Z) / 4 P <- 3 * QUADRANT_NO Q <- ncol(dataset$Y) zkeep_inds <- c( seq(QUADRANT_NO * 3 + 1, QUADRANT_NO * 4), seq(1, QUADRANT_NO * 2) ) z <- z[, zkeep_inds] # 1-3. "Centering" and rescaling to mm (to a more interpretable scale) z <- sweep(z, 2, centering$cp["q5", zkeep_inds]) y <- sweep(y, 2, centering$m["q5", ]) z <- z / 1000 y <- y / 1000 # 1-4. Resolution downscaling of cpRNFL image # Average by pairs => each location ~.9 angle apart z <- .5 * z %*% (diag(1, P / 2) %x% c(1, 1)) P <- P / 2 # 1-6. Train-test set split z_train <- z[jj_train, ] y_train <- y[jj_train, ] z_test <- z[jj_test, ] y_test <- y[jj_test, ] # 2. Knot selection over surface of macula image # (Design set of knots is itself a tuning parameter) Nknots_y <- 16 full_y <- as.matrix(expand.grid(1:8, 1:8)) knots <- c(11, 14, 18, 20, 21, 23, 27, 30, 35, 38, 42, 44, 45, 47, 51, 54) distMat <- as.matrix(dist(full_y)) # [OUTDATED] # 3. distance matrix of the cpRNFL # to be used later as valid weighting # 4. Finding out missing values (but not impute them) # dim(which(is.na(y)), arr.ind = TRUE) mis_inds <- which(is.na(y_train), arr.ind = T)
/main_processing.r
no_license
ybaek/SDOCT
R
false
false
1,849
r
# Data pre-processing before feeding into the model dataset <- readRDS("data/dataset.rds") centering <- readRDS("data/stats.rds") utils <- new.env() source("utilities.r", local = utils) # 1-1. Permuting rows of the dataset before train-test split set.seed(2021-3-8) permuted_rows <- sample(nrow(dataset$Z)) z <- dataset$Z[permuted_rows, ] y <- dataset$Y[permuted_rows, ] labels <- dataset$group[permuted_rows] J <- max(dataset$id) # no. of patients jj <- dataset$id[permuted_rows] J_train <- round(J * .7) jj_train <- jj <= J_train jj_test <- jj > J_train N_train <- sum(jj_train) N_test <- sum(jj_test) N <- N_train + N_test # 1-2. Exclusion of the nasal quadrant QUADRANT_NO <- ncol(dataset$Z) / 4 P <- 3 * QUADRANT_NO Q <- ncol(dataset$Y) zkeep_inds <- c( seq(QUADRANT_NO * 3 + 1, QUADRANT_NO * 4), seq(1, QUADRANT_NO * 2) ) z <- z[, zkeep_inds] # 1-3. "Centering" and rescaling to mm (to a more interpretable scale) z <- sweep(z, 2, centering$cp["q5", zkeep_inds]) y <- sweep(y, 2, centering$m["q5", ]) z <- z / 1000 y <- y / 1000 # 1-4. Resolution downscaling of cpRNFL image # Average by pairs => each location ~.9 angle apart z <- .5 * z %*% (diag(1, P / 2) %x% c(1, 1)) P <- P / 2 # 1-6. Train-test set split z_train <- z[jj_train, ] y_train <- y[jj_train, ] z_test <- z[jj_test, ] y_test <- y[jj_test, ] # 2. Knot selection over surface of macula image # (Design set of knots is itself a tuning parameter) Nknots_y <- 16 full_y <- as.matrix(expand.grid(1:8, 1:8)) knots <- c(11, 14, 18, 20, 21, 23, 27, 30, 35, 38, 42, 44, 45, 47, 51, 54) distMat <- as.matrix(dist(full_y)) # [OUTDATED] # 3. distance matrix of the cpRNFL # to be used later as valid weighting # 4. Finding out missing values (but not impute them) # dim(which(is.na(y)), arr.ind = TRUE) mis_inds <- which(is.na(y_train), arr.ind = T)
# install.packages('gtrendsR') library(gtrendsR) # Run the google trends querry gdata <- gtrends(c("Riveredge Resort"), time = "2016-01-01 2018-12-31") # Check the names of dataframes in the list names(gdata) # Check related queries head(gdata$related_topics, 20) # Drill down on a related querry head(gtrends("Boldt Castle")$related_queries, 20) gdata$related_topics[1:10, ] gdata$interest_by_dma[1:5, ] gdata$interest_by_country[1:5, ] # Specify category categories[grepl("^Hotel", categories$name), ] gdata <- gtrends(keyword = "Riveredge Resort", time = "today+5-y", category = 179) # Check interest by country and MSA gdata$interest_by_dma[1:5, ] gdata$interest_by_country[1:5, ] # Write a function to querry Google Trends and plot interest over time google_trends <- function(keyword, geo = ""){ pres_data <- gtrends(keyword = keyword, geo = geo, time = "today+5-y", onlyInterest = TRUE) plot(pres_data, lwd = 5) hits <- pres_data$interest_over_time$hits last <- length(hits) round((mean(hits[(last-10):last]) / mean(hits[1:10]) - 1) * 100) } # Some sample searches google_trends('NYC') google_trends('Riveredge Resort') google_trends('Riveredge Resort', geo = "US-NY") google_trends('Riveredge Resort', geo = "CA-ON") google_trends("1000 Islands") google_trends('1000 Islands', geo = "CA-ON") google_trends('1000 Islands', geo = "US-NY") google_trends("Thousand Islands") google_trends('Thousand Islands', geo = "CA-ON") google_trends('Thousand Islands', geo = "US-NY")
/google_trends.R
no_license
RomeoAlphaYankee/DataScienceR
R
false
false
1,551
r
# install.packages('gtrendsR') library(gtrendsR) # Run the google trends querry gdata <- gtrends(c("Riveredge Resort"), time = "2016-01-01 2018-12-31") # Check the names of dataframes in the list names(gdata) # Check related queries head(gdata$related_topics, 20) # Drill down on a related querry head(gtrends("Boldt Castle")$related_queries, 20) gdata$related_topics[1:10, ] gdata$interest_by_dma[1:5, ] gdata$interest_by_country[1:5, ] # Specify category categories[grepl("^Hotel", categories$name), ] gdata <- gtrends(keyword = "Riveredge Resort", time = "today+5-y", category = 179) # Check interest by country and MSA gdata$interest_by_dma[1:5, ] gdata$interest_by_country[1:5, ] # Write a function to querry Google Trends and plot interest over time google_trends <- function(keyword, geo = ""){ pres_data <- gtrends(keyword = keyword, geo = geo, time = "today+5-y", onlyInterest = TRUE) plot(pres_data, lwd = 5) hits <- pres_data$interest_over_time$hits last <- length(hits) round((mean(hits[(last-10):last]) / mean(hits[1:10]) - 1) * 100) } # Some sample searches google_trends('NYC') google_trends('Riveredge Resort') google_trends('Riveredge Resort', geo = "US-NY") google_trends('Riveredge Resort', geo = "CA-ON") google_trends("1000 Islands") google_trends('1000 Islands', geo = "CA-ON") google_trends('1000 Islands', geo = "US-NY") google_trends("Thousand Islands") google_trends('Thousand Islands', geo = "CA-ON") google_trends('Thousand Islands', geo = "US-NY")
############################################################################################# ## Title: sampleCounts.R ## Author: Andrew Bernath, Cadmus Group ## Created: 07/05/2017 ## Updated: ## Billing Code(s): ## Description: Code to import and count pop and sample sizes for each ## post-strata region ############################################################################################# ################################################################################ # Use FILEPATHS from Step 1 for folders and file names of: # - METER data # - ZIP Code data (with pop counts from ACS) # - output data ################################################################################ # Call file names popZIP.datMap <- "ZIP_Code_Utility_Mapping.xlsx" meter.export <- "METERS_2017.06.16.xlsx" bldg.export <- "SITES_2017.06.16.xlsx" ############################################################################################# # Import, Subset, CLean Data ############################################################################################# # Import clean RBSA data cleanRBSA.dat <- read.xlsx(paste(filepathCleanData , paste("clean.rbsa.data.unweighted", rundate, ".xlsx", sep = "") , sep="/") ) names(cleanRBSA.dat) # subset to necessary columns cleanRBSA.dat1 <- data.frame("CK_Cadmus_ID" = cleanRBSA.dat$CK_Cadmus_ID , "BuildingType" = cleanRBSA.dat$BuildingType , stringsAsFactors = F) # clean and count Cadmus IDs cleanRBSA.dat1$CK_Cadmus_ID <- trimws(toupper(cleanRBSA.dat1$CK_Cadmus_ID)) length(unique(cleanRBSA.dat1$CK_Cadmus_ID)) ## 601 unique ID's # standardize MF to a single category cleanRBSA.dat1$BuildingType[grep("Multifamily", cleanRBSA.dat1$BuildingType)] <- "Multifamily" unique(cleanRBSA.dat1$BuildingType) # Import ID and ZIP data id_zip.dat <- read.xlsx(xlsxFile = file.path(filepathRawData, meter.export), sheet=1) length(unique(id_zip.dat$CK_Cadmus_ID)) zipFromSites.dat <- read.xlsx(xlsxFile = file.path(filepathRawData, bldg.export), sheet=1) zipCodes <- unique(zipFromSites.dat[which(colnames(zipFromSites.dat) %in% c("CK_Cadmus_ID","SITE_ZIP"))]) # subset to necessary columns id_zip.dat0.1 <- data.frame("CK_Cadmus_ID" = id_zip.dat$CK_Cadmus_ID # , "ZIPCode" = id_zip.dat$SITE_ZIP , "Utility" = id_zip.dat$Utility , "MeterType" = id_zip.dat$Type , stringsAsFactors = F) id_zip.dat1 <- unique(left_join(zipCodes, id_zip.dat0.1, by = "CK_Cadmus_ID")) length(unique(id_zip.dat1$CK_Cadmus_ID)) colnames(id_zip.dat1) <- c("CK_Cadmus_ID", "ZIPCode","Utility","MeterType") # clean and count Cadmus IDs, clean utility and meter type id_zip.dat1$CK_Cadmus_ID <- trimws(toupper(id_zip.dat1$CK_Cadmus_ID)) id_zip.dat1$Utility <- trimws(toupper(id_zip.dat1$Utility)) id_zip.dat1$MeterType <- trimws(toupper(id_zip.dat1$MeterType)) id_zip.dat1$ZIPCode <- as.numeric(substr(id_zip.dat1$ZIPCode, 1, 5)) ## Remove ZIP-Ext length(unique(id_zip.dat1$CK_Cadmus_ID)) ## 567 unique respondent ID's # Indicate invalid ZIP codes id_zip.dat1$invalidZIP <- rep(0, nrow(id_zip.dat1)) id_zip.dat1$invalidZIP[which(id_zip.dat1$ZIPCode < 10000)] <- 1 id_zip.dat1$invalidZIP[which(is.na(id_zip.dat1$ZIPCode))] <- 1 # Subset to electric meters only id_zip.dat2.0 <- id_zip.dat1[which(id_zip.dat1$MeterType != "THERMOSTAT"),] id_zip.dat2.1 <- id_zip.dat2.0[with(id_zip.dat2.0, order(MeterType, decreasing = F)),] which(duplicated(id_zip.dat2.1$CK_Cadmus_ID)) id_zip.dat2 <- id_zip.dat2.1[which(!(duplicated(id_zip.dat2.1$CK_Cadmus_ID))),] ## QA/QC: Any lost customers? length(unique(id_zip.dat1$CK_Cadmus_ID)) == length(unique(id_zip.dat2$CK_Cadmus_ID)) length(unique(id_zip.dat1$CK_Cadmus_ID)) - length(unique(id_zip.dat2$CK_Cadmus_ID)) ## 35 lost customers # Import ZIP code mapping zipMap.dat <- read.xlsx(xlsxFile = file.path(filepathWeightingDocs, popZIP.datMap), sheet=1) names(zipMap.dat) <- c("ZIPCode" , "City" , "County" , "State" , "Region" , "FERC_ID" , "Utility" , "Fraction" , "BPA_vs_IOU" , "SF.N" , "MF.N" , "MH.N" , "SF.N.adj" , "MF.N.adj" , "MH.N.adj") head(zipMap.dat) # Clean up data: clean utility, remove any punctuation from utility, make zip codes numeric zipMap.dat$Utility <- trimws(toupper(zipMap.dat$Utility)) zipMap.dat$Utility <- gsub('[[:punct:]]+', '', zipMap.dat$Utility) zipMap.dat$ZIPCode <- as.numeric(zipMap.dat$ZIPCode) zipMap.dat1 <- data.frame("ZIPCode" = zipMap.dat$ZIPCode , "State" = zipMap.dat$State , "Region" = zipMap.dat$Region , "Utility" = zipMap.dat$Utility , "BPA_vs_IOU" = zipMap.dat$BPA_vs_IOU , stringsAsFactors = F) ## QA/QC: Check names of utilities for mismatches sort(unique(zipMap.dat1$Utility), decreasing=F) sort(unique(id_zip.dat2$Utility), decreasing=F) ## Andrew: were these reviewed with Rietz or Steve?, are there any others that could have been missed? ## Fix mismatches zipMap.dat1$Utility[which(zipMap.dat1$Utility == "PUD NO 1 OF SKAMANIA CO")] <- "PUD #1 SKAMANIA COUNTY" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "TACOMA CITY OF")] <- "CITY OF TACOMA" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "ELMHURST MUTUAL POWER LIGHT CO")] <- "ELMHURST MUTUAL POWER AND LIGHT" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "FLATHEAD ELECTRIC COOP INC")] <- "FLATHEAD ELECTRIC COOPERATIVE" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "GLACIER ELECTRIC COOP INC")] <- "GLACIER ELECTRIC COOP" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "LAKEVIEW LIGHT POWER")] <- "LAKEVIEW POWER & LIGHT" ## Double check this is right -- Mission Valley Power zipMap.dat1$Utility[which(zipMap.dat1$Utility == "USBIAMISSION VALLEY POWER")] <- "MISSION VALLEY POWER" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "MISSOULA ELECTRIC COOP INC")] <- "MISSOULA ELECTRIC COOP" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "NORTHWESTERN CORPORATION")] <- "NORTHWESTERN ENERGY" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "OHOP MUTUAL LIGHT COMPANY INC")] <- "OHOP MUTUAL LIGHT CO" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "PUGET SOUND ENERGY INC")] <- "PUGET SOUND ENERGY" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "SEATTLE CITY OF")] <- "SEATTLE CITY LIGHT" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "SNOHOMISH COUNTY PUD NO 1")] <- "SNOHOMISH PUD" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "USBIAMISSION VALLEY POWER")] <- "MISSION VALLEY POWER" ## QA/QC: How many missing? length(id_zip.dat2$Utility[which(id_zip.dat2$Utility == "-- DID NOT ENTER! --")]) ## 0 not entered ############################################################################################# # Merge data and assign electric utility ############################################################################################# # Join ZIP codes to cleaned building type data samp.dat.0 <- left_join(cleanRBSA.dat1, id_zip.dat2, by="CK_Cadmus_ID") # Join ZIP mapping to previous step colnames(samp.dat.0) <- c("CK_Cadmus_ID", "BuildingType", "ZIPCode" , "Utility" , "MeterType" , "invalidZIP") samp.dat.1 <- left_join(samp.dat.0, zipMap.dat1, by="ZIPCode") samp.dat.1$tally <- rep(1, nrow(samp.dat.1)) head(samp.dat.1) nrow(samp.dat.1)## 959 rows (old) - 9/12 671 rows colnames(samp.dat.1) <- c("CK_Cadmus_ID" ,"BuildingType" ,"ZIPCode" ,"Utility.Customer.Data" ,"MeterType" ,"invalidZIP" ,"State" ,"Region" ,"Utility.ZIP.map" ,"BPA_vs_IOU" ,"tally") ######################################################################################## ## ## ## STEP 1: ## IF Cust data utility is "-- DID NOT ENTER! --" ## -> Replace with ZIP map utility ## ## ## STEP 2: ## IF ZIP map utility has duplicates ## IF Cust data has duplicates ## -> Tag for manual fix ## ELSE Use ZIP map utility ## ## ## STEP 3: ## IF ZIP map has no duplicates ## IF Cust data has no duplicates ## -> Tag for manual fix ## ELSE Use cust data utility ## ## ######################################################################################## ## Replace missing utility from sample data with utility from zip code mapping # missingInd <- which(samp.dat.1$Utility.Customer.Data == "-- DID NOT ENTER! --") samp.dat.2 <- samp.dat.1 # samp.dat.2$Utility.Customer.Data[missingInd] <- samp.dat.2$Utility.ZIP.map[missingInd] # Remove full row duplicates dupRows <- which(duplicated(samp.dat.2)) #NONE samp.dat.3 <- samp.dat.2#[-dupRows,] ## 862 rows # # ## Cust ID's with duplicates dupCustIDs <- unique(samp.dat.3$CK_Cadmus_ID[which(duplicated(samp.dat.3$CK_Cadmus_ID))]) dupUtil.0 <- samp.dat.3[which(samp.dat.3$CK_Cadmus_ID %in% dupCustIDs),] # # # # Initialize counter and output vector cntr <- 1 dupUtil.0$Utility <- rep("MISSING", nrow(dupUtil.0)) # # ## Create "Not In" operator "%notin%" <- Negate("%in%") # # # ## For loops to assign utility as per above logic # ## STEP 2 for(cntr in 1:length(dupCustIDs)) { if("TRUE" %in% duplicated(dupUtil.0$Utility.ZIP.map[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { if("TRUE" %in% duplicated(dupUtil.0$Utility.Customer.Data[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- "MANUAL FIX" } else { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- dupUtil.0$Utility.ZIP.map[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] } } } ## STEP 3 for(cntr in 1:length(dupCustIDs)) { if("TRUE" %notin% duplicated(dupUtil.0$Utility.ZIP.map[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { if("TRUE" %notin% duplicated(dupUtil.0$Utility.Customer.Data[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- "MANUAL FIX" } else { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- dupUtil.0$Utility.Customer.Data[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] } } } # # ## Subset to ID and Utility column and merge back into sample data names(dupUtil.0) dupUtil.1 <- unique(dupUtil.0[which(colnames(dupUtil.0) %in% c("CK_Cadmus_ID", "Utility"))]) samp.dat.4 <- left_join(samp.dat.3, dupUtil.1, by="CK_Cadmus_ID") # # ## For non-duplicates, use cust data samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID %notin% dupCustIDs)] <- samp.dat.4$Utility.Customer.Data[which(samp.dat.4$CK_Cadmus_ID %notin% dupCustIDs)] ########################################## ## ## ## MANUAL FIXES FOR MISSING UTILITIES ## ## ## ########################################## # samp.dat.4 <- samp.dat.3 utilFix <- samp.dat.4[,which(names(samp.dat.4) %in% c("CK_Cadmus_ID" , "ZIPCode" , "Utility.Customer.Data" , "Utility.ZIP.map"))] ## Andrew: What does "inspection" mean here? did you review the zip code? address? etc? ## Based on inspection samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="BPS25495 OS BPA")] <- "CITY OF TACOMA" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="WH3590")] <- "PUGET SOUND ENERGY" ## Based on others in ZIP samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$ZIPCode[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- 98118 samp.dat.4$invalidZIP[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- 0 samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SL2122 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SE2163 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SL1673 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="WH1221")] <- "CITY OF TACOMA" ## Based on which sample round samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SG0048 OS SCL")] <- "SEATTLE CITY LIGHT" ## Fix missing state/region samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="MM0574")] <- "MT" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="MM0574")] <- "W" ## Fix BPA vs IOU samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "SEATTLE CITY LIGHT")] <- "BPA" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "SNOHOMISH PUD")] <- "BPA" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "PUGET SOUND ENERGY")] <- "IOU" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "NORTHWESTERN ENERGY")] <- "IOU" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "MISSION VALLEY POWER")] <- "BPA" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "MISSOULA ELECTRIC COOP")] <- "BPA" ## UPDATES 9/11-12/2017 samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="SE2257 OS SCL")] <- "WA" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="SE2257 OS SCL")] <- "PS" samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- "WA" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- "PS" samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="SL0418 OS SCL")] <- "WA" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="SL0418 OS SCL")] <- "PS" ## Remove old utility columns and duplicate rows samp.dat.5 <- unique(samp.dat.4[,-which(names(samp.dat.4) %in% c("Utility.Customer.Data", "Utility.ZIP.map"))]) which(duplicated(samp.dat.5$CK_Cadmus_ID)) ## All duplicates removed ############ NEED TO FIX ############# samp.dat.4[which(samp.dat.4$CK_Cadmus_ID == "BPS26690 OS BPA"),] ## remove missing information FOR NOW -- this will be corrected in the final data samp.dat.6 <- samp.dat.5[which(!(is.na(samp.dat.5$State))),] # Subset and define strata # Initialize the vector for strata names samp.dat.6$Strata <- rep("MISSING", nrow(samp.dat.6)) unique(samp.dat.6$Utility) ## QA/QC: Make sure oversample utilities are in expected BPA territory samp.dat.6$BPA_vs_IOU[grep("SEATTLE CITY LIGHT", samp.dat.6$Utility)] == "BPA" samp.dat.6$BPA_vs_IOU[grep("SNOHOMISH", samp.dat.6$Utility)] == "BPA" samp.dat.6$BPA_vs_IOU[grep("PUGET SOUND", samp.dat.6$Utility)] == "IOU" # Assign strata samp.dat.6$Strata[which(samp.dat.6$BPA_vs_IOU == "BPA")] <- "BPA" samp.dat.6$Strata[which(samp.dat.6$BPA_vs_IOU == "IOU")] <- "Non-BPA/PSE" samp.dat.6$Strata[grep("SNOHOMISH", samp.dat.6$Utility)] <- "SnoPUD" samp.dat.6$Strata[grep("PUGET SOUND", samp.dat.6$Utility)] <- "PSE" samp.dat.6$Strata[grep("SEATTLE CITY LIGHT", samp.dat.6$Utility)] <- "SCL" samp.dat.6 <- data.frame(samp.dat.6, stringsAsFactors = F) # Summarize sample counts sampCounts.0 <- summarise(group_by(samp.dat.6,BuildingType, State, Region, Utility, BPA_vs_IOU) , n = sum(tally)) ############################################################################################# # Merge data and count sample sizes ############################################################################################# # Subset and define strata # Initialize the vector for strata names sampCounts.0$Strata <- rep("MISSING", nrow(sampCounts.0)) unique(sampCounts.0$Utility) ## QA/QC: Make sure oversample utilities are in expected BPA territory sampCounts.0$BPA_vs_IOU[grep("SEATTLE CITY LIGHT", sampCounts.0$Utility)] == "BPA" sampCounts.0$BPA_vs_IOU[grep("SNOHOMISH", sampCounts.0$Utility)] == "BPA" sampCounts.0$BPA_vs_IOU[grep("PUGET SOUND", sampCounts.0$Utility)] == "IOU" # Assign strata sampCounts.0$Strata[which(sampCounts.0$BPA_vs_IOU == "BPA")] <- "BPA" sampCounts.0$Strata[which(sampCounts.0$BPA_vs_IOU == "IOU")] <- "Non-BPA/PSE" sampCounts.0$Strata[grep("SNOHOMISH", sampCounts.0$Utility)] <- "SnoPUD" sampCounts.0$Strata[grep("PUGET SOUND", sampCounts.0$Utility)] <- "PSE" sampCounts.0$Strata[grep("SEATTLE CITY LIGHT", sampCounts.0$Utility)] <- "SCL" # Get sample sizes in each strata sampCounts.1 <- summarise(group_by(sampCounts.0, BuildingType, State, Region, Strata) , n.h = sum(n)) ############################################################################################# # Count population sizes ############################################################################################# # Join ZIP codes to building type data names(zipMap.dat) popCounts.0 <- summarise(group_by(zipMap.dat, State, Region, Utility, BPA_vs_IOU) , SF.pop = round(sum(SF.N.adj), 0) , MH.pop = round(sum(MH.N.adj), 0) , MF.pop = round(sum(MF.N.adj), 0) ) # Initialize the vector for strata names popCounts.0$Strata <- rep("MISSING", nrow(popCounts.0)) ## QA/QC: Make sure oversample utilities are in expected BPA territory popCounts.0$BPA_vs_IOU[grep("SEATTLE CITY", popCounts.0$Utility)] == "BPA" popCounts.0$BPA_vs_IOU[grep("SNOHOMISH", popCounts.0$Utility)] == "BPA" popCounts.0$BPA_vs_IOU[grep("PUGET SOUND", popCounts.0$Utility)] == "IOU" # Assign strata popCounts.0$Strata[which(popCounts.0$BPA_vs_IOU == "BPA")] <- "BPA" popCounts.0$Strata[which(popCounts.0$BPA_vs_IOU == "IOU")] <- "Non-BPA/PSE" popCounts.0$Strata[grep("SNOHOMISH", popCounts.0$Utility)] <- "SnoPUD" popCounts.0$Strata[grep("PUGET SOUND", popCounts.0$Utility)] <- "PSE" popCounts.0$Strata[grep("SEATTLE CITY", popCounts.0$Utility)] <- "SCL" # Get sample sizes in each strata popCounts.1 <- summarise(group_by(popCounts.0, State, Region, Strata) , N_SF.h = sum(SF.pop) , N_MH.h = sum(MH.pop) , N_MF.h = sum(MF.pop)) popMelt <- melt(popCounts.1, id.vars = c("State", "Region", "Strata")) popMelt$BuildingType <- NA popMelt$BuildingType[grep("SF", popMelt$variable)] <- "Single Family" popMelt$BuildingType[grep("MF", popMelt$variable)] <- "Multifamily" popMelt$BuildingType[grep("MH", popMelt$variable)] <- "Manufactured" total.counts <- full_join(popMelt, sampCounts.1, by = c("BuildingType" ,"State" ,"Region" ,"Strata")) total.counts$n.h[which(is.na(total.counts$n.h))] <- 0 colnames(total.counts)[which(colnames(total.counts) == "value")] <- "N.h" final.counts <- total.counts[which(!(colnames(total.counts) %in% c("variable")))] ############################################################################################# # Combine sample and population counts ############################################################################################# # Join pop to samp by state/region/strata names(sampCounts.1) names(popCounts.1) allCounts.0 <- left_join(sampCounts.1, popCounts.1, by=c("State", "Region", "Strata")) # Set pop size in strata based on bldg type # Initialize the vector for pop sizes allCounts.0$N.h <- rep("MISSING", nrow(allCounts.0)) # Single Family Homes allCounts.0$N.h[which(allCounts.0$BuildingType == "Single Family")] <- allCounts.0$N_SF.h[which(allCounts.0$BuildingType == "Single Family")] # Manufactured Homes allCounts.0$N.h[which(allCounts.0$BuildingType == "Manufactured")] <- allCounts.0$N_MH.h[which(allCounts.0$BuildingType == "Manufactured")] # Multifamily Homes allCounts.0$N.h[grep("Multifamily",allCounts.0$BuildingType)] <- allCounts.0$N_MF.h[grep("Multifamily",allCounts.0$BuildingType)] # Remove unnecessary columns allCounts.1 <- allCounts.0[,-which(names(allCounts.0) %in% c("N_SF.h", "N_MH.h", "N_MF.h"))] allCounts.1$n.h <- as.numeric(allCounts.1$n.h) allCounts.1$N.h <- as.numeric(allCounts.1$N.h) # Compute expansion weights allCounts.1$w.h <- round(allCounts.1$N.h/allCounts.1$n.h, 2) allCounts.final <- allCounts.1[which(!(is.na(allCounts.1$State))),] allCounts.final1 <- allCounts.final[which(!(is.na(allCounts.final$N.h))),] allCounts.final1$Final.Strata <- paste(allCounts.final1$State ,allCounts.final1$Region ,allCounts.final1$Strata) samp.dat.7 <- left_join(samp.dat.6, final.counts, by = c("BuildingType" ,"State" ,"Region" ,"Strata")) samp.dat.8 <- samp.dat.7[which(!(is.na(samp.dat.7$N.h))),] samp.dat.final <- left_join(samp.dat.8, cleanRBSA.dat) ## Export clean data merged with weights write.xlsx(samp.dat.final, paste(filepathCleanData, paste("clean.rbsa.data", rundate, ".xlsx", sep = ""), sep="/"), append = T, row.names = F, showNA = F) ## Export write.xlsx(final.counts, paste(filepathCleanData, paste("weights.data", rundate, ".xlsx", sep = ""), sep="/"), append = T, row.names = F, showNA = F)
/Code/Sample Weighting/Old/Weights.R
no_license
casey-stevens/Cadmus-6000-2017
R
false
false
22,880
r
############################################################################################# ## Title: sampleCounts.R ## Author: Andrew Bernath, Cadmus Group ## Created: 07/05/2017 ## Updated: ## Billing Code(s): ## Description: Code to import and count pop and sample sizes for each ## post-strata region ############################################################################################# ################################################################################ # Use FILEPATHS from Step 1 for folders and file names of: # - METER data # - ZIP Code data (with pop counts from ACS) # - output data ################################################################################ # Call file names popZIP.datMap <- "ZIP_Code_Utility_Mapping.xlsx" meter.export <- "METERS_2017.06.16.xlsx" bldg.export <- "SITES_2017.06.16.xlsx" ############################################################################################# # Import, Subset, CLean Data ############################################################################################# # Import clean RBSA data cleanRBSA.dat <- read.xlsx(paste(filepathCleanData , paste("clean.rbsa.data.unweighted", rundate, ".xlsx", sep = "") , sep="/") ) names(cleanRBSA.dat) # subset to necessary columns cleanRBSA.dat1 <- data.frame("CK_Cadmus_ID" = cleanRBSA.dat$CK_Cadmus_ID , "BuildingType" = cleanRBSA.dat$BuildingType , stringsAsFactors = F) # clean and count Cadmus IDs cleanRBSA.dat1$CK_Cadmus_ID <- trimws(toupper(cleanRBSA.dat1$CK_Cadmus_ID)) length(unique(cleanRBSA.dat1$CK_Cadmus_ID)) ## 601 unique ID's # standardize MF to a single category cleanRBSA.dat1$BuildingType[grep("Multifamily", cleanRBSA.dat1$BuildingType)] <- "Multifamily" unique(cleanRBSA.dat1$BuildingType) # Import ID and ZIP data id_zip.dat <- read.xlsx(xlsxFile = file.path(filepathRawData, meter.export), sheet=1) length(unique(id_zip.dat$CK_Cadmus_ID)) zipFromSites.dat <- read.xlsx(xlsxFile = file.path(filepathRawData, bldg.export), sheet=1) zipCodes <- unique(zipFromSites.dat[which(colnames(zipFromSites.dat) %in% c("CK_Cadmus_ID","SITE_ZIP"))]) # subset to necessary columns id_zip.dat0.1 <- data.frame("CK_Cadmus_ID" = id_zip.dat$CK_Cadmus_ID # , "ZIPCode" = id_zip.dat$SITE_ZIP , "Utility" = id_zip.dat$Utility , "MeterType" = id_zip.dat$Type , stringsAsFactors = F) id_zip.dat1 <- unique(left_join(zipCodes, id_zip.dat0.1, by = "CK_Cadmus_ID")) length(unique(id_zip.dat1$CK_Cadmus_ID)) colnames(id_zip.dat1) <- c("CK_Cadmus_ID", "ZIPCode","Utility","MeterType") # clean and count Cadmus IDs, clean utility and meter type id_zip.dat1$CK_Cadmus_ID <- trimws(toupper(id_zip.dat1$CK_Cadmus_ID)) id_zip.dat1$Utility <- trimws(toupper(id_zip.dat1$Utility)) id_zip.dat1$MeterType <- trimws(toupper(id_zip.dat1$MeterType)) id_zip.dat1$ZIPCode <- as.numeric(substr(id_zip.dat1$ZIPCode, 1, 5)) ## Remove ZIP-Ext length(unique(id_zip.dat1$CK_Cadmus_ID)) ## 567 unique respondent ID's # Indicate invalid ZIP codes id_zip.dat1$invalidZIP <- rep(0, nrow(id_zip.dat1)) id_zip.dat1$invalidZIP[which(id_zip.dat1$ZIPCode < 10000)] <- 1 id_zip.dat1$invalidZIP[which(is.na(id_zip.dat1$ZIPCode))] <- 1 # Subset to electric meters only id_zip.dat2.0 <- id_zip.dat1[which(id_zip.dat1$MeterType != "THERMOSTAT"),] id_zip.dat2.1 <- id_zip.dat2.0[with(id_zip.dat2.0, order(MeterType, decreasing = F)),] which(duplicated(id_zip.dat2.1$CK_Cadmus_ID)) id_zip.dat2 <- id_zip.dat2.1[which(!(duplicated(id_zip.dat2.1$CK_Cadmus_ID))),] ## QA/QC: Any lost customers? length(unique(id_zip.dat1$CK_Cadmus_ID)) == length(unique(id_zip.dat2$CK_Cadmus_ID)) length(unique(id_zip.dat1$CK_Cadmus_ID)) - length(unique(id_zip.dat2$CK_Cadmus_ID)) ## 35 lost customers # Import ZIP code mapping zipMap.dat <- read.xlsx(xlsxFile = file.path(filepathWeightingDocs, popZIP.datMap), sheet=1) names(zipMap.dat) <- c("ZIPCode" , "City" , "County" , "State" , "Region" , "FERC_ID" , "Utility" , "Fraction" , "BPA_vs_IOU" , "SF.N" , "MF.N" , "MH.N" , "SF.N.adj" , "MF.N.adj" , "MH.N.adj") head(zipMap.dat) # Clean up data: clean utility, remove any punctuation from utility, make zip codes numeric zipMap.dat$Utility <- trimws(toupper(zipMap.dat$Utility)) zipMap.dat$Utility <- gsub('[[:punct:]]+', '', zipMap.dat$Utility) zipMap.dat$ZIPCode <- as.numeric(zipMap.dat$ZIPCode) zipMap.dat1 <- data.frame("ZIPCode" = zipMap.dat$ZIPCode , "State" = zipMap.dat$State , "Region" = zipMap.dat$Region , "Utility" = zipMap.dat$Utility , "BPA_vs_IOU" = zipMap.dat$BPA_vs_IOU , stringsAsFactors = F) ## QA/QC: Check names of utilities for mismatches sort(unique(zipMap.dat1$Utility), decreasing=F) sort(unique(id_zip.dat2$Utility), decreasing=F) ## Andrew: were these reviewed with Rietz or Steve?, are there any others that could have been missed? ## Fix mismatches zipMap.dat1$Utility[which(zipMap.dat1$Utility == "PUD NO 1 OF SKAMANIA CO")] <- "PUD #1 SKAMANIA COUNTY" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "TACOMA CITY OF")] <- "CITY OF TACOMA" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "ELMHURST MUTUAL POWER LIGHT CO")] <- "ELMHURST MUTUAL POWER AND LIGHT" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "FLATHEAD ELECTRIC COOP INC")] <- "FLATHEAD ELECTRIC COOPERATIVE" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "GLACIER ELECTRIC COOP INC")] <- "GLACIER ELECTRIC COOP" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "LAKEVIEW LIGHT POWER")] <- "LAKEVIEW POWER & LIGHT" ## Double check this is right -- Mission Valley Power zipMap.dat1$Utility[which(zipMap.dat1$Utility == "USBIAMISSION VALLEY POWER")] <- "MISSION VALLEY POWER" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "MISSOULA ELECTRIC COOP INC")] <- "MISSOULA ELECTRIC COOP" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "NORTHWESTERN CORPORATION")] <- "NORTHWESTERN ENERGY" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "OHOP MUTUAL LIGHT COMPANY INC")] <- "OHOP MUTUAL LIGHT CO" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "PUGET SOUND ENERGY INC")] <- "PUGET SOUND ENERGY" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "SEATTLE CITY OF")] <- "SEATTLE CITY LIGHT" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "SNOHOMISH COUNTY PUD NO 1")] <- "SNOHOMISH PUD" zipMap.dat1$Utility[which(zipMap.dat1$Utility == "USBIAMISSION VALLEY POWER")] <- "MISSION VALLEY POWER" ## QA/QC: How many missing? length(id_zip.dat2$Utility[which(id_zip.dat2$Utility == "-- DID NOT ENTER! --")]) ## 0 not entered ############################################################################################# # Merge data and assign electric utility ############################################################################################# # Join ZIP codes to cleaned building type data samp.dat.0 <- left_join(cleanRBSA.dat1, id_zip.dat2, by="CK_Cadmus_ID") # Join ZIP mapping to previous step colnames(samp.dat.0) <- c("CK_Cadmus_ID", "BuildingType", "ZIPCode" , "Utility" , "MeterType" , "invalidZIP") samp.dat.1 <- left_join(samp.dat.0, zipMap.dat1, by="ZIPCode") samp.dat.1$tally <- rep(1, nrow(samp.dat.1)) head(samp.dat.1) nrow(samp.dat.1)## 959 rows (old) - 9/12 671 rows colnames(samp.dat.1) <- c("CK_Cadmus_ID" ,"BuildingType" ,"ZIPCode" ,"Utility.Customer.Data" ,"MeterType" ,"invalidZIP" ,"State" ,"Region" ,"Utility.ZIP.map" ,"BPA_vs_IOU" ,"tally") ######################################################################################## ## ## ## STEP 1: ## IF Cust data utility is "-- DID NOT ENTER! --" ## -> Replace with ZIP map utility ## ## ## STEP 2: ## IF ZIP map utility has duplicates ## IF Cust data has duplicates ## -> Tag for manual fix ## ELSE Use ZIP map utility ## ## ## STEP 3: ## IF ZIP map has no duplicates ## IF Cust data has no duplicates ## -> Tag for manual fix ## ELSE Use cust data utility ## ## ######################################################################################## ## Replace missing utility from sample data with utility from zip code mapping # missingInd <- which(samp.dat.1$Utility.Customer.Data == "-- DID NOT ENTER! --") samp.dat.2 <- samp.dat.1 # samp.dat.2$Utility.Customer.Data[missingInd] <- samp.dat.2$Utility.ZIP.map[missingInd] # Remove full row duplicates dupRows <- which(duplicated(samp.dat.2)) #NONE samp.dat.3 <- samp.dat.2#[-dupRows,] ## 862 rows # # ## Cust ID's with duplicates dupCustIDs <- unique(samp.dat.3$CK_Cadmus_ID[which(duplicated(samp.dat.3$CK_Cadmus_ID))]) dupUtil.0 <- samp.dat.3[which(samp.dat.3$CK_Cadmus_ID %in% dupCustIDs),] # # # # Initialize counter and output vector cntr <- 1 dupUtil.0$Utility <- rep("MISSING", nrow(dupUtil.0)) # # ## Create "Not In" operator "%notin%" <- Negate("%in%") # # # ## For loops to assign utility as per above logic # ## STEP 2 for(cntr in 1:length(dupCustIDs)) { if("TRUE" %in% duplicated(dupUtil.0$Utility.ZIP.map[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { if("TRUE" %in% duplicated(dupUtil.0$Utility.Customer.Data[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- "MANUAL FIX" } else { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- dupUtil.0$Utility.ZIP.map[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] } } } ## STEP 3 for(cntr in 1:length(dupCustIDs)) { if("TRUE" %notin% duplicated(dupUtil.0$Utility.ZIP.map[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { if("TRUE" %notin% duplicated(dupUtil.0$Utility.Customer.Data[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])])) { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- "MANUAL FIX" } else { dupUtil.0$Utility[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] <- dupUtil.0$Utility.Customer.Data[which(dupUtil.0$CK_Cadmus_ID == dupCustIDs[cntr])] } } } # # ## Subset to ID and Utility column and merge back into sample data names(dupUtil.0) dupUtil.1 <- unique(dupUtil.0[which(colnames(dupUtil.0) %in% c("CK_Cadmus_ID", "Utility"))]) samp.dat.4 <- left_join(samp.dat.3, dupUtil.1, by="CK_Cadmus_ID") # # ## For non-duplicates, use cust data samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID %notin% dupCustIDs)] <- samp.dat.4$Utility.Customer.Data[which(samp.dat.4$CK_Cadmus_ID %notin% dupCustIDs)] ########################################## ## ## ## MANUAL FIXES FOR MISSING UTILITIES ## ## ## ########################################## # samp.dat.4 <- samp.dat.3 utilFix <- samp.dat.4[,which(names(samp.dat.4) %in% c("CK_Cadmus_ID" , "ZIPCode" , "Utility.Customer.Data" , "Utility.ZIP.map"))] ## Andrew: What does "inspection" mean here? did you review the zip code? address? etc? ## Based on inspection samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="BPS25495 OS BPA")] <- "CITY OF TACOMA" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="WH3590")] <- "PUGET SOUND ENERGY" ## Based on others in ZIP samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$ZIPCode[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- 98118 samp.dat.4$invalidZIP[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- 0 samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SL2122 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SE2163 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SL1673 OS SCL")] <- "SEATTLE CITY LIGHT" samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="WH1221")] <- "CITY OF TACOMA" ## Based on which sample round samp.dat.4$Utility[which(samp.dat.4$CK_Cadmus_ID =="SG0048 OS SCL")] <- "SEATTLE CITY LIGHT" ## Fix missing state/region samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="MM0574")] <- "MT" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="MM0574")] <- "W" ## Fix BPA vs IOU samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "SEATTLE CITY LIGHT")] <- "BPA" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "SNOHOMISH PUD")] <- "BPA" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "PUGET SOUND ENERGY")] <- "IOU" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "NORTHWESTERN ENERGY")] <- "IOU" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "MISSION VALLEY POWER")] <- "BPA" samp.dat.4$BPA_vs_IOU[which(samp.dat.4$Utility == "MISSOULA ELECTRIC COOP")] <- "BPA" ## UPDATES 9/11-12/2017 samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="SE2257 OS SCL")] <- "WA" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="SE2257 OS SCL")] <- "PS" samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- "WA" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="SG0200 OS SCL")] <- "PS" samp.dat.4$State[which(samp.dat.4$CK_Cadmus_ID =="SL0418 OS SCL")] <- "WA" samp.dat.4$Region[which(samp.dat.4$CK_Cadmus_ID =="SL0418 OS SCL")] <- "PS" ## Remove old utility columns and duplicate rows samp.dat.5 <- unique(samp.dat.4[,-which(names(samp.dat.4) %in% c("Utility.Customer.Data", "Utility.ZIP.map"))]) which(duplicated(samp.dat.5$CK_Cadmus_ID)) ## All duplicates removed ############ NEED TO FIX ############# samp.dat.4[which(samp.dat.4$CK_Cadmus_ID == "BPS26690 OS BPA"),] ## remove missing information FOR NOW -- this will be corrected in the final data samp.dat.6 <- samp.dat.5[which(!(is.na(samp.dat.5$State))),] # Subset and define strata # Initialize the vector for strata names samp.dat.6$Strata <- rep("MISSING", nrow(samp.dat.6)) unique(samp.dat.6$Utility) ## QA/QC: Make sure oversample utilities are in expected BPA territory samp.dat.6$BPA_vs_IOU[grep("SEATTLE CITY LIGHT", samp.dat.6$Utility)] == "BPA" samp.dat.6$BPA_vs_IOU[grep("SNOHOMISH", samp.dat.6$Utility)] == "BPA" samp.dat.6$BPA_vs_IOU[grep("PUGET SOUND", samp.dat.6$Utility)] == "IOU" # Assign strata samp.dat.6$Strata[which(samp.dat.6$BPA_vs_IOU == "BPA")] <- "BPA" samp.dat.6$Strata[which(samp.dat.6$BPA_vs_IOU == "IOU")] <- "Non-BPA/PSE" samp.dat.6$Strata[grep("SNOHOMISH", samp.dat.6$Utility)] <- "SnoPUD" samp.dat.6$Strata[grep("PUGET SOUND", samp.dat.6$Utility)] <- "PSE" samp.dat.6$Strata[grep("SEATTLE CITY LIGHT", samp.dat.6$Utility)] <- "SCL" samp.dat.6 <- data.frame(samp.dat.6, stringsAsFactors = F) # Summarize sample counts sampCounts.0 <- summarise(group_by(samp.dat.6,BuildingType, State, Region, Utility, BPA_vs_IOU) , n = sum(tally)) ############################################################################################# # Merge data and count sample sizes ############################################################################################# # Subset and define strata # Initialize the vector for strata names sampCounts.0$Strata <- rep("MISSING", nrow(sampCounts.0)) unique(sampCounts.0$Utility) ## QA/QC: Make sure oversample utilities are in expected BPA territory sampCounts.0$BPA_vs_IOU[grep("SEATTLE CITY LIGHT", sampCounts.0$Utility)] == "BPA" sampCounts.0$BPA_vs_IOU[grep("SNOHOMISH", sampCounts.0$Utility)] == "BPA" sampCounts.0$BPA_vs_IOU[grep("PUGET SOUND", sampCounts.0$Utility)] == "IOU" # Assign strata sampCounts.0$Strata[which(sampCounts.0$BPA_vs_IOU == "BPA")] <- "BPA" sampCounts.0$Strata[which(sampCounts.0$BPA_vs_IOU == "IOU")] <- "Non-BPA/PSE" sampCounts.0$Strata[grep("SNOHOMISH", sampCounts.0$Utility)] <- "SnoPUD" sampCounts.0$Strata[grep("PUGET SOUND", sampCounts.0$Utility)] <- "PSE" sampCounts.0$Strata[grep("SEATTLE CITY LIGHT", sampCounts.0$Utility)] <- "SCL" # Get sample sizes in each strata sampCounts.1 <- summarise(group_by(sampCounts.0, BuildingType, State, Region, Strata) , n.h = sum(n)) ############################################################################################# # Count population sizes ############################################################################################# # Join ZIP codes to building type data names(zipMap.dat) popCounts.0 <- summarise(group_by(zipMap.dat, State, Region, Utility, BPA_vs_IOU) , SF.pop = round(sum(SF.N.adj), 0) , MH.pop = round(sum(MH.N.adj), 0) , MF.pop = round(sum(MF.N.adj), 0) ) # Initialize the vector for strata names popCounts.0$Strata <- rep("MISSING", nrow(popCounts.0)) ## QA/QC: Make sure oversample utilities are in expected BPA territory popCounts.0$BPA_vs_IOU[grep("SEATTLE CITY", popCounts.0$Utility)] == "BPA" popCounts.0$BPA_vs_IOU[grep("SNOHOMISH", popCounts.0$Utility)] == "BPA" popCounts.0$BPA_vs_IOU[grep("PUGET SOUND", popCounts.0$Utility)] == "IOU" # Assign strata popCounts.0$Strata[which(popCounts.0$BPA_vs_IOU == "BPA")] <- "BPA" popCounts.0$Strata[which(popCounts.0$BPA_vs_IOU == "IOU")] <- "Non-BPA/PSE" popCounts.0$Strata[grep("SNOHOMISH", popCounts.0$Utility)] <- "SnoPUD" popCounts.0$Strata[grep("PUGET SOUND", popCounts.0$Utility)] <- "PSE" popCounts.0$Strata[grep("SEATTLE CITY", popCounts.0$Utility)] <- "SCL" # Get sample sizes in each strata popCounts.1 <- summarise(group_by(popCounts.0, State, Region, Strata) , N_SF.h = sum(SF.pop) , N_MH.h = sum(MH.pop) , N_MF.h = sum(MF.pop)) popMelt <- melt(popCounts.1, id.vars = c("State", "Region", "Strata")) popMelt$BuildingType <- NA popMelt$BuildingType[grep("SF", popMelt$variable)] <- "Single Family" popMelt$BuildingType[grep("MF", popMelt$variable)] <- "Multifamily" popMelt$BuildingType[grep("MH", popMelt$variable)] <- "Manufactured" total.counts <- full_join(popMelt, sampCounts.1, by = c("BuildingType" ,"State" ,"Region" ,"Strata")) total.counts$n.h[which(is.na(total.counts$n.h))] <- 0 colnames(total.counts)[which(colnames(total.counts) == "value")] <- "N.h" final.counts <- total.counts[which(!(colnames(total.counts) %in% c("variable")))] ############################################################################################# # Combine sample and population counts ############################################################################################# # Join pop to samp by state/region/strata names(sampCounts.1) names(popCounts.1) allCounts.0 <- left_join(sampCounts.1, popCounts.1, by=c("State", "Region", "Strata")) # Set pop size in strata based on bldg type # Initialize the vector for pop sizes allCounts.0$N.h <- rep("MISSING", nrow(allCounts.0)) # Single Family Homes allCounts.0$N.h[which(allCounts.0$BuildingType == "Single Family")] <- allCounts.0$N_SF.h[which(allCounts.0$BuildingType == "Single Family")] # Manufactured Homes allCounts.0$N.h[which(allCounts.0$BuildingType == "Manufactured")] <- allCounts.0$N_MH.h[which(allCounts.0$BuildingType == "Manufactured")] # Multifamily Homes allCounts.0$N.h[grep("Multifamily",allCounts.0$BuildingType)] <- allCounts.0$N_MF.h[grep("Multifamily",allCounts.0$BuildingType)] # Remove unnecessary columns allCounts.1 <- allCounts.0[,-which(names(allCounts.0) %in% c("N_SF.h", "N_MH.h", "N_MF.h"))] allCounts.1$n.h <- as.numeric(allCounts.1$n.h) allCounts.1$N.h <- as.numeric(allCounts.1$N.h) # Compute expansion weights allCounts.1$w.h <- round(allCounts.1$N.h/allCounts.1$n.h, 2) allCounts.final <- allCounts.1[which(!(is.na(allCounts.1$State))),] allCounts.final1 <- allCounts.final[which(!(is.na(allCounts.final$N.h))),] allCounts.final1$Final.Strata <- paste(allCounts.final1$State ,allCounts.final1$Region ,allCounts.final1$Strata) samp.dat.7 <- left_join(samp.dat.6, final.counts, by = c("BuildingType" ,"State" ,"Region" ,"Strata")) samp.dat.8 <- samp.dat.7[which(!(is.na(samp.dat.7$N.h))),] samp.dat.final <- left_join(samp.dat.8, cleanRBSA.dat) ## Export clean data merged with weights write.xlsx(samp.dat.final, paste(filepathCleanData, paste("clean.rbsa.data", rundate, ".xlsx", sep = ""), sep="/"), append = T, row.names = F, showNA = F) ## Export write.xlsx(final.counts, paste(filepathCleanData, paste("weights.data", rundate, ".xlsx", sep = ""), sep="/"), append = T, row.names = F, showNA = F)
################# ### BIBLIOTECA ## ################# library(dplyr) ################# # BASE DE DADOS # ################# base <- read.table("20180516-base-pfgn.txt", header = T, sep = ";", quote = "\"", dec = ",", fill = TRUE, stringsAsFactors=F) head(base) ################# ## MANIPULACAO ## ################# options(digits = 2, scipen = 14) colnames(base) <- c("CNPJ","Nome","Municpio","UF","Valor") temp_uf <- base$UF temp_uf <- gsub(" ","-",temp_uf) head(temp_uf) valor <- gsub("[.]","",base$Valor) valor <- gsub("[,]",".",valor) valor <- as.numeric(valor) # head(valor) cnpjLimpo <- base$CNPJ cnpjLimpo <- gsub("[.]","",cnpjLimpo) cnpjLimpo <- gsub("[-]", "", cnpjLimpo) cnpjLimpo <- gsub("[/]", "", cnpjLimpo) cnpjLimpo <- as.numeric(cnpjLimpo) # head(cnpjLimpo) base$UF <- temp_uf base$CNPJ <- cnpjLimpo base$Valor <- valor # rm(cnpjLimpo, valor, temp_uf) ################# ### SPLIT - UF ## ################# estados <- unique(base$UF) # head(estados) lista_por_UF <- split(base, base$UF) for(i in 1:length(estados)){ uf <- estados[i] base_uf <- lista_por_UF[[uf]] write.csv2(base_uf,paste0('refis_pgfn_',uf,'.csv'),row.names = FALSE) } # rm(estados, i, lista_por_UF, uf, base_uf) ################# ### STATISTIC ### ################# valor_por_uf <- base %>% group_by(UF) %>% summarise(qtde = n(), soma_total = sum(Valor)) valor_por_uf$divida_media <- valor_por_uf$soma_total / valor_por_uf$qtde valor_por_uf View(valor_por_uf)
/PGFN/Divida-Ativa-Script.R
no_license
alexvlima/Simples-Tax-Revenues
R
false
false
1,533
r
################# ### BIBLIOTECA ## ################# library(dplyr) ################# # BASE DE DADOS # ################# base <- read.table("20180516-base-pfgn.txt", header = T, sep = ";", quote = "\"", dec = ",", fill = TRUE, stringsAsFactors=F) head(base) ################# ## MANIPULACAO ## ################# options(digits = 2, scipen = 14) colnames(base) <- c("CNPJ","Nome","Municpio","UF","Valor") temp_uf <- base$UF temp_uf <- gsub(" ","-",temp_uf) head(temp_uf) valor <- gsub("[.]","",base$Valor) valor <- gsub("[,]",".",valor) valor <- as.numeric(valor) # head(valor) cnpjLimpo <- base$CNPJ cnpjLimpo <- gsub("[.]","",cnpjLimpo) cnpjLimpo <- gsub("[-]", "", cnpjLimpo) cnpjLimpo <- gsub("[/]", "", cnpjLimpo) cnpjLimpo <- as.numeric(cnpjLimpo) # head(cnpjLimpo) base$UF <- temp_uf base$CNPJ <- cnpjLimpo base$Valor <- valor # rm(cnpjLimpo, valor, temp_uf) ################# ### SPLIT - UF ## ################# estados <- unique(base$UF) # head(estados) lista_por_UF <- split(base, base$UF) for(i in 1:length(estados)){ uf <- estados[i] base_uf <- lista_por_UF[[uf]] write.csv2(base_uf,paste0('refis_pgfn_',uf,'.csv'),row.names = FALSE) } # rm(estados, i, lista_por_UF, uf, base_uf) ################# ### STATISTIC ### ################# valor_por_uf <- base %>% group_by(UF) %>% summarise(qtde = n(), soma_total = sum(Valor)) valor_por_uf$divida_media <- valor_por_uf$soma_total / valor_por_uf$qtde valor_por_uf View(valor_por_uf)
testlist <- list(type = 1L, z = 8.31522758516251e-317) result <- do.call(esreg::G1_fun,testlist) str(result)
/esreg/inst/testfiles/G1_fun/libFuzzer_G1_fun/G1_fun_valgrind_files/1609890918-test.R
no_license
akhikolla/updated-only-Issues
R
false
false
108
r
testlist <- list(type = 1L, z = 8.31522758516251e-317) result <- do.call(esreg::G1_fun,testlist) str(result)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/find_Weibull_MLEs.R \name{find_Weibull_MLEs} \alias{find_Weibull_MLEs} \title{A Wrapper Function of \code{simulate_weibull_data}} \usage{ find_Weibull_MLEs(censor_data) } \arguments{ \item{censor_data}{The value of function\code{simulate_weibull_data()}.} } \description{ This function only gives the MLEs, discarding the censoring data. }
/man/find_Weibull_MLEs.Rd
permissive
tianqinglong/myRtoolbox
R
false
true
432
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/find_Weibull_MLEs.R \name{find_Weibull_MLEs} \alias{find_Weibull_MLEs} \title{A Wrapper Function of \code{simulate_weibull_data}} \usage{ find_Weibull_MLEs(censor_data) } \arguments{ \item{censor_data}{The value of function\code{simulate_weibull_data()}.} } \description{ This function only gives the MLEs, discarding the censoring data. }
if(!require(shiny)) install.packages("shiny") library(shiny) runApp("app.R",port = 2705,quiet=TRUE,launch.browser = TRUE)
/Run.R
no_license
Dfperezgdatascientist/Prueba_KuberGCP
R
false
false
128
r
if(!require(shiny)) install.packages("shiny") library(shiny) runApp("app.R",port = 2705,quiet=TRUE,launch.browser = TRUE)
tallyVotes <- function(test, blendedModel, classes=c("SS", "CSiS", "FSiS", "SiSh", "MS", "WS", "D", "PS", "BS") ) { wells <- names(blendedModel[["fits"]]) # initialize data frame for weighted vote tallies with zeros votes <- data.frame(matrix(0, nrow = nrow(test), ncol = length(classes))) names(votes) <- classes for (well_i in wells) { predictions <- predict(blendedModel[["fits"]][[well_i]], newdata=test) w <- blendedModel[["weights"]][[well_i]] for (i in 1:nrow(test)) { # add well weight votes[i, which(names(votes) %in% predictions[i])] <- votes[i, which(names(votes) %in% predictions[i])] + w } } votes } electClass <- function(test, votes) { for (i in 1:nrow(test)) { test$Predicted[i] <- names(votes)[which.max(votes[i,])] } test$Predicted <- as.factor(test$Predicted) levels(test$Predicted) <- c("SS", "CSiS", "FSiS", "SiSh", "MS", "WS", "D", "PS", "BS") test$Predicted }
/jpoirier/archive/evaluationFunctions.R
permissive
yohanesnuwara/2016-ml-contest
R
false
false
1,109
r
tallyVotes <- function(test, blendedModel, classes=c("SS", "CSiS", "FSiS", "SiSh", "MS", "WS", "D", "PS", "BS") ) { wells <- names(blendedModel[["fits"]]) # initialize data frame for weighted vote tallies with zeros votes <- data.frame(matrix(0, nrow = nrow(test), ncol = length(classes))) names(votes) <- classes for (well_i in wells) { predictions <- predict(blendedModel[["fits"]][[well_i]], newdata=test) w <- blendedModel[["weights"]][[well_i]] for (i in 1:nrow(test)) { # add well weight votes[i, which(names(votes) %in% predictions[i])] <- votes[i, which(names(votes) %in% predictions[i])] + w } } votes } electClass <- function(test, votes) { for (i in 1:nrow(test)) { test$Predicted[i] <- names(votes)[which.max(votes[i,])] } test$Predicted <- as.factor(test$Predicted) levels(test$Predicted) <- c("SS", "CSiS", "FSiS", "SiSh", "MS", "WS", "D", "PS", "BS") test$Predicted }
tournament_selection <- function(population) { population_size <- length(population) random_choice_1 <- sample(population_size, replace = TRUE) random_choice_2 <- sample(population_size, replace = TRUE) new_population <- random_choice_1 selection <- population[random_choice_1] > population[random_choice_2] new_population[selection] <- random_choice_2[selection] return(new_population) }
/R/selection.R
permissive
jiripetrlik/r-multiobjective-evolutionary-algorithms
R
false
false
405
r
tournament_selection <- function(population) { population_size <- length(population) random_choice_1 <- sample(population_size, replace = TRUE) random_choice_2 <- sample(population_size, replace = TRUE) new_population <- random_choice_1 selection <- population[random_choice_1] > population[random_choice_2] new_population[selection] <- random_choice_2[selection] return(new_population) }
#' @useDynLib pedinf NULL
/R/pedinf-package.R
no_license
mikldk/pedinf
R
false
false
26
r
#' @useDynLib pedinf NULL
testlist <- list(a = 0L, b = 0L, x = c(-44536L, -1694498817L, 134744252L, 184483840L, 16711680L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)) result <- do.call(grattan:::anyOutside,testlist) str(result)
/grattan/inst/testfiles/anyOutside/libFuzzer_anyOutside/anyOutside_valgrind_files/1610386265-test.R
no_license
akhikolla/updated-only-Issues
R
false
false
256
r
testlist <- list(a = 0L, b = 0L, x = c(-44536L, -1694498817L, 134744252L, 184483840L, 16711680L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)) result <- do.call(grattan:::anyOutside,testlist) str(result)
# Data Cleaning Week 4 Project # 10/22/2016 # This code will produce two tidy data frames in a linux environment # df contains a subset of the combined test and training data with # mean and std quantities from the original data set. # df2 has one row per subject per activity and captures # the means of the measurement columns from df with corresponding # test subject and activty. # Note: this code uses = instead of <- for assignment for readability # because [Thing] less than negative [Other thing] is confusing # Include useful library library(dplyr) # Step 0 - get the data, if necessary: # Uncomment 3 lines below if data has been retrieved already #download.file("https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip", # "./thedata.zip") #unzip("./thedata.zip") # Step 1: # Merging training and test data # I am ignoring the raw accelerometer and gyro data and only using # the X, y, subject files. # Note: this could also be done on a bash command line with something like: # $ paste subject_test.txt, X_test.txt, y_test.txt >temp1 # $ paste subject_train.txt, X_train.txt, y_train.txt >temp2 # $ cat temp1, temp2 >fulldata.txt # Within each set (test and train), combine subject, data, and label: df_train = read.table("./UCI HAR Dataset/train/X_train.txt") df_train_labs = read.table("./UCI HAR Dataset/train/y_train.txt") df_train_subs = read.table("./UCI HAR Dataset/train/subject_train.txt") df_test = read.table("./UCI HAR Dataset/test/X_test.txt") df_test_labs = read.table("./UCI HAR Dataset/test/y_test.txt") df_test_subs = read.table("./UCI HAR Dataset/test/subject_test.txt") # Combine data, labels, and subjects into training and test tables: df_train = cbind(df_train, df_train_labs, df_train_subs) df_test = cbind(df_test, df_test_labs, df_test_subs) # Cols are now: [561 features], label (i.e. activity), subject (i.e. #1-30) mycols = 562:563 mycolnames = c("activity","subject") # Combine test and train sets into one dataframe df = rbind(df_train, df_test) # Clean up temporary data frames rm(df_train, df_train_labs, df_train_subs, df_test, df_test_subs, df_test_labs) # Step 2: # Extract column names from the data's own feature list file and # pull out the columns with "mean" and "std" in their names # Use features.txt to get columns with means and stds features = read.table("./UCI HAR Dataset/features.txt", col.names = c("col","name")) # col is equivalent to the row number in features, grep will return desired column #s meanstdcols = grep("[Mm][Ee][Aa][Nn]|[Ss][Tt][Dd]", features$name) meanstdcolnames = features$name[meanstdcols] allcols = c(meanstdcols, mycols) allcolnames_unclean = c(as.character(meanstdcolnames), mycolnames) # Note: the regex above gives several columns in addition to the plain mean() ones # (and that have no corresponding std()). I'm leaving them for now because they look # like potentially useful quantities. # Clean up temporary objects rm(features, meanstdcols, meanstdcolnames, mycols, mycolnames) # Trim df down to desired columns and apply descriptive column labels # as taken from the data's documentation: df = df[,c(allcols)] colnames(df) = allcolnames_unclean # Step 3 # Replace activity number labels with their descriptions: activitylabs = read.table("./UCI HAR Dataset/activity_labels.txt", col.names = c("label","activity_desc")) # Get rid of "_" for tidy-ness activitylabs$activity_desc = gsub("_", "", tolower(activitylabs$activity_desc)) # Make factor for convenience later df$activity = factor(df$activity,labels = activitylabs$activity_desc) # Clean up temporary objects rm(activitylabs, allcolnames_unclean, allcols) # Step 4 # Neaten up the remaining variable (column) names by removing non-alphanumeric # characters and converting to lowercase colnames(df) = gsub("\\(\\)|-","", tolower(colnames(df))) # Step 5 # Generate second data set of average values by subject and activity df2 = df %>% group_by(subject,activity) %>% summarise_all(funs(mean)) write.table(df2, "tidytable.txt", row.name=FALSE)
/run_analysis.R
no_license
escapedneutrino/DataCleaningProject
R
false
false
4,095
r
# Data Cleaning Week 4 Project # 10/22/2016 # This code will produce two tidy data frames in a linux environment # df contains a subset of the combined test and training data with # mean and std quantities from the original data set. # df2 has one row per subject per activity and captures # the means of the measurement columns from df with corresponding # test subject and activty. # Note: this code uses = instead of <- for assignment for readability # because [Thing] less than negative [Other thing] is confusing # Include useful library library(dplyr) # Step 0 - get the data, if necessary: # Uncomment 3 lines below if data has been retrieved already #download.file("https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip", # "./thedata.zip") #unzip("./thedata.zip") # Step 1: # Merging training and test data # I am ignoring the raw accelerometer and gyro data and only using # the X, y, subject files. # Note: this could also be done on a bash command line with something like: # $ paste subject_test.txt, X_test.txt, y_test.txt >temp1 # $ paste subject_train.txt, X_train.txt, y_train.txt >temp2 # $ cat temp1, temp2 >fulldata.txt # Within each set (test and train), combine subject, data, and label: df_train = read.table("./UCI HAR Dataset/train/X_train.txt") df_train_labs = read.table("./UCI HAR Dataset/train/y_train.txt") df_train_subs = read.table("./UCI HAR Dataset/train/subject_train.txt") df_test = read.table("./UCI HAR Dataset/test/X_test.txt") df_test_labs = read.table("./UCI HAR Dataset/test/y_test.txt") df_test_subs = read.table("./UCI HAR Dataset/test/subject_test.txt") # Combine data, labels, and subjects into training and test tables: df_train = cbind(df_train, df_train_labs, df_train_subs) df_test = cbind(df_test, df_test_labs, df_test_subs) # Cols are now: [561 features], label (i.e. activity), subject (i.e. #1-30) mycols = 562:563 mycolnames = c("activity","subject") # Combine test and train sets into one dataframe df = rbind(df_train, df_test) # Clean up temporary data frames rm(df_train, df_train_labs, df_train_subs, df_test, df_test_subs, df_test_labs) # Step 2: # Extract column names from the data's own feature list file and # pull out the columns with "mean" and "std" in their names # Use features.txt to get columns with means and stds features = read.table("./UCI HAR Dataset/features.txt", col.names = c("col","name")) # col is equivalent to the row number in features, grep will return desired column #s meanstdcols = grep("[Mm][Ee][Aa][Nn]|[Ss][Tt][Dd]", features$name) meanstdcolnames = features$name[meanstdcols] allcols = c(meanstdcols, mycols) allcolnames_unclean = c(as.character(meanstdcolnames), mycolnames) # Note: the regex above gives several columns in addition to the plain mean() ones # (and that have no corresponding std()). I'm leaving them for now because they look # like potentially useful quantities. # Clean up temporary objects rm(features, meanstdcols, meanstdcolnames, mycols, mycolnames) # Trim df down to desired columns and apply descriptive column labels # as taken from the data's documentation: df = df[,c(allcols)] colnames(df) = allcolnames_unclean # Step 3 # Replace activity number labels with their descriptions: activitylabs = read.table("./UCI HAR Dataset/activity_labels.txt", col.names = c("label","activity_desc")) # Get rid of "_" for tidy-ness activitylabs$activity_desc = gsub("_", "", tolower(activitylabs$activity_desc)) # Make factor for convenience later df$activity = factor(df$activity,labels = activitylabs$activity_desc) # Clean up temporary objects rm(activitylabs, allcolnames_unclean, allcols) # Step 4 # Neaten up the remaining variable (column) names by removing non-alphanumeric # characters and converting to lowercase colnames(df) = gsub("\\(\\)|-","", tolower(colnames(df))) # Step 5 # Generate second data set of average values by subject and activity df2 = df %>% group_by(subject,activity) %>% summarise_all(funs(mean)) write.table(df2, "tidytable.txt", row.name=FALSE)
library(abd) ### Name: ZebraFinchBeaks ### Title: Mate Preference in Zebra Finches ### Aliases: ZebraFinchBeaks ### Keywords: datasets ### ** Examples ZebraFinchBeaks
/data/genthat_extracted_code/abd/examples/ZebraFinchBeaks.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
174
r
library(abd) ### Name: ZebraFinchBeaks ### Title: Mate Preference in Zebra Finches ### Aliases: ZebraFinchBeaks ### Keywords: datasets ### ** Examples ZebraFinchBeaks
library("gsim") import::from("dplyr", n_distinct) import::from("Rcpp", cpp_object_initializer) # Radon simulations used in tests stan_radon_data <- radon_data() %>% define( y, county, X = design(1, x), U = design(1, u, .unjoin = county), N = nrow(.), J = n_distinct(county), P_X = ncol(X), P_U = ncol(U) ) radon_m <- radon_model(language = "stan", variant = "centered") radon_stanfit <- rstan::stan(model_code = radon_m, data = stan_radon_data, iter = 100, chains = 2) radon_sims <- radon_stanfit %>% select(mu_y, y_rep, Beta, sigma, Gamma, sigma_Beta, Omega) saveRDS(radon_sims, file = "./tests/testthat/radon-sims.rds")
/data-raw/radon-sims.r
no_license
lionel-/gsim
R
false
false
664
r
library("gsim") import::from("dplyr", n_distinct) import::from("Rcpp", cpp_object_initializer) # Radon simulations used in tests stan_radon_data <- radon_data() %>% define( y, county, X = design(1, x), U = design(1, u, .unjoin = county), N = nrow(.), J = n_distinct(county), P_X = ncol(X), P_U = ncol(U) ) radon_m <- radon_model(language = "stan", variant = "centered") radon_stanfit <- rstan::stan(model_code = radon_m, data = stan_radon_data, iter = 100, chains = 2) radon_sims <- radon_stanfit %>% select(mu_y, y_rep, Beta, sigma, Gamma, sigma_Beta, Omega) saveRDS(radon_sims, file = "./tests/testthat/radon-sims.rds")
app <- ShinyDriver$new("../../", seed = 100, shinyOptions = list(display.mode = "normal")) app$snapshotInit("mytest") Sys.sleep(3) app$snapshot() app$setInputs(year = c(1988, 2014),wait_=FALSE, values_=FALSE) app$setInputs(year = c(2002, 2014),wait_=FALSE, values_=FALSE) Sys.sleep(2) app$snapshot() app$setInputs(year = c(2008, 2014),wait_=FALSE, values_=FALSE) app$setInputs(oscars = 1, wait_=FALSE, values_=FALSE) Sys.sleep(2) app$snapshot() app$setInputs(oscars = 0, wait_=FALSE, values_=FALSE) app$setInputs(genre = "Animation",wait_=FALSE, values_=FALSE) app$setInputs(xvar = "Reviews",wait_=FALSE, values_=FALSE) app$setInputs(yvar = "BoxOffice",wait_=FALSE, values_=FALSE) Sys.sleep(2) app$snapshot()
/shinycoreci-apps-master/shinycoreci-apps-master/051-movie-explorer/tests/shinytests/mytest.R
no_license
RohanYashraj/R-Tutorials-Code
R
false
false
710
r
app <- ShinyDriver$new("../../", seed = 100, shinyOptions = list(display.mode = "normal")) app$snapshotInit("mytest") Sys.sleep(3) app$snapshot() app$setInputs(year = c(1988, 2014),wait_=FALSE, values_=FALSE) app$setInputs(year = c(2002, 2014),wait_=FALSE, values_=FALSE) Sys.sleep(2) app$snapshot() app$setInputs(year = c(2008, 2014),wait_=FALSE, values_=FALSE) app$setInputs(oscars = 1, wait_=FALSE, values_=FALSE) Sys.sleep(2) app$snapshot() app$setInputs(oscars = 0, wait_=FALSE, values_=FALSE) app$setInputs(genre = "Animation",wait_=FALSE, values_=FALSE) app$setInputs(xvar = "Reviews",wait_=FALSE, values_=FALSE) app$setInputs(yvar = "BoxOffice",wait_=FALSE, values_=FALSE) Sys.sleep(2) app$snapshot()
remove(list = ls()) #=================================================== ### Load necessary R packages #=================================================== library(INLA) library(ggplot2) library(raster) library(spacetime) library(scoringRules) library(gridExtra) library(gstat) library(rgeos) library(RColorBrewer) library(gdata) library(viridis) ## Set seed for reproducibility set.seed(123) ## Load useful functions source("utility.R") #=================================================== ### Data preparation #=================================================== load("workspace_data.RData") pol = "no2" final_dataset$site.type = factor(as.character(final_dataset$site.type), ordered = T, levels = c("RUR","URB","RKS")) final_dataset$site.type.n = as.numeric(final_dataset$site.type) final_dataset$sitetype.idx = as.numeric(final_dataset$site.type) ##--- Visualise data plot(shape) points(coordinates.pcm, pch=3, cex=.2) points(coordinates.aqum, pch=19, cex=.5, col="red") points(monitors[monitors$site.type=="RUR", c("easting","northing")], pch=8, cex=.5, col="green3") points(monitors[monitors$site.type=="URB", c("easting","northing")], pch=15, cex=.5, col="orange") points(monitors[monitors$site.type=="RKS", c("easting","northing")], pch=17, cex=.5, col="blue") lines(london.shape) par(xpd=TRUE) legend("topleft",inset=c(-0.15,0.1),legend=c("PCM","AQUM","Rural monitors","Urban monitors", "Roadside/ \n Kerbside monitors"), col = c("black","red","green3","orange","blue"), pch=c(3,19,8,15,17), cex=.7, pt.cex=1.2, bty = "n") formula = y ~ -1 + alpha1 + alpha2 + alpha3 + betaURB + betaRKS + f(z2, model='rw1', hyper = rw1.aqum.prior, scale.model = TRUE, constr = TRUE) + f(z23, copy='z2', fixed = FALSE, hyper=lambda23) + f(z1, model=spde, extraconstr = list(A=matrix(1,ncol=mesh$n,nrow=1), e=matrix(0,ncol=1))) + f(z12, copy='z1', fixed = FALSE, hyper=lambda12) + f(z13, copy='z1', fixed = FALSE, hyper=lambda13) + f(z3, model='ar1', hyper=ar1.time.prior, replicate = sitetype.idx, constr=TRUE, rankdef = 1) ##--- NOTE: data_id indicates the validation set and is received from the bash script data_id <- ifelse(nchar(Sys.getenv("DATA_ID"))>0, as.numeric(Sys.getenv("DATA_ID")), 1) # 1 to 6 if (!file.exists(file.path(getwd(),paste0("Output_",data_id)))){ dir.create(file.path(getwd(),paste0("Output_",data_id))) } setwd(paste0("Output_",data_id)) print(getwd()) valid = final_dataset[final_dataset$code %in% monitors_val[[data_id]] , ] estim = final_dataset[!(final_dataset$code %in% monitors_val[[data_id]]) , ] coordinates.estim<-unique(estim[,c("loc.idx","easting","northing")]) coordinates.valid<-unique(valid[,c("loc.idx","easting","northing")]) n_monitors=nrow(coordinates.y) n_data=nrow(estim)+nrow(valid) n_days=n_data/n_monitors #=================================================== ### Create mesh #=================================================== mesh = inla.mesh.2d(rbind(coordinates.y,coordinates.aqum,coordinates.pcm), loc.domain=boundary@polygons[[1]]@Polygons[[1]]@coords, max.edge = c(75000,40000), offset = c(10000,30000), cutoff=8000) plot(mesh, main="") lines(shape, col="blue") lines(london.shape, col="blue") title("Domain triangulation") points(coordinates.estim, col="green") points(coordinates.valid, col="red") #=================================================== ### Construct the SPDE model for Matern field with some prior information obtained from the mesh or the spatial domain #=================================================== range0 <- min(c(diff(range(mesh$loc[,1])),diff(range(mesh$loc[,2]))))/5 spde <- inla.spde2.pcmatern(mesh=mesh, alpha=2, ### mesh and smoothness parameter prior.range=c(range0, 0.95), ### P(practic.range<range0)=0.95 prior.sigma=c(100, 0.5)) ### P(sigma>100)=0.5 #=================================================== ### Hyperpriors #=================================================== rw1.aqum.prior = list(theta=list(prior="pc.prec", param=c(sd(aqum[,paste0(pol,"_log")]),0.01))) ar1.time.prior = list(theta2 = list(prior='normal', param=c(inla.models()$latent$ar1$hyper$theta2$to.theta(0.3), 0.5))) lambda23 = list(theta = list(prior = 'normal', param = c(0.9, 0.01), initial=0.9)) # lambda_2,3 lambda12 = list(theta = list(prior = 'normal', param = c(1.1, 0.01), initial=1.1)) # lambda_1,2 lambda13 = list(theta = list(prior = 'normal', param = c(1.3, 0.01), initial=1.3)) # lambda_1,3 #=================================================== ### Stack #=================================================== ## ***** PCM ***** A_pcm <- inla.spde.make.A(mesh=mesh, cbind(pcm$easting, pcm$northing)) stk_pcm <- inla.stack(data=list(y=cbind(pcm[,paste0(pol,"_log")], NA, NA)), effects=list(list(alpha3=rep(1,nrow(pcm))), list(z1=1:spde$n.spde)), A=list(1,A_pcm), tag="est.pcm") ## ***** AQUM ***** A_aqum <- inla.spde.make.A(mesh=mesh,cbind(aqum$easting, aqum$northing)) stk_aqum <- inla.stack(data=list(y=cbind(NA, aqum[,paste0(pol,"_log")], NA)), effects=list(list(alpha2=1, z2=aqum$date.idx), list(z12=1:spde$n.spde)), A=list(1, A_aqum), tag="est.aqum") ## data stack: include all the effects A_y_e <- inla.spde.make.A(mesh=mesh, cbind(estim$easting,estim$northing)) stk_y_e <- inla.stack(data=list(y=cbind(NA,NA,estim[,paste0(pol,"_log")])), effects=list(list(z23=estim[,paste0("date.idx.",pol)]), list(z13=1:spde$n.spde), data.frame(alpha1=1, z3=estim[,paste0("date.idx.",pol)], betaURB=estim[,paste0("stURB.",pol)], betaRKS=estim[,paste0("stRKS.",pol)], estim[,c("sitetype.idx","loc.idx","code","easting","northing")])), A=list(1, A_y_e, 1), tag="est.y") ### validation scenario A_y_v <- inla.spde.make.A(mesh=mesh, cbind(valid$easting, valid$northing)) stk_y_v <- inla.stack(data=list(y=cbind(NA,NA,rep(NA,length(valid[,paste0(pol,"_log")])))), effects=list(list(z23=valid[,paste0("date.idx.",pol)]), list(z13=1:spde$n.spde), data.frame(alpha1=1, z3=valid[,paste0("date.idx.",pol)], betaURB=valid[,paste0("stURB.",pol)], betaRKS=valid[,paste0("stRKS.",pol)], valid[,c("sitetype.idx","loc.idx","code","easting","northing")])), A=list(1, A_y_v, 1), tag="val.y") stack <- inla.stack(stk_aqum, stk_pcm, stk_y_v, stk_y_e) #=================================================== ### INLA call #=================================================== ##--- NOTE: the INLA call can be parallelized using Pardiso - see inla.pardiso() mod<- inla(formula, family=c("gaussian","gaussian","gaussian"), data=inla.stack.data(stack), control.predictor=list(compute=TRUE,link=1, A=inla.stack.A(stack)), control.compute = list(dic = TRUE,cpo=TRUE, config=TRUE, waic=TRUE), control.inla = list(adaptive,int.strategy='eb'), verbose=TRUE) #=================================================== ### Summary of Posterior distributions of parameters and hyperparameters of interest #=================================================== ##--- FIXED EFFECTS print(round(mod$summary.fixed,4)) ##--- HYPERPARAMETERS print(round(mod$summary.hyperpar,4)) #=================================================== ### Check model performance #=================================================== n.failures = sum(mod$cpo$failure, na.rm = T) if(mean(mod$cpo$failure, na.rm = T)!=0){ # summary(mod$cpo$failure) # Two options: # 1. recompute using control.inla=list(int.strategy = "grid", diff.logdens = 4, strategy = "laplace", npoints = 21) see http://www.r-inla.org/faq # 2. run mod = inla.cpo(mod) #recomputes in an efficient way the cpo/pit for which mod$cpo$failure > 0 mod_imp = inla.cpo(mod) print("Model cpo have been improved") logscore = -mean(log(mod_imp$cpo$cpo), na.rm=T) par(mfrow=c(1,2)) hist(mod_imp$cpo$pit, breaks=100, main=paste0("PIT improved - n.failures=", n.failures)) hist(mod_imp$cpo$cpo, breaks=100, main=paste0("CPO improved - n.failures=", n.failures)) }else{ logscore = -mean(log(mod$cpo$cpo), na.rm=T) par(mfrow=c(1,2)) hist(mod$cpo$pit, breaks=100, main=paste0("PIT - n.failures=", n.failures)) hist(mod$cpo$cpo, breaks=100, main=paste0("CPO - n.failures=", n.failures)) } #=================================================== ### Extract posterior latent fields #=================================================== print(names(mod$summary.random)) # Index for the temporal fields index.temp.field = which(substr(names(mod$summary.random),1,2) == "z2") print(index.temp.field) # Index for the spatial fields index.spat.field = which(substr(names(mod$summary.random),1,2) == "z1") print(index.spat.field) ##--- Time-sitetype interaction rur.mean <- ts(mod$summary.random$z3$mean[1:1826], start = c(2007, 1), frequency = 365) rur.mean.low <- ts(mod$summary.random$z3$`0.025quant`[1:1826], start = c(2007, 1), frequency = 365) rur.mean.upp <- ts(mod$summary.random$z3$`0.975quant`[1:1826], start = c(2007, 1), frequency = 365) urb.mean <- ts(mod$summary.random$z3$mean[1827:(2*1826)], start = c(2007, 1), frequency = 365) urb.mean.low <- ts(mod$summary.random$z3$`0.025quant`[1827:(2*1826)], start = c(2007, 1), frequency = 365) urb.mean.upp <- ts(mod$summary.random$z3$`0.975quant`[1827:(2*1826)], start = c(2007, 1), frequency = 365) rks.mean <- ts(mod$summary.random$z3$mean[(2*1826+1):(3*1826)], start = c(2007, 1), frequency = 365) rks.mean.low <- ts(mod$summary.random$z3$`0.025quant`[(2*1826+1):(3*1826)], start = c(2007, 1), frequency = 365) rks.mean.upp <- ts(mod$summary.random$z3$`0.975quant`[(2*1826+1):(3*1826)], start = c(2007, 1), frequency = 365) lower = min(mod$summary.random$z3$`0.025quant`) upper = max(mod$summary.random$z3$`0.975quant`) png('time_sitetype_interaction.png', width = 8, height = 8, unit="in", res=600) par(mfrow=c(3,1)) plot(rur.mean.upp, type="l", ylab=expression(paste(mu,"g/",m^3)), xlab="Year", ylim=c(lower,upper), main="RUR", lty="twodash", col="red") lines(rur.mean.low, lty="twodash", col="red") lines(rur.mean) abline(h=0,col="blue") plot(urb.mean.upp, type="l", ylab=expression(paste(mu,"g/",m^3)), xlab="Year", ylim=c(lower,upper), main="URB", lty="twodash", col="red") lines(urb.mean.low, lty="twodash", col="red") lines(urb.mean) abline(h=0,col="blue") plot(rks.mean.upp, type="l", ylab=expression(paste(mu,"g/",m^3)), xlab="Year", ylim=c(lower,upper), main="RKS", lty="twodash", col="red") lines(rks.mean.low, lty="twodash", col="red") lines(rks.mean) abline(h=0,col="blue") dev.off() ##--- Latent temporal fields for(i in index.temp.field){ aqum.ts.mean <- ts(mod$summary.random[[i]]$mean, start = c(2007, 1), frequency = 365) aqum.ts.low <- ts(mod$summary.random[[i]]$`0.025quant`, start = c(2007, 1), frequency = 365) aqum.ts.upp <- ts(mod$summary.random[[i]]$`0.975quant`, start = c(2007, 1), frequency = 365) aqum.ts.sd <- ts(mod$summary.random[[i]]$sd, start = c(2007, 1), frequency = 365) png(paste0(names(mod$summary.random)[i],'.png'), width = 10, height = 8, unit="in", res=600) par(mfrow=c(2,1)) plot(aqum.ts.upp, main=paste0(names(mod$marginals.random)[i]," - mean and CI"),lty="twodash", xlab="Year",ylab=expression(paste(mu,"g/",m^3)), ylim=c(min(aqum.ts.low),max(aqum.ts.upp)) ) lines(aqum.ts.low, lty="twodash") lines(aqum.ts.mean, col="red") plot(aqum.ts.sd, main=paste0(names(mod$marginals.random)[i]," - SD"), xlab="Year",ylab=expression(paste(mu,"g/",m^3))) dev.off() } ##--- Latent spatial fields for(i in index.spat.field){ length.grid.x=150 length.grid.y=150 # construct a lattice over the mesh extent pred.grid.lat= inla.mesh.lattice(x=seq(extent(boundary)[1],extent(boundary)[2],length.out = length.grid.x), y=seq(extent(boundary)[3],extent(boundary)[4],length.out = length.grid.y)) proj = inla.mesh.projector(mesh, lattice = pred.grid.lat) spat.field = cbind(expand.grid(x=seq(extent(boundary)[1],extent(boundary)[2],length.out = length.grid.x), y=seq(extent(boundary)[3],extent(boundary)[4],length.out = length.grid.y)), mean.log=as.vector(inla.mesh.project(proj,field= mod$summary.random[[i]]$mean)), sd.log=as.vector(inla.mesh.project(proj,field= mod$summary.random[[i]]$sd))) coordinates(spat.field) = ~x+y proj4string(spat.field) = proj4string(shape) spat.field = subset(spat.field, over(spat.field, shape)$objectid==1) spat.field = as.data.frame(spat.field) pcm_lat_log = ggplot(spat.field) + #gg(mesh.pcm) + geom_raster(aes(x, y, fill = mean.log)) + scale_fill_viridis(bquote(paste("log(",.(toupper(pol)),") (",mu,"g/",m^3,")"))) + ggtitle(paste0(names(mod$marginals.random)[i]," - posterior mean")) + geom_path(data = fortify(shape), aes(group = group, x = long, y = lat)) + geom_path(data = fortify(london.shape), aes(group = group, x = long, y = lat), size=0.5) + theme(plot.title = element_text(family = "sans", color="#666666", size=14, hjust=0.5, face="bold"), axis.ticks.x=element_blank(), axis.ticks.y=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), legend.key.height = unit(1.5,"cm"), legend.text = element_text(size=7, vjust=-0.5)) + labs(x="Easting",y="Northing") pcm_lat_sd_log = ggplot(spat.field) + geom_raster(aes(x, y, fill = sd.log)) + #gg(mesh.pcm) + scale_fill_viridis(bquote(paste("log(",.(toupper(pol)),") (",mu,"g/",m^3,")"))) + ggtitle(paste0(names(mod$marginals.random)[i]," - posterior SD")) + geom_path(data = fortify(shape), aes(group = group, x = long, y = lat)) + geom_path(data = fortify(london.shape), aes(group = group, x = long, y = lat), size=0.5) + theme(plot.title = element_text(family = "sans", color="#666666", size=14, hjust=0.5, face="bold"), axis.ticks.x=element_blank(), axis.ticks.y=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), legend.key.height = unit(1.5,"cm"), legend.text = element_text(size=7, vjust=-0.5)) + labs(x="Easting",y="Northing") ggsave(paste0(names(mod$marginals.random)[i],'.png'), plot=pcm_lat_log, width = 8, height = 8, units="in", dpi=600) } #=================================================== ### Predictive capability #=================================================== sample.size=50 n.pred=100 predictions= list() # extract sample.size values from each marginal of the fitted values posterior.samples = inla.posterior.sample(n = sample.size, result=mod, intern = FALSE, use.improved.mean = TRUE, add.names = TRUE, seed = 0L) # extract the posterior latent for the validation sites and reshape in order to have a matrix of nrow(valid) x sample.size samples.fitted <- matrix(unlist(lapply(lapply(posterior.samples,"[[", "latent" ),"[", inla.stack.index(stack,"val.y")$data), use.names=FALSE), nrow = nrow(valid), byrow = F) # extract sample.size values from marginal of the likelihood variance # (it is always the last of the Gaussian observations, so we extract the position) par.index = length(which(substr(rownames(mod$summary.hyperpar),1,26) == "Precision for the Gaussian")) samples.var = 1/unlist(lapply(lapply(posterior.samples,"[[", "hyperpar" ),"[", par.index)) # this is not exactly what we want, in theory we should sample from the transformed posterior marginal # rather than inverting the values sampled from the posterior marginal of the precision samples.fitted = cbind(samples.fitted, obs.value=valid[,paste0(pol,"_log")]) predictive.capability = apply(samples.fitted, MARGIN = 1, FUN=extract.predicted, variance=samples.var) # To aggregate the results we keep code, date and site type variables predictive.capability = cbind(code=valid$code, date.idx=valid[,paste0("date.idx.",pol)], site.type=valid$site.type, as.data.frame(t(predictive.capability))) predictive.capability$CRPS = crps_sample(y=samples.fitted[,(ncol(samples.fitted)-1)], dat=as.matrix(samples.fitted[,1:(ncol(samples.fitted)-1)])) predictive.capability$logscore = logscore saveRDS(predictive.capability, "predictive_capability.rds") ##--- Run this chunk once all the models results have been extracted, so we have the predictions for all the monitors (the 6 validation sets) files = list.files(path=list.dirs(path = "..", full.names = TRUE, recursive = TRUE), pattern ="predictive_capability.rds", full.names = TRUE) predictive.capability = do.call(rbind, lapply(files, function (x) readRDS(x))) predictive.capability.measures = c(my.validation(z = predictive.capability[,paste0(pol,"_obs")], zhat = predictive.capability[,paste0(pol,"_pred")], penalty = predictive.capability$pmcc_penalty, coverage = predictive.capability$coverage), LOGSCORE = predictive.capability$logscore, COV_CI = mean(predictive.capability$ci_amplitude), CRPS = mean(predictive.capability$CRPS, na.rm = T)) # NOTE: predictive.capability.measures can be computed by site-type, by day or by site, # subsetting predictive.capability by site.type, date.idx or code respectively. ##--- #=================================================== ### Extract daily predictions #=================================================== # NOTE: daily predictions here are extracted for each model; # this chunk can be skipped and run only after re-running the model using all data (no validation) n.samples = 50 n.days = 1826 n.locs = nrow(pred.grid) A_pred =inla.spde.make.A(mesh, loc=cbind(pred.grid$easting, pred.grid$northing)) contents=as.data.frame(mod$misc$configs$contents) contents$end = contents$start + contents$length - 1 fields = lapply(1:n.samples, FUN=extract.contents) if (!file.exists(file.path(getwd(), "predictions_by_day"))){ dir.create(file.path(getwd(), "predictions_by_day")) } date = data.frame(date=seq.Date(as.Date("2007-01-01"), as.Date("2011-12-31"), "days"), date.idx.no2=c(1:n_days), year=as.numeric(substr(unique(aqum$date),1,4)), month=as.numeric(substr(unique(aqum$date),6,7)), day=as.numeric(substr(unique(aqum$date),9,10))) invisible(lapply(1:n.days, FUN=compute.daily.predictions)) ##--- predictions for days of pollution events pred_2007_12_11 = readRDS("predictions_by_day/predictions_2007-12-11.rds") pred_2007_12_19 = readRDS("predictions_by_day/predictions_2007-12-19.rds") pred_2009_01_03 = readRDS("predictions_by_day/predictions_2009-01-03.rds") pred_2010_11_16 = readRDS("predictions_by_day/predictions_2010-11-16.rds") ##--- predictions for days of low pollution pred_2007_06_24 = readRDS("predictions_by_day/predictions_2007-06-24.rds") pred_2008_06_22 = readRDS("predictions_by_day/predictions_2008-06-22.rds") pred_2009_06_21 = readRDS("predictions_by_day/predictions_2009-06-21.rds") pred_2010_06_20 = readRDS("predictions_by_day/predictions_2010-06-20.rds") pred_events = rbind(cbind(mean = rowMeans(pred_2007_12_11[,-c(1:3)], na.rm = T), day = "2007-12-11", pred.grid), cbind(mean = rowMeans(pred_2007_12_19[,-c(1:3)], na.rm = T), day = "2007-12-19", pred.grid), cbind(mean = rowMeans(pred_2009_01_03[,-c(1:3)], na.rm = T), day = "2009-01-03", pred.grid), cbind(mean = rowMeans(pred_2010_11_16[,-c(1:3)], na.rm = T), day = "2010-11-16", pred.grid), cbind(mean = rowMeans(pred_2007_06_24[,-c(1:3)], na.rm = T), day = "2007-06-24", pred.grid), cbind(mean = rowMeans(pred_2008_06_22[,-c(1:3)], na.rm = T), day = "2008-06-22", pred.grid), cbind(mean = rowMeans(pred_2009_06_21[,-c(1:3)], na.rm = T), day = "2009-06-21", pred.grid), cbind(mean = rowMeans(pred_2010_06_20[,-c(1:3)], na.rm = T), day = "2010-06-20", pred.grid)) ggsave("daily_predictions.png", ggplot(pred_events) + geom_raster(aes(x=easting, y=northing, fill = mean))+ facet_wrap(~day, ncol=4) + scale_fill_viridis(bquote(paste("log(",.(toupper(pol)),") (",mu,"g/",m^3,")"))) + ggtitle("Daily predictions on selected days with air pollution events (top row) or low concentration (bottom row)") + geom_path(data = fortify(london.shape), aes(group = group, x = long, y = lat), size=0.5)+ geom_path(data = fortify(shape), aes(group = group, x = long, y = lat))+ geom_path(data = fortify(roads_major), aes(group = group, x = long, y = lat), size=0.3, color="grey85")+ theme(plot.title = element_text(family = "sans", color="#666666", size=14, hjust=0.5, face="bold"), axis.ticks.x=element_blank(), axis.ticks.y=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), legend.key.height = unit(1,"cm"), legend.text = element_text(size=7, vjust=-0.5)), width=15, height=8, unit="in", dpi=600)
/joint_model.R
no_license
cf416/joint_model_no2_INLA_SPDE
R
false
false
22,193
r
