content
large_stringlengths
0
6.46M
path
large_stringlengths
3
331
license_type
large_stringclasses
2 values
repo_name
large_stringlengths
5
125
language
large_stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.46M
extension
large_stringclasses
75 values
text
stringlengths
0
6.46M
##################################################### #' #' Estimates \eqn{\beta}s per population and a bootstrap confidence interval #' #' Estimate populations (Population specific FST) or individual coancestries #' and a bootstrap confidence interval, assuming random mating #' #' If betaijT=TRUE, and the first column contains a unique identifier for #' each individual, the function returns the matrix of individual coancestries/kinships. #' Individual inbreeding coefficients can be obtained by multiplying by 2 the diagonal #' and substracting 1. #' #' @usage betas(dat,nboot=0,lim=c(0.025,0.975),diploid=TRUE,betaijT=FALSE) #' #' @param dat data frame with genetic data and pop identifier #' @param nboot number of bootstrap samples. #' @param lim width of the bootstrap confidence interval #' @param diploid whether the data comes from a diploid organism #' @param betaijT whether to estimate individual coancestries #' #' @return Hi Within population gene diversities (complement to 1 of matching probabilities) #' @return Hb Between populations gene diversities #' @return betaiovl Average \eqn{\hat{\beta_{WT}^i}} over loci (Population specific FSTs), Table 3 of #' \href{https://academic.oup.com/genetics/article/206/4/2085/6072590}{Weir and Goudet, 2017 (Genetics)} #' @return betaW Average of the betaiovl \eqn{\hat{\beta_{WT}}} over loci (overall population FST) #' @return ci The bootstrap confidence interval of population specific FSTs #' (only if more than 100 bootstraps requested AND if more than 10 loci are present) #' @return if betaijT=TRUE, return the matrix of pairwise kinships only. #' #' #' #' @seealso \code{\link{fs.dosage}}, \code{\link{beta.dosage}} for Fst estimates (not assuming Random Mating) #' and kinship estimates from dosage data, respectively #' #' @author Jerome Goudet \email{jerome.goudet@@unil.ch} #' #' @references \href{https://academic.oup.com/genetics/article/206/4/2085/6072590}{Weir and Goudet, 2017 (Genetics)} #' A unified characterization of population structure and relatedness. #' #' #' @examples #' \dontrun{ #' #3 different population sizes lead to 3 different betais #' dat<-sim.genot(size=40,N=c(50,200,1000),nbloc=50,nbal=10) #' betas(dat,nboot=100) #' #' #individual coancestries from the smallest population are large #' ind.coan<-betas(cbind(1:120,dat[,-1]),betaij=T) #' diag(ind.coan$betaij)<-NA #' graphics::image(1:120,1:120,ind.coan$betaij,xlab="Inds",ylab="Inds") #' } #' #'@export #' ##################################################### betas<-function(dat,nboot=0,lim=c(0.025,0.975),diploid=TRUE,betaijT=FALSE){ ratio.Hi.Hb<-function(x){ dum<-which(!is.na(x)) sum(x[dum])/sum(Hb[dum]) } if (is.genind(dat)) dat<-genind2hierfstat(dat) if (betaijT) {inames<-dat[,1];dat[,1]<-1:dim(dat)[1]} pfr<-pop.freq(dat,diploid) pfr2<-lapply(pfr,function(x) t(x) %*% x) nl<-dim(dat)[2]-1 np<-length(table(dat[,1])) ns<-ind.count.n(dat) if (diploid) ns<-ns*2 ns[is.na(ns)]<-0 Hi<-matrix(numeric(np*nl),ncol=nl) dimnames(Hi)<-dimnames(ns) Hb<-numeric(nl) for (il in 1:nl){ Hi[,il]<-ns[,il]/(ns[,il]-1)*(1-diag(pfr2[[il]])) # Hi[is.na(Hi)]<-0.0 npl<-sum(ns[,il]>0,na.rm=TRUE) Hb[il]<-1-1/npl/(npl-1)*sum((pfr2[[il]]-diag(diag(pfr2[[il]]))),na.rm=TRUE) } betai<-1-apply(Hi,1,ratio.Hi.Hb) betaW<-mean(betai,na.rm=T) if (betaijT) { ratio.Mij.Hb <- function(x) { dum <- which(!is.na(x)) a<-mean(x[dum])/mean(Hb[dum]) b<-1/mean(Hb[dum]) a-b } H<-array(dim=c(np,np,nl)) for (il in 1:nl) H[,,il]<-pfr2[[il]] betaij<-1+apply(H,c(1,2),ratio.Mij.Hb) rownames(betaij)<-colnames(betaij)<-inames all.res<-list(betaijT=betaijT,betaij=betaij) } else { if (nboot==0L){ all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW) } else{ if (nboot<100L){ warning("Less than 100 bootstrap requested, can't estimate Conf. Int.") all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW) } if (nl<10L) { warning("Less than 10 loci, can't estimate Conf. Int.") all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW) } boot.bi<-matrix(numeric(nboot*np),nrow=nboot) nls<-apply(ns,1,function(x) which(x>0)) if (is.matrix(nls)){ for (ib in 1:nboot){ for (ip in 1:np){ dum<-sample(nls[,ip],replace=TRUE) boot.bi[ib,ip]<-1-sum(Hi[ip,dum])/sum(Hb[dum]) }}} else{ for (ib in 1:nboot){ for (ip in 1:np){ dum<-sample(nls[[ip]],replace=TRUE) boot.bi[ib,ip]<-1-sum(Hi[ip,dum])/sum(Hb[dum]) }}} boot.bW<-rowMeans(boot.bi) bi.ci<-apply(cbind(boot.bi,boot.bW),2,stats::quantile,lim,na.rm=TRUE) all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW,ci=bi.ci) }} class(all.res)<-"betas" all.res } #' @describeIn betas print function for betas class #' @param x a betas object #' @param digits number of digits to print #' @param ... further arguments to pass to print #' #' @method print betas #' @export #' #' #################################################################################### print.betas<-function(x,digits=4,...){ if (x$betaijT) {cat(" ***Kinship coefficients*** \n \n ") print(round(x$betaij,digits=digits,...))} else { cat(" ***Population specific and Overall Fst*** \n\n") res<-c(x$betaiovl,x$betaW) names(res)<-c(names(x$betaiovl),"Overall") print(res,digits=digits,...) if (!is.null(x$ci)){ cat("\n ***Bootstrap CI for population specific and overall FSTs*** \n\n") colnames(x$ci)<-names(res) print(x$ci,digits=digits,...) } } invisible(x) }
/R/betas.R
no_license
cran/hierfstat
R
false
false
5,920
r
##################################################### #' #' Estimates \eqn{\beta}s per population and a bootstrap confidence interval #' #' Estimate populations (Population specific FST) or individual coancestries #' and a bootstrap confidence interval, assuming random mating #' #' If betaijT=TRUE, and the first column contains a unique identifier for #' each individual, the function returns the matrix of individual coancestries/kinships. #' Individual inbreeding coefficients can be obtained by multiplying by 2 the diagonal #' and substracting 1. #' #' @usage betas(dat,nboot=0,lim=c(0.025,0.975),diploid=TRUE,betaijT=FALSE) #' #' @param dat data frame with genetic data and pop identifier #' @param nboot number of bootstrap samples. #' @param lim width of the bootstrap confidence interval #' @param diploid whether the data comes from a diploid organism #' @param betaijT whether to estimate individual coancestries #' #' @return Hi Within population gene diversities (complement to 1 of matching probabilities) #' @return Hb Between populations gene diversities #' @return betaiovl Average \eqn{\hat{\beta_{WT}^i}} over loci (Population specific FSTs), Table 3 of #' \href{https://academic.oup.com/genetics/article/206/4/2085/6072590}{Weir and Goudet, 2017 (Genetics)} #' @return betaW Average of the betaiovl \eqn{\hat{\beta_{WT}}} over loci (overall population FST) #' @return ci The bootstrap confidence interval of population specific FSTs #' (only if more than 100 bootstraps requested AND if more than 10 loci are present) #' @return if betaijT=TRUE, return the matrix of pairwise kinships only. #' #' #' #' @seealso \code{\link{fs.dosage}}, \code{\link{beta.dosage}} for Fst estimates (not assuming Random Mating) #' and kinship estimates from dosage data, respectively #' #' @author Jerome Goudet \email{jerome.goudet@@unil.ch} #' #' @references \href{https://academic.oup.com/genetics/article/206/4/2085/6072590}{Weir and Goudet, 2017 (Genetics)} #' A unified characterization of population structure and relatedness. #' #' #' @examples #' \dontrun{ #' #3 different population sizes lead to 3 different betais #' dat<-sim.genot(size=40,N=c(50,200,1000),nbloc=50,nbal=10) #' betas(dat,nboot=100) #' #' #individual coancestries from the smallest population are large #' ind.coan<-betas(cbind(1:120,dat[,-1]),betaij=T) #' diag(ind.coan$betaij)<-NA #' graphics::image(1:120,1:120,ind.coan$betaij,xlab="Inds",ylab="Inds") #' } #' #'@export #' ##################################################### betas<-function(dat,nboot=0,lim=c(0.025,0.975),diploid=TRUE,betaijT=FALSE){ ratio.Hi.Hb<-function(x){ dum<-which(!is.na(x)) sum(x[dum])/sum(Hb[dum]) } if (is.genind(dat)) dat<-genind2hierfstat(dat) if (betaijT) {inames<-dat[,1];dat[,1]<-1:dim(dat)[1]} pfr<-pop.freq(dat,diploid) pfr2<-lapply(pfr,function(x) t(x) %*% x) nl<-dim(dat)[2]-1 np<-length(table(dat[,1])) ns<-ind.count.n(dat) if (diploid) ns<-ns*2 ns[is.na(ns)]<-0 Hi<-matrix(numeric(np*nl),ncol=nl) dimnames(Hi)<-dimnames(ns) Hb<-numeric(nl) for (il in 1:nl){ Hi[,il]<-ns[,il]/(ns[,il]-1)*(1-diag(pfr2[[il]])) # Hi[is.na(Hi)]<-0.0 npl<-sum(ns[,il]>0,na.rm=TRUE) Hb[il]<-1-1/npl/(npl-1)*sum((pfr2[[il]]-diag(diag(pfr2[[il]]))),na.rm=TRUE) } betai<-1-apply(Hi,1,ratio.Hi.Hb) betaW<-mean(betai,na.rm=T) if (betaijT) { ratio.Mij.Hb <- function(x) { dum <- which(!is.na(x)) a<-mean(x[dum])/mean(Hb[dum]) b<-1/mean(Hb[dum]) a-b } H<-array(dim=c(np,np,nl)) for (il in 1:nl) H[,,il]<-pfr2[[il]] betaij<-