remove(list = ls()) #=================================================== ### Load necessary R packages #=================================================== library(INLA) library(ggplot2) library(raster) library(spacetime) library(scoringRules) library(gridExtra) library(gstat) library(rgeos) library(RColorBrewer) library(gdata) library(viridis) ## Set seed for reproducibility set.seed(123) ## Load useful functions source("utility.R") #=================================================== ### Data preparation #=================================================== load("workspace_data.RData") pol = "no2" final_dataset$site.type = factor(as.character(final_dataset$site.type), ordered = T, levels = c("RUR","URB","RKS")) final_dataset$site.type.n = as.numeric(final_dataset$site.type) final_dataset$sitetype.idx = as.numeric(final_dataset$site.type) ##--- Visualise data plot(shape) points(coordinates.pcm, pch=3, cex=.2) points(coordinates.aqum, pch=19, cex=.5, col="red") points(monitors[monitors$site.type=="RUR", c("easting","northing")], pch=8, cex=.5, col="green3") points(monitors[monitors$site.type=="URB", c("easting","northing")], pch=15, cex=.5, col="orange") points(monitors[monitors$site.type=="RKS", c("easting","northing")], pch=17, cex=.5, col="blue") lines(london.shape) par(xpd=TRUE) legend("topleft",inset=c(-0.15,0.1),legend=c("PCM","AQUM","Rural monitors","Urban monitors", "Roadside/ \n Kerbside monitors"), col = c("black","red","green3","orange","blue"), pch=c(3,19,8,15,17), cex=.7, pt.cex=1.2, bty = "n") formula = y ~ -1 + alpha1 + alpha2 + alpha3 + betaURB + betaRKS + f(z2, model='rw1', hyper = rw1.aqum.prior, scale.model = TRUE, constr = TRUE) + f(z23, copy='z2', fixed = FALSE, hyper=lambda23) + f(z1, model=spde, extraconstr = list(A=matrix(1,ncol=mesh$n,nrow=1), e=matrix(0,ncol=1))) + f(z12, copy='z1', fixed = FALSE, hyper=lambda12) + f(z13, copy='z1', fixed = FALSE, hyper=lambda13) + f(z3, model='ar1', hyper=ar1.time.prior, replicate = sitetype.idx, constr=TRUE, rankdef = 1) ##--- NOTE: data_id indicates the validation set and is received from the bash script data_id <- ifelse(nchar(Sys.getenv("DATA_ID"))>0, as.numeric(Sys.getenv("DATA_ID")), 1) # 1 to 6 if (!file.exists(file.path(getwd(),paste0("Output_",data_id)))){ dir.create(file.path(getwd(),paste0("Output_",data_id))) } setwd(paste0("Output_",data_id)) print(getwd()) valid = final_dataset[final_dataset$code %in% monitors_val[[data_id]] , ] estim = final_dataset[!(final_dataset$code %in% monitors_val[[data_id]]) , ] coordinates.estim<-unique(estim[,c("loc.idx","easting","northing")]) coordinates.valid<-unique(valid[,c("loc.idx","easting","northing")]) n_monitors=nrow(coordinates.y) n_data=nrow(estim)+nrow(valid) n_days=n_data/n_monitors #=================================================== ### Create mesh #=================================================== mesh = inla.mesh.2d(rbind(coordinates.y,coordinates.aqum,coordinates.pcm), loc.domain=boundary@polygons[[1]]@Polygons[[1]]@coords, max.edge = c(75000,40000), offset = c(10000,30000), cutoff=8000) plot(mesh, main="") lines(shape, col="blue") lines(london.shape, col="blue") title("Domain triangulation") points(coordinates.estim, col="green") points(coordinates.valid, col="red") #=================================================== ### Construct the SPDE model for Matern field with some prior information obtained from the mesh or the spatial domain #=================================================== range0 <- min(c(diff(range(mesh$loc[,1])),diff(range(mesh$loc[,2]))))/5 spde <- inla.spde2.pcmatern(mesh=mesh, alpha=2, ### mesh and smoothness parameter prior.range=c(range0, 0.95), ### P(practic.range<range0)=0.95 prior.sigma=c(100, 0.5)) ### P(sigma>100)=0.5 #=================================================== ### Hyperpriors #=================================================== rw1.aqum.prior = list(theta=list(prior="pc.prec", param=c(sd(aqum[,paste0(pol,"_log")]),0.01))) ar1.time.prior = list(theta2 = list(prior='normal', param=c(inla.models()$latent$ar1$hyper$theta2$to.theta(0.3), 0.5))) lambda23 = list(theta = list(prior = 'normal', param = c(0.9, 0.01), initial=0.9)) # lambda_2,3 lambda12 = list(theta = list(prior = 'normal', param = c(1.1, 0.01), initial=1.1)) # lambda_1,2 lambda13 = list(theta = list(prior = 'normal', param = c(1.3, 0.01), initial=1.3)) # lambda_1,3 #=================================================== ### Stack #=================================================== ## ***** PCM ***** A_pcm <- inla.spde.make.A(mesh=mesh, cbind(pcm$easting, pcm$northing)) stk_pcm <- inla.stack(data=list(y=cbind(pcm[,paste0(pol,"_log")], NA, NA)), effects=list(list(alpha3=rep(1,nrow(pcm))), list(z1=1:spde$n.spde)), A=list(1,A_pcm), tag="est.pcm") ## ***** AQUM ***** A_aqum <- inla.spde.make.A(mesh=mesh,cbind(aqum$easting, aqum$northing)) stk_aqum <- inla.stack(data=list(y=cbind(NA, aqum[,paste0(pol,"_log")], NA)), effects=list(list(alpha2=1, z2=aqum$date.idx), list(z12=1:spde$n.spde)), A=list(1, A_aqum), tag="est.aqum") ## data stack: include all the effects A_y_e <- inla.spde.make.A(mesh=mesh, cbind(estim$easting,estim$northing)) stk_y_e <- inla.stack(data=list(y=cbind(NA,NA,estim[,paste0(pol,"_log")])), effects=list(list(z23=estim[,paste0("date.idx.",pol)]), list(z13=1:spde$n.spde), data.frame(alpha1=1, z3=estim[,paste0("date.idx.",pol)], betaURB=estim[,paste0("stURB.",pol)], betaRKS=estim[,paste0("stRKS.",pol)], estim[,c("sitetype.idx","loc.idx","code","easting","northing")])), A=list(1, A_y_e, 1), tag="est.y") ### validation scenario A_y_v <- inla.spde.make.A(mesh=mesh, cbind(valid$easting, valid$northing)) stk_y_v <- inla.stack(data=list(y=cbind(NA,NA,rep(NA,length(valid[,paste0(pol,"_log")])))), effects=list(list(z23=valid[,paste0("date.idx.",pol)]), list(z13=1:spde$n.spde), data.frame(alpha1=1, z3=valid[,paste0("date.idx.",pol)], betaURB=valid[,paste0("stURB.",pol)], betaRKS=valid[,paste0("stRKS.",pol)], valid[,c("sitetype.idx","loc.idx","code","easting","northing")])), A=list(1, A_y_v, 1), tag="val.y") stack <- inla.stack(stk_aqum, stk_pcm, stk_y_v, stk_y_e) #=================================================== ### INLA call #=================================================== ##--- NOTE: the INLA call can be parallelized using Pardiso - see inla.pardiso() mod<- inla(formula, family=c("gaussian","gaussian","gaussian"), data=inla.stack.data(stack), control.predictor=list(compute=TRUE,link=1, A=inla.stack.A(stack)), control.compute = list(dic = TRUE,cpo=TRUE, config=TRUE, waic=TRUE), control.inla = list(adaptive,int.strategy='eb'), verbose=TRUE) #=================================================== ### Summary of Posterior distributions of parameters and hyperparameters of interest #=================================================== ##--- FIXED EFFECTS print(round(mod$summary.fixed,4)) ##--- HYPERPARAMETERS print(round(mod$summary.hyperpar,4)) #=================================================== ### Check model performance #=================================================== n.failures = sum(mod$cpo$failure, na.rm = T) if(mean(mod$cpo$failure, na.rm = T)!=0){ # summary(mod$cpo$failure) # Two options: # 1. recompute using control.inla=list(int.strategy = "grid", diff.logdens = 4, strategy = "laplace", npoints = 21) see http://www.r-inla.org/faq # 2. run mod = inla.cpo(mod) #recomputes in an efficient way the cpo/pit for which mod$cpo$failure > 0 mod_imp = inla.cpo(mod) print("Model cpo have been improved") logscore = -mean(log(mod_imp$cpo$cpo), na.rm=T) par(mfrow=c(1,2)) hist(mod_imp$cpo$pit, breaks=100, main=paste0("PIT improved - n.failures=", n.failures)) hist(mod_imp$cpo$cpo, breaks=100, main=paste0("CPO improved - n.failures=", n.failures)) }else{ logscore = -mean(log(mod$cpo$cpo), na.rm=T) par(mfrow=c(1,2)) hist(mod$cpo$pit, breaks=100, main=paste0("PIT - n.failures=", n.failures)) hist(mod$cpo$cpo, breaks=100, main=paste0("CPO - n.failures=", n.failures)) } #=================================================== ### Extract posterior latent fields #=================================================== print(names(mod$summary.random)) # Index for the temporal fields index.temp.field = which(substr(names(mod$summary.random),1,2) == "z2") print(index.temp.field) # Index for the spatial fields index.spat.field = which(substr(names(mod$summary.random),1,2) == "z1") print(index.spat.field) ##--- Time-sitetype interaction rur.mean <- ts(mod$summary.random$z3$mean[1:1826], start = c(2007, 1), frequency = 365) rur.mean.low <- ts(mod$summary.random$z3$`0.025quant`[1:1826], start = c(2007, 1), frequency = 365) rur.mean.upp <- ts(mod$summary.random$z3$`0.975quant`[1:1826], start = c(2007, 1), frequency = 365) urb.mean <- ts(mod$summary.random$z3$mean[1827:(2*1826)], start = c(2007, 1), frequency = 365) urb.mean.low <- ts(mod$summary.random$z3$`0.025quant`[1827:(2*1826)], start = c(2007, 1), frequency = 365) urb.mean.upp <- ts(mod$summary.random$z3$`0.975quant`[1827:(2*1826)], start = c(2007, 1), frequency = 365) rks.mean <- ts(mod$summary.random$z3$mean[(2*1826+1):(3*1826)], start = c(2007, 1), frequency = 365) rks.mean.low <- ts(mod$summary.random$z3$`0.025quant`[(2*1826+1):(3*1826)], start = c(2007, 1), frequency = 365) rks.mean.upp <- ts(mod$summary.random$z3$`0.975quant`[(2*1826+1):(3*1826)], start = c(2007, 1), frequency = 365) lower = min(mod$summary.random$z3$`0.025quant`) upper = max(mod$summary.random$z3$`0.975quant`) png('time_sitetype_interaction.png', width = 8, height = 8, unit="in", res=600) par(mfrow=c(3,1)) plot(rur.mean.upp, type="l", ylab=expression(paste(mu,"g/",m^3)), xlab="Year", ylim=c(lower,upper), main="RUR", lty="twodash", col="red") lines(rur.mean.low, lty="twodash", col="red") lines(rur.mean) abline(h=0,col="blue") plot(urb.mean.upp, type="l", ylab=expression(paste(mu,"g/",m^3)), xlab="Year", ylim=c(lower,upper), main="URB", lty="twodash", col="red") lines(urb.mean.low, lty="twodash", col="red") lines(urb.mean) abline(h=0,col="blue") plot(rks.mean.upp, type="l", ylab=expression(paste(mu,"g/",m^3)), xlab="Year", ylim=c(lower,upper), main="RKS", lty="twodash", col="red") lines(rks.mean.low, lty="twodash", col="red") lines(rks.mean) abline(h=0,col="blue") dev.off() ##--- Latent temporal fields for(i in index.temp.field){ aqum.ts.mean <- ts(mod$summary.random[[i]]$mean, start = c(2007, 1), frequency = 365) aqum.ts.low <- ts(mod$summary.random[[i]]$`0.025quant`, start = c(2007, 1), frequency = 365) aqum.ts.upp <- ts(mod$summary.random[[i]]$`0.975quant`, start = c(2007, 1), frequency = 365) aqum.ts.sd <- ts(mod$summary.random[[i]]$sd, start = c(2007, 1), frequency = 365) png(paste0(names(mod$summary.random)[i],'.png'), width = 10, height = 8, unit="in", res=600) par(mfrow=c(2,1)) plot(aqum.ts.upp, main=paste0(names(mod$marginals.random)[i]," - mean and CI"),lty="twodash", xlab="Year",ylab=expression(paste(mu,"g/",m^3)), ylim=c(min(aqum.ts.low),max(aqum.ts.upp)) ) lines(aqum.ts.low, lty="twodash") lines(aqum.ts.mean, col="red") plot(aqum.ts.sd, main=paste0(names(mod$marginals.random)[i]," - SD"), xlab="Year",ylab=expression(paste(mu,"g/",m^3))) dev.off() } ##--- Latent spatial fields for(i in index.spat.field){ length.grid.x=150 length.grid.y=150 # construct a lattice over the mesh extent pred.grid.lat= inla.mesh.lattice(x=seq(extent(boundary)[1],extent(boundary)[2],length.out = length.grid.x), y=seq(extent(boundary)[3],extent(boundary)[4],length.out = length.grid.y)) proj = inla.mesh.projector(mesh, lattice = pred.grid.lat) spat.field = cbind(expand.grid(x=seq(extent(boundary)[1],extent(boundary)[2],length.out = length.grid.x), y=seq(extent(boundary)[3],extent(boundary)[4],length.out = length.grid.y)), mean.log=as.vector(inla.mesh.project(proj,field= mod$summary.random[[i]]$mean)), sd.log=as.vector(inla.mesh.project(proj,field= mod$summary.random[[i]]$sd))) coordinates(spat.field) = ~x+y proj4string(spat.field) = proj4string(shape) spat.field = subset(spat.field, over(spat.field, shape)$objectid==1) spat.field = as.data.frame(spat.field) pcm_lat_log = ggplot(spat.field) + #gg(mesh.pcm) + geom_raster(aes(x, y, fill = mean.log)) + scale_fill_viridis(bquote(paste("log(",.(toupper(pol)),") (",mu,"g/",m^3,")"))) + ggtitle(paste0(names(mod$marginals.random)[i]," - posterior mean")) + geom_path(data = fortify(shape), aes(group = group, x = long, y = lat)) + geom_path(data = fortify(london.shape), aes(group = group, x = long, y = lat), size=0.5) + theme(plot.title = element_text(family = "sans", color="#666666", size=14, hjust=0.5, face="bold"), axis.ticks.x=element_blank(), axis.ticks.y=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), legend.key.height = unit(1.5,"cm"), legend.text = element_text(size=7, vjust=-0.5)) + labs(x="Easting",y="Northing") pcm_lat_sd_log = ggplot(spat.field) + geom_raster(aes(x, y, fill = sd.log)) + #gg(mesh.pcm) + scale_fill_viridis(bquote(paste("log(",.(toupper(pol)),") (",mu,"g/",m^3,")"))) + ggtitle(paste0(names(mod$marginals.random)[i]," - posterior SD")) + geom_path(data = fortify(shape), aes(group = group, x = long, y = lat)) + geom_path(data = fortify(london.shape), aes(group = group, x = long, y = lat), size=0.5) + theme(plot.title = element_text(family = "sans", color="#666666", size=14, hjust=0.5, face="bold"), axis.ticks.x=element_blank(), axis.ticks.y=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), legend.key.height = unit(1.5,"cm"), legend.text = element_text(size=7, vjust=-0.5)) + labs(x="Easting",y="Northing") ggsave(paste0(names(mod$marginals.random)[i],'.png'), plot=pcm_lat_log, width = 8, height = 8, units="in", dpi=600) } #=================================================== ### Predictive capability #=================================================== sample.size=50 n.pred=100 predictions= list() # extract sample.size values from each marginal of the fitted values posterior.samples = inla.posterior.sample(n = sample.size, result=mod, intern = FALSE, use.improved.mean = TRUE, add.names = TRUE, seed = 0L) # extract the posterior latent for the validation sites and reshape in order to have a matrix of nrow(valid) x sample.size samples.fitted <- matrix(unlist(lapply(lapply(posterior.samples,"[[", "latent" ),"[", inla.stack.index(stack,"val.y")$data), use.names=FALSE), nrow = nrow(valid), byrow = F) # extract sample.size values from marginal of the likelihood variance # (it is always the last of the Gaussian observations, so we extract the position) par.index = length(which(substr(rownames(mod$summary.hyperpar),1,26) == "Precision for the Gaussian")) samples.var = 1/unlist(lapply(lapply(posterior.samples,"[[", "hyperpar" ),"[", par.index)) # this is not exactly what we want, in theory we should sample from the transformed posterior marginal # rather than inverting the values sampled from the posterior marginal of the precision samples.fitted = cbind(samples.fitted, obs.value=valid[,paste0(pol,"_log")]) predictive.capability = apply(samples.fitted, MARGIN = 1, FUN=extract.predicted, variance=samples.var) # To aggregate the results we keep code, date and site type variables predictive.capability = cbind(code=valid$code, date.idx=valid[,paste0("date.idx.",pol)], site.type=valid$site.type, as.data.frame(t(predictive.capability))) predictive.capability$CRPS = crps_sample(y=samples.fitted[,(ncol(samples.fitted)-1)], dat=as.matrix(samples.fitted[,1:(ncol(samples.fitted)-1)])) predictive.capability$logscore = logscore saveRDS(predictive.capability, "predictive_capability.rds") ##--- Run this chunk once all the models results have been extracted, so we have the predictions for all the monitors (the 6 validation sets) files = list.files(path=list.dirs(path = "..", full.names = TRUE, recursive = TRUE), pattern ="predictive_capability.rds", full.names = TRUE) predictive.capability = do.call(rbind, lapply(files, function (x) readRDS(x))) predictive.capability.measures = c(my.validation(z = predictive.capability[,paste0(pol,"_obs")], zhat = predictive.capability[,paste0(pol,"_pred")], penalty = predictive.capability$pmcc_penalty, coverage = predictive.capability$coverage), LOGSCORE = predictive.capability$logscore, COV_CI = mean(predictive.capability$ci_amplitude), CRPS = mean(predictive.capability$CRPS, na.rm = T)) # NOTE: predictive.capability.measures can be computed by site-type, by day or by site, # subsetting predictive.capability by site.type, date.idx or code respectively. ##--- #=================================================== ### Extract daily predictions #=================================================== # NOTE: daily predictions here are extracted for each model; # this chunk can be skipped and run only after re-running the model using all data (no validation) n.samples = 50 n.days = 1826 n.locs = nrow(pred.grid) A_pred =inla.spde.make.A(mesh, loc=cbind(pred.grid$easting, pred.grid$northing)) contents=as.data.frame(mod$misc$configs$contents) contents$end = contents$start + contents$length - 1 fields = lapply(1:n.samples, FUN=extract.contents) if (!file.exists(file.path(getwd(), "predictions_by_day"))){ dir.create(file.path(getwd(), "predictions_by_day")) } date = data.frame(date=seq.Date(as.Date("2007-01-01"), as.Date("2011-12-31"), "days"), date.idx.no2=c(1:n_days), year=as.numeric(substr(unique(aqum$date),1,4)), month=as.numeric(substr(unique(aqum$date),6,7)), day=as.numeric(substr(unique(aqum$date),9,10))) invisible(lapply(1:n.days, FUN=compute.daily.predictions)) ##--- predictions for days of pollution events pred_2007_12_11 = readRDS("predictions_by_day/predictions_2007-12-11.rds") pred_2007_12_19 = readRDS("predictions_by_day/predictions_2007-12-19.rds") pred_2009_01_03 = readRDS("predictions_by_day/predictions_2009-01-03.rds") pred_2010_11_16 = readRDS("predictions_by_day/predictions_2010-11-16.rds") ##--- predictions for days of low pollution pred_2007_06_24 = readRDS("predictions_by_day/predictions_2007-06-24.rds") pred_2008_06_22 = readRDS("predictions_by_day/predictions_2008-06-22.rds") pred_2009_06_21 = readRDS("predictions_by_day/predictions_2009-06-21.rds") pred_2010_06_20 = readRDS("predictions_by_day/predictions_2010-06-20.rds") pred_events = rbind(cbind(mean = rowMeans(pred_2007_12_11[,-c(1:3)], na.rm = T), day = "2007-12-11", pred.grid), cbind(mean = rowMeans(pred_2007_12_19[,-c(1:3)], na.rm = T), day = "2007-12-19", pred.grid), cbind(mean = rowMeans(pred_2009_01_03[,-c(1:3)], na.rm = T), day = "2009-01-03", pred.grid), cbind(mean = rowMeans(pred_2010_11_16[,-c(1:3)], na.rm = T), day = "2010-11-16", pred.grid), cbind(mean = rowMeans(pred_2007_06_24[,-c(1:3)], na.rm = T), day = "2007-06-24", pred.grid), cbind(mean = rowMeans(pred_2008_06_22[,-c(1:3)], na.rm = T), day = "2008-06-22", pred.grid), cbind(mean = rowMeans(pred_2009_06_21[,-c(1:3)], na.rm = T), day = "2009-06-21", pred.grid), cbind(mean = rowMeans(pred_2010_06_20[,-c(1:3)], na.rm = T), day = "2010-06-20", pred.grid)) ggsave("daily_predictions.png", ggplot(pred_events) + geom_raster(aes(x=easting, y=northing, fill = mean))+ facet_wrap(~day, ncol=4) + scale_fill_viridis(bquote(paste("log(",.(toupper(pol)),") (",mu,"g/",m^3,")"))) + ggtitle("Daily predictions on selected days with air pollution events (top row) or low concentration (bottom row)") + geom_path(data = fortify(london.shape), aes(group = group, x = long, y = lat), size=0.5)+ geom_path(data = fortify(shape), aes(group = group, x = long, y = lat))+ geom_path(data = fortify(roads_major), aes(group = group, x = long, y = lat), size=0.3, color="grey85")+ theme(plot.title = element_text(family = "sans", color="#666666", size=14, hjust=0.5, face="bold"), axis.ticks.x=element_blank(), axis.ticks.y=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), legend.key.height = unit(1,"cm"), legend.text = element_text(size=7, vjust=-0.5)), width=15, height=8, unit="in", dpi=600)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/schedule.R \name{print_session_info} \alias{print_session_info} \title{print_session_info} \usage{ print_session_info(s) } \arguments{ \item{s}{} } \value{ character string with session info } \description{ print_session_info }
/man/print_session_info.Rd
no_license
jasonmtroos/rook
R
false
true
306
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/schedule.R \name{print_session_info} \alias{print_session_info} \title{print_session_info} \usage{ print_session_info(s) } \arguments{ \item{s}{} } \value{ character string with session info } \description{ print_session_info }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ProjectMethods.R \name{getGroupSummary} \alias{getGroupSummary} \title{Get summary for Groups in ArchRProject} \usage{ getGroupSummary( ArchRProj = NULL, groupBy = "Sample", select = "TSSEnrichment", summary = "median", removeNA = TRUE ) } \arguments{ \item{ArchRProj}{An \code{ArchRProject} object.} \item{groupBy}{The name of the column in \code{cellColData} to use for grouping multiple cells together for summarizing information.} \item{select}{A character vector containing the column names to select from \code{cellColData}.} \item{summary}{A character vector describing which method for summarizing across group. Options include "median", "mean", or "sum".} \item{removeNA}{Remove NA's from summary method.} } \description{ This function summarizes a numeric cellColData entry across groupings in a ArchRProject. }
/man/getGroupSummary.Rd
permissive
GreenleafLab/ArchR
R
false
true
914
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ProjectMethods.R \name{getGroupSummary} \alias{getGroupSummary} \title{Get summary for Groups in ArchRProject} \usage{ getGroupSummary( ArchRProj = NULL, groupBy = "Sample", select = "TSSEnrichment", summary = "median", removeNA = TRUE ) } \arguments{ \item{ArchRProj}{An \code{ArchRProject} object.} \item{groupBy}{The name of the column in \code{cellColData} to use for grouping multiple cells together for summarizing information.} \item{select}{A character vector containing the column names to select from \code{cellColData}.} \item{summary}{A character vector describing which method for summarizing across group. Options include "median", "mean", or "sum".} \item{removeNA}{Remove NA's from summary method.} } \description{ This function summarizes a numeric cellColData entry across groupings in a ArchRProject. }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getGEenriched.R \name{get_kernel} \alias{get_kernel} \title{Envirotype-informed kernels for statistical models} \usage{ get_kernel( K_E = NULL, K_G, Y, model = NULL, intercept.random = FALSE, reaction = FALSE, size_E = NULL ) } \arguments{ \item{K_E}{list. Contains nmatrices of envirotype-related kernels (n x n genotypes-environment). If NULL, benchmarck genomic kernels are built.} \item{K_G}{list. Constains matrices of genomic enabled kernels (p x p genotypes). See BGGE::getK for more information.} \item{Y}{data.frame. Should contain the following colunms: environemnt, genotype, phenotype.} \item{model}{character. Model structure for genomic predicion. It can be \code{c('MM','MDs','E-MM','E-MDs')}, in which MM (main effect model \eqn{Y=fixed + G}) and MDs (\eqn{Y=fixed+G+GxE}).} \item{intercept.random}{boolean. Indicates the inclusion of a genomic random intercept (default = FALSE). For more details, see BGGE package vignette.} \item{reaction}{boolean. Indicates the inclusion of a reaction norm based GxE kernel (default = FALSE).} \item{size_E}{character. \code{size_E=c('full','environment')}. In the first, 'full' means taht the environmental relationship kernel has the dimensions of n x n observations, which n = pq (p genotypes, q environments). If 'environment' the size of E-kernel is q x q.} } \value{ A list of kernels (relationship matrices) to be used in genomic models. } \description{ Get multiple genomic and/or envirotype-informed kernels for bayesian genomic prediciton. } \details{ TODO Define models. } \examples{ ### Loading the genomic, phenotype and weather data data('maizeG'); data('maizeYield'); data("maizeWTH") ### Y = fixed + G MM <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, model = 'MM') ### Y = fixed + G + GE MDs <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, model = 'MDs') ### Enriching models with weather data W.cov <- W.matrix(env.data = maizeWTH) H <- EnvKernel(env.data = W.cov, Y = maizeYield, merge = TRUE, env.id = 'env') EMM <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield,K_E = list(W = H$envCov), model = 'EMM') # or model = MM ### Y = fixed + G + W + GE EMDs <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, K_E = list(W = H$envCov), model = 'MDs') # or model = MDs ### Y = fixed + W + G + GW RN <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, K_E = list(W = H$envCov), model = 'RNMM') ### Y = fixed + W + G + GW + GE fullRN <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, K_E = list(W = H$envCov), model = 'RNMDs') } \seealso{ BGGE::getk W.matrix } \author{ Germano Costa Neto }
/man/get_kernel.Rd
no_license
rfritscheneto/EnvRtype
R
false
true
2,993
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getGEenriched.R \name{get_kernel} \alias{get_kernel} \title{Envirotype-informed kernels for statistical models} \usage{ get_kernel( K_E = NULL, K_G, Y, model = NULL, intercept.random = FALSE, reaction = FALSE, size_E = NULL ) } \arguments{ \item{K_E}{list. Contains nmatrices of envirotype-related kernels (n x n genotypes-environment). If NULL, benchmarck genomic kernels are built.} \item{K_G}{list. Constains matrices of genomic enabled kernels (p x p genotypes). See BGGE::getK for more information.} \item{Y}{data.frame. Should contain the following colunms: environemnt, genotype, phenotype.} \item{model}{character. Model structure for genomic predicion. It can be \code{c('MM','MDs','E-MM','E-MDs')}, in which MM (main effect model \eqn{Y=fixed + G}) and MDs (\eqn{Y=fixed+G+GxE}).} \item{intercept.random}{boolean. Indicates the inclusion of a genomic random intercept (default = FALSE). For more details, see BGGE package vignette.} \item{reaction}{boolean. Indicates the inclusion of a reaction norm based GxE kernel (default = FALSE).} \item{size_E}{character. \code{size_E=c('full','environment')}. In the first, 'full' means taht the environmental relationship kernel has the dimensions of n x n observations, which n = pq (p genotypes, q environments). If 'environment' the size of E-kernel is q x q.} } \value{ A list of kernels (relationship matrices) to be used in genomic models. } \description{ Get multiple genomic and/or envirotype-informed kernels for bayesian genomic prediciton. } \details{ TODO Define models. } \examples{ ### Loading the genomic, phenotype and weather data data('maizeG'); data('maizeYield'); data("maizeWTH") ### Y = fixed + G MM <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, model = 'MM') ### Y = fixed + G + GE MDs <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, model = 'MDs') ### Enriching models with weather data W.cov <- W.matrix(env.data = maizeWTH) H <- EnvKernel(env.data = W.cov, Y = maizeYield, merge = TRUE, env.id = 'env') EMM <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield,K_E = list(W = H$envCov), model = 'EMM') # or model = MM ### Y = fixed + G + W + GE EMDs <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, K_E = list(W = H$envCov), model = 'MDs') # or model = MDs ### Y = fixed + W + G + GW RN <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, K_E = list(W = H$envCov), model = 'RNMM') ### Y = fixed + W + G + GW + GE fullRN <- get_kernel(K_G = list(G = as.matrix(maizeG)), Y = maizeYield, K_E = list(W = H$envCov), model = 'RNMDs') } \seealso{ BGGE::getk W.matrix } \author{ Germano Costa Neto }
## This file contains R functions for solving for the inverse ## of a given matrix making use of caching for quick retrevial ## of past solutions. ## makeCacheMatrix ## Creates a cache to store a matrix and its inverse. ## Functions provided: ## - set the value of the matrix ## - get the value of the matrix ## - set the value of the inverse ## - get the value of the inverse makeCacheMatrix <- function(x = matrix()) { inverse <- NULL set <- function(y) { x <<- y inverse <<- NULL } get <- function() x setinverse <- function(i) inverse <<- i getinverse <- function() inverse list(set = set, get = get, setinverse = setinverse, getinverse = getinverse) } ## cacheSolve ## Solves for the inverse of the given matrix. Makes use of a ## cache for quick retreival of previous results. ## ## Parameters ## x : makeCacheMatrix containing matrix to solve for. ## ... : additional paramters used by the solve() function. ## Returns ## inverse of the matrix (as a matrix). cacheSolve <- function(x, ...) { inverse <- x$getinverse() if(!is.null(inverse)) { message("getting cached data") return(inverse) } data <- x$get() inverse <- solve(data, ...) x$setinverse(inverse) inverse }
/cachematrix.R
no_license
mljoslyn/ProgrammingAssignment2
R
false
false
1,416
r
## This file contains R functions for solving for the inverse ## of a given matrix making use of caching for quick retrevial ## of past solutions. ## makeCacheMatrix ## Creates a cache to store a matrix and its inverse. ## Functions provided: ## - set the value of the matrix ## - get the value of the matrix ## - set the value of the inverse ## - get the value of the inverse makeCacheMatrix <- function(x = matrix()) { inverse <- NULL set <- function(y) { x <<- y inverse <<- NULL } get <- function() x setinverse <- function(i) inverse <<- i getinverse <- function() inverse list(set = set, get = get, setinverse = setinverse, getinverse = getinverse) } ## cacheSolve ## Solves for the inverse of the given matrix. Makes use of a ## cache for quick retreival of previous results. ## ## Parameters ## x : makeCacheMatrix containing matrix to solve for. ## ... : additional paramters used by the solve() function. ## Returns ## inverse of the matrix (as a matrix). cacheSolve <- function(x, ...) { inverse <- x$getinverse() if(!is.null(inverse)) { message("getting cached data") return(inverse) } data <- x$get() inverse <- solve(data, ...) x$setinverse(inverse) inverse }
############################################################### ############################################################### ## MODEL M/M/1/K/K - Finite Poblation. ## ############################################################### ############################################################### NewInput.MM1KK <- function(lambda=0, mu=0, k=1, method=3) { res <- list(lambda = lambda, mu = mu, k = k, method = method) class(res) <- "i_MM1KK" res } CheckInput.i_MM1KK <- function(x, ...) { MM1KK_class <- "The class of the object x has to be M/M/1/K/K (i_MM1KK)" MM1KK_anomalous <- "Some value of lambda, mu or k is anomalous. Check the values." MM1KK_method <- "method variable has to be 0 to be exact calculus, 1 to be aproximate calculus, 2 to use Jain's Method or 3 to use Poisson truncated distribution" if (!inherits(x, "i_MM1KK")) stop(MM1KK_class) if (is.anomalous(x$lambda) || is.anomalous(x$mu) || is.anomalous(x$k)) stop(MM1KK_anomalous) if (x$lambda < 0) stop(ALL_lambda_zpositive) if (x$mu <= 0) stop(ALL_mu_positive) if (x$k < 1) stop(ALL_k_warning) if (!is.wholenumber(x$k)) stop(ALL_k_integer) if (x$method != 0 && x$method != 1 && x$method != 2 && x$method != 3) stop(MM1KK_method) } MM1KK_InitPn_Aprox_Aux <- function(n, lambda, mu, c, k, m) { (lfactorial(k) - lfactorial(k-n)) + (n * log(lambda/mu)) } MM1KK_InitPn_Aprox <- function(x) { ProbFactCalculus(x$lambda, x$mu, 1, x$k, x$k, x$k, MM1KK_InitPn_Aprox_Aux, MM1KK_InitPn_Aprox_Aux, MM1KK_InitPn_Aprox_Aux) } MM1KK_InitPn_Exact <- function(x) { pn <- c(0:x$k) z <- x$mu / x$lambda u <- x$lambda / x$mu pn[1] <- B_erlang(x$k, z) totu <- 1 totk <- 1 i <- 2 while (i <= (x$k + 1)) { totu <- totu * u totk <- totk * ((x$k + 1) - i + 1) pn[i] <- pn[1] * totu * totk i <- i + 1 } pn } MM1KK_method2_Aux <- function(x, i) { r <- x$lambda/x$mu if (i == 0) { (x$k - i) * r / (i+1) } else { (x$k - i) * r } } MM1KK_method2_Prod <- function(x,n) { prod <- 1 for (i in 0:(n-1)) { prod <- prod * MM1KK_method2_Aux(x, i) } prod } MM1KK_method2_Prob <- function(x) { pn <- c() sumAux <- 1 for (i in (1:x$k)) { sumAux <- sumAux + MM1KK_method2_Prod(x, i) } pn[1] <- 1/sumAux for (i in 2:(x$k+1)) { pn[i] <- MM1KK_method2_Aux(x, i-2) * pn[i-1] } pn } MM1KK_method3_Prob <- function(x) { z <- x$mu/x$lambda funMethod3 <- function(n){ dpois(x$k-n, z)/ppois(x$k, z) } pn <- sapply(0:x$k, funMethod3) pn } MM1KK_InitPn <- function(x) { if (x$method == 0) pn <- MM1KK_InitPn_Exact(x) else if (x$method == 1) pn <- MM1KK_InitPn_Aprox(x) else if (x$method == 2) pn <- MM1KK_method2_Prob(x) else pn <- MM1KK_method3_Prob(x) pn } QueueingModel.i_MM1KK <- function(x, ...) { # Is everything fine?? CheckInput.i_MM1KK(x, ...) z <- x$mu / x$lambda Pn <- MM1KK_InitPn(x) RO <- 1 - Pn[1] Throughput <- x$mu * RO L <- x$k - (Throughput / x$lambda) W <- (x$k / Throughput) - ( 1 / x$lambda) Wq <- W - (1 / x$mu) Lq <- Throughput * Wq WWs <- (x$k / RO) - z SP <- 1 + z QnAux <- function(n){ Pn[n] * (x$k - (n-1)) / (x$k - L) } Qn <- sapply(1:x$k, QnAux) if (x$k == 1) { Wqq <- NA Lqq <- NA } else { Wqq <- Wq / (1 - Qn[1]) Lqq <- Wqq * x$mu } #Wqq <- Wq / RO FW <- function(t){ aux <- function(i, t) { Qn[i] * ppois(i-1, x$mu * t) } 1 - sum(sapply(seq(1, x$k, 1), aux, t)) } if (x$k == 1) FWq <- function(t){ 0 } else { FWq <- function(t){ aux <- function(i, t) { Qn[i+1] * ppois(i-1, x$mu * t) } 1 - sum(sapply(seq(1, x$k-1, 1), aux, t)) } } # variances VN <- sum( (0:x$k)^2 * Pn ) - (L^2) xFWc <- Vectorize(function(t){t * (1 - FW(t))}) xFWqc <- Vectorize(function(t){t * (1 - FWq(t))}) FWInt <- integrate(xFWc, 0, Inf) if (FWInt$message == "OK") VT <- (2 * FWInt$value) - (W^2) else VT <- NA if (x$k == 1) { VNq <- 0 VTq <- 0 } else { VNq <- sum( c(0, 0, 1:(x$k-1))^2 * Pn ) - (Lq^2) FWqInt <- integrate(xFWqc, 0, Inf) if (FWqInt$message == "OK") VTq <- (2 * FWqInt$value) - (Wq^2) else VTq <- NA } # The result res <- list( Inputs=x, RO = RO, Lq = Lq, VNq = VNq, Wq = Wq, VTq = VTq, Throughput = Throughput, L = L, VN = VN, W = W, VT = VT, Lqq = Lqq, Wqq = Wqq, WWs = WWs, SP = SP, Pn = Pn, Qn = Qn, FW = FW, FWq = FWq ) class(res) <- "o_MM1KK" res } Inputs.o_MM1KK <- function(x, ...) { x$Inputs } RO.o_MM1KK <- function(x, ...) { x$RO } Lq.o_MM1KK <- function(x, ...) { x$Lq } VNq.o_MM1KK <- function(x, ...) { x$VNq } Wq.o_MM1KK <- function(x, ...) { x$Wq } VTq.o_MM1KK <- function(x, ...) { x$VTq } L.o_MM1KK <- function(x, ...) { x$L } VN.o_MM1KK <- function(x, ...) { x$VN } W.o_MM1KK <- function(x, ...) { x$W } VT.o_MM1KK <- function(x, ...) { x$VT } Lqq.o_MM1KK <- function(x, ...) { x$Lqq } Wqq.o_MM1KK <- function(x, ...) { x$Wqq } WWs.o_MM1KK <- function(x, ...) { x$WWs } SP.o_MM1KK <- function(x, ...) { x$SP } Pn.o_MM1KK <- function(x, ...) { x$Pn } Qn.o_MM1KK <- function(x, ...) { x$Qn } Throughput.o_MM1KK <- function(x, ...) { x$Throughput } Report.o_MM1KK <- function(x, ...) { reportAux(x) } summary.o_MM1KK <- function(object, ...) { aux <- list(el=CompareQueueingModels(object)) class(aux) <- "summary.o_MM1" aux } print.summary.o_MM1KK <- function(x, ...) { print_summary(x, ...) }
/R/MM1KK.R
no_license
cran/queueing
R
false
false
5,686
r
############################################################### ############################################################### ## MODEL M/M/1/K/K - Finite Poblation. ## ############################################################### ############################################################### NewInput.MM1KK <- function(lambda=0, mu=0, k=1, method=3) { res <- list(lambda = lambda, mu = mu, k = k, method = method) class(res) <- "i_MM1KK" res } CheckInput.i_MM1KK <- function(x, ...) { MM1KK_class <- "The class of the object x has to be M/M/1/K/K (i_MM1KK)" MM1KK_anomalous <- "Some value of lambda, mu or k is anomalous. Check the values." MM1KK_method <- "method variable has to be 0 to be exact calculus, 1 to be aproximate calculus, 2 to use Jain's Method or 3 to use Poisson truncated distribution" if (!inherits(x, "i_MM1KK")) stop(MM1KK_class) if (is.anomalous(x$lambda) || is.anomalous(x$mu) || is.anomalous(x$k)) stop(MM1KK_anomalous) if (x$lambda < 0) stop(ALL_lambda_zpositive) if (x$mu <= 0) stop(ALL_mu_positive) if (x$k < 1) stop(ALL_k_warning) if (!is.wholenumber(x$k)) stop(ALL_k_integer) if (x$method != 0 && x$method != 1 && x$method != 2 && x$method != 3) stop(MM1KK_method) } MM1KK_InitPn_Aprox_Aux <- function(n, lambda, mu, c, k, m) { (lfactorial(k) - lfactorial(k-n)) + (n * log(lambda/mu)) } MM1KK_InitPn_Aprox <- function(x) { ProbFactCalculus(x$lambda, x$mu, 1, x$k, x$k, x$k, MM1KK_InitPn_Aprox_Aux, MM1KK_InitPn_Aprox_Aux, MM1KK_InitPn_Aprox_Aux) } MM1KK_InitPn_Exact <- function(x) { pn <- c(0:x$k) z <- x$mu / x$lambda u <- x$lambda / x$mu pn[1] <- B_erlang(x$k, z) totu <- 1 totk <- 1 i <- 2 while (i <= (x$k + 1)) { totu <- totu * u totk <- totk * ((x$k + 1) - i + 1) pn[i] <- pn[1] * totu * totk i <- i + 1 } pn } MM1KK_method2_Aux <- function(x, i) { r <- x$lambda/x$mu if (i == 0) { (x$k - i) * r / (i+1) } else { (x$k - i) * r } } MM1KK_method2_Prod <- function(x,n) { prod <- 1 for (i in 0:(n-1)) { prod <- prod * MM1KK_method2_Aux(x, i) } prod } MM1KK_method2_Prob <- function(x) { pn <- c() sumAux <- 1 for (i in (1:x$k)) { sumAux <- sumAux + MM1KK_method2_Prod(x, i) } pn[1] <- 1/sumAux for (i in 2:(x$k+1)) { pn[i] <- MM1KK_method2_Aux(x, i-2) * pn[i-1] } pn } MM1KK_method3_Prob <- function(x) { z <- x$mu/x$lambda funMethod3 <- function(n){ dpois(x$k-n, z)/ppois(x$k, z) } pn <- sapply(0:x$k, funMethod3) pn } MM1KK_InitPn <- function(x) { if (x$method == 0) pn <- MM1KK_InitPn_Exact(x) else if (x$method == 1) pn <- MM1KK_InitPn_Aprox(x) else if (x$method == 2) pn <- MM1KK_method2_Prob(x) else pn <- MM1KK_method3_Prob(x) pn } QueueingModel.i_MM1KK <- function(x, ...) { # Is everything fine?? CheckInput.i_MM1KK(x, ...) z <- x$mu / x$lambda Pn <- MM1KK_InitPn(x) RO <- 1 - Pn[1] Throughput <- x$mu * RO L <- x$k - (Throughput / x$lambda) W <- (x$k / Throughput) - ( 1 / x$lambda) Wq <- W - (1 / x$mu) Lq <- Throughput * Wq WWs <- (x$k / RO) - z SP <- 1 + z QnAux <- function(n){ Pn[n] * (x$k - (n-1)) / (x$k - L) } Qn <- sapply(1:x$k, QnAux) if (x$k == 1) { Wqq <- NA Lqq <- NA } else { Wqq <- Wq / (1 - Qn[1]) Lqq <- Wqq * x$mu } #Wqq <- Wq / RO FW <- function(t){ aux <- function(i, t) { Qn[i] * ppois(i-1, x$mu * t) } 1 - sum(sapply(seq(1, x$k, 1), aux, t)) } if (x$k == 1) FWq <- function(t){ 0 } else { FWq <- function(t){ aux <- function(i, t) { Qn[i+1] * ppois(i-1, x$mu * t) } 1 - sum(sapply(seq(1, x$k-1, 1), aux, t)) } } # variances VN <- sum( (0:x$k)^2 * Pn ) - (L^2) xFWc <- Vectorize(function(t){t * (1 - FW(t))}) xFWqc <- Vectorize(function(t){t * (1 - FWq(t))}) FWInt <- integrate(xFWc, 0, Inf) if (FWInt$message == "OK") VT <- (2 * FWInt$value) - (W^2) else VT <- NA if (x$k == 1) { VNq <- 0 VTq <- 0 } else { VNq <- sum( c(0, 0, 1:(x$k-1))^2 * Pn ) - (Lq^2) FWqInt <- integrate(xFWqc, 0, Inf) if (FWqInt$message == "OK") VTq <- (2 * FWqInt$value) - (Wq^2) else VTq <- NA } # The result res <- list( Inputs=x, RO = RO, Lq = Lq, VNq = VNq, Wq = Wq, VTq = VTq, Throughput = Throughput, L = L, VN = VN, W = W, VT = VT, Lqq = Lqq, Wqq = Wqq, WWs = WWs, SP = SP, Pn = Pn, Qn = Qn, FW = FW, FWq = FWq ) class(res) <- "o_MM1KK" res } Inputs.o_MM1KK <- function(x, ...) { x$Inputs } RO.o_MM1KK <- function(x, ...) { x$RO } Lq.o_MM1KK <- function(x, ...) { x$Lq } VNq.o_MM1KK <- function(x, ...) { x$VNq } Wq.o_MM1KK <- function(x, ...) { x$Wq } VTq.o_MM1KK <- function(x, ...) { x$VTq } L.o_MM1KK <- function(x, ...) { x$L } VN.o_MM1KK <- function(x, ...) { x$VN } W.o_MM1KK <- function(x, ...) { x$W } VT.o_MM1KK <- function(x, ...) { x$VT } Lqq.o_MM1KK <- function(x, ...) { x$Lqq } Wqq.o_MM1KK <- function(x, ...) { x$Wqq } WWs.o_MM1KK <- function(x, ...) { x$WWs } SP.o_MM1KK <- function(x, ...) { x$SP } Pn.o_MM1KK <- function(x, ...) { x$Pn } Qn.o_MM1KK <- function(x, ...) { x$Qn } Throughput.o_MM1KK <- function(x, ...) { x$Throughput } Report.o_MM1KK <- function(x, ...) { reportAux(x) } summary.o_MM1KK <- function(object, ...) { aux <- list(el=CompareQueueingModels(object)) class(aux) <- "summary.o_MM1" aux } print.summary.o_MM1KK <- function(x, ...) { print_summary(x, ...) }
## CB 2009/5,6,10 2010/6 2013/10 ## NOTE the C code does not use long double for accumulation. .means_simple_triplet_matrix <- function(x, DIM, na.rm) { s <- .Call(R_sums_stm, x, DIM, na.rm) n <- c(x$nrow, x$ncol)[-DIM] if (na.rm) { x$v <- is.na(x$v) nna <- .Call(R_sums_stm, x, DIM, FALSE) s / (n - nna) } else s / n } ## R interfaces row_sums <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("row_sums") row_sums.default <- function(x, na.rm = FALSE, dims = 1, ...) base::rowSums(x, na.rm, dims, ...) row_sums.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .Call(R_sums_stm, x, 1L, na.rm) row_sums.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowSums(x, na.rm = na.rm, dims = dims, ...) row_sums.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowSums(x, na.rm = na.rm, dims = dims, ...) col_sums <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("col_sums") col_sums.default <- function(x, na.rm = FALSE, dims = 1, ...) base::colSums(x, na.rm, dims, ...) col_sums.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .Call(R_sums_stm, x, 2L, na.rm) col_sums.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colSums(x, na.rm = na.rm, dims = dims, ...) col_sums.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colSums(x, na.rm = na.rm, dims = dims, ...) row_means <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("row_means") row_means.default <- function(x, na.rm = FALSE, dims = 1, ...) base::rowMeans(x, na.rm, dims, ...) row_means.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .means_simple_triplet_matrix(x, DIM = 1L, na.rm) row_means.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowMeans(x, na.rm = na.rm, dims = dims, ...) row_means.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowMeans(x, na.rm = na.rm, dims = dims, ...) col_means <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("col_means") col_means.default <- function(x, na.rm = FALSE, dims = 1, ...) base::colMeans(x, na.rm, dims, ...) col_means.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .means_simple_triplet_matrix(x, DIM = 2L, na.rm) col_means.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colMeans(x, na.rm = na.rm, dims = dims, ...) col_means.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colMeans(x, na.rm = na.rm, dims = dims, ...) row_norms <- function(x, p = 2) { if(p == 2) sqrt(row_sums(x ^ 2)) else if(p == 1) row_sums(abs(x)) else if(p == Inf) c(rollup(abs(x), 2L, FUN = max)) else row_sums(abs(x) ^ p) ^ (1/p) } col_norms <- function(x, p = 2) { if(p == 2) sqrt(col_sums(x ^ 2)) else if(p == 1) col_sums(abs(x)) else if(p == Inf) c(rollup(abs(x), 1L, FUN = max)) else col_sums(abs(x) ^ p) ^ (1/p) } ## .nnzero <- function(x, scale = FALSE) { v <- c("simple_triplet_matrix", "simple_sparse_array") if (inherits(x, v)) v <- x$v else { x <- as.array(x) v <- x } v <- v == vector(typeof(v), 1L) v <- v + 1L n <- length(v) v <- tabulate(v, 2L) v <- c(v, n - sum(v)) names(v) <- c("nnzero", "nzero", NA) if (scale) v <- v / prod(dim(x)) v } ###
/R/stm.R
no_license
cran/slam
R
false
false
3,433
r
## CB 2009/5,6,10 2010/6 2013/10 ## NOTE the C code does not use long double for accumulation. .means_simple_triplet_matrix <- function(x, DIM, na.rm) { s <- .Call(R_sums_stm, x, DIM, na.rm) n <- c(x$nrow, x$ncol)[-DIM] if (na.rm) { x$v <- is.na(x$v) nna <- .Call(R_sums_stm, x, DIM, FALSE) s / (n - nna) } else s / n } ## R interfaces row_sums <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("row_sums") row_sums.default <- function(x, na.rm = FALSE, dims = 1, ...) base::rowSums(x, na.rm, dims, ...) row_sums.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .Call(R_sums_stm, x, 1L, na.rm) row_sums.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowSums(x, na.rm = na.rm, dims = dims, ...) row_sums.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowSums(x, na.rm = na.rm, dims = dims, ...) col_sums <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("col_sums") col_sums.default <- function(x, na.rm = FALSE, dims = 1, ...) base::colSums(x, na.rm, dims, ...) col_sums.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .Call(R_sums_stm, x, 2L, na.rm) col_sums.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colSums(x, na.rm = na.rm, dims = dims, ...) col_sums.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colSums(x, na.rm = na.rm, dims = dims, ...) row_means <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("row_means") row_means.default <- function(x, na.rm = FALSE, dims = 1, ...) base::rowMeans(x, na.rm, dims, ...) row_means.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .means_simple_triplet_matrix(x, DIM = 1L, na.rm) row_means.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowMeans(x, na.rm = na.rm, dims = dims, ...) row_means.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::rowMeans(x, na.rm = na.rm, dims = dims, ...) col_means <- function(x, na.rm = FALSE, dims = 1, ...) UseMethod("col_means") col_means.default <- function(x, na.rm = FALSE, dims = 1, ...) base::colMeans(x, na.rm, dims, ...) col_means.simple_triplet_matrix <- function(x, na.rm = FALSE, dims = 1, ...) .means_simple_triplet_matrix(x, DIM = 2L, na.rm) col_means.dgCMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colMeans(x, na.rm = na.rm, dims = dims, ...) col_means.dgTMatrix <- function(x, na.rm = FALSE, dims = 1, ...) Matrix::colMeans(x, na.rm = na.rm, dims = dims, ...) row_norms <- function(x, p = 2) { if(p == 2) sqrt(row_sums(x ^ 2)) else if(p == 1) row_sums(abs(x)) else if(p == Inf) c(rollup(abs(x), 2L, FUN = max)) else row_sums(abs(x) ^ p) ^ (1/p) } col_norms <- function(x, p = 2) { if(p == 2) sqrt(col_sums(x ^ 2)) else if(p == 1) col_sums(abs(x)) else if(p == Inf) c(rollup(abs(x), 1L, FUN = max)) else col_sums(abs(x) ^ p) ^ (1/p) } ## .nnzero <- function(x, scale = FALSE) { v <- c("simple_triplet_matrix", "simple_sparse_array") if (inherits(x, v)) v <- x$v else { x <- as.array(x) v <- x } v <- v == vector(typeof(v), 1L) v <- v + 1L n <- length(v) v <- tabulate(v, 2L) v <- c(v, n - sum(v)) names(v) <- c("nnzero", "nzero", NA) if (scale) v <- v / prod(dim(x)) v } ###
##subsampling mtDNA reads and identifying heteroplasmic sites ##Reena Debray #input for this script: a mitocaller output file, uploaded and named "mtcalls" #output of this script: a data frame named "output" with information on the position, genotypes, and allele frequencies of each heteroplasmic site #initialize data frame of heteroplasmic sites output<-data.frame(matrix(nrow=0,ncol=3)) options(stringsAsFactors=F) #rbind command later in the script will not work otherwise for (line in seq(1,nrow(mtcalls))){ #remove reads with base quality < 20 reads=unlist(strsplit(substr(mtcalls[line,2],6,nchar(as.character(mtcalls[line,2]))),",")) base_quals=unlist(strsplit(substr(mtcalls[line,3],7,nchar(as.character(mtcalls[line,3]))),",")) reads_and_bqs=data.frame(reads,base_quals) reads_and_bqs_filtered<-reads_and_bqs[as.numeric(as.character(reads_and_bqs$base_quals))>=20,] #count number of reads; discard if less than 200 if (nrow(reads_and_bqs_filtered)>=200){ #downsample sites with more than 200 reads to 200 reads if (nrow(reads_and_bqs_filtered)>200) {reads_and_bqs_subsampled<-reads_and_bqs_filtered[sample(seq(1,nrow(reads_and_bqs_filtered)),size=200,replace=F),]} #keep alleles that are supported by 8 or more reads supported_alleles=c() for (base in c("A","C","G","T")) { if (nrow(reads_and_bqs_subsampled[reads_and_bqs_subsampled$reads==base,])>=8) {supported_alleles<-c(supported_alleles,as.character(reads_and_bqs_subsampled[reads_and_bqs_subsampled$reads==base,"reads"]))} } #if there are multiple alleles (heteroplasmy), recalculate frequencies based on supported alleles if (length(table(supported_alleles))>1){ new_freqs<-data.frame(table(supported_alleles)) new_freqs$percentreads<-round(new_freqs$Freq/sum(new_freqs$Freq),4) #re-format results and append to data frame of heteroplasmic sites genotypes<-paste(new_freqs$supported_alleles,collapse="/") percentreads<-paste(new_freqs$percentreads,collapse="/") newline=c(mtcalls[line,1],genotypes,percentreads) output<-rbind(output,newline) } } } colnames(output)=c("Site","Genotype","Frequency")
/Code for subsampling mtDNA reads and identifying heteroplasmic sites.R
no_license
reenadebray/mtDNA_copy_number
R
false
false
2,185
r
##subsampling mtDNA reads and identifying heteroplasmic sites ##Reena Debray #input for this script: a mitocaller output file, uploaded and named "mtcalls" #output of this script: a data frame named "output" with information on the position, genotypes, and allele frequencies of each heteroplasmic site #initialize data frame of heteroplasmic sites output<-data.frame(matrix(nrow=0,ncol=3)) options(stringsAsFactors=F) #rbind command later in the script will not work otherwise for (line in seq(1,nrow(mtcalls))){ #remove reads with base quality < 20 reads=unlist(strsplit(substr(mtcalls[line,2],6,nchar(as.character(mtcalls[line,2]))),",")) base_quals=unlist(strsplit(substr(mtcalls[line,3],7,nchar(as.character(mtcalls[line,3]))),",")) reads_and_bqs=data.frame(reads,base_quals) reads_and_bqs_filtered<-reads_and_bqs[as.numeric(as.character(reads_and_bqs$base_quals))>=20,] #count number of reads; discard if less than 200 if (nrow(reads_and_bqs_filtered)>=200){ #downsample sites with more than 200 reads to 200 reads if (nrow(reads_and_bqs_filtered)>200) {reads_and_bqs_subsampled<-reads_and_bqs_filtered[sample(seq(1,nrow(reads_and_bqs_filtered)),size=200,replace=F),]} #keep alleles that are supported by 8 or more reads supported_alleles=c() for (base in c("A","C","G","T")) { if (nrow(reads_and_bqs_subsampled[reads_and_bqs_subsampled$reads==base,])>=8) {supported_alleles<-c(supported_alleles,as.character(reads_and_bqs_subsampled[reads_and_bqs_subsampled$reads==base,"reads"]))} } #if there are multiple alleles (heteroplasmy), recalculate frequencies based on supported alleles if (length(table(supported_alleles))>1){ new_freqs<-data.frame(table(supported_alleles)) new_freqs$percentreads<-round(new_freqs$Freq/sum(new_freqs$Freq),4) #re-format results and append to data frame of heteroplasmic sites genotypes<-paste(new_freqs$supported_alleles,collapse="/") percentreads<-paste(new_freqs$percentreads,collapse="/") newline=c(mtcalls[line,1],genotypes,percentreads) output<-rbind(output,newline) } } } colnames(output)=c("Site","Genotype","Frequency")
#Secretary problem make_choice <- function(N,split_number) { input_list<- sample(1:N,N,replace=FALSE) mx<- -1 eval_group <- input_list[1:split_number] for(i in eval_group) { if(i>mx) { mx <- i } } selection_group <- input_list[(split_number+1):N] for(i1 in selection_group) { if(i1>mx) { return(i1) } } # If no one better than selection criteria,we return -1 # YY: we have to select one, so the last item become our choice. return(input_list[N]) # YY: return(-1) } find_optimal <- function(N) { mx <- -1 optimal_split <- -1 for(split_number in 1:(N/2)) { K <- 5000 #We repeat the process K times count <- 0 # No. of times we get N (100) for(j in 1:K) { if(make_choice(N,split_number)==N) { count <- count+1 } } if(count>mx) { mx<-count optimal_split <- split_number } #cat(paste0(count," ",split_number,"\n")) } return(optimal_split) } #Driver Code N <- 100 #We consider the case of hundred secretaries cat(paste0("Optimal split for N=100 will be at ",find_optimal(100)))
/2019/Assignment/FE8828-Siddharth Lalwani/Assignment 2/YY_Secretary_problem.R
no_license
leafyoung/fe8828
R
false
false
1,135
r
#Secretary problem make_choice <- function(N,split_number) { input_list<- sample(1:N,N,replace=FALSE) mx<- -1 eval_group <- input_list[1:split_number] for(i in eval_group) { if(i>mx) { mx <- i } } selection_group <- input_list[(split_number+1):N] for(i1 in selection_group) { if(i1>mx) { return(i1) } } # If no one better than selection criteria,we return -1 # YY: we have to select one, so the last item become our choice. return(input_list[N]) # YY: return(-1) } find_optimal <- function(N) { mx <- -1 optimal_split <- -1 for(split_number in 1:(N/2)) { K <- 5000 #We repeat the process K times count <- 0 # No. of times we get N (100) for(j in 1:K) { if(make_choice(N,split_number)==N) { count <- count+1 } } if(count>mx) { mx<-count optimal_split <- split_number } #cat(paste0(count," ",split_number,"\n")) } return(optimal_split) } #Driver Code N <- 100 #We consider the case of hundred secretaries cat(paste0("Optimal split for N=100 will be at ",find_optimal(100)))
#' Invert first \code{K} eigendirections of the matrix. If \code{K} is #' not specified the functions takes direction with eigencalues grater #' than given treshold \code{th}. #' If \code{th} is also not specified then all direction are inverted #' (equivalent to \code{\link[base]{solve}}) #' #' @title Invert first K eigendirections of the matrix. #' @param M matrix to solve #' @param K number of directions to invert #' @param th fixed treshold for eigenvalues #' @return Pseudoinverse matrix #' @export pseudoinverse = function(M,K=NULL,th=NULL){ if (!is.matrix(M) || dim(M)[1] != dim(M)[2]) stop("M must be a square matrix") if (!is.null(K) && !is.positiveint(K+1)) stop("K must be a nonnegative integer") nbasis = dim(M)[1] if (is.null(nbasis) || nbasis ==1) res = 1 / M else { E = eigen(M) vals = 1 / E$values if (is.null(K)) K = nbasis if (!is.null(th)) K = min(K, sum(abs(E$values) > th)) vals[ 1:nbasis > K ] = 0 res = E$vectors %*% diag(vals) %*% t(Conj(E$vectors)) } res }
/freqdom/R/pseudoinverse.R
no_license
ingted/R-Examples
R
false
false
1,045
r
#' Invert first \code{K} eigendirections of the matrix. If \code{K} is #' not specified the functions takes direction with eigencalues grater #' than given treshold \code{th}. #' If \code{th} is also not specified then all direction are inverted #' (equivalent to \code{\link[base]{solve}}) #' #' @title Invert first K eigendirections of the matrix. #' @param M matrix to solve #' @param K number of directions to invert #' @param th fixed treshold for eigenvalues #' @return Pseudoinverse matrix #' @export pseudoinverse = function(M,K=NULL,th=NULL){ if (!is.matrix(M) || dim(M)[1] != dim(M)[2]) stop("M must be a square matrix") if (!is.null(K) && !is.positiveint(K+1)) stop("K must be a nonnegative integer") nbasis = dim(M)[1] if (is.null(nbasis) || nbasis ==1) res = 1 / M else { E = eigen(M) vals = 1 / E$values if (is.null(K)) K = nbasis if (!is.null(th)) K = min(K, sum(abs(E$values) > th)) vals[ 1:nbasis > K ] = 0 res = E$vectors %*% diag(vals) %*% t(Conj(E$vectors)) } res }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pPPCA.R \name{pPPCA} \alias{pPPCA} \title{Penalized Probabilistic PCA} \usage{ pPPCA( lambda, Tvotes = 1000, verbose = FALSE, penalty = 1, tau = 0.001, beta = NULL ) } \arguments{ \item{lambda}{a numerical vector of sample eigenvalues} \item{Tvotes}{the number of possible tuning parameter values to be searched} \item{verbose}{a logical to indicate whether the details of the penalized voting results should be shown} \item{penalty}{an integer indicating the type of penalty function to use. The default option is 1, which corresponds to the model in Deng and Craiu (2021).} \item{tau}{a tolerance threshold for the smallest eigenvalue, the default value is 0.001.} \item{beta}{a numeric between 0 and 1 indicating the weight towards penalty function 1 or 2.} } \value{ an integer $K$ between 1 and $n$. } \description{ The function returns the results of penalized profile log-likelihood given a matrix of data or a vector of sample eigenvalues. The data matrix is assumed to follow the decomposition \eqn{X = WL + \epsilon}, where rows of \eqn{X} are decomposed to a linear projection in an orthogonal space plus error. The solution finds the rank of \eqn{W}, which represents some hidden structure in the data, such that \eqn{X-WL} have independent and identically distributed components. } \examples{ \dontrun{ library(MASS) normdata <- mvrnorm(1000, mu = rep(0,50), Sigma = diag(1,50)) eigen_values <- eigen(as.matrix(Matrix::nearPD(stats::cov(scale(normdata)))$mat))$val pPPCA(lambda = lambda) # supply the sample eigenvalues } } \keyword{PCA,} \keyword{dimension} \keyword{effective} \keyword{log-likelihood,} \keyword{parameter,} \keyword{penalized} \keyword{penalty} \keyword{probabilistic} \keyword{profile} \keyword{tuning}
/man/pPPCA.Rd
no_license
WeiAkaneDeng/SPAC2
R
false
true
1,855
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pPPCA.R \name{pPPCA} \alias{pPPCA} \title{Penalized Probabilistic PCA} \usage{ pPPCA( lambda, Tvotes = 1000, verbose = FALSE, penalty = 1, tau = 0.001, beta = NULL ) } \arguments{ \item{lambda}{a numerical vector of sample eigenvalues} \item{Tvotes}{the number of possible tuning parameter values to be searched} \item{verbose}{a logical to indicate whether the details of the penalized voting results should be shown} \item{penalty}{an integer indicating the type of penalty function to use. The default option is 1, which corresponds to the model in Deng and Craiu (2021).} \item{tau}{a tolerance threshold for the smallest eigenvalue, the default value is 0.001.} \item{beta}{a numeric between 0 and 1 indicating the weight towards penalty function 1 or 2.} } \value{ an integer $K$ between 1 and $n$. } \description{ The function returns the results of penalized profile log-likelihood given a matrix of data or a vector of sample eigenvalues. The data matrix is assumed to follow the decomposition \eqn{X = WL + \epsilon}, where rows of \eqn{X} are decomposed to a linear projection in an orthogonal space plus error. The solution finds the rank of \eqn{W}, which represents some hidden structure in the data, such that \eqn{X-WL} have independent and identically distributed components. } \examples{ \dontrun{ library(MASS) normdata <- mvrnorm(1000, mu = rep(0,50), Sigma = diag(1,50)) eigen_values <- eigen(as.matrix(Matrix::nearPD(stats::cov(scale(normdata)))$mat))$val pPPCA(lambda = lambda) # supply the sample eigenvalues } } \keyword{PCA,} \keyword{dimension} \keyword{effective} \keyword{log-likelihood,} \keyword{parameter,} \keyword{penalized} \keyword{penalty} \keyword{probabilistic} \keyword{profile} \keyword{tuning}
library(Seurat) cellTypes = c('astro','microglia','n_ex','n_inh','oligo','opc') #cellTypes = c('microglia','n_ex','n_inh') tmp_pheno = NULL tmp = lapply(cellTypes,function(cellType){ if (cellType %in% c('n_ex','n_inh')){ n = readRDS('/home/brasel/SingleCellProjects/dataObjects/neuron.rds') n$clusters = Idents(n) if(cellType == 'n_ex') { n = subset(n,subset=clusters %in% c(0:2,6)) } else{ n = subset(n,subset=clusters %in% c(3:5)) } } else { n = readRDS(sprintf('/home/brasel/SingleCellProjects/dataObjects/%s.rds',cellType)) } clusterCounts = table(n@meta.data$Sample_ID,Idents(n)) totalCellType = rowSums(clusterCounts) clusterCounts = clusterCounts/totalCellType pheno = data.frame(rbind(clusterCounts)) colnames(pheno) = paste0('prop_',0:(ncol(clusterCounts)-1)) #c('prop_0','prop_1','prop_2','prop_3','prop_4') clusters = 0:(ncol(clusterCounts)-1) phenoFile = read.csv('/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/Brain_pheno_jorge.csv',row.names=2) phenoFile = phenoFile[rownames(pheno),] ### Add in Age of Death ### AOD = unique(n@meta.data[,c('Sample_ID','AOD')]) pheno = merge(pheno,AOD,by.x='row.names',by.y='Sample_ID') pheno$AOD <- as.numeric(pheno$AOD) library(lme4) ### add in one other covariate at a time to see if it removes the significance covarPos <- c() #Sex (additive Model) SEX = unique(n@meta.data[,c('Sample_ID','Gender')]) colnames(SEX)[2] = 'SEX' pheno = merge(pheno,SEX,by.x='Row.names',by.y='Sample_ID') rs1582763 = unique(n@meta.data[,c('Sample_ID','MS4')]) colnames(rs1582763)[2] = 'rs1582763' pheno = merge(pheno,rs1582763,by.x='Row.names',by.y='Sample_ID') pheno[grep('GG',pheno$rs1582763),'rs1582763'] <- 0 pheno[grep('AG',pheno$rs1582763),'rs1582763'] <- 1 pheno[grep('AA',pheno$rs1582763),'rs1582763'] <- 2 pheno$rs1582763 <- as.numeric(pheno$rs1582763) #TREM2 nTREM2 = unique(n@meta.data[,c('Sample_ID','nTREM2')]) nTREM2$nTREM2[nTREM2$nTREM2 != 'TREM2'] = 0 nTREM2$nTREM2[nTREM2$nTREM2 == 'TREM2'] = 1 pheno = merge(pheno,nTREM2,by.x='Row.names',by.y='Sample_ID') pheno$nTREM2 = as.numeric(pheno$nTREM2) pheno$TREM2_reduced = as.numeric(as.factor((phenoFile$TREM2_type %in% c('R62H','H157Y','R47H') )))-1 pheno$TREM2_reduced[is.na(pheno$TREM2_reduced)] = 0 nAPOE = unique(n@meta.data[,c('Sample_ID','nAPOE')]) pheno = merge(pheno,nAPOE,by.x='Row.names',by.y='Sample_ID') pheno[-grep('4',pheno$nAPOE),'nAPOE'] <- 0 pheno[grep('4',pheno$nAPOE),'nAPOE'] <- 1 pheno$nAPOE <- as.numeric(pheno$nAPOE) Final_Status = unique(n@meta.data[,c('Sample_ID','Status')]) colnames(Final_Status)[2] = 'Final_Status' Final_Status$Final_Status = factor(Final_Status$Final_Status, levels=c('Neuro_CO','Neuro_Presympt','Neuro_AD','Neuro_ADAD','Neuro_OT')) pheno = merge(pheno,Final_Status,by.x='Row.names',by.y='Sample_ID') pheno$count_clusterCellType = totalCellType rownames(pheno) = pheno$Row.names pheno = pheno[,-1] minCells = 60 filt_pheno <<- pheno[-which(pheno[,'count_clusterCellType'] < minCells),] #remove subjects with less than 60 cells in the cluster tmp = lapply(clusters,function(clust){ #ADAD tmp_pheno <<- filt_pheno TotalSamples = nrow(tmp_pheno) Group1 = 'ADAD' Group2 = 'nonADAD' Group3 = '' Group1Samples = sum(tmp_pheno$Final_Status == 'Neuro_ADAD') Group2Samples = sum(tmp_pheno$Final_Status != 'Neuro_ADAD') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status == 'Neuro_ADAD') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status != 'Neuro_ADAD') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ Final_Status + SEX') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['Final_StatusNeuro_ADAD',],collapse=','),sep=',')) cat('\n') #TREM2 tmp_pheno <<- filt_pheno#[filt_pheno$Final_Status == 'Neuro_AD',] TotalSamples = nrow(tmp_pheno) Group1 = 'TREM2' Group2 = 'nonTREM2' Group3 = '' Group1Samples = sum(tmp_pheno$nTREM2 == '1') Group2Samples = sum(tmp_pheno$nTREM2 != '1') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nTREM2 == '1') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nTREM2 != '1') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ nTREM2 + SEX + AOD') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['nTREM2',],collapse=','),sep=',')) cat('\n') #TREM2_reduced tmp_pheno <<- filt_pheno#[filt_pheno$Final_Status == 'Neuro_AD',] TotalSamples = nrow(tmp_pheno) Group1 = 'TREM2_reduced' Group2 = 'other' Group3 = '' Group1Samples = sum(tmp_pheno$TREM2_reduced == '1') Group2Samples = sum(tmp_pheno$TREM2_reduced != '1') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$TREM2_reduced == '1') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$TREM2_reduced != '1') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ TREM2_reduced + SEX + AOD') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['TREM2_reduced',],collapse=','),sep=',')) cat('\n') #rs1582763 tmp_pheno <<- na.omit(filt_pheno) TotalSamples = nrow(tmp_pheno) Group1 = 'AA' Group2 = 'AG' Group3 = 'GG' Group1Samples = sum(tmp_pheno$rs1582763 == '2') Group2Samples = sum(tmp_pheno$rs1582763 == '1') Group3Samples = sum(tmp_pheno$rs1582763 == '0') SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$rs1582763 == '2') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$rs1582763 == '1') G3S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$rs1582763 == '0') write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ rs1582763 + SEX + Final_Status') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['rs1582763',],collapse=','),sep=',')) cat('\n') #sAD tmp_pheno <<- filt_pheno TotalSamples = nrow(tmp_pheno) Group1 = 'sAD' Group2 = 'non_sAD' Group3 = '' Group1Samples = sum(tmp_pheno$Final_Status == 'Neuro_AD') Group2Samples = sum(tmp_pheno$Final_Status != 'Neuro_AD') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status == 'Neuro_AD') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status != 'Neuro_AD') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) #tmp_pheno$ADstatus = tmp_pheno$Final_Status == 'Neuro_AD' model <- paste0(paste0('prop_',clust), ' ~ Final_Status + SEX') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['Final_StatusNeuro_AD',],collapse=','),sep=',')) cat('\n') #APOE tmp_pheno <<- filt_pheno[filt_pheno$Final_Status == 'Neuro_AD',] TotalSamples = nrow(tmp_pheno) Group1 = 'APOEe4+' Group2 = 'APOEe4-' Group3 = '' Group1Samples = sum(tmp_pheno$nAPOE == '1') Group2Samples = sum(tmp_pheno$nAPOE != '1') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nAPOE == '1') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nAPOE != '1') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ nAPOE + SEX + AOD') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['nAPOE',],collapse=','),sep=',')) cat('\n') }) })
/AnalysisScripts/ProportionAnalyses/CellStateLevelProportionAnalysis.R
no_license
HarariLab/parietal-snRNAseq
R
false
false
10,797
r
library(Seurat) cellTypes = c('astro','microglia','n_ex','n_inh','oligo','opc') #cellTypes = c('microglia','n_ex','n_inh') tmp_pheno = NULL tmp = lapply(cellTypes,function(cellType){ if (cellType %in% c('n_ex','n_inh')){ n = readRDS('/home/brasel/SingleCellProjects/dataObjects/neuron.rds') n$clusters = Idents(n) if(cellType == 'n_ex') { n = subset(n,subset=clusters %in% c(0:2,6)) } else{ n = subset(n,subset=clusters %in% c(3:5)) } } else { n = readRDS(sprintf('/home/brasel/SingleCellProjects/dataObjects/%s.rds',cellType)) } clusterCounts = table(n@meta.data$Sample_ID,Idents(n)) totalCellType = rowSums(clusterCounts) clusterCounts = clusterCounts/totalCellType pheno = data.frame(rbind(clusterCounts)) colnames(pheno) = paste0('prop_',0:(ncol(clusterCounts)-1)) #c('prop_0','prop_1','prop_2','prop_3','prop_4') clusters = 0:(ncol(clusterCounts)-1) phenoFile = read.csv('/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/Brain_pheno_jorge.csv',row.names=2) phenoFile = phenoFile[rownames(pheno),] ### Add in Age of Death ### AOD = unique(n@meta.data[,c('Sample_ID','AOD')]) pheno = merge(pheno,AOD,by.x='row.names',by.y='Sample_ID') pheno$AOD <- as.numeric(pheno$AOD) library(lme4) ### add in one other covariate at a time to see if it removes the significance covarPos <- c() #Sex (additive Model) SEX = unique(n@meta.data[,c('Sample_ID','Gender')]) colnames(SEX)[2] = 'SEX' pheno = merge(pheno,SEX,by.x='Row.names',by.y='Sample_ID') rs1582763 = unique(n@meta.data[,c('Sample_ID','MS4')]) colnames(rs1582763)[2] = 'rs1582763' pheno = merge(pheno,rs1582763,by.x='Row.names',by.y='Sample_ID') pheno[grep('GG',pheno$rs1582763),'rs1582763'] <- 0 pheno[grep('AG',pheno$rs1582763),'rs1582763'] <- 1 pheno[grep('AA',pheno$rs1582763),'rs1582763'] <- 2 pheno$rs1582763 <- as.numeric(pheno$rs1582763) #TREM2 nTREM2 = unique(n@meta.data[,c('Sample_ID','nTREM2')]) nTREM2$nTREM2[nTREM2$nTREM2 != 'TREM2'] = 0 nTREM2$nTREM2[nTREM2$nTREM2 == 'TREM2'] = 1 pheno = merge(pheno,nTREM2,by.x='Row.names',by.y='Sample_ID') pheno$nTREM2 = as.numeric(pheno$nTREM2) pheno$TREM2_reduced = as.numeric(as.factor((phenoFile$TREM2_type %in% c('R62H','H157Y','R47H') )))-1 pheno$TREM2_reduced[is.na(pheno$TREM2_reduced)] = 0 nAPOE = unique(n@meta.data[,c('Sample_ID','nAPOE')]) pheno = merge(pheno,nAPOE,by.x='Row.names',by.y='Sample_ID') pheno[-grep('4',pheno$nAPOE),'nAPOE'] <- 0 pheno[grep('4',pheno$nAPOE),'nAPOE'] <- 1 pheno$nAPOE <- as.numeric(pheno$nAPOE) Final_Status = unique(n@meta.data[,c('Sample_ID','Status')]) colnames(Final_Status)[2] = 'Final_Status' Final_Status$Final_Status = factor(Final_Status$Final_Status, levels=c('Neuro_CO','Neuro_Presympt','Neuro_AD','Neuro_ADAD','Neuro_OT')) pheno = merge(pheno,Final_Status,by.x='Row.names',by.y='Sample_ID') pheno$count_clusterCellType = totalCellType rownames(pheno) = pheno$Row.names pheno = pheno[,-1] minCells = 60 filt_pheno <<- pheno[-which(pheno[,'count_clusterCellType'] < minCells),] #remove subjects with less than 60 cells in the cluster tmp = lapply(clusters,function(clust){ #ADAD tmp_pheno <<- filt_pheno TotalSamples = nrow(tmp_pheno) Group1 = 'ADAD' Group2 = 'nonADAD' Group3 = '' Group1Samples = sum(tmp_pheno$Final_Status == 'Neuro_ADAD') Group2Samples = sum(tmp_pheno$Final_Status != 'Neuro_ADAD') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status == 'Neuro_ADAD') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status != 'Neuro_ADAD') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ Final_Status + SEX') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['Final_StatusNeuro_ADAD',],collapse=','),sep=',')) cat('\n') #TREM2 tmp_pheno <<- filt_pheno#[filt_pheno$Final_Status == 'Neuro_AD',] TotalSamples = nrow(tmp_pheno) Group1 = 'TREM2' Group2 = 'nonTREM2' Group3 = '' Group1Samples = sum(tmp_pheno$nTREM2 == '1') Group2Samples = sum(tmp_pheno$nTREM2 != '1') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nTREM2 == '1') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nTREM2 != '1') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ nTREM2 + SEX + AOD') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['nTREM2',],collapse=','),sep=',')) cat('\n') #TREM2_reduced tmp_pheno <<- filt_pheno#[filt_pheno$Final_Status == 'Neuro_AD',] TotalSamples = nrow(tmp_pheno) Group1 = 'TREM2_reduced' Group2 = 'other' Group3 = '' Group1Samples = sum(tmp_pheno$TREM2_reduced == '1') Group2Samples = sum(tmp_pheno$TREM2_reduced != '1') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$TREM2_reduced == '1') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$TREM2_reduced != '1') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ TREM2_reduced + SEX + AOD') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['TREM2_reduced',],collapse=','),sep=',')) cat('\n') #rs1582763 tmp_pheno <<- na.omit(filt_pheno) TotalSamples = nrow(tmp_pheno) Group1 = 'AA' Group2 = 'AG' Group3 = 'GG' Group1Samples = sum(tmp_pheno$rs1582763 == '2') Group2Samples = sum(tmp_pheno$rs1582763 == '1') Group3Samples = sum(tmp_pheno$rs1582763 == '0') SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$rs1582763 == '2') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$rs1582763 == '1') G3S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$rs1582763 == '0') write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ rs1582763 + SEX + Final_Status') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['rs1582763',],collapse=','),sep=',')) cat('\n') #sAD tmp_pheno <<- filt_pheno TotalSamples = nrow(tmp_pheno) Group1 = 'sAD' Group2 = 'non_sAD' Group3 = '' Group1Samples = sum(tmp_pheno$Final_Status == 'Neuro_AD') Group2Samples = sum(tmp_pheno$Final_Status != 'Neuro_AD') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status == 'Neuro_AD') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$Final_Status != 'Neuro_AD') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) #tmp_pheno$ADstatus = tmp_pheno$Final_Status == 'Neuro_AD' model <- paste0(paste0('prop_',clust), ' ~ Final_Status + SEX') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['Final_StatusNeuro_AD',],collapse=','),sep=',')) cat('\n') #APOE tmp_pheno <<- filt_pheno[filt_pheno$Final_Status == 'Neuro_AD',] TotalSamples = nrow(tmp_pheno) Group1 = 'APOEe4+' Group2 = 'APOEe4-' Group3 = '' Group1Samples = sum(tmp_pheno$nAPOE == '1') Group2Samples = sum(tmp_pheno$nAPOE != '1') Group3Samples = '' SamplesGT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01) G1S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nAPOE == '1') G2S_GT_0.01 = sum(tmp_pheno[,paste0('prop_',clust)] > 0.01 & tmp_pheno$nAPOE != '1') G3S_GT_0.01 = '' write(paste(cellType,clust,Group1,Group2,Group3,TotalSamples,Group1Samples,Group2Samples,Group3Samples,SamplesGT_0.01,G1S_GT_0.01,G2S_GT_0.01,G3S_GT_0.01,sep=','),file='/home/brasel/SingleCellProjects/MyProjects/67BrainsPaper/PropAnalyses/SampleNumbersForEachPropAnalysis/sampleNumbersForPropAnalyses_v2.csv',append=T) tmp = lapply(colnames(tmp_pheno)[grep('prop',colnames(tmp_pheno))],function(col) tmp_pheno[,col] <<- tmp_pheno[,col]^(1/3) ) model <- paste0(paste0('prop_',clust), ' ~ nAPOE + SEX + AOD') re <- glm(formula = model, data=tmp_pheno) coef <- summary(re)$coefficient cat(paste(cellType,clust,Group1,paste(coef['nAPOE',],collapse=','),sep=',')) cat('\n') }) })
hpc<-read.table("household_power_consumption.txt", header=TRUE, sep = ";",na.strings="?") ##Read in household_power_consumption.txt with, separator=; and NAs=? hpc$DateTime <- strptime(paste(hpc$Date, hpc$Time), "%d/%m/%Y %H:%M:%S") ##CreateDateTime column hpc[,"Date"]<-as.Date(hpc[,"Date"],format="%d/%m/%Y") ##convert date column to date class hpc_sub<-subset(hpc, Date > as.Date("2007-01-31") & Date < as.Date("2007-02-03")) ##subset by dates par(mfrow = c(2, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) ##setup 2x2 layout plot(hpc_sub$DateTime,hpc_sub$Global_active_power, type= "l",ylab="Global active power (kilowatts)",xlab= "") ##plot global_active_power vs datetime plot(hpc_sub$DateTime,hpc_sub$Voltage, type= "l",ylab="Voltage",xlab= "datetime") ##plot voltage vs datetime plot(hpc_sub$DateTime,hpc_sub$Sub_metering_1,col=c("black"),type= "l",ylab="Energy sub metering",xlab= "") lines(hpc_sub$DateTime,hpc_sub$Sub_metering_2, col=c("red"),type= "l") lines(hpc_sub$DateTime,hpc_sub$Sub_metering_3, col=c("blue"),type= "l") legend("topright",bty="n", border=NULL, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"),lwd=1, col=c("black","red","blue")) ##plot submeter values vs datetime plot(hpc_sub$DateTime,hpc_sub$Global_reactive_power, type= "l",ylab="Global_reactive_power",xlab= "datetime") ##plot global_reactive_power vs datetime dev.copy(png, file = "plot4.png",width=480, height=480) ##copy screen plot4 png. dev.off() ##close png device
/plot4.R
no_license
callumd92/CourseraEDA
R
false
false
1,513
r
hpc<-read.table("household_power_consumption.txt", header=TRUE, sep = ";",na.strings="?") ##Read in household_power_consumption.txt with, separator=; and NAs=? hpc$DateTime <- strptime(paste(hpc$Date, hpc$Time), "%d/%m/%Y %H:%M:%S") ##CreateDateTime column hpc[,"Date"]<-as.Date(hpc[,"Date"],format="%d/%m/%Y") ##convert date column to date class hpc_sub<-subset(hpc, Date > as.Date("2007-01-31") & Date < as.Date("2007-02-03")) ##subset by dates par(mfrow = c(2, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) ##setup 2x2 layout plot(hpc_sub$DateTime,hpc_sub$Global_active_power, type= "l",ylab="Global active power (kilowatts)",xlab= "") ##plot global_active_power vs datetime plot(hpc_sub$DateTime,hpc_sub$Voltage, type= "l",ylab="Voltage",xlab= "datetime") ##plot voltage vs datetime plot(hpc_sub$DateTime,hpc_sub$Sub_metering_1,col=c("black"),type= "l",ylab="Energy sub metering",xlab= "") lines(hpc_sub$DateTime,hpc_sub$Sub_metering_2, col=c("red"),type= "l") lines(hpc_sub$DateTime,hpc_sub$Sub_metering_3, col=c("blue"),type= "l") legend("topright",bty="n", border=NULL, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"),lwd=1, col=c("black","red","blue")) ##plot submeter values vs datetime plot(hpc_sub$DateTime,hpc_sub$Global_reactive_power, type= "l",ylab="Global_reactive_power",xlab= "datetime") ##plot global_reactive_power vs datetime dev.copy(png, file = "plot4.png",width=480, height=480) ##copy screen plot4 png. dev.off() ##close png device
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cpSpace.R \name{cpSpaceAddBody} \alias{cpSpaceAddBody} \title{Add a rigid body to the simulation.} \usage{ cpSpaceAddBody(space, body) } \arguments{ \item{space}{[\code{cpSpace *}]} \item{body}{[\code{cpBody *}]} } \description{ Add a rigid body to the simulation. } \details{ C function prototype: \code{CP_EXPORT void cpSpaceAddBody(cpSpace *space, cpBody *body);} }
/man/cpSpaceAddBody.Rd
permissive
coolbutuseless/chipmunkcore
R
false
true
448
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cpSpace.R \name{cpSpaceAddBody} \alias{cpSpaceAddBody} \title{Add a rigid body to the simulation.} \usage{ cpSpaceAddBody(space, body) } \arguments{ \item{space}{[\code{cpSpace *}]} \item{body}{[\code{cpBody *}]} } \description{ Add a rigid body to the simulation. } \details{ C function prototype: \code{CP_EXPORT void cpSpaceAddBody(cpSpace *space, cpBody *body);} }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/compute_functions.R \name{regionDiskTypes.list} \alias{regionDiskTypes.list} \title{Retrieves a list of regional disk types available to the specified project.} \usage{ regionDiskTypes.list(project, region, filter = NULL, maxResults = NULL, orderBy = NULL, pageToken = NULL) } \arguments{ \item{project}{Project ID for this request} \item{region}{The name of the region for this request} \item{filter}{Sets a filter expression for filtering listed resources, in the form filter={expression}} \item{maxResults}{The maximum number of results per page that should be returned} \item{orderBy}{Sorts list results by a certain order} \item{pageToken}{Specifies a page token to use} } \description{ Autogenerated via \code{\link[googleAuthR]{gar_create_api_skeleton}} } \details{ Authentication scopes used by this function are: \itemize{ \item https://www.googleapis.com/auth/cloud-platform \item https://www.googleapis.com/auth/compute \item https://www.googleapis.com/auth/compute.readonly } Set \code{options(googleAuthR.scopes.selected = c(https://www.googleapis.com/auth/cloud-platform, https://www.googleapis.com/auth/compute, https://www.googleapis.com/auth/compute.readonly)} Then run \code{googleAuthR::gar_auth()} to authenticate. See \code{\link[googleAuthR]{gar_auth}} for details. } \seealso{ \href{https://developers.google.com/compute/docs/reference/latest/}{Google Documentation} }
/googlecomputealpha.auto/man/regionDiskTypes.list.Rd
permissive
Phippsy/autoGoogleAPI
R
false
true
1,481
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/compute_functions.R \name{regionDiskTypes.list} \alias{regionDiskTypes.list} \title{Retrieves a list of regional disk types available to the specified project.} \usage{ regionDiskTypes.list(project, region, filter = NULL, maxResults = NULL, orderBy = NULL, pageToken = NULL) } \arguments{ \item{project}{Project ID for this request} \item{region}{The name of the region for this request} \item{filter}{Sets a filter expression for filtering listed resources, in the form filter={expression}} \item{maxResults}{The maximum number of results per page that should be returned} \item{orderBy}{Sorts list results by a certain order} \item{pageToken}{Specifies a page token to use} } \description{ Autogenerated via \code{\link[googleAuthR]{gar_create_api_skeleton}} } \details{ Authentication scopes used by this function are: \itemize{ \item https://www.googleapis.com/auth/cloud-platform \item https://www.googleapis.com/auth/compute \item https://www.googleapis.com/auth/compute.readonly } Set \code{options(googleAuthR.scopes.selected = c(https://www.googleapis.com/auth/cloud-platform, https://www.googleapis.com/auth/compute, https://www.googleapis.com/auth/compute.readonly)} Then run \code{googleAuthR::gar_auth()} to authenticate. See \code{\link[googleAuthR]{gar_auth}} for details. } \seealso{ \href{https://developers.google.com/compute/docs/reference/latest/}{Google Documentation} }
################################################################################ # Aim: Download full text pdfs, given PMID and url # # Contact: Herm Lamberink, h.j.lamberink@umcutrecht.nl # Date: 2018-03-19 ############################# .libPaths( c(.libPaths(), "/mnt/data/live02/stress/hlamberink/RLibrary" ) ) library( 'xml2' ) # used by rvest package library( 'rvest' ) # web scraping package library( "curl" ) library( "XML" ) library( "pbapply" ) # power bar during sapply library( 'plyr' ); library( 'dplyr' ) library( 'tidyr' ) ################################### # FUNCTIONS ################################### ### # Get pdf from given pmid ## get.pdf <- function( pmid, url, outdr = outdir ) { # prevent the function from shutting down due to an error v <- tryCatch( { # output pdf outpdf <- paste0( outdr, '/', pmid, '.pdf' ) if( ! file.exists( outpdf ) ) { # set empty pdflink pdflink <- NA ####################### # pdflink per publisher ####################### # url is from arvojournals if( grepl( "arvojournals", url ) ) { # url to pdf pdflink <- get.pdflink.arvojournals( url ) } # url is from JAMA if( grepl( "jamanetwork.com", url ) ) { # url to pdf pdflink <- get.pdflink.jama( url ) } # url is from PLOS if( grepl( "dx.plos", url ) ) { # url to pdf pdflink <- get.pdflink.plos( url ) } # url is from EHP if( grepl( "/EHP", url ) ) { pdflink <- get.pdflink.ehp( url ) } # url is from doi/bjs if( grepl( "/bjs", url ) ) { pdflink <- get.pdflink.doibjs( url ) } # url is from Wiley, via doi.org #if( grepl( "dx.doi.org", url ) ) #{ # pdflink <- get.pdflink.doiwiley( url ) #} # url is from wiley if( grepl( "wiley.com", url ) ) { pdflink <- get.pdflink.wileyreal( url ) } # url is from bmj if( grepl( "bmj.com", url ) ) { pdflink <- get.pdflink.bmj( url ) } # url is from cmaj if( grepl( "cmaj.ca", url ) ) { pdflink <- get.pdflink.cmaj( url ) } # url is from nejm if( grepl( "nejm.org", url ) ) { pdflink <- get.pdflink.nejm( url ) } # url is from scielo if( grepl( "scielo.br", url ) ) { pdflink <- get.pdflink.scielo( url ) } # url is from academic.oup if( grepl( "academic.oup", url ) ) { pdflink <- get.pdflink.acoup( url ) } # url is from annals if( grepl( "annals", url ) ) { pdflink <- get.pdflink.annals( url ) } # url is from cambridge if( grepl( "cambridge.org", url ) ) { pdflink <- get.pdflink.cambridge( url ) } # url is from OVID if( grepl( "Insights.ovid", url ) ) { # url to pdf pdflink <- get.pdflink.ovid1( url ) if( length(pdflink) == 0 ) pdflink <- get.pdflink.ovid2( url ) } # url is from iiar if( grepl( "iiar", url ) ) { pdflink <- get.pdflink.iiar( url ) } # url is from ahajournals if( grepl( "ahajournals", url ) ) { pdflink <- get.pdflink.ahaj( url ) } # url is from sciencedirect if( grepl( "sciencedirect.com", url ) ) { pdflink <- get.pdflink.sciencedirect( url ) } # url is from asm if( grepl( "asm", url ) ) { pdflink <- get.pdflink.asm( url ) } # url is from ajp if( grepl( "ajp", url ) ) { pdflink <- get.pdflink.ajp } # url is from apsjournals if( grepl( "apsjournals", url ) ) { pdflink <- get.pdflink.apsjournals( url ) } # url is from arjournals if( grepl( "arjournals", url ) ) { pdflink <- get.pdflink.arjournals( url ) } # url is from ascopubs if( grepl( "ascopubs", url ) ) { pdflink <- get.pdflink.ascopubs( url ) } # url is from avmajournals if( grepl( "avmajournals", url ) ) { pdflink <- get.pdflink.avma( url ) } # url is from bjgp if( grepl( "bjgp", url ) ) { pdflink <- get.pdflink.bjgp( url ) } # url is from boneandjoint if( grepl( "boneandjoint", url ) ) { pdflink <- get.pdflink.boneandjoint( url ) } # url is from aacrjournals if( grepl( "aacrjournals", url ) ) { pdflink <- get.pdflink.aacrjournals( url ) } # url is from diabetesjournals if( grepl( "diabetesjournals", url ) ) { pdflink <- get.pdflink.diabetesjournals( url ) } # url is from asnjournals if( grepl( "asnjournals", url ) ) { pdflink <- get.pdflink.asnjournals( url ) } # url is from ersjournals if( grepl( "ersjournals", url ) ) { pdflink <- get.pdflink.ersjournals( url ) } # url is from gacetamedicade if( grepl( "gacetamedicade", url ) ) { pdflink <- get.pdflink.gacetamedicade( url ) } # url is from tums.ac.ir if( grepl( "tums.ac.ir", url ) ) { pdflink <- get.pdflink.tums( url ) } # url is from nutrition.org if( grepl( "nutrition.org", url ) ) { pdflink <- get.pdflink.nutrition( url ) } # url is from aota.org if( grepl( "aota.org", url ) ) { pdflink <- get.pdflink.aota( url ) } # url is from physiology.org if( grepl( "physiology.org", url ) ) { pdflink <- get.pdflink.physiology( url ) } # url is from asahq.org if( grepl( "asahq.org", url ) ) { pdflink <- get.pdflink.asahq( url ) } # url is from upol.cz if( grepl( "upol.cz", url ) ) { pdflink <- get.pdflink.upol.cz( url ) } # url is from rcpsych if( grepl( "rcpsych.org", url ) ) { pdflink <- get.pdflink.rcpsych( url ) } # url is from sabinet.co.za if( grepl( "sabinet.co.za", url ) ) { pdflink <- get.pdflink.sabinet( url ) } # url is from quintessenz if( grepl( "quintessenz", url ) ) { pdflink <- get.pdflink.quintessenz( url ) } # url is from clinicalandtranslationalinvestigation if( grepl( "clinicalandtranslationalinvestigation", url ) ) { pdflink <- get.pdflink.clinicalandtranslationalinvestigation( url ) } # url is from jaoa.org if( grepl( "jaoa.org", url ) ) { pdflink <- get.pdflink.jaoa( url ) } # url is from snmjournals if( grepl( "snmjournals", url ) ) { pdflink <- get.pdflink.snmjournals( url ) } # url is from umsha.ac.ir if( grepl( "umsha" , url ) ) { pdflink <- get.pdflink.umsha( url ) } # url is from tokai if( grepl( "tokai" , url ) ) { pdflink <- get.pdflink.tokai( url ) } # url is from pamw.pl if( grepl( "pamw.pl", url ) ) { pdflink <- get.pdflink.pamw( url ) } # url is from aappublications if( grepl( "aappublications", url ) ) { pdflink <- get.pdflink.aappublications( url ) } # url is from publisherspanel if( grepl( "publisherspanel", url ) ) { pdflink <- get.pdflink.publisherspanel( url ) } # url is from rcseng if( grepl( "rcseng", url ) ) { pdflink <- get.pdflink.rcseng( url ) } # url is from rsna if( grepl( "rsna", url ) ) { pdflink <- get.pdflink.rsna( url ) } # url is from rcjournal if( grepl( "rcjournal", url ) ) { pdflink <- get.pdflink.rcjournal( url ) } # url is from revistachirurgia if( grepl( "revistachirurgia", url ) ) { pdflink <- get.pdflink.revistachirurgia( url ) } # url is from thejns if( grepl( "thejns", url ) ) { pdflink <- get.pdflink.thejns( url ) } # url is from alphamedpress if( grepl( "alphamedpress", url ) ) { pdflink <- get.pdflink.alphamedpress( url ) } # url is from aepress if( grepl( "aepress", url ) ) { pdflink <- get.pdflink.aepress( url ) } # url is from ajronline if( grepl( "ajronline", url ) ) { pdflink <- get.pdflink.ajronline( url ) } # url is from ajcn if( grepl( "ajcn", url ) ) { pdflink <- get.pdflink.ajcn( url ) } # url is from ams.ac.ir if( grepl( "ams.ac.ir", url ) ) { pdflink <- get.pdflink.ams.ac.ir( url ) } # url is from annfammed if( grepl( "annfammed", url ) ) { pdflink <- get.pdflink.annfammed( url ) } # url is from annsaudimed if( grepl( "annsaudimed", url ) ) { pdflink <- get.pdflink.annsaudimed( url ) } # url is from atsjournals if( grepl( "atsjournals", url ) ) { pdflink <- get.pdflink.atsjournals( url ) } # url is from birpublications if( grepl( "birpublications", url ) ) { pdflink <- get.pdflink.birpublications( url ) } # url is from bloodjournal if( grepl( "bloodjournal", url ) ) { pdflink <- get.pdflink.bloodjournal( url ) } # url is from cfp if( grepl( "cfp.org", url ) ) { pdflink <- get.pdflink.cfp( url ) } # url is from cmj.hr if( grepl( "cmj.hr", url ) ) { pdflink <- get.pdflink.cmj.hr( url ) } # url is from cmj.org if( grepl( "cmj.org", url ) ) { pdflink <- get.pdflink.cmj.org( url ) } # url is from danmedj if( grepl( "danmedj", url ) ) { pdflink <- get.pdflink.danmedj( url ) } # url is from dirjournal if( grepl( "dirjournal", url ) ) { pdflink <- get.pdflink.dirjournal( url ) } # url is from e-cmh if( grepl( "e-cmh", url ) ) { pdflink <- get.pdflink.ecmh( url ) } # url is from ectrx if( grepl( "ectrx", url ) ) { pdflink <- get.pdflink.ectrx( url ) } # url is from educationforhealth if( grepl( "educationforhealth", url ) ) { pdflink <- get.pdflink.educationforhealth( url ) } # url is from eje-online if( grepl( "eje-online", url ) ) { pdflink <- get.pdflink.ejeonline( url ) } # url is from europeanreview if( grepl( "europeanreview", url ) ) { pdflink <- get.pdflink.europeanreview( url ) } # url is from haematologica if( grepl( "haematologica", url ) ) { pdflink <- get.pdflink.haematologica( url ) } # url is from hdbp if( grepl( "hdbp", url ) ) { pdflink <- get.pdflink.hdbp( url ) } # url is from healio if( grepl( "healio", url ) ) { pdflink <- get.pdflink.healio( url ) } # url is from ijkd if( grepl( "ijkd", url ) ) { pdflink <- get.pdflink.ijkd( url ) } # url is from ijo.in if( grepl( "ijo.in", url ) ) { pdflink <- get.pdflink.ijo.in( url ) } # url is from impactjournals if( grepl( "impactjournals", url ) ) { pdflink <- get.pdflink.impactjournals( url ) } # url is from inaactamedica if( grepl( "inaactamedica", url ) ) { pdflink <- get.pdflink.inaactamedica( url ) } # url is from indianjcancer if( grepl( "indianjcancer", url ) ) { pdflink <- get.pdflink.indianjcancer( url ) } # url is from intbrazjurol if( grepl( "intbrazjurol", url ) ) { pdflink <- url } # url is from jiaci if( grepl( "jiaci", url ) ) { pdflink <- get.pdflink.jiaci( url ) } # url is from jmir if( grepl( "jmir", url ) ) { pdflink <- get.pdflink.jmir( url ) } # url is from jneurosci if( grepl( "jneurosci", url ) ) { pdflink <- get.pdflink.jneurosci( url ) } # url is from jospt if( grepl( "jospt", url ) ) { pdflink <- get.pdflink.jospt( url ) } # url is from mdpi.com if( grepl( "mdpi.com", url ) ) { pdflink <- get.pdflink.mdpi.com( url ) } # url is from painphysicianjournal if( grepl( "painphysicianjournal", url ) ) { pdflink <- get.pdflink.painphysicianjournal( url ) } # url is from sjweh if( grepl( "sjweh", url ) ) { pdflink <- get.pdflink.sjweh( url ) } # url is from tandfonline if( grepl( "tandfonline", url ) ) { pdflink <- get.pdflink.tandfonline( url ) } # url is from thieme-connect if( grepl( "thieme-connect", url ) ) { pdflink <- get.pdflink.thieme( url ) } # url is from wjgnet if( grepl( "wjgnet", url ) ) { pdflink <- get.pdflink.wjgnet( url ) } # url is from degruyter if( grepl( "degruyter", url ) ) { pdflink <- get.pdflink.degruyter( url ) } # url is from biomedcentral if( grepl( "biomedcentral", url ) ) { pdflink <- get.pdflink.biomedcentral( url ) } # url is from karger if( grepl( "karger", url ) ) { pdflink <- get.pdflink.karger( url ) } # url is from jkan.or.kr if( grepl( "jkan.or.kr", url ) ) { pdflink <- get.pdflink.jkan.or.kr( url ) } # url is from medicaljournals.se if( grepl( "medicaljournals.se", url ) ) { pdflink <- get.pdflink.medicaljournals.se( url ) } # url is from anesthesiology if( grepl( "anesthesiology", url ) ) { pdflink <- get.pdflink.anesthesiology( url ) } # url is from linkinghub if( grepl( "linkinghub", url ) ) { pdflink <- get.pdflink.linkinghub( url ) } # url contains 10.1038 (nature publishers) if( grepl( "doi.org/10.1038", url ) ) { pdflink <- get.pdflink.nature( url ) } # url conains 10.1089 (acm journal) if( grepl( "doi.org/10.1089", url ) ) { pdflink <- get.pdflink.acm( url ) } # url conains 10.1111 (acm journal) if( grepl( "doi.org/10.1111", url ) ) { pdflink <- get.pdflink.wiley( url ) } # url conains 10.1002 (acm journal) if( grepl( "doi.org/10.1002", url ) ) { pdflink <- get.pdflink.wiley( url ) } # url contains 10.1038 (springerlink) if( grepl( "doi.org/10.1007", url ) ) { pdflink <- get.pdflink.springerlink( url ) } # psychiatryonline if( grepl( "psychiatryonline", url ) ) { pdflink <- get.pdflink.psychiatryonline( url ) } ####################### # downoad pdf ####################### # write pdf to output if link is available if( ! is.na( pdflink ) ) { # download pdf (only if output is yet downloaded) download.file( url = pdflink, destfile = outpdf, mode = "wb", quiet = TRUE ) } } return( NA ) }, error=function(err) { #message(paste("URL does not seem to exist:", url)) #message("Here's the original error message:") message(paste( pmid, err, "\n" ) ) # Choose a return value in case of error return( paste( pmid, "URL does not seem to exist" ) ) }, warning=function(war) { #message(paste("URL caused a warning:", url)) #message("Here's the original warning message: ") message(paste( pmid, war, "\n" ) ) # Choose a return value in case of warning return( paste( pmid, "warning, test if downloaded" ) ) } #finally={ # NOTE: # Here goes everything that should be executed at the end, # regardless of success or error. # If you want more than one expression to be executed, then you # need to wrap them in curly brackets ({...}); otherwise you could # just have written 'finally=<expression>' #message(paste("Processed URL:", url)) #message("Some other message at the end") #} ) } ### # Get full text pdf link from psychiatryonline.org full text website. ## get.pdflink.psychiatryonline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".show-pdf" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from springerlink full text website. ## get.pdflink.springerlink <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from nature full text website. ## get.pdflink.nature <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- 'meta[name="citation_pdf_url"]' # save pdflink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) if( identical( pdflink, character(0) ) ) { css <- 'a[class="inline-block block-link pa10 pl0"]' intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) if( !identical( intermed1, character(0))) { pdflink <- paste0( "https://www.nature.com", intermed1[1] ) return( pdflink ) } } } ### # Get full text pdf link from acm full text website. ## get.pdflink.acm <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- '.pdfprint a' # save pdflink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) if( !identical( intermed, character(0) ) ) { pdflink <- paste0( "http://online.liebertpub.com", intermed ) return( pdflink ) } } ### # Get full text pdf link from wiley full text website. ## get.pdflink.wiley <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- 'meta[name="citation_pdf_url"]' pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from wiley full text website. ## get.pdflink.wileyreal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- 'meta[name="citation_pdf_url"]' pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } get.pdflink.sciencedirect <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css <- 'input[name="redirectURL"]' intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "value" ) intermed2 <- URLdecode(intermed1) page <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # xpath of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css = 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed3 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) pdflink <- paste0( "https://www.sciencedirect.com", intermed3 ) return( pdflink ) } ### # Get full text pdf link from springerlink full text website. ## get.pdflink.springerlink <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from medicaljournals.se full text website. ## get.pdflink.medicaljournals.se <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'li:nth-child(2) .btn-success2' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.medicaljournals.se", intermed1 ) return( pdflink ) } ### # Get full text pdf link from jkan.or.kr full text website. ## get.pdflink.jkan.or.kr <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '#portlet_content_Format li:nth-child(4) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.jkan.or.kr", intermed1 ) return( pdflink ) } ### # Get full text pdf link from karger full text website. ## get.pdflink.karger <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.btn-karger' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.karger.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from degruyter full text website. ## get.pdflink.degruyter <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf-link' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.degruyter.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from biomedcentral full text website. ## get.pdflink.biomedcentral <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from wjgnet full text website. ## get.pdflink.wjgnet <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.left-articlenav li:nth-child(3) a' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from thieme-connect full text website. ## get.pdflink.thieme <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '#articleTabs :nth-child(2) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- paste0( "http://www.thieme-connect.com", intermed1 ) page2 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- '#pdfLink' intermed3 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.thieme-connect.com", intermed3 ) return( pdflink ) } ### # Get full text pdf link from tandfonline full text website. ## get.pdflink.tandfonline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.show-pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.tandfonline.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from sjweh full text website. ## get.pdflink.sjweh <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf-download' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.sjweh.fi/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from painphysicianjournal full text website. ## get.pdflink.painphysicianjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.row .float-right' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.painphysicianjournal.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from mdpi.com full text website. ## get.pdflink.mdpi.com <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from jospt full text website. ## get.pdflink.jospt <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href^="/doi/pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.jospt.org", intermed1[1] ) return( pdflink ) } ### # Get full text pdf link from jneurosci full text website. ## get.pdflink.jneurosci <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from jmir.org full text website. ## get.pdflink.jmir.org <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_abstract_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href^="http://www.jmir.org/article/download"]' pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from jiaci full text website. ## get.pdflink.jiaci <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'li:nth-child(1) a:nth-child(2)' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.jiaci.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from indianjcancer full text website. ## get.pdflink.indianjcancer <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href$=".pdf"]' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.indianjcancer.com/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from inaactamedica full text website. ## get.pdflink.inaactamedica <- function( url ) { # get href to pdfLink pdflink <- url return( pdflink ) } ### # Get full text pdf link from impactjournals full text website. ## get.pdflink.impactjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from ijo.in full text website. ## get.pdflink.ijo.in <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1[1], handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href$=".pdf"]' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href") pdflink <- paste0( "http://www.ijo.in/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from ijkd full text website. ## get.pdflink.ijkd <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'frame' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "src" ) page2 <- xml2::read_html( curl( intermed1[1], handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href^="http://www.ijkd"]' pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href") return( pdflink ) } ### # Get full text pdf link from healio full text website. ## get.pdflink.healio <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from hdbp full text website. ## get.pdflink.hdbp <- function( url ) { # get href to pdfLink pdflink <- url return( pdflink ) } ### # Get full text pdf link from haematologica full text website. ## get.pdflink.haematologica <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from europeanreview full text website. ## get.pdflink.europeanreview <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.right' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- sub( " http", "http", intermed1 ) return( pdflink ) } ### # Get full text pdf link from eje-online full text website. ## get.pdflink.ejeonline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from educationforhealth full text website. ## get.pdflink.educationforhealth <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href$=".pdf"]' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.educationforhealth.net/", intermed2) return( pdflink ) } ### # Get full text pdf link from ectrx full text website. ## get.pdflink.ectrx <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'b a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.ectrx.org/forms/", intermed1) return( pdflink ) } ### # Get full text pdf link from e-cmh full text website. ## get.pdflink.ecmh <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="fulltext_pdf"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from dirjournal full text website. ## get.pdflink.dirjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href$=".pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.dirjournal.org", intermed1[2] ) return( pdflink ) } ### # Get full text pdf link from danmedj full text website. ## get.pdflink.danmedj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href$=".pdf"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from cmj.org full text website. ## get.pdflink.cmj.org <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'p a:nth-child(1)' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.cmj.org/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from cmj.hr full text website. ## get.pdflink.cmj.hr <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'frame[src^="http"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "src" ) return( pdflink ) } ### # Get full text pdf link from cfp full text website. ## get.pdflink.cfp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from canjsurg full text website. ## get.pdflink.canjsurg <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'p:nth-child(2) a:nth-child(2)' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from bloodjournal full text website. ## get.pdflink.bloodjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from birpublications full text website. ## get.pdflink.birpublications <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.show-pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.birpublications.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from atsjournals full text website. ## get.pdflink.atsjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.show-pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.atsjournals.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from annsaudimed full text website. ## get.pdflink.annsaudimed <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.desc' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from annfammed.org full text website. ## get.pdflink.annfammed <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.full-text-pdf-view-link a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( "\\+html", "", intermed1 ) pdflink <- paste0( "http://www.annfammed.org", intermed2 ) return( pdflink ) } ### # Get full text pdf link from ams.ac.ir full text website. ## get.pdflink.ams.ac.ir <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from ajronline full text website. ## get.pdflink.ajronline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '#refLinkList+ li .nowrap' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.ajronline.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from ajcn full text website. ## get.pdflink.ajcn <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.full-text-pdf-view-link a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( "\\+html", "", intermed1 ) pdflink <- paste0( "http://www.ajcn.org", intermed2 ) return( pdflink ) } ### # Get full text pdf link from aepress.sk full text website. ## get.pdflink.aepress <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from alphamedpress full text website. ## get.pdflink.alphamedpress <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from thejns full text website. ## get.pdflink.thejns <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.article-tools li:nth-child(2)' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://thejns.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from revistachirurgia full text website. ## get.pdflink.revistachirurgia <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from rcjournal full text website. ## get.pdflink.rcjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from rsna full text website. ## get.pdflink.rsna <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.tab-nav li:nth-child(6) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://pubs.rsna.org", intermed1) return( pdflink ) } ### # Get full text pdf link from rcseng.ac.uk full text website. ## get.pdflink.rcseng <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.tab-nav li:nth-child(4) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://publishing.rcseng.ac.uk", intermed1) return( pdflink ) } ### # Get full text pdf link from publisherspanel full text website. ## get.pdflink.publisherspanel <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from aappublications full text website. ## get.pdflink.aappublications <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from pamw.pl full text website. ## get.pdflink.pamw <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'div[class="field-item even"] a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- intermed1[1] return( pdflink ) } ### # Get full text pdf link from tokai.com full text website. ## get.pdflink.tokai <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from umsha.ac.ir full text website. ## get.pdflink.umsha <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from aspet full text website. ## get.pdflink.aspet <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from waocp full text website. ## get.pdflink.waocp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( "./", "", intermed1 ) pdflink <- paste0( "http://journal.waocp.org/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from snmjournals full text website. ## get.pdflink.snmjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from jaoa.org full text website. ## get.pdflink.jaoa <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from clinicalandtranslationalinvestigation full text website. ## get.pdflink.clinicalandtranslationalinvestigation <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href^="files/"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://clinicalandtranslationalinvestigation.com/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from quintessenz full text website. ## get.pdflink.quintessenz <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[class="tocbut"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".de" ) pdflink <- paste0( link1[[1]][1], ".de/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from sabinet.co.za full text website. ## get.pdflink.sabinet <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from rcpsych full text website. ## get.pdflink.rcpsych <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'link[type="application/pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from upol.cz full text website. ## get.pdflink.upol.cz <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from asahq.org full text website. ## get.pdflink.asahq <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#pdfLink" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from physiology full text website. ## get.pdflink.physiology <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'link[type="application/pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from aota.org full text website. ## get.pdflink.aota <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from nutrition.org full text website. ## get.pdflink.nutrition <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".full-text-pdf-view-link a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) intermed2 <- paste0( link1[[1]][1], ".org", intermed1 ) pdflink <- sub( "\\+html", "", intermed2) return( pdflink ) } ### # Get full text pdf link from tums.ac.ir full text website. ## get.pdflink.tums <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#sidebarRTArticleTools .file" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from arvojournals full text website. ## get.pdflink.arvojournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#pdfLink" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) pdflink <- paste0( "http://iovs.arvojournals.org/", pdflink ) return( pdflink ) } ### # Get full text pdf link from JAMA full text website. ## get.pdflink.jama <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#full-text-tab #pdf-link" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) link1 <- strsplit( url, ".com" ) pdflink <- paste0( link1[[1]][1], ".com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from plos full text website. ## get.pdflink.plos <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#downloadPdf" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://journals.plos.org", pdflink ) return( pdflink ) } ### # Get full text pdf link from bmj full text website. ## get.pdflink.bmj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "link[type='application/pdf']" # get href to pdfLink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.bmj.com", intermed ) return( pdflink ) } ### # Get full text pdf link from nejm full text website. ## get.pdflink.nejm <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "li a[href^='/doi/pdf']" # get href to pdfLink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.nejm.org", intermed ) return( pdflink ) } ### # Get full text pdf link from academic.oup full text website. ## get.pdflink.acoup <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".al-link" # get href to pdfLink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://academic.oup.com", intermed ) return( pdflink ) } ### # Get full text pdf link from annals full text website. ## get.pdflink.annals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#tagmasterPDF" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) pdflink <- paste0( "https://www.annals.org", pdflink ) return( pdflink ) } ### # Get full text pdf link from cambridge full text website. ## get.pdflink.cambridge <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".download-types li:nth-child(1) a" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.cambridge.org", pdflink[1] ) return( pdflink ) } ### # Get full text pdf link from OVID full text website. ## get.pdflink.ovid1 <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink # p1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) # p2 <- xml2::read_html( curl( p1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) p3 <- page %>% html_nodes( css = "script[type='text/javascript']") if ( grepl( "ovidFullTextUrlForButtons = ", p3[2]) ) { p4 <- p3[2] p5 <- gsub( ".*ovidFullTextUrlForButtons = \"|PubMed.*", "", p4 ) p6 <- paste0( p5, "PubMed" ) } page2 <- xml2::read_html( curl( p6, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ), options = "HUGE" ) pdflink <- page2 %>% html_nodes( css = "iframe" ) %>% html_attr( "src" ) #intermed2 <- paste0( "http://ovidsp.tx.ovid.com/", intermed1 ) #page3 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) #pdflink <- page3 %>% html_nodes( css = "iframe") %>% html_attr( "src" ) return( pdflink ) } ### # Get full text pdf link from OVID full text website. ## get.pdflink.ovid2 <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink p1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) if(identical(p1, character(0))){ p3 <- page %>% html_nodes( css = "script[type='text/javascript']") if ( grepl( "ovidFullTextUrlForButtons = ", p3[2]) ) { p4 <- p3[2] p5 <- gsub( ".*ovidFullTextUrlForButtons = \"|PubMed.*", "", p4 ) p6 <- paste0( p5, "PubMed" ) } page2 <- xml2::read_html( curl( p6, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ), options = "HUGE" ) pdflink <- page2 %>% html_nodes( css = "iframe" ) %>% html_attr( "src" ) }else{ p2 <- xml2::read_html( curl( p1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) p3 <- p2 %>% html_nodes( css = "script[type='text/javascript']") if ( grepl( "ovidFullTextUrlForButtons = ", p3[2]) ) { p4 <- p3[2] p5 <- gsub( ".*ovidFullTextUrlForButtons = \"|PubMed.*", "", p4 ) p6 <- paste0( p5, "PubMed" ) } page3 <- xml2::read_html( curl( p6, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ), options = "HUGE" ) intermed1 <- page3 %>% html_nodes( css = "#pdf" ) %>% html_attr( "href" ) intermed2 <- paste0( "http://ovidsp.tx.ovid.com/", intermed1 ) page4 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) pdflink <- page4 %>% html_nodes( css = "iframe") %>% html_attr( "src" ) } return( pdflink ) } ### # Get full text pdf link from EHP full text website. ## get.pdflink.ehp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf_icon' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://ehp.niehs.nih.gov", pdflink ) return( pdflink ) } ### # Get full text pdf link from Science Direct full text website. ## get.pdflink.sciencedirect <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # xpath of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css = ".pdf-download-btn-link" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- paste0( "http://www.sciencedirect.com", intermed1 ) page2 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 = 'meta[content^="0;URL"]' intermed3 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "content" ) pdflink <- strsplit(intermed3, "URL=")[[1]][2] return( pdflink ) } # for springerlink, retrieve the correct url get.pdflink.linkinghub <- function( url ) { # parse url further and get the specific node with the URL page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Mozilla/5.0" ) ) ) parsedfull <- htmlParse( page ) rootnode <- xmlRoot( parsedfull ) o <- getNodeSet( rootnode, "//input[@name='redirectURL']" )[[1]] # convert to character o2 <- capture.output(o) # extract URL from character string o3 <- data.frame( col = strsplit( o2, split = " " )[[1]] ) o4 <- separate( o3, col = "col", into = c("a", "b"), sep = "=", fill = "right" ) http <- o4[ o4$a == "value", "b" ] http <- gsub( "\"", "", http ) outurl <- URLdecode(http) # parse page page <- xml2::read_html( curl( outurl, handle = curl::new_handle( "useragent" = "Mozilla/5.0" ) ) ) # xpath of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css = 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed3 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) pdflink1 <- sub( "amp;", "", intermed3 ) page2 <- xml2::read_html( pdflink1 ) css2 = 'div a' pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from scielo full text website. ## get.pdflink.scielo <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "li:nth-child(2) a:nth-child(1)" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.scielo.br", pdflink[1] ) return( pdflink ) } ### # Get full text pdf link from hyper.ahajournals full text website. ## get.pdflink.ahaj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name=citation_pdf_url]' ".aha-icon-download" # get href to following page, then repeat the above steps pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) # page1 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css <- ".input-text-url input" # intermed2 <- page1 %>% html_nodes( css = css ) %>% html_attr( "value" ) # pdflink <- paste0( intermed2, ".full.pdf" ) return( pdflink ) } ### # Get full text pdf link from cmaj full text website. ## get.pdflink.cmaj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".full-text-pdf-view-link a" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.cmaj.ca", pdflink ) pdflink <- sub( "+html", "", pdflink) return( pdflink ) } ### # Get full text pdf link from doi.org (Wiley) full text website. ## get.pdflink.doiwiley <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- "#pdfDocument" pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "src" ) return( pdflink ) } ### # Get full text pdf link from doi.org (bjs) full text website. ## get.pdflink.doibjs <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".js-infopane-epdf" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- sub( "epdf", "pdf", intermed1) return( pdflink ) } ### # Get full text pdf link from asm.org full text website. ## get.pdflink.asm <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # get href to pdfLink pdflink <- sub( "long", "full.pdf", url) return( pdflink ) } ### # Get full text pdf link from ajp... full text website. ## get.pdflink.ajp <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from apsjournals full text website. ## get.pdflink.apsjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "li:nth-child(2) .nowrap" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://apsjournals.apsnet.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from arjournals full text website. ## get.pdflink.arjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "a[href^='/doi/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://arjournals.annualreviews.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from ascopubs full text website. ## get.pdflink.ascopubs <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".show-pdf" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- paste0( "http://ascopubs.org", intermed1 ) pdflink <- sub( "/pdf", "/pdfdirect", intermed2 ) return( pdflink ) } ### # Get full text pdf link from avmajournals full text website. ## get.pdflink.avma <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".article_link td:nth-child(2) .header4" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://avmajournals.avma.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from bjgp full text website. ## get.pdflink.bjgp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://bjgp.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from boneandjoint full text website. ## get.pdflink.boneandjoint <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://bjj.boneandjoint.org.uk", intermed1 ) return( pdflink ) } ### # Get full text pdf link from aacrjournals full text website. ## get.pdflink.aacrjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".last .highwire-article-nav-jumplink" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit(url, ".org") pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from diabetesjournals full text website. ## get.pdflink.diabetesjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit(url, ".org") pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from asnjournals full text website. ## get.pdflink.asnjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".primary a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( ".pdf\\+html", ".pdf", intermed1 ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from ersjournals full text website. ## get.pdflink.ersjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".com" ) pdflink <- paste0( link1[[1]][1], ".com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from gacetamedicade full text website. ## get.pdflink.gacetamedicade <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".col-sm-2 li:nth-child(1) a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://gacetamedicademexico.com/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from iiar full text website. ## get.pdflink.iiar <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".full-text-pdf-view-link a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) intermed2 <- paste0( link1[[1]][1], ".org", intermed1 ) pdflink <- sub( "\\+html", "", intermed2) return( pdflink ) } ### # Get full text pdf link from anesthesiology full text website. ## get.pdflink.anesthesiology <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#pdfLink" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ################################### # END FUNCTIONS ################################### # output directory to store full text pdf outdir <- 'pdfNEW/pdfs2' # read data of missing pdfs missings <- read.csv2( "missingsWithURL.csv", stringsAsFactors = F ) head(missings) names(missings) <- c( "pmid", "url" ) min <- 50000 max <- 60000 # set progress bar progbar <- txtProgressBar( min = min, max = max, style = 3 ) # for every pmid, add url for( i in min:max ) { setTxtProgressBar( progbar, i ) # add url pp <- data.frame( pmid = missings$pmid[ i ], url = missings$url[ i ], stringsAsFactors = FALSE ) get.pdf( pmid = pp$pmid, url = pp$url ) } # quit R session q( save = "no" )
/scripts/obtainingPDFS/7_url.to.pdfdownloadRE6.R
permissive
wmotte/frrp
R
false
false
83,839
r
################################################################################ # Aim: Download full text pdfs, given PMID and url # # Contact: Herm Lamberink, h.j.lamberink@umcutrecht.nl # Date: 2018-03-19 ############################# .libPaths( c(.libPaths(), "/mnt/data/live02/stress/hlamberink/RLibrary" ) ) library( 'xml2' ) # used by rvest package library( 'rvest' ) # web scraping package library( "curl" ) library( "XML" ) library( "pbapply" ) # power bar during sapply library( 'plyr' ); library( 'dplyr' ) library( 'tidyr' ) ################################### # FUNCTIONS ################################### ### # Get pdf from given pmid ## get.pdf <- function( pmid, url, outdr = outdir ) { # prevent the function from shutting down due to an error v <- tryCatch( { # output pdf outpdf <- paste0( outdr, '/', pmid, '.pdf' ) if( ! file.exists( outpdf ) ) { # set empty pdflink pdflink <- NA ####################### # pdflink per publisher ####################### # url is from arvojournals if( grepl( "arvojournals", url ) ) { # url to pdf pdflink <- get.pdflink.arvojournals( url ) } # url is from JAMA if( grepl( "jamanetwork.com", url ) ) { # url to pdf pdflink <- get.pdflink.jama( url ) } # url is from PLOS if( grepl( "dx.plos", url ) ) { # url to pdf pdflink <- get.pdflink.plos( url ) } # url is from EHP if( grepl( "/EHP", url ) ) { pdflink <- get.pdflink.ehp( url ) } # url is from doi/bjs if( grepl( "/bjs", url ) ) { pdflink <- get.pdflink.doibjs( url ) } # url is from Wiley, via doi.org #if( grepl( "dx.doi.org", url ) ) #{ # pdflink <- get.pdflink.doiwiley( url ) #} # url is from wiley if( grepl( "wiley.com", url ) ) { pdflink <- get.pdflink.wileyreal( url ) } # url is from bmj if( grepl( "bmj.com", url ) ) { pdflink <- get.pdflink.bmj( url ) } # url is from cmaj if( grepl( "cmaj.ca", url ) ) { pdflink <- get.pdflink.cmaj( url ) } # url is from nejm if( grepl( "nejm.org", url ) ) { pdflink <- get.pdflink.nejm( url ) } # url is from scielo if( grepl( "scielo.br", url ) ) { pdflink <- get.pdflink.scielo( url ) } # url is from academic.oup if( grepl( "academic.oup", url ) ) { pdflink <- get.pdflink.acoup( url ) } # url is from annals if( grepl( "annals", url ) ) { pdflink <- get.pdflink.annals( url ) } # url is from cambridge if( grepl( "cambridge.org", url ) ) { pdflink <- get.pdflink.cambridge( url ) } # url is from OVID if( grepl( "Insights.ovid", url ) ) { # url to pdf pdflink <- get.pdflink.ovid1( url ) if( length(pdflink) == 0 ) pdflink <- get.pdflink.ovid2( url ) } # url is from iiar if( grepl( "iiar", url ) ) { pdflink <- get.pdflink.iiar( url ) } # url is from ahajournals if( grepl( "ahajournals", url ) ) { pdflink <- get.pdflink.ahaj( url ) } # url is from sciencedirect if( grepl( "sciencedirect.com", url ) ) { pdflink <- get.pdflink.sciencedirect( url ) } # url is from asm if( grepl( "asm", url ) ) { pdflink <- get.pdflink.asm( url ) } # url is from ajp if( grepl( "ajp", url ) ) { pdflink <- get.pdflink.ajp } # url is from apsjournals if( grepl( "apsjournals", url ) ) { pdflink <- get.pdflink.apsjournals( url ) } # url is from arjournals if( grepl( "arjournals", url ) ) { pdflink <- get.pdflink.arjournals( url ) } # url is from ascopubs if( grepl( "ascopubs", url ) ) { pdflink <- get.pdflink.ascopubs( url ) } # url is from avmajournals if( grepl( "avmajournals", url ) ) { pdflink <- get.pdflink.avma( url ) } # url is from bjgp if( grepl( "bjgp", url ) ) { pdflink <- get.pdflink.bjgp( url ) } # url is from boneandjoint if( grepl( "boneandjoint", url ) ) { pdflink <- get.pdflink.boneandjoint( url ) } # url is from aacrjournals if( grepl( "aacrjournals", url ) ) { pdflink <- get.pdflink.aacrjournals( url ) } # url is from diabetesjournals if( grepl( "diabetesjournals", url ) ) { pdflink <- get.pdflink.diabetesjournals( url ) } # url is from asnjournals if( grepl( "asnjournals", url ) ) { pdflink <- get.pdflink.asnjournals( url ) } # url is from ersjournals if( grepl( "ersjournals", url ) ) { pdflink <- get.pdflink.ersjournals( url ) } # url is from gacetamedicade if( grepl( "gacetamedicade", url ) ) { pdflink <- get.pdflink.gacetamedicade( url ) } # url is from tums.ac.ir if( grepl( "tums.ac.ir", url ) ) { pdflink <- get.pdflink.tums( url ) } # url is from nutrition.org if( grepl( "nutrition.org", url ) ) { pdflink <- get.pdflink.nutrition( url ) } # url is from aota.org if( grepl( "aota.org", url ) ) { pdflink <- get.pdflink.aota( url ) } # url is from physiology.org if( grepl( "physiology.org", url ) ) { pdflink <- get.pdflink.physiology( url ) } # url is from asahq.org if( grepl( "asahq.org", url ) ) { pdflink <- get.pdflink.asahq( url ) } # url is from upol.cz if( grepl( "upol.cz", url ) ) { pdflink <- get.pdflink.upol.cz( url ) } # url is from rcpsych if( grepl( "rcpsych.org", url ) ) { pdflink <- get.pdflink.rcpsych( url ) } # url is from sabinet.co.za if( grepl( "sabinet.co.za", url ) ) { pdflink <- get.pdflink.sabinet( url ) } # url is from quintessenz if( grepl( "quintessenz", url ) ) { pdflink <- get.pdflink.quintessenz( url ) } # url is from clinicalandtranslationalinvestigation if( grepl( "clinicalandtranslationalinvestigation", url ) ) { pdflink <- get.pdflink.clinicalandtranslationalinvestigation( url ) } # url is from jaoa.org if( grepl( "jaoa.org", url ) ) { pdflink <- get.pdflink.jaoa( url ) } # url is from snmjournals if( grepl( "snmjournals", url ) ) { pdflink <- get.pdflink.snmjournals( url ) } # url is from umsha.ac.ir if( grepl( "umsha" , url ) ) { pdflink <- get.pdflink.umsha( url ) } # url is from tokai if( grepl( "tokai" , url ) ) { pdflink <- get.pdflink.tokai( url ) } # url is from pamw.pl if( grepl( "pamw.pl", url ) ) { pdflink <- get.pdflink.pamw( url ) } # url is from aappublications if( grepl( "aappublications", url ) ) { pdflink <- get.pdflink.aappublications( url ) } # url is from publisherspanel if( grepl( "publisherspanel", url ) ) { pdflink <- get.pdflink.publisherspanel( url ) } # url is from rcseng if( grepl( "rcseng", url ) ) { pdflink <- get.pdflink.rcseng( url ) } # url is from rsna if( grepl( "rsna", url ) ) { pdflink <- get.pdflink.rsna( url ) } # url is from rcjournal if( grepl( "rcjournal", url ) ) { pdflink <- get.pdflink.rcjournal( url ) } # url is from revistachirurgia if( grepl( "revistachirurgia", url ) ) { pdflink <- get.pdflink.revistachirurgia( url ) } # url is from thejns if( grepl( "thejns", url ) ) { pdflink <- get.pdflink.thejns( url ) } # url is from alphamedpress if( grepl( "alphamedpress", url ) ) { pdflink <- get.pdflink.alphamedpress( url ) } # url is from aepress if( grepl( "aepress", url ) ) { pdflink <- get.pdflink.aepress( url ) } # url is from ajronline if( grepl( "ajronline", url ) ) { pdflink <- get.pdflink.ajronline( url ) } # url is from ajcn if( grepl( "ajcn", url ) ) { pdflink <- get.pdflink.ajcn( url ) } # url is from ams.ac.ir if( grepl( "ams.ac.ir", url ) ) { pdflink <- get.pdflink.ams.ac.ir( url ) } # url is from annfammed if( grepl( "annfammed", url ) ) { pdflink <- get.pdflink.annfammed( url ) } # url is from annsaudimed if( grepl( "annsaudimed", url ) ) { pdflink <- get.pdflink.annsaudimed( url ) } # url is from atsjournals if( grepl( "atsjournals", url ) ) { pdflink <- get.pdflink.atsjournals( url ) } # url is from birpublications if( grepl( "birpublications", url ) ) { pdflink <- get.pdflink.birpublications( url ) } # url is from bloodjournal if( grepl( "bloodjournal", url ) ) { pdflink <- get.pdflink.bloodjournal( url ) } # url is from cfp if( grepl( "cfp.org", url ) ) { pdflink <- get.pdflink.cfp( url ) } # url is from cmj.hr if( grepl( "cmj.hr", url ) ) { pdflink <- get.pdflink.cmj.hr( url ) } # url is from cmj.org if( grepl( "cmj.org", url ) ) { pdflink <- get.pdflink.cmj.org( url ) } # url is from danmedj if( grepl( "danmedj", url ) ) { pdflink <- get.pdflink.danmedj( url ) } # url is from dirjournal if( grepl( "dirjournal", url ) ) { pdflink <- get.pdflink.dirjournal( url ) } # url is from e-cmh if( grepl( "e-cmh", url ) ) { pdflink <- get.pdflink.ecmh( url ) } # url is from ectrx if( grepl( "ectrx", url ) ) { pdflink <- get.pdflink.ectrx( url ) } # url is from educationforhealth if( grepl( "educationforhealth", url ) ) { pdflink <- get.pdflink.educationforhealth( url ) } # url is from eje-online if( grepl( "eje-online", url ) ) { pdflink <- get.pdflink.ejeonline( url ) } # url is from europeanreview if( grepl( "europeanreview", url ) ) { pdflink <- get.pdflink.europeanreview( url ) } # url is from haematologica if( grepl( "haematologica", url ) ) { pdflink <- get.pdflink.haematologica( url ) } # url is from hdbp if( grepl( "hdbp", url ) ) { pdflink <- get.pdflink.hdbp( url ) } # url is from healio if( grepl( "healio", url ) ) { pdflink <- get.pdflink.healio( url ) } # url is from ijkd if( grepl( "ijkd", url ) ) { pdflink <- get.pdflink.ijkd( url ) } # url is from ijo.in if( grepl( "ijo.in", url ) ) { pdflink <- get.pdflink.ijo.in( url ) } # url is from impactjournals if( grepl( "impactjournals", url ) ) { pdflink <- get.pdflink.impactjournals( url ) } # url is from inaactamedica if( grepl( "inaactamedica", url ) ) { pdflink <- get.pdflink.inaactamedica( url ) } # url is from indianjcancer if( grepl( "indianjcancer", url ) ) { pdflink <- get.pdflink.indianjcancer( url ) } # url is from intbrazjurol if( grepl( "intbrazjurol", url ) ) { pdflink <- url } # url is from jiaci if( grepl( "jiaci", url ) ) { pdflink <- get.pdflink.jiaci( url ) } # url is from jmir if( grepl( "jmir", url ) ) { pdflink <- get.pdflink.jmir( url ) } # url is from jneurosci if( grepl( "jneurosci", url ) ) { pdflink <- get.pdflink.jneurosci( url ) } # url is from jospt if( grepl( "jospt", url ) ) { pdflink <- get.pdflink.jospt( url ) } # url is from mdpi.com if( grepl( "mdpi.com", url ) ) { pdflink <- get.pdflink.mdpi.com( url ) } # url is from painphysicianjournal if( grepl( "painphysicianjournal", url ) ) { pdflink <- get.pdflink.painphysicianjournal( url ) } # url is from sjweh if( grepl( "sjweh", url ) ) { pdflink <- get.pdflink.sjweh( url ) } # url is from tandfonline if( grepl( "tandfonline", url ) ) { pdflink <- get.pdflink.tandfonline( url ) } # url is from thieme-connect if( grepl( "thieme-connect", url ) ) { pdflink <- get.pdflink.thieme( url ) } # url is from wjgnet if( grepl( "wjgnet", url ) ) { pdflink <- get.pdflink.wjgnet( url ) } # url is from degruyter if( grepl( "degruyter", url ) ) { pdflink <- get.pdflink.degruyter( url ) } # url is from biomedcentral if( grepl( "biomedcentral", url ) ) { pdflink <- get.pdflink.biomedcentral( url ) } # url is from karger if( grepl( "karger", url ) ) { pdflink <- get.pdflink.karger( url ) } # url is from jkan.or.kr if( grepl( "jkan.or.kr", url ) ) { pdflink <- get.pdflink.jkan.or.kr( url ) } # url is from medicaljournals.se if( grepl( "medicaljournals.se", url ) ) { pdflink <- get.pdflink.medicaljournals.se( url ) } # url is from anesthesiology if( grepl( "anesthesiology", url ) ) { pdflink <- get.pdflink.anesthesiology( url ) } # url is from linkinghub if( grepl( "linkinghub", url ) ) { pdflink <- get.pdflink.linkinghub( url ) } # url contains 10.1038 (nature publishers) if( grepl( "doi.org/10.1038", url ) ) { pdflink <- get.pdflink.nature( url ) } # url conains 10.1089 (acm journal) if( grepl( "doi.org/10.1089", url ) ) { pdflink <- get.pdflink.acm( url ) } # url conains 10.1111 (acm journal) if( grepl( "doi.org/10.1111", url ) ) { pdflink <- get.pdflink.wiley( url ) } # url conains 10.1002 (acm journal) if( grepl( "doi.org/10.1002", url ) ) { pdflink <- get.pdflink.wiley( url ) } # url contains 10.1038 (springerlink) if( grepl( "doi.org/10.1007", url ) ) { pdflink <- get.pdflink.springerlink( url ) } # psychiatryonline if( grepl( "psychiatryonline", url ) ) { pdflink <- get.pdflink.psychiatryonline( url ) } ####################### # downoad pdf ####################### # write pdf to output if link is available if( ! is.na( pdflink ) ) { # download pdf (only if output is yet downloaded) download.file( url = pdflink, destfile = outpdf, mode = "wb", quiet = TRUE ) } } return( NA ) }, error=function(err) { #message(paste("URL does not seem to exist:", url)) #message("Here's the original error message:") message(paste( pmid, err, "\n" ) ) # Choose a return value in case of error return( paste( pmid, "URL does not seem to exist" ) ) }, warning=function(war) { #message(paste("URL caused a warning:", url)) #message("Here's the original warning message: ") message(paste( pmid, war, "\n" ) ) # Choose a return value in case of warning return( paste( pmid, "warning, test if downloaded" ) ) } #finally={ # NOTE: # Here goes everything that should be executed at the end, # regardless of success or error. # If you want more than one expression to be executed, then you # need to wrap them in curly brackets ({...}); otherwise you could # just have written 'finally=<expression>' #message(paste("Processed URL:", url)) #message("Some other message at the end") #} ) } ### # Get full text pdf link from psychiatryonline.org full text website. ## get.pdflink.psychiatryonline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".show-pdf" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from springerlink full text website. ## get.pdflink.springerlink <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from nature full text website. ## get.pdflink.nature <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- 'meta[name="citation_pdf_url"]' # save pdflink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) if( identical( pdflink, character(0) ) ) { css <- 'a[class="inline-block block-link pa10 pl0"]' intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) if( !identical( intermed1, character(0))) { pdflink <- paste0( "https://www.nature.com", intermed1[1] ) return( pdflink ) } } } ### # Get full text pdf link from acm full text website. ## get.pdflink.acm <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- '.pdfprint a' # save pdflink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) if( !identical( intermed, character(0) ) ) { pdflink <- paste0( "http://online.liebertpub.com", intermed ) return( pdflink ) } } ### # Get full text pdf link from wiley full text website. ## get.pdflink.wiley <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- 'meta[name="citation_pdf_url"]' pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from wiley full text website. ## get.pdflink.wileyreal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf css <- 'meta[name="citation_pdf_url"]' pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } get.pdflink.sciencedirect <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css <- 'input[name="redirectURL"]' intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "value" ) intermed2 <- URLdecode(intermed1) page <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # xpath of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css = 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed3 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) pdflink <- paste0( "https://www.sciencedirect.com", intermed3 ) return( pdflink ) } ### # Get full text pdf link from springerlink full text website. ## get.pdflink.springerlink <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from medicaljournals.se full text website. ## get.pdflink.medicaljournals.se <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'li:nth-child(2) .btn-success2' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.medicaljournals.se", intermed1 ) return( pdflink ) } ### # Get full text pdf link from jkan.or.kr full text website. ## get.pdflink.jkan.or.kr <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '#portlet_content_Format li:nth-child(4) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.jkan.or.kr", intermed1 ) return( pdflink ) } ### # Get full text pdf link from karger full text website. ## get.pdflink.karger <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.btn-karger' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.karger.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from degruyter full text website. ## get.pdflink.degruyter <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf-link' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.degruyter.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from biomedcentral full text website. ## get.pdflink.biomedcentral <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from wjgnet full text website. ## get.pdflink.wjgnet <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.left-articlenav li:nth-child(3) a' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from thieme-connect full text website. ## get.pdflink.thieme <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '#articleTabs :nth-child(2) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- paste0( "http://www.thieme-connect.com", intermed1 ) page2 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- '#pdfLink' intermed3 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.thieme-connect.com", intermed3 ) return( pdflink ) } ### # Get full text pdf link from tandfonline full text website. ## get.pdflink.tandfonline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.show-pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.tandfonline.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from sjweh full text website. ## get.pdflink.sjweh <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf-download' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.sjweh.fi/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from painphysicianjournal full text website. ## get.pdflink.painphysicianjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.row .float-right' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.painphysicianjournal.com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from mdpi.com full text website. ## get.pdflink.mdpi.com <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from jospt full text website. ## get.pdflink.jospt <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href^="/doi/pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.jospt.org", intermed1[1] ) return( pdflink ) } ### # Get full text pdf link from jneurosci full text website. ## get.pdflink.jneurosci <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from jmir.org full text website. ## get.pdflink.jmir.org <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_abstract_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href^="http://www.jmir.org/article/download"]' pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from jiaci full text website. ## get.pdflink.jiaci <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'li:nth-child(1) a:nth-child(2)' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.jiaci.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from indianjcancer full text website. ## get.pdflink.indianjcancer <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href$=".pdf"]' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.indianjcancer.com/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from inaactamedica full text website. ## get.pdflink.inaactamedica <- function( url ) { # get href to pdfLink pdflink <- url return( pdflink ) } ### # Get full text pdf link from impactjournals full text website. ## get.pdflink.impactjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from ijo.in full text website. ## get.pdflink.ijo.in <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1[1], handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href$=".pdf"]' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href") pdflink <- paste0( "http://www.ijo.in/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from ijkd full text website. ## get.pdflink.ijkd <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'frame' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "src" ) page2 <- xml2::read_html( curl( intermed1[1], handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href^="http://www.ijkd"]' pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href") return( pdflink ) } ### # Get full text pdf link from healio full text website. ## get.pdflink.healio <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from hdbp full text website. ## get.pdflink.hdbp <- function( url ) { # get href to pdfLink pdflink <- url return( pdflink ) } ### # Get full text pdf link from haematologica full text website. ## get.pdflink.haematologica <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from europeanreview full text website. ## get.pdflink.europeanreview <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.right' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- sub( " http", "http", intermed1 ) return( pdflink ) } ### # Get full text pdf link from eje-online full text website. ## get.pdflink.ejeonline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from educationforhealth full text website. ## get.pdflink.educationforhealth <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'a[href$=".pdf"]' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.educationforhealth.net/", intermed2) return( pdflink ) } ### # Get full text pdf link from ectrx full text website. ## get.pdflink.ectrx <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'b a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.ectrx.org/forms/", intermed1) return( pdflink ) } ### # Get full text pdf link from e-cmh full text website. ## get.pdflink.ecmh <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="fulltext_pdf"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from dirjournal full text website. ## get.pdflink.dirjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href$=".pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.dirjournal.org", intermed1[2] ) return( pdflink ) } ### # Get full text pdf link from danmedj full text website. ## get.pdflink.danmedj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href$=".pdf"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from cmj.org full text website. ## get.pdflink.cmj.org <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- 'p a:nth-child(1)' intermed2 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.cmj.org/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from cmj.hr full text website. ## get.pdflink.cmj.hr <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'frame[src^="http"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "src" ) return( pdflink ) } ### # Get full text pdf link from cfp full text website. ## get.pdflink.cfp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from canjsurg full text website. ## get.pdflink.canjsurg <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'p:nth-child(2) a:nth-child(2)' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from bloodjournal full text website. ## get.pdflink.bloodjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from birpublications full text website. ## get.pdflink.birpublications <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.show-pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.birpublications.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from atsjournals full text website. ## get.pdflink.atsjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.show-pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.atsjournals.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from annsaudimed full text website. ## get.pdflink.annsaudimed <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.desc' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from annfammed.org full text website. ## get.pdflink.annfammed <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.full-text-pdf-view-link a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( "\\+html", "", intermed1 ) pdflink <- paste0( "http://www.annfammed.org", intermed2 ) return( pdflink ) } ### # Get full text pdf link from ams.ac.ir full text website. ## get.pdflink.ams.ac.ir <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from ajronline full text website. ## get.pdflink.ajronline <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '#refLinkList+ li .nowrap' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.ajronline.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from ajcn full text website. ## get.pdflink.ajcn <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.full-text-pdf-view-link a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( "\\+html", "", intermed1 ) pdflink <- paste0( "http://www.ajcn.org", intermed2 ) return( pdflink ) } ### # Get full text pdf link from aepress.sk full text website. ## get.pdflink.aepress <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from alphamedpress full text website. ## get.pdflink.alphamedpress <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from thejns full text website. ## get.pdflink.thejns <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.article-tools li:nth-child(2)' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://thejns.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from revistachirurgia full text website. ## get.pdflink.revistachirurgia <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from rcjournal full text website. ## get.pdflink.rcjournal <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from rsna full text website. ## get.pdflink.rsna <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.tab-nav li:nth-child(6) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://pubs.rsna.org", intermed1) return( pdflink ) } ### # Get full text pdf link from rcseng.ac.uk full text website. ## get.pdflink.rcseng <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.tab-nav li:nth-child(4) a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://publishing.rcseng.ac.uk", intermed1) return( pdflink ) } ### # Get full text pdf link from publisherspanel full text website. ## get.pdflink.publisherspanel <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from aappublications full text website. ## get.pdflink.aappublications <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from pamw.pl full text website. ## get.pdflink.pamw <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'div[class="field-item even"] a' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- intermed1[1] return( pdflink ) } ### # Get full text pdf link from tokai.com full text website. ## get.pdflink.tokai <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from umsha.ac.ir full text website. ## get.pdflink.umsha <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from aspet full text website. ## get.pdflink.aspet <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from waocp full text website. ## get.pdflink.waocp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( "./", "", intermed1 ) pdflink <- paste0( "http://journal.waocp.org/", intermed2 ) return( pdflink ) } ### # Get full text pdf link from snmjournals full text website. ## get.pdflink.snmjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from jaoa.org full text website. ## get.pdflink.jaoa <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from clinicalandtranslationalinvestigation full text website. ## get.pdflink.clinicalandtranslationalinvestigation <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[href^="files/"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://clinicalandtranslationalinvestigation.com/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from quintessenz full text website. ## get.pdflink.quintessenz <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'a[class="tocbut"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".de" ) pdflink <- paste0( link1[[1]][1], ".de/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from sabinet.co.za full text website. ## get.pdflink.sabinet <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from rcpsych full text website. ## get.pdflink.rcpsych <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'link[type="application/pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from upol.cz full text website. ## get.pdflink.upol.cz <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from asahq.org full text website. ## get.pdflink.asahq <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#pdfLink" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from physiology full text website. ## get.pdflink.physiology <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'link[type="application/pdf"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from aota.org full text website. ## get.pdflink.aota <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) return( pdflink ) } ### # Get full text pdf link from nutrition.org full text website. ## get.pdflink.nutrition <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".full-text-pdf-view-link a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) intermed2 <- paste0( link1[[1]][1], ".org", intermed1 ) pdflink <- sub( "\\+html", "", intermed2) return( pdflink ) } ### # Get full text pdf link from tums.ac.ir full text website. ## get.pdflink.tums <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#sidebarRTArticleTools .file" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from arvojournals full text website. ## get.pdflink.arvojournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#pdfLink" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) pdflink <- paste0( "http://iovs.arvojournals.org/", pdflink ) return( pdflink ) } ### # Get full text pdf link from JAMA full text website. ## get.pdflink.jama <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#full-text-tab #pdf-link" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) link1 <- strsplit( url, ".com" ) pdflink <- paste0( link1[[1]][1], ".com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from plos full text website. ## get.pdflink.plos <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#downloadPdf" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://journals.plos.org", pdflink ) return( pdflink ) } ### # Get full text pdf link from bmj full text website. ## get.pdflink.bmj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "link[type='application/pdf']" # get href to pdfLink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.bmj.com", intermed ) return( pdflink ) } ### # Get full text pdf link from nejm full text website. ## get.pdflink.nejm <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "li a[href^='/doi/pdf']" # get href to pdfLink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.nejm.org", intermed ) return( pdflink ) } ### # Get full text pdf link from academic.oup full text website. ## get.pdflink.acoup <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".al-link" # get href to pdfLink intermed <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://academic.oup.com", intermed ) return( pdflink ) } ### # Get full text pdf link from annals full text website. ## get.pdflink.annals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#tagmasterPDF" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) pdflink <- paste0( "https://www.annals.org", pdflink ) return( pdflink ) } ### # Get full text pdf link from cambridge full text website. ## get.pdflink.cambridge <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".download-types li:nth-child(1) a" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://www.cambridge.org", pdflink[1] ) return( pdflink ) } ### # Get full text pdf link from OVID full text website. ## get.pdflink.ovid1 <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink # p1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) # p2 <- xml2::read_html( curl( p1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) p3 <- page %>% html_nodes( css = "script[type='text/javascript']") if ( grepl( "ovidFullTextUrlForButtons = ", p3[2]) ) { p4 <- p3[2] p5 <- gsub( ".*ovidFullTextUrlForButtons = \"|PubMed.*", "", p4 ) p6 <- paste0( p5, "PubMed" ) } page2 <- xml2::read_html( curl( p6, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ), options = "HUGE" ) pdflink <- page2 %>% html_nodes( css = "iframe" ) %>% html_attr( "src" ) #intermed2 <- paste0( "http://ovidsp.tx.ovid.com/", intermed1 ) #page3 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) #pdflink <- page3 %>% html_nodes( css = "iframe") %>% html_attr( "src" ) return( pdflink ) } ### # Get full text pdf link from OVID full text website. ## get.pdflink.ovid2 <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink p1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) if(identical(p1, character(0))){ p3 <- page %>% html_nodes( css = "script[type='text/javascript']") if ( grepl( "ovidFullTextUrlForButtons = ", p3[2]) ) { p4 <- p3[2] p5 <- gsub( ".*ovidFullTextUrlForButtons = \"|PubMed.*", "", p4 ) p6 <- paste0( p5, "PubMed" ) } page2 <- xml2::read_html( curl( p6, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ), options = "HUGE" ) pdflink <- page2 %>% html_nodes( css = "iframe" ) %>% html_attr( "src" ) }else{ p2 <- xml2::read_html( curl( p1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) p3 <- p2 %>% html_nodes( css = "script[type='text/javascript']") if ( grepl( "ovidFullTextUrlForButtons = ", p3[2]) ) { p4 <- p3[2] p5 <- gsub( ".*ovidFullTextUrlForButtons = \"|PubMed.*", "", p4 ) p6 <- paste0( p5, "PubMed" ) } page3 <- xml2::read_html( curl( p6, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ), options = "HUGE" ) intermed1 <- page3 %>% html_nodes( css = "#pdf" ) %>% html_attr( "href" ) intermed2 <- paste0( "http://ovidsp.tx.ovid.com/", intermed1 ) page4 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) pdflink <- page4 %>% html_nodes( css = "iframe") %>% html_attr( "src" ) } return( pdflink ) } ### # Get full text pdf link from EHP full text website. ## get.pdflink.ehp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- '.pdf_icon' # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "https://ehp.niehs.nih.gov", pdflink ) return( pdflink ) } ### # Get full text pdf link from Science Direct full text website. ## get.pdflink.sciencedirect <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # xpath of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css = ".pdf-download-btn-link" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- paste0( "http://www.sciencedirect.com", intermed1 ) page2 <- xml2::read_html( curl( intermed2, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 = 'meta[content^="0;URL"]' intermed3 <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "content" ) pdflink <- strsplit(intermed3, "URL=")[[1]][2] return( pdflink ) } # for springerlink, retrieve the correct url get.pdflink.linkinghub <- function( url ) { # parse url further and get the specific node with the URL page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Mozilla/5.0" ) ) ) parsedfull <- htmlParse( page ) rootnode <- xmlRoot( parsedfull ) o <- getNodeSet( rootnode, "//input[@name='redirectURL']" )[[1]] # convert to character o2 <- capture.output(o) # extract URL from character string o3 <- data.frame( col = strsplit( o2, split = " " )[[1]] ) o4 <- separate( o3, col = "col", into = c("a", "b"), sep = "=", fill = "right" ) http <- o4[ o4$a == "value", "b" ] http <- gsub( "\"", "", http ) outurl <- URLdecode(http) # parse page page <- xml2::read_html( curl( outurl, handle = curl::new_handle( "useragent" = "Mozilla/5.0" ) ) ) # xpath of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css = 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed3 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) pdflink1 <- sub( "amp;", "", intermed3 ) page2 <- xml2::read_html( pdflink1 ) css2 = 'div a' pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "href" ) return( pdflink ) } ### # Get full text pdf link from scielo full text website. ## get.pdflink.scielo <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "li:nth-child(2) a:nth-child(1)" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.scielo.br", pdflink[1] ) return( pdflink ) } ### # Get full text pdf link from hyper.ahajournals full text website. ## get.pdflink.ahaj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- 'meta[name=citation_pdf_url]' ".aha-icon-download" # get href to following page, then repeat the above steps pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) # page1 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css <- ".input-text-url input" # intermed2 <- page1 %>% html_nodes( css = css ) %>% html_attr( "value" ) # pdflink <- paste0( intermed2, ".full.pdf" ) return( pdflink ) } ### # Get full text pdf link from cmaj full text website. ## get.pdflink.cmaj <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".full-text-pdf-view-link a" # get href to pdfLink pdflink <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://www.cmaj.ca", pdflink ) pdflink <- sub( "+html", "", pdflink) return( pdflink ) } ### # Get full text pdf link from doi.org (Wiley) full text website. ## get.pdflink.doiwiley <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- 'meta[name="citation_pdf_url"]' # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "content" ) page2 <- xml2::read_html( curl( intermed1, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) css2 <- "#pdfDocument" pdflink <- page2 %>% html_nodes( css = css2 ) %>% html_attr( "src" ) return( pdflink ) } ### # Get full text pdf link from doi.org (bjs) full text website. ## get.pdflink.doibjs <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".js-infopane-epdf" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- sub( "epdf", "pdf", intermed1) return( pdflink ) } ### # Get full text pdf link from asm.org full text website. ## get.pdflink.asm <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # get href to pdfLink pdflink <- sub( "long", "full.pdf", url) return( pdflink ) } ### # Get full text pdf link from ajp... full text website. ## get.pdflink.ajp <- function( url ) { pdflink <- url return( pdflink ) } ### # Get full text pdf link from apsjournals full text website. ## get.pdflink.apsjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "li:nth-child(2) .nowrap" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://apsjournals.apsnet.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from arjournals full text website. ## get.pdflink.arjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "a[href^='/doi/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://arjournals.annualreviews.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from ascopubs full text website. ## get.pdflink.ascopubs <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".show-pdf" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- paste0( "http://ascopubs.org", intermed1 ) pdflink <- sub( "/pdf", "/pdfdirect", intermed2 ) return( pdflink ) } ### # Get full text pdf link from avmajournals full text website. ## get.pdflink.avma <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".article_link td:nth-child(2) .header4" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://avmajournals.avma.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from bjgp full text website. ## get.pdflink.bjgp <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://bjgp.org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from boneandjoint full text website. ## get.pdflink.boneandjoint <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://bjj.boneandjoint.org.uk", intermed1 ) return( pdflink ) } ### # Get full text pdf link from aacrjournals full text website. ## get.pdflink.aacrjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".last .highwire-article-nav-jumplink" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit(url, ".org") pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from diabetesjournals full text website. ## get.pdflink.diabetesjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit(url, ".org") pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from asnjournals full text website. ## get.pdflink.asnjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".primary a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) intermed2 <- sub( ".pdf\\+html", ".pdf", intermed1 ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ### # Get full text pdf link from ersjournals full text website. ## get.pdflink.ersjournals <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- "link[type='application/pdf']" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".com" ) pdflink <- paste0( link1[[1]][1], ".com", intermed1 ) return( pdflink ) } ### # Get full text pdf link from gacetamedicade full text website. ## get.pdflink.gacetamedicade <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] # only modification is "\" before the double quotes. css <- ".col-sm-2 li:nth-child(1) a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) pdflink <- paste0( "http://gacetamedicademexico.com/", intermed1 ) return( pdflink ) } ### # Get full text pdf link from iiar full text website. ## get.pdflink.iiar <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- ".full-text-pdf-view-link a" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "href" ) link1 <- strsplit( url, ".org" ) intermed2 <- paste0( link1[[1]][1], ".org", intermed1 ) pdflink <- sub( "\\+html", "", intermed2) return( pdflink ) } ### # Get full text pdf link from anesthesiology full text website. ## get.pdflink.anesthesiology <- function( url ) { # parse page page <- xml2::read_html( curl( url, handle = curl::new_handle( "useragent" = "Chrome/55.0" ) ) ) # css of pdf element selected with Selector Gadget Google Chrome plugin [http://selectorgadget.com/] css <- "#pdfLink" # get href to pdfLink intermed1 <- page %>% html_nodes( css = css ) %>% html_attr( "data-article-url" ) link1 <- strsplit( url, ".org" ) pdflink <- paste0( link1[[1]][1], ".org", intermed1 ) return( pdflink ) } ################################### # END FUNCTIONS ################################### # output directory to store full text pdf outdir <- 'pdfNEW/pdfs2' # read data of missing pdfs missings <- read.csv2( "missingsWithURL.csv", stringsAsFactors = F ) head(missings) names(missings) <- c( "pmid", "url" ) min <- 50000 max <- 60000 # set progress bar progbar <- txtProgressBar( min = min, max = max, style = 3 ) # for every pmid, add url for( i in min:max ) { setTxtProgressBar( progbar, i ) # add url pp <- data.frame( pmid = missings$pmid[ i ], url = missings$url[ i ], stringsAsFactors = FALSE ) get.pdf( pmid = pp$pmid, url = pp$url ) } # quit R session q( save = "no" )
### Jinliang Yang ### 4/7/2015 ### transform GBS format to BED+ format with haplotype call seeds <- read.delim("data/seeds_09.02.2015_22.38.10.txt") #[1] 22022 51 idtab <- read.csv("data/SeeD_SID_to_GID.csv") length(unique(idtab$GID)) #4020 length(unique(idtab$SampleID)) #4710 # Note: 690 accessions were genotyped multiple times subseed <- subset(seeds, general_identifier %in% idtab$GID) ### 3493 unique accessions with collection information! out <- merge(idtab, seeds, by.x="GID", by.y="general_identifier") ##### transform GBS to BED+ format source("lib/gbs2bed.R") for(i in 5:9){ gbs2bed(gbsfile= paste0("/group/jrigrp4/SeeData/All_SeeD_2.7_chr", i, "_no_filter.unimputed.hmp.txt"), outfile= paste0("/group/jrigrp4/SeeData/chr", i, "_filetered_unimputed.hmp")) } ##### run the following python code to get the SNP frq and missing rate ### run in terminal: snpfrq -p /group/jrigrp4/SeeData/ -i chr10_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr10_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr9_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr9_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr8_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr8_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr7_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr7_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr6_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr6_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr5_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr5_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr4_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr4_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr3_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr3_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr2_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr2_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr1_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr1_filetered_unimputed.frq
/profiling/1.SeeD_GBS/1.A.1_GBS_bed.R
no_license
yangjl/SeeDs
R
false
false
2,160
r
### Jinliang Yang ### 4/7/2015 ### transform GBS format to BED+ format with haplotype call seeds <- read.delim("data/seeds_09.02.2015_22.38.10.txt") #[1] 22022 51 idtab <- read.csv("data/SeeD_SID_to_GID.csv") length(unique(idtab$GID)) #4020 length(unique(idtab$SampleID)) #4710 # Note: 690 accessions were genotyped multiple times subseed <- subset(seeds, general_identifier %in% idtab$GID) ### 3493 unique accessions with collection information! out <- merge(idtab, seeds, by.x="GID", by.y="general_identifier") ##### transform GBS to BED+ format source("lib/gbs2bed.R") for(i in 5:9){ gbs2bed(gbsfile= paste0("/group/jrigrp4/SeeData/All_SeeD_2.7_chr", i, "_no_filter.unimputed.hmp.txt"), outfile= paste0("/group/jrigrp4/SeeData/chr", i, "_filetered_unimputed.hmp")) } ##### run the following python code to get the SNP frq and missing rate ### run in terminal: snpfrq -p /group/jrigrp4/SeeData/ -i chr10_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr10_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr9_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr9_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr8_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr8_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr7_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr7_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr6_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr6_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr5_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr5_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr4_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr4_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr3_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr3_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr2_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr2_filetered_unimputed.frq snpfrq -p /group/jrigrp4/SeeData/ -i chr1_filetered_unimputed.hmp -s 6 -m "0N" -a 0 -b 1 -c 2 -o chr1_filetered_unimputed.frq
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/input_tools.R \name{input_tools_buildsimplist} \alias{input_tools_buildsimplist} \title{Construct a list of SimP for given runs} \usage{ input_tools_buildsimplist(runs, randomseed = 0) } \arguments{ \item{runs}{first part of runid} \item{randomseed}{second part of runid} } \value{ list of SimPs } \description{ Construct a list of SimP for given runs } \author{ Sascha Holzhauer }
/man/input_tools_buildsimplist.Rd
no_license
CRAFTY-ABM/craftyr
R
false
true
461
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/input_tools.R \name{input_tools_buildsimplist} \alias{input_tools_buildsimplist} \title{Construct a list of SimP for given runs} \usage{ input_tools_buildsimplist(runs, randomseed = 0) } \arguments{ \item{runs}{first part of runid} \item{randomseed}{second part of runid} } \value{ list of SimPs } \description{ Construct a list of SimP for given runs } \author{ Sascha Holzhauer }
### ----------------------------- ### simon munzert ### scraping dynamic webpages ### ----------------------------- ## peparations ------------------- library(rvest) library(RSelenium) ## setup R + RSelenium ------------------------- # install current version of Java SE Development Kit browseURL("http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html") # set up connection via RSelenium package # documentation: http://cran.r-project.org/web/packages/RSelenium/RSelenium.pdf # check currently installed version of Java system("java -version") ## example -------------------------- # initiate Selenium driver rD <- rsDriver() remDr <- rD[["client"]] # start browser, navigate to page url <- "http://www.iea.org/policiesandmeasures/renewableenergy/" remDr$navigate(url) # open regions menu xpath <- '//*[@id="main"]/div/form/div[1]/ul/li[1]/span' regionsElem <- remDr$findElement(using = 'xpath', value = xpath) openRegions <- regionsElem$clickElement() # click on button # selection "European Union" xpath <- '//*[@id="main"]/div/form/div[1]/ul/li[1]/ul/li[5]/label/input' euElem <- remDr$findElement(using = 'xpath', value = xpath) selectEU <- euElem$clickElement() # click on button # set time frame xpath <- '//*[@id="main"]/div/form/div[5]/select[1]' fromDrop <- remDr$findElement(using = 'xpath', value = xpath) clickFrom <- fromDrop$clickElement() # click on drop-down menu writeFrom <- fromDrop$sendKeysToElement(list("2000")) # enter start year xpath <- '//*[@id="main"]/div/form/div[5]/select[2]' toDrop <- remDr$findElement(using = 'xpath', value = xpath) clickTo <- toDrop$clickElement() # click on drop-down menu writeTo <- toDrop$sendKeysToElement(list("2010")) # enter end year # click on search button xpath <- '//*[@id="main"]/div/form/button[2]' searchElem <- remDr$findElement(using = 'xpath', value = xpath) resultsPage <- searchElem$clickElement() # click on button # store index page output <- remDr$getPageSource(header = TRUE) write(output[[1]], file = "iea-renewables.html") # close connection remDr$closeServer() # parse index table content <- read_html("iea-renewables.html", encoding = "utf8") tabs <- html_table(content, fill = TRUE) tab <- tabs[[1]] # add names names(tab) <- c("title", "country", "year", "status", "type", "target") head(tab)
/web scraping/03a-scraping-dynamic-pages.R
no_license
anel-li/MDM-coding
R
false
false
2,328
r
### ----------------------------- ### simon munzert ### scraping dynamic webpages ### ----------------------------- ## peparations ------------------- library(rvest) library(RSelenium) ## setup R + RSelenium ------------------------- # install current version of Java SE Development Kit browseURL("http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html") # set up connection via RSelenium package # documentation: http://cran.r-project.org/web/packages/RSelenium/RSelenium.pdf # check currently installed version of Java system("java -version") ## example -------------------------- # initiate Selenium driver rD <- rsDriver() remDr <- rD[["client"]] # start browser, navigate to page url <- "http://www.iea.org/policiesandmeasures/renewableenergy/" remDr$navigate(url) # open regions menu xpath <- '//*[@id="main"]/div/form/div[1]/ul/li[1]/span' regionsElem <- remDr$findElement(using = 'xpath', value = xpath) openRegions <- regionsElem$clickElement() # click on button # selection "European Union" xpath <- '//*[@id="main"]/div/form/div[1]/ul/li[1]/ul/li[5]/label/input' euElem <- remDr$findElement(using = 'xpath', value = xpath) selectEU <- euElem$clickElement() # click on button # set time frame xpath <- '//*[@id="main"]/div/form/div[5]/select[1]' fromDrop <- remDr$findElement(using = 'xpath', value = xpath) clickFrom <- fromDrop$clickElement() # click on drop-down menu writeFrom <- fromDrop$sendKeysToElement(list("2000")) # enter start year xpath <- '//*[@id="main"]/div/form/div[5]/select[2]' toDrop <- remDr$findElement(using = 'xpath', value = xpath) clickTo <- toDrop$clickElement() # click on drop-down menu writeTo <- toDrop$sendKeysToElement(list("2010")) # enter end year # click on search button xpath <- '//*[@id="main"]/div/form/button[2]' searchElem <- remDr$findElement(using = 'xpath', value = xpath) resultsPage <- searchElem$clickElement() # click on button # store index page output <- remDr$getPageSource(header = TRUE) write(output[[1]], file = "iea-renewables.html") # close connection remDr$closeServer() # parse index table content <- read_html("iea-renewables.html", encoding = "utf8") tabs <- html_table(content, fill = TRUE) tab <- tabs[[1]] # add names names(tab) <- c("title", "country", "year", "status", "type", "target") head(tab)
## This first line will likely take a few seconds. Be patient! NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") # How have emissions from motor vehicle sources changed # from 1999–2008 in Baltimore City? require(data.table) require(grDevices) require(ggplot2) dt<-data.table(NEI)[fips == "24510" & type=="ON-ROAD",sum(Emissions),by=c("year")] setnames(dt,c("Year","Emissions")) dt$Year<-factor(dt$Year) plot<-ggplot(data=dt, aes(x=Year, y=Emissions,fill=Year)) + geom_bar(stat="identity") + labs(list( title="PM2.5 Motor Vehicle Sources Emissions in\nBaltimore City,Maryland", x="Year", y="Emissions, Tons" )) ggsave("plot5.png",plot=plot,width=5.25,height=5.25,units="in",dpi=120)
/plot5.R
no_license
DSCourse001/ExData_Plotting2
R
false
false
743
r
## This first line will likely take a few seconds. Be patient! NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") # How have emissions from motor vehicle sources changed # from 1999–2008 in Baltimore City? require(data.table) require(grDevices) require(ggplot2) dt<-data.table(NEI)[fips == "24510" & type=="ON-ROAD",sum(Emissions),by=c("year")] setnames(dt,c("Year","Emissions")) dt$Year<-factor(dt$Year) plot<-ggplot(data=dt, aes(x=Year, y=Emissions,fill=Year)) + geom_bar(stat="identity") + labs(list( title="PM2.5 Motor Vehicle Sources Emissions in\nBaltimore City,Maryland", x="Year", y="Emissions, Tons" )) ggsave("plot5.png",plot=plot,width=5.25,height=5.25,units="in",dpi=120)
pkgname <- "knnpackage" source(file.path(R.home("share"), "R", "examples-header.R")) options(warn = 1) options(pager = "console") base::assign(".ExTimings", "knnpackage-Ex.timings", pos = 'CheckExEnv') base::cat("name\tuser\tsystem\telapsed\n", file=base::get(".ExTimings", pos = 'CheckExEnv')) base::assign(".format_ptime", function(x) { if(!is.na(x[4L])) x[1L] <- x[1L] + x[4L] if(!is.na(x[5L])) x[2L] <- x[2L] + x[5L] options(OutDec = '.') format(x[1L:3L], digits = 7L) }, pos = 'CheckExEnv') ### * </HEADER> library('knnpackage') base::assign(".oldSearch", base::search(), pos = 'CheckExEnv') base::assign(".old_wd", base::getwd(), pos = 'CheckExEnv') cleanEx() nameEx("knnpackage-package") ### * knnpackage-package flush(stderr()); flush(stdout()) base::assign(".ptime", proc.time(), pos = "CheckExEnv") ### Name: knnpackage-package ### Title: A short title line describing what the package does ### Aliases: knnpackage-package knnpackage ### Keywords: package ### ** Examples ## Not run: ##D ## Optional simple examples of the most important functions ##D ## These can be in \dontrun{} and \donttest{} blocks. ##D ## End(Not run) base::assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv") base::cat("knnpackage-package", base::get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=base::get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t") cleanEx() nameEx("rcpp_hello_world") ### * rcpp_hello_world flush(stderr()); flush(stdout()) base::assign(".ptime", proc.time(), pos = "CheckExEnv") ### Name: rcpp_hello_world ### Title: Simple function using Rcpp ### Aliases: rcpp_hello_world ### ** Examples ## Not run: ##D rcpp_hello_world() ## End(Not run) base::assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv") base::cat("rcpp_hello_world", base::get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=base::get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t") ### * <FOOTER> ### cleanEx() options(digits = 7L) base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n") grDevices::dev.off() ### ### Local variables: *** ### mode: outline-minor *** ### outline-regexp: "\\(> \\)?### [*]+" *** ### End: *** quit('no')
/Proyecto 1/knnpackage.Rcheck/knnpackage-Ex.R
no_license
apt345/Advanced-Programming
R
false
false
2,429
r
pkgname <- "knnpackage" source(file.path(R.home("share"), "R", "examples-header.R")) options(warn = 1) options(pager = "console") base::assign(".ExTimings", "knnpackage-Ex.timings", pos = 'CheckExEnv') base::cat("name\tuser\tsystem\telapsed\n", file=base::get(".ExTimings", pos = 'CheckExEnv')) base::assign(".format_ptime", function(x) { if(!is.na(x[4L])) x[1L] <- x[1L] + x[4L] if(!is.na(x[5L])) x[2L] <- x[2L] + x[5L] options(OutDec = '.') format(x[1L:3L], digits = 7L) }, pos = 'CheckExEnv') ### * </HEADER> library('knnpackage') base::assign(".oldSearch", base::search(), pos = 'CheckExEnv') base::assign(".old_wd", base::getwd(), pos = 'CheckExEnv') cleanEx() nameEx("knnpackage-package") ### * knnpackage-package flush(stderr()); flush(stdout()) base::assign(".ptime", proc.time(), pos = "CheckExEnv") ### Name: knnpackage-package ### Title: A short title line describing what the package does ### Aliases: knnpackage-package knnpackage ### Keywords: package ### ** Examples ## Not run: ##D ## Optional simple examples of the most important functions ##D ## These can be in \dontrun{} and \donttest{} blocks. ##D ## End(Not run) base::assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv") base::cat("knnpackage-package", base::get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=base::get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t") cleanEx() nameEx("rcpp_hello_world") ### * rcpp_hello_world flush(stderr()); flush(stdout()) base::assign(".ptime", proc.time(), pos = "CheckExEnv") ### Name: rcpp_hello_world ### Title: Simple function using Rcpp ### Aliases: rcpp_hello_world ### ** Examples ## Not run: ##D rcpp_hello_world() ## End(Not run) base::assign(".dptime", (proc.time() - get(".ptime", pos = "CheckExEnv")), pos = "CheckExEnv") base::cat("rcpp_hello_world", base::get(".format_ptime", pos = 'CheckExEnv')(get(".dptime", pos = "CheckExEnv")), "\n", file=base::get(".ExTimings", pos = 'CheckExEnv'), append=TRUE, sep="\t") ### * <FOOTER> ### cleanEx() options(digits = 7L) base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n") grDevices::dev.off() ### ### Local variables: *** ### mode: outline-minor *** ### outline-regexp: "\\(> \\)?### [*]+" *** ### End: *** quit('no')
context("load data") # the full iris dataset base64_iris <- " rde1QlpoOTFBWSZTWTZfsaQABq9/7/////+AAQgAwARIwC/33YBAAAEwACAAJgggSABtbdAEuQgFUAbD JQkRIphTyYpp6j1DZE0AANqepoeU9R6T00EMnqEU/Ko0BoAANAGgAAAAA0AAkypSoNAABoAAADEBoADQ yAcAwjCaYhgEAyAGEaZMmEYCGhwDCMJpiGAQDIAYRpkyYRgIafr2w7TkRcpkTPeHfvPD5jioioVC+O7i eTdOSnJboeX0RlfO6s8TpujlhLfmZiankmjZVQ8qVn8XkAr5bY4hALu4AQBineQCrdEt+YxCWevVinay 1jD75dVsASVppAtjAy7b9vPUCQGRoEkWGg7gV/aLjtSr9YlYEmhGITSEmLWkgDnQkKgUECzxBlGmV45V CclKszMik1VEDUtBKwrK4ZWFklkamptoFJFmKSRIasKxVhqCSiRGlFFViJaF0ooo5ihBYhWKBkVRHLFN RTQtVRTZSSGIEtDC2mVJssPdhnYN4LiM7Ox3VsHg8xYcCmyJhTYEAcb6qAUMiAjQ5gItMgQMGkIliAFp C5zW0kIDtbfz28f7lepDvjBV+RE6ySp1kR9henIzMzZqSoKU+dckpjbY5I5JPOgxNetkNDaFy5yZQVU3 roo1KqLhQZYnkRwcSAzClMKKTodCClEPhJPJTioc4rDxOcrnDcyUQjtxwKNTlF2FDjJwQhJKKQWRWKZF zQWpZwT0eDh4LYGhc1JoERCRQkloJGiVJNMriSZaldytxqEdINLhV0o5liRQaAWZBRhYFJUcrRKTtMud KEIAhJIUCFAQFDoTE+AftEY3VGaAZAq9Uncultg+PLBz2unWbCKFWwv3L6Qkv0xISWjsSwtLwuGEIgIc brr5HEwpmBzCmIczJMEPUaCjsTppJZa5qoZq1OdykKSkNw4hQOw55WoriODHjMgPe6Dh6fBy8AUw9XFR XOKTJuXcbvVHDaMljXUYLMFd2zdKHkwDu8PR7/qen2cffjGDfF2zuPcco0E7NIqC7+/9RJP2Q4nV4p4E 6ggmX+CF+q7MpngcKM8ksmYzzdo4iKUh9bqbqhRotpIA7BAdCSARt2pNgsKhNto6jrJilKSx6YOOIexC 3A4Sdh6/W4PXpV5yFvm5z5no9J5YcXkJCvCADdGl4uMn/i7kinChIGy/Y0g= " # the first three rows of iris, but with the first element changed # a <- iris # nolint # a$Sepal.Length[1] <- 5000 # nolint base64_modified_iris_3 <- " rde1QlpoOTFBWSZTWdsanVkABrD/7/////+AAQgAwARIwC/33YBAQAEwCCAAJgggSABtbdAEuR7Ai0AW nrpcJCSmqeTUaPSNBoemoDIADT0htE2UaNqBoeocaMmRhGIBhNBgE0GgZMmjJkMIDCU8pSqGmQAaDTI0 NAYQbQhiDQM1DQ0DVTR6QyZqGgDQ000NAAaADQaAGQwIkpJGJtRtJoYCYCGRgAAjCemgmCHe/fxhyuIi 4piJjzDznfS3DVRFQqF9ZzU59xspstwezwjK+50J1OM4cWEmOqqVeeSrNl6xuJYOPEgFsGFj2KpALr0C ANqtlAK52Sx1NoSzXaNqtTNbbDi3tGFAJLWaQLlYG9qxYc15CQG20CSL7QbIXcE6D1qWK4SvxYiY4wFY N1UA7UUbQWhB5ao3RTFdcVQnEpVmZkUmqogaloJWFZXBlYWSWRqamzIFJFmKSRIasFYqwagkokRpRRVY iWhclFFHGKHCIVigZFURxYpqKaFqqKbFJIYgSyGFsmpIVKZKJ6gYoNuJQxYpfUoW7EpIhILCCSChACI8 dUBIDCAQiSygrBhQhAiiWRAB/QW+v2KiBy5n8+PDyYr5sOfSCr9SJ2UlTsoj1F42MrMuW1KFrb91FJjb Y6J76N1B2GvKyNDaFxccTFBVTPhRRqVUXBQZYnYjRwkBmFKYUUnIchBSiH0EnZTVQ3VYdTdrdM3EohHM 1wFGpxRcwUNZNEISSikFkVimRcaCylnAnh0cHRbAaFxqTIERCRQkloJGiVJD3nXVcJJlqVxcmoRyQaXB VyUcZYkUGgFmQUYWBSVHFaJScyZccmRjZJI0yDjaluA3uk3io8Ofc0956W93lO5yfbz/StLco7MHuul4 q0X14uW7giv7gIry+i/GLlyoERAjnRd2+5UVVB1FUjqqKhHnMxZ364rUYGfW9GZ87rnWiotG45FB33Wh qXSZMeM2wcvyFfSfOqASb7WJARWhBSIWoZINCp4Ui9DQkdBEMpxQQWEg9ejHhwZPzwozoQgXq/ZzPmab HIEaTkY2wXP88iJJyIanQ1Tz5yggmXlIX7rvRszQcUzUUyqmatezklrR/x3m70U4cKSAOT+iA0pIBGrU k2C6yibbR+DmKlrWpj44clPbhbQ0k7b2uTR7VKu7C3c3e48PE2Ukq4ijhiAHuIujuln/F3JFOFCQ2xqd WQ== " # The first three rows from iris, but with Sepal.Length doubled # a <- head(iris, 3) # nolint # a$Sepal.Length <- a$Sepal.Length * 2 # nolint base64_scaled_iris_3 <- " rde1QlpoOTFBWSZTWTV4+F0AAKT/5P//SAAcAQAAwARIwC/n3YBAAAAwACYFAbAA7ICUQSnim9DSNT0I Bo9QNoNMjUMaGhoAMhoAAAAAJFFNGjQAAAAAAA4wnkeSFSiwlSkbJUEW1CJvxwWLc1ON0BEpUlVDV+sy 15EILrSlYpAncITOjFVJ6FKJMEvSPhFEVxGNqYYEWkEzA1MAe+AQaiwHBcA0ZVj5hVFYxlx6blXc08N9 uNa4quzoR5Yefiyy5h0ny5GAxw/AjCKcFEzMLdWosBZsS3KqwGw663Jo1tNPdCtaXlk5plveRmYSUTUD jbEWhpt75vb8REb2Treh2S8TPNw5Lyf/F3JFOFCQNXj4XQ== " test_that("cached data loaded as expected", { b <- load_rde_var(TRUE, iris, base64_iris) expect_equal(length(b), 5) expect_true(all.equal(b, iris)) }) test_that("new data loaded as expected", { b <- load_rde_var(FALSE, iris, base64_iris) expect_equal(length(b), 5) expect_true(all.equal(b, iris)) }) test_that("new data with multiple lines", { b <- load_rde_var( FALSE, { a <- head(iris, 3) a$Sepal.Length <- a$Sepal.Length * 2 a }, base64_scaled_iris_3 ) expect_equal(length(b), 5) expect_true(all.equal(b$Sepal.Length, head(iris, 3)$Sepal.Length * 2)) expect_true(all.equal(b$Species, head(iris, 3)$Species)) }) test_that("difference between new data and cahced data causes warning", { expect_warning( load_rde_var(FALSE, iris, base64_modified_iris_3) ) }) test_that("when new/cahce data differ, the new data is returned", { suppressWarnings({ b <- load_rde_var(FALSE, iris, base64_modified_iris_3) }) expect_true(all.equal(b, iris)) }) test_that("when new data produces error, cached data is returned", { b <- load_rde_var(FALSE, stop("some error"), base64_iris) expect_equal(length(b), 5) expect_true(all.equal(b, iris)) }) test_that("when new data produces error, message is raised", { expect_message( load_rde_var(FALSE, stop("some error"), base64_iris), "Error raised when loading new data" ) }) test_that("data load code can access variables from the calling environment", { mult <- 2 b <- load_rde_var( FALSE, { a <- head(iris, 3) a$Sepal.Length <- a$Sepal.Length * mult a }, base64_scaled_iris_3 ) expect_equal(length(b), 5) expect_true(all.equal(b$Sepal.Length, head(iris, 3)$Sepal.Length * 2)) expect_true(all.equal(b$Species, head(iris, 3)$Species)) }) test_that("expressions in load code don't affect enclosing environment", { mult <- 1 b <- load_rde_var( FALSE, { mult <- mult * 2 a <- head(iris, 3) a$Sepal.Length <- a$Sepal.Length * mult expect_equal(mult, 2) a }, base64_scaled_iris_3 ) expect_equal(mult, 1) expect_equal(length(b), 5) expect_true(all.equal(b$Sepal.Length, head(iris, 3)$Sepal.Length * 2)) expect_true(all.equal(b$Species, head(iris, 3)$Species)) })
/data/genthat_extracted_code/rde/tests/test_load.R
no_license
surayaaramli/typeRrh
R
false
false
5,470
r
context("load data") # the full iris dataset base64_iris <- " rde1QlpoOTFBWSZTWTZfsaQABq9/7/////+AAQgAwARIwC/33YBAAAEwACAAJgggSABtbdAEuQgFUAbD JQkRIphTyYpp6j1DZE0AANqepoeU9R6T00EMnqEU/Ko0BoAANAGgAAAAA0AAkypSoNAABoAAADEBoADQ yAcAwjCaYhgEAyAGEaZMmEYCGhwDCMJpiGAQDIAYRpkyYRgIafr2w7TkRcpkTPeHfvPD5jioioVC+O7i eTdOSnJboeX0RlfO6s8TpujlhLfmZiankmjZVQ8qVn8XkAr5bY4hALu4AQBineQCrdEt+YxCWevVinay 1jD75dVsASVppAtjAy7b9vPUCQGRoEkWGg7gV/aLjtSr9YlYEmhGITSEmLWkgDnQkKgUECzxBlGmV45V CclKszMik1VEDUtBKwrK4ZWFklkamptoFJFmKSRIasKxVhqCSiRGlFFViJaF0ooo5ihBYhWKBkVRHLFN RTQtVRTZSSGIEtDC2mVJssPdhnYN4LiM7Ox3VsHg8xYcCmyJhTYEAcb6qAUMiAjQ5gItMgQMGkIliAFp C5zW0kIDtbfz28f7lepDvjBV+RE6ySp1kR9henIzMzZqSoKU+dckpjbY5I5JPOgxNetkNDaFy5yZQVU3 roo1KqLhQZYnkRwcSAzClMKKTodCClEPhJPJTioc4rDxOcrnDcyUQjtxwKNTlF2FDjJwQhJKKQWRWKZF zQWpZwT0eDh4LYGhc1JoERCRQkloJGiVJNMriSZaldytxqEdINLhV0o5liRQaAWZBRhYFJUcrRKTtMud KEIAhJIUCFAQFDoTE+AftEY3VGaAZAq9Uncultg+PLBz2unWbCKFWwv3L6Qkv0xISWjsSwtLwuGEIgIc brr5HEwpmBzCmIczJMEPUaCjsTppJZa5qoZq1OdykKSkNw4hQOw55WoriODHjMgPe6Dh6fBy8AUw9XFR XOKTJuXcbvVHDaMljXUYLMFd2zdKHkwDu8PR7/qen2cffjGDfF2zuPcco0E7NIqC7+/9RJP2Q4nV4p4E 6ggmX+CF+q7MpngcKM8ksmYzzdo4iKUh9bqbqhRotpIA7BAdCSARt2pNgsKhNto6jrJilKSx6YOOIexC 3A4Sdh6/W4PXpV5yFvm5z5no9J5YcXkJCvCADdGl4uMn/i7kinChIGy/Y0g= " # the first three rows of iris, but with the first element changed # a <- iris # nolint # a$Sepal.Length[1] <- 5000 # nolint base64_modified_iris_3 <- " rde1QlpoOTFBWSZTWdsanVkABrD/7/////+AAQgAwARIwC/33YBAQAEwCCAAJgggSABtbdAEuR7Ai0AW nrpcJCSmqeTUaPSNBoemoDIADT0htE2UaNqBoeocaMmRhGIBhNBgE0GgZMmjJkMIDCU8pSqGmQAaDTI0 NAYQbQhiDQM1DQ0DVTR6QyZqGgDQ000NAAaADQaAGQwIkpJGJtRtJoYCYCGRgAAjCemgmCHe/fxhyuIi 4piJjzDznfS3DVRFQqF9ZzU59xspstwezwjK+50J1OM4cWEmOqqVeeSrNl6xuJYOPEgFsGFj2KpALr0C ANqtlAK52Sx1NoSzXaNqtTNbbDi3tGFAJLWaQLlYG9qxYc15CQG20CSL7QbIXcE6D1qWK4SvxYiY4wFY N1UA7UUbQWhB5ao3RTFdcVQnEpVmZkUmqogaloJWFZXBlYWSWRqamzIFJFmKSRIasFYqwagkokRpRRVY iWhclFFHGKHCIVigZFURxYpqKaFqqKbFJIYgSyGFsmpIVKZKJ6gYoNuJQxYpfUoW7EpIhILCCSChACI8 dUBIDCAQiSygrBhQhAiiWRAB/QW+v2KiBy5n8+PDyYr5sOfSCr9SJ2UlTsoj1F42MrMuW1KFrb91FJjb Y6J76N1B2GvKyNDaFxccTFBVTPhRRqVUXBQZYnYjRwkBmFKYUUnIchBSiH0EnZTVQ3VYdTdrdM3EohHM 1wFGpxRcwUNZNEISSikFkVimRcaCylnAnh0cHRbAaFxqTIERCRQkloJGiVJD3nXVcJJlqVxcmoRyQaXB VyUcZYkUGgFmQUYWBSVHFaJScyZccmRjZJI0yDjaluA3uk3io8Ofc0956W93lO5yfbz/StLco7MHuul4 q0X14uW7giv7gIry+i/GLlyoERAjnRd2+5UVVB1FUjqqKhHnMxZ364rUYGfW9GZ87rnWiotG45FB33Wh qXSZMeM2wcvyFfSfOqASb7WJARWhBSIWoZINCp4Ui9DQkdBEMpxQQWEg9ejHhwZPzwozoQgXq/ZzPmab HIEaTkY2wXP88iJJyIanQ1Tz5yggmXlIX7rvRszQcUzUUyqmatezklrR/x3m70U4cKSAOT+iA0pIBGrU k2C6yibbR+DmKlrWpj44clPbhbQ0k7b2uTR7VKu7C3c3e48PE2Ukq4ijhiAHuIujuln/F3JFOFCQ2xqd WQ== " # The first three rows from iris, but with Sepal.Length doubled # a <- head(iris, 3) # nolint # a$Sepal.Length <- a$Sepal.Length * 2 # nolint base64_scaled_iris_3 <- " rde1QlpoOTFBWSZTWTV4+F0AAKT/5P//SAAcAQAAwARIwC/n3YBAAAAwACYFAbAA7ICUQSnim9DSNT0I Bo9QNoNMjUMaGhoAMhoAAAAAJFFNGjQAAAAAAA4wnkeSFSiwlSkbJUEW1CJvxwWLc1ON0BEpUlVDV+sy 15EILrSlYpAncITOjFVJ6FKJMEvSPhFEVxGNqYYEWkEzA1MAe+AQaiwHBcA0ZVj5hVFYxlx6blXc08N9 uNa4quzoR5Yefiyy5h0ny5GAxw/AjCKcFEzMLdWosBZsS3KqwGw663Jo1tNPdCtaXlk5plveRmYSUTUD jbEWhpt75vb8REb2Treh2S8TPNw5Lyf/F3JFOFCQNXj4XQ== " test_that("cached data loaded as expected", { b <- load_rde_var(TRUE, iris, base64_iris) expect_equal(length(b), 5) expect_true(all.equal(b, iris)) }) test_that("new data loaded as expected", { b <- load_rde_var(FALSE, iris, base64_iris) expect_equal(length(b), 5) expect_true(all.equal(b, iris)) }) test_that("new data with multiple lines", { b <- load_rde_var( FALSE, { a <- head(iris, 3) a$Sepal.Length <- a$Sepal.Length * 2 a }, base64_scaled_iris_3 ) expect_equal(length(b), 5) expect_true(all.equal(b$Sepal.Length, head(iris, 3)$Sepal.Length * 2)) expect_true(all.equal(b$Species, head(iris, 3)$Species)) }) test_that("difference between new data and cahced data causes warning", { expect_warning( load_rde_var(FALSE, iris, base64_modified_iris_3) ) }) test_that("when new/cahce data differ, the new data is returned", { suppressWarnings({ b <- load_rde_var(FALSE, iris, base64_modified_iris_3) }) expect_true(all.equal(b, iris)) }) test_that("when new data produces error, cached data is returned", { b <- load_rde_var(FALSE, stop("some error"), base64_iris) expect_equal(length(b), 5) expect_true(all.equal(b, iris)) }) test_that("when new data produces error, message is raised", { expect_message( load_rde_var(FALSE, stop("some error"), base64_iris), "Error raised when loading new data" ) }) test_that("data load code can access variables from the calling environment", { mult <- 2 b <- load_rde_var( FALSE, { a <- head(iris, 3) a$Sepal.Length <- a$Sepal.Length * mult a }, base64_scaled_iris_3 ) expect_equal(length(b), 5) expect_true(all.equal(b$Sepal.Length, head(iris, 3)$Sepal.Length * 2)) expect_true(all.equal(b$Species, head(iris, 3)$Species)) }) test_that("expressions in load code don't affect enclosing environment", { mult <- 1 b <- load_rde_var( FALSE, { mult <- mult * 2 a <- head(iris, 3) a$Sepal.Length <- a$Sepal.Length * mult expect_equal(mult, 2) a }, base64_scaled_iris_3 ) expect_equal(mult, 1) expect_equal(length(b), 5) expect_true(all.equal(b$Sepal.Length, head(iris, 3)$Sepal.Length * 2)) expect_true(all.equal(b$Species, head(iris, 3)$Species)) })
# ra_prospect_stan_singleSubj.R # Programmed by Woo-Young Ahn (wahn55@snu.ac.kr), Apr 2018 rm(list=ls()) # remove all variables library(rstan) # source HDIofMCMC.R to calculate HDI source("HDIofMCMC.R") # read the data file dat = read.table("ra_exampleData.txt", header=T, sep="\t") allSubjs = unique(dat$subjID) # all subject IDs N = length(allSubjs) # number of subjects T = table(dat$subjID)[1] # number of trials per subject (=140) numIter = 100 # number of iterations to find global minimum values numPars = 3 # number of parameters dataList <- list( T = T, N = N, Tsubj = table(dat$subjID), gain = matrix(dat$gain, nrow=N, ncol=T, byrow=T), #matrix[N,T] loss = matrix(abs(dat$loss), nrow=N, ncol=T, byrow=T), # absolute value cert = matrix(dat$cert, nrow=N, ncol=T, byrow=T), gamble = matrix(dat$gamble, nrow=N, ncol=T, byrow=T) ) # run! output = stan("ra_prospect_w_reparam.stan", data = dataList, iter = 1000, warmup=500, chains=2, cores=2) ### load existing output library(ggplot2) library(reshape2) library(dplyr) load("ra_prospect_w_reparam.RData") traceplot(output) # print summary print(output) # extract Stan fit object (parameters) parameters <- rstan::extract(output) # arrange dataframe ls(parameters) names <- paste("sbj", allSubjs) colnames(parameters$rho) <- names colnames(parameters$lambda) <- names colnames(parameters$tau) <- names names <- c("rho","lambda","tau") colnames(parameters$sigma) <- names colnames(parameters$mu_p) <- names # 2.2.1 plot posteriors for group parameters #mu_p, sigma group <- data.frame(rbind(parameters$sigma, parameters$mu_p), index=rep(c("sigma","mu_p"), each=nrow(parameters$sigma))) group <- melt(group, id="index") group_HDI <- group %>% group_by(index, variable) %>% summarise(mean=mean(value),HDI1=HDIofMCMC(value)[1], HDI2=HDIofMCMC(value)[2]) g1 <- ggplot(group, aes(value, fill=variable)) + geom_histogram(bins = 50) + facet_wrap(~index+variable, scale="free_x") + geom_vline(data=group_HDI, aes(xintercept=mean), linetype="dashed", size=1) + geom_errorbarh(data=group_HDI, aes(y=0, x=mean, xmin=HDI1, xmax=HDI2), height=20, size=1) + ylab(label="") # 2.2.2 plot posteriors for individual parameters # rho lambda tau individual <- data.frame(rbind(parameters$rho, parameters$lambda, parameters$tau), index=rep(c("rho","lambda","tau"), each=nrow(parameters$rho))) individual <- melt(individual, id="index") individual_HDI <- individual %>% group_by(index, variable) %>% summarise(mean=mean(value),HDI1=HDIofMCMC(value)[1], HDI2=HDIofMCMC(value)[2]) i1 <- ggplot(individual, aes(value, fill=variable)) + geom_histogram(bins = 50) + facet_wrap(~index+variable, scale="free_x", nrow=3) + geom_vline(data=individual_HDI, aes(xintercept=mean), linetype="dashed", size=1) + geom_errorbarh(data=individual_HDI, aes(y=0, x=mean, xmin=HDI1, xmax=HDI2), height=20, size=1) + ylab(label="")
/HW4/q2/ra_prospect_stan_w_reparam.R
no_license
mindy2801/Computational_Modeling
R
false
false
3,174
r
# ra_prospect_stan_singleSubj.R # Programmed by Woo-Young Ahn (wahn55@snu.ac.kr), Apr 2018 rm(list=ls()) # remove all variables library(rstan) # source HDIofMCMC.R to calculate HDI source("HDIofMCMC.R") # read the data file dat = read.table("ra_exampleData.txt", header=T, sep="\t") allSubjs = unique(dat$subjID) # all subject IDs N = length(allSubjs) # number of subjects T = table(dat$subjID)[1] # number of trials per subject (=140) numIter = 100 # number of iterations to find global minimum values numPars = 3 # number of parameters dataList <- list( T = T, N = N, Tsubj = table(dat$subjID), gain = matrix(dat$gain, nrow=N, ncol=T, byrow=T), #matrix[N,T] loss = matrix(abs(dat$loss), nrow=N, ncol=T, byrow=T), # absolute value cert = matrix(dat$cert, nrow=N, ncol=T, byrow=T), gamble = matrix(dat$gamble, nrow=N, ncol=T, byrow=T) ) # run! output = stan("ra_prospect_w_reparam.stan", data = dataList, iter = 1000, warmup=500, chains=2, cores=2) ### load existing output library(ggplot2) library(reshape2) library(dplyr) load("ra_prospect_w_reparam.RData") traceplot(output) # print summary print(output) # extract Stan fit object (parameters) parameters <- rstan::extract(output) # arrange dataframe ls(parameters) names <- paste("sbj", allSubjs) colnames(parameters$rho) <- names colnames(parameters$lambda) <- names colnames(parameters$tau) <- names names <- c("rho","lambda","tau") colnames(parameters$sigma) <- names colnames(parameters$mu_p) <- names # 2.2.1 plot posteriors for group parameters #mu_p, sigma group <- data.frame(rbind(parameters$sigma, parameters$mu_p), index=rep(c("sigma","mu_p"), each=nrow(parameters$sigma))) group <- melt(group, id="index") group_HDI <- group %>% group_by(index, variable) %>% summarise(mean=mean(value),HDI1=HDIofMCMC(value)[1], HDI2=HDIofMCMC(value)[2]) g1 <- ggplot(group, aes(value, fill=variable)) + geom_histogram(bins = 50) + facet_wrap(~index+variable, scale="free_x") + geom_vline(data=group_HDI, aes(xintercept=mean), linetype="dashed", size=1) + geom_errorbarh(data=group_HDI, aes(y=0, x=mean, xmin=HDI1, xmax=HDI2), height=20, size=1) + ylab(label="") # 2.2.2 plot posteriors for individual parameters # rho lambda tau individual <- data.frame(rbind(parameters$rho, parameters$lambda, parameters$tau), index=rep(c("rho","lambda","tau"), each=nrow(parameters$rho))) individual <- melt(individual, id="index") individual_HDI <- individual %>% group_by(index, variable) %>% summarise(mean=mean(value),HDI1=HDIofMCMC(value)[1], HDI2=HDIofMCMC(value)[2]) i1 <- ggplot(individual, aes(value, fill=variable)) + geom_histogram(bins = 50) + facet_wrap(~index+variable, scale="free_x", nrow=3) + geom_vline(data=individual_HDI, aes(xintercept=mean), linetype="dashed", size=1) + geom_errorbarh(data=individual_HDI, aes(y=0, x=mean, xmin=HDI1, xmax=HDI2), height=20, size=1) + ylab(label="")
B <- c(22, 27, 26, 24, 23) barplot(B) # barchart with added parameters barplot(B, main = "Company B Stock Prices", xlab = "Week End 9/26", ylab = "Price", ylim = c(0,30), names.arg = c('Mon', 'Tue', 'Wed', 'Thu', 'Fri'), col = colors()[12], horiz = FALSE) # Create data set.seed(112) Z = matrix( c(15, 13, 18, 55, 60, 35, 35, 38, 41), nrow = 3, ncol = 3, byrow = TRUE) dimnames(Z) = list( c('Sell', 'Hold', "Buy"), c('A', 'B', "C") ) # Get the stacked barplot barplot (Z) barplot(Z, col = colors() [c(35, 77, 89)], border = "white", space = 0.04, font.axis = 2, xlab = "group")
/Bar_Chart.R
no_license
jamisonbrogdon/r-practice
R
false
false
690
r
B <- c(22, 27, 26, 24, 23) barplot(B) # barchart with added parameters barplot(B, main = "Company B Stock Prices", xlab = "Week End 9/26", ylab = "Price", ylim = c(0,30), names.arg = c('Mon', 'Tue', 'Wed', 'Thu', 'Fri'), col = colors()[12], horiz = FALSE) # Create data set.seed(112) Z = matrix( c(15, 13, 18, 55, 60, 35, 35, 38, 41), nrow = 3, ncol = 3, byrow = TRUE) dimnames(Z) = list( c('Sell', 'Hold', "Buy"), c('A', 'B', "C") ) # Get the stacked barplot barplot (Z) barplot(Z, col = colors() [c(35, 77, 89)], border = "white", space = 0.04, font.axis = 2, xlab = "group")
num<-as.numeric(Sys.getenv("Sim")) #This is a modification version for re-submission #The major features include: #1. Add average distance within the buffer. #2. Calculate two other angle range: 30 and 60. #3. Calculat the downwind number for negative control. library(raster) library(rgeos) library(dplyr) library(splines) library(rgeos) library(lubridate) library(here) prjstring<-"+proj=aea +lat_1=20 +lat_2=60 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=WGS84 +units=m +no_defs " geoprjstring<-"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" #Load function files----------------------------------------------------- source(here::here("code","Data_Downloading_Functions.R")) load(here::here("data","Beta_Measurements_2001.RData")) load(here::here("data","RadNet.RData")) load(here::here("data","Wells_3rd.RData")) coordinates(wells)<-~lon+lat proj4string(wells)<-geoprjstring wells<-spTransform(wells,prjstring) radnet_sp<-spTransform(radnet,prjstring) #load(here::here("data","Rad_NARR_2001.RData")) load(here::here("data","NARR_2001.RData")) i=num city<-radnet@data[i,"city_state"] overwrite=file.exists(here::here("data","Resub_city_daily_prod", paste0(city,"_Daily_Prod_E2001.RData"))) if(!overwrite){ rad_well_link<-create_link_buffer(point = radnet_sp[i,],point_ID = "city_state",points = wells, points_ID = "ApiNo",si_col =c("Pred_DrillType","DrillType","ProdType","SpudDate","CompDate","FirstProdDate","LastProdDate","GasCum","LiqCum","Status"), width=50000) if(!is.null(rad_well_link)){ rad_well_link$ApiNo<-as.character(rad_well_link$ApiNo) city_narr=narr_data%>%filter(city_state==city) table=expand.grid(city=city,date=city_narr$Date,radius=0:6,angle=c(30,45,60)) table$u_h=0 table$u_v=0 #Formalize the production type, converting the diverse oil prodcution activity to oil rad_well_link<-rad_well_link%>%mutate(ProdType=case_when( ProdType=="OIL" ~ "OIL", ProdType=="Gas" ~ "Gas", ProdType=="O&G" ~ "O&G", ProdType=="OIL (CYCLIC STEAM)" ~ "OIL" )) #According to EIA, most wells produce both gas and liquid some time, so I add another two #columns indicating whether liq/gas was produced rad_well_link<-rad_well_link%>%mutate(Oil=case_when( is.na(LiqCum)~ FALSE, LiqCum==0 ~ FALSE, ProdType=="OIL" ~ TRUE, ProdType=="O&G" ~ TRUE, LiqCum>0 ~ TRUE)) rad_well_link<-rad_well_link%>%mutate(Gas=case_when( is.na(GasCum)~ FALSE, GasCum==0 ~ FALSE, ProdType=="Gas" ~ TRUE, ProdType=="O&G" ~ TRUE, GasCum>0 ~ TRUE)) rad_well_link<-rad_well_link%>%filter(Status!="PERMITTED") rad_well_link<-rad_well_link%>%filter(Status!="CANCELLED") rad_well_link<-rad_well_link%>%filter(Oil|Gas) rad_well_link<-rad_well_link%>%mutate(Active_Peroid=case_when( !is.na(SpudDate) & !is.na(CompDate) & !is.na(LastProdDate) ~ interval(start=SpudDate,end=LastProdDate), !is.na(SpudDate) & is.na(CompDate) & !is.na(LastProdDate) ~ interval(start= SpudDate, end=LastProdDate), is.na(SpudDate) & !is.na(CompDate) & !is.na(LastProdDate) ~ interval(start=CompDate,end=LastProdDate), is.na(SpudDate) & is.na(CompDate) & !is.na(LastProdDate) ~ interval(start=FirstProdDate,end=LastProdDate), !is.na(SpudDate) & !is.na(CompDate) ~ interval( start = SpudDate, end=CompDate) )) rad_well_link<-rad_well_link%>%mutate(LastProdDate=case_when( is.na(Active_Peroid) ~ as.Date("1990-01-01"), !is.na(Active_Peroid) ~ LastProdDate )) for(row in 1:nrow(table)){ paras=table[row,] #bottom=0+paras$radius*5 up=20+paras$radius*5 metes=city_narr%>%filter(Date==paras$date) well_ext=rad_well_link%>% filter(ymd(paras$date)>int_start(Active_Peroid),dist<up)%>% mutate(dir=pi*ifelse(dir>0,dir,360+dir)/180) wind_dir=pi*metes$dir/180 angle=paras$angle well_ext=well_ext%>% mutate(angle_dif=abs(180*atan2(sin(dir-wind_dir), cos(dir-wind_dir))/pi)) wells_upwind=well_ext%>%filter( angle_dif<angle ) wells_downwind=well_ext%>%filter( angle_dif>(180-angle) ) table[row,c("d_h")]=wells_downwind%>%filter(Pred_DrillType=="H")%>%count() table[row,c("d_v")]=wells_downwind%>%filter(Pred_DrillType=="V")%>%count() table[row,c("d_hd")]=wells_downwind%>%filter(Pred_DrillType=="H")%>%summarise(hd=mean(dist)) table[row,c("d_vd")]=wells_downwind%>%filter(Pred_DrillType=="V")%>%summarise(hd=mean(dist)) table[row,c("u_h")]=wells_upwind%>%filter(Pred_DrillType=="H")%>%count() table[row,c("u_v")]=wells_upwind%>%filter(Pred_DrillType=="V")%>%count() table[row,c("u_hd")]=wells_upwind%>%filter(Pred_DrillType=="H")%>%summarise(hd=mean(dist)) table[row,c("u_vd")]=wells_upwind%>%filter(Pred_DrillType=="V")%>%summarise(hd=mean(dist)) table[row,"radius"]=20+5*table[row,"radius"] if(row%%1000==0){ print(paste0(Sys.time(),"_",row," % ",nrow(table))) } } save(file=here::here("data","Resub_city_daily_prod",paste0(city,"_Daily_Prod_E2001.RData")),table) } }else{ print(paste0(num," Alreadt Exist!")) }
/code/Re_37_Batch_City_Prod.R
no_license
longxiang1025/Fracking_Radiation
R
false
false
5,353
r
num<-as.numeric(Sys.getenv("Sim")) #This is a modification version for re-submission #The major features include: #1. Add average distance within the buffer. #2. Calculate two other angle range: 30 and 60. #3. Calculat the downwind number for negative control. library(raster) library(rgeos) library(dplyr) library(splines) library(rgeos) library(lubridate) library(here) prjstring<-"+proj=aea +lat_1=20 +lat_2=60 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=WGS84 +units=m +no_defs " geoprjstring<-"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" #Load function files----------------------------------------------------- source(here::here("code","Data_Downloading_Functions.R")) load(here::here("data","Beta_Measurements_2001.RData")) load(here::here("data","RadNet.RData")) load(here::here("data","Wells_3rd.RData")) coordinates(wells)<-~lon+lat proj4string(wells)<-geoprjstring wells<-spTransform(wells,prjstring) radnet_sp<-spTransform(radnet,prjstring) #load(here::here("data","Rad_NARR_2001.RData")) load(here::here("data","NARR_2001.RData")) i=num city<-radnet@data[i,"city_state"] overwrite=file.exists(here::here("data","Resub_city_daily_prod", paste0(city,"_Daily_Prod_E2001.RData"))) if(!overwrite){ rad_well_link<-create_link_buffer(point = radnet_sp[i,],point_ID = "city_state",points = wells, points_ID = "ApiNo",si_col =c("Pred_DrillType","DrillType","ProdType","SpudDate","CompDate","FirstProdDate","LastProdDate","GasCum","LiqCum","Status"), width=50000) if(!is.null(rad_well_link)){ rad_well_link$ApiNo<-as.character(rad_well_link$ApiNo) city_narr=narr_data%>%filter(city_state==city) table=expand.grid(city=city,date=city_narr$Date,radius=0:6,angle=c(30,45,60)) table$u_h=0 table$u_v=0 #Formalize the production type, converting the diverse oil prodcution activity to oil rad_well_link<-rad_well_link%>%mutate(ProdType=case_when( ProdType=="OIL" ~ "OIL", ProdType=="Gas" ~ "Gas", ProdType=="O&G" ~ "O&G", ProdType=="OIL (CYCLIC STEAM)" ~ "OIL" )) #According to EIA, most wells produce both gas and liquid some time, so I add another two #columns indicating whether liq/gas was produced rad_well_link<-rad_well_link%>%mutate(Oil=case_when( is.na(LiqCum)~ FALSE, LiqCum==0 ~ FALSE, ProdType=="OIL" ~ TRUE, ProdType=="O&G" ~ TRUE, LiqCum>0 ~ TRUE)) rad_well_link<-rad_well_link%>%mutate(Gas=case_when( is.na(GasCum)~ FALSE, GasCum==0 ~ FALSE, ProdType=="Gas" ~ TRUE, ProdType=="O&G" ~ TRUE, GasCum>0 ~ TRUE)) rad_well_link<-rad_well_link%>%filter(Status!="PERMITTED") rad_well_link<-rad_well_link%>%filter(Status!="CANCELLED") rad_well_link<-rad_well_link%>%filter(Oil|Gas) rad_well_link<-rad_well_link%>%mutate(Active_Peroid=case_when( !is.na(SpudDate) & !is.na(CompDate) & !is.na(LastProdDate) ~ interval(start=SpudDate,end=LastProdDate), !is.na(SpudDate) & is.na(CompDate) & !is.na(LastProdDate) ~ interval(start= SpudDate, end=LastProdDate), is.na(SpudDate) & !is.na(CompDate) & !is.na(LastProdDate) ~ interval(start=CompDate,end=LastProdDate), is.na(SpudDate) & is.na(CompDate) & !is.na(LastProdDate) ~ interval(start=FirstProdDate,end=LastProdDate), !is.na(SpudDate) & !is.na(CompDate) ~ interval( start = SpudDate, end=CompDate) )) rad_well_link<-rad_well_link%>%mutate(LastProdDate=case_when( is.na(Active_Peroid) ~ as.Date("1990-01-01"), !is.na(Active_Peroid) ~ LastProdDate )) for(row in 1:nrow(table)){ paras=table[row,] #bottom=0+paras$radius*5 up=20+paras$radius*5 metes=city_narr%>%filter(Date==paras$date) well_ext=rad_well_link%>% filter(ymd(paras$date)>int_start(Active_Peroid),dist<up)%>% mutate(dir=pi*ifelse(dir>0,dir,360+dir)/180) wind_dir=pi*metes$dir/180 angle=paras$angle well_ext=well_ext%>% mutate(angle_dif=abs(180*atan2(sin(dir-wind_dir), cos(dir-wind_dir))/pi)) wells_upwind=well_ext%>%filter( angle_dif<angle ) wells_downwind=well_ext%>%filter( angle_dif>(180-angle) ) table[row,c("d_h")]=wells_downwind%>%filter(Pred_DrillType=="H")%>%count() table[row,c("d_v")]=wells_downwind%>%filter(Pred_DrillType=="V")%>%count() table[row,c("d_hd")]=wells_downwind%>%filter(Pred_DrillType=="H")%>%summarise(hd=mean(dist)) table[row,c("d_vd")]=wells_downwind%>%filter(Pred_DrillType=="V")%>%summarise(hd=mean(dist)) table[row,c("u_h")]=wells_upwind%>%filter(Pred_DrillType=="H")%>%count() table[row,c("u_v")]=wells_upwind%>%filter(Pred_DrillType=="V")%>%count() table[row,c("u_hd")]=wells_upwind%>%filter(Pred_DrillType=="H")%>%summarise(hd=mean(dist)) table[row,c("u_vd")]=wells_upwind%>%filter(Pred_DrillType=="V")%>%summarise(hd=mean(dist)) table[row,"radius"]=20+5*table[row,"radius"] if(row%%1000==0){ print(paste0(Sys.time(),"_",row," % ",nrow(table))) } } save(file=here::here("data","Resub_city_daily_prod",paste0(city,"_Daily_Prod_E2001.RData")),table) } }else{ print(paste0(num," Alreadt Exist!")) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/build_local_dockerfile.R \name{build_local_dockerfile} \alias{build_local_dockerfile} \title{Docker build local image Assumes your built image is named after your dockerhub username} \usage{ build_local_dockerfile(dockerhub_username, project_name) } \arguments{ \item{dockerhub_username}{username for dockerhub} \item{project_name}{built image name} } \description{ Docker build local image Assumes your built image is named after your dockerhub username } \examples{ build_local_dockerfile('my_username', 'my_project_name') }
/man/build_local_dockerfile.Rd
permissive
smwindecker/dockertools
R
false
true
606
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/build_local_dockerfile.R \name{build_local_dockerfile} \alias{build_local_dockerfile} \title{Docker build local image Assumes your built image is named after your dockerhub username} \usage{ build_local_dockerfile(dockerhub_username, project_name) } \arguments{ \item{dockerhub_username}{username for dockerhub} \item{project_name}{built image name} } \description{ Docker build local image Assumes your built image is named after your dockerhub username } \examples{ build_local_dockerfile('my_username', 'my_project_name') }
#install.packages("devtools") library(devtools) library(MASS) #Global variables PSA_switch <- 1 PSA_numb <- 750 pat_numb <- 25000 days_to_discharge <- 30 days_in_year <- 365.25 time_horizon <- 100 discount_rate_QALYs <- 0.035 discount_rate_costs <- 0.035 Param_export <- 1 Proportion_RR_MTC_ISS_o8_u16_hosp <- 0 Proportion_RR_MTC_ISS_o8_u16_1yr <- 0 TARN_mort_eq <- "Old" # options are new or old. Default is old MTCs_in_mort_risk <- "No" #options are Yes or no. Relates to whether the mort eq is a composite risk score for a #population who has / has not been to an MTC or a population who hasn't gone to an MTC. Default is no, as the #default for the mortality equation is the Old TARN equation. percent_TARN_cases_reported_ISS_o16 <- 1 percent_TARN_cases_reported_ISS_o9_u16 <- 1 population_source <- "Dutch" # Options are UK and Dutch. Dutch is the default population_ISS_over16_only <- "No" # Options are yes or no. Default is no. efficent_life_expectancy <- "Yes" #Options are Yes or No. Default is yes test_pat_chars <- "No" #Change this to Yes if you only want to run the base case analysis with patient level results PSA_strat <- "S100" #Option to make sure that each instance only runs one set of PSAs, as it is computationally intensive #Options are: S100, S95, S90, S88, S75, S70, S64, S57, S28, MTC, nMTC, S100_S1, S95_S1, S90_S1, S88_S1, S75_S1, S70_S1, S64_S1, S57_S1, S28_S1 PSA_rand_no <- 330413 #random number to determine PSA parameters. #if -99 this will not change the seed after randomly determining the number of patients to run through the model. #settings for MATTS phase 1 where first 500 runs 26090100 (after generating pat chars), next 1000 runs (ten diagnostic strategies only) 1346 date <- "_3" #name to append to saved files #read in files from the X drive (note not on Git due to confidentiality reasons) file_location <- "\\\\uosfstore.shef.ac.uk\\shared\\ScHARR\\PR_MATTS\\General\\Health Economics\\Model\\" param_data <- read.csv("parameters.csv", row.names=1) life_tabs <- read.csv("ONSlifetables.csv") future_costs <- read.csv("lifetime-healthcare-costs.csv") if(population_source=="UK"){ means <- as.matrix(read.csv(paste(file_location,"means.csv", sep=""),row.names=1)) covariance <- as.matrix(read.csv(paste(file_location,"covariance.csv", sep=""), row.names=1)) age_tab <- read.csv(paste(file_location,"age_tab.csv", sep=""),row.names=1) gen_tab <- read.csv(paste(file_location,"gen_tab.csv", sep=""),row.names=1) ISS_tab <- read.csv(paste(file_location,"ISS_tab.csv", sep=""),row.names=1) GCS_tab <- read.csv(paste(file_location,"GCS_tab.csv", sep=""),row.names=1) }else{ means <- as.matrix(read.csv(paste(file_location,"means_dutch_v2.csv", sep=""),row.names=1)) covariance <- as.matrix(read.csv(paste(file_location,"covariance_dutch_v2.csv", sep=""), row.names=1)) age_tab <- read.csv(paste(file_location,"age_tab_dutch_v2.csv", sep=""),row.names=1) gen_tab <- read.csv(paste(file_location,"male_tab_dutch_v2.csv", sep=""),row.names=1) ISS_tab <- read.csv(paste(file_location,"ISS_tab_dutch_v2.csv", sep=""),row.names=1) GCS_tab <- read.csv(paste(file_location,"GCS_tab_dutch_v2.csv", sep=""),row.names=1) blunt_tab <- read.csv(paste(file_location,"blunt_tab_dutch_v2.csv", sep=""),row.names=1) } #Call in all functions source("Functions.R") #Do you want to the use pre-simluated population and PSA? predefined_pop_PSA <- "No" # Option to use the pre-simulated population and PSA parameters #Set to "Yes" if using the publicly shared version of the model # In the predefined population we have merged some ISS and age categories for potential #identifiability reasons #Analysis################### param_data_bc <- param_data ########################################################## #with 20,000 patients the results are stable in the base case if(PSA_switch==0){ sens_100_spec_3 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.998, 0.025,1) sens_95_spec_19 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.948, 0.187,1) sens_90_spec_58 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.904, 0.584,1) sens_88_spec_63 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.875, 0.628,1) sens_75_spec_66 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.746, 0.657,1) sens_70_spec_70 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.698, 0.701,1) sens_64_spec_76 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.642, 0.761,1) sens_57_spec_80 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.57, 0.8,1) sens_28_spec_89 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.284, 0.886,1) #create a matrix to store all runs det_analyses <- matrix (nrow = 9, ncol =12) #name the columns to make analysis easier colnames(det_analyses) <- c("Sens_DR","Spec_DR", "Number_recieving_MTC_care","proportion_died_before_discharge","proportion_died_between_discharge_and_1_year", "Years_lived", "undiscounted_QALYs", "discounted_QALYs", "undiscounted_Costs", "discounted_Costs", "proportion_ISS_over_16", "proportion_ISS_over_8_under_16") #name the rows with the appropiate strategy rownames(det_analyses) <- c("sens_100_spec_3", "sens_95_spec_19", "sens_90_spec_58", "sens_88_spec_63", "sens_75_spec_66", "sens_70_spec_70", "sens_64_spec_76", "sens_57_spec_80", "sens_28_spec_89") det_analyses["sens_100_spec_3", ]<- sens_100_spec_3 det_analyses["sens_95_spec_19", ]<- sens_95_spec_19 det_analyses["sens_90_spec_58", ]<- sens_90_spec_58 det_analyses["sens_88_spec_63", ]<- sens_88_spec_63 det_analyses["sens_75_spec_66", ]<- sens_75_spec_66 det_analyses["sens_70_spec_70", ]<- sens_70_spec_70 det_analyses["sens_64_spec_76", ]<- sens_64_spec_76 det_analyses["sens_57_spec_80", ]<- sens_57_spec_80 det_analyses["sens_28_spec_89", ]<- sens_28_spec_89 write.csv(det_analyses,"base case.csv") } if(PSA_switch==1){ if(PSA_strat == "S100"){ sens_100_spec_3_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.998, 0.025,1) write.csv(sens_100_spec_3_PSA, paste(file_location,"PSA results\\sens_100_spec_3_PSA",date,".csv", sep="")) use_params_sens_100_spec_3_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_100_spec_3_PSA, "PSA results\\sens_100_spec_3_PSA_params.csv") } if(PSA_strat == "S95"){ sens_95_spec_19_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.948, 0.187,1) write.csv(sens_95_spec_19_PSA, paste(file_location,"PSA results\\sens_95_spec_19_PSA",date,".csv", sep="")) use_params_sens_95_spec_19_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_95_spec_19_PSA, "PSA results\\sens_95_spec_19_PSA_params.csv") } if(PSA_strat == "S90"){ sens_90_spec_58_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.904, 0.584,1) write.csv(sens_90_spec_58_PSA, paste(file_location,"PSA results\\sens_90_spec_58_PSA",date,".csv", sep="")) use_params_sens_90_spec_58_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_90_spec_58_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S88"){ sens_88_spec_63_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.875, 0.628,1) write.csv(sens_88_spec_63_PSA, paste(file_location,"PSA results\\sens_88_spec_63_PSA",date,".csv", sep="")) use_params_sens_88_spec_63_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_88_spec_63_PSA, "PSA results\\sens_88_spec_63_PSA_params.csv") } if(PSA_strat == "S75"){ sens_75_spec_66_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.746, 0.657,1) write.csv(sens_75_spec_66_PSA, paste(file_location,"PSA results\\sens_75_spec_66",date,".csv", sep="")) use_params_sens_75_spec_66_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_75_spec_66_PSA, "sens_75_spec_66_PSA_params.csv") } if(PSA_strat == "S70"){ sens_70_spec_70_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.698, 0.701,1) write.csv(sens_70_spec_70_PSA, paste(file_location,"PSA results\\sens_70_spec_70",date,".csv", sep="")) use_params_sens_70_spec_70_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_70_spec_70_PSA, "sens_70_spec_70_PSA_params.csv") } if(PSA_strat == "S64"){ sens_64_spec_76_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.642, 0.761,1) write.csv(sens_64_spec_76_PSA, paste(file_location,"PSA results\\sens_64_spec_76",date,".csv", sep="")) use_params_sens_64_spec_76 <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_64_spec_76, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S57"){ sens_57_spec_80_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.57, 0.8,1) write.csv(sens_57_spec_80_PSA, paste(file_location,"PSA results\\sens_57_spec_80",date,".csv", sep="")) use_params_sens_57_spec_80_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_57_spec_80_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S28"){ sens_28_spec_89_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.284, 0.886,1) write.csv(sens_28_spec_89_PSA, paste(file_location,"PSA results\\sens_28_spec_89",date,".csv", sep="")) use_params_sens_28_spec_89_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_28_spec_89_PSA, "PSA results\\sens_28_spec_89_PSA_params.csv") } #Use the newer TARN mortality equation TARN_mort_eq <- "New" MTCs_in_mort_risk <- "Yes" if(PSA_switch==1){ if(PSA_strat == "S100_S1"){ sens_100_spec_3_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.998, 0.025,1) write.csv(sens_100_spec_3_PSA, paste(file_location,"PSA results\\sens_100_spec_3_PSA",date,".csv", sep="")) use_params_sens_100_spec_3_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_100_spec_3_PSA, "PSA results\\sens_100_spec_3_PSA_params.csv") } if(PSA_strat == "S95_S1"){ sens_95_spec_19_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.948, 0.187,1) write.csv(sens_95_spec_19_PSA, paste(file_location,"PSA results\\sens_95_spec_19_PSA",date,".csv", sep="")) use_params_sens_95_spec_19_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_95_spec_19_PSA, "PSA results\\sens_95_spec_19_PSA_params.csv") } if(PSA_strat == "S90_S1"){ sens_90_spec_58_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.904, 0.584,1) write.csv(sens_90_spec_58_PSA, paste(file_location,"PSA results\\sens_90_spec_58_PSA",date,".csv", sep="")) use_params_sens_90_spec_58_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_90_spec_58_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S88_S1"){ sens_88_spec_63_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.875, 0.628,1) write.csv(sens_88_spec_63_PSA, paste(file_location,"PSA results\\sens_88_spec_63_PSA",date,".csv", sep="")) use_params_sens_88_spec_63_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_88_spec_63_PSA, "PSA results\\sens_88_spec_63_PSA_params.csv") } if(PSA_strat == "S75_S1"){ sens_75_spec_66_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.746, 0.657,1) write.csv(sens_75_spec_66_PSA, paste(file_location,"PSA results\\sens_75_spec_66",date,".csv", sep="")) use_params_sens_75_spec_66_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_75_spec_66_PSA, "sens_75_spec_66_PSA_params.csv") } if(PSA_strat == "S70_S1"){ sens_70_spec_70_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.698, 0.701,1) write.csv(sens_70_spec_70_PSA, paste(file_location,"PSA results\\sens_70_spec_70",date,".csv", sep="")) use_params_sens_70_spec_70_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_70_spec_70_PSA, "sens_70_spec_70_PSA_params.csv") } if(PSA_strat == "S64_S1"){ sens_64_spec_76_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.642, 0.761,1) write.csv(sens_64_spec_76_PSA, paste(file_location,"PSA results\\sens_64_spec_76",date,".csv", sep="")) use_params_sens_64_spec_76 <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_64_spec_76, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S57_S1"){ sens_57_spec_80_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.57, 0.8,1) write.csv(sens_57_spec_80_PSA, paste(file_location,"PSA results\\sens_57_spec_80",date,".csv", sep="")) use_params_sens_57_spec_80_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_57_spec_80_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S28_S1"){ sens_28_spec_89_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.284, 0.886,1) write.csv(sens_28_spec_89_PSA, paste(file_location,"PSA results\\sens_28_spec_89",date,".csv", sep="")) use_params_sens_28_spec_89_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_28_spec_89_PSA, "PSA results\\sens_28_spec_89_PSA_params.csv") } } param_data_MTCs <- param_data #Change the variables so everyone with a positive rule goes to the MTC #everyone with a negative rule goes to an nMTC #set the costs of MTCs to 0 param_data_MTCs["P_MTC_Tri_pos_ISS_o15",1] <- 1 param_data_MTCs["P_MTC_Tri_pos_ISS_o15",3] <- "Fixed" param_data_MTCs["P_MTC_Tri_neg_ISS_o15",1] <- 0 param_data_MTCs["P_MTC_Tri_neg_ISS_o15",3] <- "Fixed" param_data_MTCs["Transfer_nMTC_to_MTC_ISSo15_TN",1] <- 0 param_data_MTCs["Transfer_nMTC_to_MTC_ISSo15_TN",3] <- "Fixed" param_data_MTCs["C_MTC_ISS_o15",1] <- 0 param_data_MTCs["C_MTC_ISS_o15",3] <- "Fixed" #Change the population matrix to only include people with an ISS of 16 or more #reset other options to their defaults TARN_mort_eq <- "Old" MTCs_in_mort_risk <- "No" population_ISS_over16_only <- "Yes" if(PSA_switch ==0) { sens_100_spec_10 <- run_simulation(param_data_MTCs, 0, 1, pat_numb, "manual", 1, 0.1,1) sens_0_spec_90 <- run_simulation(param_data_MTCs, 0, 1, pat_numb, "manual", 0, 0.9,1) #create a matrix to store all runs det_analyses <- matrix (nrow = 2, ncol =12) #name the columns to make analysis easier colnames(det_analyses) <- c("Sens_DR","Spec_DR", "Number_recieving_MTC_care","proportion_died_before_discharge","proportion_died_between_discharge_and_1_year", "Years_lived", "undiscounted_QALYs", "discounted_QALYs", "undiscounted_Costs", "discounted_Costs", "proportion_ISS_over_16", "proportion_ISS_over_8_under_16") #name the rows with the appropiate strategy rownames(det_analyses) <- c("All_MTC", "No_MTC") det_analyses["All_MTC", ]<- sens_100_spec_10 det_analyses["No_MTC", ]<- sens_0_spec_90 write.csv(det_analyses, "MTC v no MTC.csv") } if(PSA_switch==1){ if(PSA_strat == "MTC"){ sens_100_spec_10_PSA <- run_simulation(param_data_MTCs, 1, PSA_numb, pat_numb, "manual", 1, 0.1,1) write.csv(sens_100_spec_10_PSA, paste(file_location,"PSA results\\sens_100_spec_10_PSA",date,".csv", sep="")) use_params_sens_100_spec_10_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_100_spec_10_PSA, "PSA results\\sens_100_spec_10_PSA_params.csv") } if(PSA_strat == "nMTC"){ sens_0_spec_90_PSA <- run_simulation(param_data_MTCs, 1, PSA_numb, pat_numb, "manual", 0, 0.9,1) write.csv(sens_0_spec_90_PSA, paste(file_location,"PSA results\\sens_0_spec_90_PSA_",date,".csv", sep="")) use_params_sens_0_spec_90_PSA<- read.csv("parameter_outputs.csv") write.csv(use_params_sens_0_spec_90_PSA, "PSA results\\sens_0_spec_90_PSA_params.csv") } } }
/Base Case/BaseCasePSA_S100_3.R
permissive
DanPollardSheff/ideal-winner
R
false
false
15,828
r
#install.packages("devtools") library(devtools) library(MASS) #Global variables PSA_switch <- 1 PSA_numb <- 750 pat_numb <- 25000 days_to_discharge <- 30 days_in_year <- 365.25 time_horizon <- 100 discount_rate_QALYs <- 0.035 discount_rate_costs <- 0.035 Param_export <- 1 Proportion_RR_MTC_ISS_o8_u16_hosp <- 0 Proportion_RR_MTC_ISS_o8_u16_1yr <- 0 TARN_mort_eq <- "Old" # options are new or old. Default is old MTCs_in_mort_risk <- "No" #options are Yes or no. Relates to whether the mort eq is a composite risk score for a #population who has / has not been to an MTC or a population who hasn't gone to an MTC. Default is no, as the #default for the mortality equation is the Old TARN equation. percent_TARN_cases_reported_ISS_o16 <- 1 percent_TARN_cases_reported_ISS_o9_u16 <- 1 population_source <- "Dutch" # Options are UK and Dutch. Dutch is the default population_ISS_over16_only <- "No" # Options are yes or no. Default is no. efficent_life_expectancy <- "Yes" #Options are Yes or No. Default is yes test_pat_chars <- "No" #Change this to Yes if you only want to run the base case analysis with patient level results PSA_strat <- "S100" #Option to make sure that each instance only runs one set of PSAs, as it is computationally intensive #Options are: S100, S95, S90, S88, S75, S70, S64, S57, S28, MTC, nMTC, S100_S1, S95_S1, S90_S1, S88_S1, S75_S1, S70_S1, S64_S1, S57_S1, S28_S1 PSA_rand_no <- 330413 #random number to determine PSA parameters. #if -99 this will not change the seed after randomly determining the number of patients to run through the model. #settings for MATTS phase 1 where first 500 runs 26090100 (after generating pat chars), next 1000 runs (ten diagnostic strategies only) 1346 date <- "_3" #name to append to saved files #read in files from the X drive (note not on Git due to confidentiality reasons) file_location <- "\\\\uosfstore.shef.ac.uk\\shared\\ScHARR\\PR_MATTS\\General\\Health Economics\\Model\\" param_data <- read.csv("parameters.csv", row.names=1) life_tabs <- read.csv("ONSlifetables.csv") future_costs <- read.csv("lifetime-healthcare-costs.csv") if(population_source=="UK"){ means <- as.matrix(read.csv(paste(file_location,"means.csv", sep=""),row.names=1)) covariance <- as.matrix(read.csv(paste(file_location,"covariance.csv", sep=""), row.names=1)) age_tab <- read.csv(paste(file_location,"age_tab.csv", sep=""),row.names=1) gen_tab <- read.csv(paste(file_location,"gen_tab.csv", sep=""),row.names=1) ISS_tab <- read.csv(paste(file_location,"ISS_tab.csv", sep=""),row.names=1) GCS_tab <- read.csv(paste(file_location,"GCS_tab.csv", sep=""),row.names=1) }else{ means <- as.matrix(read.csv(paste(file_location,"means_dutch_v2.csv", sep=""),row.names=1)) covariance <- as.matrix(read.csv(paste(file_location,"covariance_dutch_v2.csv", sep=""), row.names=1)) age_tab <- read.csv(paste(file_location,"age_tab_dutch_v2.csv", sep=""),row.names=1) gen_tab <- read.csv(paste(file_location,"male_tab_dutch_v2.csv", sep=""),row.names=1) ISS_tab <- read.csv(paste(file_location,"ISS_tab_dutch_v2.csv", sep=""),row.names=1) GCS_tab <- read.csv(paste(file_location,"GCS_tab_dutch_v2.csv", sep=""),row.names=1) blunt_tab <- read.csv(paste(file_location,"blunt_tab_dutch_v2.csv", sep=""),row.names=1) } #Call in all functions source("Functions.R") #Do you want to the use pre-simluated population and PSA? predefined_pop_PSA <- "No" # Option to use the pre-simulated population and PSA parameters #Set to "Yes" if using the publicly shared version of the model # In the predefined population we have merged some ISS and age categories for potential #identifiability reasons #Analysis################### param_data_bc <- param_data ########################################################## #with 20,000 patients the results are stable in the base case if(PSA_switch==0){ sens_100_spec_3 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.998, 0.025,1) sens_95_spec_19 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.948, 0.187,1) sens_90_spec_58 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.904, 0.584,1) sens_88_spec_63 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.875, 0.628,1) sens_75_spec_66 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.746, 0.657,1) sens_70_spec_70 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.698, 0.701,1) sens_64_spec_76 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.642, 0.761,1) sens_57_spec_80 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.57, 0.8,1) sens_28_spec_89 <- run_simulation(param_data_bc, 0, 1, pat_numb, "manual", 0.284, 0.886,1) #create a matrix to store all runs det_analyses <- matrix (nrow = 9, ncol =12) #name the columns to make analysis easier colnames(det_analyses) <- c("Sens_DR","Spec_DR", "Number_recieving_MTC_care","proportion_died_before_discharge","proportion_died_between_discharge_and_1_year", "Years_lived", "undiscounted_QALYs", "discounted_QALYs", "undiscounted_Costs", "discounted_Costs", "proportion_ISS_over_16", "proportion_ISS_over_8_under_16") #name the rows with the appropiate strategy rownames(det_analyses) <- c("sens_100_spec_3", "sens_95_spec_19", "sens_90_spec_58", "sens_88_spec_63", "sens_75_spec_66", "sens_70_spec_70", "sens_64_spec_76", "sens_57_spec_80", "sens_28_spec_89") det_analyses["sens_100_spec_3", ]<- sens_100_spec_3 det_analyses["sens_95_spec_19", ]<- sens_95_spec_19 det_analyses["sens_90_spec_58", ]<- sens_90_spec_58 det_analyses["sens_88_spec_63", ]<- sens_88_spec_63 det_analyses["sens_75_spec_66", ]<- sens_75_spec_66 det_analyses["sens_70_spec_70", ]<- sens_70_spec_70 det_analyses["sens_64_spec_76", ]<- sens_64_spec_76 det_analyses["sens_57_spec_80", ]<- sens_57_spec_80 det_analyses["sens_28_spec_89", ]<- sens_28_spec_89 write.csv(det_analyses,"base case.csv") } if(PSA_switch==1){ if(PSA_strat == "S100"){ sens_100_spec_3_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.998, 0.025,1) write.csv(sens_100_spec_3_PSA, paste(file_location,"PSA results\\sens_100_spec_3_PSA",date,".csv", sep="")) use_params_sens_100_spec_3_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_100_spec_3_PSA, "PSA results\\sens_100_spec_3_PSA_params.csv") } if(PSA_strat == "S95"){ sens_95_spec_19_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.948, 0.187,1) write.csv(sens_95_spec_19_PSA, paste(file_location,"PSA results\\sens_95_spec_19_PSA",date,".csv", sep="")) use_params_sens_95_spec_19_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_95_spec_19_PSA, "PSA results\\sens_95_spec_19_PSA_params.csv") } if(PSA_strat == "S90"){ sens_90_spec_58_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.904, 0.584,1) write.csv(sens_90_spec_58_PSA, paste(file_location,"PSA results\\sens_90_spec_58_PSA",date,".csv", sep="")) use_params_sens_90_spec_58_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_90_spec_58_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S88"){ sens_88_spec_63_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.875, 0.628,1) write.csv(sens_88_spec_63_PSA, paste(file_location,"PSA results\\sens_88_spec_63_PSA",date,".csv", sep="")) use_params_sens_88_spec_63_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_88_spec_63_PSA, "PSA results\\sens_88_spec_63_PSA_params.csv") } if(PSA_strat == "S75"){ sens_75_spec_66_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.746, 0.657,1) write.csv(sens_75_spec_66_PSA, paste(file_location,"PSA results\\sens_75_spec_66",date,".csv", sep="")) use_params_sens_75_spec_66_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_75_spec_66_PSA, "sens_75_spec_66_PSA_params.csv") } if(PSA_strat == "S70"){ sens_70_spec_70_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.698, 0.701,1) write.csv(sens_70_spec_70_PSA, paste(file_location,"PSA results\\sens_70_spec_70",date,".csv", sep="")) use_params_sens_70_spec_70_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_70_spec_70_PSA, "sens_70_spec_70_PSA_params.csv") } if(PSA_strat == "S64"){ sens_64_spec_76_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.642, 0.761,1) write.csv(sens_64_spec_76_PSA, paste(file_location,"PSA results\\sens_64_spec_76",date,".csv", sep="")) use_params_sens_64_spec_76 <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_64_spec_76, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S57"){ sens_57_spec_80_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.57, 0.8,1) write.csv(sens_57_spec_80_PSA, paste(file_location,"PSA results\\sens_57_spec_80",date,".csv", sep="")) use_params_sens_57_spec_80_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_57_spec_80_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S28"){ sens_28_spec_89_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.284, 0.886,1) write.csv(sens_28_spec_89_PSA, paste(file_location,"PSA results\\sens_28_spec_89",date,".csv", sep="")) use_params_sens_28_spec_89_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_28_spec_89_PSA, "PSA results\\sens_28_spec_89_PSA_params.csv") } #Use the newer TARN mortality equation TARN_mort_eq <- "New" MTCs_in_mort_risk <- "Yes" if(PSA_switch==1){ if(PSA_strat == "S100_S1"){ sens_100_spec_3_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.998, 0.025,1) write.csv(sens_100_spec_3_PSA, paste(file_location,"PSA results\\sens_100_spec_3_PSA",date,".csv", sep="")) use_params_sens_100_spec_3_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_100_spec_3_PSA, "PSA results\\sens_100_spec_3_PSA_params.csv") } if(PSA_strat == "S95_S1"){ sens_95_spec_19_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.948, 0.187,1) write.csv(sens_95_spec_19_PSA, paste(file_location,"PSA results\\sens_95_spec_19_PSA",date,".csv", sep="")) use_params_sens_95_spec_19_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_95_spec_19_PSA, "PSA results\\sens_95_spec_19_PSA_params.csv") } if(PSA_strat == "S90_S1"){ sens_90_spec_58_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.904, 0.584,1) write.csv(sens_90_spec_58_PSA, paste(file_location,"PSA results\\sens_90_spec_58_PSA",date,".csv", sep="")) use_params_sens_90_spec_58_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_90_spec_58_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S88_S1"){ sens_88_spec_63_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.875, 0.628,1) write.csv(sens_88_spec_63_PSA, paste(file_location,"PSA results\\sens_88_spec_63_PSA",date,".csv", sep="")) use_params_sens_88_spec_63_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_88_spec_63_PSA, "PSA results\\sens_88_spec_63_PSA_params.csv") } if(PSA_strat == "S75_S1"){ sens_75_spec_66_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.746, 0.657,1) write.csv(sens_75_spec_66_PSA, paste(file_location,"PSA results\\sens_75_spec_66",date,".csv", sep="")) use_params_sens_75_spec_66_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_75_spec_66_PSA, "sens_75_spec_66_PSA_params.csv") } if(PSA_strat == "S70_S1"){ sens_70_spec_70_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.698, 0.701,1) write.csv(sens_70_spec_70_PSA, paste(file_location,"PSA results\\sens_70_spec_70",date,".csv", sep="")) use_params_sens_70_spec_70_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_70_spec_70_PSA, "sens_70_spec_70_PSA_params.csv") } if(PSA_strat == "S64_S1"){ sens_64_spec_76_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.642, 0.761,1) write.csv(sens_64_spec_76_PSA, paste(file_location,"PSA results\\sens_64_spec_76",date,".csv", sep="")) use_params_sens_64_spec_76 <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_64_spec_76, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S57_S1"){ sens_57_spec_80_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.57, 0.8,1) write.csv(sens_57_spec_80_PSA, paste(file_location,"PSA results\\sens_57_spec_80",date,".csv", sep="")) use_params_sens_57_spec_80_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_57_spec_80_PSA, "PSA results\\sens_90_spec_58_PSA_params.csv") } if(PSA_strat == "S28_S1"){ sens_28_spec_89_PSA <- run_simulation(param_data_bc, 1, PSA_numb, pat_numb, "manual", 0.284, 0.886,1) write.csv(sens_28_spec_89_PSA, paste(file_location,"PSA results\\sens_28_spec_89",date,".csv", sep="")) use_params_sens_28_spec_89_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_28_spec_89_PSA, "PSA results\\sens_28_spec_89_PSA_params.csv") } } param_data_MTCs <- param_data #Change the variables so everyone with a positive rule goes to the MTC #everyone with a negative rule goes to an nMTC #set the costs of MTCs to 0 param_data_MTCs["P_MTC_Tri_pos_ISS_o15",1] <- 1 param_data_MTCs["P_MTC_Tri_pos_ISS_o15",3] <- "Fixed" param_data_MTCs["P_MTC_Tri_neg_ISS_o15",1] <- 0 param_data_MTCs["P_MTC_Tri_neg_ISS_o15",3] <- "Fixed" param_data_MTCs["Transfer_nMTC_to_MTC_ISSo15_TN",1] <- 0 param_data_MTCs["Transfer_nMTC_to_MTC_ISSo15_TN",3] <- "Fixed" param_data_MTCs["C_MTC_ISS_o15",1] <- 0 param_data_MTCs["C_MTC_ISS_o15",3] <- "Fixed" #Change the population matrix to only include people with an ISS of 16 or more #reset other options to their defaults TARN_mort_eq <- "Old" MTCs_in_mort_risk <- "No" population_ISS_over16_only <- "Yes" if(PSA_switch ==0) { sens_100_spec_10 <- run_simulation(param_data_MTCs, 0, 1, pat_numb, "manual", 1, 0.1,1) sens_0_spec_90 <- run_simulation(param_data_MTCs, 0, 1, pat_numb, "manual", 0, 0.9,1) #create a matrix to store all runs det_analyses <- matrix (nrow = 2, ncol =12) #name the columns to make analysis easier colnames(det_analyses) <- c("Sens_DR","Spec_DR", "Number_recieving_MTC_care","proportion_died_before_discharge","proportion_died_between_discharge_and_1_year", "Years_lived", "undiscounted_QALYs", "discounted_QALYs", "undiscounted_Costs", "discounted_Costs", "proportion_ISS_over_16", "proportion_ISS_over_8_under_16") #name the rows with the appropiate strategy rownames(det_analyses) <- c("All_MTC", "No_MTC") det_analyses["All_MTC", ]<- sens_100_spec_10 det_analyses["No_MTC", ]<- sens_0_spec_90 write.csv(det_analyses, "MTC v no MTC.csv") } if(PSA_switch==1){ if(PSA_strat == "MTC"){ sens_100_spec_10_PSA <- run_simulation(param_data_MTCs, 1, PSA_numb, pat_numb, "manual", 1, 0.1,1) write.csv(sens_100_spec_10_PSA, paste(file_location,"PSA results\\sens_100_spec_10_PSA",date,".csv", sep="")) use_params_sens_100_spec_10_PSA <- read.csv("parameter_outputs.csv") write.csv(use_params_sens_100_spec_10_PSA, "PSA results\\sens_100_spec_10_PSA_params.csv") } if(PSA_strat == "nMTC"){ sens_0_spec_90_PSA <- run_simulation(param_data_MTCs, 1, PSA_numb, pat_numb, "manual", 0, 0.9,1) write.csv(sens_0_spec_90_PSA, paste(file_location,"PSA results\\sens_0_spec_90_PSA_",date,".csv", sep="")) use_params_sens_0_spec_90_PSA<- read.csv("parameter_outputs.csv") write.csv(use_params_sens_0_spec_90_PSA, "PSA results\\sens_0_spec_90_PSA_params.csv") } } }
library(ngspatial) # For adjacency.matrix library(plot.matrix) simulate_ising <- function(n_pixels, adjacency, beta, n_iter=1000) { stopifnot(dim(adjacency) == c(n_pixels, n_pixels)) values <- c(-1, 1) z <- sample(values, size=n_pixels, replace=TRUE) ## Following http://statweb.stanford.edu/~jtaylo/courses/stats352/notes/ising.pdf for(iter in seq_len(n_iter)) { for(index in seq_len(n_pixels)) { neighbors <- which(adjacency[index, ] > 0) neighbor_sum <- sum(z[neighbors]) odds <- exp(2 * beta * neighbor_sum) p <- odds / (1 + odds) z[index] <- sample(values, size=1, prob=c(1-p, p)) } } return(z) }
/ising.R
no_license
atorch/hidden_markov_model
R
false
false
711
r
library(ngspatial) # For adjacency.matrix library(plot.matrix) simulate_ising <- function(n_pixels, adjacency, beta, n_iter=1000) { stopifnot(dim(adjacency) == c(n_pixels, n_pixels)) values <- c(-1, 1) z <- sample(values, size=n_pixels, replace=TRUE) ## Following http://statweb.stanford.edu/~jtaylo/courses/stats352/notes/ising.pdf for(iter in seq_len(n_iter)) { for(index in seq_len(n_pixels)) { neighbors <- which(adjacency[index, ] > 0) neighbor_sum <- sum(z[neighbors]) odds <- exp(2 * beta * neighbor_sum) p <- odds / (1 + odds) z[index] <- sample(values, size=1, prob=c(1-p, p)) } } return(z) }
#' Align two curves #' #' This function aligns two SRVF functions using Dynamic Programming #' #' @param beta1 array defining curve 1 #' @param beta2 array defining curve 1 #' @param lambda controls amount of warping (default = 0) #' @param method controls which optimization method (default="DP") options are #' Dynamic Programming ("DP"), Coordinate Descent ("DP2"), Riemannian BFGS #' ("RBFGS") #' @param w controls LRBFGS (default = 0.01) #' @param rotated boolean if rotation is desired #' @param isclosed boolean if curve is closed #' @param mode Open ("O") or Closed ("C") curves #' @return return a List containing \item{gam}{warping function} #' \item{R}{rotation matrix} #' \item{tau}{seed point} #' @keywords srvf alignment #' @references Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428. #' @export #' @examples #' data("mpeg7") #' gam = reparam_curve(beta[,,1,1],beta[,,1,5])$gam reparam_curve <- function(beta1,beta2,lambda=0,method="DP",w=0.01,rotated=T, isclosed=F, mode="O"){ n1 = nrow(beta2) M = ncol(beta2) timet = seq(0,1,length.out=M) skipm = 4 auto = 2 tau = 0 if (method=="DPo"){ # Optimize over SO(n) x Gamma q1 = curve_to_q(beta1) # Optimize over SO(n) if (rotated){ out = find_rotation_seed_coord(beta1, beta2, mode) beta2 = out$beta2 R = out$O_hat tau = out$tau } else{ R = diag(n1) tau = 0 } q2 = curve_to_q(beta2) # Optimize over Gamma q1i = q1 dim(q1i) = c(M*n1) q2i = q2 dim(q2i) = c(M*n1) G = rep(0,M) T1 = rep(0,M) size = 0 ret = .Call('DPQ2', PACKAGE = 'fdasrvf', q1i, timet, q2i, timet, n1, M, M, timet, timet, M, M, G, T1, size, lambda); G = ret$G[1:ret$size] Tf = ret$T[1:ret$size] gam0 = approx(Tf,G,xout=timet)$y } else if (method=="DP") { # Optimize over SO(n) x Gamma q1 = curve_to_q(beta1) # Optimize over SO(n) if (rotated){ out = find_rotation_seed_coord(beta1, beta2); beta2 = out$beta2 R = out$O_hat tau = out$tau } else{ R = diag(n1) tau = 0 } q2 = curve_to_q(beta2) # Optimize over Gamma q1 = q1/sqrt(innerprod_q2(q1, q1)) q2 = q2/sqrt(innerprod_q2(q2, q2)) q1i = q1 dim(q1i) = c(M*n1) q2i = q2 dim(q2i) = c(M*n1) gam0 = .Call('DPQ', PACKAGE = 'fdasrvf', q1i, q2i, n1, M, lambda, 0, rep(0,M)) } else if (method=="DP2") { stop("Not implemented in CRAN version: please download and install from Github (https://github.com/jdtuck/fdasrvf_R)") c1 = t(beta1) dim(c1) = c(M*n1) c2 = t(beta2) dim(c2) = c(M*n1) opt = rep(0,M+n1*n1+1) swap = FALSE fopts = rep(0,5) comtime = rep(0,5) out = .Call('opt_reparam', PACKAGE = 'fdasrvf', c1,c2,M,n1,0.0,TRUE, rotated,isclosed,skipm,auto,opt,swap,fopts,comtime) tmp = length(out$opt) gam0 = out$opt[1:(tmp-5)] R = matrix(out$opt[(tmp-4):(tmp-1)],nrow=2) if (out$swap){ gam0 = invertGamma(gam0) R = t(R) } } else if (method=="RBFGS") { stop("Not implemented in CRAN version: please download and install from Github (https://github.com/jdtuck/fdasrvf_R)") c1 = t(beta1) dim(c1) = c(M*n1) c2 = t(beta2) dim(c2) = c(M*n1) opt = rep(0,M+n1*n1+1) swap = FALSE fopts = rep(0,5) comtime = rep(0,5) out = .Call('opt_reparam', PACKAGE = 'fdasrvf', c1,c2,M,n1,w,FALSE, rotated,isclosed,skipm,auto,opt,swap,fopts,comtime) if (out$fopts[1] == 1000){ out = .Call('opt_reparam', PACKAGE = 'fdasrvf', c1,c2,M,n1,0.0,TRUE, rotated,isclosed,skipm,auto,opt,swap,fopts,comtime) } tmp = length(out$opt) gam0 = out$opt[1:(tmp-5)] R = matrix(out$opt[(tmp-4):(tmp-1)],nrow=2) if (out$swap){ gam0 = invertGamma(gam0); R = t(R) } } else { stop("Invalid method chosen") } gam = (gam0-gam0[1])/(gam0[length(gam0)]-gam0[1]) # slight change on scale return(list(gam=gam,R=R,tau=tau)) }
/fuzzedpackages/fdasrvf/R/reparam_curve.R
no_license
akhikolla/testpackages
R
false
false
4,660
r
#' Align two curves #' #' This function aligns two SRVF functions using Dynamic Programming #' #' @param beta1 array defining curve 1 #' @param beta2 array defining curve 1 #' @param lambda controls amount of warping (default = 0) #' @param method controls which optimization method (default="DP") options are #' Dynamic Programming ("DP"), Coordinate Descent ("DP2"), Riemannian BFGS #' ("RBFGS") #' @param w controls LRBFGS (default = 0.01) #' @param rotated boolean if rotation is desired #' @param isclosed boolean if curve is closed #' @param mode Open ("O") or Closed ("C") curves #' @return return a List containing \item{gam}{warping function} #' \item{R}{rotation matrix} #' \item{tau}{seed point} #' @keywords srvf alignment #' @references Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428. #' @export #' @examples #' data("mpeg7") #' gam = reparam_curve(beta[,,1,1],beta[,,1,5])$gam reparam_curve <- function(beta1,beta2,lambda=0,method="DP",w=0.01,rotated=T, isclosed=F, mode="O"){ n1 = nrow(beta2) M = ncol(beta2) timet = seq(0,1,length.out=M) skipm = 4 auto = 2 tau = 0 if (method=="DPo"){ # Optimize over SO(n) x Gamma q1 = curve_to_q(beta1) # Optimize over SO(n) if (rotated){ out = find_rotation_seed_coord(beta1, beta2, mode) beta2 = out$beta2 R = out$O_hat tau = out$tau } else{ R = diag(n1) tau = 0 } q2 = curve_to_q(beta2) # Optimize over Gamma q1i = q1 dim(q1i) = c(M*n1) q2i = q2 dim(q2i) = c(M*n1) G = rep(0,M) T1 = rep(0,M) size = 0 ret = .Call('DPQ2', PACKAGE = 'fdasrvf', q1i, timet, q2i, timet, n1, M, M, timet, timet, M, M, G, T1, size, lambda); G = ret$G[1:ret$size] Tf = ret$T[1:ret$size] gam0 = approx(Tf,G,xout=timet)$y } else if (method=="DP") { # Optimize over SO(n) x Gamma q1 = curve_to_q(beta1) # Optimize over SO(n) if (rotated){ out = find_rotation_seed_coord(beta1, beta2); beta2 = out$beta2 R = out$O_hat tau = out$tau } else{ R = diag(n1) tau = 0 } q2 = curve_to_q(beta2) # Optimize over Gamma q1 = q1/sqrt(innerprod_q2(q1, q1)) q2 = q2/sqrt(innerprod_q2(q2, q2)) q1i = q1 dim(q1i) = c(M*n1) q2i = q2 dim(q2i) = c(M*n1) gam0 = .Call('DPQ', PACKAGE = 'fdasrvf', q1i, q2i, n1, M, lambda, 0, rep(0,M)) } else if (method=="DP2") { stop("Not implemented in CRAN version: please download and install from Github (https://github.com/jdtuck/fdasrvf_R)") c1 = t(beta1) dim(c1) = c(M*n1) c2 = t(beta2) dim(c2) = c(M*n1) opt = rep(0,M+n1*n1+1) swap = FALSE fopts = rep(0,5) comtime = rep(0,5) out = .Call('opt_reparam', PACKAGE = 'fdasrvf', c1,c2,M,n1,0.0,TRUE, rotated,isclosed,skipm,auto,opt,swap,fopts,comtime) tmp = length(out$opt) gam0 = out$opt[1:(tmp-5)] R = matrix(out$opt[(tmp-4):(tmp-1)],nrow=2) if (out$swap){ gam0 = invertGamma(gam0) R = t(R) } } else if (method=="RBFGS") { stop("Not implemented in CRAN version: please download and install from Github (https://github.com/jdtuck/fdasrvf_R)") c1 = t(beta1) dim(c1) = c(M*n1) c2 = t(beta2) dim(c2) = c(M*n1) opt = rep(0,M+n1*n1+1) swap = FALSE fopts = rep(0,5) comtime = rep(0,5) out = .Call('opt_reparam', PACKAGE = 'fdasrvf', c1,c2,M,n1,w,FALSE, rotated,isclosed,skipm,auto,opt,swap,fopts,comtime) if (out$fopts[1] == 1000){ out = .Call('opt_reparam', PACKAGE = 'fdasrvf', c1,c2,M,n1,0.0,TRUE, rotated,isclosed,skipm,auto,opt,swap,fopts,comtime) } tmp = length(out$opt) gam0 = out$opt[1:(tmp-5)] R = matrix(out$opt[(tmp-4):(tmp-1)],nrow=2) if (out$swap){ gam0 = invertGamma(gam0); R = t(R) } } else { stop("Invalid method chosen") } gam = (gam0-gam0[1])/(gam0[length(gam0)]-gam0[1]) # slight change on scale return(list(gam=gam,R=R,tau=tau)) }
## ############################################################################ ## ## DISCLAIMER: ## This script has been developed for research purposes only. ## The script is provided without any warranty of any kind, either express or ## implied. The entire risk arising out of the use or performance of the sample ## script and documentation remains with you. ## In no event shall its author, or anyone else involved in the ## creation, production, or delivery of the script be liable for any damages ## whatsoever (including, without limitation, damages for loss of business ## profits, business interruption, loss of business information, or other ## pecuniary loss) arising out of the use of or inability to use the sample ## scripts or documentation, even if the author has been advised of the ## possibility of such damages. ## ## ############################################################################ ## ## DESCRIPTION ## Simulates outbreaks and analyses them using EARS-C3 ## ## ## Written by: Angela Noufaily and Felipe J Colón-González ## For any problems with this code, please contact f.colon@uea.ac.uk ## ## ############################################################################ rm(list=ls(all=TRUE)) # FUNCTIONS THAT PRODUCE THE DATA # DEFINING FUNCTION h require(data.table) require(dplyr) require(tidyr) require(surveillance) require(lubridate) require(zoo) #============== # 5-day systems #============== h1=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2){ t=1:N if(k==0 & k2==0){h1=alpha+beta*t} else{ if(k==0) { l=1:k2 h1=rep(0,N) for(i in 1:N){ h1[i]=alpha+beta*(t[i]+shift)+sum(gama3*cos((2*pi*l*(t[i]+shift))/5)+gama4*sin((2*pi*l*(t[i]+shift))/5)) } } else{ j=1:k l=1:k2 h1=rep(0,N) for(i in 1:N){ h1[i]=alpha+beta*(t[i]+shift)+sum(gama1*cos((2*pi*j*(t[i]+shift))/(52*5))+gama2*sin((2*pi*j*(t[i]+shift2))/(52*5)))+sum(gama3*cos((2*pi*l*(t[i]+shift))/5)+gama4*sin((2*pi*l*(t[i]+shift))/5)) } } } h1 } negbinNoise1=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,phi,shift,shift2){ mu <- exp(h1(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2)) if(phi==1){yi <- rpois(N,mu)} else{ prob <- 1/phi size <- mu/(phi-1) yi <- rnbinom(N,size=size,prob=prob) } yi } outbreak5=function(currentday,weeklength,wtime,yi,interval,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2,phi,numoutbk,peakoutbk,meanlog,sdlog){ # theta, beta, gama1 and gama2 are the parameters of the equation for mu in Section 3.1 N=length(yi) t=1:N mu <- exp(h1(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2)) s=sqrt(mu*phi) #wtime = (currentday-49*5+1):currentday # current outbreaks # GENERATING OUTBREAKS # STARTING TIMES OF OUTBREAKS startoutbk <- sample(wtime, numoutbk, replace = FALSE) # OUTBREAK SIZE OF CASES sizeoutbk=rep(0,numoutbk) for(i in 1:numoutbk){ set.seed(i) soutbk=1 sou=1 while(soutbk<2){ set.seed(sou) soutbk=rpois(1,s[startoutbk[i]]*peakoutbk) sou=sou+1 } sizeoutbk[i]=soutbk } # DISTRIBUTE THESE CASES OVER TIME USING LOGNORMAL outbreak=rep(0,2*N) for( j in 1:numoutbk){ set.seed(j) outbk <-rlnorm(sizeoutbk[j], meanlog = meanlog, sdlog = sdlog) #outbk <-rnorm(sizeoutbk[j], mean = meanlog2, sd = sdlog) #h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),1),plot=FALSE) h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),interval),plot=FALSE) cases <- h$counts weight=rep(0,length(cases)) duration<-startoutbk:(startoutbk+length(cases)-1) dayofweek<-duration%%5 # 0 is friday; 1 is monday; 2 is tuesday etc. for(i in 1:length(cases)){ if(dayofweek[i]==0){weight[i]=1.1} if(dayofweek[i]==1){weight[i]=1.5} if(dayofweek[i]==2){weight[i]=1.1} if(dayofweek[i]==3){weight[i]=1} if(dayofweek[i]==4){weight[i]=1} } cases2 <- cases*weight for (l in 1:(length(cases2))){ outbreak[startoutbk[j]+(l-1)]= cases2[l]+outbreak[startoutbk[j]+(l-1)] }# l loop }# j loop #for(v in 1:(currentday-49*5)){if(outbreak[v]>0){outbreak[v]=0}} for(v in currentday:(currentday+100)){if(outbreak[v]>0){outbreak[v]=0}} outbreak=outbreak[1:N] # ADD NOISE AND OUTBREAKS yitot=yi+outbreak result=list(yitot=yitot,outbreak=outbreak,startoutbk=startoutbk,sizeoutbk=sizeoutbk,sd=s,mean=mu) #return(result) } #============== # 7-day systems #============== h2=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift){ t=1:N if(k==0 & k2==0){h2=alpha+beta*t} else{ if(k==0) { l=1:k2 h2=rep(0,N) for(i in 1:N){ h2[i]=alpha+beta*(t[i]+shift)+sum(gama3*cos((2*pi*l*(t[i]+shift))/7)+gama4*sin((2*pi*l*(t[i]+shift))/7)) } } else{ j=1:k l=1:k2 h2=rep(0,N) for(i in 1:N){ h2[i]=alpha+beta*(t[i]+shift)+sum(gama1*cos((2*pi*j*(t[i]+shift))/(52*7))+gama2*sin((2*pi*j*(t[i]+shift))/(52*7)))+sum(gama3*cos((2*pi*l*(t[i]+shift))/7)+gama4*sin((2*pi*l*(t[i]+shift))/7)) } } } h2 } negbinNoise2=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,phi,shift){ mu <- exp(h2(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift)) if(phi==1){yi <- rpois(N,mu)} else{ prob <- 1/phi size <- mu/(phi-1) yi <- rnbinom(N,size=size,prob=prob) } yi } outbreak7=function(currentday,weeklength,wtime,yi,interval,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,phi,numoutbk,peakoutbk,meanlog,sdlog){ # theta, beta, gama1 and gama2 are the parameters of the equation for mu in Section 3.1 N=length(yi) t=1:N mu <- exp(h2(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift)) s=sqrt(mu*phi) #wtime = (currentday-49*7+1):currentday # current outbreaks # wtime = 350*1:7 # current outbreaks # GENERATING OUTBREAKS # STARTING TIMES OF OUTBREAKS startoutbk <- sample(wtime, numoutbk, replace = FALSE) # OUTBREAK SIZE OF CASES sizeoutbk=rep(0,numoutbk) for(i in 1:numoutbk){ set.seed(i) soutbk=1 sou=1 while(soutbk<2){ set.seed(sou) soutbk=rpois(1,s[startoutbk[i]]*peakoutbk) sou=sou+1 } sizeoutbk[i]=soutbk } # DISTRIBUTE THESE CASES OVER TIME USING LOGNORMAL outbreak=rep(0,2*N) for( j in 1:numoutbk){ set.seed(j) outbk <-rlnorm(sizeoutbk[j], meanlog = meanlog, sdlog = sdlog) #outbk <-rnorm(sizeoutbk[j], mean = meanlog2, sd = sdlog) #h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),1),plot=FALSE) h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),interval),plot=FALSE) cases <- h$counts weight=rep(0,length(cases)) duration<-startoutbk:(startoutbk+length(cases)-1) dayofweek<-duration%%7 # 0 is sunday; 1 is monday; 2 is tuesday etc. for(i in 1:length(cases)){ if(dayofweek[i]==0){weight[i]=2} if(dayofweek[i]==1){weight[i]=1} if(dayofweek[i]==2){weight[i]=1} if(dayofweek[i]==3){weight[i]=1} if(dayofweek[i]==4){weight[i]=1} if(dayofweek[i]==5){weight[i]=1} if(dayofweek[i]==6){weight[i]=2} } cases2 <- cases*weight for (l in 1:(length(cases2))){ outbreak[startoutbk[j]+(l-1)]= cases2[l]+outbreak[startoutbk[j]+(l-1)] }# l loop }# j loop #for(v in (currentday-49*7):currentday){if(outbreak[v]>0){outbreak[v]=0}} for(v in currentday:(currentday+100)){if(outbreak[v]>0){outbreak[v]=0}} outbreak=outbreak[1:N] # ADD NOISE AND OUTBREAKS yitot=yi+outbreak result=list(yitot=yitot,outbreak=outbreak,startoutbk=startoutbk,sizeoutbk=sizeoutbk,sd=s,mean=mu) #return(result) } #========================== # Specify the bank holidays #========================== myDir <- "/local/zck07apu/Documents/GitLab/rammie_comparison/scripts/C3/10x" years=7 bankholidays=read.csv(file.path(myDir, "Bankholidays.csv")) #fix(bankholidays) bankhols7=bankholidays$bankhol bankhols7=as.numeric(bankhols7) length(bankhols7) #fix(bankhols7) bankhols5=bankhols7[-seq(6,length(bankhols7),7)] bankhols5=bankhols5[-seq(6,length(bankhols5),6)] bankhols5=as.numeric(bankhols5) length(bankhols5) #fix(bankhols5) #======================= # Define the data frames #======================= nsim=100 simulateddata1=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata2=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata3=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata4=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata5=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata8=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata9=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata10=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata11=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata12=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata13=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata14=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata15=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata17=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals1=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals2=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals3=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals4=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals5=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals8=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals9=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals10=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals11=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals12=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals13=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals14=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals15=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals17=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak1=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak2=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak3=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak4=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak5=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak8=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak9=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak10=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak11=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak12=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak13=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak14=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak15=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak17=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedzseasoutbreak6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedzseasoutbreak7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedzseasoutbreak16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) ################################# #SIMULATE SYNDROMES AND OUTBREAKS ################################# #===================== # 5-day week syndromes #===================== days5=5 N=52*days5*years #sigid6 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=6,beta=0,gama1=0.3,gama2=2,gama3=0.3,gama4=0.5,phi=1.5,shift=-50,shift2=-50)/10 #mu=exp(h1(N=N,k=1,k2=1,alpha=6,beta=0,gama1=0.3,gama2=2,gama3=0.3,gama4=0.5,shift=-50,shift2=-50)) out1=rep(0,N) for(j in 1:years){ set.seed(j+years*i) out=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=((1+(j-1)*days5*52):(20+(j-1)*days5*52)),yi=yt,interval=0.02,k=1, k2=1,alpha=6,beta=0,gama1=0.3,gama2=2,gama3=0.3,gama4=0.5,phi=1.5,shift=-50,shift2=-50,numoutbk=1,peakoutbk=3*days5*80,meanlog=0,sdlog=0.5) out1=out1+out$outbreak } set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=6,beta=0,gama1=0.3, gama2=2,gama3=0.3,gama4=0.5,phi=1.5,shift=-50,shift2=-50,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zseasoutbreak=out2$outbreak +out1 zt=yt +out1 zitot=yt + out2$outbreak +out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ yt=append(yt,zeros,after=2*(s-1)+weekend[s]) zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) zseasoutbreak=append(zseasoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata6[,i]=round(zt) simulatedtotals6[,i]=round(zitot) simulatedoutbreak6[,i]=round(zoutbreak) simulatedzseasoutbreak6[,i]=round(zseasoutbreak) } #---------------------------------------------------- # Plot the datasets and outbreaks using the following #---------------------------------------------------- #plot(1:N,yt,typ='l') #plot(1:(52*years*7),zt,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(365,728)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(729,1092)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1093,1456)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1457,1820)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1821,2184)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(2185,2548)) #lines(1:(52*years*7),zoutbreak,col='green') plot(1:(52*years*7),simulatedtotals6[,4],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green') lines(1:(52*years*7),simulatedoutbreak6[,4],col='red') plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green',typ='l') #sigid7 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=1,beta=0,gama1=0.1,gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50) #mu=exp(h1(N=N,k=1,k2=1,alpha=1.5,beta=0,gama1=0.1,gama2=2,gama3=0.1,gama4=0.1,shift=-50,shift2=-50)) out1=rep(0,N) for(j in 1:years){ set.seed(j+years*i) out=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=((1+(j-1)*days5*52):(20+(j-1)*days5*52)),yi=yt,interval=0.02,k=1,k2=1,alpha=1,beta=0,gama1=0.1, gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50,numoutbk=1,peakoutbk=3*days5*50,meanlog=0,sdlog=0.5) out1=out1+out$outbreak } set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=1,beta=0,gama1=0.1, gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zseasoutbreak=out2$outbreak+out1 zt=yt +out1 zitot=yt + out2$outbreak +out1 for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ yt=append(yt,zeros,after=2*(s-1)+weekend[s]) zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) zseasoutbreak=append(zseasoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata7[,i]=round(zt) simulatedtotals7[,i]=round(zitot) simulatedoutbreak7[,i]=round(zoutbreak) simulatedzseasoutbreak7[,i]=round(zseasoutbreak) } plot(1:(52*years*7),simulatedtotals7[,7],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak7[,7],col='green') lines(1:(52*years*7),simulatedoutbreak7[,7],col='red') plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedzseasoutbreak7[,4],col='green',typ='l') #sigid8 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=0,k2=1,alpha=6,beta=0.0001,gama1=0,gama2=0,gama3=0.6,gama4=0.9,phi=1.5,shift=0,shift2=0)/10 #mu=exp(h1(N=N,k=0,k2=1,alpha=6,beta=0,gama1=0,gama2=0,gama3=0.6,gama4=0.9,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=0,k2=1,alpha=6,beta=0,gama1=0, gama2=0,gama3=0.6,gama4=0.9,phi=1.5,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata8[,i]=round(zt) simulatedtotals8[,i]=round(zitot) simulatedoutbreak8[,i]=round(zoutbreak) } plot(1:(52*years*7),simulateddata8[,1],typ='l',xlim=c(2185,2548),col='green') lines(1:(52*years*7),simulateddata8[,1]+simulatedoutbreak8[,1]) #sigid9 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=1.5,gama2=0.1,gama3=0.2,gama4=0.3,phi=1,shift=-150,shift2=-150) mu=exp(h1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=1.5,gama2=0.1,gama3=0.6,gama4=0.8,shift=-150,shift2=-150)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),interval=0.25,yi=yt,k=1,k2=1,alpha=3,beta=0,gama1=1.5, gama2=0.1,gama3=0.2,gama4=0.3,phi=1,shift=-150,shift2=-150,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata9[,i]=round(zt) simulatedtotals9[,i]=round(zitot) simulatedoutbreak9[,i]=round(zoutbreak) } plot(1:(52*years*7),simulateddata9[,1],typ='l',xlim=c(2185,2548),col='green') lines(1:(52*years*7),simulateddata9[,1]+simulatedoutbreak9[,1]) #sigid10 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.15,phi=1,shift=-200,shift2=-200) #mu=exp(h1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.15,shift=-200,shift2=-200)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=3,beta=0,gama1=0.2, gama2=0.1,gama3=0.05,gama4=0.15,phi=1,shift=-200,shift2=-200,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata10[,i]=round(zt) simulatedtotals10[,i]=round(zitot) simulatedoutbreak10[,i]=round(zoutbreak) } #sigid11 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=5,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.1,phi=1,shift=0,shift2=0) mu=exp(h1(N=N,k=1,k2=1,alpha=5,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.1,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),interval=0.25,yi=yt,k=1,k2=1,alpha=5,beta=0,gama1=0.2, gama2=0.1,gama3=0.05,gama4=0.1,phi=1,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata11[,i]=round(zt) simulatedtotals11[,i]=round(zitot) simulatedoutbreak11[,i]=round(zoutbreak) } #sigid12 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=2,k2=1,alpha=0.5,beta=0,gama1=0.4,gama2=0,gama3=0.05,gama4=0.15,phi=1,shift=0,shift2=0) #mu=exp(h1(N=N,k=2,k2=1,alpha=0.5,beta=0,gama1=0.4,gama2=0,gama3=0.05,gama4=0.15,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=2,k2=1,alpha=0.5,beta=0,gama1=0.4, gama2=0,gama3=0.05,gama4=0.15,phi=1,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata12[,i]=round(zt) simulatedtotals12[,i]=round(zitot) simulatedoutbreak12[,i]=round(zoutbreak) } #sigid13 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=9,beta=0,gama1=0.5,gama2=0.2,gama3=0.2,gama4=0.5,phi=1,shift=0,shift2=0)/100 #mu=exp(h1(N=N,k=1,k2=1,alpha=9,beta=0,gama1=0.5,gama2=0.2,gama3=0.2,gama4=0.5,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=9,beta=0,gama1=0.5, gama2=0.2,gama3=0.2,gama4=0.5,phi=1,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata13[,i]=round(zt) simulatedtotals13[,i]=round(zitot) simulatedoutbreak13[,i]=round(zoutbreak) } plot(1:length(simulatedtotals13[,1]),simulatedtotals13[,1],typ='l') plot(1:N,simulatedtotals13[,1],typ='l',xlim=c(2206,2548),col='green') lines(1:N,simulateddata13[,1],typ='l') #===================== # 7-day week syndromes #===================== years=7 days7=7 N=52*days7*years #sigid1 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2,gama3=0.5,gama4=0.4,phi=2,shift=29) #mu=exp(h2(N=N,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2,gama3=0.5,gama4=0.4,shift=29)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2, gama3=0.5,gama4=0.4,phi=2,shift=29,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata1[,i]=round(zt) simulatedtotals1[,i]=round(zitot) simulatedoutbreak1[,i]=round(zoutbreak) } #sigid3 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=0.5,beta=0,gama1=1.5,gama2=1.4,gama3=0.5,gama4=0.4,phi=1,shift=-167) #mu=exp(h2(N=N,k=1,k2=2,alpha=0.5,beta=0,gama1=1.5,gama2=1.4,gama3=0.5,gama4=0.4,shift=-167)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=0.5,beta=0,gama1=1.5, gama2=1.4,gama3=0.5,gama4=0.4,phi=1,shift=-167,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata3[,i]=round(zt) simulatedtotals3[,i]=round(zitot) simulatedoutbreak3[,i]=round(zoutbreak) } #sigid4 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=0,k2=2,alpha=5.5,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1) #mu=exp(h2(N=N,k=0,k2=2,alpha=5.5,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,shift=1)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*12,wtime=(length(yt)-49*7+1):length(yt),yi=yt,interval=0.25,k=0,k2=2,alpha=5.5,beta=0,gama1=0, gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata4[,i]=round(zt) simulatedtotals4[,i]=round(zitot) simulatedoutbreak4[,i]=round(zoutbreak) } #sigid5 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=0,k2=2,alpha=2,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1) #mu=exp(h2(N=N,k=0,k2=2,alpha=2,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,shift=1)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=0,k2=2,alpha=2,beta=0,gama1=0, gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata5[,i]=round(zt) simulatedtotals5[,i]=round(zitot) simulatedoutbreak5[,i]=round(zoutbreak) } #sigid14 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=2,beta=0.0005,gama1=0.8,gama2=0.8,gama3=0.8,gama4=0.4,phi=4,shift=57) #mu=exp(h2(N=N,k=1,k2=2,alpha=2,beta=0,gama1=0.8,gama2=0.8,gama3=0.8,gama4=0.4,shift=57)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2, gama3=0.5,gama4=0.4,phi=2,shift=29,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata14[,i]=round(zt) simulatedtotals14[,i]=round(zitot) simulatedoutbreak14[,i]=round(zoutbreak) } #sigid15 for(i in 1:nsim){ set.seed(i) #yt=0.1*(negbinNoise2(N=N,k=4,k2=1,alpha=1.5,beta=0,gama1=0.1,gama2=0.1,gama3=1.8,gama4=0.1,phi=1,shift=-85)+2) yt=1*(negbinNoise2(N=N,k=4,k2=1,alpha=0.05,beta=0,gama1=0.01,gama2=0.01,gama3=1.8,gama4=0.1,phi=1,shift=-85)+0) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=2,beta=0,gama1=0.8, gama2=0.8,gama3=0.8,gama4=0.4,phi=4,shift=57,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata15[,i]=round(zt) simulatedtotals15[,i]=round(zitot) simulatedoutbreak15[,i]=round(zoutbreak) } #plot(1:N,yt,typ='l') #plot(1:(52*years*7),zt,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(365,728)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(729,1092)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1093,1456)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1457,1820)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1821,2184)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(2185,2548)) #lines(1:(52*years*7),zoutbreak,col='green') plot(1:(52*years*7),simulatedtotals6[,4],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green') lines(1:(52*years*7),simulatedoutbreak6[,4],col='red') plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green',typ='l') #sigid16 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=3,beta=0,gama1=0.8,gama2=0.6,gama3=0.8,gama4=0.4,phi=4,shift=29) #mu=exp(h2(N=N,k=1,k2=2,alpha=3,beta=0,gama1=0.8,gama2=0.6,gama3=0.8,gama4=0.4,shift=29)) out1=rep(0,N) for(j in 1:years){ set.seed(j+years*i) out=outbreak5(currentday=days7*52*years,weeklength=52*days7*years,wtime=((210+(j-1)*days7*52):(230+(j-1)*days7*52)),yi=yt,interval=0.02,k=1,k2=1,alpha=1,beta=0,gama1=0.1, gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50,numoutbk=1,peakoutbk=3*days7*150,meanlog=0,sdlog=0.5) out1=out1+out$outbreak } set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=3,beta=0,gama1=0.8, gama2=0.6,gama3=0.8,gama4=0.4,phi=4,shift=29,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zseasoutbreak=out2$outbreak+out1 zt=yt +out1 zitot=yt + out2$outbreak +out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata16[,i]=round(zt) simulatedtotals16[,i]=round(zitot) simulatedoutbreak16[,i]=round(zoutbreak) simulatedzseasoutbreak16[,i]=round(zseasoutbreak) } plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedtotals16[,1],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak16[,1],col='green') lines(1:(52*years*7),simulatedoutbreak16[,1],col='red') plot(1:(52*years*7),simulatedtotals16[,2],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak16[,2],col='green') lines(1:(52*years*7),simulatedoutbreak16[,2],col='red') #sigid17 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=0,k2=2,alpha=6,beta=0,gama1=0,gama2=0,gama3=0.8,gama4=0.4,phi=4,shift=1) #mu=exp(h2(N=N,k=0,k2=2,alpha=6,beta=0,gama1=0,gama2=0,gama3=0.8,gama4=0.4,shift=1)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*7*12,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=0,k2=2,alpha=6,beta=0,gama1=0, gama2=0,gama3=0.8,gama4=0.4,phi=4,shift=1,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata17[,i]=round(zt) simulatedtotals17[,i]=round(zitot) simulatedoutbreak17[,i]=round(zoutbreak) } #============================= # Define the alarm data frames #============================= days=7 nsim=100 alarmall1=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall2=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall3=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall4=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall5=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall6=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall7=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall8=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall9=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall10=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall11=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall12=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall13=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall14=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall15=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall16=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall17=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) ######################################### #======================================== #Implement the algorithm to data by days and record the alarms in the dataframes above #======================================== ######################################### myDates <- seq(ymd('2010-01-01'), ymd('2016-12-30'), by = '1 day') dropDays <- as.POSIXct(c('2010-12-31','2011-12-31', '2012-12-31', '2013-12-31', '2014-12-31', '2015-12-31', '2016-02-29,', '2012-02-29')) "%ni%" <- Negate("%in%") myDates <- myDates[myDates %ni% dropDays] # Convert to 7-day running totals rolling <- function(x){ rollapplyr(x, width=7, FUN=sum, na.rm=T, fill=NA) } simdata1 <- apply(simulateddata1, 2, rolling) # simdata2 <- apply(simulateddata2, 2, rolling) simdata3 <- apply(simulateddata3, 2, rolling) simdata4 <- apply(simulateddata4, 2, rolling) simdata5 <- apply(simulateddata5, 2, rolling) simdata6 <- apply(simulateddata6, 2, rolling) simdata7 <- apply(simulateddata7, 2, rolling) simdata8 <- apply(simulateddata8, 2, rolling) simdata9 <- apply(simulateddata9, 2, rolling) simdata10 <- apply(simulateddata10, 2, rolling) simdata11 <- apply(simulateddata11, 2, rolling) simdata12 <- apply(simulateddata12, 2, rolling) simdata13 <- apply(simulateddata13, 2, rolling) simdata14 <- apply(simulateddata14, 2, rolling) simdata15 <- apply(simulateddata15, 2, rolling) simdata16 <- apply(simulateddata16, 2, rolling) simdata17 <- apply(simulateddata17, 2, rolling) simtot1 <- apply(simulatedtotals1, 2, rolling) # simtot2 <- apply(simulatedtotals2, 2, rolling) simtot3 <- apply(simulatedtotals3, 2, rolling) simtot4 <- apply(simulatedtotals4, 2, rolling) simtot5 <- apply(simulatedtotals5, 2, rolling) simtot6 <- apply(simulatedtotals6, 2, rolling) simtot7 <- apply(simulatedtotals7, 2, rolling) simtot8 <- apply(simulatedtotals8, 2, rolling) simtot9 <- apply(simulatedtotals9, 2, rolling) simtot10 <- apply(simulatedtotals10, 2, rolling) simtot11 <- apply(simulatedtotals11, 2, rolling) simtot12 <- apply(simulatedtotals12, 2, rolling) simtot13 <- apply(simulatedtotals13, 2, rolling) simtot14 <- apply(simulatedtotals14, 2, rolling) simtot15 <- apply(simulatedtotals15, 2, rolling) simtot16 <- apply(simulatedtotals16, 2, rolling) simtot17 <- apply(simulatedtotals17, 2, rolling) # Convert data to sts simSts1 <- sts(simdata1, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) # simSts2 <- sts(simdata2, start=c(2010, 1), frequency=364, # epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts3 <- sts(simdata3, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts4 <- sts(simdata4, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts5 <- sts(simdata5, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts6 <- sts(simdata6, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts7 <- sts(simdata7, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts8 <- sts(simdata8, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts9 <- sts(simdata9, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts10 <- sts(simdata10, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts11 <- sts(simdata11, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts12 <- sts(simdata12, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts13 <- sts(simdata13, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts14 <- sts(simdata14, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts15 <- sts(simdata15, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts16 <- sts(simdata16, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts17 <- sts(simdata17, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts1 <- sts(simtot1, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) # totSts2 <- sts(simtot2, start=c(2010, 1), frequency=364, # epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts3 <- sts(simtot3, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts4 <- sts(simtot4, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts5 <- sts(simtot5, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts6 <- sts(simtot6, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts7 <- sts(simtot7, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts8 <- sts(simtot8, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts9 <- sts(simtot9, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts10 <- sts(simtot10, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts11 <- sts(simtot11, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts12 <- sts(simtot12, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts13 <- sts(simtot13, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts14 <- sts(simtot14, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts15 <- sts(simtot15, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts16 <- sts(simtot16, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts17 <- sts(simtot17, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) in2016 <- 2206:2548 # Select range of data to monitor, algorithm and prediction interval control <- list(range=in2016, method="C3", alpha=0.01) for(sim in seq(nsim)){ cat("\t", sim) # Run detection algorithm det1 <- earsC(totSts1[,sim], control=control) det3 <- earsC(totSts3[,sim], control=control) det4 <- earsC(totSts4[,sim], control=control) det5 <- earsC(totSts5[,sim], control=control) det6 <- earsC(totSts6[,sim], control=control) det7 <- earsC(totSts7[,sim], control=control) det8 <- earsC(totSts8[,sim], control=control) det9 <- earsC(totSts9[,sim], control=control) det10 <- earsC(totSts10[,sim], control=control) det11 <- earsC(totSts11[,sim], control=control) det12 <- earsC(totSts12[,sim], control=control) det13 <- earsC(totSts13[,sim], control=control) det14 <- earsC(totSts14[,sim], control=control) det15 <- earsC(totSts15[,sim], control=control) det16 <- earsC(totSts16[,sim], control=control) det17 <- earsC(totSts17[,sim], control=control) # Plot detection results dir.create(file.path(myDir, "plots", "totals"), recursive=TRUE) png(file.path(myDir, "plots", "totals", paste0("Sim_", sim, ".png")), width=16,height=14,units="in",res=300) par(mfrow=c(4, 4), oma=c(0, 0, 2, 0)) plot(det1, main="Dataset 1", legend=NULL) plot(det3, main="Dataset 3", legend=NULL) plot(det4, main="Dataset 4", legend=NULL) plot(det5, main="Dataset 5", legend=NULL) plot(det6, main="Dataset 6", legend=NULL) plot(det7, main="Dataset 7", legend=NULL) plot(det8, main="Dataset 8", legend=NULL) plot(det9, main="Dataset 9", legend=NULL) plot(det10, main="Dataset 10", legend=NULL) plot(det11, main="Dataset 11", legend=NULL) plot(det12, main="Dataset 12", legend=NULL) plot(det13, main="Dataset 13", legend=NULL) plot(det14, main="Dataset 14", legend=NULL) plot(det15, main="Dataset 15", legend=NULL) plot(det16, main="Dataset 16", legend=NULL) plot(det17, main="Dataset 17", legend=NULL) title(main=list(paste("Simulation", sim, "Alpha", control$alpha ), cex=2), outer=TRUE) dev.off() # Retrieve information about alarms alarmall1[,sim] <- as.numeric(as.vector(unlist(det1@alarm))) alarmall3[,sim] <- as.numeric(as.vector(unlist(det3@alarm))) alarmall4[,sim] <- as.numeric(as.vector(unlist(det4@alarm))) alarmall5[,sim] <- as.numeric(as.vector(unlist(det5@alarm))) alarmall6[,sim] <- as.numeric(as.vector(unlist(det6@alarm))) alarmall7[,sim] <- as.numeric(as.vector(unlist(det7@alarm))) alarmall8[,sim] <- as.numeric(as.vector(unlist(det8@alarm))) alarmall9[,sim] <- as.numeric(as.vector(unlist(det9@alarm))) alarmall10[,sim] <- as.numeric(as.vector(unlist(det10@alarm))) alarmall11[,sim] <- as.numeric(as.vector(unlist(det11@alarm))) alarmall12[,sim] <- as.numeric(as.vector(unlist(det12@alarm))) alarmall13[,sim] <- as.numeric(as.vector(unlist(det13@alarm))) alarmall14[,sim] <- as.numeric(as.vector(unlist(det14@alarm))) alarmall15[,sim] <- as.numeric(as.vector(unlist(det15@alarm))) alarmall16[,sim] <- as.numeric(as.vector(unlist(det16@alarm))) alarmall17[,sim] <- as.numeric(as.vector(unlist(det17@alarm))) } # Replace missing values with zero (?) alarmall1[is.na(alarmall1)] <- 0 alarmall3[is.na(alarmall3)] <- 0 alarmall4[is.na(alarmall4)] <- 0 alarmall5[is.na(alarmall5)] <- 0 alarmall6[is.na(alarmall6)] <- 0 alarmall7[is.na(alarmall7)] <- 0 alarmall8[is.na(alarmall8)] <- 0 alarmall9[is.na(alarmall9)] <- 0 alarmall10[is.na(alarmall10)] <- 0 alarmall11[is.na(alarmall11)] <- 0 alarmall12[is.na(alarmall12)] <- 0 alarmall13[is.na(alarmall13)] <- 0 alarmall14[is.na(alarmall14)] <- 0 alarmall15[is.na(alarmall15)] <- 0 alarmall16[is.na(alarmall16)] <- 0 alarmall17[is.na(alarmall17)] <- 0 # Compare vs data without oubreaks for(sim in seq(nsim)){ cat("\t", sim) det1 <- earsC(simSts1[,sim], control=control) det3 <- earsC(simSts3[,sim], control=control) det4 <- earsC(simSts4[,sim], control=control) det5 <- earsC(simSts5[,sim], control=control) det6 <- earsC(simSts6[,sim], control=control) det7 <- earsC(simSts7[,sim], control=control) det8 <- earsC(simSts8[,sim], control=control) det9 <- earsC(simSts9[,sim], control=control) det10 <- earsC(simSts10[,sim], control=control) det11 <- earsC(simSts11[,sim], control=control) det12 <- earsC(simSts12[,sim], control=control) det13 <- earsC(simSts13[,sim], control=control) det14 <- earsC(simSts14[,sim], control=control) det15 <- earsC(simSts15[,sim], control=control) det16 <- earsC(simSts16[,sim], control=control) det17 <- earsC(simSts17[,sim], control=control) dir.create(file.path(myDir, "plots", "control"), recursive=TRUE) png(file.path(myDir, "plots", "control", paste0("Sim_", sim, ".png")), width=16,height=14,units="in",res=300) par(mfrow=c(4, 4), oma=c(0, 0, 2, 0)) plot(det1, main="Dataset 1", legend=NULL) plot(det3, main="Dataset 3", legend=NULL) plot(det4, main="Dataset 4", legend=NULL) plot(det5, main="Dataset 5", legend=NULL) plot(det6, main="Dataset 6", legend=NULL) plot(det7, main="Dataset 7", legend=NULL) plot(det8, main="Dataset 8", legend=NULL) plot(det9, main="Dataset 9", legend=NULL) plot(det10, main="Dataset 10", legend=NULL) plot(det11, main="Dataset 11", legend=NULL) plot(det12, main="Dataset 12", legend=NULL) plot(det13, main="Dataset 13", legend=NULL) plot(det14, main="Dataset 14", legend=NULL) plot(det15, main="Dataset 15", legend=NULL) plot(det16, main="Dataset 16", legend=NULL) plot(det17, main="Dataset 17", legend=NULL) title(main=list(paste("Simulation", sim, "Alpha", control$alpha ), cex=2), outer=TRUE) dev.off() } #==================================== #==================================== #Summary #==================================== #==================================== days=7 # FPR false positive rate fpr=rep(0,17) fprseas=rep(0,3) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]==0)+nu } } a= fpr[1]=nu/sum(simulatedoutbreak1[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]==0)+nu } } fpr[2]=nu/sum(simulatedoutbreak2[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]==0)+nu } } fpr[3]=nu/sum(simulatedoutbreak3[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]==0)+nu } } fpr[4]=nu/sum(simulatedoutbreak4[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]==0)+nu } } fpr[5]=nu/sum(simulatedoutbreak5[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]==0)+nu } } fpr[6]=nu/sum(simulatedoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]==0)+nu } } fprseas[1]=nu/sum(simulatedzseasoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]==0)+nu } } fpr[7]=nu/sum(simulatedoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]==0)+nu } } fprseas[2]=nu/sum(simulatedzseasoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]==0)+nu } } fpr[8]=nu/sum(simulatedoutbreak8[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]==0)+nu } } fpr[9]=nu/sum(simulatedoutbreak9[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]==0)+nu } } fpr[10]=nu/sum(simulatedoutbreak10[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]==0)+nu } } fpr[11]=nu/sum(simulatedoutbreak11[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]==0)+nu } } fpr[12]=nu/sum(simulatedoutbreak12[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]==0)+nu } } fpr[13]=nu/sum(simulatedoutbreak13[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]==0)+nu } } fpr[14]=nu/sum(simulatedoutbreak14[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]==0)+nu } } fpr[15]=nu/sum(simulatedoutbreak15[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]==0)+nu } } fpr[16]=nu/sum(simulatedoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]==0)+nu } } fprseas[3]=nu/sum(simulatedzseasoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]==0)+nu } } fpr[17]=nu/sum(simulatedoutbreak17[2206:2548,]==0) #-------------------------------------------------------- # POD power of detection pod=rep(0,17) podseas=rep(0,3) mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]>0) } mu=mu+(nu>0) } pod[1]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]>0) } mu=mu+(nu>0) } pod[2]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]>0) } mu=mu+(nu>0) } pod[3]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]>0) } mu=mu+(nu>0) } pod[4]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]>0) } mu=mu+(nu>0) } pod[5]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]>0) } mu=mu+(nu>0) } pod[6]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]>0) } mu=mu+(nu>0) } podseas[1]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]>0) } mu=mu+(nu>0) } pod[7]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]>0) } mu=mu+(nu>0) } podseas[2]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]>0) } mu=mu+(nu>0) } pod[8]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]>0) } mu=mu+(nu>0) } pod[9]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]>0) } mu=mu+(nu>0) } pod[10]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]>0) } mu=mu+(nu>0) } pod[11]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]>0) } mu=mu+(nu>0) } pod[12]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]>0) } mu=mu+(nu>0) } pod[13]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]>0) } mu=mu+(nu>0) } pod[14]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]>0) } mu=mu+(nu>0) } pod[15]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]>0) } mu=mu+(nu>0) } pod[16]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]>0) } mu=mu+(nu>0) } podseas[3]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]>0) } mu=mu+(nu>0) } pod[17]=mu/nsim #-------------------------------------------------------- # Sensitivity sensitivity=rep(0,17) sensitivityseas=rep(0,3) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]>0) } } sensitivity[1]=nu/sum(simulatedoutbreak1>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]>0) } } sensitivity[2]=nu/sum(simulatedoutbreak2>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]>0) } } sensitivity[3]=nu/sum(simulatedoutbreak3>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]>0) } } sensitivity[4]=nu/sum(simulatedoutbreak4>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]>0) } } sensitivity[5]=nu/sum(simulatedoutbreak5>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]>0) } } sensitivity[6]=nu/sum(simulatedoutbreak6>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]>0) } } sensitivityseas[1]=nu/sum(simulatedzseasoutbreak6>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]>0) } } sensitivity[7]=nu/sum(simulatedoutbreak7>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]>0) } } sensitivityseas[2]=nu/sum(simulatedzseasoutbreak7>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]>0) } } sensitivity[8]=nu/sum(simulatedoutbreak8>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]>0) } } sensitivity[9]=nu/sum(simulatedoutbreak9>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]>0) } } sensitivity[10]=nu/sum(simulatedoutbreak10>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]>0) } } sensitivity[11]=nu/sum(simulatedoutbreak11>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]>0) } } sensitivity[12]=nu/sum(simulatedoutbreak12>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]>0) } } sensitivity[13]=nu/sum(simulatedoutbreak13>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]>0) } } sensitivity[14]=nu/sum(simulatedoutbreak14>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]>0) } } sensitivity[15]=nu/sum(simulatedoutbreak15>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]>0) } } sensitivity[16]=nu/sum(simulatedoutbreak16>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]>0) } } sensitivityseas[3]=nu/sum(simulatedzseasoutbreak16>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]>0) } } sensitivity[17]=nu/sum(simulatedoutbreak17>0) #-------------------------------------------------------- # Specificity specificity=rep(0,17) specificityseas=rep(0,3) # Specificity nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall1[nrow(alarmall1)-i+1,j]==0 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]==0) } } specificity[1]=nu/sum(simulatedoutbreak1[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall2[nrow(alarmall2)-i+1,j]==0 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]==0) } } specificity[2]=nu/sum(simulatedoutbreak2[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall3[nrow(alarmall3)-i+1,j]==0 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]==0) } } specificity[3]=nu/sum(simulatedoutbreak3[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall4[nrow(alarmall4)-i+1,j]==0 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]==0) } } specificity[4]=nu/sum(simulatedoutbreak4[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall5[nrow(alarmall5)-i+1,j]==0 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]==0) } } specificity[5]=nu/sum(simulatedoutbreak5[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==0 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]==0) } } specificity[6]=nu/sum(simulatedoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==0 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]==0) } } specificityseas[1]=nu/sum(simulatedzseasoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==0 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]==0) } } specificity[7]=nu/sum(simulatedoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==0 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]==0) } } specificityseas[2]=nu/sum(simulatedzseasoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall8[nrow(alarmall8)-i+1,j]==0 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]==0) } } specificity[8]=nu/sum(simulatedoutbreak8[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall9[nrow(alarmall9)-i+1,j]==0 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]==0) } } specificity[9]=nu/sum(simulatedoutbreak9[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall10[nrow(alarmall10)-i+1,j]==0 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]==0) } } specificity[10]=nu/sum(simulatedoutbreak10[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall11[nrow(alarmall11)-i+1,j]==0 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]==0) } } specificity[11]=nu/sum(simulatedoutbreak11[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall12[nrow(alarmall12)-i+1,j]==0 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]==0) } } specificity[12]=nu/sum(simulatedoutbreak12[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall13[nrow(alarmall13)-i+1,j]==0 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]==0) } } specificity[13]=nu/sum(simulatedoutbreak13[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall14[nrow(alarmall14)-i+1,j]==0 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]==0) } } specificity[14]=nu/sum(simulatedoutbreak14[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall15[nrow(alarmall15)-i+1,j]==0 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]==0) } } specificity[15]=nu/sum(simulatedoutbreak15[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==0 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]==0) } } specificity[16]=nu/sum(simulatedoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==0 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]==0) } } specificityseas[3]=nu/sum(simulatedzseasoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall17[nrow(alarmall17)-i+1,j]==0 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]==0) } } specificity[17]=nu/sum(simulatedoutbreak17[2206:2548,]==0) #---------------------------------------------- # Timeliness timeliness=rep(0,17) timelinessseas=rep(0,3) n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak1[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak1[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak1)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[1]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak2[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak2[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak2)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[2]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak3[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak3[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak3)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[3]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak4[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak4[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak4)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[4]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak5[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak5[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak5)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[5]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak6[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak6[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak6)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[6]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedzseasoutbreak6[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedzseasoutbreak6[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedzseasoutbreak6)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timelinessseas[1]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak7[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak7[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak7)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[7]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedzseasoutbreak7[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedzseasoutbreak7[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedzseasoutbreak7)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timelinessseas[2]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak8[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak8[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak8)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[8]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak9[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak9[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak9)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[9]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak10[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak10[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak10)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[10]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak11[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak11[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak11)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[11]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak12[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak12[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak12)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[12]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak13[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak13[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak1)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak13)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[13]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak14[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak14[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak14)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[14]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak15[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak15[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak15)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[15]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak16[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak16[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak16)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[16]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedzseasoutbreak16[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedzseasoutbreak16[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedzseasoutbreak16)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timelinessseas[3]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak17[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak17[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak17)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[17]=(ss+n)/nsim #================================== # Summary=data.frame(fpr,pod,sensitivity,specificity,timeliness) # row.names(Summary)=c("sigid1","sigid2","sigid3","sigid4","sigid5","sigid6","sigid7","sigid8","sigid9","sigid10","sigid11","sigid12","sigid13","sigid14","sigid15","sigid16","sigid17") # # Summaryseas=data.frame(fprseas,podseas,sensitivityseas,specificityseas,timelinessseas) # row.names(Summaryseas)=c("sigid6","sigid7","sigid16") # # # fix(Summary) # fix(Summaryseas) # summary1=data.frame(fpr, pod, sensitivity, specificity, timeliness) row.names(summary1)=c("sigid1", "sigid2", "sigid3", "sigid4", "sigid5", "sigid6", "sigid7", "sigid8", "sigid9", "sigid10", "sigid11", "sigid12", "sigid13", "sigid14", "sigid15", "sigid16","sigid17") summary2=data.frame(fprseas, podseas, sensitivityseas, specificityseas, timelinessseas) row.names(summary2)=c("sigid6", "sigid7", "sigid16") if(!dir.exists(file.path(myDir, "output"))){ dir.create(file.path(myDir, "output")) } write.csv(summary1, file.path(myDir, "output", "summaryC3-18.csv"), row.names=FALSE) write.csv(summary2, file.path(myDir, "output", "summarySeasC3-18.csv"), row.names=FALSE)
/EARS/EARSC310x.R
no_license
FelipeJColon/AlgorithmComparison
R
false
false
86,299
r
## ############################################################################ ## ## DISCLAIMER: ## This script has been developed for research purposes only. ## The script is provided without any warranty of any kind, either express or ## implied. The entire risk arising out of the use or performance of the sample ## script and documentation remains with you. ## In no event shall its author, or anyone else involved in the ## creation, production, or delivery of the script be liable for any damages ## whatsoever (including, without limitation, damages for loss of business ## profits, business interruption, loss of business information, or other ## pecuniary loss) arising out of the use of or inability to use the sample ## scripts or documentation, even if the author has been advised of the ## possibility of such damages. ## ## ############################################################################ ## ## DESCRIPTION ## Simulates outbreaks and analyses them using EARS-C3 ## ## ## Written by: Angela Noufaily and Felipe J Colón-González ## For any problems with this code, please contact f.colon@uea.ac.uk ## ## ############################################################################ rm(list=ls(all=TRUE)) # FUNCTIONS THAT PRODUCE THE DATA # DEFINING FUNCTION h require(data.table) require(dplyr) require(tidyr) require(surveillance) require(lubridate) require(zoo) #============== # 5-day systems #============== h1=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2){ t=1:N if(k==0 & k2==0){h1=alpha+beta*t} else{ if(k==0) { l=1:k2 h1=rep(0,N) for(i in 1:N){ h1[i]=alpha+beta*(t[i]+shift)+sum(gama3*cos((2*pi*l*(t[i]+shift))/5)+gama4*sin((2*pi*l*(t[i]+shift))/5)) } } else{ j=1:k l=1:k2 h1=rep(0,N) for(i in 1:N){ h1[i]=alpha+beta*(t[i]+shift)+sum(gama1*cos((2*pi*j*(t[i]+shift))/(52*5))+gama2*sin((2*pi*j*(t[i]+shift2))/(52*5)))+sum(gama3*cos((2*pi*l*(t[i]+shift))/5)+gama4*sin((2*pi*l*(t[i]+shift))/5)) } } } h1 } negbinNoise1=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,phi,shift,shift2){ mu <- exp(h1(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2)) if(phi==1){yi <- rpois(N,mu)} else{ prob <- 1/phi size <- mu/(phi-1) yi <- rnbinom(N,size=size,prob=prob) } yi } outbreak5=function(currentday,weeklength,wtime,yi,interval,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2,phi,numoutbk,peakoutbk,meanlog,sdlog){ # theta, beta, gama1 and gama2 are the parameters of the equation for mu in Section 3.1 N=length(yi) t=1:N mu <- exp(h1(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,shift2)) s=sqrt(mu*phi) #wtime = (currentday-49*5+1):currentday # current outbreaks # GENERATING OUTBREAKS # STARTING TIMES OF OUTBREAKS startoutbk <- sample(wtime, numoutbk, replace = FALSE) # OUTBREAK SIZE OF CASES sizeoutbk=rep(0,numoutbk) for(i in 1:numoutbk){ set.seed(i) soutbk=1 sou=1 while(soutbk<2){ set.seed(sou) soutbk=rpois(1,s[startoutbk[i]]*peakoutbk) sou=sou+1 } sizeoutbk[i]=soutbk } # DISTRIBUTE THESE CASES OVER TIME USING LOGNORMAL outbreak=rep(0,2*N) for( j in 1:numoutbk){ set.seed(j) outbk <-rlnorm(sizeoutbk[j], meanlog = meanlog, sdlog = sdlog) #outbk <-rnorm(sizeoutbk[j], mean = meanlog2, sd = sdlog) #h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),1),plot=FALSE) h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),interval),plot=FALSE) cases <- h$counts weight=rep(0,length(cases)) duration<-startoutbk:(startoutbk+length(cases)-1) dayofweek<-duration%%5 # 0 is friday; 1 is monday; 2 is tuesday etc. for(i in 1:length(cases)){ if(dayofweek[i]==0){weight[i]=1.1} if(dayofweek[i]==1){weight[i]=1.5} if(dayofweek[i]==2){weight[i]=1.1} if(dayofweek[i]==3){weight[i]=1} if(dayofweek[i]==4){weight[i]=1} } cases2 <- cases*weight for (l in 1:(length(cases2))){ outbreak[startoutbk[j]+(l-1)]= cases2[l]+outbreak[startoutbk[j]+(l-1)] }# l loop }# j loop #for(v in 1:(currentday-49*5)){if(outbreak[v]>0){outbreak[v]=0}} for(v in currentday:(currentday+100)){if(outbreak[v]>0){outbreak[v]=0}} outbreak=outbreak[1:N] # ADD NOISE AND OUTBREAKS yitot=yi+outbreak result=list(yitot=yitot,outbreak=outbreak,startoutbk=startoutbk,sizeoutbk=sizeoutbk,sd=s,mean=mu) #return(result) } #============== # 7-day systems #============== h2=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift){ t=1:N if(k==0 & k2==0){h2=alpha+beta*t} else{ if(k==0) { l=1:k2 h2=rep(0,N) for(i in 1:N){ h2[i]=alpha+beta*(t[i]+shift)+sum(gama3*cos((2*pi*l*(t[i]+shift))/7)+gama4*sin((2*pi*l*(t[i]+shift))/7)) } } else{ j=1:k l=1:k2 h2=rep(0,N) for(i in 1:N){ h2[i]=alpha+beta*(t[i]+shift)+sum(gama1*cos((2*pi*j*(t[i]+shift))/(52*7))+gama2*sin((2*pi*j*(t[i]+shift))/(52*7)))+sum(gama3*cos((2*pi*l*(t[i]+shift))/7)+gama4*sin((2*pi*l*(t[i]+shift))/7)) } } } h2 } negbinNoise2=function(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,phi,shift){ mu <- exp(h2(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift)) if(phi==1){yi <- rpois(N,mu)} else{ prob <- 1/phi size <- mu/(phi-1) yi <- rnbinom(N,size=size,prob=prob) } yi } outbreak7=function(currentday,weeklength,wtime,yi,interval,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift,phi,numoutbk,peakoutbk,meanlog,sdlog){ # theta, beta, gama1 and gama2 are the parameters of the equation for mu in Section 3.1 N=length(yi) t=1:N mu <- exp(h2(N,k,k2,alpha,beta,gama1,gama2,gama3,gama4,shift)) s=sqrt(mu*phi) #wtime = (currentday-49*7+1):currentday # current outbreaks # wtime = 350*1:7 # current outbreaks # GENERATING OUTBREAKS # STARTING TIMES OF OUTBREAKS startoutbk <- sample(wtime, numoutbk, replace = FALSE) # OUTBREAK SIZE OF CASES sizeoutbk=rep(0,numoutbk) for(i in 1:numoutbk){ set.seed(i) soutbk=1 sou=1 while(soutbk<2){ set.seed(sou) soutbk=rpois(1,s[startoutbk[i]]*peakoutbk) sou=sou+1 } sizeoutbk[i]=soutbk } # DISTRIBUTE THESE CASES OVER TIME USING LOGNORMAL outbreak=rep(0,2*N) for( j in 1:numoutbk){ set.seed(j) outbk <-rlnorm(sizeoutbk[j], meanlog = meanlog, sdlog = sdlog) #outbk <-rnorm(sizeoutbk[j], mean = meanlog2, sd = sdlog) #h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),1),plot=FALSE) h<- hist(outbk,breaks=seq(0,ceiling(max(outbk)),interval),plot=FALSE) cases <- h$counts weight=rep(0,length(cases)) duration<-startoutbk:(startoutbk+length(cases)-1) dayofweek<-duration%%7 # 0 is sunday; 1 is monday; 2 is tuesday etc. for(i in 1:length(cases)){ if(dayofweek[i]==0){weight[i]=2} if(dayofweek[i]==1){weight[i]=1} if(dayofweek[i]==2){weight[i]=1} if(dayofweek[i]==3){weight[i]=1} if(dayofweek[i]==4){weight[i]=1} if(dayofweek[i]==5){weight[i]=1} if(dayofweek[i]==6){weight[i]=2} } cases2 <- cases*weight for (l in 1:(length(cases2))){ outbreak[startoutbk[j]+(l-1)]= cases2[l]+outbreak[startoutbk[j]+(l-1)] }# l loop }# j loop #for(v in (currentday-49*7):currentday){if(outbreak[v]>0){outbreak[v]=0}} for(v in currentday:(currentday+100)){if(outbreak[v]>0){outbreak[v]=0}} outbreak=outbreak[1:N] # ADD NOISE AND OUTBREAKS yitot=yi+outbreak result=list(yitot=yitot,outbreak=outbreak,startoutbk=startoutbk,sizeoutbk=sizeoutbk,sd=s,mean=mu) #return(result) } #========================== # Specify the bank holidays #========================== myDir <- "/local/zck07apu/Documents/GitLab/rammie_comparison/scripts/C3/10x" years=7 bankholidays=read.csv(file.path(myDir, "Bankholidays.csv")) #fix(bankholidays) bankhols7=bankholidays$bankhol bankhols7=as.numeric(bankhols7) length(bankhols7) #fix(bankhols7) bankhols5=bankhols7[-seq(6,length(bankhols7),7)] bankhols5=bankhols5[-seq(6,length(bankhols5),6)] bankhols5=as.numeric(bankhols5) length(bankhols5) #fix(bankhols5) #======================= # Define the data frames #======================= nsim=100 simulateddata1=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata2=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata3=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata4=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata5=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata8=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata9=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata10=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata11=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata12=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata13=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata14=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata15=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulateddata17=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals1=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals2=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals3=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals4=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals5=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals8=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals9=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals10=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals11=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals12=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals13=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals14=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals15=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedtotals17=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak1=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak2=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak3=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak4=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak5=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak8=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak9=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak10=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak11=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak12=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak13=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak14=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak15=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedoutbreak17=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedzseasoutbreak6=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedzseasoutbreak7=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) simulatedzseasoutbreak16=data.frame(array(rep(0,nsim*52*7*years),dim=c(52*7*years,nsim))) ################################# #SIMULATE SYNDROMES AND OUTBREAKS ################################# #===================== # 5-day week syndromes #===================== days5=5 N=52*days5*years #sigid6 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=6,beta=0,gama1=0.3,gama2=2,gama3=0.3,gama4=0.5,phi=1.5,shift=-50,shift2=-50)/10 #mu=exp(h1(N=N,k=1,k2=1,alpha=6,beta=0,gama1=0.3,gama2=2,gama3=0.3,gama4=0.5,shift=-50,shift2=-50)) out1=rep(0,N) for(j in 1:years){ set.seed(j+years*i) out=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=((1+(j-1)*days5*52):(20+(j-1)*days5*52)),yi=yt,interval=0.02,k=1, k2=1,alpha=6,beta=0,gama1=0.3,gama2=2,gama3=0.3,gama4=0.5,phi=1.5,shift=-50,shift2=-50,numoutbk=1,peakoutbk=3*days5*80,meanlog=0,sdlog=0.5) out1=out1+out$outbreak } set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=6,beta=0,gama1=0.3, gama2=2,gama3=0.3,gama4=0.5,phi=1.5,shift=-50,shift2=-50,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zseasoutbreak=out2$outbreak +out1 zt=yt +out1 zitot=yt + out2$outbreak +out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ yt=append(yt,zeros,after=2*(s-1)+weekend[s]) zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) zseasoutbreak=append(zseasoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata6[,i]=round(zt) simulatedtotals6[,i]=round(zitot) simulatedoutbreak6[,i]=round(zoutbreak) simulatedzseasoutbreak6[,i]=round(zseasoutbreak) } #---------------------------------------------------- # Plot the datasets and outbreaks using the following #---------------------------------------------------- #plot(1:N,yt,typ='l') #plot(1:(52*years*7),zt,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(365,728)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(729,1092)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1093,1456)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1457,1820)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1821,2184)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(2185,2548)) #lines(1:(52*years*7),zoutbreak,col='green') plot(1:(52*years*7),simulatedtotals6[,4],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green') lines(1:(52*years*7),simulatedoutbreak6[,4],col='red') plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green',typ='l') #sigid7 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=1,beta=0,gama1=0.1,gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50) #mu=exp(h1(N=N,k=1,k2=1,alpha=1.5,beta=0,gama1=0.1,gama2=2,gama3=0.1,gama4=0.1,shift=-50,shift2=-50)) out1=rep(0,N) for(j in 1:years){ set.seed(j+years*i) out=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=((1+(j-1)*days5*52):(20+(j-1)*days5*52)),yi=yt,interval=0.02,k=1,k2=1,alpha=1,beta=0,gama1=0.1, gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50,numoutbk=1,peakoutbk=3*days5*50,meanlog=0,sdlog=0.5) out1=out1+out$outbreak } set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=1,beta=0,gama1=0.1, gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zseasoutbreak=out2$outbreak+out1 zt=yt +out1 zitot=yt + out2$outbreak +out1 for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ yt=append(yt,zeros,after=2*(s-1)+weekend[s]) zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) zseasoutbreak=append(zseasoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata7[,i]=round(zt) simulatedtotals7[,i]=round(zitot) simulatedoutbreak7[,i]=round(zoutbreak) simulatedzseasoutbreak7[,i]=round(zseasoutbreak) } plot(1:(52*years*7),simulatedtotals7[,7],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak7[,7],col='green') lines(1:(52*years*7),simulatedoutbreak7[,7],col='red') plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedzseasoutbreak7[,4],col='green',typ='l') #sigid8 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=0,k2=1,alpha=6,beta=0.0001,gama1=0,gama2=0,gama3=0.6,gama4=0.9,phi=1.5,shift=0,shift2=0)/10 #mu=exp(h1(N=N,k=0,k2=1,alpha=6,beta=0,gama1=0,gama2=0,gama3=0.6,gama4=0.9,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=0,k2=1,alpha=6,beta=0,gama1=0, gama2=0,gama3=0.6,gama4=0.9,phi=1.5,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata8[,i]=round(zt) simulatedtotals8[,i]=round(zitot) simulatedoutbreak8[,i]=round(zoutbreak) } plot(1:(52*years*7),simulateddata8[,1],typ='l',xlim=c(2185,2548),col='green') lines(1:(52*years*7),simulateddata8[,1]+simulatedoutbreak8[,1]) #sigid9 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=1.5,gama2=0.1,gama3=0.2,gama4=0.3,phi=1,shift=-150,shift2=-150) mu=exp(h1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=1.5,gama2=0.1,gama3=0.6,gama4=0.8,shift=-150,shift2=-150)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),interval=0.25,yi=yt,k=1,k2=1,alpha=3,beta=0,gama1=1.5, gama2=0.1,gama3=0.2,gama4=0.3,phi=1,shift=-150,shift2=-150,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata9[,i]=round(zt) simulatedtotals9[,i]=round(zitot) simulatedoutbreak9[,i]=round(zoutbreak) } plot(1:(52*years*7),simulateddata9[,1],typ='l',xlim=c(2185,2548),col='green') lines(1:(52*years*7),simulateddata9[,1]+simulatedoutbreak9[,1]) #sigid10 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.15,phi=1,shift=-200,shift2=-200) #mu=exp(h1(N=N,k=1,k2=1,alpha=3,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.15,shift=-200,shift2=-200)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=3,beta=0,gama1=0.2, gama2=0.1,gama3=0.05,gama4=0.15,phi=1,shift=-200,shift2=-200,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata10[,i]=round(zt) simulatedtotals10[,i]=round(zitot) simulatedoutbreak10[,i]=round(zoutbreak) } #sigid11 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=5,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.1,phi=1,shift=0,shift2=0) mu=exp(h1(N=N,k=1,k2=1,alpha=5,beta=0,gama1=0.2,gama2=0.1,gama3=0.05,gama4=0.1,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),interval=0.25,yi=yt,k=1,k2=1,alpha=5,beta=0,gama1=0.2, gama2=0.1,gama3=0.05,gama4=0.1,phi=1,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata11[,i]=round(zt) simulatedtotals11[,i]=round(zitot) simulatedoutbreak11[,i]=round(zoutbreak) } #sigid12 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=2,k2=1,alpha=0.5,beta=0,gama1=0.4,gama2=0,gama3=0.05,gama4=0.15,phi=1,shift=0,shift2=0) #mu=exp(h1(N=N,k=2,k2=1,alpha=0.5,beta=0,gama1=0.4,gama2=0,gama3=0.05,gama4=0.15,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=2,k2=1,alpha=0.5,beta=0,gama1=0.4, gama2=0,gama3=0.05,gama4=0.15,phi=1,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata12[,i]=round(zt) simulatedtotals12[,i]=round(zitot) simulatedoutbreak12[,i]=round(zoutbreak) } #sigid13 for(i in 1:nsim){ set.seed(i) yt=negbinNoise1(N=N,k=1,k2=1,alpha=9,beta=0,gama1=0.5,gama2=0.2,gama3=0.2,gama4=0.5,phi=1,shift=0,shift2=0)/100 #mu=exp(h1(N=N,k=1,k2=1,alpha=9,beta=0,gama1=0.5,gama2=0.2,gama3=0.2,gama4=0.5,shift=0,shift2=0)) set.seed(i) out2=outbreak5(currentday=days5*52*years,weeklength=52*days5*years,wtime=(length(yt)-49*days5+1):length(yt),yi=yt,interval=0.25,k=1,k2=1,alpha=9,beta=0,gama1=0.5, gama2=0.2,gama3=0.2,gama4=0.5,phi=1,shift=0,shift2=0,numoutbk=1,peakoutbk=10*days5,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 #zitot[(bankhols5==1)]=0 #zitot[(bankhols5==1)+1]=1.5*zitot[i+1] for(b in 1:length(zitot)){ if(bankhols5[b]==1){ zitot[b]=0 zitot[b+1]=1.5*zitot[b+1] } } zeros=rep(0,2) weekend=seq(days5,days5*years*52,days5) #weekend=seq(0,days5*years*52-1,days5) for(s in 1:length(weekend)){ zt=append(zt,zeros,after=2*(s-1)+weekend[s]) zitot=append(zitot,zeros,after=2*(s-1)+weekend[s]) zoutbreak=append(zoutbreak,zeros,after=2*(s-1)+weekend[s]) } simulateddata13[,i]=round(zt) simulatedtotals13[,i]=round(zitot) simulatedoutbreak13[,i]=round(zoutbreak) } plot(1:length(simulatedtotals13[,1]),simulatedtotals13[,1],typ='l') plot(1:N,simulatedtotals13[,1],typ='l',xlim=c(2206,2548),col='green') lines(1:N,simulateddata13[,1],typ='l') #===================== # 7-day week syndromes #===================== years=7 days7=7 N=52*days7*years #sigid1 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2,gama3=0.5,gama4=0.4,phi=2,shift=29) #mu=exp(h2(N=N,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2,gama3=0.5,gama4=0.4,shift=29)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2, gama3=0.5,gama4=0.4,phi=2,shift=29,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata1[,i]=round(zt) simulatedtotals1[,i]=round(zitot) simulatedoutbreak1[,i]=round(zoutbreak) } #sigid3 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=0.5,beta=0,gama1=1.5,gama2=1.4,gama3=0.5,gama4=0.4,phi=1,shift=-167) #mu=exp(h2(N=N,k=1,k2=2,alpha=0.5,beta=0,gama1=1.5,gama2=1.4,gama3=0.5,gama4=0.4,shift=-167)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=0.5,beta=0,gama1=1.5, gama2=1.4,gama3=0.5,gama4=0.4,phi=1,shift=-167,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata3[,i]=round(zt) simulatedtotals3[,i]=round(zitot) simulatedoutbreak3[,i]=round(zoutbreak) } #sigid4 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=0,k2=2,alpha=5.5,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1) #mu=exp(h2(N=N,k=0,k2=2,alpha=5.5,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,shift=1)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*12,wtime=(length(yt)-49*7+1):length(yt),yi=yt,interval=0.25,k=0,k2=2,alpha=5.5,beta=0,gama1=0, gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata4[,i]=round(zt) simulatedtotals4[,i]=round(zitot) simulatedoutbreak4[,i]=round(zoutbreak) } #sigid5 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=0,k2=2,alpha=2,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1) #mu=exp(h2(N=N,k=0,k2=2,alpha=2,beta=0,gama1=0,gama2=0,gama3=0.3,gama4=0.25,shift=1)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=0,k2=2,alpha=2,beta=0,gama1=0, gama2=0,gama3=0.3,gama4=0.25,phi=1,shift=1,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata5[,i]=round(zt) simulatedtotals5[,i]=round(zitot) simulatedoutbreak5[,i]=round(zoutbreak) } #sigid14 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=2,beta=0.0005,gama1=0.8,gama2=0.8,gama3=0.8,gama4=0.4,phi=4,shift=57) #mu=exp(h2(N=N,k=1,k2=2,alpha=2,beta=0,gama1=0.8,gama2=0.8,gama3=0.8,gama4=0.4,shift=57)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=6,beta=0,gama1=0.2,gama2=0.2, gama3=0.5,gama4=0.4,phi=2,shift=29,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata14[,i]=round(zt) simulatedtotals14[,i]=round(zitot) simulatedoutbreak14[,i]=round(zoutbreak) } #sigid15 for(i in 1:nsim){ set.seed(i) #yt=0.1*(negbinNoise2(N=N,k=4,k2=1,alpha=1.5,beta=0,gama1=0.1,gama2=0.1,gama3=1.8,gama4=0.1,phi=1,shift=-85)+2) yt=1*(negbinNoise2(N=N,k=4,k2=1,alpha=0.05,beta=0,gama1=0.01,gama2=0.01,gama3=1.8,gama4=0.1,phi=1,shift=-85)+0) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=2,beta=0,gama1=0.8, gama2=0.8,gama3=0.8,gama4=0.4,phi=4,shift=57,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata15[,i]=round(zt) simulatedtotals15[,i]=round(zitot) simulatedoutbreak15[,i]=round(zoutbreak) } #plot(1:N,yt,typ='l') #plot(1:(52*years*7),zt,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1,364)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(365,728)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(729,1092)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1093,1456)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1457,1820)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(1821,2184)) #plot(1:(52*years*7),zitot,typ='l',xlim=c(2185,2548)) #lines(1:(52*years*7),zoutbreak,col='green') plot(1:(52*years*7),simulatedtotals6[,4],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green') lines(1:(52*years*7),simulatedoutbreak6[,4],col='red') plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedzseasoutbreak6[,4],col='green',typ='l') #sigid16 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=1,k2=2,alpha=3,beta=0,gama1=0.8,gama2=0.6,gama3=0.8,gama4=0.4,phi=4,shift=29) #mu=exp(h2(N=N,k=1,k2=2,alpha=3,beta=0,gama1=0.8,gama2=0.6,gama3=0.8,gama4=0.4,shift=29)) out1=rep(0,N) for(j in 1:years){ set.seed(j+years*i) out=outbreak5(currentday=days7*52*years,weeklength=52*days7*years,wtime=((210+(j-1)*days7*52):(230+(j-1)*days7*52)),yi=yt,interval=0.02,k=1,k2=1,alpha=1,beta=0,gama1=0.1, gama2=2,gama3=0.05,gama4=0.05,phi=1,shift=-50,shift2=-50,numoutbk=1,peakoutbk=3*days7*150,meanlog=0,sdlog=0.5) out1=out1+out$outbreak } set.seed(i) out2=outbreak7(currentday=N,weeklength=52*days7*years,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=1,k2=2,alpha=3,beta=0,gama1=0.8, gama2=0.6,gama3=0.8,gama4=0.4,phi=4,shift=29,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zseasoutbreak=out2$outbreak+out1 zt=yt +out1 zitot=yt + out2$outbreak +out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata16[,i]=round(zt) simulatedtotals16[,i]=round(zitot) simulatedoutbreak16[,i]=round(zoutbreak) simulatedzseasoutbreak16[,i]=round(zseasoutbreak) } plot(1:(52*years*7),zitot,typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),yt,col='blue') lines(1:(52*years*7),zseasoutbreak,col='green') lines(1:(52*years*7),zoutbreak,col='red') plot(1:(52*years*7),simulatedtotals16[,1],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak16[,1],col='green') lines(1:(52*years*7),simulatedoutbreak16[,1],col='red') plot(1:(52*years*7),simulatedtotals16[,2],typ='l',xlim=c(1,7*364)) lines(1:(52*years*7),simulatedzseasoutbreak16[,2],col='green') lines(1:(52*years*7),simulatedoutbreak16[,2],col='red') #sigid17 for(i in 1:nsim){ set.seed(i) yt=negbinNoise2(N=N,k=0,k2=2,alpha=6,beta=0,gama1=0,gama2=0,gama3=0.8,gama4=0.4,phi=4,shift=1) #mu=exp(h2(N=N,k=0,k2=2,alpha=6,beta=0,gama1=0,gama2=0,gama3=0.8,gama4=0.4,shift=1)) set.seed(i) out2=outbreak7(currentday=N,weeklength=52*7*12,wtime=(length(yt)-49*days7+1):length(yt),yi=yt,interval=0.25,k=0,k2=2,alpha=6,beta=0,gama1=0, gama2=0,gama3=0.8,gama4=0.4,phi=4,shift=1,numoutbk=1,peakoutbk=10*days7,meanlog=0,sdlog=0.5) zoutbreak=out2$outbreak zt=yt#+out1 zitot=yt + out2$outbreak #+out1 for(b in 1:length(zitot)){ if(bankhols7[b]==1){ zitot[b]=2*zitot[b] } } simulateddata17[,i]=round(zt) simulatedtotals17[,i]=round(zitot) simulatedoutbreak17[,i]=round(zoutbreak) } #============================= # Define the alarm data frames #============================= days=7 nsim=100 alarmall1=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall2=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall3=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall4=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall5=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall6=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall7=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall8=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall9=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall10=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall11=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall12=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall13=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall14=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall15=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall16=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) alarmall17=data.frame(array(rep(0,nsim*49*days),dim=c(49*days,nsim))) ######################################### #======================================== #Implement the algorithm to data by days and record the alarms in the dataframes above #======================================== ######################################### myDates <- seq(ymd('2010-01-01'), ymd('2016-12-30'), by = '1 day') dropDays <- as.POSIXct(c('2010-12-31','2011-12-31', '2012-12-31', '2013-12-31', '2014-12-31', '2015-12-31', '2016-02-29,', '2012-02-29')) "%ni%" <- Negate("%in%") myDates <- myDates[myDates %ni% dropDays] # Convert to 7-day running totals rolling <- function(x){ rollapplyr(x, width=7, FUN=sum, na.rm=T, fill=NA) } simdata1 <- apply(simulateddata1, 2, rolling) # simdata2 <- apply(simulateddata2, 2, rolling) simdata3 <- apply(simulateddata3, 2, rolling) simdata4 <- apply(simulateddata4, 2, rolling) simdata5 <- apply(simulateddata5, 2, rolling) simdata6 <- apply(simulateddata6, 2, rolling) simdata7 <- apply(simulateddata7, 2, rolling) simdata8 <- apply(simulateddata8, 2, rolling) simdata9 <- apply(simulateddata9, 2, rolling) simdata10 <- apply(simulateddata10, 2, rolling) simdata11 <- apply(simulateddata11, 2, rolling) simdata12 <- apply(simulateddata12, 2, rolling) simdata13 <- apply(simulateddata13, 2, rolling) simdata14 <- apply(simulateddata14, 2, rolling) simdata15 <- apply(simulateddata15, 2, rolling) simdata16 <- apply(simulateddata16, 2, rolling) simdata17 <- apply(simulateddata17, 2, rolling) simtot1 <- apply(simulatedtotals1, 2, rolling) # simtot2 <- apply(simulatedtotals2, 2, rolling) simtot3 <- apply(simulatedtotals3, 2, rolling) simtot4 <- apply(simulatedtotals4, 2, rolling) simtot5 <- apply(simulatedtotals5, 2, rolling) simtot6 <- apply(simulatedtotals6, 2, rolling) simtot7 <- apply(simulatedtotals7, 2, rolling) simtot8 <- apply(simulatedtotals8, 2, rolling) simtot9 <- apply(simulatedtotals9, 2, rolling) simtot10 <- apply(simulatedtotals10, 2, rolling) simtot11 <- apply(simulatedtotals11, 2, rolling) simtot12 <- apply(simulatedtotals12, 2, rolling) simtot13 <- apply(simulatedtotals13, 2, rolling) simtot14 <- apply(simulatedtotals14, 2, rolling) simtot15 <- apply(simulatedtotals15, 2, rolling) simtot16 <- apply(simulatedtotals16, 2, rolling) simtot17 <- apply(simulatedtotals17, 2, rolling) # Convert data to sts simSts1 <- sts(simdata1, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) # simSts2 <- sts(simdata2, start=c(2010, 1), frequency=364, # epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts3 <- sts(simdata3, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts4 <- sts(simdata4, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts5 <- sts(simdata5, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts6 <- sts(simdata6, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts7 <- sts(simdata7, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts8 <- sts(simdata8, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts9 <- sts(simdata9, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts10 <- sts(simdata10, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts11 <- sts(simdata11, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts12 <- sts(simdata12, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts13 <- sts(simdata13, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts14 <- sts(simdata14, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts15 <- sts(simdata15, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts16 <- sts(simdata16, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) simSts17 <- sts(simdata17, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts1 <- sts(simtot1, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) # totSts2 <- sts(simtot2, start=c(2010, 1), frequency=364, # epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts3 <- sts(simtot3, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts4 <- sts(simtot4, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts5 <- sts(simtot5, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts6 <- sts(simtot6, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts7 <- sts(simtot7, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts8 <- sts(simtot8, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts9 <- sts(simtot9, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts10 <- sts(simtot10, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts11 <- sts(simtot11, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts12 <- sts(simtot12, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts13 <- sts(simtot13, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts14 <- sts(simtot14, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts15 <- sts(simtot15, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts16 <- sts(simtot16, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) totSts17 <- sts(simtot17, start=c(2010, 1), frequency=364, epoch=as.numeric(as.Date(myDates)), epochAsDate=TRUE) in2016 <- 2206:2548 # Select range of data to monitor, algorithm and prediction interval control <- list(range=in2016, method="C3", alpha=0.01) for(sim in seq(nsim)){ cat("\t", sim) # Run detection algorithm det1 <- earsC(totSts1[,sim], control=control) det3 <- earsC(totSts3[,sim], control=control) det4 <- earsC(totSts4[,sim], control=control) det5 <- earsC(totSts5[,sim], control=control) det6 <- earsC(totSts6[,sim], control=control) det7 <- earsC(totSts7[,sim], control=control) det8 <- earsC(totSts8[,sim], control=control) det9 <- earsC(totSts9[,sim], control=control) det10 <- earsC(totSts10[,sim], control=control) det11 <- earsC(totSts11[,sim], control=control) det12 <- earsC(totSts12[,sim], control=control) det13 <- earsC(totSts13[,sim], control=control) det14 <- earsC(totSts14[,sim], control=control) det15 <- earsC(totSts15[,sim], control=control) det16 <- earsC(totSts16[,sim], control=control) det17 <- earsC(totSts17[,sim], control=control) # Plot detection results dir.create(file.path(myDir, "plots", "totals"), recursive=TRUE) png(file.path(myDir, "plots", "totals", paste0("Sim_", sim, ".png")), width=16,height=14,units="in",res=300) par(mfrow=c(4, 4), oma=c(0, 0, 2, 0)) plot(det1, main="Dataset 1", legend=NULL) plot(det3, main="Dataset 3", legend=NULL) plot(det4, main="Dataset 4", legend=NULL) plot(det5, main="Dataset 5", legend=NULL) plot(det6, main="Dataset 6", legend=NULL) plot(det7, main="Dataset 7", legend=NULL) plot(det8, main="Dataset 8", legend=NULL) plot(det9, main="Dataset 9", legend=NULL) plot(det10, main="Dataset 10", legend=NULL) plot(det11, main="Dataset 11", legend=NULL) plot(det12, main="Dataset 12", legend=NULL) plot(det13, main="Dataset 13", legend=NULL) plot(det14, main="Dataset 14", legend=NULL) plot(det15, main="Dataset 15", legend=NULL) plot(det16, main="Dataset 16", legend=NULL) plot(det17, main="Dataset 17", legend=NULL) title(main=list(paste("Simulation", sim, "Alpha", control$alpha ), cex=2), outer=TRUE) dev.off() # Retrieve information about alarms alarmall1[,sim] <- as.numeric(as.vector(unlist(det1@alarm))) alarmall3[,sim] <- as.numeric(as.vector(unlist(det3@alarm))) alarmall4[,sim] <- as.numeric(as.vector(unlist(det4@alarm))) alarmall5[,sim] <- as.numeric(as.vector(unlist(det5@alarm))) alarmall6[,sim] <- as.numeric(as.vector(unlist(det6@alarm))) alarmall7[,sim] <- as.numeric(as.vector(unlist(det7@alarm))) alarmall8[,sim] <- as.numeric(as.vector(unlist(det8@alarm))) alarmall9[,sim] <- as.numeric(as.vector(unlist(det9@alarm))) alarmall10[,sim] <- as.numeric(as.vector(unlist(det10@alarm))) alarmall11[,sim] <- as.numeric(as.vector(unlist(det11@alarm))) alarmall12[,sim] <- as.numeric(as.vector(unlist(det12@alarm))) alarmall13[,sim] <- as.numeric(as.vector(unlist(det13@alarm))) alarmall14[,sim] <- as.numeric(as.vector(unlist(det14@alarm))) alarmall15[,sim] <- as.numeric(as.vector(unlist(det15@alarm))) alarmall16[,sim] <- as.numeric(as.vector(unlist(det16@alarm))) alarmall17[,sim] <- as.numeric(as.vector(unlist(det17@alarm))) } # Replace missing values with zero (?) alarmall1[is.na(alarmall1)] <- 0 alarmall3[is.na(alarmall3)] <- 0 alarmall4[is.na(alarmall4)] <- 0 alarmall5[is.na(alarmall5)] <- 0 alarmall6[is.na(alarmall6)] <- 0 alarmall7[is.na(alarmall7)] <- 0 alarmall8[is.na(alarmall8)] <- 0 alarmall9[is.na(alarmall9)] <- 0 alarmall10[is.na(alarmall10)] <- 0 alarmall11[is.na(alarmall11)] <- 0 alarmall12[is.na(alarmall12)] <- 0 alarmall13[is.na(alarmall13)] <- 0 alarmall14[is.na(alarmall14)] <- 0 alarmall15[is.na(alarmall15)] <- 0 alarmall16[is.na(alarmall16)] <- 0 alarmall17[is.na(alarmall17)] <- 0 # Compare vs data without oubreaks for(sim in seq(nsim)){ cat("\t", sim) det1 <- earsC(simSts1[,sim], control=control) det3 <- earsC(simSts3[,sim], control=control) det4 <- earsC(simSts4[,sim], control=control) det5 <- earsC(simSts5[,sim], control=control) det6 <- earsC(simSts6[,sim], control=control) det7 <- earsC(simSts7[,sim], control=control) det8 <- earsC(simSts8[,sim], control=control) det9 <- earsC(simSts9[,sim], control=control) det10 <- earsC(simSts10[,sim], control=control) det11 <- earsC(simSts11[,sim], control=control) det12 <- earsC(simSts12[,sim], control=control) det13 <- earsC(simSts13[,sim], control=control) det14 <- earsC(simSts14[,sim], control=control) det15 <- earsC(simSts15[,sim], control=control) det16 <- earsC(simSts16[,sim], control=control) det17 <- earsC(simSts17[,sim], control=control) dir.create(file.path(myDir, "plots", "control"), recursive=TRUE) png(file.path(myDir, "plots", "control", paste0("Sim_", sim, ".png")), width=16,height=14,units="in",res=300) par(mfrow=c(4, 4), oma=c(0, 0, 2, 0)) plot(det1, main="Dataset 1", legend=NULL) plot(det3, main="Dataset 3", legend=NULL) plot(det4, main="Dataset 4", legend=NULL) plot(det5, main="Dataset 5", legend=NULL) plot(det6, main="Dataset 6", legend=NULL) plot(det7, main="Dataset 7", legend=NULL) plot(det8, main="Dataset 8", legend=NULL) plot(det9, main="Dataset 9", legend=NULL) plot(det10, main="Dataset 10", legend=NULL) plot(det11, main="Dataset 11", legend=NULL) plot(det12, main="Dataset 12", legend=NULL) plot(det13, main="Dataset 13", legend=NULL) plot(det14, main="Dataset 14", legend=NULL) plot(det15, main="Dataset 15", legend=NULL) plot(det16, main="Dataset 16", legend=NULL) plot(det17, main="Dataset 17", legend=NULL) title(main=list(paste("Simulation", sim, "Alpha", control$alpha ), cex=2), outer=TRUE) dev.off() } #==================================== #==================================== #Summary #==================================== #==================================== days=7 # FPR false positive rate fpr=rep(0,17) fprseas=rep(0,3) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]==0)+nu } } a= fpr[1]=nu/sum(simulatedoutbreak1[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]==0)+nu } } fpr[2]=nu/sum(simulatedoutbreak2[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]==0)+nu } } fpr[3]=nu/sum(simulatedoutbreak3[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]==0)+nu } } fpr[4]=nu/sum(simulatedoutbreak4[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]==0)+nu } } fpr[5]=nu/sum(simulatedoutbreak5[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]==0)+nu } } fpr[6]=nu/sum(simulatedoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]==0)+nu } } fprseas[1]=nu/sum(simulatedzseasoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]==0)+nu } } fpr[7]=nu/sum(simulatedoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]==0)+nu } } fprseas[2]=nu/sum(simulatedzseasoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]==0)+nu } } fpr[8]=nu/sum(simulatedoutbreak8[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]==0)+nu } } fpr[9]=nu/sum(simulatedoutbreak9[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]==0)+nu } } fpr[10]=nu/sum(simulatedoutbreak10[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]==0)+nu } } fpr[11]=nu/sum(simulatedoutbreak11[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]==0)+nu } } fpr[12]=nu/sum(simulatedoutbreak12[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]==0)+nu } } fpr[13]=nu/sum(simulatedoutbreak13[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]==0)+nu } } fpr[14]=nu/sum(simulatedoutbreak14[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]==0)+nu } } fpr[15]=nu/sum(simulatedoutbreak15[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]==0)+nu } } fpr[16]=nu/sum(simulatedoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]==0)+nu } } fprseas[3]=nu/sum(simulatedzseasoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*7):1){ nu=(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]==0)+nu } } fpr[17]=nu/sum(simulatedoutbreak17[2206:2548,]==0) #-------------------------------------------------------- # POD power of detection pod=rep(0,17) podseas=rep(0,3) mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]>0) } mu=mu+(nu>0) } pod[1]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]>0) } mu=mu+(nu>0) } pod[2]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]>0) } mu=mu+(nu>0) } pod[3]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]>0) } mu=mu+(nu>0) } pod[4]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]>0) } mu=mu+(nu>0) } pod[5]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]>0) } mu=mu+(nu>0) } pod[6]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]>0) } mu=mu+(nu>0) } podseas[1]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]>0) } mu=mu+(nu>0) } pod[7]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]>0) } mu=mu+(nu>0) } podseas[2]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]>0) } mu=mu+(nu>0) } pod[8]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]>0) } mu=mu+(nu>0) } pod[9]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]>0) } mu=mu+(nu>0) } pod[10]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]>0) } mu=mu+(nu>0) } pod[11]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]>0) } mu=mu+(nu>0) } pod[12]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]>0) } mu=mu+(nu>0) } pod[13]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]>0) } mu=mu+(nu>0) } pod[14]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]>0) } mu=mu+(nu>0) } pod[15]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]>0) } mu=mu+(nu>0) } pod[16]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]>0) } mu=mu+(nu>0) } podseas[3]=mu/nsim mu=0 for(j in 1:nsim){ nu=0 for(i in (49*days):1){ nu=nu+(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]>0) } mu=mu+(nu>0) } pod[17]=mu/nsim #-------------------------------------------------------- # Sensitivity sensitivity=rep(0,17) sensitivityseas=rep(0,3) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]>0) } } sensitivity[1]=nu/sum(simulatedoutbreak1>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]>0) } } sensitivity[2]=nu/sum(simulatedoutbreak2>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]>0) } } sensitivity[3]=nu/sum(simulatedoutbreak3>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]>0) } } sensitivity[4]=nu/sum(simulatedoutbreak4>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]>0) } } sensitivity[5]=nu/sum(simulatedoutbreak5>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]>0) } } sensitivity[6]=nu/sum(simulatedoutbreak6>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]>0) } } sensitivityseas[1]=nu/sum(simulatedzseasoutbreak6>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]>0) } } sensitivity[7]=nu/sum(simulatedoutbreak7>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]>0) } } sensitivityseas[2]=nu/sum(simulatedzseasoutbreak7>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]>0) } } sensitivity[8]=nu/sum(simulatedoutbreak8>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]>0) } } sensitivity[9]=nu/sum(simulatedoutbreak9>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]>0) } } sensitivity[10]=nu/sum(simulatedoutbreak10>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]>0) } } sensitivity[11]=nu/sum(simulatedoutbreak11>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]>0) } } sensitivity[12]=nu/sum(simulatedoutbreak12>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]>0) } } sensitivity[13]=nu/sum(simulatedoutbreak13>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]>0) } } sensitivity[14]=nu/sum(simulatedoutbreak14>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]>0) } } sensitivity[15]=nu/sum(simulatedoutbreak15>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]>0) } } sensitivity[16]=nu/sum(simulatedoutbreak16>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]>0) } } sensitivityseas[3]=nu/sum(simulatedzseasoutbreak16>0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]>0) } } sensitivity[17]=nu/sum(simulatedoutbreak17>0) #-------------------------------------------------------- # Specificity specificity=rep(0,17) specificityseas=rep(0,3) # Specificity nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall1[nrow(alarmall1)-i+1,j]==0 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]==0) } } specificity[1]=nu/sum(simulatedoutbreak1[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall2[nrow(alarmall2)-i+1,j]==0 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]==0) } } specificity[2]=nu/sum(simulatedoutbreak2[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall3[nrow(alarmall3)-i+1,j]==0 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]==0) } } specificity[3]=nu/sum(simulatedoutbreak3[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall4[nrow(alarmall4)-i+1,j]==0 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]==0) } } specificity[4]=nu/sum(simulatedoutbreak4[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall5[nrow(alarmall5)-i+1,j]==0 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]==0) } } specificity[5]=nu/sum(simulatedoutbreak5[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==0 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]==0) } } specificity[6]=nu/sum(simulatedoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall6[nrow(alarmall6)-i+1,j]==0 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]==0) } } specificityseas[1]=nu/sum(simulatedzseasoutbreak6[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==0 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]==0) } } specificity[7]=nu/sum(simulatedoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall7[nrow(alarmall7)-i+1,j]==0 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]==0) } } specificityseas[2]=nu/sum(simulatedzseasoutbreak7[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall8[nrow(alarmall8)-i+1,j]==0 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]==0) } } specificity[8]=nu/sum(simulatedoutbreak8[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall9[nrow(alarmall9)-i+1,j]==0 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]==0) } } specificity[9]=nu/sum(simulatedoutbreak9[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall10[nrow(alarmall10)-i+1,j]==0 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]==0) } } specificity[10]=nu/sum(simulatedoutbreak10[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall11[nrow(alarmall11)-i+1,j]==0 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]==0) } } specificity[11]=nu/sum(simulatedoutbreak11[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall12[nrow(alarmall12)-i+1,j]==0 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]==0) } } specificity[12]=nu/sum(simulatedoutbreak12[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall13[nrow(alarmall13)-i+1,j]==0 & simulatedoutbreak13[nrow(simulatedoutbreak13)-i+1,j]==0) } } specificity[13]=nu/sum(simulatedoutbreak13[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall14[nrow(alarmall14)-i+1,j]==0 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]==0) } } specificity[14]=nu/sum(simulatedoutbreak14[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall15[nrow(alarmall15)-i+1,j]==0 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]==0) } } specificity[15]=nu/sum(simulatedoutbreak15[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==0 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]==0) } } specificity[16]=nu/sum(simulatedoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall16[nrow(alarmall16)-i+1,j]==0 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]==0) } } specificityseas[3]=nu/sum(simulatedzseasoutbreak16[2206:2548,]==0) nu=0 for(j in 1:nsim){ for(i in (49*days):1){ nu=nu+(alarmall17[nrow(alarmall17)-i+1,j]==0 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]==0) } } specificity[17]=nu/sum(simulatedoutbreak17[2206:2548,]==0) #---------------------------------------------- # Timeliness timeliness=rep(0,17) timelinessseas=rep(0,3) n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak1[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak1[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall1[nrow(alarmall1)-i+1,j]==1 & simulatedoutbreak1[nrow(simulatedoutbreak1)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak1)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[1]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak2[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak2[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall2[nrow(alarmall2)-i+1,j]==1 & simulatedoutbreak2[nrow(simulatedoutbreak2)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak2)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[2]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak3[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak3[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall3[nrow(alarmall3)-i+1,j]==1 & simulatedoutbreak3[nrow(simulatedoutbreak3)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak3)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[3]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak4[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak4[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall4[nrow(alarmall4)-i+1,j]==1 & simulatedoutbreak4[nrow(simulatedoutbreak4)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak4)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[4]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak5[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak5[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall5[nrow(alarmall5)-i+1,j]==1 & simulatedoutbreak5[nrow(simulatedoutbreak5)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak5)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[5]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak6[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak6[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedoutbreak6[nrow(simulatedoutbreak6)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak6)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[6]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedzseasoutbreak6[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedzseasoutbreak6[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall6[nrow(alarmall6)-i+1,j]==1 & simulatedzseasoutbreak6[nrow(simulatedzseasoutbreak6)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedzseasoutbreak6)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timelinessseas[1]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak7[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak7[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedoutbreak7[nrow(simulatedoutbreak7)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak7)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[7]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedzseasoutbreak7[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedzseasoutbreak7[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall7[nrow(alarmall7)-i+1,j]==1 & simulatedzseasoutbreak7[nrow(simulatedzseasoutbreak7)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedzseasoutbreak7)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timelinessseas[2]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak8[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak8[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall8[nrow(alarmall8)-i+1,j]==1 & simulatedoutbreak8[nrow(simulatedoutbreak8)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak8)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[8]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak9[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak9[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall9[nrow(alarmall9)-i+1,j]==1 & simulatedoutbreak9[nrow(simulatedoutbreak9)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak9)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[9]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak10[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak10[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall10[nrow(alarmall10)-i+1,j]==1 & simulatedoutbreak10[nrow(simulatedoutbreak10)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak10)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[10]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak11[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak11[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall11[nrow(alarmall11)-i+1,j]==1 & simulatedoutbreak11[nrow(simulatedoutbreak11)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak11)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[11]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak12[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak12[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall12[nrow(alarmall12)-i+1,j]==1 & simulatedoutbreak12[nrow(simulatedoutbreak12)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak12)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[12]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak13[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak13[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall13[nrow(alarmall13)-i+1,j]==1 & simulatedoutbreak13[nrow(simulatedoutbreak1)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak13)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[13]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak14[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak14[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall14[nrow(alarmall14)-i+1,j]==1 & simulatedoutbreak14[nrow(simulatedoutbreak14)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak14)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[14]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak15[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak15[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall15[nrow(alarmall15)-i+1,j]==1 & simulatedoutbreak15[nrow(simulatedoutbreak15)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak15)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[15]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak16[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak16[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedoutbreak16[nrow(simulatedoutbreak16)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak16)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[16]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedzseasoutbreak16[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedzseasoutbreak16[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall16[nrow(alarmall16)-i+1,j]==1 & simulatedzseasoutbreak16[nrow(simulatedzseasoutbreak16)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedzseasoutbreak16)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timelinessseas[3]=(ss+n)/nsim n=0 ss=0 for(j in 1:nsim){ for(i in (52*days*years):(52*days*(years-1)+3*days+1)){ test=(simulatedoutbreak17[i,j]>0) if(test==T){ r2=i break } } for(i in (52*(years-1)*days+3*days+1):(52*years*days)){ test=(simulatedoutbreak17[i,j]>0) if(test==T){ r1=i break } } for(i in (49*days):1){ test=(alarmall17[nrow(alarmall17)-i+1,j]==1 & simulatedoutbreak17[nrow(simulatedoutbreak17)-i+1,j]>0) if(test==T){ ss=ss+(nrow(simulatedoutbreak17)-i+1-r1)/(r2-r1+1) break } } if(i==1 & test!=T){n=n+1} } timeliness[17]=(ss+n)/nsim #================================== # Summary=data.frame(fpr,pod,sensitivity,specificity,timeliness) # row.names(Summary)=c("sigid1","sigid2","sigid3","sigid4","sigid5","sigid6","sigid7","sigid8","sigid9","sigid10","sigid11","sigid12","sigid13","sigid14","sigid15","sigid16","sigid17") # # Summaryseas=data.frame(fprseas,podseas,sensitivityseas,specificityseas,timelinessseas) # row.names(Summaryseas)=c("sigid6","sigid7","sigid16") # # # fix(Summary) # fix(Summaryseas) # summary1=data.frame(fpr, pod, sensitivity, specificity, timeliness) row.names(summary1)=c("sigid1", "sigid2", "sigid3", "sigid4", "sigid5", "sigid6", "sigid7", "sigid8", "sigid9", "sigid10", "sigid11", "sigid12", "sigid13", "sigid14", "sigid15", "sigid16","sigid17") summary2=data.frame(fprseas, podseas, sensitivityseas, specificityseas, timelinessseas) row.names(summary2)=c("sigid6", "sigid7", "sigid16") if(!dir.exists(file.path(myDir, "output"))){ dir.create(file.path(myDir, "output")) } write.csv(summary1, file.path(myDir, "output", "summaryC3-18.csv"), row.names=FALSE) write.csv(summary2, file.path(myDir, "output", "summarySeasC3-18.csv"), row.names=FALSE)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/isIntegerOrNaOrNanVectorOrNull.R \name{isIntegerOrNaOrNanVectorOrNull} \alias{isIntegerOrNaOrNanVectorOrNull} \title{Wrapper for the checkarg function, using specific parameter settings.} \usage{ isIntegerOrNaOrNanVectorOrNull(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) } \arguments{ \item{argument}{See checkarg function.} \item{default}{See checkarg function.} \item{stopIfNot}{See checkarg function.} \item{n}{See checkarg function.} \item{message}{See checkarg function.} \item{argumentName}{See checkarg function.} } \value{ See checkarg function. } \description{ This function can be used in 3 ways:\enumerate{ \item Return TRUE or FALSE depending on whether the argument checks are passed. This is suitable e.g. for if statements that take further action if the argument does not pass the checks.\cr \item Throw an exception if the argument does not pass the checks. This is suitable e.g. when no further action needs to be taken other than throwing an exception if the argument does not pass the checks.\cr \item Same as (2) but by supplying a default value, a default can be assigned in a single statement, when the argument is NULL. The checks are still performed on the returned value, and an exception is thrown when not passed.\cr } } \details{ Actual call to checkarg: checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = NA, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = FALSE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = FALSE, message = message, argumentName = argumentName) } \examples{ isIntegerOrNaOrNanVectorOrNull(2) # returns TRUE (argument is valid) isIntegerOrNaOrNanVectorOrNull("X") # returns FALSE (argument is invalid) #isIntegerOrNaOrNanVectorOrNull("X", stopIfNot = TRUE) # throws exception with message defined by message and argumentName parameters isIntegerOrNaOrNanVectorOrNull(2, default = 1) # returns 2 (the argument, rather than the default, since it is not NULL) #isIntegerOrNaOrNanVectorOrNull("X", default = 1) # throws exception with message defined by message and argumentName parameters isIntegerOrNaOrNanVectorOrNull(NULL, default = 1) # returns 1 (the default, rather than the argument, since it is NULL) }
/man/isIntegerOrNaOrNanVectorOrNull.Rd
no_license
cran/checkarg
R
false
true
2,488
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/isIntegerOrNaOrNanVectorOrNull.R \name{isIntegerOrNaOrNanVectorOrNull} \alias{isIntegerOrNaOrNanVectorOrNull} \title{Wrapper for the checkarg function, using specific parameter settings.} \usage{ isIntegerOrNaOrNanVectorOrNull(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) } \arguments{ \item{argument}{See checkarg function.} \item{default}{See checkarg function.} \item{stopIfNot}{See checkarg function.} \item{n}{See checkarg function.} \item{message}{See checkarg function.} \item{argumentName}{See checkarg function.} } \value{ See checkarg function. } \description{ This function can be used in 3 ways:\enumerate{ \item Return TRUE or FALSE depending on whether the argument checks are passed. This is suitable e.g. for if statements that take further action if the argument does not pass the checks.\cr \item Throw an exception if the argument does not pass the checks. This is suitable e.g. when no further action needs to be taken other than throwing an exception if the argument does not pass the checks.\cr \item Same as (2) but by supplying a default value, a default can be assigned in a single statement, when the argument is NULL. The checks are still performed on the returned value, and an exception is thrown when not passed.\cr } } \details{ Actual call to checkarg: checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = NA, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = FALSE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = FALSE, message = message, argumentName = argumentName) } \examples{ isIntegerOrNaOrNanVectorOrNull(2) # returns TRUE (argument is valid) isIntegerOrNaOrNanVectorOrNull("X") # returns FALSE (argument is invalid) #isIntegerOrNaOrNanVectorOrNull("X", stopIfNot = TRUE) # throws exception with message defined by message and argumentName parameters isIntegerOrNaOrNanVectorOrNull(2, default = 1) # returns 2 (the argument, rather than the default, since it is not NULL) #isIntegerOrNaOrNanVectorOrNull("X", default = 1) # throws exception with message defined by message and argumentName parameters isIntegerOrNaOrNanVectorOrNull(NULL, default = 1) # returns 1 (the default, rather than the argument, since it is NULL) }
#' Get Kappa problem type function #' #' This function apply Test to identify where kappa solutions are placed #' K0 = Full agreement (diagonal matrix) #' K1 = Any other case #' @param Mx Matrix. Matrix reduced. #' @keywords Mx #' @export #' @examples #' GetKappaProblemType(matrix(c(1,2,0,3,4,0,0,0,1),3,3)) #' GetKappaProblemType(matrix(c(1,0,0,0,2,0,0,0,3),3,3)) GetKappaProblemType <- function(Mx){ #Mx matrix without insignificant rows and columns Xr = margin.table(Mx,1) Xc = margin.table(Mx,2) Xt = sum(Xr) diag.Mx = diag(Mx) sum.diag = sum(diag.Mx) if (sum.diag == Xt) { ktp = "K0" return(ktp) } else if (sum.diag < Xt) { ktp = "K1" return(ktp) } } #GetKappaProblemType(matrix(c(2,0,3,5),2,2))
/R/GetKappaProblemType.r
no_license
cran/Delta
R
false
false
786
r
#' Get Kappa problem type function #' #' This function apply Test to identify where kappa solutions are placed #' K0 = Full agreement (diagonal matrix) #' K1 = Any other case #' @param Mx Matrix. Matrix reduced. #' @keywords Mx #' @export #' @examples #' GetKappaProblemType(matrix(c(1,2,0,3,4,0,0,0,1),3,3)) #' GetKappaProblemType(matrix(c(1,0,0,0,2,0,0,0,3),3,3)) GetKappaProblemType <- function(Mx){ #Mx matrix without insignificant rows and columns Xr = margin.table(Mx,1) Xc = margin.table(Mx,2) Xt = sum(Xr) diag.Mx = diag(Mx) sum.diag = sum(diag.Mx) if (sum.diag == Xt) { ktp = "K0" return(ktp) } else if (sum.diag < Xt) { ktp = "K1" return(ktp) } } #GetKappaProblemType(matrix(c(2,0,3,5),2,2))
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/chromR_example.R \docType{data} \name{chromR_example} \alias{chromR_example} \alias{chrom} \title{Example chromR object.} \format{A chromR object} \description{ An example chromR object containing parts of the *Phytophthora infestans* genome. } \details{ This data is a subset of the pinfsc50 dataset. It has been subset to positions between 500 and 600 kbp. The coordinate systems of the vcf and gff file have been altered by subtracting 500,000. This results in a 100 kbp section of supercontig_1.50 that has positional data ranging from 1 to 100 kbp. } \examples{ data(chromR_example) } \keyword{datasets}
/man/chromR_example.Rd
no_license
aichangji/vcfR
R
false
true
691
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/chromR_example.R \docType{data} \name{chromR_example} \alias{chromR_example} \alias{chrom} \title{Example chromR object.} \format{A chromR object} \description{ An example chromR object containing parts of the *Phytophthora infestans* genome. } \details{ This data is a subset of the pinfsc50 dataset. It has been subset to positions between 500 and 600 kbp. The coordinate systems of the vcf and gff file have been altered by subtracting 500,000. This results in a 100 kbp section of supercontig_1.50 that has positional data ranging from 1 to 100 kbp. } \examples{ data(chromR_example) } \keyword{datasets}
#install.packages("MatrixEQTL") # source("Matrix_eQTL_R/Matrix_eQTL_engine.r"); library(MatrixEQTL) ## Location of the package with the data files. base.dir = find.package('MatrixEQTL'); # base.dir = '.'; ## Settings # Linear model to use, modelANOVA, modelLINEAR, or modelLINEAR_CROSS useModel = modelLINEAR; # modelANOVA, modelLINEAR, or modelLINEAR_CROSS # Genotype file name SNP_file_name = "../Eurobats_chr17p13.2_genotypes_for_colocalizations.dosage"; snps_location_file_name = "../Eurobats_chr17p13.2_locations_for_colocalizations.txt"; # Gene expression file name expression_file_name = "../../Adipose\ expression\ data/FINAL_logTPMs_and_activities/Filtered_Eurobats_adipose_unnormalized_activities_from_logTPM_for_4213_regulators.txt"; gene_location_file_name = "../../Adipose\ expression\ data/FINAL_logTPMs_and_activities/Hg19_gene_map_for_13776_expressed_genes_in_Eurobats_adipose.map"; # Covariates file name # Set to character() for no covariates covariates_file_name = "../Filtered_Eurobats_adipose_covars_no_PEER.txt"; # Output file name output_file_name_cis = tempfile(); output_file_name_tra = tempfile(); # Only associations significant at this level will be saved pvOutputThreshold_cis = 1; pvOutputThreshold_tra = 1; # Error covariance matrix # Set to numeric() for identity. errorCovariance = numeric(); # errorCovariance = read.table("Sample_Data/errorCovariance.txt"); # Distance for local gene-SNP pairs cisDist = 1e6; ## Load genotype data snps = SlicedData$new(); snps$fileDelimiter = "\t"; # the TAB character snps$fileOmitCharacters = "NA"; # denote missing values; snps$fileSkipRows = 1; # one row of column labels snps$fileSkipColumns = 1; # one column of row labels snps$fileSliceSize = 2000; # read file in slices of 2,000 rows snps$LoadFile(SNP_file_name); ## Load gene expression data gene = SlicedData$new(); gene$fileDelimiter = "\t"; # the TAB character gene$fileOmitCharacters = "NA"; # denote missing values; gene$fileSkipRows = 1; # one row of column labels gene$fileSkipColumns = 1; # one column of row labels gene$fileSliceSize = 2000; # read file in slices of 2,000 rows gene$LoadFile(expression_file_name); ## Normal quantile transformation of gene expression data for( sl in 1:length(gene) ) { mat = gene[[sl]]; mat = t(apply(mat, 1, rank, ties.method = "average")); mat = qnorm(mat / (ncol(gene)+1)); gene[[sl]] = mat; } rm(sl, mat); ## Load covariates cvrt = SlicedData$new(); cvrt$fileDelimiter = "\t"; # the TAB character cvrt$fileOmitCharacters = "NA"; # denote missing values; cvrt$fileSkipRows = 1; # one row of column labels cvrt$fileSkipColumns = 1; # one column of row labels if(length(covariates_file_name)>0) { cvrt$LoadFile(covariates_file_name); } ## Run the analysis snpspos = read.table(snps_location_file_name, header = TRUE, stringsAsFactors = FALSE); genepos = read.table(gene_location_file_name, header = TRUE, stringsAsFactors = FALSE); me = Matrix_eQTL_main( snps = snps, gene = gene, cvrt = cvrt, output_file_name = output_file_name_tra, pvOutputThreshold = pvOutputThreshold_tra, useModel = useModel, errorCovariance = errorCovariance, verbose = TRUE, output_file_name.cis = output_file_name_cis, pvOutputThreshold.cis = pvOutputThreshold_cis, snpspos = snpspos, genepos = genepos, cisDist = cisDist, pvalue.hist = "qqplot", min.pv.by.genesnp = FALSE, noFDRsaveMemory = FALSE); unlink(output_file_name_tra); unlink(output_file_name_cis); ## Results: cat('Analysis done in: ', me$time.in.sec, ' seconds', '\n'); cat('Detected local eQTLs:', '\n'); cis_eqtls<-me$cis$eqtls cat('Detected distant eQTLs:', '\n'); trans_eqtls<-me$trans$eqtls ## Plot the Q-Q plot of local and distant p-values jpeg("Eurobats_adipose_chr17p13.2_aQTLs_from_unnormalized_activities.jpg") plot(me) dev.off() write.table(cis_eqtls,"Eurobats_adipose_chr17p13.2_cis-aQTLs_from_unnormalized_activities.txt",sep="\t",quote = FALSE,row.names=FALSE) write.table(trans_eqtls,"Eurobats_adipose_chr17p13.2_trans-aQTLs_from_unnormalized_activities.txt",sep="\t",quote = FALSE,row.names=FALSE) q(save="no")
/aQTL_analyses/R_script_for_Eurobats_adipose_chr17p13.2_matrix_aQTL.R
no_license
hoskinsjw/aQTL2021
R
false
false
4,187
r
#install.packages("MatrixEQTL") # source("Matrix_eQTL_R/Matrix_eQTL_engine.r"); library(MatrixEQTL) ## Location of the package with the data files. base.dir = find.package('MatrixEQTL'); # base.dir = '.'; ## Settings # Linear model to use, modelANOVA, modelLINEAR, or modelLINEAR_CROSS useModel = modelLINEAR; # modelANOVA, modelLINEAR, or modelLINEAR_CROSS # Genotype file name SNP_file_name = "../Eurobats_chr17p13.2_genotypes_for_colocalizations.dosage"; snps_location_file_name = "../Eurobats_chr17p13.2_locations_for_colocalizations.txt"; # Gene expression file name expression_file_name = "../../Adipose\ expression\ data/FINAL_logTPMs_and_activities/Filtered_Eurobats_adipose_unnormalized_activities_from_logTPM_for_4213_regulators.txt"; gene_location_file_name = "../../Adipose\ expression\ data/FINAL_logTPMs_and_activities/Hg19_gene_map_for_13776_expressed_genes_in_Eurobats_adipose.map"; # Covariates file name # Set to character() for no covariates covariates_file_name = "../Filtered_Eurobats_adipose_covars_no_PEER.txt"; # Output file name output_file_name_cis = tempfile(); output_file_name_tra = tempfile(); # Only associations significant at this level will be saved pvOutputThreshold_cis = 1; pvOutputThreshold_tra = 1; # Error covariance matrix # Set to numeric() for identity. errorCovariance = numeric(); # errorCovariance = read.table("Sample_Data/errorCovariance.txt"); # Distance for local gene-SNP pairs cisDist = 1e6; ## Load genotype data snps = SlicedData$new(); snps$fileDelimiter = "\t"; # the TAB character snps$fileOmitCharacters = "NA"; # denote missing values; snps$fileSkipRows = 1; # one row of column labels snps$fileSkipColumns = 1; # one column of row labels snps$fileSliceSize = 2000; # read file in slices of 2,000 rows snps$LoadFile(SNP_file_name); ## Load gene expression data gene = SlicedData$new(); gene$fileDelimiter = "\t"; # the TAB character gene$fileOmitCharacters = "NA"; # denote missing values; gene$fileSkipRows = 1; # one row of column labels gene$fileSkipColumns = 1; # one column of row labels gene$fileSliceSize = 2000; # read file in slices of 2,000 rows gene$LoadFile(expression_file_name); ## Normal quantile transformation of gene expression data for( sl in 1:length(gene) ) { mat = gene[[sl]]; mat = t(apply(mat, 1, rank, ties.method = "average")); mat = qnorm(mat / (ncol(gene)+1)); gene[[sl]] = mat; } rm(sl, mat); ## Load covariates cvrt = SlicedData$new(); cvrt$fileDelimiter = "\t"; # the TAB character cvrt$fileOmitCharacters = "NA"; # denote missing values; cvrt$fileSkipRows = 1; # one row of column labels cvrt$fileSkipColumns = 1; # one column of row labels if(length(covariates_file_name)>0) { cvrt$LoadFile(covariates_file_name); } ## Run the analysis snpspos = read.table(snps_location_file_name, header = TRUE, stringsAsFactors = FALSE); genepos = read.table(gene_location_file_name, header = TRUE, stringsAsFactors = FALSE); me = Matrix_eQTL_main( snps = snps, gene = gene, cvrt = cvrt, output_file_name = output_file_name_tra, pvOutputThreshold = pvOutputThreshold_tra, useModel = useModel, errorCovariance = errorCovariance, verbose = TRUE, output_file_name.cis = output_file_name_cis, pvOutputThreshold.cis = pvOutputThreshold_cis, snpspos = snpspos, genepos = genepos, cisDist = cisDist, pvalue.hist = "qqplot", min.pv.by.genesnp = FALSE, noFDRsaveMemory = FALSE); unlink(output_file_name_tra); unlink(output_file_name_cis); ## Results: cat('Analysis done in: ', me$time.in.sec, ' seconds', '\n'); cat('Detected local eQTLs:', '\n'); cis_eqtls<-me$cis$eqtls cat('Detected distant eQTLs:', '\n'); trans_eqtls<-me$trans$eqtls ## Plot the Q-Q plot of local and distant p-values jpeg("Eurobats_adipose_chr17p13.2_aQTLs_from_unnormalized_activities.jpg") plot(me) dev.off() write.table(cis_eqtls,"Eurobats_adipose_chr17p13.2_cis-aQTLs_from_unnormalized_activities.txt",sep="\t",quote = FALSE,row.names=FALSE) write.table(trans_eqtls,"Eurobats_adipose_chr17p13.2_trans-aQTLs_from_unnormalized_activities.txt",sep="\t",quote = FALSE,row.names=FALSE) q(save="no")
#' \code{follower} returns a matrix of the following vehicle #' #' @return A matrix of speed, location data by time. #' @param veh, a number #' @param df1df2, a matrix #' @usage follower(veh, df1df2) #' @export follower <- function(veh, df1df2) { ucol <- 3*(veh-2) + 1 xcol <- 3*(veh-2) + 2 ycol <- 3*(veh-2) + 3 u <- df1df2[,ucol] x <- df1df2[,xcol] y <- df1df2[,ycol] df1 <- data.frame(u,x,y) ucol <- 3*(veh-1) + 1 xcol <- 3*(veh-1) + 2 ycol <- 3*(veh-1) + 3 u <- df1df2[,ucol] x <- df1df2[,xcol] y <- df1df2[,ycol] df2 <- as.matrix(data.frame(u,x,y)) return(df2) }
/R/follower.R
permissive
PJOssenbruggen/Basic
R
false
false
646
r
#' \code{follower} returns a matrix of the following vehicle #' #' @return A matrix of speed, location data by time. #' @param veh, a number #' @param df1df2, a matrix #' @usage follower(veh, df1df2) #' @export follower <- function(veh, df1df2) { ucol <- 3*(veh-2) + 1 xcol <- 3*(veh-2) + 2 ycol <- 3*(veh-2) + 3 u <- df1df2[,ucol] x <- df1df2[,xcol] y <- df1df2[,ycol] df1 <- data.frame(u,x,y) ucol <- 3*(veh-1) + 1 xcol <- 3*(veh-1) + 2 ycol <- 3*(veh-1) + 3 u <- df1df2[,ucol] x <- df1df2[,xcol] y <- df1df2[,ycol] df2 <- as.matrix(data.frame(u,x,y)) return(df2) }
library(splines) library(dplyr) library(tidyr) library(ggplot2) theme_set(theme_bw() + theme(panel.spacing=grid::unit(0,"lines"))) n <- 1e5 p_0 <- 0.5 beta_x <- 0.5 beta_z <- 1e-0 seed <- 403 set.seed(seed) beta_0 <- qlogis(p_0) print(beta_0) x <- rnorm(n) z <- rnorm(n) ran <- seq(-3, 3, length.out=201) pfun <- function(beta_0, beta_x, beta_z){ o <- beta_0 + beta_x*x + beta_z*z res <- rbinom(n, size=1, prob=plogis(o)) smod <- glm(res ~ ns(x, 4), family="binomial") return(predict(smod , newdat=data.frame(x=ran) )) } beta_z <- seq(1,5) plst <- list() for (b in beta_z){ name <- paste0("beta_z", b) plst[[name]] <- pfun(beta_0, beta_x, b) } print(plst) pplot <- (data.frame(ran, plst) %>% gather(Beta_z, Value, -ran) %>% ggplot(aes(x = ran, y = Value, group = Beta_z, colour = Beta_z)) + geom_line() + scale_color_manual(values = beta_z) ) print(pplot) quit()
/aphrc/wash/binary_random.R
no_license
CYGUBICKO/projects
R
false
false
891
r
library(splines) library(dplyr) library(tidyr) library(ggplot2) theme_set(theme_bw() + theme(panel.spacing=grid::unit(0,"lines"))) n <- 1e5 p_0 <- 0.5 beta_x <- 0.5 beta_z <- 1e-0 seed <- 403 set.seed(seed) beta_0 <- qlogis(p_0) print(beta_0) x <- rnorm(n) z <- rnorm(n) ran <- seq(-3, 3, length.out=201) pfun <- function(beta_0, beta_x, beta_z){ o <- beta_0 + beta_x*x + beta_z*z res <- rbinom(n, size=1, prob=plogis(o)) smod <- glm(res ~ ns(x, 4), family="binomial") return(predict(smod , newdat=data.frame(x=ran) )) } beta_z <- seq(1,5) plst <- list() for (b in beta_z){ name <- paste0("beta_z", b) plst[[name]] <- pfun(beta_0, beta_x, b) } print(plst) pplot <- (data.frame(ran, plst) %>% gather(Beta_z, Value, -ran) %>% ggplot(aes(x = ran, y = Value, group = Beta_z, colour = Beta_z)) + geom_line() + scale_color_manual(values = beta_z) ) print(pplot) quit()
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/clustering_kmeans.R \name{riem.kmeans} \alias{riem.kmeans} \title{K-Means Clustering} \usage{ riem.kmeans( riemobj, k = 2, geometry = c("intrinsic", "extrinsic"), maxiter = 10, nstart = 5, algorithm = c("MacQueen", "Lloyd"), init = c("plus", "random") ) } \arguments{ \item{riemobj}{a S3 \code{"riemdata"} class for \eqn{N} manifold-valued data.} \item{k}{the number of clusters.} \item{geometry}{(case-insensitive) name of geometry; either geodesic (\code{"intrinsic"}) or embedded (\code{"extrinsic"}) geometry.} \item{maxiter}{the maximum number of iterations allowed.} \item{nstart}{the number of random starts.} \item{algorithm}{(case-insensitive) name of an algorithm to be run. (default: \code{"MacQueen"})} \item{init}{(case-insensitive) name of an initialization scheme. (default: \code{"plus"})} } \value{ a named list containing\describe{ \item{means}{a 3d array where each slice along 3rd dimension is a matrix representation of class mean.} \item{cluster}{a length-\eqn{N} vector of class labels (from \eqn{1:k}).} \item{score}{within-cluster sum of squares (WCSS).} } } \description{ Given \eqn{N} observations \eqn{X_1, X_2, \ldots, X_N \in \mathcal{M}}, perform k-means clustering by minimizing within-cluster sum of squares (WCSS). Since the problem is NP-hard and sensitive to the initialization, we provide an option with multiple starts and return the best result with respect to WCSS. } \examples{ #------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3 # class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3 # class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:10){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 11:20){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:30){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) mylabs = rep(c(1,2,3), each=10) ## K-MEDOIDS WITH K=2,3,4 clust2 = riem.kmeans(myriem, k=2) clust3 = riem.kmeans(myriem, k=3) clust4 = riem.kmeans(myriem, k=4) ## MDS FOR VISUALIZATION mds2d = riem.mds(myriem, ndim=2)$embed ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(2,2), pty="s") plot(mds2d, pch=19, main="true label", col=mylabs) plot(mds2d, pch=19, main="K=2", col=clust2$cluster) plot(mds2d, pch=19, main="K=3", col=clust3$cluster) plot(mds2d, pch=19, main="K=4", col=clust4$cluster) par(opar) } \references{ \insertRef{lloyd_least_1982}{Riemann} \insertRef{macqueen_methods_1967}{Riemann} } \seealso{ \code{\link{riem.kmeanspp}} } \concept{clustering}
/Riemann/man/riem.kmeans.Rd
no_license
akhikolla/TestedPackages-NoIssues
R
false
true
2,939
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/clustering_kmeans.R \name{riem.kmeans} \alias{riem.kmeans} \title{K-Means Clustering} \usage{ riem.kmeans( riemobj, k = 2, geometry = c("intrinsic", "extrinsic"), maxiter = 10, nstart = 5, algorithm = c("MacQueen", "Lloyd"), init = c("plus", "random") ) } \arguments{ \item{riemobj}{a S3 \code{"riemdata"} class for \eqn{N} manifold-valued data.} \item{k}{the number of clusters.} \item{geometry}{(case-insensitive) name of geometry; either geodesic (\code{"intrinsic"}) or embedded (\code{"extrinsic"}) geometry.} \item{maxiter}{the maximum number of iterations allowed.} \item{nstart}{the number of random starts.} \item{algorithm}{(case-insensitive) name of an algorithm to be run. (default: \code{"MacQueen"})} \item{init}{(case-insensitive) name of an initialization scheme. (default: \code{"plus"})} } \value{ a named list containing\describe{ \item{means}{a 3d array where each slice along 3rd dimension is a matrix representation of class mean.} \item{cluster}{a length-\eqn{N} vector of class labels (from \eqn{1:k}).} \item{score}{within-cluster sum of squares (WCSS).} } } \description{ Given \eqn{N} observations \eqn{X_1, X_2, \ldots, X_N \in \mathcal{M}}, perform k-means clustering by minimizing within-cluster sum of squares (WCSS). Since the problem is NP-hard and sensitive to the initialization, we provide an option with multiple starts and return the best result with respect to WCSS. } \examples{ #------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3 # class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3 # class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:10){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 11:20){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:30){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) mylabs = rep(c(1,2,3), each=10) ## K-MEDOIDS WITH K=2,3,4 clust2 = riem.kmeans(myriem, k=2) clust3 = riem.kmeans(myriem, k=3) clust4 = riem.kmeans(myriem, k=4) ## MDS FOR VISUALIZATION mds2d = riem.mds(myriem, ndim=2)$embed ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(2,2), pty="s") plot(mds2d, pch=19, main="true label", col=mylabs) plot(mds2d, pch=19, main="K=2", col=clust2$cluster) plot(mds2d, pch=19, main="K=3", col=clust3$cluster) plot(mds2d, pch=19, main="K=4", col=clust4$cluster) par(opar) } \references{ \insertRef{lloyd_least_1982}{Riemann} \insertRef{macqueen_methods_1967}{Riemann} } \seealso{ \code{\link{riem.kmeanspp}} } \concept{clustering}
#The main aim is to obtimise the allocation of the states and the transition between them #So we use an EM approach. Essentially estimate the transition probability and emission probability #Should the current parameters be the most optimum and then use those probabilities to find #The most likely parameters of the model #OK we are going to initialise so that we have what we need for the first E-Step #We are then going to calculate the E-Step and use it recalculate the parameters and so on #Until convergence. #The E-Step #Forward Step, is the probability of obtaining a certain sequence from model H #Calculate the probability of seeing the sequence y1..t and being in state i at the final observation yt #is only dependent on the previous probability of being in state i-1 at t-1, #The probability of seeing the first observation y1 of the sequecne and be in state i #will then be P(y1 & being in state 1) = P(S1)*P(y1) #But we have multiple possibilities for the first state, either state 1, 2, .. N possible states that we could start from #The second observation then I could have come from any state and then ended in state j #So I need to sum for all the possible states I could have come from ending in state 2 #Hence, the probability of being in state 2 is P(S2)*P(y2|S2). The probability of State 2 is then #The sum over all the previous state probabilities * the probability of transition to this state #In general then, we could write this as follows #P(y,j,s) = Current state probability * sum(Previous State probabilities*transition) #This will have to be done recursively for every sequence of observation and you will then end up #with a probability of ending in every state for a sequence of observation. If we add them up, this will give us the probability #of the observation given our model #This gave us the probability of certain state given the starting model parameters #Backward Step, this is the probability of looking at the model backwards rather forward. #We start from the end state and then go backward asking what is the probability of observation given the state #The probability of being in previous state j at time t is a function of being in state i at t+1 #P(End State T) = 1, just start with one #P(Observing j of the observation in the Current State) = P(Current State)*P(J Observation|Current state i)*P(Transition from Current State to Previous state) #Since you could have gone to multiple states, then you need to sum over all the states that you could have gone to #P(O,length-1,Ending State) = sum(P(Observation at length-1|current state)*P(current->next)*P(Next)) for all the next states #You can do this iteratively. #At the End you will get probability for every starting state #This will then give us the probability of Observation up to a certain length given that I am in a certain time and certain state #Ok, now the first aim is to find the probability of being in a certain state given the observation and model parameters #P(S|O,M) = P(O,S,M)/P(O,M), since P(O,S,M) = P(S|O,M)P(O|M)P(M) #P(O,S,M) = P(O,S|M)P(M) #So P(S|O,M) = P(O,S|M)/P(O|M) #Ok, the P(O,S|M) = #forward P(O|S,M) #backward P(S|M), the forward probability gives is the P(S|M), the backward gives the probability of observation given states #Now, the denominator is P(O|M), which is simply the marginal over all the states of P(O,S|M) #So the probability of ending up in state i is then forward*backward of state i/sum over all states #The second aim is to find the probability of a sequence of states as this will help in the final transition matrix estimation #The probability of being in state i and then going to state j globally #P(Si,Si+1|O,M) similar to the above = P(Si,Si+1,O|M)/P(O|M) #Numerator, forward probability P(Si|M)*P(Si+1|M)*transition probability from Si to Si+1 #Deonominator is simply summing over all possible si and si+1, which is actually Backward probability #Ok from the first aim, for every state, summing over all obervations Sum(P(S|O,M)) for all lengths of observations, #will give us the probability of being in state S|M, which is what we started with as our assumption #Similarly summing over all the length of observations, will give us the transition matrix, again one of our initial assumptions #Remaining, is the probability of our observation given a certain state #To covert them to probabilities, You essentially, want to sum P(S|O,M) for the first observation across all the sequences, for the first state, #Then the second state and so on. The final probability will be just the normalised quantity #The transition from Si to Si+1 will be the transition function above for all the observations irrespective of the position of the observation #The ratio between the transitions from Si to Si+1 relative to all transitions away from Si #The probability of the output for a gaussian mixture is as follows will be the sum over all components with the associated parameters for this component #Updating this probability will be similar to the normal EM approach. #Ok, let us remember, we have calculated the weights of every component, as the normalised likelihood for this observation #In this case, we also have the states, so we split things further. #First, the probability that the lth component in state i have generated a particular observation t is defined as: #Probability of state i * probability of observation given mixture l * weight of mixture l / sum over all components at state i #We have the initial weights to calculate this. #We can now get the updates as weight as before, but instead of summing for one observation, we get it for two states #So on #OK let us start with two models of the same input, essentially we are looking at the joint PD of the #independant and dependant variables and then estimating the coefficients. The states will be #looking at the Y as the thing to model by an HMM switching between multiple models explaining the Y #Not the Y itself X = cbind(rep(1,100),rnorm(100,2,3),rnorm(100,3,10)) B = rbind(c(1,2,3),c(0.5,2,5)) Y = c(X[1:50,]%*%(B[1,]),X[51:100,]%*%(B[2,])) B = rbind(c(1,1,1),c(2,2,2)) data = Y plot(data, type="l") #we can see that we have mixture of two distributions #Let us initialise our Mixture EM data for every state #Let us now initialise the state probability i.e. P(Si) S1 = 0.5 S2 = 0.5 #Transition probability self, then the other TS1 = c(0.5, 0.5) TS2 = c(0.5, 0.5) #Emission probability is calculated as in the EM approach, this makes sense that we have a probability for every observation, since they are not the same observation #Except that we don't have a mixture in the states, essentially we want every state to map to one component of the mixture s = max(apply(X,2,sd))*1.5 bs1 = dnorm((Y-(X%*%(B[1,]))),mean = 0,s) bs2 = dnorm((Y-(X%*%(B[2,]))),mean = 0,s) for(x in 1:10) { #OK, now we are set to do the first HMM iteration #Forward probability #As mentioned above of the observation that we have, we will calculate the forward probability alpha = matrix(ncol=2,nrow=length(data)) #Forward for state 1 and first of the observation alpha[1,1] = S1 * bs1[1] #Probability of State1 * Probability of observing the first number #Forward for state 2 and first of the observation alpha[1,2] = S2 * bs2[1] #Probability of State1 * Probability of observing the first number #Second is just conditional on the previous one (could be either s1 or s2) and ENDING in state 1 alpha[2,1] = alpha[1,1] * TS1[1] * bs1[2] + # ending in s1, P(S1) * Self transition * P(O2|S1) alpha[1,2] * TS2[2] * bs1[2] #ending in s1, P(S2) * T[S2->S1] * P(O2|S1) alpha[2,2] = alpha[1,2] * TS2[1] * bs2[2] + # ending in s2, P(S2) * Self transition * P(O2|S2) alpha[1,1] * TS1[2] * bs2[2] #ending in s2, P(S1) * T[S2->S1] * P(O2|S1) for(i in 2:length(data)) { #Ok, let us see the pattern #Probability of Observation given state 1 * sum of ((probability of previous state1 * self probability)+ #(Probability of previous state2 * transition from S2 to S1)) alpha[i,1] = bs1[i] * (alpha[i-1,1] * TS1[1] + alpha[i-1,2] * TS2[2]) #Similarly alpha[i,2] = bs2[i] * (alpha[i-1,2] * TS2[1] + alpha[i-1,1] * TS1[2]) } #Probability of the whole observation across the two states po = alpha[length(data),1]+alpha[length(data),2] #OK now the backward probability beta = matrix(ncol=2,nrow=length(data)) beta[length(data),1] = 1 beta[length(data),2] = 1 #Stand at the previous step and then look ahead #Probility at length(data)-1 at state 1 = T[S1->S1] * P(O|S1) * B(length(data),S1) + T[S1->S2] * P(O|S2) * B(length(data),S2) beta[length(data)-1,1] = TS1[1] * bs1[length(data)-1] * beta[length(data),1] + TS1[2] * bs2[length(data)-1] * beta[length(data),2] beta[length(data)-1,2] = TS2[1] * bs2[length(data)-1] * beta[length(data),2] + TS2[2] * bs1[length(data)-1] * beta[length(data),1] #pattern for(j in (length(data)-1):1) { beta[j,1] = TS1[1] * bs1[j+1] * beta[j+1,1] + TS1[2] * bs2[j+1] * beta[j+1,2] beta[j,2] = TS2[1] * bs2[j+1] * beta[j+1,2] + TS2[2] * bs1[j+1] * beta[j+1,1] } #Gamma, which is the probability of the state given the observation gamma = matrix(ncol=2, nrow=length(data)) gamma[,1] = alpha[,1]*beta[,1] gamma[,2] = alpha[,2]*beta[,2] gamma = t(apply(gamma,1,function(x){x/sum(x)})) #Eta, which is the transition probability from state i to j at data length t eta1 = matrix(ncol=2,nrow=(length(data)-1)) #for every data observation eta2 = matrix(ncol=2,nrow=(length(data)-1)) #for every data observation #going from 1 to 1 across the first observation eta1[1,1] = (gamma[1,1] * TS1[1] * bs1[2] * beta[2,1])/beta[1,1] #going from 1 to 2 across the first observation eta1[1,2] = (gamma[1,1] * TS1[2] * bs2[2] * beta[2,2])/beta[1,1] #going from 2 to 2 across the first observation eta2[1,1] = (gamma[1,2] * TS2[1] * bs2[2] * beta[2,2])/beta[1,2] #going from 1 to 2 across the first observation eta2[1,2] = (gamma[1,2] * TS2[2] * bs1[2] * beta[2,1])/beta[1,2] #Pattern for(t in 1:(length(data)-1)) { #going from 1 to 1 across the first observation eta1[t,1] = (gamma[t,1] * TS1[1] * bs1[(t+1)] * beta[(t+1),1])/beta[t,1] #going from 1 to 2 across the first observation eta1[t,2] = (gamma[t,1] * TS1[2] * bs2[(t+1)] * beta[(t+1),2])/beta[t,1] #going from 2 to 2 across the first observation eta2[t,1] = (gamma[t,2] * TS2[1] * bs2[(t+1)] * beta[(t+1),2])/beta[t,2] #going from 1 to 2 across the first observation eta2[t,2] = (gamma[t,2] * TS2[2] * bs1[(t+1)] * beta[(t+1),1])/beta[t,2] } TS1[1] = sum(eta1[,1])/sum(gamma[1:(length(data)-1),1]) TS1[2] = sum(eta1[,2])/sum(gamma[1:(length(data)-1),1]) TS2[1] = sum(eta2[,1])/sum(gamma[1:(length(data)-1),2]) TS2[2] = sum(eta2[,2])/sum(gamma[1:(length(data)-1),2]) #if(gamma[1,1]==S1&&gamma[1,2]==S2) break; S1 = gamma[1,1] S2 = gamma[1,2] #Update the distribution parameters, mean and standard deviation similarly xA = X[,-1]*gamma[,1] yA = Y*gamma[,1] xB = X[,-1]*gamma[,2] yB = Y*gamma[,2] B = rbind(coef(lm(yA ~ xA)),coef(lm(yB ~ xB))) bs1 = dnorm((Y-(X%*%(B[1,]))),mean = 0,s) bs2 = dnorm((Y-(X%*%(B[2,]))),mean = 0,s) print(B) print(c(S1,S2)) print(c(TS1,TS2)) } #Now we can get the state model for the data StateModel = c("H","L") print(StateModel[as.integer(apply(gamma,1,function(x){x[1]>x[2]}))+1]) colors = c("red","blue") plot(data,type="b", col=colors[as.integer(apply(gamma,1,function(x){x[1]>x[2]}))+1])
/HMM_EM_GLM.R
no_license
rafiksalama/HiddenMarkovModel_EM_R
R
false
false
11,388
r
#The main aim is to obtimise the allocation of the states and the transition between them #So we use an EM approach. Essentially estimate the transition probability and emission probability #Should the current parameters be the most optimum and then use those probabilities to find #The most likely parameters of the model #OK we are going to initialise so that we have what we need for the first E-Step #We are then going to calculate the E-Step and use it recalculate the parameters and so on #Until convergence. #The E-Step #Forward Step, is the probability of obtaining a certain sequence from model H #Calculate the probability of seeing the sequence y1..t and being in state i at the final observation yt #is only dependent on the previous probability of being in state i-1 at t-1, #The probability of seeing the first observation y1 of the sequecne and be in state i #will then be P(y1 & being in state 1) = P(S1)*P(y1) #But we have multiple possibilities for the first state, either state 1, 2, .. N possible states that we could start from #The second observation then I could have come from any state and then ended in state j #So I need to sum for all the possible states I could have come from ending in state 2 #Hence, the probability of being in state 2 is P(S2)*P(y2|S2). The probability of State 2 is then #The sum over all the previous state probabilities * the probability of transition to this state #In general then, we could write this as follows #P(y,j,s) = Current state probability * sum(Previous State probabilities*transition) #This will have to be done recursively for every sequence of observation and you will then end up #with a probability of ending in every state for a sequence of observation. If we add them up, this will give us the probability #of the observation given our model #This gave us the probability of certain state given the starting model parameters #Backward Step, this is the probability of looking at the model backwards rather forward. #We start from the end state and then go backward asking what is the probability of observation given the state #The probability of being in previous state j at time t is a function of being in state i at t+1 #P(End State T) = 1, just start with one #P(Observing j of the observation in the Current State) = P(Current State)*P(J Observation|Current state i)*P(Transition from Current State to Previous state) #Since you could have gone to multiple states, then you need to sum over all the states that you could have gone to #P(O,length-1,Ending State) = sum(P(Observation at length-1|current state)*P(current->next)*P(Next)) for all the next states #You can do this iteratively. #At the End you will get probability for every starting state #This will then give us the probability of Observation up to a certain length given that I am in a certain time and certain state #Ok, now the first aim is to find the probability of being in a certain state given the observation and model parameters #P(S|O,M) = P(O,S,M)/P(O,M), since P(O,S,M) = P(S|O,M)P(O|M)P(M) #P(O,S,M) = P(O,S|M)P(M) #So P(S|O,M) = P(O,S|M)/P(O|M) #Ok, the P(O,S|M) = #forward P(O|S,M) #backward P(S|M), the forward probability gives is the P(S|M), the backward gives the probability of observation given states #Now, the denominator is P(O|M), which is simply the marginal over all the states of P(O,S|M) #So the probability of ending up in state i is then forward*backward of state i/sum over all states #The second aim is to find the probability of a sequence of states as this will help in the final transition matrix estimation #The probability of being in state i and then going to state j globally #P(Si,Si+1|O,M) similar to the above = P(Si,Si+1,O|M)/P(O|M) #Numerator, forward probability P(Si|M)*P(Si+1|M)*transition probability from Si to Si+1 #Deonominator is simply summing over all possible si and si+1, which is actually Backward probability #Ok from the first aim, for every state, summing over all obervations Sum(P(S|O,M)) for all lengths of observations, #will give us the probability of being in state S|M, which is what we started with as our assumption #Similarly summing over all the length of observations, will give us the transition matrix, again one of our initial assumptions #Remaining, is the probability of our observation given a certain state #To covert them to probabilities, You essentially, want to sum P(S|O,M) for the first observation across all the sequences, for the first state, #Then the second state and so on. The final probability will be just the normalised quantity #The transition from Si to Si+1 will be the transition function above for all the observations irrespective of the position of the observation #The ratio between the transitions from Si to Si+1 relative to all transitions away from Si #The probability of the output for a gaussian mixture is as follows will be the sum over all components with the associated parameters for this component #Updating this probability will be similar to the normal EM approach. #Ok, let us remember, we have calculated the weights of every component, as the normalised likelihood for this observation #In this case, we also have the states, so we split things further. #First, the probability that the lth component in state i have generated a particular observation t is defined as: #Probability of state i * probability of observation given mixture l * weight of mixture l / sum over all components at state i #We have the initial weights to calculate this. #We can now get the updates as weight as before, but instead of summing for one observation, we get it for two states #So on #OK let us start with two models of the same input, essentially we are looking at the joint PD of the #independant and dependant variables and then estimating the coefficients. The states will be #looking at the Y as the thing to model by an HMM switching between multiple models explaining the Y #Not the Y itself X = cbind(rep(1,100),rnorm(100,2,3),rnorm(100,3,10)) B = rbind(c(1,2,3),c(0.5,2,5)) Y = c(X[1:50,]%*%(B[1,]),X[51:100,]%*%(B[2,])) B = rbind(c(1,1,1),c(2,2,2)) data = Y plot(data, type="l") #we can see that we have mixture of two distributions #Let us initialise our Mixture EM data for every state #Let us now initialise the state probability i.e. P(Si) S1 = 0.5 S2 = 0.5 #Transition probability self, then the other TS1 = c(0.5, 0.5) TS2 = c(0.5, 0.5) #Emission probability is calculated as in the EM approach, this makes sense that we have a probability for every observation, since they are not the same observation #Except that we don't have a mixture in the states, essentially we want every state to map to one component of the mixture s = max(apply(X,2,sd))*1.5 bs1 = dnorm((Y-(X%*%(B[1,]))),mean = 0,s) bs2 = dnorm((Y-(X%*%(B[2,]))),mean = 0,s) for(x in 1:10) { #OK, now we are set to do the first HMM iteration #Forward probability #As mentioned above of the observation that we have, we will calculate the forward probability alpha = matrix(ncol=2,nrow=length(data)) #Forward for state 1 and first of the observation alpha[1,1] = S1 * bs1[1] #Probability of State1 * Probability of observing the first number #Forward for state 2 and first of the observation alpha[1,2] = S2 * bs2[1] #Probability of State1 * Probability of observing the first number #Second is just conditional on the previous one (could be either s1 or s2) and ENDING in state 1 alpha[2,1] = alpha[1,1] * TS1[1] * bs1[2] + # ending in s1, P(S1) * Self transition * P(O2|S1) alpha[1,2] * TS2[2] * bs1[2] #ending in s1, P(S2) * T[S2->S1] * P(O2|S1) alpha[2,2] = alpha[1,2] * TS2[1] * bs2[2] + # ending in s2, P(S2) * Self transition * P(O2|S2) alpha[1,1] * TS1[2] * bs2[2] #ending in s2, P(S1) * T[S2->S1] * P(O2|S1) for(i in 2:length(data)) { #Ok, let us see the pattern #Probability of Observation given state 1 * sum of ((probability of previous state1 * self probability)+ #(Probability of previous state2 * transition from S2 to S1)) alpha[i,1] = bs1[i] * (alpha[i-1,1] * TS1[1] + alpha[i-1,2] * TS2[2]) #Similarly alpha[i,2] = bs2[i] * (alpha[i-1,2] * TS2[1] + alpha[i-1,1] * TS1[2]) } #Probability of the whole observation across the two states po = alpha[length(data),1]+alpha[length(data),2] #OK now the backward probability beta = matrix(ncol=2,nrow=length(data)) beta[length(data),1] = 1 beta[length(data),2] = 1 #Stand at the previous step and then look ahead #Probility at length(data)-1 at state 1 = T[S1->S1] * P(O|S1) * B(length(data),S1) + T[S1->S2] * P(O|S2) * B(length(data),S2) beta[length(data)-1,1] = TS1[1] * bs1[length(data)-1] * beta[length(data),1] + TS1[2] * bs2[length(data)-1] * beta[length(data),2] beta[length(data)-1,2] = TS2[1] * bs2[length(data)-1] * beta[length(data),2] + TS2[2] * bs1[length(data)-1] * beta[length(data),1] #pattern for(j in (length(data)-1):1) { beta[j,1] = TS1[1] * bs1[j+1] * beta[j+1,1] + TS1[2] * bs2[j+1] * beta[j+1,2] beta[j,2] = TS2[1] * bs2[j+1] * beta[j+1,2] + TS2[2] * bs1[j+1] * beta[j+1,1] } #Gamma, which is the probability of the state given the observation gamma = matrix(ncol=2, nrow=length(data)) gamma[,1] = alpha[,1]*beta[,1] gamma[,2] = alpha[,2]*beta[,2] gamma = t(apply(gamma,1,function(x){x/sum(x)})) #Eta, which is the transition probability from state i to j at data length t eta1 = matrix(ncol=2,nrow=(length(data)-1)) #for every data observation eta2 = matrix(ncol=2,nrow=(length(data)-1)) #for every data observation #going from 1 to 1 across the first observation eta1[1,1] = (gamma[1,1] * TS1[1] * bs1[2] * beta[2,1])/beta[1,1] #going from 1 to 2 across the first observation eta1[1,2] = (gamma[1,1] * TS1[2] * bs2[2] * beta[2,2])/beta[1,1] #going from 2 to 2 across the first observation eta2[1,1] = (gamma[1,2] * TS2[1] * bs2[2] * beta[2,2])/beta[1,2] #going from 1 to 2 across the first observation eta2[1,2] = (gamma[1,2] * TS2[2] * bs1[2] * beta[2,1])/beta[1,2] #Pattern for(t in 1:(length(data)-1)) { #going from 1 to 1 across the first observation eta1[t,1] = (gamma[t,1] * TS1[1] * bs1[(t+1)] * beta[(t+1),1])/beta[t,1] #going from 1 to 2 across the first observation eta1[t,2] = (gamma[t,1] * TS1[2] * bs2[(t+1)] * beta[(t+1),2])/beta[t,1] #going from 2 to 2 across the first observation eta2[t,1] = (gamma[t,2] * TS2[1] * bs2[(t+1)] * beta[(t+1),2])/beta[t,2] #going from 1 to 2 across the first observation eta2[t,2] = (gamma[t,2] * TS2[2] * bs1[(t+1)] * beta[(t+1),1])/beta[t,2] } TS1[1] = sum(eta1[,1])/sum(gamma[1:(length(data)-1),1]) TS1[2] = sum(eta1[,2])/sum(gamma[1:(length(data)-1),1]) TS2[1] = sum(eta2[,1])/sum(gamma[1:(length(data)-1),2]) TS2[2] = sum(eta2[,2])/sum(gamma[1:(length(data)-1),2]) #if(gamma[1,1]==S1&&gamma[1,2]==S2) break; S1 = gamma[1,1] S2 = gamma[1,2] #Update the distribution parameters, mean and standard deviation similarly xA = X[,-1]*gamma[,1] yA = Y*gamma[,1] xB = X[,-1]*gamma[,2] yB = Y*gamma[,2] B = rbind(coef(lm(yA ~ xA)),coef(lm(yB ~ xB))) bs1 = dnorm((Y-(X%*%(B[1,]))),mean = 0,s) bs2 = dnorm((Y-(X%*%(B[2,]))),mean = 0,s) print(B) print(c(S1,S2)) print(c(TS1,TS2)) } #Now we can get the state model for the data StateModel = c("H","L") print(StateModel[as.integer(apply(gamma,1,function(x){x[1]>x[2]}))+1]) colors = c("red","blue") plot(data,type="b", col=colors[as.integer(apply(gamma,1,function(x){x[1]>x[2]}))+1])
# Exercise 1: creating data frames # Create a vector of the number of points the Seahawks scored in the first 4 games # of the season (google "Seahawks" for the scores!) points <- c(24, 17, 24, 20) # Create a vector of the number of points the Seahwaks have allowed to be scored # against them in each of the first 4 games of the season points_allowed <- c(27, 24, 13, 17) # Combine your two vectors into a dataframe called `games` games <- data.frame(points, points_allowed) # Create a new column "diff" that is the difference in points between the teams # Hint: recall the syntax for assigning new elements (which in this case will be # a vector) to a list! games$diff <- games$points - games$points_allowed # Create a new column "won" which is TRUE if the Seahawks won the game games$won <- games$points > games$points_allowed # Create a vector of the opponent names corresponding to the games played opponents <- c("Denver", "Chicago", "Dallas", "Arizona") # Assign your dataframe rownames of their opponents rownames(games) <- opponents # View your data frame to see how it has changed! View(games)
/exercises-yukisea/chapter-10-exercises/exercise-1/exercise.R
permissive
yukisea/INFO201
R
false
false
1,113
r
# Exercise 1: creating data frames # Create a vector of the number of points the Seahawks scored in the first 4 games # of the season (google "Seahawks" for the scores!) points <- c(24, 17, 24, 20) # Create a vector of the number of points the Seahwaks have allowed to be scored # against them in each of the first 4 games of the season points_allowed <- c(27, 24, 13, 17) # Combine your two vectors into a dataframe called `games` games <- data.frame(points, points_allowed) # Create a new column "diff" that is the difference in points between the teams # Hint: recall the syntax for assigning new elements (which in this case will be # a vector) to a list! games$diff <- games$points - games$points_allowed # Create a new column "won" which is TRUE if the Seahawks won the game games$won <- games$points > games$points_allowed # Create a vector of the opponent names corresponding to the games played opponents <- c("Denver", "Chicago", "Dallas", "Arizona") # Assign your dataframe rownames of their opponents rownames(games) <- opponents # View your data frame to see how it has changed! View(games)
context("sf") test_that("sf objects are created",{ is_sf <- function(x) { a <- attributes(x) all( a$class == c("sf", "data.frame") ) & a$sf_column == "geometry" } df <- data.frame( id = c(1,1,1,1,1,2,2,2,2,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders:::rcpp_sf_point(df, 1:4 ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_point(df, 1:2 ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_multipoint(df, 1:4, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_linestring(df, 1:4, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_multilinestring(df, 1:4, NULL, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_polygon(df, 1:4, NULL, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_multipolygon(df, 1:4, NULL, NULL, NULL ) expect_true( is_sf( res ) ) }) test_that("correct number of rows returned",{ is_sf <- function(x) { a <- attributes(x) all( a$class == c("sf", "data.frame") ) & a$sf_column == "geometry" } df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(1,1,2,2,1,1,2,2,3,3) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders:::rcpp_sf_point( df, c(2:3) ) expect_true( nrow(res) == nrow( df ) ) res <- sfheaders:::rcpp_sf_multipoint( df, c(2:3), 0L ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_linestring( df, c(2:3), 0L ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_multilinestring( df, c(2:3), 0L, NULL ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_polygon( df, c(2:3), 0L, NULL ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_multipolygon( df, c(2:3), 0L, NULL, NULL ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) }) test_that("ID order maintained",{ is_sf <- function(x) { a <- attributes(x) all( a$class == c("sf", "data.frame") ) & a$sf_column == "geometry" } df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(1,1,2,2,2,1,2,2,3,3) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders:::rcpp_sf_point( df, c(2:3) ) m1 <- unclass( res$geometry[[1]] ) expect_equal( m1[1], df[1, "x"] ) expect_equal( m1[2], df[1, "y"] ) m7 <- unclass( res$geometry[[7]] ) expect_equal( m7[1], df[7, "x"] ) expect_equal( m7[2], df[7, "y"] ) res <- sfheaders:::rcpp_sf_multipoint( df, c(2:3), 0L ) m1 <- unclass( res$geometry[[1]] ) m2 <- unclass( res$geometry[[2]] ) expect_equal( m1[, 1], df[ df$id1 == 1, "x" ] ) expect_equal( m1[, 2], df[ df$id1 == 1, "y" ] ) expect_equal( m2[, 1], df[ df$id1 == 2, "x" ] ) expect_equal( m2[, 2], df[ df$id1 == 2, "y" ] ) res <- sfheaders:::rcpp_sf_polygon( df, c(2:3), 0L, 1L ) m1 <- res$geometry[[1]][[1]] m2 <- res$geometry[[1]][[2]] m3 <- res$geometry[[2]][[1]] m4 <- res$geometry[[2]][[2]] m5 <- res$geometry[[2]][[3]] expect_equal( m1[, 1], df[ df$id1 == 1 & df$id2 == 1, "x"] ) expect_equal( m1[, 2], df[ df$id1 == 1 & df$id2 == 1, "y"] ) expect_equal( m2[, 1], df[ df$id1 == 1 & df$id2 == 2, "x"] ) expect_equal( m2[, 2], df[ df$id1 == 1 & df$id2 == 2, "y"] ) expect_equal( m3[, 1], df[ df$id1 == 2 & df$id2 == 1, "x"] ) expect_equal( m3[, 2], df[ df$id1 == 2 & df$id2 == 1, "y"] ) expect_equal( m4[, 1], df[ df$id1 == 2 & df$id2 == 2, "x"] ) expect_equal( m4[, 2], df[ df$id1 == 2 & df$id2 == 2, "y"] ) expect_equal( m5[, 1], df[ df$id1 == 2 & df$id2 == 3, "x"] ) expect_equal( m5[, 2], df[ df$id1 == 2 & df$id2 == 3, "y"] ) df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(1,1,2,2,1,1,2,2,3,3) ## this errored in sf_polygon , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) expect_error( sfheaders:::rcpp_sf_polygon( df, c(2:3), 0L, 1L ), "sfheaders - error indexing lines, perhaps caused by un-ordered data?" ) ## because the id2 is out of order expect_error( sfheaders:::rcpp_sf_linestring( df, c(2:3), 1L ), "sfheaders - error indexing lines, perhaps caused by un-ordered data?" ) expect_error( sfheaders:::rcpp_sf_linestring( df, c(2:3), 0 ), "sfheaders - linestring columns types are different") }) test_that("unordered ids cause issues",{ df <- data.frame( id1 = c(2,2,2,2,2,1,1,1,1,1) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_linestring(df, linestring_id = "id1") expect_true( !any( res$id == unique( df$id1 ) ) ) ## sub-group order works df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(2,2,3,3,3,1,1,1,2,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_polygon(df, polygon_id = "id1", linestring_id = "id2") expect_true( all( res$id == unique( df$id1 ) ) ) m1 <- res$geometry[[1]][[1]] m2 <- res$geometry[[1]][[2]] m3 <- res$geometry[[2]][[1]] m4 <- res$geometry[[2]][[2]] expect_equal( m1, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2, 3:6 ] ) ) ) expect_equal( m2, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 3, 3:6 ] ) ) ) expect_equal( m3, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 1, 3:6 ] ) ) ) expect_equal( m4, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2, 3:6 ] ) ) ) ## sub-group order doesn't work df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(2,2,3,3,3,3,3,1,2,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_polygon(df, polygon_id = "id1", linestring_id = "id2") expect_true( all( res$id == unique( df$id1 ) ) ) m1 <- res$geometry[[1]][[1]] m2 <- res$geometry[[1]][[2]] m3 <- res$geometry[[2]][[1]] m4 <- res$geometry[[2]][[2]] m5 <- res$geometry[[2]][[3]] ## these tests will pass, but the coordinates will be wronge, becase the ID order is wrong expect_equal( m1, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2, 3:6 ] ) ) ) expect_equal( m2, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 3, 3:6 ] ) ) ) expect_equal( m3, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 3, 3:6 ] ) ) ) expect_equal( m4, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 1, 3:6 ] ) ) ) expect_equal( m5, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2, 3:6 ] ) ) ) df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(2,2,3,3,3,3,3,1,2,2) , id3 = c(1,2,1,1,1,1,2,2,1,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_multipolygon(df, multipolygon_id = "id1", polygon_id = "id2", linestring_id = "id3") expect_true( all( res$id == unique( df$id1 ) ) ) m1 <- res$geometry[[1]][[1]][[1]] m2 <- res$geometry[[1]][[1]][[2]] m3 <- res$geometry[[1]][[2]][[1]] m4 <- res$geometry[[2]][[1]][[1]] m5 <- res$geometry[[2]][[1]][[2]] m6 <- res$geometry[[2]][[2]][[1]] m7 <- res$geometry[[2]][[3]][[1]] m8 <- res$geometry[[2]][[3]][[2]] ## these tests will pass, but the coordinates will be wronge, becase the ID order is wrong expect_equal( m1, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m2, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2 & df$id3 == 2, 4:7 ] ) ) ) expect_equal( m3, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 3 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m4, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 3 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m5, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 3 & df$id3 == 2, 4:7 ] ) ) ) expect_equal( m6, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 1 & df$id3 == 2, 4:7 ] ) ) ) expect_equal( m7, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m8, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2 & df$id3 == 2, 4:7 ] ) ) ) })
/tests/testthat/test-sf.R
no_license
nemochina2008/sfheaders
R
false
false
8,117
r
context("sf") test_that("sf objects are created",{ is_sf <- function(x) { a <- attributes(x) all( a$class == c("sf", "data.frame") ) & a$sf_column == "geometry" } df <- data.frame( id = c(1,1,1,1,1,2,2,2,2,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders:::rcpp_sf_point(df, 1:4 ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_point(df, 1:2 ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_multipoint(df, 1:4, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_linestring(df, 1:4, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_multilinestring(df, 1:4, NULL, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_polygon(df, 1:4, NULL, NULL ) expect_true( is_sf( res ) ) res <- sfheaders:::rcpp_sf_multipolygon(df, 1:4, NULL, NULL, NULL ) expect_true( is_sf( res ) ) }) test_that("correct number of rows returned",{ is_sf <- function(x) { a <- attributes(x) all( a$class == c("sf", "data.frame") ) & a$sf_column == "geometry" } df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(1,1,2,2,1,1,2,2,3,3) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders:::rcpp_sf_point( df, c(2:3) ) expect_true( nrow(res) == nrow( df ) ) res <- sfheaders:::rcpp_sf_multipoint( df, c(2:3), 0L ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_linestring( df, c(2:3), 0L ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_multilinestring( df, c(2:3), 0L, NULL ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_polygon( df, c(2:3), 0L, NULL ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) res <- sfheaders:::rcpp_sf_multipolygon( df, c(2:3), 0L, NULL, NULL ) expect_true( nrow(res) == length( unique( df$id1 ) ) ) expect_true( all( res$id == unique( df$id1 ) ) ) }) test_that("ID order maintained",{ is_sf <- function(x) { a <- attributes(x) all( a$class == c("sf", "data.frame") ) & a$sf_column == "geometry" } df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(1,1,2,2,2,1,2,2,3,3) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders:::rcpp_sf_point( df, c(2:3) ) m1 <- unclass( res$geometry[[1]] ) expect_equal( m1[1], df[1, "x"] ) expect_equal( m1[2], df[1, "y"] ) m7 <- unclass( res$geometry[[7]] ) expect_equal( m7[1], df[7, "x"] ) expect_equal( m7[2], df[7, "y"] ) res <- sfheaders:::rcpp_sf_multipoint( df, c(2:3), 0L ) m1 <- unclass( res$geometry[[1]] ) m2 <- unclass( res$geometry[[2]] ) expect_equal( m1[, 1], df[ df$id1 == 1, "x" ] ) expect_equal( m1[, 2], df[ df$id1 == 1, "y" ] ) expect_equal( m2[, 1], df[ df$id1 == 2, "x" ] ) expect_equal( m2[, 2], df[ df$id1 == 2, "y" ] ) res <- sfheaders:::rcpp_sf_polygon( df, c(2:3), 0L, 1L ) m1 <- res$geometry[[1]][[1]] m2 <- res$geometry[[1]][[2]] m3 <- res$geometry[[2]][[1]] m4 <- res$geometry[[2]][[2]] m5 <- res$geometry[[2]][[3]] expect_equal( m1[, 1], df[ df$id1 == 1 & df$id2 == 1, "x"] ) expect_equal( m1[, 2], df[ df$id1 == 1 & df$id2 == 1, "y"] ) expect_equal( m2[, 1], df[ df$id1 == 1 & df$id2 == 2, "x"] ) expect_equal( m2[, 2], df[ df$id1 == 1 & df$id2 == 2, "y"] ) expect_equal( m3[, 1], df[ df$id1 == 2 & df$id2 == 1, "x"] ) expect_equal( m3[, 2], df[ df$id1 == 2 & df$id2 == 1, "y"] ) expect_equal( m4[, 1], df[ df$id1 == 2 & df$id2 == 2, "x"] ) expect_equal( m4[, 2], df[ df$id1 == 2 & df$id2 == 2, "y"] ) expect_equal( m5[, 1], df[ df$id1 == 2 & df$id2 == 3, "x"] ) expect_equal( m5[, 2], df[ df$id1 == 2 & df$id2 == 3, "y"] ) df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(1,1,2,2,1,1,2,2,3,3) ## this errored in sf_polygon , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) expect_error( sfheaders:::rcpp_sf_polygon( df, c(2:3), 0L, 1L ), "sfheaders - error indexing lines, perhaps caused by un-ordered data?" ) ## because the id2 is out of order expect_error( sfheaders:::rcpp_sf_linestring( df, c(2:3), 1L ), "sfheaders - error indexing lines, perhaps caused by un-ordered data?" ) expect_error( sfheaders:::rcpp_sf_linestring( df, c(2:3), 0 ), "sfheaders - linestring columns types are different") }) test_that("unordered ids cause issues",{ df <- data.frame( id1 = c(2,2,2,2,2,1,1,1,1,1) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_linestring(df, linestring_id = "id1") expect_true( !any( res$id == unique( df$id1 ) ) ) ## sub-group order works df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(2,2,3,3,3,1,1,1,2,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_polygon(df, polygon_id = "id1", linestring_id = "id2") expect_true( all( res$id == unique( df$id1 ) ) ) m1 <- res$geometry[[1]][[1]] m2 <- res$geometry[[1]][[2]] m3 <- res$geometry[[2]][[1]] m4 <- res$geometry[[2]][[2]] expect_equal( m1, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2, 3:6 ] ) ) ) expect_equal( m2, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 3, 3:6 ] ) ) ) expect_equal( m3, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 1, 3:6 ] ) ) ) expect_equal( m4, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2, 3:6 ] ) ) ) ## sub-group order doesn't work df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(2,2,3,3,3,3,3,1,2,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_polygon(df, polygon_id = "id1", linestring_id = "id2") expect_true( all( res$id == unique( df$id1 ) ) ) m1 <- res$geometry[[1]][[1]] m2 <- res$geometry[[1]][[2]] m3 <- res$geometry[[2]][[1]] m4 <- res$geometry[[2]][[2]] m5 <- res$geometry[[2]][[3]] ## these tests will pass, but the coordinates will be wronge, becase the ID order is wrong expect_equal( m1, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2, 3:6 ] ) ) ) expect_equal( m2, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 3, 3:6 ] ) ) ) expect_equal( m3, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 3, 3:6 ] ) ) ) expect_equal( m4, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 1, 3:6 ] ) ) ) expect_equal( m5, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2, 3:6 ] ) ) ) df <- data.frame( id1 = c(1,1,1,1,1,2,2,2,2,2) , id2 = c(2,2,3,3,3,3,3,1,2,2) , id3 = c(1,2,1,1,1,1,2,2,1,2) , x = 1:10 , y = 1:10 , z = 1:10 , m = 1:10 ) res <- sfheaders::sf_multipolygon(df, multipolygon_id = "id1", polygon_id = "id2", linestring_id = "id3") expect_true( all( res$id == unique( df$id1 ) ) ) m1 <- res$geometry[[1]][[1]][[1]] m2 <- res$geometry[[1]][[1]][[2]] m3 <- res$geometry[[1]][[2]][[1]] m4 <- res$geometry[[2]][[1]][[1]] m5 <- res$geometry[[2]][[1]][[2]] m6 <- res$geometry[[2]][[2]][[1]] m7 <- res$geometry[[2]][[3]][[1]] m8 <- res$geometry[[2]][[3]][[2]] ## these tests will pass, but the coordinates will be wronge, becase the ID order is wrong expect_equal( m1, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m2, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 2 & df$id3 == 2, 4:7 ] ) ) ) expect_equal( m3, unname( as.matrix( df[ df$id1 == 1 & df$id2 == 3 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m4, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 3 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m5, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 3 & df$id3 == 2, 4:7 ] ) ) ) expect_equal( m6, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 1 & df$id3 == 2, 4:7 ] ) ) ) expect_equal( m7, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2 & df$id3 == 1, 4:7 ] ) ) ) expect_equal( m8, unname( as.matrix( df[ df$id1 == 2 & df$id2 == 2 & df$id3 == 2, 4:7 ] ) ) ) })
## Authors ## Martin Schlather, schlather@math.uni-mannheim.de ## ## ## Copyright (C) 2015 -- 2017 Martin Schlather ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 3 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ### !!!!!!!!!!!! ACHTUNG !!!!!!!!!!!! TREND als cov-fct muss ### noch programmiert werden !!! ## source("~/R/RF/RandomFields/R/MLES.R") ## PrintLevels ## 0 : no message ## 1 : important error messages ## 2 : warnings ## 3 : minium debugging information ## 5 : extended debugging information ## jetzt nur noch global naturalscaling (ja / nein) ## spaeter eine Funktion schreibbar, die den naturscaling umwandelt; ## im prinzipt CMbuild, aber ruechwaers mit 1/newscale und eingefuegt ## in eventuell schon vorhandene $ operatoren #Beim paper lesen im Zug nach Muenchen heute morgen ist mir eine Referenz zu einem R Paket "mlegp: Maximum likelihood estimates of Gaussian processes" aufgefallen. Ist Dir aber sicher schon bekannt! # stop("") # problem: natscale; im moment 2x implementiert, 1x mal ueber # scale/aniso (user) und einmal gedoppelt -- irgendwas muss raus ## LSQ variogram fuer trend = const. ## kann verbessert werden, insb. fuer fixed effects, aber auch eingeschraenkt ## fuer random effects -> BA/MA ## REML fehlt ## users.guess muss in eine List von meheren Vorschlaegen umgewandelt werden !!! Und dann muss RFfit recursiver call mit allen bisherigen Werden laufen !! ## zentrale C -Schnittstellen ## .C(C_PutValuesAtNA, RegNr, param) ## bins bei Distances automatisch ## bei repet sind die Trends/fixed effects gleich, es muessen aber die ## random effects unterschiedlich sein. ## bei list(data) werden auch trend/fixed effects unterschiedlich geschaetzt. ## Erweiterungen: Emilio's Bi-MLE, Covarianz-Matrix-INversion per fft oder ## per INLA, grosse Datensaetze spalten in kleinere "unabhaengige". ################################### ## !!! Mixed Model Equations !!! ## ################################### ## accessing slots accessByNameOrNumber <- function(x, i, j, drop=FALSE) { stopifnot(length(i)==1) if (is.numeric(i)) i <- slotNames(x)[i] return(accessSlotsByName(x=x, i=i, j=j, drop=drop)) } setMethod("[", signature = "RFfit", def=accessByNameOrNumber) ### to do : ask Paulo #effects_RFfit <- function(OP, object, method) { # eff <- RFrandef(object=object, method=method, OP=OP) # linpart <- fitted_RFfit(OP=OP, object=object, method=method) # stop("unclear how these two results should be combined in the output") #} #effects_RMmodelFit <- function(...) stop("'effects' can only be used with the original and sp_conform output of 'RFfit'.") #setMethod(f="effects", signature='RFfit', # definition=function(object, method="ml") # effects_RFfit("@", object=object, method=method))# #setMethod(f="effects", signature='RMmodelFit', # definition=function(object, newdata=NULL) effects_RMmodelFit())# #effects.RM_modelFit <- function(object, ...) effects_RMmodelFit() #effects.RF_fit <- function(object, method="ml") effects_RMmodelFit() simulate_RFfit <- function(OP, object, newdata, conditional, method) { Z <- do.call(OP, list(object, "Z")) L <- length(Z$data) ans <- rep(list(NULL), L) m <- ModelParts(object[method], effects=Z$effect, complete=FALSE) ## no params if (conditional) { for (i in 1:L) { ans[[i]] <- RFsimulate(model=m$model, data = Z$data[[i]], given = Z$coord[[i]], x = if (!is.null(newdata)) newdata, err.model = m$err.model) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } return (if (L == 1) ans[[1]] else ans) } else { for (i in 1:L) { ans[[i]] <- RFsimulate(model=, x = if (length(newdata)==0) Z$coord[[i]] else newdata) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } } } simulate_RMmodelFit <- function(...) stop("'simulate' can only be used with the original and sp_conform output of 'RFfit'.") setMethod(f="simulate", signature='RFfit', definition=function(object, newdata=NULL, conditional=!is.null(newdata), method="ml") simulate_RFfit("@", object=object, conditional=conditional, method=method))# setMethod(f="simulate", signature='RMmodelFit', definition=function(object, newdata=NULL) simulate_RMmodelFit())# simulate.RM_modelFit <- function(object, ...) simulate_RMmodelFit() simulate.RF_fit <- function(object, method="ml") simulate_RMmodelFit() predict_RFfit <- function(OP, object, newdata, impute, method) { Z <- do.call(OP, list(object, "Z")) L <- length(Z$data) ans <- rep(list(NULL), L) if (impute) { if (length(newdata) > 0) stop("for imputing, 'newdata' may not be given") for (i in 1:L) { ans[[i]] <- RFinterpolate(model=object[method], data = Z$data[[i]], given = Z$coord[[i]], err.model = NA) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } } else { for (i in 1:L) { ans[[i]] <- RFinterpolate(model=object[method], data = Z$data[[i]], given = Z$coord[[i]], x = if (!is.null(newdata)) newdata else Z$coord, err.model = NA) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } } return (if (L == 1) ans[[1]] else ans) } predict_RMmodelFit <- function(...) stop("'predict' can only be used with the original and sp_conform output of 'RFfit.") setMethod(f="predict", signature='RFfit', definition=function(object, newdata=NULL, impute=FALSE, method="ml") predict_RFfit("@", object=object, newdata=newdata, impute=impute, method=method))# setMethod(f="predict", signature='RMmodelFit', definition=function(object, newdata=NULL) predict_RMmodelFit())# predict.RM_modelFit <- function(object, ...) predict_RMmodelFit(object=object, ...) predict.RF_fit <- function(object, method="ml") predict_RMmodelFit(object, method=method) coef_RMmodelFit <- function(OP, object) { covariat <- do.call(OP, list(object, "covariat")) glbl.var <- do.call(OP, list(object, "globalvariance")) p <- do.call(OP, list(object, "param")) if (length(covariat) > 0) covariat <- as.matrix(covariat) nr_p <- nrow(p) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_p - length(glbl.var))) p <- cbind(p, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow= nr_p - nrow(covariat)))) #class(p) <- "coef.RMmodelFit" p[1, ] } setMethod(f="coef", signature='RMmodelFit', definition=function(object) coef_RMmodelFit("@", object))# setMethod(f="coef", signature='RFfit', definition=function(object, method="ml") coef_RMmodelFit("@", object[method]))# coef.RM_modelFit <- function(object, ...) coef_RMmodelFit("$", object) coef.RF_fit <- function(object, method="ml") coef_RMmodelFit("$", object[method]) residuals_RMmodelFit <- function(OP, object) { resid <- do.call(OP, list(object, "residuals")) message("Note that 'residuals' equals the difference between the data and the linear part (fixed effects).") if (length(resid) == 1) resid[[1]] else resid } setMethod(f="residuals", signature='RMmodelFit', definition=function(object) residuals_RMmodelFit("@", object))# setMethod(f="residuals", signature='RFfit', definition=function(object, method="ml") residuals_RMmodelFit("@", object[method]))# residuals.RM_modelFit <- function(object, ...) residuals_RMmodelFit("$", object) residuals.RF_fit <- function(object, method="ml") residuals_RMmodelFit("$", object[method]) fitted_RFfit <- function(OP, object, method) { data <- do.call(OP, list(object, "Z"))$data resid <- do.call(OP, list(object[method], "residuals")) for (i in 1:length(data)) data[[i]] <- data[[i]] - resid[[i]] message("Note that 'fitted' equals the linear part (fixed effects).") if (length(data) > 1) data else if (ncol(data[[1]]) > 1) data[[1]] else as.vector(data[[1]]) } fitted_RMmodelFit <- function(...) stop("'fitted' can only be used with the original output of 'RFfit', not with some of its extraction.") setMethod(f="fitted", signature='RMmodelFit', definition=function(object) fitted_RMmodelFit())# setMethod(f="fitted", signature='RFfit', definition=function(object, method="ml") fitted_RFfit("@", object=object, method=method))# fitted.RM_modelFit <- function(object, ...) fitted_RMmodelFit() fitted.RF_fit <- function(object, method="ml") fitted_RFfit("$", object=object, method=method) RFhessian <- function(model) { method <- "ml" if (is(model, "RF_fit")) return(model[[method]]@hessian) else if (is(model, "RFfit")) return(model[method]$hessian) else stop("'model' is not an output of 'RFfit'") } anova.RFfit <- function(object, ...) RFratiotest(nullmodel=object, ...) anova.RF_fit <- function(object, ...) RFratiotest(nullmodel=object, ...) anova.RMmodelFit <- function(object, ...) RFratiotest(nullmodel=object, ...) anova.RM_modelFit <- function(object, ...) RFratiotest(nullmodel=object, ...) setMethod(f="anova", signature=CLASS_FIT, anova.RFfit)# setMethod(f="anova", signature='RFfit', anova.RFfit)# boundary_values <- function(variab) { upper.bound <- variab[4, , drop=FALSE] lower.bound <- variab[3, , drop=FALSE] # sd <- variab[2, ] variab <- variab[1, , drop=FALSE] lidx <- variab < lower.bound + 1e-8 uidx <- variab > upper.bound - 1e-8 nl <- sum(lidx, na.rm=TRUE) nu <- sum(uidx, na.rm=TRUE) if (nl + nu > 0) { lidx[is.na(lidx)] <- FALSE uidx[is.na(uidx)] <- FALSE txt <- paste(sep="", "Note that the (possibly internal) fitted variable", if (nl > 0) paste(if (nl > 1) "s " else " ", paste("'", colnames(variab)[lidx], "'", sep="", collapse=", "), if (nl == 1) " is " else " are ", "close to or on the effective lower boundary", sep=""), if (nl > 0 && nu > 0) " and the variable", if (nu > 0) paste(if (nu > 1) "s " else " ", paste("'", colnames(variab)[uidx], "'", sep="", collapse=", "), if (nu == 1) "is" else "are", "close to or on the effective upper boundary"), ".\nHence the gradient of the likelihood function might not be zero and none of the\nreported 'sd' values might be reliable.") } else txt <- NULL return(txt) } summary_RMmodelFit <- function(OP, object, ..., isna.param) { model <- if (OP == "@") PrepareModel2(object, ...) else object$model covariat <- do.call(OP, list(object, "covariat")) glbl.var <- do.call(OP, list(object, "globalvariance")) p <- do.call(OP, list(object, "param")) r <- do.call(OP, list(object, "residuals")) v <- do.call(OP, list(object, "variab")) l <- list(model=model, loglikelihood=do.call(OP, list(object, "likelihood")), AIC = do.call(OP, list(object, "AIC")), AICc= do.call(OP, list(object, "AICc")), BIC = do.call(OP, list(object, "BIC")), residuals=if (length(r) == 1) r[[1]] else r) if (missing(isna.param)) isna.param <- any(is.na(p)) l$boundary <- boundary_values(v) if (length(covariat) > 0) covariat <- as.matrix(covariat) if (!any(is.na(p[1, ]))) { nr_p <- nrow(p) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_p - length(glbl.var))) l$param <- cbind(p, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow= nr_p - nrow(covariat)))) } if (isna.param || !is.null(l$boundary)) { nr_v <- nrow(v) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_v - length(glbl.var))) l$variab <- cbind(v, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow=nr_v - nrow(covariat))) ) } class(l) <- "summary.RMmodelFit" l } summary.RMmodelFit <- function(object, ..., isna.param) { summary_RMmodelFit("@", object, ..., isna.param=isna.param) } setMethod(f="summary", signature=CLASS_FIT, summary.RMmodelFit)# summary.RM_modelFit <- function(object, ..., isna.param) { summary_RMmodelFit("$", object, ..., isna.param=isna.param) } print.summary.RMmodelFit <- function(x, ...) { printVariab <- function(x) { cat("Internal variables:\n") if (is.null(x$boundary)) print(x$variab[1:2, , drop=FALSE], ..., na.print="-")# else print(x$variab, ..., na.print="-")# cat("\n") return(ncol(x$variab)) } printParam <- function(param) { cat("User's variables:\n") print(param, ..., na.print="-")# return(ncol(param)) } printRest <- function(...) { x <- unlist(list(...)) stopifnot(length(x) == 3) names(x) <- c("#variab", "loglikelihood", "AIC") cat("\n") print(x) # cat("\n") } if (RFoptions()$general$detailed_output) str(x$model, no.list=TRUE) # cat("\n") np <- AIC <- ll <- nm <- NA if (length(x$submodels) > 0) { cur_name <- "" len <- length(x$submodels) for (i in 1:len) { sm <- x$submodels[[i]] n <- sm$report nnxt <- if (i==len) "" else x$submodels[[i+1]] if (n != cur_name) { if (i > 1) { if (!is.null(sm$param)) printParam(cparam) printRest(np, ll, AIC) # if (!is.null(sm$boundary)) cat(sm$boundary, "\n\n") } if (nnxt != n && length(sm$fixed) > 0) { nX <- paste(sep="", n, " (", paste(c(if (length(sm$fixed$zero) > 0) paste(colnames(x$param)[sm$fixed$zero], "= 0"), if (length(sm$fixed$one) > 0) paste(colnames(x$param)[sm$fixed$one], "= 1")), sep=", "), ")") } else nX <- n cat(if (!is.na(nm)) cat("\n"), nX, "\n", paste(rep("=", min(80, nchar(nX))), collapse=""), "\n", sep="") np <- 0 AIC <- 0 ll <- 0 cparam <- NULL nm <- 1 } if (!is.null(sm$variab)) { if (nm > 1 || (i<len && n==nnxt)) cat("model", nm, ", ") printVariab(sm) } if (!is.null(sm$param)) { param <- x$param * NA param[, sm$p.proj] <- sm$param fixed <- sm$fixed if (length(fixed) > 0) { param[1, fixed$zero] <- 0 param[1, fixed$one] <- 1 } # if (!is.null(cparam)) cparam <- rbind(cparam, NA) cparam <- rbind(cparam, param) } np <- np + length(sm$p.proj) ll <- ll + sm$loglikelihood AIC <- AIC + sm$AIC nm <- nm + 1; cur_name <- n } if (!is.null(sm$param)) printParam(param) printRest(np, ll, AIC) # if (!is.null(sm$boundary)) cat(sm$boundary, "\n\n") cat("\nuser's model\n", paste(rep("=", 12), collapse=""), "\n", sep="") } np <- NA if (!is.null(x$variab)) np <- printVariab(x) if (!is.null(x$param)) np <- printParam(x$param) printRest(np, x[c("loglikelihood", "AIC")])# if (!is.null(x$boundary)) cat(x$boundary, "\n\n") invisible(x) } print.RMmodelFit <- function(x, ...) print.summary.RMmodelFit(summary.RMmodelFit(x, ...))# print.RM_modelFit <- function(x, ...) print.summary.RMmodelFit(summary.RM_modelFit(x, ...))# setMethod(f="show", signature=CLASS_FIT, definition=function(object) print.RMmodelFit(object))# summary.RFfit <- function(object, ..., method="ml", full=FALSE) { s <- summary.RMmodelFit(object[method]) len <- length(object@submodels) if (full && length(object@submodels) > 0) { submodels <- list() for (i in 1:len) { ## war summary.RM_modelFit submodels[[i]] <- summary(object@submodels[[i]][[method]],# 'summary' isna.param=is.null(s$param)) # nicht submodels[[i]]$report <- object@submodels[[i]]$report # spezifizieren! submodels[[i]]$p.proj <- object@submodels[[i]]$p.proj submodels[[i]]$fixed <- object@submodels[[i]]$fixed } s$submodels <- submodels } s } summary.RF_fit <- function(object, ..., method="ml", full=FALSE) { s <- summary.RM_modelFit(object[[method]]) len <- length(object$submodels) if (full && len > 0) { submodels <- list() for (i in 1:len) { submodels[[i]] <- summary.RM_modelFit(object$submodels[[i]][[method]], isna.param=is.null(s$param)) submodels[[i]]$report <- object$submodels[[i]]$report submodels[[i]]$p.proj <- object$submodels[[i]]$p.proj submodels[[i]]$fixed <- object$submodels[[i]]$fixed } s$submodels <- submodels } s } print.RFfit <- function(x, ..., method="ml", full=FALSE) { print.summary.RMmodelFit(summary.RFfit(x, ..., method=method, full=full)) } setMethod(f="show", signature='RFfit', definition=function(object) print.RFfit(object))# print.RF_fit <- function(x, ..., method="ml", full=FALSE) { print.summary.RMmodelFit(summary.RF_fit(x, ..., method=method, full=full)) } logLik.RF_fit <- function(object, REML = FALSE, ..., method="ml") { if (hasArg("REML")) stop("parameter 'REML' is not used. Use 'method' instead") ## according to geoR val <- object[[method]]$likelihood attr(val, "df") <- object$number.of.parameters attr(val, "method") <- method class(val) <- "logLik" return(val) } logLik.RFfit <- function(object, REML = FALSE, ..., method="ml") { if (hasArg("REML")) stop("parameter 'REML' is not used. Use 'method' instead") ## according to geoR val <- object[method]@likelihood attr(val, "df") <- object@number.of.parameters attr(val, "method") <- method class(val) <- "logLik" return(val) } print.AICRFfit<- function(x, ..., digits=3) { ## nur deshalb fstcol <- 3 sndcol <- 55 trdcol <- 4 forthcol<-9 leer <- formatC("", width=fstcol) size <- max(abs(x[[2]])) size <- if (size>0) ceiling(log(size) / log(10)) else 1 cat(leer, formatC("model", flag="-", width=sndcol), " ", formatC(names(x)[1], width=trdcol), formatC(names(x)[2], width=forthcol), "\n", sep="") names <- attr(x, "row.names") for (i in 1:length(names)) { cat(formatC(i, width=fstcol, flag="-")) if (nchar(xx <- names[i]) <= sndcol) cat(formatC(xx, width=sndcol, flag="-")) else { yy <- strsplit(xx, " \\* ")[[1]] for (j in 1:length(yy)) { ncyy <- nchar(yy[j]) if (ncyy <= sndcol && j==length(yy)) cat(format(yy[j], width=sndcol, flag="-")) else { if (ncyy <= sndcol - 2) { cat(yy[j]) } else { zz <- strsplit(yy[j], ", ")[[1]] ncyy <- 0 lenzz <- length(zz) for (k in 1:lenzz) { len <- nchar(zz[k]) if (k > 1 && len > sndcol - 1) { cat("\n", leer, zz[k], sep="") if (k < lenzz) cat(formatC(",", flag="-", width=pmax(1, sndcol-len))) } else { if (ncyy + len > sndcol - 1) { cat("\n", leer, sep="") ncyy <- len } else { ncyy <- ncyy + len } cat(zz[k]) if (k < lenzz) { cat(", ") ncyy <- ncyy + 2 } } } # for k 1:lenzz } # split according to commata if (j < length(yy)) cat(" *\n", leer, sep="") else if (ncyy < sndcol) cat(formatC("", width=sndcol-ncyy)) } } # for 1:products } ## not be written in a single line cat("", formatC(x[[1]][i], width=trdcol), formatC(x[[2]][i], format="f", width=size + digits + 1, digits=digits),"\n") } } fullAIC <- function(x, method="ml", AIC="AIC") { ats <- approx_test_single(x, method=method)$result values <- c("name", "df", AIC) model2 <- paste("model2.", values, sep="") ats2 <- ats[ !is.na(ats[, model2[2]]), model2] colnames(ats2) <- values if (ats2$df < 0) ats2 <- NULL ats <- ats[, paste("model1.", values, sep="")] colnames(ats) <- values if (ats$df < 0) ats <- NULL ats <- unique(rbind(ats, ats2)) dimnames(ats) <- list(1:nrow(ats), colnames(ats)) names <- as.character(ats$name) ats <- ats[-1] attr(ats, "row.names") <- names class(ats) <- "AICRFfit" ats } AIC.RFfit <- function(object, ..., k=2, method="ml", full=TRUE) { if (full) { fullAIC(object, method=method) } else { AIC <- object[method]@AIC names(AIC) <- "AIC" AIC } } AIC.RF_fit <- function(object, ..., k=2, method="ml", full=TRUE) { if (full) { fullAIC(object, method=method) } else { AIC <- object[[method]]$AIC names(AIC) <- "AIC" AIC } } AICc.RFfit <- function(object, ..., method="ml", full=FALSE) { if (full) { stop("for 'AICc' the option 'full=TRUE' has not been programmed yet.") fullAIC(object, method=method) } else { AIC <- object[method]@AIC names(AIC) <- "AICc" AIC } } AICc.RF_fit <- function(object, ..., method="ml", full=TRUE) { if (full) { stop("for 'AICc' the option 'full=TRUE' has not been programmed yet.") fullAIC(object, method=method) } else { AIC <- object[[method]]$AIC names(AIC) <- "AICc" AIC } } BIC.RFfit <- function(object, ..., method="ml", full=TRUE) { if (full) { fullAIC(object, method=method, AIC="BIC") } else { BIC <- object[method]@BIC names(BIC) <- "BIC" BIC } } BIC.RF_fit <- function(object, ..., method="ml", full=TRUE) { if (full) { fullAIC(object, method=method, AIC="BIC") } else { BIC <- object[[method]]$BIC names(BIC) <- "BIC" BIC } } resid.RFfit <- function(object, ..., method="ml") { resid <- object[method]@residuals names(resid) <- "residuals" resid } resid.RF_fit <- function(object, ..., method="ml") { resid <- object[[method]]$residuals names(resid) <- "residuals" resid } residuals.RFfit <- function(object, ..., method="ml") resid.RFfit(object=object, method=method) residuals.RF_fit <- function(object, ..., method="ml") resid.RF_fit(object=object, method=method) coef_RMmodelFit <- function(OP, object, ...) { covariat <- do.call(OP, list(object, "covariat")) glbl.var <- do.call(OP, list(object, "globalvariance")) p <- do.call(OP, list(object, "param")) if (length(covariat) > 0) covariat <- as.matrix(covariat) nr_p <- nrow(p) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_p - length(glbl.var))) p <- cbind(p, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow= nr_p - nrow(covariat)))) #class(p) <- "coef.RMmodelFit" p[1, ] } setMethod(f="coef", signature='RMmodelFit', definition=function(object) coef_RMmodelFit("@", object))# setMethod(f="coef", signature='RFfit', definition=function(object) coef_RMmodelFit("@", object["ml"]))# coef.RM_modelFit <- function(object, ...) coef_RMmodelFit("$", object, ...) coef.RF_fit <- function(object, ...) coef_RMmodelFit("$", object["ml"], ...) setMethod(f="plot", signature(x="RFfit", y="missing"), function(x, y, ...) RFplotEmpVariogram(x, ...)) setMethod(f="persp", signature(x="RFfit"), function(x, ...) RFplotEmpVariogram(x, ..., plotmethod="persp")) contour.RFfit <- contour.RFempVariog <- function(x,...) { stopifnot(!( (is(x, "RFfit") && is.list(x@ev@centers)) || (is(x, "RFempVariog") && is.list(x@centers)) )) RFplotEmpVariogram(x, ..., plotmethod="contour") } ExpliciteGauss <- function(model) { if (model[[1]] != "RPgauss" && model[[1]] != "gauss.process") { boxcox <- RFoptions()$gauss$boxcox if (any(is.na(boxcox)) || any(boxcox[c(TRUE, FALSE)] != Inf)) return(list("RPgauss", boxcox=boxcox, model)) } return(model) } RFfit <- function(model, x, y=NULL, z=NULL, T=NULL, grid=NULL, data, lower=NULL, upper=NULL, methods, # "reml", "rml1"), sub.methods, ## "internal" : name should not be changed; should always be last ## method! optim.control=NULL, users.guess=NULL, distances=NULL, dim, transform=NULL, params=NULL, ##type = c("Gauss", "BrownResnick", "Smith", "Schlather", ## "Poisson"), ...) { .C(C_NoCurrentRegister) RFoptOld <- internal.rfoptions(xyz=length(y)!=0,..., internal.examples_reduced = FALSE, RELAX=is(model, "formula")) on.exit(RFoptions(LIST=RFoptOld[[1]])) RFopt <- RFoptOld[[2]] if (length(params) > 0) { if ((!is.na(RFopt$fit$estimate_variance_globally) && RFopt$fit$estimate_variance_globally) && RFopt$basic$printlevel > 0) message("Value of option 'hestimate_variance_globally' is ignored.") RFopt$fit$estimate_variance_globally <- FALSE RFoptions(fit.estimate_variance_globally = FALSE) } fit <- RFopt$fit if (RFopt$general$vdim_close_together) stop("'vdim_close_together' must be FALSE") if (is.data.frame(data)) { name <- "RFfit.user.dataset" do.call("attach", list(what=data, name=name)) on.exit(detach(name, character.only = TRUE), add=TRUE) } ## in UnifyData the further.models that contain only the parameter data ## are turned into genuine models further.models <- list() models <- c("lower", "upper", "users.guess", "parscale") if (paramlist <- length(params) > 0) { parscale <- optim.control$parscale for (m in models) { fm <- get(m) if (!is.null(fm) && !is.numeric(fm)) further.models[[m]] <- PrepareModel2(fm, ...) } } ## Print(further.models, model) Z <- UnifyData(model=model, x=x, y=y, z=z, T=T, grid=grid, data=data, distances=distances, dim=dim, RFopt=RFopt, mindist_pts = RFopt$fit$smalldataset / 2, further.models = further.models, params=params, ...) ## Print(Z); kkk Z <- BigDataSplit(Z, RFopt) if (!hasArg("transform")) transform <- NULL if (paramlist) { for (m in models) if (!is.null(get(m)) && !is.numeric(get(m))) assign(m, Z$further.models[[m]]) optim.control$parscale <- parscale if (!is.null(Z$transform)) { if (!is.null(transform)) stop("argument 'transform' may not be given if 'params' is given") transform <- Z$transform } } else { parscale <- optim.control$parscale for (m in models) if (!is.null(get(m)) && !is.numeric(get(m))) assign(m, ReplaceC(PrepareModel2(get(m), ...))) optim.control$parscale <- parscale } new.model <- Z$model if (new.model[[1]] %in% c("RPpoisson", "poisson")) { res <- fit.poisson() } else if (new.model[[1]] %in% c("BRmixed", "BRshifted", "BRmixedIntern", "RFbrownresnick")) { res <- fit.br() } else if (new.model[[1]] %in% c("RPschlather", "extremalgauss")) { res <- fit.extremal.gauss() } else if (new.model[[1]] %in% c("RPsmith", "smith")) { res <- fit.smith() } else if (new.model[[1]] %in% c("RPbernoulli", "binaryprocess")) { res <- fit.bernoulli() } else { Z$model <- ExpliciteGauss(ReplaceC(Z$model)) res <- do.call("rffit.gauss", c(list(Z, lower=lower, upper=upper, users.guess=users.guess, optim.control=optim.control, transform=transform, recall = FALSE), if (!missing(methods)) list(mle.methods = methods), if (!missing(sub.methods)) list(lsq.methods=sub.methods) ## "internal" : name should not be changed; should always ## be last method! )) } if (RFopt$general$returncall) attr(res, "call") <- as.character(deparse(match.call())) attr(res, "coord_system") <- .Call(C_GetCoordSystem, as.integer(MODEL_MLE), RFopt$coords$coord_system, RFopt$coords$new_coord_system) return(res) }
/R/RFfit.R
no_license
cran/RandomFields
R
false
false
29,952
r
## Authors ## Martin Schlather, schlather@math.uni-mannheim.de ## ## ## Copyright (C) 2015 -- 2017 Martin Schlather ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 3 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ### !!!!!!!!!!!! ACHTUNG !!!!!!!!!!!! TREND als cov-fct muss ### noch programmiert werden !!! ## source("~/R/RF/RandomFields/R/MLES.R") ## PrintLevels ## 0 : no message ## 1 : important error messages ## 2 : warnings ## 3 : minium debugging information ## 5 : extended debugging information ## jetzt nur noch global naturalscaling (ja / nein) ## spaeter eine Funktion schreibbar, die den naturscaling umwandelt; ## im prinzipt CMbuild, aber ruechwaers mit 1/newscale und eingefuegt ## in eventuell schon vorhandene $ operatoren #Beim paper lesen im Zug nach Muenchen heute morgen ist mir eine Referenz zu einem R Paket "mlegp: Maximum likelihood estimates of Gaussian processes" aufgefallen. Ist Dir aber sicher schon bekannt! # stop("") # problem: natscale; im moment 2x implementiert, 1x mal ueber # scale/aniso (user) und einmal gedoppelt -- irgendwas muss raus ## LSQ variogram fuer trend = const. ## kann verbessert werden, insb. fuer fixed effects, aber auch eingeschraenkt ## fuer random effects -> BA/MA ## REML fehlt ## users.guess muss in eine List von meheren Vorschlaegen umgewandelt werden !!! Und dann muss RFfit recursiver call mit allen bisherigen Werden laufen !! ## zentrale C -Schnittstellen ## .C(C_PutValuesAtNA, RegNr, param) ## bins bei Distances automatisch ## bei repet sind die Trends/fixed effects gleich, es muessen aber die ## random effects unterschiedlich sein. ## bei list(data) werden auch trend/fixed effects unterschiedlich geschaetzt. ## Erweiterungen: Emilio's Bi-MLE, Covarianz-Matrix-INversion per fft oder ## per INLA, grosse Datensaetze spalten in kleinere "unabhaengige". ################################### ## !!! Mixed Model Equations !!! ## ################################### ## accessing slots accessByNameOrNumber <- function(x, i, j, drop=FALSE) { stopifnot(length(i)==1) if (is.numeric(i)) i <- slotNames(x)[i] return(accessSlotsByName(x=x, i=i, j=j, drop=drop)) } setMethod("[", signature = "RFfit", def=accessByNameOrNumber) ### to do : ask Paulo #effects_RFfit <- function(OP, object, method) { # eff <- RFrandef(object=object, method=method, OP=OP) # linpart <- fitted_RFfit(OP=OP, object=object, method=method) # stop("unclear how these two results should be combined in the output") #} #effects_RMmodelFit <- function(...) stop("'effects' can only be used with the original and sp_conform output of 'RFfit'.") #setMethod(f="effects", signature='RFfit', # definition=function(object, method="ml") # effects_RFfit("@", object=object, method=method))# #setMethod(f="effects", signature='RMmodelFit', # definition=function(object, newdata=NULL) effects_RMmodelFit())# #effects.RM_modelFit <- function(object, ...) effects_RMmodelFit() #effects.RF_fit <- function(object, method="ml") effects_RMmodelFit() simulate_RFfit <- function(OP, object, newdata, conditional, method) { Z <- do.call(OP, list(object, "Z")) L <- length(Z$data) ans <- rep(list(NULL), L) m <- ModelParts(object[method], effects=Z$effect, complete=FALSE) ## no params if (conditional) { for (i in 1:L) { ans[[i]] <- RFsimulate(model=m$model, data = Z$data[[i]], given = Z$coord[[i]], x = if (!is.null(newdata)) newdata, err.model = m$err.model) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } return (if (L == 1) ans[[1]] else ans) } else { for (i in 1:L) { ans[[i]] <- RFsimulate(model=, x = if (length(newdata)==0) Z$coord[[i]] else newdata) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } } } simulate_RMmodelFit <- function(...) stop("'simulate' can only be used with the original and sp_conform output of 'RFfit'.") setMethod(f="simulate", signature='RFfit', definition=function(object, newdata=NULL, conditional=!is.null(newdata), method="ml") simulate_RFfit("@", object=object, conditional=conditional, method=method))# setMethod(f="simulate", signature='RMmodelFit', definition=function(object, newdata=NULL) simulate_RMmodelFit())# simulate.RM_modelFit <- function(object, ...) simulate_RMmodelFit() simulate.RF_fit <- function(object, method="ml") simulate_RMmodelFit() predict_RFfit <- function(OP, object, newdata, impute, method) { Z <- do.call(OP, list(object, "Z")) L <- length(Z$data) ans <- rep(list(NULL), L) if (impute) { if (length(newdata) > 0) stop("for imputing, 'newdata' may not be given") for (i in 1:L) { ans[[i]] <- RFinterpolate(model=object[method], data = Z$data[[i]], given = Z$coord[[i]], err.model = NA) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } } else { for (i in 1:L) { ans[[i]] <- RFinterpolate(model=object[method], data = Z$data[[i]], given = Z$coord[[i]], x = if (!is.null(newdata)) newdata else Z$coord, err.model = NA) if (is.list(ans[[i]])) stop("the case with NAs not completely programmed yet. Please let the maintainer now that it is needed ") } } return (if (L == 1) ans[[1]] else ans) } predict_RMmodelFit <- function(...) stop("'predict' can only be used with the original and sp_conform output of 'RFfit.") setMethod(f="predict", signature='RFfit', definition=function(object, newdata=NULL, impute=FALSE, method="ml") predict_RFfit("@", object=object, newdata=newdata, impute=impute, method=method))# setMethod(f="predict", signature='RMmodelFit', definition=function(object, newdata=NULL) predict_RMmodelFit())# predict.RM_modelFit <- function(object, ...) predict_RMmodelFit(object=object, ...) predict.RF_fit <- function(object, method="ml") predict_RMmodelFit(object, method=method) coef_RMmodelFit <- function(OP, object) { covariat <- do.call(OP, list(object, "covariat")) glbl.var <- do.call(OP, list(object, "globalvariance")) p <- do.call(OP, list(object, "param")) if (length(covariat) > 0) covariat <- as.matrix(covariat) nr_p <- nrow(p) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_p - length(glbl.var))) p <- cbind(p, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow= nr_p - nrow(covariat)))) #class(p) <- "coef.RMmodelFit" p[1, ] } setMethod(f="coef", signature='RMmodelFit', definition=function(object) coef_RMmodelFit("@", object))# setMethod(f="coef", signature='RFfit', definition=function(object, method="ml") coef_RMmodelFit("@", object[method]))# coef.RM_modelFit <- function(object, ...) coef_RMmodelFit("$", object) coef.RF_fit <- function(object, method="ml") coef_RMmodelFit("$", object[method]) residuals_RMmodelFit <- function(OP, object) { resid <- do.call(OP, list(object, "residuals")) message("Note that 'residuals' equals the difference between the data and the linear part (fixed effects).") if (length(resid) == 1) resid[[1]] else resid } setMethod(f="residuals", signature='RMmodelFit', definition=function(object) residuals_RMmodelFit("@", object))# setMethod(f="residuals", signature='RFfit', definition=function(object, method="ml") residuals_RMmodelFit("@", object[method]))# residuals.RM_modelFit <- function(object, ...) residuals_RMmodelFit("$", object) residuals.RF_fit <- function(object, method="ml") residuals_RMmodelFit("$", object[method]) fitted_RFfit <- function(OP, object, method) { data <- do.call(OP, list(object, "Z"))$data resid <- do.call(OP, list(object[method], "residuals")) for (i in 1:length(data)) data[[i]] <- data[[i]] - resid[[i]] message("Note that 'fitted' equals the linear part (fixed effects).") if (length(data) > 1) data else if (ncol(data[[1]]) > 1) data[[1]] else as.vector(data[[1]]) } fitted_RMmodelFit <- function(...) stop("'fitted' can only be used with the original output of 'RFfit', not with some of its extraction.") setMethod(f="fitted", signature='RMmodelFit', definition=function(object) fitted_RMmodelFit())# setMethod(f="fitted", signature='RFfit', definition=function(object, method="ml") fitted_RFfit("@", object=object, method=method))# fitted.RM_modelFit <- function(object, ...) fitted_RMmodelFit() fitted.RF_fit <- function(object, method="ml") fitted_RFfit("$", object=object, method=method) RFhessian <- function(model) { method <- "ml" if (is(model, "RF_fit")) return(model[[method]]@hessian) else if (is(model, "RFfit")) return(model[method]$hessian) else stop("'model' is not an output of 'RFfit'") } anova.RFfit <- function(object, ...) RFratiotest(nullmodel=object, ...) anova.RF_fit <- function(object, ...) RFratiotest(nullmodel=object, ...) anova.RMmodelFit <- function(object, ...) RFratiotest(nullmodel=object, ...) anova.RM_modelFit <- function(object, ...) RFratiotest(nullmodel=object, ...) setMethod(f="anova", signature=CLASS_FIT, anova.RFfit)# setMethod(f="anova", signature='RFfit', anova.RFfit)# boundary_values <- function(variab) { upper.bound <- variab[4, , drop=FALSE] lower.bound <- variab[3, , drop=FALSE] # sd <- variab[2, ] variab <- variab[1, , drop=FALSE] lidx <- variab < lower.bound + 1e-8 uidx <- variab > upper.bound - 1e-8 nl <- sum(lidx, na.rm=TRUE) nu <- sum(uidx, na.rm=TRUE) if (nl + nu > 0) { lidx[is.na(lidx)] <- FALSE uidx[is.na(uidx)] <- FALSE txt <- paste(sep="", "Note that the (possibly internal) fitted variable", if (nl > 0) paste(if (nl > 1) "s " else " ", paste("'", colnames(variab)[lidx], "'", sep="", collapse=", "), if (nl == 1) " is " else " are ", "close to or on the effective lower boundary", sep=""), if (nl > 0 && nu > 0) " and the variable", if (nu > 0) paste(if (nu > 1) "s " else " ", paste("'", colnames(variab)[uidx], "'", sep="", collapse=", "), if (nu == 1) "is" else "are", "close to or on the effective upper boundary"), ".\nHence the gradient of the likelihood function might not be zero and none of the\nreported 'sd' values might be reliable.") } else txt <- NULL return(txt) } summary_RMmodelFit <- function(OP, object, ..., isna.param) { model <- if (OP == "@") PrepareModel2(object, ...) else object$model covariat <- do.call(OP, list(object, "covariat")) glbl.var <- do.call(OP, list(object, "globalvariance")) p <- do.call(OP, list(object, "param")) r <- do.call(OP, list(object, "residuals")) v <- do.call(OP, list(object, "variab")) l <- list(model=model, loglikelihood=do.call(OP, list(object, "likelihood")), AIC = do.call(OP, list(object, "AIC")), AICc= do.call(OP, list(object, "AICc")), BIC = do.call(OP, list(object, "BIC")), residuals=if (length(r) == 1) r[[1]] else r) if (missing(isna.param)) isna.param <- any(is.na(p)) l$boundary <- boundary_values(v) if (length(covariat) > 0) covariat <- as.matrix(covariat) if (!any(is.na(p[1, ]))) { nr_p <- nrow(p) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_p - length(glbl.var))) l$param <- cbind(p, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow= nr_p - nrow(covariat)))) } if (isna.param || !is.null(l$boundary)) { nr_v <- nrow(v) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_v - length(glbl.var))) l$variab <- cbind(v, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow=nr_v - nrow(covariat))) ) } class(l) <- "summary.RMmodelFit" l } summary.RMmodelFit <- function(object, ..., isna.param) { summary_RMmodelFit("@", object, ..., isna.param=isna.param) } setMethod(f="summary", signature=CLASS_FIT, summary.RMmodelFit)# summary.RM_modelFit <- function(object, ..., isna.param) { summary_RMmodelFit("$", object, ..., isna.param=isna.param) } print.summary.RMmodelFit <- function(x, ...) { printVariab <- function(x) { cat("Internal variables:\n") if (is.null(x$boundary)) print(x$variab[1:2, , drop=FALSE], ..., na.print="-")# else print(x$variab, ..., na.print="-")# cat("\n") return(ncol(x$variab)) } printParam <- function(param) { cat("User's variables:\n") print(param, ..., na.print="-")# return(ncol(param)) } printRest <- function(...) { x <- unlist(list(...)) stopifnot(length(x) == 3) names(x) <- c("#variab", "loglikelihood", "AIC") cat("\n") print(x) # cat("\n") } if (RFoptions()$general$detailed_output) str(x$model, no.list=TRUE) # cat("\n") np <- AIC <- ll <- nm <- NA if (length(x$submodels) > 0) { cur_name <- "" len <- length(x$submodels) for (i in 1:len) { sm <- x$submodels[[i]] n <- sm$report nnxt <- if (i==len) "" else x$submodels[[i+1]] if (n != cur_name) { if (i > 1) { if (!is.null(sm$param)) printParam(cparam) printRest(np, ll, AIC) # if (!is.null(sm$boundary)) cat(sm$boundary, "\n\n") } if (nnxt != n && length(sm$fixed) > 0) { nX <- paste(sep="", n, " (", paste(c(if (length(sm$fixed$zero) > 0) paste(colnames(x$param)[sm$fixed$zero], "= 0"), if (length(sm$fixed$one) > 0) paste(colnames(x$param)[sm$fixed$one], "= 1")), sep=", "), ")") } else nX <- n cat(if (!is.na(nm)) cat("\n"), nX, "\n", paste(rep("=", min(80, nchar(nX))), collapse=""), "\n", sep="") np <- 0 AIC <- 0 ll <- 0 cparam <- NULL nm <- 1 } if (!is.null(sm$variab)) { if (nm > 1 || (i<len && n==nnxt)) cat("model", nm, ", ") printVariab(sm) } if (!is.null(sm$param)) { param <- x$param * NA param[, sm$p.proj] <- sm$param fixed <- sm$fixed if (length(fixed) > 0) { param[1, fixed$zero] <- 0 param[1, fixed$one] <- 1 } # if (!is.null(cparam)) cparam <- rbind(cparam, NA) cparam <- rbind(cparam, param) } np <- np + length(sm$p.proj) ll <- ll + sm$loglikelihood AIC <- AIC + sm$AIC nm <- nm + 1; cur_name <- n } if (!is.null(sm$param)) printParam(param) printRest(np, ll, AIC) # if (!is.null(sm$boundary)) cat(sm$boundary, "\n\n") cat("\nuser's model\n", paste(rep("=", 12), collapse=""), "\n", sep="") } np <- NA if (!is.null(x$variab)) np <- printVariab(x) if (!is.null(x$param)) np <- printParam(x$param) printRest(np, x[c("loglikelihood", "AIC")])# if (!is.null(x$boundary)) cat(x$boundary, "\n\n") invisible(x) } print.RMmodelFit <- function(x, ...) print.summary.RMmodelFit(summary.RMmodelFit(x, ...))# print.RM_modelFit <- function(x, ...) print.summary.RMmodelFit(summary.RM_modelFit(x, ...))# setMethod(f="show", signature=CLASS_FIT, definition=function(object) print.RMmodelFit(object))# summary.RFfit <- function(object, ..., method="ml", full=FALSE) { s <- summary.RMmodelFit(object[method]) len <- length(object@submodels) if (full && length(object@submodels) > 0) { submodels <- list() for (i in 1:len) { ## war summary.RM_modelFit submodels[[i]] <- summary(object@submodels[[i]][[method]],# 'summary' isna.param=is.null(s$param)) # nicht submodels[[i]]$report <- object@submodels[[i]]$report # spezifizieren! submodels[[i]]$p.proj <- object@submodels[[i]]$p.proj submodels[[i]]$fixed <- object@submodels[[i]]$fixed } s$submodels <- submodels } s } summary.RF_fit <- function(object, ..., method="ml", full=FALSE) { s <- summary.RM_modelFit(object[[method]]) len <- length(object$submodels) if (full && len > 0) { submodels <- list() for (i in 1:len) { submodels[[i]] <- summary.RM_modelFit(object$submodels[[i]][[method]], isna.param=is.null(s$param)) submodels[[i]]$report <- object$submodels[[i]]$report submodels[[i]]$p.proj <- object$submodels[[i]]$p.proj submodels[[i]]$fixed <- object$submodels[[i]]$fixed } s$submodels <- submodels } s } print.RFfit <- function(x, ..., method="ml", full=FALSE) { print.summary.RMmodelFit(summary.RFfit(x, ..., method=method, full=full)) } setMethod(f="show", signature='RFfit', definition=function(object) print.RFfit(object))# print.RF_fit <- function(x, ..., method="ml", full=FALSE) { print.summary.RMmodelFit(summary.RF_fit(x, ..., method=method, full=full)) } logLik.RF_fit <- function(object, REML = FALSE, ..., method="ml") { if (hasArg("REML")) stop("parameter 'REML' is not used. Use 'method' instead") ## according to geoR val <- object[[method]]$likelihood attr(val, "df") <- object$number.of.parameters attr(val, "method") <- method class(val) <- "logLik" return(val) } logLik.RFfit <- function(object, REML = FALSE, ..., method="ml") { if (hasArg("REML")) stop("parameter 'REML' is not used. Use 'method' instead") ## according to geoR val <- object[method]@likelihood attr(val, "df") <- object@number.of.parameters attr(val, "method") <- method class(val) <- "logLik" return(val) } print.AICRFfit<- function(x, ..., digits=3) { ## nur deshalb fstcol <- 3 sndcol <- 55 trdcol <- 4 forthcol<-9 leer <- formatC("", width=fstcol) size <- max(abs(x[[2]])) size <- if (size>0) ceiling(log(size) / log(10)) else 1 cat(leer, formatC("model", flag="-", width=sndcol), " ", formatC(names(x)[1], width=trdcol), formatC(names(x)[2], width=forthcol), "\n", sep="") names <- attr(x, "row.names") for (i in 1:length(names)) { cat(formatC(i, width=fstcol, flag="-")) if (nchar(xx <- names[i]) <= sndcol) cat(formatC(xx, width=sndcol, flag="-")) else { yy <- strsplit(xx, " \\* ")[[1]] for (j in 1:length(yy)) { ncyy <- nchar(yy[j]) if (ncyy <= sndcol && j==length(yy)) cat(format(yy[j], width=sndcol, flag="-")) else { if (ncyy <= sndcol - 2) { cat(yy[j]) } else { zz <- strsplit(yy[j], ", ")[[1]] ncyy <- 0 lenzz <- length(zz) for (k in 1:lenzz) { len <- nchar(zz[k]) if (k > 1 && len > sndcol - 1) { cat("\n", leer, zz[k], sep="") if (k < lenzz) cat(formatC(",", flag="-", width=pmax(1, sndcol-len))) } else { if (ncyy + len > sndcol - 1) { cat("\n", leer, sep="") ncyy <- len } else { ncyy <- ncyy + len } cat(zz[k]) if (k < lenzz) { cat(", ") ncyy <- ncyy + 2 } } } # for k 1:lenzz } # split according to commata if (j < length(yy)) cat(" *\n", leer, sep="") else if (ncyy < sndcol) cat(formatC("", width=sndcol-ncyy)) } } # for 1:products } ## not be written in a single line cat("", formatC(x[[1]][i], width=trdcol), formatC(x[[2]][i], format="f", width=size + digits + 1, digits=digits),"\n") } } fullAIC <- function(x, method="ml", AIC="AIC") { ats <- approx_test_single(x, method=method)$result values <- c("name", "df", AIC) model2 <- paste("model2.", values, sep="") ats2 <- ats[ !is.na(ats[, model2[2]]), model2] colnames(ats2) <- values if (ats2$df < 0) ats2 <- NULL ats <- ats[, paste("model1.", values, sep="")] colnames(ats) <- values if (ats$df < 0) ats <- NULL ats <- unique(rbind(ats, ats2)) dimnames(ats) <- list(1:nrow(ats), colnames(ats)) names <- as.character(ats$name) ats <- ats[-1] attr(ats, "row.names") <- names class(ats) <- "AICRFfit" ats } AIC.RFfit <- function(object, ..., k=2, method="ml", full=TRUE) { if (full) { fullAIC(object, method=method) } else { AIC <- object[method]@AIC names(AIC) <- "AIC" AIC } } AIC.RF_fit <- function(object, ..., k=2, method="ml", full=TRUE) { if (full) { fullAIC(object, method=method) } else { AIC <- object[[method]]$AIC names(AIC) <- "AIC" AIC } } AICc.RFfit <- function(object, ..., method="ml", full=FALSE) { if (full) { stop("for 'AICc' the option 'full=TRUE' has not been programmed yet.") fullAIC(object, method=method) } else { AIC <- object[method]@AIC names(AIC) <- "AICc" AIC } } AICc.RF_fit <- function(object, ..., method="ml", full=TRUE) { if (full) { stop("for 'AICc' the option 'full=TRUE' has not been programmed yet.") fullAIC(object, method=method) } else { AIC <- object[[method]]$AIC names(AIC) <- "AICc" AIC } } BIC.RFfit <- function(object, ..., method="ml", full=TRUE) { if (full) { fullAIC(object, method=method, AIC="BIC") } else { BIC <- object[method]@BIC names(BIC) <- "BIC" BIC } } BIC.RF_fit <- function(object, ..., method="ml", full=TRUE) { if (full) { fullAIC(object, method=method, AIC="BIC") } else { BIC <- object[[method]]$BIC names(BIC) <- "BIC" BIC } } resid.RFfit <- function(object, ..., method="ml") { resid <- object[method]@residuals names(resid) <- "residuals" resid } resid.RF_fit <- function(object, ..., method="ml") { resid <- object[[method]]$residuals names(resid) <- "residuals" resid } residuals.RFfit <- function(object, ..., method="ml") resid.RFfit(object=object, method=method) residuals.RF_fit <- function(object, ..., method="ml") resid.RF_fit(object=object, method=method) coef_RMmodelFit <- function(OP, object, ...) { covariat <- do.call(OP, list(object, "covariat")) glbl.var <- do.call(OP, list(object, "globalvariance")) p <- do.call(OP, list(object, "param")) if (length(covariat) > 0) covariat <- as.matrix(covariat) nr_p <- nrow(p) if (length(glbl.var) > 0) glbl.var <- c(glbl.var, rep(NA, nr_p - length(glbl.var))) p <- cbind(p, glbl.var, if (length(covariat) > 0) rbind(covariat, matrix(NA, ncol=ncol(covariat), nrow= nr_p - nrow(covariat)))) #class(p) <- "coef.RMmodelFit" p[1, ] } setMethod(f="coef", signature='RMmodelFit', definition=function(object) coef_RMmodelFit("@", object))# setMethod(f="coef", signature='RFfit', definition=function(object) coef_RMmodelFit("@", object["ml"]))# coef.RM_modelFit <- function(object, ...) coef_RMmodelFit("$", object, ...) coef.RF_fit <- function(object, ...) coef_RMmodelFit("$", object["ml"], ...) setMethod(f="plot", signature(x="RFfit", y="missing"), function(x, y, ...) RFplotEmpVariogram(x, ...)) setMethod(f="persp", signature(x="RFfit"), function(x, ...) RFplotEmpVariogram(x, ..., plotmethod="persp")) contour.RFfit <- contour.RFempVariog <- function(x,...) { stopifnot(!( (is(x, "RFfit") && is.list(x@ev@centers)) || (is(x, "RFempVariog") && is.list(x@centers)) )) RFplotEmpVariogram(x, ..., plotmethod="contour") } ExpliciteGauss <- function(model) { if (model[[1]] != "RPgauss" && model[[1]] != "gauss.process") { boxcox <- RFoptions()$gauss$boxcox if (any(is.na(boxcox)) || any(boxcox[c(TRUE, FALSE)] != Inf)) return(list("RPgauss", boxcox=boxcox, model)) } return(model) } RFfit <- function(model, x, y=NULL, z=NULL, T=NULL, grid=NULL, data, lower=NULL, upper=NULL, methods, # "reml", "rml1"), sub.methods, ## "internal" : name should not be changed; should always be last ## method! optim.control=NULL, users.guess=NULL, distances=NULL, dim, transform=NULL, params=NULL, ##type = c("Gauss", "BrownResnick", "Smith", "Schlather", ## "Poisson"), ...) { .C(C_NoCurrentRegister) RFoptOld <- internal.rfoptions(xyz=length(y)!=0,..., internal.examples_reduced = FALSE, RELAX=is(model, "formula")) on.exit(RFoptions(LIST=RFoptOld[[1]])) RFopt <- RFoptOld[[2]] if (length(params) > 0) { if ((!is.na(RFopt$fit$estimate_variance_globally) && RFopt$fit$estimate_variance_globally) && RFopt$basic$printlevel > 0) message("Value of option 'hestimate_variance_globally' is ignored.") RFopt$fit$estimate_variance_globally <- FALSE RFoptions(fit.estimate_variance_globally = FALSE) } fit <- RFopt$fit if (RFopt$general$vdim_close_together) stop("'vdim_close_together' must be FALSE") if (is.data.frame(data)) { name <- "RFfit.user.dataset" do.call("attach", list(what=data, name=name)) on.exit(detach(name, character.only = TRUE), add=TRUE) } ## in UnifyData the further.models that contain only the parameter data ## are turned into genuine models further.models <- list() models <- c("lower", "upper", "users.guess", "parscale") if (paramlist <- length(params) > 0) { parscale <- optim.control$parscale for (m in models) { fm <- get(m) if (!is.null(fm) && !is.numeric(fm)) further.models[[m]] <- PrepareModel2(fm, ...) } } ## Print(further.models, model) Z <- UnifyData(model=model, x=x, y=y, z=z, T=T, grid=grid, data=data, distances=distances, dim=dim, RFopt=RFopt, mindist_pts = RFopt$fit$smalldataset / 2, further.models = further.models, params=params, ...) ## Print(Z); kkk Z <- BigDataSplit(Z, RFopt) if (!hasArg("transform")) transform <- NULL if (paramlist) { for (m in models) if (!is.null(get(m)) && !is.numeric(get(m))) assign(m, Z$further.models[[m]]) optim.control$parscale <- parscale if (!is.null(Z$transform)) { if (!is.null(transform)) stop("argument 'transform' may not be given if 'params' is given") transform <- Z$transform } } else { parscale <- optim.control$parscale for (m in models) if (!is.null(get(m)) && !is.numeric(get(m))) assign(m, ReplaceC(PrepareModel2(get(m), ...))) optim.control$parscale <- parscale } new.model <- Z$model if (new.model[[1]] %in% c("RPpoisson", "poisson")) { res <- fit.poisson() } else if (new.model[[1]] %in% c("BRmixed", "BRshifted", "BRmixedIntern", "RFbrownresnick")) { res <- fit.br() } else if (new.model[[1]] %in% c("RPschlather", "extremalgauss")) { res <- fit.extremal.gauss() } else if (new.model[[1]] %in% c("RPsmith", "smith")) { res <- fit.smith() } else if (new.model[[1]] %in% c("RPbernoulli", "binaryprocess")) { res <- fit.bernoulli() } else { Z$model <- ExpliciteGauss(ReplaceC(Z$model)) res <- do.call("rffit.gauss", c(list(Z, lower=lower, upper=upper, users.guess=users.guess, optim.control=optim.control, transform=transform, recall = FALSE), if (!missing(methods)) list(mle.methods = methods), if (!missing(sub.methods)) list(lsq.methods=sub.methods) ## "internal" : name should not be changed; should always ## be last method! )) } if (RFopt$general$returncall) attr(res, "call") <- as.character(deparse(match.call())) attr(res, "coord_system") <- .Call(C_GetCoordSystem, as.integer(MODEL_MLE), RFopt$coords$coord_system, RFopt$coords$new_coord_system) return(res) }
setwd("C:/Users/admin/Desktop/data") data <- read.csv("flats.csv", sep=";") # library(foreign) # data_flats <- read.dta(file.choose()) data$price_metr <- data$price / data$totsp data$livesp_walk <- data$walk * data$livesp data$kitsp_walk <- data$walk * data$kitsp data$dist_walk <- data$walk * data$dist data$metrdist_walk <- data$walk * data$metrdist data$floor_walk <- data$walk * data$floor data$floors_walk <- data$walk * data$floors reg <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors + walk + livesp_walk + kitsp_walk + dist_walk + metrdist_walk + floors_walk, data=data) install.packages("car") library(car) r0 = "walk = 0" r1 = "livesp_walk = 0" r2 = "kitsp_walk = 0" r3 = "dist_walk = 0" r4 = "metrdist_walk = 0" r5 = "floors_walk = 0" linearHypothesis(reg, c(r0, r1, r2, r3, r4, r5), verbose=TRUE) coefs <- names(coef(reg)) walk_coefs <- coefs[grep("walk", coefs)] linearHypothesis(reg, walk_coefs) reg0 <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors, data=data) reg1 <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors, data=data, subset=(walk==1)) reg2 <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors, data=data, subset=(walk==0)) RSS <- NULL RSS$r <- sum(reg0$residuals^2) RSS$ur1 <- sum(reg1$residuals^2) RSS$ur2 <- sum(reg2$residuals^2) k <- reg0$rank numerator <- (RSS$r - (RSS$ur1 + RSS$ur2))/k denominator <- (RSS$ur1 + RSS$ur2) / (length(reg0$residuals) - 2*k) chow <- numerator / denominator
/listings/ex-7.4.R
no_license
Fifis/ekonometrika-bakalavr
R
false
false
1,480
r
setwd("C:/Users/admin/Desktop/data") data <- read.csv("flats.csv", sep=";") # library(foreign) # data_flats <- read.dta(file.choose()) data$price_metr <- data$price / data$totsp data$livesp_walk <- data$walk * data$livesp data$kitsp_walk <- data$walk * data$kitsp data$dist_walk <- data$walk * data$dist data$metrdist_walk <- data$walk * data$metrdist data$floor_walk <- data$walk * data$floor data$floors_walk <- data$walk * data$floors reg <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors + walk + livesp_walk + kitsp_walk + dist_walk + metrdist_walk + floors_walk, data=data) install.packages("car") library(car) r0 = "walk = 0" r1 = "livesp_walk = 0" r2 = "kitsp_walk = 0" r3 = "dist_walk = 0" r4 = "metrdist_walk = 0" r5 = "floors_walk = 0" linearHypothesis(reg, c(r0, r1, r2, r3, r4, r5), verbose=TRUE) coefs <- names(coef(reg)) walk_coefs <- coefs[grep("walk", coefs)] linearHypothesis(reg, walk_coefs) reg0 <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors, data=data) reg1 <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors, data=data, subset=(walk==1)) reg2 <- lm(price_metr ~ 1 + livesp + kitsp + dist + metrdist + floors, data=data, subset=(walk==0)) RSS <- NULL RSS$r <- sum(reg0$residuals^2) RSS$ur1 <- sum(reg1$residuals^2) RSS$ur2 <- sum(reg2$residuals^2) k <- reg0$rank numerator <- (RSS$r - (RSS$ur1 + RSS$ur2))/k denominator <- (RSS$ur1 + RSS$ur2) / (length(reg0$residuals) - 2*k) chow <- numerator / denominator
## Getting dataset data <- read.csv("./household_power_consumption.txt", header=T, sep=';', na.strings="?", nrows=2075259, check.names=F, stringsAsFactors=F, comment.char="", quote='\"') data$Date <- as.Date(data$Date, format="%d/%m/%Y") ## Subsetting the data data_sub <- subset(data, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) rm(data) ## Converting dates using POSIXct() and as.Date() datetime <- paste(as.Date(data_sub$Date), data_sub$Time) data_sub$Datetime <- as.POSIXct(datetime) ## Plot2.R plot(data_sub$Global_active_power~data_sub$Datetime, type="l", ylab="Global Active Power (kilowatts)", xlab="") dev.copy(png, file="plot2.png", height=480, width=480) dev.off()
/plot2.R
no_license
dingdata/ExData_Plotting1
R
false
false
835
r
## Getting dataset data <- read.csv("./household_power_consumption.txt", header=T, sep=';', na.strings="?", nrows=2075259, check.names=F, stringsAsFactors=F, comment.char="", quote='\"') data$Date <- as.Date(data$Date, format="%d/%m/%Y") ## Subsetting the data data_sub <- subset(data, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) rm(data) ## Converting dates using POSIXct() and as.Date() datetime <- paste(as.Date(data_sub$Date), data_sub$Time) data_sub$Datetime <- as.POSIXct(datetime) ## Plot2.R plot(data_sub$Global_active_power~data_sub$Datetime, type="l", ylab="Global Active Power (kilowatts)", xlab="") dev.copy(png, file="plot2.png", height=480, width=480) dev.off()
#' Fit a random forest model #' #' @param formula A formula of the form \code{groups ~ x1 + x2 + ...} #' That is, the response is the grouping factor and the right hand side #' specifies the (non-factor) discriminators, and any transformations, interactions, #' or other non-additive operators apart from \code{.} will be ignored. #' @param data A \code{\link{data.frame}} from which variables specified #' in formula are preferentially to be taken. #' @param subset An optional vector specifying a subset of observations to be #' used in the fitting process, or the name of a variable in \code{data}. It #' may not be an expression. #' @param weights An optional vector of sampling weights, or the #' name of a variable in \code{data}. It may not be an expression. #' @param output One of \code{"Importance"}, \code{"Prediction-Accuracy Table"} or \code{"Detail"}. #' @param missing How missing data is to be treated. Options: #' \code{"Error if missing data"}, #' \code{"Exclude cases with missing data"}, or #' \code{"Imputation (replace missing values with estimates)"}. #' @param seed The random number seed. #' @param show.labels Shows the variable labels, as opposed to the labels, in the outputs, where a #' variables label is an attribute (e.g., attr(foo, "label")). #' @param sort.by.importance Sort the last column of the importance table #' in descending order. #' @param ... Other arguments to be supplied to \code{\link{randomForest}}. #' @importFrom stats pnorm #' @importFrom randomForest randomForest #' @export RandomForest <- function(formula, data = NULL, subset = NULL, weights = NULL, output = "Importance", missing = "Exclude cases with missing data", seed = 12321, show.labels = FALSE, sort.by.importance = TRUE, ...) { #################################################################### ##### Error checking specific to this function ###### #################################################################### # prepareMachineLearningData called with strict.var.names #################################################################### ##### Reading in the data and doing some basic tidying ###### #################################################################### # Identify whether subset and weights are variables in the environment or in data. subset.description <- try(deparse(substitute(subset)), silent = TRUE) subset <- eval(substitute(subset), data, parent.frame()) weights.description <- try(deparse(substitute(weights)), silent = TRUE) weights <- eval(substitute(weights), data, parent.frame()) prepared.data <- prepareMachineLearningData(formula, data, subset, subset.description, weights, weights.description, missing, seed, strict.var.names = TRUE) unweighted.training.data <- prepared.data$unweighted.training.data weighted.training.data <- prepared.data$weighted.training.data #################################################################### ##### Fitting the model. Ideally, this should be a call to ##### ##### another function, with the output of that function ##### ##### called 'original'. ##### #################################################################### set.seed(seed) result <- list(original = suppressWarnings(randomForest(prepared.data$input.formula, importance = TRUE, data = weighted.training.data , ...))) #################################################################### ##### Saving direct input and model-specific parameters ##### #################################################################### result$original$call <- match.call() #result$original.subset <- CleanSubset(subset, nrow(data)) result$output <- output result$missing <- missing result$sort.by.importance <- sort.by.importance result$z.statistics <- result$original$importance[, 1:(ncol(result$original$importance) - 1)] / result$original$importanceSD result$p.values <- 2 * (1 - pnorm(abs(result$z.statistics))) class(result) <- c("RandomForest", class(result)) #################################################################### ##### Saving processed information ##### #################################################################### result <- saveMachineLearningResults(result, prepared.data, show.labels) if (result$show.labels) { if (result$numeric.outcome) names(result$original$importanceSD) <- result$variable.labels else rownames(result$original$importanceSD) <- result$variable.labels } attr(result, "ChartData") <- prepareRFChartData(result) result } prepareRFChartData <- function(x) { if (x$output == "Importance") { output.data <- x$original$importance if (x$show.labels) rownames(output.data) <- x$variable.labels return(output.data) } else if (x$output == "Prediction-Accuracy Table") return(ExtractChartData(x$confusion)) else return(as.matrix(capture.output(print(x$original)))) } #' @import randomForest #' @importFrom flipFormat RandomForestTable FormatAsReal RandomForestTable ExtractCommonPrefix #' @export print.RandomForest <- function(x, ...) { if (x$show.labels) rownames(x$original$importance) <- x$variable.labels if (x$output == "Importance") { title <- paste0("Random Forest: ", x$outcome.label) imp <- x$original$importance extracted <- ExtractCommonPrefix(rownames(imp)) if (!is.na(extracted$common.prefix)) { title <- paste0(title, " by ", extracted$common.prefix) rownames(imp) <- extracted$shortened.labels } subtitle <- if (x$numeric.outcome) paste("R-squared:", FormatAsReal(x$original$rsq[length(x$original$rsq)], decimals = 3)) else { err <- x$original$err.rate accuracies <- 1 - err[nrow(err), ] k <- length(accuracies) correctPredictionsText(accuracies[1], colnames(err)[2:k], accuracies[2:k], out.of.bag = TRUE) } tbl <- RandomForestTable(imp, x$z.statistics, x$p.values, x$sort.by.importance, title = title, subtitle = subtitle, footer = x$sample.description) print(tbl) } else if (x$output == "Prediction-Accuracy Table") { print(x$confusion) } else { x$original$call <- x$formula print(x$original) invisible(x) } }
/R/randomforest.R
no_license
daniellegrogan/flipMultivariates
R
false
false
7,293
r
#' Fit a random forest model #' #' @param formula A formula of the form \code{groups ~ x1 + x2 + ...} #' That is, the response is the grouping factor and the right hand side #' specifies the (non-factor) discriminators, and any transformations, interactions, #' or other non-additive operators apart from \code{.} will be ignored. #' @param data A \code{\link{data.frame}} from which variables specified #' in formula are preferentially to be taken. #' @param subset An optional vector specifying a subset of observations to be #' used in the fitting process, or the name of a variable in \code{data}. It #' may not be an expression. #' @param weights An optional vector of sampling weights, or the #' name of a variable in \code{data}. It may not be an expression. #' @param output One of \code{"Importance"}, \code{"Prediction-Accuracy Table"} or \code{"Detail"}. #' @param missing How missing data is to be treated. Options: #' \code{"Error if missing data"}, #' \code{"Exclude cases with missing data"}, or #' \code{"Imputation (replace missing values with estimates)"}. #' @param seed The random number seed. #' @param show.labels Shows the variable labels, as opposed to the labels, in the outputs, where a #' variables label is an attribute (e.g., attr(foo, "label")). #' @param sort.by.importance Sort the last column of the importance table #' in descending order. #' @param ... Other arguments to be supplied to \code{\link{randomForest}}. #' @importFrom stats pnorm #' @importFrom randomForest randomForest #' @export RandomForest <- function(formula, data = NULL, subset = NULL, weights = NULL, output = "Importance", missing = "Exclude cases with missing data", seed = 12321, show.labels = FALSE, sort.by.importance = TRUE, ...) { #################################################################### ##### Error checking specific to this function ###### #################################################################### # prepareMachineLearningData called with strict.var.names #################################################################### ##### Reading in the data and doing some basic tidying ###### #################################################################### # Identify whether subset and weights are variables in the environment or in data. subset.description <- try(deparse(substitute(subset)), silent = TRUE) subset <- eval(substitute(subset), data, parent.frame()) weights.description <- try(deparse(substitute(weights)), silent = TRUE) weights <- eval(substitute(weights), data, parent.frame()) prepared.data <- prepareMachineLearningData(formula, data, subset, subset.description, weights, weights.description, missing, seed, strict.var.names = TRUE) unweighted.training.data <- prepared.data$unweighted.training.data weighted.training.data <- prepared.data$weighted.training.data #################################################################### ##### Fitting the model. Ideally, this should be a call to ##### ##### another function, with the output of that function ##### ##### called 'original'. ##### #################################################################### set.seed(seed) result <- list(original = suppressWarnings(randomForest(prepared.data$input.formula, importance = TRUE, data = weighted.training.data , ...))) #################################################################### ##### Saving direct input and model-specific parameters ##### #################################################################### result$original$call <- match.call() #result$original.subset <- CleanSubset(subset, nrow(data)) result$output <- output result$missing <- missing result$sort.by.importance <- sort.by.importance result$z.statistics <- result$original$importance[, 1:(ncol(result$original$importance) - 1)] / result$original$importanceSD result$p.values <- 2 * (1 - pnorm(abs(result$z.statistics))) class(result) <- c("RandomForest", class(result)) #################################################################### ##### Saving processed information ##### #################################################################### result <- saveMachineLearningResults(result, prepared.data, show.labels) if (result$show.labels) { if (result$numeric.outcome) names(result$original$importanceSD) <- result$variable.labels else rownames(result$original$importanceSD) <- result$variable.labels } attr(result, "ChartData") <- prepareRFChartData(result) result } prepareRFChartData <- function(x) { if (x$output == "Importance") { output.data <- x$original$importance if (x$show.labels) rownames(output.data) <- x$variable.labels return(output.data) } else if (x$output == "Prediction-Accuracy Table") return(ExtractChartData(x$confusion)) else return(as.matrix(capture.output(print(x$original)))) } #' @import randomForest #' @importFrom flipFormat RandomForestTable FormatAsReal RandomForestTable ExtractCommonPrefix #' @export print.RandomForest <- function(x, ...) { if (x$show.labels) rownames(x$original$importance) <- x$variable.labels if (x$output == "Importance") { title <- paste0("Random Forest: ", x$outcome.label) imp <- x$original$importance extracted <- ExtractCommonPrefix(rownames(imp)) if (!is.na(extracted$common.prefix)) { title <- paste0(title, " by ", extracted$common.prefix) rownames(imp) <- extracted$shortened.labels } subtitle <- if (x$numeric.outcome) paste("R-squared:", FormatAsReal(x$original$rsq[length(x$original$rsq)], decimals = 3)) else { err <- x$original$err.rate accuracies <- 1 - err[nrow(err), ] k <- length(accuracies) correctPredictionsText(accuracies[1], colnames(err)[2:k], accuracies[2:k], out.of.bag = TRUE) } tbl <- RandomForestTable(imp, x$z.statistics, x$p.values, x$sort.by.importance, title = title, subtitle = subtitle, footer = x$sample.description) print(tbl) } else if (x$output == "Prediction-Accuracy Table") { print(x$confusion) } else { x$original$call <- x$formula print(x$original) invisible(x) } }
beets <- c(41, 40, 41, 42, 44, 35, 41, 36, 47, 45) no_beets <- c(51, 51, 50, 42, 40, 31, 43, 45) c(xbar1=mean(beets), xbar2=mean(no_beets), sd1=sd(beets), sd2=sd(no_beets)) ####################################################################### library("aplpack") layout(1) stem.leaf.backback(beets, no_beets, rule.line="Sturges") boxplot(no_beets,beets,names=c("no beets", "beets"),horizontal = TRUE) ####################################################################### require(stats); require(graphics) michelson <- transform(morley, Expt = factor(Expt), Run = factor(Run)) xtabs(~ Expt + Run, data = michelson) # 5 x 20 balanced (two-way) plot(Speed ~ Expt, data = michelson, main = "Speed of Light Data", xlab = "Experiment No.") fm <- aov(Speed ~ Run + Expt, data = michelson) summary(fm) fm0 <- update(fm, . ~ . - Run) anova(fm0, fm) ##################################################################### # ggplot2 examples library(ggplot2) # create factors with value labels mtcars$gear <- factor(mtcars$gear,levels=c(3,4,5), labels=c("3gears","4gears","5gears")) mtcars$am <- factor(mtcars$am,levels=c(0,1), labels=c("Automatic","Manual")) mtcars$cyl <- factor(mtcars$cyl,levels=c(4,6,8), labels=c("4cyl","6cyl","8cyl")) # Kernel density plots for mpg # grouped by number of gears (indicated by color) qplot(mpg, data=mtcars, geom="density", fill=gear, alpha=I(.5), main="Distribution of Gas Milage", xlab="Miles Per Gallon", ylab="Density") # Scatterplot of mpg vs. hp for each combination of gears and cylinders # in each facet, transmittion type is represented by shape and color qplot(hp, mpg, data=mtcars, shape=am, color=am, facets=gear~cyl, size=I(3), xlab="Horsepower", ylab="Miles per Gallon") # Separate regressions of mpg on weight for each number of cylinders qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"), color=cyl, main="Regression of MPG on Weight", xlab="Weight", ylab="Miles per Gallon") # Boxplots of mpg by number of gears # observations (points) are overlayed and jittered qplot(gear, mpg, data=mtcars, geom=c("boxplot", "jitter"), fill=gear, main="Mileage by Gear Number", xlab="", ylab="Miles per Gallon") x<-scan("faithful.txt" , what = list(eruptions="", waiting=""),sep = ","); data<-as.data.frame(x)
/BaoCao/R Script/chapter3.R
no_license
thuyltm/predictUsingProbability
R
false
false
2,426
r
beets <- c(41, 40, 41, 42, 44, 35, 41, 36, 47, 45) no_beets <- c(51, 51, 50, 42, 40, 31, 43, 45) c(xbar1=mean(beets), xbar2=mean(no_beets), sd1=sd(beets), sd2=sd(no_beets)) ####################################################################### library("aplpack") layout(1) stem.leaf.backback(beets, no_beets, rule.line="Sturges") boxplot(no_beets,beets,names=c("no beets", "beets"),horizontal = TRUE) ####################################################################### require(stats); require(graphics) michelson <- transform(morley, Expt = factor(Expt), Run = factor(Run)) xtabs(~ Expt + Run, data = michelson) # 5 x 20 balanced (two-way) plot(Speed ~ Expt, data = michelson, main = "Speed of Light Data", xlab = "Experiment No.") fm <- aov(Speed ~ Run + Expt, data = michelson) summary(fm) fm0 <- update(fm, . ~ . - Run) anova(fm0, fm) ##################################################################### # ggplot2 examples library(ggplot2) # create factors with value labels mtcars$gear <- factor(mtcars$gear,levels=c(3,4,5), labels=c("3gears","4gears","5gears")) mtcars$am <- factor(mtcars$am,levels=c(0,1), labels=c("Automatic","Manual")) mtcars$cyl <- factor(mtcars$cyl,levels=c(4,6,8), labels=c("4cyl","6cyl","8cyl")) # Kernel density plots for mpg # grouped by number of gears (indicated by color) qplot(mpg, data=mtcars, geom="density", fill=gear, alpha=I(.5), main="Distribution of Gas Milage", xlab="Miles Per Gallon", ylab="Density") # Scatterplot of mpg vs. hp for each combination of gears and cylinders # in each facet, transmittion type is represented by shape and color qplot(hp, mpg, data=mtcars, shape=am, color=am, facets=gear~cyl, size=I(3), xlab="Horsepower", ylab="Miles per Gallon") # Separate regressions of mpg on weight for each number of cylinders qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"), color=cyl, main="Regression of MPG on Weight", xlab="Weight", ylab="Miles per Gallon") # Boxplots of mpg by number of gears # observations (points) are overlayed and jittered qplot(gear, mpg, data=mtcars, geom=c("boxplot", "jitter"), fill=gear, main="Mileage by Gear Number", xlab="", ylab="Miles per Gallon") x<-scan("faithful.txt" , what = list(eruptions="", waiting=""),sep = ","); data<-as.data.frame(x)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/map2.r, R/map_by_chunk_id.r \name{cmap2} \alias{cmap2} \alias{map_by_chunk_id} \title{`cmap2` a function to two disk.frames} \usage{ cmap2(.x, .y, .f, ...) map_by_chunk_id(.x, .y, .f, ..., outdir) } \arguments{ \item{.x}{a disk.frame} \item{.y}{a disk.frame} \item{.f}{a function to be called on each chunk of x and y matched by chunk_id} \item{...}{not used} \item{outdir}{output directory} } \description{ Perform a function on both disk.frames .x and .y, each chunk of .x and .y gets run by .f(x.chunk, y.chunk) } \examples{ cars.df = as.disk.frame(cars) cars2.df = cmap2(cars.df, cars.df, ~data.table::rbindlist(list(.x, .y))) collect(cars2.df) # clean up cars.df delete(cars.df) delete(cars2.df) }
/man/cmap2.Rd
no_license
cran/disk.frame
R
false
true
825
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/map2.r, R/map_by_chunk_id.r \name{cmap2} \alias{cmap2} \alias{map_by_chunk_id} \title{`cmap2` a function to two disk.frames} \usage{ cmap2(.x, .y, .f, ...) map_by_chunk_id(.x, .y, .f, ..., outdir) } \arguments{ \item{.x}{a disk.frame} \item{.y}{a disk.frame} \item{.f}{a function to be called on each chunk of x and y matched by chunk_id} \item{...}{not used} \item{outdir}{output directory} } \description{ Perform a function on both disk.frames .x and .y, each chunk of .x and .y gets run by .f(x.chunk, y.chunk) } \examples{ cars.df = as.disk.frame(cars) cars2.df = cmap2(cars.df, cars.df, ~data.table::rbindlist(list(.x, .y))) collect(cars2.df) # clean up cars.df delete(cars.df) delete(cars2.df) }
##Weak instrument testing and MVMR analysis of effect of metabolites on AMD. #We use data of the effect sizes of each SNP on the 118 metabolites combined with the standard error of those SNP exposure associations #(extracted from the GWAS results avaliable at http://www.computationalmedicine.fi/data#NMR_GWAS).(1) We also use data on the SNP associations #with age related macular degeneration (AMD) from Fritsche et al 2016 (2). rm(list = ls(all=TRUE)) #functions defined for this analysis library(remotes) #install_github("WSpiller/MRChallenge2019") library(data.table) library(knitr) library(tidyr) library(dplyr) library(devtools) library(readxl) library(MRChallenge2019) source("app_functions.R") dat <- Challenge_dat dat_se <- data.frame(read.csv("data_incse.txt")) NMRAdat <- NMRA_dat names <- NMRAdat$Abbreviation colnames(dat_se) <- gsub("_", ".", colnames(dat_se)) ids <- as.vector(dat_se$rsid) row.names(dat_se) <- ids dat_se <- dat_se[,2:(length(names)+1)] names <- c("ldl", "hdl", "tg", names) exp <- subset(dat, select=c(1,9,12,15,18,32:149)) pvals <- subset(dat, select=c(11,14,17,150:267)) colnames(exp) <- sub("beta_","",colnames(exp)) names(exp)[names(exp) == 'acAce'] <- 'AcAce' colnames(pvals) <- sub("p_","",colnames(pvals)) ids <- exp$rsid row.names(exp) <- ids row.names(pvals) <- ids dat_se <- data.frame(dat$se_amd, dat$se_ldl, dat$se_hdl, dat$se_tg, dat_se) colnames(dat_se) <- gsub("dat.se_", "", colnames(dat_se)) Fstat <- data.frame() for(x in 1:length(names)){ for(y in 1:length(ids)){ Fstat[ids[y],names[x]] <- (exp[ids[y],names[x]]/dat_se[ids[y],names[x]])^2 } } #import and sort out correlations (NB - correltations are calculated from ALSPAC data and therefore not currently publicly avaliable) correlations <- read_excel("correlations.xlsx") correlations <- data.frame(correlations) row.names(correlations) <- correlations[,1] correlations[,1] <- NULL #calculate the exposures with the most SNPs with an F>5 then keep all snps with individual F>5 for at least one of those exposures. F.ind <- Fstrong(names[4:length(names)]) F.ind <- F.ind[order(-F.ind$no.snps),] topexp <- row.names(F.ind[1:13,]) F.MR <- data.frame(Fstat[,topexp]) ex.MR <- data.frame(exp[,topexp]) maxF_row <- apply(F.MR,1,function(x) max(as.numeric(x))) keep <- as.vector(as.numeric(maxF_row > 5)) ex.MR <- ex.MR[,1:length(topexp)]*keep ex.MR[ex.MR == 0] <- NA ##MR for the final set of exposures subexp <- c("XS.VLDL.P", "S.VLDL.PL", "L.LDL.L", "IDL.TG") subexp_se <- c("XS.VLDL.P_se", "S.VLDL.PL_se", "L.LDL.L_se", "IDL.TG_se") subexp_f <- c("XS.VLDL.P_f", "S.VLDL.PL_f", "L.LDL.L_f", "IDL.TG_f") F.MR <- data.frame(Fstat[,subexp]) ex.MR <- data.frame(exp[,subexp]) maxF_row <- apply(F.MR,1,function(x) max(as.numeric(x))) keep <- as.vector(as.numeric(maxF_row > 5)) ex.MR <- ex.MR[,1:length(subexp)]*keep ex.MR[ex.MR == 0] <- NA MR.subset <- summary(lm(dat$beta_amd~ -1 + ., data = ex.MR, weights = (dat$se_amd)^-2))$coefficients conditionalF(subexp) Fstrong(subexp) kx <- length(subexp) analysis.dat_all <- data.frame(exp[,c("amd",subexp)]) analysis.dat_all <- data.frame(cbind(analysis.dat_all, data.frame(dat_se[,c("amd",subexp)]), data.frame(Fstat[,c(subexp)]))) names(analysis.dat_all) <- c("amd",subexp, "amd_se", subexp_se, subexp_f) F.analysis <- analysis.dat_all[,c(subexp_f)] maxF_row <- apply(F.analysis,1,function(x) max(as.numeric(x))) keep <- as.vector(as.numeric(maxF_row > 5)) analysis.dat_all <- analysis.dat_all[,1:length(c("amd",subexp, "amd_se", subexp_se, subexp_f))]*keep analysis.dat_all[analysis.dat_all==0] <-NA analysis.dat_all <- na.omit(analysis.dat_all) analysis.dat <- analysis.dat_all #MR.results <- MRfunction_jk(subexp) #results <- MR.results #analysis with varying correlations maincorrelations <- correlations corr <- correlations[c(subexp), c(subexp)] #s <- "0" #var.corr <- cbind(s, MR.results) correlations <- corr + 0.75*(1 - corr) results_up <- MRfunction_jk(subexp) for(s in 1:68){ analysis.dat <- analysis.dat_all analysis.dat[s,] <- NA analysis.dat <- na.omit(analysis.dat) temp <- MRfunction_jk(subexp) results_up <- rbind(results_up, temp) } correlations <- 0.75*corr + diag(c(0.25,0.25,0.25,0.25), ncol = 4) results_down <- MRfunction_jk(subexp) for(s in 1:68){ analysis.dat <- analysis.dat_all analysis.dat[s,] <- NA analysis.dat <- na.omit(analysis.dat) temp <- MRfunction_jk(subexp) results_down <- rbind(results_down, temp) } save(results_up, file = "highcorr.Rda") save(results_down, file = "lowcorr.Rda")
/app_varcov.R
no_license
eleanorsanderson/MVMRweakinstruments
R
false
false
4,563
r
##Weak instrument testing and MVMR analysis of effect of metabolites on AMD. #We use data of the effect sizes of each SNP on the 118 metabolites combined with the standard error of those SNP exposure associations #(extracted from the GWAS results avaliable at http://www.computationalmedicine.fi/data#NMR_GWAS).(1) We also use data on the SNP associations #with age related macular degeneration (AMD) from Fritsche et al 2016 (2). rm(list = ls(all=TRUE)) #functions defined for this analysis library(remotes) #install_github("WSpiller/MRChallenge2019") library(data.table) library(knitr) library(tidyr) library(dplyr) library(devtools) library(readxl) library(MRChallenge2019) source("app_functions.R") dat <- Challenge_dat dat_se <- data.frame(read.csv("data_incse.txt")) NMRAdat <- NMRA_dat names <- NMRAdat$Abbreviation colnames(dat_se) <- gsub("_", ".", colnames(dat_se)) ids <- as.vector(dat_se$rsid) row.names(dat_se) <- ids dat_se <- dat_se[,2:(length(names)+1)] names <- c("ldl", "hdl", "tg", names) exp <- subset(dat, select=c(1,9,12,15,18,32:149)) pvals <- subset(dat, select=c(11,14,17,150:267)) colnames(exp) <- sub("beta_","",colnames(exp)) names(exp)[names(exp) == 'acAce'] <- 'AcAce' colnames(pvals) <- sub("p_","",colnames(pvals)) ids <- exp$rsid row.names(exp) <- ids row.names(pvals) <- ids dat_se <- data.frame(dat$se_amd, dat$se_ldl, dat$se_hdl, dat$se_tg, dat_se) colnames(dat_se) <- gsub("dat.se_", "", colnames(dat_se)) Fstat <- data.frame() for(x in 1:length(names)){ for(y in 1:length(ids)){ Fstat[ids[y],names[x]] <- (exp[ids[y],names[x]]/dat_se[ids[y],names[x]])^2 } } #import and sort out correlations (NB - correltations are calculated from ALSPAC data and therefore not currently publicly avaliable) correlations <- read_excel("correlations.xlsx") correlations <- data.frame(correlations) row.names(correlations) <- correlations[,1] correlations[,1] <- NULL #calculate the exposures with the most SNPs with an F>5 then keep all snps with individual F>5 for at least one of those exposures. F.ind <- Fstrong(names[4:length(names)]) F.ind <- F.ind[order(-F.ind$no.snps),] topexp <- row.names(F.ind[1:13,]) F.MR <- data.frame(Fstat[,topexp]) ex.MR <- data.frame(exp[,topexp]) maxF_row <- apply(F.MR,1,function(x) max(as.numeric(x))) keep <- as.vector(as.numeric(maxF_row > 5)) ex.MR <- ex.MR[,1:length(topexp)]*keep ex.MR[ex.MR == 0] <- NA ##MR for the final set of exposures subexp <- c("XS.VLDL.P", "S.VLDL.PL", "L.LDL.L", "IDL.TG") subexp_se <- c("XS.VLDL.P_se", "S.VLDL.PL_se", "L.LDL.L_se", "IDL.TG_se") subexp_f <- c("XS.VLDL.P_f", "S.VLDL.PL_f", "L.LDL.L_f", "IDL.TG_f") F.MR <- data.frame(Fstat[,subexp]) ex.MR <- data.frame(exp[,subexp]) maxF_row <- apply(F.MR,1,function(x) max(as.numeric(x))) keep <- as.vector(as.numeric(maxF_row > 5)) ex.MR <- ex.MR[,1:length(subexp)]*keep ex.MR[ex.MR == 0] <- NA MR.subset <- summary(lm(dat$beta_amd~ -1 + ., data = ex.MR, weights = (dat$se_amd)^-2))$coefficients conditionalF(subexp) Fstrong(subexp) kx <- length(subexp) analysis.dat_all <- data.frame(exp[,c("amd",subexp)]) analysis.dat_all <- data.frame(cbind(analysis.dat_all, data.frame(dat_se[,c("amd",subexp)]), data.frame(Fstat[,c(subexp)]))) names(analysis.dat_all) <- c("amd",subexp, "amd_se", subexp_se, subexp_f) F.analysis <- analysis.dat_all[,c(subexp_f)] maxF_row <- apply(F.analysis,1,function(x) max(as.numeric(x))) keep <- as.vector(as.numeric(maxF_row > 5)) analysis.dat_all <- analysis.dat_all[,1:length(c("amd",subexp, "amd_se", subexp_se, subexp_f))]*keep analysis.dat_all[analysis.dat_all==0] <-NA analysis.dat_all <- na.omit(analysis.dat_all) analysis.dat <- analysis.dat_all #MR.results <- MRfunction_jk(subexp) #results <- MR.results #analysis with varying correlations maincorrelations <- correlations corr <- correlations[c(subexp), c(subexp)] #s <- "0" #var.corr <- cbind(s, MR.results) correlations <- corr + 0.75*(1 - corr) results_up <- MRfunction_jk(subexp) for(s in 1:68){ analysis.dat <- analysis.dat_all analysis.dat[s,] <- NA analysis.dat <- na.omit(analysis.dat) temp <- MRfunction_jk(subexp) results_up <- rbind(results_up, temp) } correlations <- 0.75*corr + diag(c(0.25,0.25,0.25,0.25), ncol = 4) results_down <- MRfunction_jk(subexp) for(s in 1:68){ analysis.dat <- analysis.dat_all analysis.dat[s,] <- NA analysis.dat <- na.omit(analysis.dat) temp <- MRfunction_jk(subexp) results_down <- rbind(results_down, temp) } save(results_up, file = "highcorr.Rda") save(results_down, file = "lowcorr.Rda")
RenderScatterplotUI <- function(input, output, session) { fluidPage( tabsetPanel( tabPanel("Scatterplot", uiOutput("singlescatterplot_ui") ), tabPanel("Scatterplot Matrix", uiOutput("scatterplotmatrix_ui") ) ) ) } RenderSingleScatterplotUI <- function(input, output, session) { fluidPage( # titlePanel("Boxplot"), fluidRow( column(2, wellPanel( # sidebarPanel( tags$div( title="", selectInput(inputId = "count_file", label = "Select a file count:", choices = BrowsePath(file.path(ProjectPath,"count_files"))) ), tags$div( title="", selectInput(inputId = "col1_file", label = "Select a column to plot:", choices = c(1:10), selected = 1) ), tags$div( title="", selectInput(inputId = "col2_file", label = "Select a column to plot:", choices = c(1:10), selected = 2) ), tags$div( title="", checkboxInput(inputId = "log_flag", label = "Log transform") ), tags$div( title="", checkboxInput(inputId = "plotly_flag", label = "Use plotly") ), tags$br(), actionButton(inputId = "scatterplot_button", label = "scatterplot", width = "100%", icon = icon("binoculars")) ) ), # mainPanel( column(10, conditionalPanel( condition = "input.plotly_flag", plotlyOutput(outputId = "singlescatter_plotly") ), conditionalPanel( condition = "!input.plotly_flag", plotOutput(outputId = "singlescatter_plot") ) ) ) ) } RenderSingleScatterplotPlot <- function(input,output,session) { file.path.complete <- file.path(ProjectPath, "count_files", input$count_file) # print(file.path.complete) col.separator <- "\t" coverage.file <- read.table(file=file.path.complete, header = TRUE, sep = col.separator, row.names = 1) # print(head(coverage.file)) col1 <- as.integer(input$col1_file) col2 <- as.integer(input$col2_file) if ( ( col1> dim(coverage.file)[2]) || (col2 > dim(coverage.file)[2]) ) { warning("You selected a too big column number!") return() } sub.df <- coverage.file[,c(col1, col2)] # print(head(sub.df)) self.title = paste0("Scatteplot ", colnames(sub.df)[col1], " vs ", colnames(sub.df)[col2]) ggscp <- ScatterPlot(data.frame.to.plot = sub.df, title=self.title, log.transform = input$log_flag, plotly = input$plotly_flag) # if(input$plotly_flag) { # require(plotly) # # ggbxp <- ggplotly(ggbxp) # ggbxp=ggplotly(ggbxp) # } return(ggscp) } RenderScatterplotMatrixUI <- function(input, output, session) { fluidPage( # titlePanel("Boxplot"), fluidRow( column(2, wellPanel( # sidebarPanel( tags$div( title="", selectInput(inputId = "countm_file", label = "Select a file count:", choices = BrowsePath(file.path(ProjectPath,"count_files"))) ), tags$div( title="", selectInput(inputId = "col1m_file", label = "Select starting column to plot:", choices = c(1:10), selected = 1) ), tags$div( title="", selectInput(inputId = "col2m_file", label = "Select final column to plot:", choices = c(1:10), selected = 2) ), tags$div( title="", checkboxInput(inputId = "logm_flag", label = "Log transform") ), # tags$div( # title="", # checkboxInput(inputId = "plotly_flag", label = "Use plotly") # ), tags$br(), actionButton(inputId = "scatterplotmatrix_button", label = "scatterplot", width = "100%", icon = icon("bomb")) ) ), # mainPanel( column(10, plotOutput(outputId = "matrixscatter_plot") ) ) ) } RenderScatterplotMatrixPlot <- function(input,output,session) { file.path.complete <- file.path(ProjectPath, "count_files", input$countm_file) col.separator <- "\t" coverage.file <- read.table(file=file.path.complete, header = TRUE, sep = col.separator, row.names = 1) col1 <- as.integer(input$col1m_file) col2 <- as.integer(input$col2m_file) if ( ( col1> dim(coverage.file)[2]) || (col2 > dim(coverage.file)[2]) ) { warning("You selected a too big column number!") return() } # sub.df <- coverage.file[,c(col1:col2)] # print(head(sub.df)) # self.title = paste0("Scatteplot Matrix from ", colnames(sub.df)[col1], " to ", colnames(sub.df)[col2]) #ggscp <- ScatterPlot(data.frame.to.plot = sub.df, title=self.title, log.transform = input$log_flag, plotly = input$plotly_flag) require("GGally") scatmat <- ggscatmat(data = coverage.file, columns = c(col1:col2), alpha = 0.5) return(scatmat) }
/R/scatterplot_UI.R
no_license
drighelli/integrho
R
false
false
5,481
r
RenderScatterplotUI <- function(input, output, session) { fluidPage( tabsetPanel( tabPanel("Scatterplot", uiOutput("singlescatterplot_ui") ), tabPanel("Scatterplot Matrix", uiOutput("scatterplotmatrix_ui") ) ) ) } RenderSingleScatterplotUI <- function(input, output, session) { fluidPage( # titlePanel("Boxplot"), fluidRow( column(2, wellPanel( # sidebarPanel( tags$div( title="", selectInput(inputId = "count_file", label = "Select a file count:", choices = BrowsePath(file.path(ProjectPath,"count_files"))) ), tags$div( title="", selectInput(inputId = "col1_file", label = "Select a column to plot:", choices = c(1:10), selected = 1) ), tags$div( title="", selectInput(inputId = "col2_file", label = "Select a column to plot:", choices = c(1:10), selected = 2) ), tags$div( title="", checkboxInput(inputId = "log_flag", label = "Log transform") ), tags$div( title="", checkboxInput(inputId = "plotly_flag", label = "Use plotly") ), tags$br(), actionButton(inputId = "scatterplot_button", label = "scatterplot", width = "100%", icon = icon("binoculars")) ) ), # mainPanel( column(10, conditionalPanel( condition = "input.plotly_flag", plotlyOutput(outputId = "singlescatter_plotly") ), conditionalPanel( condition = "!input.plotly_flag", plotOutput(outputId = "singlescatter_plot") ) ) ) ) } RenderSingleScatterplotPlot <- function(input,output,session) { file.path.complete <- file.path(ProjectPath, "count_files", input$count_file) # print(file.path.complete) col.separator <- "\t" coverage.file <- read.table(file=file.path.complete, header = TRUE, sep = col.separator, row.names = 1) # print(head(coverage.file)) col1 <- as.integer(input$col1_file) col2 <- as.integer(input$col2_file) if ( ( col1> dim(coverage.file)[2]) || (col2 > dim(coverage.file)[2]) ) { warning("You selected a too big column number!") return() } sub.df <- coverage.file[,c(col1, col2)] # print(head(sub.df)) self.title = paste0("Scatteplot ", colnames(sub.df)[col1], " vs ", colnames(sub.df)[col2]) ggscp <- ScatterPlot(data.frame.to.plot = sub.df, title=self.title, log.transform = input$log_flag, plotly = input$plotly_flag) # if(input$plotly_flag) { # require(plotly) # # ggbxp <- ggplotly(ggbxp) # ggbxp=ggplotly(ggbxp) # } return(ggscp) } RenderScatterplotMatrixUI <- function(input, output, session) { fluidPage( # titlePanel("Boxplot"), fluidRow( column(2, wellPanel( # sidebarPanel( tags$div( title="", selectInput(inputId = "countm_file", label = "Select a file count:", choices = BrowsePath(file.path(ProjectPath,"count_files"))) ), tags$div( title="", selectInput(inputId = "col1m_file", label = "Select starting column to plot:", choices = c(1:10), selected = 1) ), tags$div( title="", selectInput(inputId = "col2m_file", label = "Select final column to plot:", choices = c(1:10), selected = 2) ), tags$div( title="", checkboxInput(inputId = "logm_flag", label = "Log transform") ), # tags$div( # title="", # checkboxInput(inputId = "plotly_flag", label = "Use plotly") # ), tags$br(), actionButton(inputId = "scatterplotmatrix_button", label = "scatterplot", width = "100%", icon = icon("bomb")) ) ), # mainPanel( column(10, plotOutput(outputId = "matrixscatter_plot") ) ) ) } RenderScatterplotMatrixPlot <- function(input,output,session) { file.path.complete <- file.path(ProjectPath, "count_files", input$countm_file) col.separator <- "\t" coverage.file <- read.table(file=file.path.complete, header = TRUE, sep = col.separator, row.names = 1) col1 <- as.integer(input$col1m_file) col2 <- as.integer(input$col2m_file) if ( ( col1> dim(coverage.file)[2]) || (col2 > dim(coverage.file)[2]) ) { warning("You selected a too big column number!") return() } # sub.df <- coverage.file[,c(col1:col2)] # print(head(sub.df)) # self.title = paste0("Scatteplot Matrix from ", colnames(sub.df)[col1], " to ", colnames(sub.df)[col2]) #ggscp <- ScatterPlot(data.frame.to.plot = sub.df, title=self.title, log.transform = input$log_flag, plotly = input$plotly_flag) require("GGally") scatmat <- ggscatmat(data = coverage.file, columns = c(col1:col2), alpha = 0.5) return(scatmat) }
<dec f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/include/openssl/ecdsa.h' l='106' type='BIGNUM *'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/ecdsa_extra/ecdsa_asn1.c' l='159' u='r' c='ECDSA_SIG_parse'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/ecdsa_extra/ecdsa_asn1.c' l='184' u='r' c='ECDSA_SIG_marshal'/> <offset>0</offset> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='107' u='w' c='ECDSA_SIG_new'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='109' u='r' c='ECDSA_SIG_new'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='121' u='r' c='ECDSA_SIG_free'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='127' u='r' c='ECDSA_SIG_get0_r'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='137' u='r' c='ECDSA_SIG_get0'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='148' u='r' c='ECDSA_SIG_set0'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='150' u='w' c='ECDSA_SIG_set0'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='165' u='r' c='ECDSA_do_verify'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='166' u='r' c='ECDSA_do_verify'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='257' u='r' c='ecdsa_sign_impl'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/ssl/t1_lib.cc' l='4242' u='r' c='_ZN4bssl22tls1_verify_channel_idEPNS_13SSL_HANDSHAKEERKNS_10SSLMessageE'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/ssl/t1_lib.cc' l='4310' u='r' c='_ZN4bssl21tls1_write_channel_idEPNS_13SSL_HANDSHAKEEP6cbb_st'/>
/docs/refs/ecdsa_sig_st..r
no_license
HarDToBelieve/webkit_codebrowser
R
false
false
2,238
r
<dec f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/include/openssl/ecdsa.h' l='106' type='BIGNUM *'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/ecdsa_extra/ecdsa_asn1.c' l='159' u='r' c='ECDSA_SIG_parse'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/ecdsa_extra/ecdsa_asn1.c' l='184' u='r' c='ECDSA_SIG_marshal'/> <offset>0</offset> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='107' u='w' c='ECDSA_SIG_new'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='109' u='r' c='ECDSA_SIG_new'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='121' u='r' c='ECDSA_SIG_free'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='127' u='r' c='ECDSA_SIG_get0_r'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='137' u='r' c='ECDSA_SIG_get0'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='148' u='r' c='ECDSA_SIG_set0'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='150' u='w' c='ECDSA_SIG_set0'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='165' u='r' c='ECDSA_do_verify'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='166' u='r' c='ECDSA_do_verify'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/crypto/fipsmodule/ecdsa/ecdsa.c' l='257' u='r' c='ecdsa_sign_impl'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/ssl/t1_lib.cc' l='4242' u='r' c='_ZN4bssl22tls1_verify_channel_idEPNS_13SSL_HANDSHAKEERKNS_10SSLMessageE'/> <use f='webkit/Source/ThirdParty/libwebrtc/Source/third_party/boringssl/src/ssl/t1_lib.cc' l='4310' u='r' c='_ZN4bssl21tls1_write_channel_idEPNS_13SSL_HANDSHAKEEP6cbb_st'/>
#' CVSelect - Select the Cross-Validation Bandwith described in (Foster, and ) for the Median of the PSE funcion based on Functional Data #' @import KernSmooth #' @param bandwith #' @param x Location of the discretization points. THis discretization points must be uniform and missing values are not accepted. #' @param y Typically a matrix or data frame which contains a set of curves stored in rows. Missing values are not accepte. #' @param degree Degree of the local Polynomial to be used. If Degree is missing takes by default degree = 1. #' @return A bandwith that minimizes the Median of the Median PSE for the functional data set. #' @references Foster and Stehpen. PhD Thesis. Manchester University #' @examples \dontrun{ #' Mat<- fdaobjMale$data #' h<- cv.select(c(0,10), 1:31,t(Mat),1) #' } #' @export medianPSE<- function (bandwidth, x, y, degree) { y<-as.matrix(y) spacing <- diff(x) if(bandwidth <0) stop("'bandwithd' must be positive") if (any(spacing < 0)) stop("'x' must be increasing") if (nrow(y) < 2) stop("'y' must have at least two rows") if (length(x) != ncol(y)) stop("length(x) and ncol(y) must be equal") n <- nrow(y) N <- ncol(y) y.hat <- apply(y, 1, function(z) locpoly(x = x, y = z, bandwidth = bandwidth, gridsize = N, degree = degree)$y) mu.hat <- rowMeans(y.hat) residuals <- (n/(n - 1)) * mu.hat - y.hat/(n - 1) - t(y) PSEMedian<- apply(residuals^2, 2, median) return(median(PSEMedian)) }
/RPackageTest/R/medianPSE.R
no_license
gusajr/RPackageTest
R
false
false
1,563
r
#' CVSelect - Select the Cross-Validation Bandwith described in (Foster, and ) for the Median of the PSE funcion based on Functional Data #' @import KernSmooth #' @param bandwith #' @param x Location of the discretization points. THis discretization points must be uniform and missing values are not accepted. #' @param y Typically a matrix or data frame which contains a set of curves stored in rows. Missing values are not accepte. #' @param degree Degree of the local Polynomial to be used. If Degree is missing takes by default degree = 1. #' @return A bandwith that minimizes the Median of the Median PSE for the functional data set. #' @references Foster and Stehpen. PhD Thesis. Manchester University #' @examples \dontrun{ #' Mat<- fdaobjMale$data #' h<- cv.select(c(0,10), 1:31,t(Mat),1) #' } #' @export medianPSE<- function (bandwidth, x, y, degree) { y<-as.matrix(y) spacing <- diff(x) if(bandwidth <0) stop("'bandwithd' must be positive") if (any(spacing < 0)) stop("'x' must be increasing") if (nrow(y) < 2) stop("'y' must have at least two rows") if (length(x) != ncol(y)) stop("length(x) and ncol(y) must be equal") n <- nrow(y) N <- ncol(y) y.hat <- apply(y, 1, function(z) locpoly(x = x, y = z, bandwidth = bandwidth, gridsize = N, degree = degree)$y) mu.hat <- rowMeans(y.hat) residuals <- (n/(n - 1)) * mu.hat - y.hat/(n - 1) - t(y) PSEMedian<- apply(residuals^2, 2, median) return(median(PSEMedian)) }
gh.da <- read.table("~/RMB/Publication/Data/GreenhouseExp/DA_comp_site_OTUs.txt", header = T, row.names = 1) field.da <- read.table("~/RMB/Publication/Data/FieldExp/enriched_otus.txt", header = T, row.names = 1) tax <- read.table("~/RMB/Publication/Data/FieldExp/field_tax.txt", header = T, row.names = 1) ## Get core greenhouse first load("~/RMB/Publication/Data/GreenhouseExp/glm.gh.rda") gh.da.e <- subset(gh.comp.site.glm, color == "E") gh.e.arb <- as.character(subset(gh.comp.site.glm, color == "E" & Site == "Arbuckle" & padj < 0.01)$OTU) gh.e.dav <- as.character(subset(gh.comp.site.glm, color == "E" & Site == "Davis" & padj < 0.01)$OTU) gh.e.sac <- as.character(subset(gh.comp.site.glm, color == "E" & Site == "Sacramento" & padj < 0.01)$OTU) gh.core <- intersect(gh.e.arb, intersect(gh.e.dav, gh.e.sac)) field.da.e <- subset(field.da) b1.e <- unique(as.character(subset(field.da, Site == "BB P1" & padj < 0.01)$OTU)) b4.e <- unique(as.character(subset(field.da, Site == "BB P4" & padj < 0.01)$OTU)) d18.e <- unique(as.character(subset(field.da, Site == "Ditaler 18" & padj < 0.01)$OTU)) d19.e <- unique(as.character(subset(field.da, Site == "Ditaler 19" & padj < 0.01)$OTU)) ds.e <- unique(as.character(subset(field.da, Site == "DS RR" & padj < 0.01)$OTU)) sch.e <- unique(as.character(subset(field.da, Site == "Scheidec" & padj < 0.01)$OTU)) sft.e <- unique(as.character(subset(field.da, Site == "SFT 20 A" & padj < 0.01)$OTU)) sp.e <- unique(as.character(subset(field.da, Site == "Spooner Airstrip" & padj < 0.01)$OTU)) field.all <- table(c(b1.e, b4.e, d18.e, d19.e, ds.e, sch.e, sft.e, sp.e)) field.core <- Reduce(intersect, list(b1.e, b4.e, d18.e, d19.e, ds.e, sch.e, sft.e, sp.e)) all.core <- intersect(field.core, gh.core) all.core.tax <- tax[match(all.core, row.names(tax)),] ggplot(all.core.tax, aes(x = Class, fill = Order)) + geom_bar() + coord_flip() + theme(text = element_text(size = 20)) ## Get counts for each experiment gh.counts <- read.table("~/RMB/Publication/Data/GreenhouseExp/gh_otu_table.txt", header = T, row.names = 1) field.counts <- read.table("~/RMB/Publication/Data/FieldExp/field_otu_table.txt", header = T, row.names = 1) gh.map <- read.table("~/RMB/Publication/Data/GreenhouseExp/gh_map.txt", header = T, row.names = 1) field.map <- read.table("~/RMB/Publication/Data/FieldExp/field_map.txt", header = T, row.names = 1) gh.map$BarcodeSequence <- NULL gh.map$LinkerPrimerSequence <- NULL gh.map$Field <- NULL gh.map$Run <- NULL field.map$BarcodeSequence <- NULL field.map$LinkerPrimerSequence <- NULL field.map$Field <- NULL field.map$Run <- NULL gh.core.counts <- melt(cbind(gh.map, t(gh.counts[match(all.core, row.names(gh.counts)), match(row.names(gh.map), colnames(gh.counts))]))) field.core.counts <- melt(cbind(field.map, t(field.counts[match(all.core, row.names(field.counts)), match(row.names(field.map), colnames(field.counts))]))) whole.counts <- rbind(gh.core.counts, field.core.counts) ggplot(whole.counts, aes(x = Compartment, y = value, fill = variable)) + geom_boxplot() + facet_grid(Cultivation ~ .) + ylim(0,5000)
/Greenhouse/core_plots.r
no_license
rajaldebnath/Edwards-et-al.-2014
R
false
false
3,091
r
gh.da <- read.table("~/RMB/Publication/Data/GreenhouseExp/DA_comp_site_OTUs.txt", header = T, row.names = 1) field.da <- read.table("~/RMB/Publication/Data/FieldExp/enriched_otus.txt", header = T, row.names = 1) tax <- read.table("~/RMB/Publication/Data/FieldExp/field_tax.txt", header = T, row.names = 1) ## Get core greenhouse first load("~/RMB/Publication/Data/GreenhouseExp/glm.gh.rda") gh.da.e <- subset(gh.comp.site.glm, color == "E") gh.e.arb <- as.character(subset(gh.comp.site.glm, color == "E" & Site == "Arbuckle" & padj < 0.01)$OTU) gh.e.dav <- as.character(subset(gh.comp.site.glm, color == "E" & Site == "Davis" & padj < 0.01)$OTU) gh.e.sac <- as.character(subset(gh.comp.site.glm, color == "E" & Site == "Sacramento" & padj < 0.01)$OTU) gh.core <- intersect(gh.e.arb, intersect(gh.e.dav, gh.e.sac)) field.da.e <- subset(field.da) b1.e <- unique(as.character(subset(field.da, Site == "BB P1" & padj < 0.01)$OTU)) b4.e <- unique(as.character(subset(field.da, Site == "BB P4" & padj < 0.01)$OTU)) d18.e <- unique(as.character(subset(field.da, Site == "Ditaler 18" & padj < 0.01)$OTU)) d19.e <- unique(as.character(subset(field.da, Site == "Ditaler 19" & padj < 0.01)$OTU)) ds.e <- unique(as.character(subset(field.da, Site == "DS RR" & padj < 0.01)$OTU)) sch.e <- unique(as.character(subset(field.da, Site == "Scheidec" & padj < 0.01)$OTU)) sft.e <- unique(as.character(subset(field.da, Site == "SFT 20 A" & padj < 0.01)$OTU)) sp.e <- unique(as.character(subset(field.da, Site == "Spooner Airstrip" & padj < 0.01)$OTU)) field.all <- table(c(b1.e, b4.e, d18.e, d19.e, ds.e, sch.e, sft.e, sp.e)) field.core <- Reduce(intersect, list(b1.e, b4.e, d18.e, d19.e, ds.e, sch.e, sft.e, sp.e)) all.core <- intersect(field.core, gh.core) all.core.tax <- tax[match(all.core, row.names(tax)),] ggplot(all.core.tax, aes(x = Class, fill = Order)) + geom_bar() + coord_flip() + theme(text = element_text(size = 20)) ## Get counts for each experiment gh.counts <- read.table("~/RMB/Publication/Data/GreenhouseExp/gh_otu_table.txt", header = T, row.names = 1) field.counts <- read.table("~/RMB/Publication/Data/FieldExp/field_otu_table.txt", header = T, row.names = 1) gh.map <- read.table("~/RMB/Publication/Data/GreenhouseExp/gh_map.txt", header = T, row.names = 1) field.map <- read.table("~/RMB/Publication/Data/FieldExp/field_map.txt", header = T, row.names = 1) gh.map$BarcodeSequence <- NULL gh.map$LinkerPrimerSequence <- NULL gh.map$Field <- NULL gh.map$Run <- NULL field.map$BarcodeSequence <- NULL field.map$LinkerPrimerSequence <- NULL field.map$Field <- NULL field.map$Run <- NULL gh.core.counts <- melt(cbind(gh.map, t(gh.counts[match(all.core, row.names(gh.counts)), match(row.names(gh.map), colnames(gh.counts))]))) field.core.counts <- melt(cbind(field.map, t(field.counts[match(all.core, row.names(field.counts)), match(row.names(field.map), colnames(field.counts))]))) whole.counts <- rbind(gh.core.counts, field.core.counts) ggplot(whole.counts, aes(x = Compartment, y = value, fill = variable)) + geom_boxplot() + facet_grid(Cultivation ~ .) + ylim(0,5000)
# topic modeling of sentiment library(tidyverse) library(tidytext) library(tidymodels) library(tm) library(vip) library(tictoc) library(butcher) library(yardstick) # setwd("2023-02-28_african_language") load("data/afrisenti_translated.rdata") # ----- SETUP ------------------------------ afrisenti_translated <- afrisenti_translated %>% mutate(lang = as.factor(assigned_long)) %>% mutate(sentiment = as.factor(label)) tweet_train <- afrisenti_translated %>% filter(intended_use == "train") %>% select(tweet_num,sentiment,lang,tweet) tweet_test <- afrisenti_translated %>% filter(intended_use == "test") %>% select(tweet_num,sentiment,lang,tweet) tweet_dev <- afrisenti_translated %>% filter(intended_use == "dev") %>% select(tweet_num,sentiment,lang,tweet) # add my stop words to defaults my_stop_words = tibble(word = c("http","https","dey","de","al","url","na","t.co","rt","user","users","wey","don", as.character(1:100), "?????????", "?????????","?????????")) %>% bind_rows(stop_words) # split into words. Choose native or English tokenize <- function(dataset, use_translated = FALSE) { tokens <- dataset %>% select(tweet_num, sentiment, lang, ifelse(use_translated, "translatedText", "tweet")) %>% unnest_tokens(word, !!(ifelse( use_translated, "translatedText", "tweet" ))) return(tokens) } # turn words preceded by "not" into "not_<word>" # to create a negated token detect_negations <- function(tokens,negation_words = c("not")) { # function to negate tokenized data tokens <- tokens %>% rowid_to_column(var="word_num") not_words_rows <- tokens |> filter(word %in% negation_words) |> mutate(word_num = word_num) |> pull(word_num) tokens <- tokens %>% # create negated terms filter(!(word_num %in% not_words_rows)) |> mutate(word = ifelse(word_num %in% (not_words_rows+1),paste0("not_",word),word)) |> select(-word_num) return(tokens) } # word list size will be critical # full set will be wasteful and slow # one author suggested 2000 # remove stop words first get_top_words <- function(tokens, word_count = 1000, my_stopwords) { chosen_words <- tokens |> anti_join(my_stop_words) %>% ungroup() |> select(word) |> count(word) |> arrange(desc(n)) |> slice_max(order_by = n, n = word_count) return(chosen_words) } # make document term matrix including words and language. omit stop words. note # that negation must be done before removing stop words or "not" will be stripped. make_dtm <- function(tokens) { chosen_words <- get_top_words(tokens,word_count = 1000) tweet_dtm <- tokens |> inner_join(chosen_words) |> group_by(tweet_num, word) |> count(word) |> cast_dtm(tweet_num, word, n) %>% tidy() %>% mutate(count = as.integer(count)) dtmm <- tweet_dtm |> pivot_wider(names_from = term, values_from = count, values_fill = 0) %>% mutate(tweet_num = as.numeric(document)) %>% left_join(select(afrisenti_translated,tweet_num,sentiment,lang),by="tweet_num") %>% select(sentiment,lang,everything()) %>% select(-document,-tweet_num) %>% return(dtmm) } # ----- END SETUP ------------------------------ # do it with native # 2- letter words are a huge part of the corpus. # I don't know what I'm doing but 2-letter words probably don't convey # as much as longer words. tokens_a <- tokenize(afrisenti_translated) %>% filter(str_length(word) > 2) # do it with English translations tokens_e <- afrisenti_translated %>% filter(intended_use == "train") %>% tokenize(use_translated = TRUE) # --------------------------------------------------------- # run the models tic() dtmm <- make_dtm(tokens_a) toc() cores <- parallel::detectCores() rf_mod <- parsnip::rand_forest(trees = 100) %>% set_engine("ranger",num.threads = cores,importance = "impurity") %>% set_mode("classification") rf_recipe <- recipe(sentiment ~ ., data = dtmm) rf_workflow <- workflow() %>% add_model(rf_mod) %>% add_recipe(rf_recipe) translate(rf_mod) #rf_workflow %>% # fit(mtcars) %>% # extract_fit_parsnip() %>% # vip(num_features = 10) tic() rf_fit <- rf_workflow %>% fit(dtmm) toc() summary(predict(rf_fit,dtmm[-1])) # Validation set assessment #1: looking at confusion matrix predicted_for_table <- tibble(dtmm[,1],predict(rf_fit,dtmm)) xt <- table(predicted_for_table) %>% broom::tidy() %>% mutate(across(where(is.character),as.factor)) %>% # group_by(label) %>% mutate(prop = round(100*n/sum(n))) gg <- xt %>% ggplot(aes(observed,predicted,fill=n)) + geom_tile() + labs(title = "African Languages Tweets\nQ: Can We Train on English Google Translations?", subtitle = "A: Yes. A random forest model works pretty well.", x = "Native Language Sentiment", y= "Google Translate Sentiment", caption = "source: Afrisenti Data Set") + scale_fill_gradient(low = "#FFBF00",high = "#007000") + theme(text = element_text(family = "dm"), plot.background = element_rect(fill = "#FDECCD", color = NA), legend.background = element_blank(), axis.ticks = element_blank(), panel.background = element_blank(), panel.grid = element_blank()) gg + geom_text(aes(label = paste0(as.character(prop),"%"))) plot_gg(gg, width = 5, height = 5, multicore = TRUE, scale = 250, zoom = 0.7, theta = 10, phi = 30, windowsize = c(800, 800)) pretty_colours <- c("#F8766D","#00BA38","#619CFF") # Validation set assessment #2: ROC curves and AUC # Needs to import ROCR package for ROC curve plotting: library(ROCR) # Calculate the probability of new observations belonging to each class predicted_for_roc_curve<- tibble(dtmm[,1:2], predict(rf_fit,dtmm[,-1],type="prob")) predicted_for_roc <- bind_cols(predicted_for_table,predicted_for_roc_curve[,2:4]) metrics(predicted_for_roc,sentiment,.pred_class) predicted_for_roc_curve %>% group_by(lang) %>% roc_curve(sentiment,.pred_negative:.pred_positive) %>% autoplot()
/2023-02-28_african_language/ml_predictions.R
no_license
apsteinmetz/tidytuesday
R
false
false
6,159
r
# topic modeling of sentiment library(tidyverse) library(tidytext) library(tidymodels) library(tm) library(vip) library(tictoc) library(butcher) library(yardstick) # setwd("2023-02-28_african_language") load("data/afrisenti_translated.rdata") # ----- SETUP ------------------------------ afrisenti_translated <- afrisenti_translated %>% mutate(lang = as.factor(assigned_long)) %>% mutate(sentiment = as.factor(label)) tweet_train <- afrisenti_translated %>% filter(intended_use == "train") %>% select(tweet_num,sentiment,lang,tweet) tweet_test <- afrisenti_translated %>% filter(intended_use == "test") %>% select(tweet_num,sentiment,lang,tweet) tweet_dev <- afrisenti_translated %>% filter(intended_use == "dev") %>% select(tweet_num,sentiment,lang,tweet) # add my stop words to defaults my_stop_words = tibble(word = c("http","https","dey","de","al","url","na","t.co","rt","user","users","wey","don", as.character(1:100), "?????????", "?????????","?????????")) %>% bind_rows(stop_words) # split into words. Choose native or English tokenize <- function(dataset, use_translated = FALSE) { tokens <- dataset %>% select(tweet_num, sentiment, lang, ifelse(use_translated, "translatedText", "tweet")) %>% unnest_tokens(word, !!(ifelse( use_translated, "translatedText", "tweet" ))) return(tokens) } # turn words preceded by "not" into "not_<word>" # to create a negated token detect_negations <- function(tokens,negation_words = c("not")) { # function to negate tokenized data tokens <- tokens %>% rowid_to_column(var="word_num") not_words_rows <- tokens |> filter(word %in% negation_words) |> mutate(word_num = word_num) |> pull(word_num) tokens <- tokens %>% # create negated terms filter(!(word_num %in% not_words_rows)) |> mutate(word = ifelse(word_num %in% (not_words_rows+1),paste0("not_",word),word)) |> select(-word_num) return(tokens) } # word list size will be critical # full set will be wasteful and slow # one author suggested 2000 # remove stop words first get_top_words <- function(tokens, word_count = 1000, my_stopwords) { chosen_words <- tokens |> anti_join(my_stop_words) %>% ungroup() |> select(word) |> count(word) |> arrange(desc(n)) |> slice_max(order_by = n, n = word_count) return(chosen_words) } # make document term matrix including words and language. omit stop words. note # that negation must be done before removing stop words or "not" will be stripped. make_dtm <- function(tokens) { chosen_words <- get_top_words(tokens,word_count = 1000) tweet_dtm <- tokens |> inner_join(chosen_words) |> group_by(tweet_num, word) |> count(word) |> cast_dtm(tweet_num, word, n) %>% tidy() %>% mutate(count = as.integer(count)) dtmm <- tweet_dtm |> pivot_wider(names_from = term, values_from = count, values_fill = 0) %>% mutate(tweet_num = as.numeric(document)) %>% left_join(select(afrisenti_translated,tweet_num,sentiment,lang),by="tweet_num") %>% select(sentiment,lang,everything()) %>% select(-document,-tweet_num) %>% return(dtmm) } # ----- END SETUP ------------------------------ # do it with native # 2- letter words are a huge part of the corpus. # I don't know what I'm doing but 2-letter words probably don't convey # as much as longer words. tokens_a <- tokenize(afrisenti_translated) %>% filter(str_length(word) > 2) # do it with English translations tokens_e <- afrisenti_translated %>% filter(intended_use == "train") %>% tokenize(use_translated = TRUE) # --------------------------------------------------------- # run the models tic() dtmm <- make_dtm(tokens_a) toc() cores <- parallel::detectCores() rf_mod <- parsnip::rand_forest(trees = 100) %>% set_engine("ranger",num.threads = cores,importance = "impurity") %>% set_mode("classification") rf_recipe <- recipe(sentiment ~ ., data = dtmm) rf_workflow <- workflow() %>% add_model(rf_mod) %>% add_recipe(rf_recipe) translate(rf_mod) #rf_workflow %>% # fit(mtcars) %>% # extract_fit_parsnip() %>% # vip(num_features = 10) tic() rf_fit <- rf_workflow %>% fit(dtmm) toc() summary(predict(rf_fit,dtmm[-1])) # Validation set assessment #1: looking at confusion matrix predicted_for_table <- tibble(dtmm[,1],predict(rf_fit,dtmm)) xt <- table(predicted_for_table) %>% broom::tidy() %>% mutate(across(where(is.character),as.factor)) %>% # group_by(label) %>% mutate(prop = round(100*n/sum(n))) gg <- xt %>% ggplot(aes(observed,predicted,fill=n)) + geom_tile() + labs(title = "African Languages Tweets\nQ: Can We Train on English Google Translations?", subtitle = "A: Yes. A random forest model works pretty well.", x = "Native Language Sentiment", y= "Google Translate Sentiment", caption = "source: Afrisenti Data Set") + scale_fill_gradient(low = "#FFBF00",high = "#007000") + theme(text = element_text(family = "dm"), plot.background = element_rect(fill = "#FDECCD", color = NA), legend.background = element_blank(), axis.ticks = element_blank(), panel.background = element_blank(), panel.grid = element_blank()) gg + geom_text(aes(label = paste0(as.character(prop),"%"))) plot_gg(gg, width = 5, height = 5, multicore = TRUE, scale = 250, zoom = 0.7, theta = 10, phi = 30, windowsize = c(800, 800)) pretty_colours <- c("#F8766D","#00BA38","#619CFF") # Validation set assessment #2: ROC curves and AUC # Needs to import ROCR package for ROC curve plotting: library(ROCR) # Calculate the probability of new observations belonging to each class predicted_for_roc_curve<- tibble(dtmm[,1:2], predict(rf_fit,dtmm[,-1],type="prob")) predicted_for_roc <- bind_cols(predicted_for_table,predicted_for_roc_curve[,2:4]) metrics(predicted_for_roc,sentiment,.pred_class) predicted_for_roc_curve %>% group_by(lang) %>% roc_curve(sentiment,.pred_negative:.pred_positive) %>% autoplot()
library(testthat) credential <- retrieve_credential_testing() update_expectation <- FALSE test_that("Smoke Test", { testthat::skip_on_cran() expect_message({ returned_object <- redcap_variables( redcap_uri = credential$redcap_uri, token = credential$token, verbose = TRUE ) }) expect_type(returned_object, "list") }) test_that("default", { testthat::skip_on_cran() path_expected <- "test-data/specific-redcapr/variables/default.R" expected_outcome_message <- "\\d+ variable metadata records were read from REDCap in \\d\\.\\d seconds\\. The http status code was 200\\.(\\n)?" returned_object <- redcap_variables( redcap_uri = credential$redcap_uri, token = credential$token, verbose = FALSE ) if (update_expectation) save_expected(returned_object$data, path_expected) expected_data_frame <- retrieve_expected(path_expected) expect_equal(returned_object$data, expected=expected_data_frame, label="The returned data.frame should be correct", ignore_attr = TRUE) # dput(returned_object$data) expect_equal(returned_object$status_code, expected=200L) expect_equal(returned_object$raw_text, expected="", ignore_attr = TRUE) # dput(returned_object$raw_text) expect_match(returned_object$outcome_message, regexp=expected_outcome_message, perl=TRUE) expect_true(returned_object$success) expect_s3_class(returned_object$data, "tbl") }) test_that("Bad Uri -wrong address (1 of 2)", { testthat::skip_on_cran() expected_message <- "The requested URL was not found on this server\\." expect_error( redcap_variables( redcap_uri = "https://bbmc.ouhsc.edu/redcap/apiFFFFFFFFFFFFFF/", # Wrong url token = credential$token ), expected_message ) }) test_that("Bad Uri -wrong address (2 of 2)", { testthat::skip_on_cran() bad_uri <- "https://aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com" expected_data_frame <- structure(list(), .Names = character(0), row.names = integer(0), class = "data.frame") # Windows gives a different message than Travis/Linux expected_outcome_message <- "(https://aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com|Couldn't resolve host 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com')" # "The REDCapR variable retrieval was not successful\\..+?Error 405 \\(Method Not Allowed\\).+" # expected_outcome_message <- "(?s)The REDCapR variable retrieval was not successful\\..+?.+" expect_error( redcap_variables( redcap_uri = bad_uri, token = credential$token )#, # regexp = expected_outcome_message ) # Now the error is thrown with a bad URI. # expected_outcome_message <- paste0("(?s)", expected_outcome_message) # # expect_equal(returned_object$data, expected=expected_data_frame, label="The returned data.frame should be correct") # dput(returned_object$data) # expect_equal(returned_object$status_code, expected=405L) # # expect_equal(returned_object$raw_text, expected="", ignore_attr = TRUE) # dput(returned_object$raw_text) # expect_match(returned_object$outcome_message, regexp=expected_outcome_message, perl=TRUE) # expect_false(returned_object$success) }) test_that("bad token -Error", { testthat::skip_on_cran() expected_error_message <- "ERROR: You do not have permissions to use the API" expect_error( redcap_variables( redcap_uri = credential$redcap_uri, token = "BAD00000000000000000000000000000" ), expected_error_message ) }) rm(credential)
/tests/testthat/test-variables.R
permissive
OuhscBbmc/REDCapR
R
false
false
3,528
r
library(testthat) credential <- retrieve_credential_testing() update_expectation <- FALSE test_that("Smoke Test", { testthat::skip_on_cran() expect_message({ returned_object <- redcap_variables( redcap_uri = credential$redcap_uri, token = credential$token, verbose = TRUE ) }) expect_type(returned_object, "list") }) test_that("default", { testthat::skip_on_cran() path_expected <- "test-data/specific-redcapr/variables/default.R" expected_outcome_message <- "\\d+ variable metadata records were read from REDCap in \\d\\.\\d seconds\\. The http status code was 200\\.(\\n)?" returned_object <- redcap_variables( redcap_uri = credential$redcap_uri, token = credential$token, verbose = FALSE ) if (update_expectation) save_expected(returned_object$data, path_expected) expected_data_frame <- retrieve_expected(path_expected) expect_equal(returned_object$data, expected=expected_data_frame, label="The returned data.frame should be correct", ignore_attr = TRUE) # dput(returned_object$data) expect_equal(returned_object$status_code, expected=200L) expect_equal(returned_object$raw_text, expected="", ignore_attr = TRUE) # dput(returned_object$raw_text) expect_match(returned_object$outcome_message, regexp=expected_outcome_message, perl=TRUE) expect_true(returned_object$success) expect_s3_class(returned_object$data, "tbl") }) test_that("Bad Uri -wrong address (1 of 2)", { testthat::skip_on_cran() expected_message <- "The requested URL was not found on this server\\." expect_error( redcap_variables( redcap_uri = "https://bbmc.ouhsc.edu/redcap/apiFFFFFFFFFFFFFF/", # Wrong url token = credential$token ), expected_message ) }) test_that("Bad Uri -wrong address (2 of 2)", { testthat::skip_on_cran() bad_uri <- "https://aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com" expected_data_frame <- structure(list(), .Names = character(0), row.names = integer(0), class = "data.frame") # Windows gives a different message than Travis/Linux expected_outcome_message <- "(https://aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com|Couldn't resolve host 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com')" # "The REDCapR variable retrieval was not successful\\..+?Error 405 \\(Method Not Allowed\\).+" # expected_outcome_message <- "(?s)The REDCapR variable retrieval was not successful\\..+?.+" expect_error( redcap_variables( redcap_uri = bad_uri, token = credential$token )#, # regexp = expected_outcome_message ) # Now the error is thrown with a bad URI. # expected_outcome_message <- paste0("(?s)", expected_outcome_message) # # expect_equal(returned_object$data, expected=expected_data_frame, label="The returned data.frame should be correct") # dput(returned_object$data) # expect_equal(returned_object$status_code, expected=405L) # # expect_equal(returned_object$raw_text, expected="", ignore_attr = TRUE) # dput(returned_object$raw_text) # expect_match(returned_object$outcome_message, regexp=expected_outcome_message, perl=TRUE) # expect_false(returned_object$success) }) test_that("bad token -Error", { testthat::skip_on_cran() expected_error_message <- "ERROR: You do not have permissions to use the API" expect_error( redcap_variables( redcap_uri = credential$redcap_uri, token = "BAD00000000000000000000000000000" ), expected_error_message ) }) rm(credential)
nys <- readRDS("./temp/new_york_race_census.RDS") voted_general <- nys[nys$voted_general == T, ] precincts <- full_join( voted_general %>% group_by(election_district, assembly_district) %>% summarize_at(vars(gender, dem, rep, yob, pred.whi, pred.bla, pred.his, pred.asi, median_income, some_college, unem), funs(mean(., na = T))), voted_general %>% group_by(election_district, assembly_district) %>% tally(), by = c("assembly_district", "election_district") ) precincts$ed <- as.integer(paste0(str_pad(precincts$assembly_district, width = 2, pad = "0", side = "left"), str_pad(precincts$election_district, width = 3, pad = "0", side = "left"))) ed_shapefile <- readOGR("./raw_data/shapefiles/nyc_election_districts/nyed_19a", "nyed") ed_shapefile@data$id <- rownames(ed_shapefile@data) t <- fortify(ed_shapefile) ed_shapefile <- inner_join(ed_shapefile@data, t, by = "id") ed_map <- left_join(ed_shapefile, precincts, by = c("ElectDist" = "ed")) ggplot() + geom_polygon(data = ed_map, aes(x = long, y = lat, group = group, fill = n)) + geom_path(data = ed_map, aes(x = long, y = lat, group = group), color = "white", size = 0.01) + coord_equal() + theme_map() + labs(fill = "Count of Voters by Precinct") + scale_fill_gradient(label = scales::comma, limits = c(299, 601), oob = scales::squish) ggsave("./output/city_map_vcount.png") ggplot() + geom_polygon(data = ed_map, aes(x = long, y = lat, group = group, fill = median_income)) + geom_path(data = ed_map, aes(x = long, y = lat, group = group), color = "white", size = 0.01) + coord_equal() + theme_map() + labs(fill = "Median Income by Precinct") + scale_fill_gradient(label = scales::dollar, limits = c(45000, 100000), oob = scales::squish) ggsave("./output/city_map_income.png") ggplot() + geom_polygon(data = ed_map, aes(x = long, y = lat, group = group, fill = pred.whi)) + geom_path(data = ed_map, aes(x = long, y = lat, group = group), color = "white", size = 0.01) + coord_equal() + theme_map() + labs(fill = "Share Non-Hispanic White by Precinct") + scale_fill_gradient(label = scales::percent, limits = c(0.15, 0.9), oob = scales::squish) ggsave("./output/city_map_race.png")
/code/old/new_york/02_make_city.R
no_license
BrennanCenter/resource_allocation
R
false
false
2,259
r
nys <- readRDS("./temp/new_york_race_census.RDS") voted_general <- nys[nys$voted_general == T, ] precincts <- full_join( voted_general %>% group_by(election_district, assembly_district) %>% summarize_at(vars(gender, dem, rep, yob, pred.whi, pred.bla, pred.his, pred.asi, median_income, some_college, unem), funs(mean(., na = T))), voted_general %>% group_by(election_district, assembly_district) %>% tally(), by = c("assembly_district", "election_district") ) precincts$ed <- as.integer(paste0(str_pad(precincts$assembly_district, width = 2, pad = "0", side = "left"), str_pad(precincts$election_district, width = 3, pad = "0", side = "left"))) ed_shapefile <- readOGR("./raw_data/shapefiles/nyc_election_districts/nyed_19a", "nyed") ed_shapefile@data$id <- rownames(ed_shapefile@data) t <- fortify(ed_shapefile) ed_shapefile <- inner_join(ed_shapefile@data, t, by = "id") ed_map <- left_join(ed_shapefile, precincts, by = c("ElectDist" = "ed")) ggplot() + geom_polygon(data = ed_map, aes(x = long, y = lat, group = group, fill = n)) + geom_path(data = ed_map, aes(x = long, y = lat, group = group), color = "white", size = 0.01) + coord_equal() + theme_map() + labs(fill = "Count of Voters by Precinct") + scale_fill_gradient(label = scales::comma, limits = c(299, 601), oob = scales::squish) ggsave("./output/city_map_vcount.png") ggplot() + geom_polygon(data = ed_map, aes(x = long, y = lat, group = group, fill = median_income)) + geom_path(data = ed_map, aes(x = long, y = lat, group = group), color = "white", size = 0.01) + coord_equal() + theme_map() + labs(fill = "Median Income by Precinct") + scale_fill_gradient(label = scales::dollar, limits = c(45000, 100000), oob = scales::squish) ggsave("./output/city_map_income.png") ggplot() + geom_polygon(data = ed_map, aes(x = long, y = lat, group = group, fill = pred.whi)) + geom_path(data = ed_map, aes(x = long, y = lat, group = group), color = "white", size = 0.01) + coord_equal() + theme_map() + labs(fill = "Share Non-Hispanic White by Precinct") + scale_fill_gradient(label = scales::percent, limits = c(0.15, 0.9), oob = scales::squish) ggsave("./output/city_map_race.png")
library(readxl) library(dplyr) ###TINGKAT SISTEM (PEP)### inputResp<-read_excel("data/cdna_pep.xlsx") inputResp$logo<-NULL; inputResp$intro0<-NULL; inputResp$intro0a<-NULL; inputResp$url_widget2<-NULL; inputResp$intro1a<-NULL inputResp$tanggal<-NULL; inputResp$`_index`<-NULL;inputResp$`_validation_status`<-NULL; inputResp$`_submission_time`<-NULL; inputResp$`_uuid`<-NULL; inputResp$`_id`<-NULL inputResp$intropenutup<-NULL; inputResp$intropenutup2<-NULL; inputResp$introSistem<-NULL; inputResp$intropemantauan1<-NULL inputResp$alasan<-NULL for (i in 1:9){ eval(parse(text=paste0("inputResp$alasan_00",i,"<-NULL"))) } for (i in 10:15){ eval(parse(text=paste0("inputResp$alasan_0",i,"<-NULL"))) } inputResp<-as.data.frame(inputResp) sistem<- as.data.frame(lapply(inputResp[,5:length(inputResp)], as.numeric)) q9.1<-rowSums(sistem[,1:5]); q9.1<-as.data.frame(q9.1)/5 q9.2<-rowSums(sistem[,6:11]); q9.2<-as.data.frame(q9.2)/6 q9.3<-rowSums(sistem[,12:14]); q9.3<-as.data.frame(q9.3)/3 q9.4<-rowSums(sistem[,15:16]); q9.4<-as.data.frame(q9.4)/2 levelSistem<-cbind(q9.1,q9.2,q9.3,q9.4) colnames(levelSistem)<-c("q9.1","q9.2","q9.3","q9.4") write.csv(levelSistem,"Hasil sistem.csv") # gap_9.1<-5-levelSistem$q9.1; gap_9.2<-5-levelSistem$q9.2; gap_9.3<-5-levelSistem$q9.3; gap_9.4<-5-levelSistem$q9.4 # valGAP<-cbind(gap_9.1,gap_9.2,gap_9.3,gap_9.4) # val_Sistem<-cbind(levelSistem,valGAP) # tempSistem<-as.data.frame((val_Sistem)) # tes <- c("9.1 Muatan/Subtansi", "9.2 Pelaksanaan", "9.3 Pelaksana", "9.4 Pemanfaatan") # # #Menampilkan hasil satu responden # #tempSistem<-filter(tempSistem,Provinsi==input$categoryProvince) # # #Hasil per Aspek # Indikator_Penilaian<-c("9. Pemantauan, Evaluasi, dan Pelaporan") # LevelPEP<-mean(as.numeric(tempSistem[1:4])) # LevelSistem<-as.data.frame(t(LevelPEP)) # gapPEP<-mean(as.numeric(tempSistem[5:8])) # GAPSistem<-as.data.frame(t(gapPEP)) # summSistem<-as.data.frame(cbind(Indikator_Penilaian, LevelSistem, GAPSistem)) # colnames(summSistem)<-c("Aspek Penilaian","Level","GAP") # # #Hasil per Kapasitas Fungsional # tabelKapasitasSistem<-as.data.frame(cbind(tes,t((tempSistem[1:4])),t(tempSistem[5:8]))) # colnames(tabelKapasitasSistem)<-c("Kapasitas Fungsional","Level","GAP") ###TINGKAT INDIVIDU### inputRespInd<-read_excel("data/cdna_ind2.xlsx") #inputRespInd<-read_excel("data/cdna_individu_sumsel.xlsx") inputRespInd$logo<-NULL; inputRespInd$intro0<-NULL; inputRespInd$intro0a<-NULL; inputRespInd$intro1a<-NULL; inputRespInd$callid<-NULL inputRespInd$gender<-NULL; inputRespInd$jabatan<-NULL; inputRespInd$akun <- NULL; inputRespInd$tanggal<-NULL; inputRespInd$callresp<-NULL inputRespInd$introIndividu<-NULL; inputRespInd$introSDM2<-NULL; inputRespInd$`_index`<-NULL; inputRespInd$`_validation_status`<-NULL inputRespInd$`_submission_time`<-NULL; inputRespInd$`_uuid`<-NULL; inputRespInd$`_id`<-NULL; inputRespInd$intropenutup<-NULL inputRespInd$alasan<-NULL for (i in 1:9){ eval(parse(text=paste0("inputRespInd$alasan_00",i,"<-NULL"))) } for (i in 10:22){ eval(parse(text=paste0("inputRespInd$alasan_0",i,"<-NULL"))) } inputRespInd<-as.data.frame(inputRespInd) valResp<- as.data.frame(lapply(inputRespInd[,6:length(inputRespInd)], as.numeric)) Level6.1<-rowSums(valResp[,1:2]); Level6.1<-as.data.frame(Level6.1)/2 Level6.2<-rowSums(valResp[,3:11]); Level6.2<-as.data.frame(Level6.2)/9 Level6.3<-rowSums(valResp[,12:20]); Level6.3<-as.data.frame(Level6.3)/9 Level6.4<-rowSums(valResp[,21:23]); Level6.4<-as.data.frame(Level6.4)/3 valInd<-cbind(inputRespInd$provinsi,Level6.1,Level6.2,Level6.3,Level6.4) individu<-as.data.frame(valInd) write.csv(individu,"hasilindividu_sumsel.csv") # Indikator <- c("6.1. Kesesuaian Peran dalam Implementasi RAD GRK/PPRKD dengan Tugas dan Fungsi","6.2. Pengetahuan","6.3. Keterampilan","6.4. Pengembangan dan Motivasi") # Indikator <- as.data.frame(Indikator) # # #individu<-filter(individu,inputRespInd$provinsi==input$categoryProvince) # # #Hasil per Aspek # Indikator_Penilaian_Ind<-"6. Sumber Daya Manusia - Individu" # Level6<-rowSums(individu[,2:5])/length(individu[,2:5]) # Level6<-sum(Level6)/length(individu$`inputRespInd$provinsi`) # gap6<-5-Level6 # summInd2<-as.data.frame(cbind(Indikator_Penilaian_Ind, Level6, gap6)) # colnames(summInd2)<-c("Aspek Penilaian","Level","GAP") # # ##Hasil per Kapasitas Fungsional # Ind6.1<-mean(individu$Level6.1); Ind6.2<-mean(individu$Level6.2); Ind6.3<-mean(individu$Level6.3); Ind6.4<-mean(individu$Level6.4) # tempLevelInd <- as.data.frame(t(cbind(Ind6.1,Ind6.2,Ind6.3,Ind6.4))) # tempGapInd <- 5 - tempLevelInd # graphInd2<-cbind(Indikator,tempLevelInd,tempGapInd) # colnames(graphInd2)<-c("Indikator","Level","GAP") # graphInd2
/_YK/others/kodingan/cleaningSumsel.R
no_license
alfanugraha/cda
R
false
false
4,690
r
library(readxl) library(dplyr) ###TINGKAT SISTEM (PEP)### inputResp<-read_excel("data/cdna_pep.xlsx") inputResp$logo<-NULL; inputResp$intro0<-NULL; inputResp$intro0a<-NULL; inputResp$url_widget2<-NULL; inputResp$intro1a<-NULL inputResp$tanggal<-NULL; inputResp$`_index`<-NULL;inputResp$`_validation_status`<-NULL; inputResp$`_submission_time`<-NULL; inputResp$`_uuid`<-NULL; inputResp$`_id`<-NULL inputResp$intropenutup<-NULL; inputResp$intropenutup2<-NULL; inputResp$introSistem<-NULL; inputResp$intropemantauan1<-NULL inputResp$alasan<-NULL for (i in 1:9){ eval(parse(text=paste0("inputResp$alasan_00",i,"<-NULL"))) } for (i in 10:15){ eval(parse(text=paste0("inputResp$alasan_0",i,"<-NULL"))) } inputResp<-as.data.frame(inputResp) sistem<- as.data.frame(lapply(inputResp[,5:length(inputResp)], as.numeric)) q9.1<-rowSums(sistem[,1:5]); q9.1<-as.data.frame(q9.1)/5 q9.2<-rowSums(sistem[,6:11]); q9.2<-as.data.frame(q9.2)/6 q9.3<-rowSums(sistem[,12:14]); q9.3<-as.data.frame(q9.3)/3 q9.4<-rowSums(sistem[,15:16]); q9.4<-as.data.frame(q9.4)/2 levelSistem<-cbind(q9.1,q9.2,q9.3,q9.4) colnames(levelSistem)<-c("q9.1","q9.2","q9.3","q9.4") write.csv(levelSistem,"Hasil sistem.csv") # gap_9.1<-5-levelSistem$q9.1; gap_9.2<-5-levelSistem$q9.2; gap_9.3<-5-levelSistem$q9.3; gap_9.4<-5-levelSistem$q9.4 # valGAP<-cbind(gap_9.1,gap_9.2,gap_9.3,gap_9.4) # val_Sistem<-cbind(levelSistem,valGAP) # tempSistem<-as.data.frame((val_Sistem)) # tes <- c("9.1 Muatan/Subtansi", "9.2 Pelaksanaan", "9.3 Pelaksana", "9.4 Pemanfaatan") # # #Menampilkan hasil satu responden # #tempSistem<-filter(tempSistem,Provinsi==input$categoryProvince) # # #Hasil per Aspek # Indikator_Penilaian<-c("9. Pemantauan, Evaluasi, dan Pelaporan") # LevelPEP<-mean(as.numeric(tempSistem[1:4])) # LevelSistem<-as.data.frame(t(LevelPEP)) # gapPEP<-mean(as.numeric(tempSistem[5:8])) # GAPSistem<-as.data.frame(t(gapPEP)) # summSistem<-as.data.frame(cbind(Indikator_Penilaian, LevelSistem, GAPSistem)) # colnames(summSistem)<-c("Aspek Penilaian","Level","GAP") # # #Hasil per Kapasitas Fungsional # tabelKapasitasSistem<-as.data.frame(cbind(tes,t((tempSistem[1:4])),t(tempSistem[5:8]))) # colnames(tabelKapasitasSistem)<-c("Kapasitas Fungsional","Level","GAP") ###TINGKAT INDIVIDU### inputRespInd<-read_excel("data/cdna_ind2.xlsx") #inputRespInd<-read_excel("data/cdna_individu_sumsel.xlsx") inputRespInd$logo<-NULL; inputRespInd$intro0<-NULL; inputRespInd$intro0a<-NULL; inputRespInd$intro1a<-NULL; inputRespInd$callid<-NULL inputRespInd$gender<-NULL; inputRespInd$jabatan<-NULL; inputRespInd$akun <- NULL; inputRespInd$tanggal<-NULL; inputRespInd$callresp<-NULL inputRespInd$introIndividu<-NULL; inputRespInd$introSDM2<-NULL; inputRespInd$`_index`<-NULL; inputRespInd$`_validation_status`<-NULL inputRespInd$`_submission_time`<-NULL; inputRespInd$`_uuid`<-NULL; inputRespInd$`_id`<-NULL; inputRespInd$intropenutup<-NULL inputRespInd$alasan<-NULL for (i in 1:9){ eval(parse(text=paste0("inputRespInd$alasan_00",i,"<-NULL"))) } for (i in 10:22){ eval(parse(text=paste0("inputRespInd$alasan_0",i,"<-NULL"))) } inputRespInd<-as.data.frame(inputRespInd) valResp<- as.data.frame(lapply(inputRespInd[,6:length(inputRespInd)], as.numeric)) Level6.1<-rowSums(valResp[,1:2]); Level6.1<-as.data.frame(Level6.1)/2 Level6.2<-rowSums(valResp[,3:11]); Level6.2<-as.data.frame(Level6.2)/9 Level6.3<-rowSums(valResp[,12:20]); Level6.3<-as.data.frame(Level6.3)/9 Level6.4<-rowSums(valResp[,21:23]); Level6.4<-as.data.frame(Level6.4)/3 valInd<-cbind(inputRespInd$provinsi,Level6.1,Level6.2,Level6.3,Level6.4) individu<-as.data.frame(valInd) write.csv(individu,"hasilindividu_sumsel.csv") # Indikator <- c("6.1. Kesesuaian Peran dalam Implementasi RAD GRK/PPRKD dengan Tugas dan Fungsi","6.2. Pengetahuan","6.3. Keterampilan","6.4. Pengembangan dan Motivasi") # Indikator <- as.data.frame(Indikator) # # #individu<-filter(individu,inputRespInd$provinsi==input$categoryProvince) # # #Hasil per Aspek # Indikator_Penilaian_Ind<-"6. Sumber Daya Manusia - Individu" # Level6<-rowSums(individu[,2:5])/length(individu[,2:5]) # Level6<-sum(Level6)/length(individu$`inputRespInd$provinsi`) # gap6<-5-Level6 # summInd2<-as.data.frame(cbind(Indikator_Penilaian_Ind, Level6, gap6)) # colnames(summInd2)<-c("Aspek Penilaian","Level","GAP") # # ##Hasil per Kapasitas Fungsional # Ind6.1<-mean(individu$Level6.1); Ind6.2<-mean(individu$Level6.2); Ind6.3<-mean(individu$Level6.3); Ind6.4<-mean(individu$Level6.4) # tempLevelInd <- as.data.frame(t(cbind(Ind6.1,Ind6.2,Ind6.3,Ind6.4))) # tempGapInd <- 5 - tempLevelInd # graphInd2<-cbind(Indikator,tempLevelInd,tempGapInd) # colnames(graphInd2)<-c("Indikator","Level","GAP") # graphInd2
library(glmnet) mydata = read.table("./TrainingSet/Correlation/upper_aerodigestive_tract.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mae",alpha=0.65,family="gaussian",standardize=FALSE) sink('./Model/EN/Correlation/upper_aerodigestive_tract/upper_aerodigestive_tract_072.txt',append=TRUE) print(glm$glmnet.fit) sink()
/Model/EN/Correlation/upper_aerodigestive_tract/upper_aerodigestive_tract_072.R
no_license
leon1003/QSMART
R
false
false
418
r
library(glmnet) mydata = read.table("./TrainingSet/Correlation/upper_aerodigestive_tract.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mae",alpha=0.65,family="gaussian",standardize=FALSE) sink('./Model/EN/Correlation/upper_aerodigestive_tract/upper_aerodigestive_tract_072.txt',append=TRUE) print(glm$glmnet.fit) sink()
#' @keywords internal "_PACKAGE" ## usethis namespace: start #' @import sp #' @importFrom sf as_Spatial #' @importFrom utils read.csv #' @import httr #' @importFrom jsonlite fromJSON ## usethis namespace: end NULL
/R/rnaturalearth-package.R
no_license
cran/rnaturalearth
R
false
false
215
r
#' @keywords internal "_PACKAGE" ## usethis namespace: start #' @import sp #' @importFrom sf as_Spatial #' @importFrom utils read.csv #' @import httr #' @importFrom jsonlite fromJSON ## usethis namespace: end NULL
`etc.diff` <- function(formula,data,base=1,margin.up=NULL,margin.lo=-margin.up, method="var.unequal",FWER=0.05) { if (length(formula) != 3) { stop("formula mis-specified") } mf <- model.frame(formula, data) if (ncol(mf) != 2) { stop("Specify one response and only one class variable in the formula") } if (is.numeric(mf[, 1]) == FALSE) { stop("Response variable must be numeric") } Response <- mf[, 1] Treatment <- as.factor(mf[, 2]) tr.names <- levels(Treatment) comp.names <- paste(tr.names[-base], tr.names[base], sep = "-") k <- length(comp.names) # number of comparisons if ( is.numeric(margin.up)==FALSE | (length(margin.up)==k)+(length(margin.up)==1)==0 ) { stop("margin.up must be a single numeric value or a numeric vector of lenght equal to the number of comparisons") } if (length(margin.up)==1) { margin.up <- rep(margin.up,k) } if ( is.numeric(margin.lo)==FALSE | (length(margin.lo)==k)+(length(margin.lo)==1)==0 ) { stop("margin.lo must be a single numeric value or a numeric vector of lenght equal to the number of comparisons") } if (length(margin.lo)==1) { margin.lo <- rep(margin.lo,k) } if (any(margin.up<=0) | any(margin.lo>=0)) { stop("All components of margin.up (margin.lo) must be positiv (negative)") } method <- match.arg(method, choices = c("Bofinger", "var.equal", "var.unequal", "non.par")) tr.mean <- tapply(Response,Treatment,mean) tr.sd <- tapply(Response,Treatment,sd) tr.n <- tapply(Response,Treatment,length) estimate <- tr.mean[-base]-tr.mean[base] # estimates test.stat <- numeric(k) m <- floor(k/2); u <- m+1 p.value <- numeric(k) if (method=="Bofinger") # due to Bof./Tong, only exact { # for balancedness! if (any(margin.up!=-margin.lo)) { stop("Method Bofinger works only for margin.up = -margin.lo") } if (all(as.numeric(tr.n[-base])==tr.n[-base][1])==FALSE) { cat("Warning: Method Bofinger is only correct for equal sample sizes of the test treatments", "\n") } s <- sqrt( sum((tr.n-1)*tr.sd^2)/sum(tr.n-1) ) # pooled standard deviation degr.fr <- sum(tr.n-1) # degree of freedom corr.mat <- diag(k) # correl. matrix due to Bof./Tong if (k>1) { for(i in 1:k) { for(j in 1:k) { corr.mat[i,j]=1/sqrt( (1+tr.n[base]/tr.n[-base][i])* (1+tr.n[base]/tr.n[-base][j]) ) }} for(i in 1:m) { for(j in u:k) { corr.mat[i,j]=-corr.mat[i,j] }} for(i in u:k) { for(j in 1:m) { corr.mat[i,j]=-corr.mat[i,j] }} diag(corr.mat)=rep(1,times=ncol(corr.mat)) } qu <- qmvt(1-FWER, tail="lower.tail", df=degr.fr, corr=corr.mat)$quantile test.stat <- ( abs(tr.mean[-base]-tr.mean[base])-margin.up ) / ( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ) for (i in 1:k) { p.value[i]=1-pmvt(lower=rep(test.stat[i],times=k),upper=Inf,df=degr.fr,corr=corr.mat)[1] } lower <- estimate-qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); lower[lower>0]=0 upper <- estimate+qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,degr.fr=degr.fr,test.stat=test.stat,crit.value=-qu,corr.mat=corr.mat, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="var.equal") # Bonferroni-adjustment { s <- sqrt(sum((tr.n-1)*tr.sd^2)/sum(tr.n-1)) # !: pooled standard deviation degr.fr <- sum(tr.n-1) # degree of freedom qu <- qt(1-FWER/k, df=degr.fr, lower.tail=TRUE) test.stat.up <- ( tr.mean[-base]-tr.mean[base]-margin.lo ) / ( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ) # test "up" test.stat.do <- ( tr.mean[-base]-tr.mean[base]-margin.up ) / ( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ) # test "down" for (i in 1:k) { test.stat[i]=max(-test.stat.up[i],test.stat.do[i]) p.value[i]=min(pt(q=test.stat[i], df=degr.fr, lower.tail=TRUE)*k, 1) } lower <- estimate-qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); lower[lower>0]=0 upper <- estimate+qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,degr.fr=degr.fr,test.stat=test.stat,crit.value=-qu, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="var.unequal") # Bonferroni-adjustment { degr.fr <- ( (tr.sd[-base])^2/tr.n[-base]+(tr.sd[base])^2/tr.n[base] )^2 / # degrees of freedom (Welch) ( ((tr.sd[-base])^2/tr.n[-base])^2/(tr.n[-base]-1) + ((tr.sd[base])^2/tr.n[base])^2/(tr.n[base]-1) ) test.stat.up <- ( tr.mean[-base]-tr.mean[base]-margin.lo ) / ( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ) # test "up" test.stat.do <- ( tr.mean[-base]-tr.mean[base]-margin.up ) / ( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ) # test "down" qu <- numeric(k) for (i in 1:k) { qu[i]=qt(1-FWER/k, df=degr.fr[i], lower.tail=TRUE) test.stat[i]=max(-test.stat.up[i],test.stat.do[i]) p.value[i]=min(pt(q=test.stat[i], df=degr.fr[i], lower.tail=TRUE)*k, 1) } lower <- estimate-qu*( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ); lower[lower>0]=0 upper <- estimate+qu*( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ); upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,degr.fr=degr.fr,test.stat=test.stat,crit.value=-qu, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="non.par") # Bonferroni-adjustment { test.stat.up <- p.value.up <- lower <- numeric(k) test.stat.do <- p.value.do <- upper <- numeric(k) for (i in 1:k) { test.up <- wilcox.test(x=subset(mf,mf[,2]==tr.names[-base][i])[,1],y=subset(mf,mf[,2]==tr.names[base])[,1], alternative="greater",mu=margin.lo[i],paired=FALSE,exact=FALSE,correct=TRUE,conf.int=TRUE,conf.level=1-FWER/k) test.do <- wilcox.test(x=subset(mf,mf[,2]==tr.names[-base][i])[,1],y=subset(mf,mf[,2]==tr.names[base])[,1], alternative="less",mu=margin.up[i],paired=FALSE,exact=FALSE,correct=TRUE,conf.int=TRUE,conf.level=1-FWER/k) test.stat.up[i]=test.up$statistic; test.stat.do[i]=test.do$statistic p.value.up[i]=test.up$p.value; p.value.do[i]=test.do$p.value p.value[i]=min(max(p.value.up[i],p.value.do[i])*k,1) lower[i]=test.up$conf.int[1]; upper[i]=test.do$conf.int[2] } test.stat <- cbind(test.stat.up,test.stat.do) lower[lower>0]=0; upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,test.stat=test.stat, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="var.unequal") { names(value$degr.fr) <- comp.names names(value$crit.value) <- comp.names } names(value$estimate) <- comp.names names(value$test.stat) <- comp.names names(value$p.value) <- comp.names colnames(value$conf.int) <- comp.names class(value) <- "etc.diff" return(value) }
/R/etc.diff.R
no_license
cran/ETC
R
false
false
8,558
r
`etc.diff` <- function(formula,data,base=1,margin.up=NULL,margin.lo=-margin.up, method="var.unequal",FWER=0.05) { if (length(formula) != 3) { stop("formula mis-specified") } mf <- model.frame(formula, data) if (ncol(mf) != 2) { stop("Specify one response and only one class variable in the formula") } if (is.numeric(mf[, 1]) == FALSE) { stop("Response variable must be numeric") } Response <- mf[, 1] Treatment <- as.factor(mf[, 2]) tr.names <- levels(Treatment) comp.names <- paste(tr.names[-base], tr.names[base], sep = "-") k <- length(comp.names) # number of comparisons if ( is.numeric(margin.up)==FALSE | (length(margin.up)==k)+(length(margin.up)==1)==0 ) { stop("margin.up must be a single numeric value or a numeric vector of lenght equal to the number of comparisons") } if (length(margin.up)==1) { margin.up <- rep(margin.up,k) } if ( is.numeric(margin.lo)==FALSE | (length(margin.lo)==k)+(length(margin.lo)==1)==0 ) { stop("margin.lo must be a single numeric value or a numeric vector of lenght equal to the number of comparisons") } if (length(margin.lo)==1) { margin.lo <- rep(margin.lo,k) } if (any(margin.up<=0) | any(margin.lo>=0)) { stop("All components of margin.up (margin.lo) must be positiv (negative)") } method <- match.arg(method, choices = c("Bofinger", "var.equal", "var.unequal", "non.par")) tr.mean <- tapply(Response,Treatment,mean) tr.sd <- tapply(Response,Treatment,sd) tr.n <- tapply(Response,Treatment,length) estimate <- tr.mean[-base]-tr.mean[base] # estimates test.stat <- numeric(k) m <- floor(k/2); u <- m+1 p.value <- numeric(k) if (method=="Bofinger") # due to Bof./Tong, only exact { # for balancedness! if (any(margin.up!=-margin.lo)) { stop("Method Bofinger works only for margin.up = -margin.lo") } if (all(as.numeric(tr.n[-base])==tr.n[-base][1])==FALSE) { cat("Warning: Method Bofinger is only correct for equal sample sizes of the test treatments", "\n") } s <- sqrt( sum((tr.n-1)*tr.sd^2)/sum(tr.n-1) ) # pooled standard deviation degr.fr <- sum(tr.n-1) # degree of freedom corr.mat <- diag(k) # correl. matrix due to Bof./Tong if (k>1) { for(i in 1:k) { for(j in 1:k) { corr.mat[i,j]=1/sqrt( (1+tr.n[base]/tr.n[-base][i])* (1+tr.n[base]/tr.n[-base][j]) ) }} for(i in 1:m) { for(j in u:k) { corr.mat[i,j]=-corr.mat[i,j] }} for(i in u:k) { for(j in 1:m) { corr.mat[i,j]=-corr.mat[i,j] }} diag(corr.mat)=rep(1,times=ncol(corr.mat)) } qu <- qmvt(1-FWER, tail="lower.tail", df=degr.fr, corr=corr.mat)$quantile test.stat <- ( abs(tr.mean[-base]-tr.mean[base])-margin.up ) / ( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ) for (i in 1:k) { p.value[i]=1-pmvt(lower=rep(test.stat[i],times=k),upper=Inf,df=degr.fr,corr=corr.mat)[1] } lower <- estimate-qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); lower[lower>0]=0 upper <- estimate+qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,degr.fr=degr.fr,test.stat=test.stat,crit.value=-qu,corr.mat=corr.mat, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="var.equal") # Bonferroni-adjustment { s <- sqrt(sum((tr.n-1)*tr.sd^2)/sum(tr.n-1)) # !: pooled standard deviation degr.fr <- sum(tr.n-1) # degree of freedom qu <- qt(1-FWER/k, df=degr.fr, lower.tail=TRUE) test.stat.up <- ( tr.mean[-base]-tr.mean[base]-margin.lo ) / ( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ) # test "up" test.stat.do <- ( tr.mean[-base]-tr.mean[base]-margin.up ) / ( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ) # test "down" for (i in 1:k) { test.stat[i]=max(-test.stat.up[i],test.stat.do[i]) p.value[i]=min(pt(q=test.stat[i], df=degr.fr, lower.tail=TRUE)*k, 1) } lower <- estimate-qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); lower[lower>0]=0 upper <- estimate+qu*( s * sqrt(1/tr.n[-base] + 1/tr.n[base]) ); upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,degr.fr=degr.fr,test.stat=test.stat,crit.value=-qu, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="var.unequal") # Bonferroni-adjustment { degr.fr <- ( (tr.sd[-base])^2/tr.n[-base]+(tr.sd[base])^2/tr.n[base] )^2 / # degrees of freedom (Welch) ( ((tr.sd[-base])^2/tr.n[-base])^2/(tr.n[-base]-1) + ((tr.sd[base])^2/tr.n[base])^2/(tr.n[base]-1) ) test.stat.up <- ( tr.mean[-base]-tr.mean[base]-margin.lo ) / ( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ) # test "up" test.stat.do <- ( tr.mean[-base]-tr.mean[base]-margin.up ) / ( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ) # test "down" qu <- numeric(k) for (i in 1:k) { qu[i]=qt(1-FWER/k, df=degr.fr[i], lower.tail=TRUE) test.stat[i]=max(-test.stat.up[i],test.stat.do[i]) p.value[i]=min(pt(q=test.stat[i], df=degr.fr[i], lower.tail=TRUE)*k, 1) } lower <- estimate-qu*( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ); lower[lower>0]=0 upper <- estimate+qu*( sqrt((tr.sd[-base])^2/tr.n[-base] + (tr.sd[base])^2/tr.n[base]) ); upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,degr.fr=degr.fr,test.stat=test.stat,crit.value=-qu, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="non.par") # Bonferroni-adjustment { test.stat.up <- p.value.up <- lower <- numeric(k) test.stat.do <- p.value.do <- upper <- numeric(k) for (i in 1:k) { test.up <- wilcox.test(x=subset(mf,mf[,2]==tr.names[-base][i])[,1],y=subset(mf,mf[,2]==tr.names[base])[,1], alternative="greater",mu=margin.lo[i],paired=FALSE,exact=FALSE,correct=TRUE,conf.int=TRUE,conf.level=1-FWER/k) test.do <- wilcox.test(x=subset(mf,mf[,2]==tr.names[-base][i])[,1],y=subset(mf,mf[,2]==tr.names[base])[,1], alternative="less",mu=margin.up[i],paired=FALSE,exact=FALSE,correct=TRUE,conf.int=TRUE,conf.level=1-FWER/k) test.stat.up[i]=test.up$statistic; test.stat.do[i]=test.do$statistic p.value.up[i]=test.up$p.value; p.value.do[i]=test.do$p.value p.value[i]=min(max(p.value.up[i],p.value.do[i])*k,1) lower[i]=test.up$conf.int[1]; upper[i]=test.do$conf.int[2] } test.stat <- cbind(test.stat.up,test.stat.do) lower[lower>0]=0; upper[upper<0]=0 conf.int <- rbind(lower,upper); rownames(conf.int) <- c("lower","upper") value <- list(comp.names=comp.names,estimate=estimate,test.stat=test.stat, p.value=p.value,conf.int=conf.int,base=base,margin.lo=margin.lo,margin.up=margin.up,method=method, FWER=FWER) } if(method=="var.unequal") { names(value$degr.fr) <- comp.names names(value$crit.value) <- comp.names } names(value$estimate) <- comp.names names(value$test.stat) <- comp.names names(value$p.value) <- comp.names colnames(value$conf.int) <- comp.names class(value) <- "etc.diff" return(value) }
## designed to create a special object that ## stores a matrix and caches its inverse. ## makeCacheMatrix sets matrix, gets matrix, ## calculates inverse and gets inverse makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setinv <- function(solve) m <<- solve getinv <- function() m list(set = set, get = get, setinv = setinv, getinv = getinv) } ## Returns a matrix that is the inverse of 'x' cacheSolve <- function(x, ...) { m <- x$getinv() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setinv(m) m }
/cachematrix.R
no_license
davegiff/ProgrammingAssignment2
R
false
false
741
r
## designed to create a special object that ## stores a matrix and caches its inverse. ## makeCacheMatrix sets matrix, gets matrix, ## calculates inverse and gets inverse makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setinv <- function(solve) m <<- solve getinv <- function() m list(set = set, get = get, setinv = setinv, getinv = getinv) } ## Returns a matrix that is the inverse of 'x' cacheSolve <- function(x, ...) { m <- x$getinv() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setinv(m) m }
\name{midpoints.psp} \alias{midpoints.psp} \title{Midpoints of Line Segment Pattern} \description{ Computes the midpoints of each line segment in a line segment pattern. } \usage{ midpoints.psp(x) } \arguments{ \item{x}{ A line segment pattern (object of class \code{"psp"}). } } \value{ Point pattern (object of class \code{"ppp"}). } \details{ The midpoint of each line segment is computed. } \seealso{ \code{\link{summary.psp}}, \code{\link{lengths.psp}}, \code{\link{angles.psp}} } \examples{ a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin()) b <- midpoints.psp(a) } \author{ Adrian Baddeley \email{Adrian.Baddeley@uwa.edu.au} \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner \email{r.turner@auckland.ac.nz} } \keyword{spatial} \keyword{math}
/man/midpoints.psp.Rd
no_license
cuulee/spatstat
R
false
false
817
rd
\name{midpoints.psp} \alias{midpoints.psp} \title{Midpoints of Line Segment Pattern} \description{ Computes the midpoints of each line segment in a line segment pattern. } \usage{ midpoints.psp(x) } \arguments{ \item{x}{ A line segment pattern (object of class \code{"psp"}). } } \value{ Point pattern (object of class \code{"ppp"}). } \details{ The midpoint of each line segment is computed. } \seealso{ \code{\link{summary.psp}}, \code{\link{lengths.psp}}, \code{\link{angles.psp}} } \examples{ a <- psp(runif(10), runif(10), runif(10), runif(10), window=owin()) b <- midpoints.psp(a) } \author{ Adrian Baddeley \email{Adrian.Baddeley@uwa.edu.au} \url{http://www.maths.uwa.edu.au/~adrian/} and Rolf Turner \email{r.turner@auckland.ac.nz} } \keyword{spatial} \keyword{math}
#' distance_mat_gen #' #' @description This function aims to generate the distance matrix of taxa based on their path lengths in the phylogenetic tree. #' @param edges A matrix of dimension N * 2 corresponding to the edge set of the phylogenetic tree (similar to the edge set for a graph). #' @param n_taxa A scalar corresponding to number of taxa in the dataset. #' @param tree_height A scalar corresponding to the height of the phylogenetic tree. Any number larger than the height of the phylogenetic tree will also work. #' The initial value is set to be 50, which is usually enough as for a complete binary tree, height of 50 corresponds to 2^50 nodes. #' @return A matrix of dimension n_taxa * n_taxa corresponding to the matrix D in mbImpute function. #' @export distance_mat_gen <- function(edges, n_taxa, tree_height = 50){ k = tree_height m = n_taxa nd_mat <- matrix(rep(1, k*m), k, m) l <- rep(1,k) for(i in 1:n_taxa){ print(i) l <- rep(1,tree_height+1) l[1] = i for(j in 2:(tree_height+1)){ if(sum(edges[,2] %in% l[j-1]) != 0){ l[j] = edges[edges[,2] %in% l[j-1], 1] } else{ l[j] = NA } } nd_mat[,i] = l[2:(tree_height+1)] } d1_mat <- matrix(0, nrow = n_taxa, ncol = n_taxa) #records the position of 1:n_taxa in the edges set. taxa_vec <- match(1:n_taxa, edges[,2]) #generate the distance matrix for(i in 1:n_taxa){ for(j in 1:n_taxa){ int_sc <- intersect(nd_mat[,i], nd_mat[,j]) leni <- sum(!is.na(int_sc)) len1 <- sum(!is.na(nd_mat[,i])) len2 <- sum(!is.na(nd_mat[,j])) d1_mat[i, j] = len1 - leni + 1 + len2 - leni + 1 } } diag(d1_mat) = 0 #d1_mat denotes the distance for two taxa return(d1_mat) }
/mbImpute R package/R/distance_mat_gen.R
permissive
lsxmf/mbImpute
R
false
false
1,748
r
#' distance_mat_gen #' #' @description This function aims to generate the distance matrix of taxa based on their path lengths in the phylogenetic tree. #' @param edges A matrix of dimension N * 2 corresponding to the edge set of the phylogenetic tree (similar to the edge set for a graph). #' @param n_taxa A scalar corresponding to number of taxa in the dataset. #' @param tree_height A scalar corresponding to the height of the phylogenetic tree. Any number larger than the height of the phylogenetic tree will also work. #' The initial value is set to be 50, which is usually enough as for a complete binary tree, height of 50 corresponds to 2^50 nodes. #' @return A matrix of dimension n_taxa * n_taxa corresponding to the matrix D in mbImpute function. #' @export distance_mat_gen <- function(edges, n_taxa, tree_height = 50){ k = tree_height m = n_taxa nd_mat <- matrix(rep(1, k*m), k, m) l <- rep(1,k) for(i in 1:n_taxa){ print(i) l <- rep(1,tree_height+1) l[1] = i for(j in 2:(tree_height+1)){ if(sum(edges[,2] %in% l[j-1]) != 0){ l[j] = edges[edges[,2] %in% l[j-1], 1] } else{ l[j] = NA } } nd_mat[,i] = l[2:(tree_height+1)] } d1_mat <- matrix(0, nrow = n_taxa, ncol = n_taxa) #records the position of 1:n_taxa in the edges set. taxa_vec <- match(1:n_taxa, edges[,2]) #generate the distance matrix for(i in 1:n_taxa){ for(j in 1:n_taxa){ int_sc <- intersect(nd_mat[,i], nd_mat[,j]) leni <- sum(!is.na(int_sc)) len1 <- sum(!is.na(nd_mat[,i])) len2 <- sum(!is.na(nd_mat[,j])) d1_mat[i, j] = len1 - leni + 1 + len2 - leni + 1 } } diag(d1_mat) = 0 #d1_mat denotes the distance for two taxa return(d1_mat) }
## Tests for random forests for survival analysis library(ranger) library(survival) context("ranger_surv") ## Initialize the random forest for survival analysis rg.surv <- ranger(Surv(time, status) ~ ., data = veteran, verbose = FALSE, write.forest = TRUE, num.trees = 10) ## Basic tests (for all random forests equal) test_that("survival result is of class ranger with 16 elements", { expect_is(rg.surv, "ranger") expect_equal(length(rg.surv), 16) }) test_that("results have right number of trees", { expect_equal(rg.surv$num.trees, 10) }) test_that("results have right number of independent variables", { expect_equal(rg.surv$num.independent.variables, ncol(veteran) - 2) }) test_that("Alternative interface works for survival", { rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = veteran, num.trees = 10) expect_equal(rf$treetype, "Survival") }) test_that("Alternative interface prediction works for survival", { rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = veteran, num.trees = 10) expect_equal(predict(rf, veteran)$num.independent.variables, ncol(veteran) - 2) expect_equal(predict(rf, veteran[, setdiff(names(veteran), c("time", "status"))])$num.independent.variables, ncol(veteran) - 2) }) test_that("Matrix interface works for survival", { rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = data.matrix(veteran), write.forest = TRUE, num.trees = 10) expect_equal(rf$treetype, "Survival") expect_equal(rf$forest$independent.variable.names, colnames(veteran)[c(1:2, 5:8)]) }) test_that("Matrix interface prediction works for survival", { dat <- data.matrix(veteran) rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = dat, write.forest = TRUE, num.trees = 10) expect_silent(predict(rf, dat)) }) test_that("growing works for single observations, survival", { rf <- ranger(Surv(time, status) ~ ., veteran[1, ], write.forest = TRUE, num.trees = 10) expect_is(rf$survival, "matrix") }) test_that("predict works for single observations, survival", { rf <- ranger(Surv(time, status) ~ ., veteran, write.forest = TRUE, num.trees = 10) pred <- predict(rf, head(veteran, 1)) expect_equal(length(pred$survival), length(rf$unique.death.times)) }) ## Special tests for random forests for survival analysis test_that("unique death times in survival result is right", { expect_equal(rg.surv$unique.death.times, sort(unique(veteran$time))) }) test_that("C-index splitting works", { rf <- ranger(Surv(time, status) ~ ., data = veteran, verbose = FALSE, splitrule = "C", num.trees = 10) expect_equal(rf$treetype, "Survival") }) test_that("C-index splitting not working on classification data", { expect_error(ranger(Species ~ ., iris, splitrule = "C", num.trees = 10)) }) test_that("Logrank splitting not working on classification data", { expect_error(ranger(Species ~ ., iris, splitrule = "logrank", num.trees = 10)) }) test_that("No error if survival tree without OOB observations", { dat <- data.frame(time = c(1,2), status = c(0,1), x = c(1,2)) expect_silent(ranger(Surv(time, status) ~ ., dat, num.trees = 1, num.threads = 1)) }) test_that("predict.all for survival returns 3d array of size samples x times x trees", { rf <- ranger(Surv(time, status) ~ ., veteran, num.trees = 5) pred <- predict(rf, veteran, predict.all = TRUE) expect_is(pred$survival, "array") expect_equal(dim(pred$survival), c(nrow(veteran), length(pred$unique.death.times), rf$num.trees)) expect_is(pred$chf, "array") expect_equal(dim(pred$chf), c(nrow(veteran), length(pred$unique.death.times), rf$num.trees)) }) test_that("Mean of predict.all for survival is equal to forest prediction", { rf <- ranger(Surv(time, status) ~ ., veteran, num.trees = 5) pred_forest <- predict(rf, veteran, predict.all = FALSE) pred_trees <- predict(rf, veteran, predict.all = TRUE) expect_equal(apply(pred_trees$chf, 1:2, mean), pred_forest$chf) }) test_that("timepoints() function returns timepoints", { rf <- ranger(Surv(time, status) ~ ., veteran, num.trees = 5) expect_equal(timepoints(rf), rf$unique.death.times) pred <- predict(rf, veteran) expect_equal(timepoints(pred), rf$unique.death.times) }) test_that("timepoints() working on survival forest only", { rf <- ranger(Species ~ ., iris, num.trees = 5) expect_error(timepoints(rf), "No timepoints found. Object is no Survival forest.") pred <- predict(rf, iris) expect_error(timepoints(pred), "No timepoints found. Object is no Survival prediction object.") }) test_that("Survival error without covariates", { expect_error(ranger(Surv(time, status) ~ ., veteran[, c("time", "status")], num.trees = 5), "Error: No covariates found.") })
/tests/testthat/test_survival.R
no_license
jailGroup/RangerBasediRF
R
false
false
4,901
r
## Tests for random forests for survival analysis library(ranger) library(survival) context("ranger_surv") ## Initialize the random forest for survival analysis rg.surv <- ranger(Surv(time, status) ~ ., data = veteran, verbose = FALSE, write.forest = TRUE, num.trees = 10) ## Basic tests (for all random forests equal) test_that("survival result is of class ranger with 16 elements", { expect_is(rg.surv, "ranger") expect_equal(length(rg.surv), 16) }) test_that("results have right number of trees", { expect_equal(rg.surv$num.trees, 10) }) test_that("results have right number of independent variables", { expect_equal(rg.surv$num.independent.variables, ncol(veteran) - 2) }) test_that("Alternative interface works for survival", { rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = veteran, num.trees = 10) expect_equal(rf$treetype, "Survival") }) test_that("Alternative interface prediction works for survival", { rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = veteran, num.trees = 10) expect_equal(predict(rf, veteran)$num.independent.variables, ncol(veteran) - 2) expect_equal(predict(rf, veteran[, setdiff(names(veteran), c("time", "status"))])$num.independent.variables, ncol(veteran) - 2) }) test_that("Matrix interface works for survival", { rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = data.matrix(veteran), write.forest = TRUE, num.trees = 10) expect_equal(rf$treetype, "Survival") expect_equal(rf$forest$independent.variable.names, colnames(veteran)[c(1:2, 5:8)]) }) test_that("Matrix interface prediction works for survival", { dat <- data.matrix(veteran) rf <- ranger(dependent.variable.name = "time", status.variable.name = "status", data = dat, write.forest = TRUE, num.trees = 10) expect_silent(predict(rf, dat)) }) test_that("growing works for single observations, survival", { rf <- ranger(Surv(time, status) ~ ., veteran[1, ], write.forest = TRUE, num.trees = 10) expect_is(rf$survival, "matrix") }) test_that("predict works for single observations, survival", { rf <- ranger(Surv(time, status) ~ ., veteran, write.forest = TRUE, num.trees = 10) pred <- predict(rf, head(veteran, 1)) expect_equal(length(pred$survival), length(rf$unique.death.times)) }) ## Special tests for random forests for survival analysis test_that("unique death times in survival result is right", { expect_equal(rg.surv$unique.death.times, sort(unique(veteran$time))) }) test_that("C-index splitting works", { rf <- ranger(Surv(time, status) ~ ., data = veteran, verbose = FALSE, splitrule = "C", num.trees = 10) expect_equal(rf$treetype, "Survival") }) test_that("C-index splitting not working on classification data", { expect_error(ranger(Species ~ ., iris, splitrule = "C", num.trees = 10)) }) test_that("Logrank splitting not working on classification data", { expect_error(ranger(Species ~ ., iris, splitrule = "logrank", num.trees = 10)) }) test_that("No error if survival tree without OOB observations", { dat <- data.frame(time = c(1,2), status = c(0,1), x = c(1,2)) expect_silent(ranger(Surv(time, status) ~ ., dat, num.trees = 1, num.threads = 1)) }) test_that("predict.all for survival returns 3d array of size samples x times x trees", { rf <- ranger(Surv(time, status) ~ ., veteran, num.trees = 5) pred <- predict(rf, veteran, predict.all = TRUE) expect_is(pred$survival, "array") expect_equal(dim(pred$survival), c(nrow(veteran), length(pred$unique.death.times), rf$num.trees)) expect_is(pred$chf, "array") expect_equal(dim(pred$chf), c(nrow(veteran), length(pred$unique.death.times), rf$num.trees)) }) test_that("Mean of predict.all for survival is equal to forest prediction", { rf <- ranger(Surv(time, status) ~ ., veteran, num.trees = 5) pred_forest <- predict(rf, veteran, predict.all = FALSE) pred_trees <- predict(rf, veteran, predict.all = TRUE) expect_equal(apply(pred_trees$chf, 1:2, mean), pred_forest$chf) }) test_that("timepoints() function returns timepoints", { rf <- ranger(Surv(time, status) ~ ., veteran, num.trees = 5) expect_equal(timepoints(rf), rf$unique.death.times) pred <- predict(rf, veteran) expect_equal(timepoints(pred), rf$unique.death.times) }) test_that("timepoints() working on survival forest only", { rf <- ranger(Species ~ ., iris, num.trees = 5) expect_error(timepoints(rf), "No timepoints found. Object is no Survival forest.") pred <- predict(rf, iris) expect_error(timepoints(pred), "No timepoints found. Object is no Survival prediction object.") }) test_that("Survival error without covariates", { expect_error(ranger(Surv(time, status) ~ ., veteran[, c("time", "status")], num.trees = 5), "Error: No covariates found.") })
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/importRDB1.R \name{importRDB1} \alias{importRDB1} \title{Function to return data from the NWIS RDB 1.0 format} \usage{ importRDB1(obs_url, asDateTime = TRUE, convertType = TRUE, tz = "UTC") } \arguments{ \item{obs_url}{character containing the url for the retrieval or a file path to the data file.} \item{asDateTime}{logical, if \code{TRUE} returns date and time as POSIXct, if \code{FALSE}, Date} \item{convertType}{logical, defaults to \code{TRUE}. If \code{TRUE}, the function will convert the data to dates, datetimes, numerics based on a standard algorithm. If false, everything is returned as a character} \item{tz}{character to set timezone attribute of datetime. Default converts the datetimes to UTC (properly accounting for daylight savings times based on the data's provided tz_cd column). Recommended US values include "UTC", "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". For a complete list, see \url{https://en.wikipedia.org/wiki/List_of_tz_database_time_zones}} } \value{ A data frame with the following columns: \tabular{lll}{ Name \tab Type \tab Description \cr agency_cd \tab character \tab The NWIS code for the agency reporting the data\cr site_no \tab character \tab The USGS site number \cr datetime \tab POSIXct \tab The date and time of the value converted to UTC (if asDateTime = \code{TRUE}), \cr \tab character \tab or raw character string (if asDateTime = FALSE) \cr tz_cd \tab character \tab The time zone code for datetime \cr code \tab character \tab Any codes that qualify the corresponding value\cr value \tab numeric \tab The numeric value for the parameter \cr tz_cd_reported \tab The originally reported time zone \cr } Note that code and value are repeated for the parameters requested. The names are of the form XD_P_S, where X is literal, D is an option description of the parameter, P is the parameter code, and S is the statistic code (if applicable). If a date/time (dt) column contained incomplete date and times, a new column of dates and time was inserted. This could happen when older data was reported as dates, and newer data was reported as a date/time. There are also several useful attributes attached to the data frame: \tabular{lll}{ Name \tab Type \tab Description \cr url \tab character \tab The url used to generate the data \cr queryTime \tab POSIXct \tab The time the data was returned \cr comment \tab character \tab Header comments from the RDB file \cr } } \description{ This function accepts a url parameter that already contains the desired NWIS site, parameter code, statistic, startdate and enddate. It is not recommended to use the RDB format for importing multi-site data. } \examples{ \dontshow{if (is_dataRetrieval_user()) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} site_id <- "02177000" startDate <- "2012-09-01" endDate <- "2012-10-01" offering <- "00003" property <- "00060" obs_url <- constructNWISURL(site_id, property, startDate, endDate, "dv", format = "tsv" ) \donttest{ data <- importRDB1(obs_url) urlMultiPcodes <- constructNWISURL("04085427", c("00060", "00010"), startDate, endDate, "dv", statCd = c("00003", "00001"), "tsv" ) multiData <- importRDB1(urlMultiPcodes) unitDataURL <- constructNWISURL(site_id, property, "2020-10-30", "2020-11-01", "uv", format = "tsv" ) # includes timezone switch unitData <- importRDB1(unitDataURL, asDateTime = TRUE) qwURL <- constructNWISURL(c("04024430", "04024000"), c("34247", "30234", "32104", "34220"), "2010-11-03", "", "qw", format = "rdb" ) qwData <- importRDB1(qwURL, asDateTime = TRUE, tz = "America/Chicago") iceSite <- "04024000" start <- "2015-11-09" end <- "2015-11-24" urlIce <- constructNWISURL(iceSite, "00060", start, end, "uv", format = "tsv") ice <- importRDB1(urlIce, asDateTime = TRUE) iceNoConvert <- importRDB1(urlIce, convertType = FALSE) } # User file: filePath <- system.file("extdata", package = "dataRetrieval") fileName <- "RDB1Example.txt" fullPath <- file.path(filePath, fileName) importUserRDB <- importRDB1(fullPath) \dontshow{\}) # examplesIf} }
/man/importRDB1.Rd
no_license
cran/dataRetrieval
R
false
true
4,409
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/importRDB1.R \name{importRDB1} \alias{importRDB1} \title{Function to return data from the NWIS RDB 1.0 format} \usage{ importRDB1(obs_url, asDateTime = TRUE, convertType = TRUE, tz = "UTC") } \arguments{ \item{obs_url}{character containing the url for the retrieval or a file path to the data file.} \item{asDateTime}{logical, if \code{TRUE} returns date and time as POSIXct, if \code{FALSE}, Date} \item{convertType}{logical, defaults to \code{TRUE}. If \code{TRUE}, the function will convert the data to dates, datetimes, numerics based on a standard algorithm. If false, everything is returned as a character} \item{tz}{character to set timezone attribute of datetime. Default converts the datetimes to UTC (properly accounting for daylight savings times based on the data's provided tz_cd column). Recommended US values include "UTC", "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "America/Honolulu", "America/Jamaica", "America/Managua", "America/Phoenix", and "America/Metlakatla". For a complete list, see \url{https://en.wikipedia.org/wiki/List_of_tz_database_time_zones}} } \value{ A data frame with the following columns: \tabular{lll}{ Name \tab Type \tab Description \cr agency_cd \tab character \tab The NWIS code for the agency reporting the data\cr site_no \tab character \tab The USGS site number \cr datetime \tab POSIXct \tab The date and time of the value converted to UTC (if asDateTime = \code{TRUE}), \cr \tab character \tab or raw character string (if asDateTime = FALSE) \cr tz_cd \tab character \tab The time zone code for datetime \cr code \tab character \tab Any codes that qualify the corresponding value\cr value \tab numeric \tab The numeric value for the parameter \cr tz_cd_reported \tab The originally reported time zone \cr } Note that code and value are repeated for the parameters requested. The names are of the form XD_P_S, where X is literal, D is an option description of the parameter, P is the parameter code, and S is the statistic code (if applicable). If a date/time (dt) column contained incomplete date and times, a new column of dates and time was inserted. This could happen when older data was reported as dates, and newer data was reported as a date/time. There are also several useful attributes attached to the data frame: \tabular{lll}{ Name \tab Type \tab Description \cr url \tab character \tab The url used to generate the data \cr queryTime \tab POSIXct \tab The time the data was returned \cr comment \tab character \tab Header comments from the RDB file \cr } } \description{ This function accepts a url parameter that already contains the desired NWIS site, parameter code, statistic, startdate and enddate. It is not recommended to use the RDB format for importing multi-site data. } \examples{ \dontshow{if (is_dataRetrieval_user()) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} site_id <- "02177000" startDate <- "2012-09-01" endDate <- "2012-10-01" offering <- "00003" property <- "00060" obs_url <- constructNWISURL(site_id, property, startDate, endDate, "dv", format = "tsv" ) \donttest{ data <- importRDB1(obs_url) urlMultiPcodes <- constructNWISURL("04085427", c("00060", "00010"), startDate, endDate, "dv", statCd = c("00003", "00001"), "tsv" ) multiData <- importRDB1(urlMultiPcodes) unitDataURL <- constructNWISURL(site_id, property, "2020-10-30", "2020-11-01", "uv", format = "tsv" ) # includes timezone switch unitData <- importRDB1(unitDataURL, asDateTime = TRUE) qwURL <- constructNWISURL(c("04024430", "04024000"), c("34247", "30234", "32104", "34220"), "2010-11-03", "", "qw", format = "rdb" ) qwData <- importRDB1(qwURL, asDateTime = TRUE, tz = "America/Chicago") iceSite <- "04024000" start <- "2015-11-09" end <- "2015-11-24" urlIce <- constructNWISURL(iceSite, "00060", start, end, "uv", format = "tsv") ice <- importRDB1(urlIce, asDateTime = TRUE) iceNoConvert <- importRDB1(urlIce, convertType = FALSE) } # User file: filePath <- system.file("extdata", package = "dataRetrieval") fileName <- "RDB1Example.txt" fullPath <- file.path(filePath, fileName) importUserRDB <- importRDB1(fullPath) \dontshow{\}) # examplesIf} }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/qdapDictionaries-package.R \docType{data} \name{positive.words} \alias{positive.words} \title{Positive Words} \format{A vector with 2003 elements} \usage{ data(positive.words) } \description{ A dataset containing a vector of positive words. } \details{ A sentence containing more negative words would be deemed a negative sentence, whereas a sentence containing more positive words would be considered positive. } \references{ Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence. \url{http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html} } \keyword{datasets}
/man/positive.words.Rd
no_license
trinker/qdapDictionaries
R
false
true
710
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/qdapDictionaries-package.R \docType{data} \name{positive.words} \alias{positive.words} \title{Positive Words} \format{A vector with 2003 elements} \usage{ data(positive.words) } \description{ A dataset containing a vector of positive words. } \details{ A sentence containing more negative words would be deemed a negative sentence, whereas a sentence containing more positive words would be considered positive. } \references{ Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence. \url{http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html} } \keyword{datasets}
# Automatically generated by openapi-generator (https://openapi-generator.tech) # Please update as you see appropriate context("Test ValidationException") model.instance <- ValidationException$new() test_that("causingExceptions", { # tests for the property `causingExceptions` (array[ValidationException]) # An array of sub-exceptions. # uncomment below to test the property #expect_equal(model.instance$`causingExceptions`, "EXPECTED_RESULT") }) test_that("keyword", { # tests for the property `keyword` (character) # The JSON schema keyword which was violated. # uncomment below to test the property #expect_equal(model.instance$`keyword`, "EXPECTED_RESULT") }) test_that("message", { # tests for the property `message` (character) # The description of the validation failure. # uncomment below to test the property #expect_equal(model.instance$`message`, "EXPECTED_RESULT") }) test_that("pointerToViolation", { # tests for the property `pointerToViolation` (character) # A JSON Pointer denoting the path from the input document root to its fragment which caused the validation failure. # uncomment below to test the property #expect_equal(model.instance$`pointerToViolation`, "EXPECTED_RESULT") }) test_that("schemaLocation", { # tests for the property `schemaLocation` (character) # A JSON Pointer denoting the path from the schema JSON root to the violated keyword. # uncomment below to test the property #expect_equal(model.instance$`schemaLocation`, "EXPECTED_RESULT") })
/tests/testthat/test_validation_exception.R
no_license
thomasyu888/synr-sdk-client
R
false
false
1,537
r
# Automatically generated by openapi-generator (https://openapi-generator.tech) # Please update as you see appropriate context("Test ValidationException") model.instance <- ValidationException$new() test_that("causingExceptions", { # tests for the property `causingExceptions` (array[ValidationException]) # An array of sub-exceptions. # uncomment below to test the property #expect_equal(model.instance$`causingExceptions`, "EXPECTED_RESULT") }) test_that("keyword", { # tests for the property `keyword` (character) # The JSON schema keyword which was violated. # uncomment below to test the property #expect_equal(model.instance$`keyword`, "EXPECTED_RESULT") }) test_that("message", { # tests for the property `message` (character) # The description of the validation failure. # uncomment below to test the property #expect_equal(model.instance$`message`, "EXPECTED_RESULT") }) test_that("pointerToViolation", { # tests for the property `pointerToViolation` (character) # A JSON Pointer denoting the path from the input document root to its fragment which caused the validation failure. # uncomment below to test the property #expect_equal(model.instance$`pointerToViolation`, "EXPECTED_RESULT") }) test_that("schemaLocation", { # tests for the property `schemaLocation` (character) # A JSON Pointer denoting the path from the schema JSON root to the violated keyword. # uncomment below to test the property #expect_equal(model.instance$`schemaLocation`, "EXPECTED_RESULT") })
DataPreProcessing <- function(types) { #------------------------------------------------------------------------------------- # dsRate Dataset #------------------------------------------------------------------------------------- if (types=="dsRate") { dsRate$Year = ifelse(is.na(dsRate$Year), ave(dsRate$Year, FUN=function(x) mean(x), na.rm=TRUE), dsRate$Year) dsRate$TotInsLabour = ifelse(is.na(dsRate$TotInsLabour), ave(dsRate$TotInsLabour, FUN=function(x) mean(x), na.rm=TRUE), dsRate$TotInsLabour) dsRate$InsLabEmp = ifelse(is.na(dsRate$InsLabEmp), ave(dsRate$InsLabEmp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$InsLabEmp) dsRate$InsLabUnemp = ifelse(is.na(dsRate$InsLabUnemp), ave(dsRate$InsLabUnempp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$InsLabUnemp) dsRate$TotOutLabour = ifelse(is.na(dsRate$TotOutLabour), ave(dsRate$TotOutLabour, FUN=function(x) mean(x), na.rm=TRUE), dsRate$TotOutLabour) dsRate$RateLabEmp = ifelse(is.na(dsRate$RateLabEmp), ave(dsRate$RateLabEmp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$RateLabEmp) dsRate$RateLabUnEmp = ifelse(is.na(dsRate$RateLabUnEmp), ave(dsRate$RateLabUnEmp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$RateLabUnEmp) return(paste("Data Cleaning Proses for Dataset (dsRate) has been completed")) } #------------------------------------------------------------------------------------- # dsGender Dataset #------------------------------------------------------------------------------------- else if (types=="dsGender") { dsGender$Year = ifelse(is.na(dsGender$Year), ave(dsGender$Year, FUN=function(x) mean(x), na.rm=TRUE), dsGender$Year) dsGender$TotInsLabourM = ifelse(is.na(dsGender$TotInsLabourM), ave(dsGender$TotInsLabourM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotInsLabourM) dsGender$InsLabEmpM = ifelse(is.na(dsGender$InsLabEmpM), ave(dsGender$InsLabEmpM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabEmpM) dsGender$InsLabUnempM = ifelse(is.na(dsGender$InsLabUnempM), ave(dsGender$InsLabUnempM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabUnempM) dsGender$TotOutLabourM = ifelse(is.na(dsGender$TotOutLabourM), ave(dsGender$TotOutLabourM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotOutLabourM) dsGender$RateLabEmpM = ifelse(is.na(dsGender$RateLabEmpM), ave(dsGender$RateLabEmpM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabEmpM) dsGender$RateLabUnEmpM = ifelse(is.na(dsGender$RateLabUnEmpM), ave(dsGender$RateLabUnEmpM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabUnEmpM) dsGender$TotInsLabourF = ifelse(is.na(dsGender$TotInsLabourF), ave(dsGender$TotInsLabourF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotInsLabourF) dsGender$InsLabEmpF = ifelse(is.na(dsGender$InsLabEmpF), ave(dsGender$InsLabEmpFr, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabEmpF) dsGender$InsLabUnempF = ifelse(is.na(dsGender$InsLabUnempF), ave(dsGender$InsLabUnempF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabUnempF) dsGender$TotOutLabourF = ifelse(is.na(dsGender$TotOutLabourF), ave(dsGender$TotOutLabourF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotOutLabourF) dsGender$RateLabEmpF = ifelse(is.na(dsGender$RateLabEmpF), ave(dsGender$RateLabEmpF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabEmpF) dsGender$RateLabUnEmpF = ifelse(is.na(dsGender$RateLabUnEmpF), ave(dsGender$RateLabUnEmpF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabUnEmpF) return(paste("Data Cleaning Proses for Dataset (dsGender) has been completed")) } #------------------------------------------------------------------------------------- # dsRural Dataset #------------------------------------------------------------------------------------- else if (types=="dsRural") { dsRural$Year = ifelse(is.na(dsRural$Year), ave(dsRural$Year, FUN=function(x) mean(x), na.rm=TRUE), dsRural$Year) dsRural$AllLabourInsR = ifelse(is.na(dsRural$AllLabourInsR), ave(dsRural$AllLabourInsR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$AllLabourInsR) dsRural$InsEmpR = ifelse(is.na(dsRural$InsEmpR), ave(dsRural$InsEmpR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$InsEmpR) dsRural$InsUnempR = ifelse(is.na(dsRural$InsUnempR), ave(dsRural$InsUnempR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$InsUnempR) dsRural$AllLabourOutR = ifelse(is.na(dsRural$AllLabourOutR), ave(dsRural$AllLabourOutR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$AllLabourOutR) dsRural$LabForceRateR = ifelse(is.na(dsRural$LabForceRateR), ave(dsRural$LabForceRateR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$LabForceRateR) dsRural$LabForceUempRateR = ifelse(is.na(dsRural$LabForceUempRateR), ave(dsRural$LabForceUempRateR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$LabForceUempRateR) return(paste("Data Cleaning Proses for Dataset (dsRural) has been completed")) } #------------------------------------------------------------------------------------- # dsUrban Dataset #------------------------------------------------------------------------------------- else if (types=="dsUrban") { dsUrban$Year = ifelse(is.na(dsUrban$Year), ave(dsUrban$Year, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$Year) dsUrban$AllLabourInsU = ifelse(is.na(dsUrban$AllLabourInsU), ave(dsUrban$AllLabourInsU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$AllLabourInsU) dsUrban$InsEmpU = ifelse(is.na(dsUrban$InsEmpU), ave(dsUrban$InsEmpU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$InsEmpU) dsUrban$InsUnempU = ifelse(is.na(dsUrban$InsUnempU), ave(dsUrban$InsUnempU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$InsUnempU) dsUrban$AllLabourOutU = ifelse(is.na(dsUrban$AllLabourOutU), ave(dsUrban$AllLabourOutU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$AllLabourOutU) dsUrban$LabForceRateU = ifelse(is.na(dsUrban$LabForceRateU), ave(dsUrban$LabForceRateU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$LabForceRateU) dsUrban$LabForceUempRateU = ifelse(is.na(dsUrban$LabForceUempRateU), ave(dsUrban$LabForceUempRateU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$LabForceUempRateU) return(paste("Data Cleaning Proses for Dataset (dsUrban) has been completed")) } #------------------------------------------------------------------------------------- # dsAge Dataset #------------------------------------------------------------------------------------- else if (types=="dsAge") { dsAge$Year = ifelse(is.na(dsAge$Year), ave(dsAge$Year, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Year) dsAge$AllTotalAge = ifelse(is.na(dsAge$AllTotalAge), ave(dsAge$AllTotalAge, FUN=function(x) mean(x), na.rm=TRUE), dsAge$AllTotalAge) dsAge$Age15to19 = ifelse(is.na(dsAge$Age15to19), ave(dsAge$Age15to19, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age15to19) dsAge$Age20to24 = ifelse(is.na(dsAge$Age20to24), ave(dsAge$Age20to24, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age20to24) dsAge$Age25to29 = ifelse(is.na(dsAge$Age25to29), ave(dsAge$Age25to29, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age25to29) dsAge$Age30to34 = ifelse(is.na(dsAge$Age30to34), ave(dsAge$Age30to34, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age30to34) dsAge$Age35to39 = ifelse(is.na(dsAge$Age35to39), ave(dsAge$Age35to39, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age35to39) dsAge$Age40to44 = ifelse(is.na(dsAge$Age40to44), ave(dsAge$Age40to44, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age40to44) dsAge$Age45_49 = ifelse(is.na(dsAge$Age45to49), ave(dsAge$Age45to49, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age45to49) dsAge$Age50to54 = ifelse(is.na(dsAge$Age50to54), ave(dsAge$Age50to54, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age50to54) dsAge$Age55to59 = ifelse(is.na(dsAge$Age55to59), ave(dsAge$Age55to59, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age55to59) dsAge$Age60to64 = ifelse(is.na(dsAge$Age60to64), ave(dsAge$Age60to64, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age60to64) return(paste("Data Cleaning Proses for Dataset (dsAge) has been completed")) } #------------------------------------------------------------------------------------- # dsEthnic Dataset #------------------------------------------------------------------------------------- else if (types=="dsEthnic") { dsEthnic$Year = ifelse(is.na(dsEthnic$Year), ave(dsEthnic$Year, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$Year) dsEthnic$AllTotalWorkForce = ifelse(is.na(dsEthnic$AllTotalWorkForce), ave(dsEthnic$AllTotalWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$AllTotalWorkForce) dsEthnic$SubTotWorkForce = ifelse(is.na(dsEthnic$SubTotWorkForce), ave(dsEthnic$SubTotWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$SubTotWorkForce) dsEthnic$BumiWorkForce = ifelse(is.na(dsEthnic$BumiWorkForce), ave(dsEthnic$BumiWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$BumiWorkForce) dsEthnic$ChineseWorkForce = ifelse(is.na(dsEthnic$ChineseWorkForce), ave(dsEthnic$ChineseWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$ChineseWorkForce) dsEthnic$IndianWorkForce = ifelse(is.na(dsEthnic$IndianWorkForce), ave(dsEthnic$IndianWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$IndianWorkForce) dsEthnic$OtherWorkForce = ifelse(is.na(dsEthnic$OtherWorkForce), ave(dsEthnic$OtherWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$OtherWorkForce) dsEthnic$SubTotForeignWorkForce = ifelse(is.na(dsEthnic$SubTotForeignWorkForce), ave(dsEthnic$SubTotForeignWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$SubTotForeignWorkForce) return(paste("Data Cleaning Proses for Dataset (dsEthnic) has been completed")) } #------------------------------------------------------------------------------------- # dsEdu Dataset #------------------------------------------------------------------------------------- else if (types=="dsEdu") { dsEdu$Year = ifelse(is.na(dsEdu$Year), ave(dsEdu$Year, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Year) dsEdu$AllTotalEdu = ifelse(is.na(dsEdu$AllTotalEdu), ave(dsEdu$AllTotalEdu, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$AllTotalEdu) dsEdu$NonEduc = ifelse(is.na(dsEdu$NonEduc), ave(dsEdu$NonEduc, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$NonEduc) dsEdu$Primary = ifelse(is.na(dsEdu$Primary), ave(dsEdu$Primary, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Primary) dsEdu$Secondary = ifelse(is.na(dsEdu$Secondary), ave(dsEdu$Secondary, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Secondary) dsEdu$Tertiary = ifelse(is.na(dsEdu$Tertiary), ave(dsEdu$Tertiary, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Tertiary) return(paste("Data Cleaning Proses for Dataset (dsEdu) has been completed")) } #------------------------------------------------------------------------------------- # dsCert Dataset #------------------------------------------------------------------------------------- else if (types=="dsCert") { dsCert$Year = ifelse(is.na(dsCert$Year), ave(dsCert$Year, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Year) dsCert$AllTotalCert = ifelse(is.na(dsCert$AllTotalCert), ave(dsCert$AllTotalCert, FUN=function(x) mean(x), na.rm=TRUE), dsCert$AllTotalCert) dsCert$UPSRAEquiv = ifelse(is.na(dsCert$UPSRAEquiv), ave(dsCert$UPSRAEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$UPSRAEquiv) dsCert$PMRSRPLCEEquiv = ifelse(is.na(dsCert$PMRSRPLCEEquiv), ave(dsCert$PMRSRPLCEEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$PMRSRPLCEEquiv) dsCert$SPMEquiv = ifelse(is.na(dsCert$SPMEquiv), ave(dsCert$SPMEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$SPMEquiv) dsCert$STPMEquiv = ifelse(is.na(dsCert$STPMEquiv), ave(dsCert$STPMEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$STPMEquiv) dsCert$Certificate = ifelse(is.na(dsCert$Certificate), ave(dsCert$Certificate, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Certificate) dsCert$Diploma = ifelse(is.na(dsCert$Diploma), ave(dsCert$Diploma, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Diploma) dsCert$Degree = ifelse(is.na(dsCert$Degree), ave(dsCert$Degree, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Degree) dsCert$ReligCert = ifelse(is.na(dsCert$ReligCert), ave(dsCert$ReligCert, FUN=function(x) mean(x), na.rm=TRUE), dsCert$ReligCert) dsCert$NoCert = ifelse(is.na(dsCert$NoCert), ave(dsCert$NoCert, FUN=function(x) mean(x), na.rm=TRUE), dsCert$NoCert) dsCert$NoRelevant = ifelse(is.na(dsCert$NoRelevant), ave(dsCert$NoRelevant, FUN=function(x) mean(x), na.rm=TRUE), dsCert$NoRelevant) return(paste("Data Cleaning Proses for Dataset (dsCert) has been completed")) } #------------------------------------------------------------------------------------- # dsMarital Dataset #------------------------------------------------------------------------------------- else if (types=="dsMarital") { dsMarital$AllTotalMarital = ifelse(is.na(dsMarital$AllTotalMarital), ave(dsMarital$AllTotalMarital, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$AllTotalMarital) dsMarital$Year = ifelse(is.na(dsMarital$Year), ave(dsMarital$Year, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$Year) dsMarital$NeverMarried = ifelse(is.na(dsMarital$NeverMarried), ave(dsMarital$NeverMarried, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$NeverMarried) dsMarital$Married = ifelse(is.na(dsMarital$Married), ave(dsMarital$Married, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$Married) dsMarital$Widow = ifelse(is.na(dsMarital$Widow), ave(dsMarital$Widow, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$Widow) dsMarital$DivorcePermSeparate= ifelse(is.na(dsMarital$DivorcePermSeparate), ave(dsMarital$DivorcePermSeparate, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$DivorcePermSeparate) return(paste("Data Cleaning Proses for Dataset (dsMarital) has been completed")) } else { return(paste("NO Data Cleaning Proses Executed")) } }
/DPDataPreProcessing.R
no_license
hannazhar/WQD7002-Final-Data-Science-Project
R
false
false
18,066
r
DataPreProcessing <- function(types) { #------------------------------------------------------------------------------------- # dsRate Dataset #------------------------------------------------------------------------------------- if (types=="dsRate") { dsRate$Year = ifelse(is.na(dsRate$Year), ave(dsRate$Year, FUN=function(x) mean(x), na.rm=TRUE), dsRate$Year) dsRate$TotInsLabour = ifelse(is.na(dsRate$TotInsLabour), ave(dsRate$TotInsLabour, FUN=function(x) mean(x), na.rm=TRUE), dsRate$TotInsLabour) dsRate$InsLabEmp = ifelse(is.na(dsRate$InsLabEmp), ave(dsRate$InsLabEmp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$InsLabEmp) dsRate$InsLabUnemp = ifelse(is.na(dsRate$InsLabUnemp), ave(dsRate$InsLabUnempp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$InsLabUnemp) dsRate$TotOutLabour = ifelse(is.na(dsRate$TotOutLabour), ave(dsRate$TotOutLabour, FUN=function(x) mean(x), na.rm=TRUE), dsRate$TotOutLabour) dsRate$RateLabEmp = ifelse(is.na(dsRate$RateLabEmp), ave(dsRate$RateLabEmp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$RateLabEmp) dsRate$RateLabUnEmp = ifelse(is.na(dsRate$RateLabUnEmp), ave(dsRate$RateLabUnEmp, FUN=function(x) mean(x), na.rm=TRUE), dsRate$RateLabUnEmp) return(paste("Data Cleaning Proses for Dataset (dsRate) has been completed")) } #------------------------------------------------------------------------------------- # dsGender Dataset #------------------------------------------------------------------------------------- else if (types=="dsGender") { dsGender$Year = ifelse(is.na(dsGender$Year), ave(dsGender$Year, FUN=function(x) mean(x), na.rm=TRUE), dsGender$Year) dsGender$TotInsLabourM = ifelse(is.na(dsGender$TotInsLabourM), ave(dsGender$TotInsLabourM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotInsLabourM) dsGender$InsLabEmpM = ifelse(is.na(dsGender$InsLabEmpM), ave(dsGender$InsLabEmpM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabEmpM) dsGender$InsLabUnempM = ifelse(is.na(dsGender$InsLabUnempM), ave(dsGender$InsLabUnempM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabUnempM) dsGender$TotOutLabourM = ifelse(is.na(dsGender$TotOutLabourM), ave(dsGender$TotOutLabourM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotOutLabourM) dsGender$RateLabEmpM = ifelse(is.na(dsGender$RateLabEmpM), ave(dsGender$RateLabEmpM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabEmpM) dsGender$RateLabUnEmpM = ifelse(is.na(dsGender$RateLabUnEmpM), ave(dsGender$RateLabUnEmpM, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabUnEmpM) dsGender$TotInsLabourF = ifelse(is.na(dsGender$TotInsLabourF), ave(dsGender$TotInsLabourF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotInsLabourF) dsGender$InsLabEmpF = ifelse(is.na(dsGender$InsLabEmpF), ave(dsGender$InsLabEmpFr, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabEmpF) dsGender$InsLabUnempF = ifelse(is.na(dsGender$InsLabUnempF), ave(dsGender$InsLabUnempF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$InsLabUnempF) dsGender$TotOutLabourF = ifelse(is.na(dsGender$TotOutLabourF), ave(dsGender$TotOutLabourF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$TotOutLabourF) dsGender$RateLabEmpF = ifelse(is.na(dsGender$RateLabEmpF), ave(dsGender$RateLabEmpF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabEmpF) dsGender$RateLabUnEmpF = ifelse(is.na(dsGender$RateLabUnEmpF), ave(dsGender$RateLabUnEmpF, FUN=function(x) mean(x), na.rm=TRUE), dsGender$RateLabUnEmpF) return(paste("Data Cleaning Proses for Dataset (dsGender) has been completed")) } #------------------------------------------------------------------------------------- # dsRural Dataset #------------------------------------------------------------------------------------- else if (types=="dsRural") { dsRural$Year = ifelse(is.na(dsRural$Year), ave(dsRural$Year, FUN=function(x) mean(x), na.rm=TRUE), dsRural$Year) dsRural$AllLabourInsR = ifelse(is.na(dsRural$AllLabourInsR), ave(dsRural$AllLabourInsR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$AllLabourInsR) dsRural$InsEmpR = ifelse(is.na(dsRural$InsEmpR), ave(dsRural$InsEmpR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$InsEmpR) dsRural$InsUnempR = ifelse(is.na(dsRural$InsUnempR), ave(dsRural$InsUnempR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$InsUnempR) dsRural$AllLabourOutR = ifelse(is.na(dsRural$AllLabourOutR), ave(dsRural$AllLabourOutR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$AllLabourOutR) dsRural$LabForceRateR = ifelse(is.na(dsRural$LabForceRateR), ave(dsRural$LabForceRateR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$LabForceRateR) dsRural$LabForceUempRateR = ifelse(is.na(dsRural$LabForceUempRateR), ave(dsRural$LabForceUempRateR, FUN=function(x) mean(x), na.rm=TRUE), dsRural$LabForceUempRateR) return(paste("Data Cleaning Proses for Dataset (dsRural) has been completed")) } #------------------------------------------------------------------------------------- # dsUrban Dataset #------------------------------------------------------------------------------------- else if (types=="dsUrban") { dsUrban$Year = ifelse(is.na(dsUrban$Year), ave(dsUrban$Year, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$Year) dsUrban$AllLabourInsU = ifelse(is.na(dsUrban$AllLabourInsU), ave(dsUrban$AllLabourInsU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$AllLabourInsU) dsUrban$InsEmpU = ifelse(is.na(dsUrban$InsEmpU), ave(dsUrban$InsEmpU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$InsEmpU) dsUrban$InsUnempU = ifelse(is.na(dsUrban$InsUnempU), ave(dsUrban$InsUnempU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$InsUnempU) dsUrban$AllLabourOutU = ifelse(is.na(dsUrban$AllLabourOutU), ave(dsUrban$AllLabourOutU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$AllLabourOutU) dsUrban$LabForceRateU = ifelse(is.na(dsUrban$LabForceRateU), ave(dsUrban$LabForceRateU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$LabForceRateU) dsUrban$LabForceUempRateU = ifelse(is.na(dsUrban$LabForceUempRateU), ave(dsUrban$LabForceUempRateU, FUN=function(x) mean(x), na.rm=TRUE), dsUrban$LabForceUempRateU) return(paste("Data Cleaning Proses for Dataset (dsUrban) has been completed")) } #------------------------------------------------------------------------------------- # dsAge Dataset #------------------------------------------------------------------------------------- else if (types=="dsAge") { dsAge$Year = ifelse(is.na(dsAge$Year), ave(dsAge$Year, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Year) dsAge$AllTotalAge = ifelse(is.na(dsAge$AllTotalAge), ave(dsAge$AllTotalAge, FUN=function(x) mean(x), na.rm=TRUE), dsAge$AllTotalAge) dsAge$Age15to19 = ifelse(is.na(dsAge$Age15to19), ave(dsAge$Age15to19, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age15to19) dsAge$Age20to24 = ifelse(is.na(dsAge$Age20to24), ave(dsAge$Age20to24, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age20to24) dsAge$Age25to29 = ifelse(is.na(dsAge$Age25to29), ave(dsAge$Age25to29, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age25to29) dsAge$Age30to34 = ifelse(is.na(dsAge$Age30to34), ave(dsAge$Age30to34, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age30to34) dsAge$Age35to39 = ifelse(is.na(dsAge$Age35to39), ave(dsAge$Age35to39, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age35to39) dsAge$Age40to44 = ifelse(is.na(dsAge$Age40to44), ave(dsAge$Age40to44, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age40to44) dsAge$Age45_49 = ifelse(is.na(dsAge$Age45to49), ave(dsAge$Age45to49, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age45to49) dsAge$Age50to54 = ifelse(is.na(dsAge$Age50to54), ave(dsAge$Age50to54, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age50to54) dsAge$Age55to59 = ifelse(is.na(dsAge$Age55to59), ave(dsAge$Age55to59, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age55to59) dsAge$Age60to64 = ifelse(is.na(dsAge$Age60to64), ave(dsAge$Age60to64, FUN=function(x) mean(x), na.rm=TRUE), dsAge$Age60to64) return(paste("Data Cleaning Proses for Dataset (dsAge) has been completed")) } #------------------------------------------------------------------------------------- # dsEthnic Dataset #------------------------------------------------------------------------------------- else if (types=="dsEthnic") { dsEthnic$Year = ifelse(is.na(dsEthnic$Year), ave(dsEthnic$Year, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$Year) dsEthnic$AllTotalWorkForce = ifelse(is.na(dsEthnic$AllTotalWorkForce), ave(dsEthnic$AllTotalWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$AllTotalWorkForce) dsEthnic$SubTotWorkForce = ifelse(is.na(dsEthnic$SubTotWorkForce), ave(dsEthnic$SubTotWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$SubTotWorkForce) dsEthnic$BumiWorkForce = ifelse(is.na(dsEthnic$BumiWorkForce), ave(dsEthnic$BumiWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$BumiWorkForce) dsEthnic$ChineseWorkForce = ifelse(is.na(dsEthnic$ChineseWorkForce), ave(dsEthnic$ChineseWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$ChineseWorkForce) dsEthnic$IndianWorkForce = ifelse(is.na(dsEthnic$IndianWorkForce), ave(dsEthnic$IndianWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$IndianWorkForce) dsEthnic$OtherWorkForce = ifelse(is.na(dsEthnic$OtherWorkForce), ave(dsEthnic$OtherWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$OtherWorkForce) dsEthnic$SubTotForeignWorkForce = ifelse(is.na(dsEthnic$SubTotForeignWorkForce), ave(dsEthnic$SubTotForeignWorkForce, FUN=function(x) mean(x), na.rm=TRUE), dsEthnic$SubTotForeignWorkForce) return(paste("Data Cleaning Proses for Dataset (dsEthnic) has been completed")) } #------------------------------------------------------------------------------------- # dsEdu Dataset #------------------------------------------------------------------------------------- else if (types=="dsEdu") { dsEdu$Year = ifelse(is.na(dsEdu$Year), ave(dsEdu$Year, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Year) dsEdu$AllTotalEdu = ifelse(is.na(dsEdu$AllTotalEdu), ave(dsEdu$AllTotalEdu, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$AllTotalEdu) dsEdu$NonEduc = ifelse(is.na(dsEdu$NonEduc), ave(dsEdu$NonEduc, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$NonEduc) dsEdu$Primary = ifelse(is.na(dsEdu$Primary), ave(dsEdu$Primary, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Primary) dsEdu$Secondary = ifelse(is.na(dsEdu$Secondary), ave(dsEdu$Secondary, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Secondary) dsEdu$Tertiary = ifelse(is.na(dsEdu$Tertiary), ave(dsEdu$Tertiary, FUN=function(x) mean(x), na.rm=TRUE), dsEdu$Tertiary) return(paste("Data Cleaning Proses for Dataset (dsEdu) has been completed")) } #------------------------------------------------------------------------------------- # dsCert Dataset #------------------------------------------------------------------------------------- else if (types=="dsCert") { dsCert$Year = ifelse(is.na(dsCert$Year), ave(dsCert$Year, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Year) dsCert$AllTotalCert = ifelse(is.na(dsCert$AllTotalCert), ave(dsCert$AllTotalCert, FUN=function(x) mean(x), na.rm=TRUE), dsCert$AllTotalCert) dsCert$UPSRAEquiv = ifelse(is.na(dsCert$UPSRAEquiv), ave(dsCert$UPSRAEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$UPSRAEquiv) dsCert$PMRSRPLCEEquiv = ifelse(is.na(dsCert$PMRSRPLCEEquiv), ave(dsCert$PMRSRPLCEEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$PMRSRPLCEEquiv) dsCert$SPMEquiv = ifelse(is.na(dsCert$SPMEquiv), ave(dsCert$SPMEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$SPMEquiv) dsCert$STPMEquiv = ifelse(is.na(dsCert$STPMEquiv), ave(dsCert$STPMEquiv, FUN=function(x) mean(x), na.rm=TRUE), dsCert$STPMEquiv) dsCert$Certificate = ifelse(is.na(dsCert$Certificate), ave(dsCert$Certificate, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Certificate) dsCert$Diploma = ifelse(is.na(dsCert$Diploma), ave(dsCert$Diploma, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Diploma) dsCert$Degree = ifelse(is.na(dsCert$Degree), ave(dsCert$Degree, FUN=function(x) mean(x), na.rm=TRUE), dsCert$Degree) dsCert$ReligCert = ifelse(is.na(dsCert$ReligCert), ave(dsCert$ReligCert, FUN=function(x) mean(x), na.rm=TRUE), dsCert$ReligCert) dsCert$NoCert = ifelse(is.na(dsCert$NoCert), ave(dsCert$NoCert, FUN=function(x) mean(x), na.rm=TRUE), dsCert$NoCert) dsCert$NoRelevant = ifelse(is.na(dsCert$NoRelevant), ave(dsCert$NoRelevant, FUN=function(x) mean(x), na.rm=TRUE), dsCert$NoRelevant) return(paste("Data Cleaning Proses for Dataset (dsCert) has been completed")) } #------------------------------------------------------------------------------------- # dsMarital Dataset #------------------------------------------------------------------------------------- else if (types=="dsMarital") { dsMarital$AllTotalMarital = ifelse(is.na(dsMarital$AllTotalMarital), ave(dsMarital$AllTotalMarital, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$AllTotalMarital) dsMarital$Year = ifelse(is.na(dsMarital$Year), ave(dsMarital$Year, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$Year) dsMarital$NeverMarried = ifelse(is.na(dsMarital$NeverMarried), ave(dsMarital$NeverMarried, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$NeverMarried) dsMarital$Married = ifelse(is.na(dsMarital$Married), ave(dsMarital$Married, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$Married) dsMarital$Widow = ifelse(is.na(dsMarital$Widow), ave(dsMarital$Widow, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$Widow) dsMarital$DivorcePermSeparate= ifelse(is.na(dsMarital$DivorcePermSeparate), ave(dsMarital$DivorcePermSeparate, FUN=function(x) mean(x), na.rm=TRUE), dsMarital$DivorcePermSeparate) return(paste("Data Cleaning Proses for Dataset (dsMarital) has been completed")) } else { return(paste("NO Data Cleaning Proses Executed")) } }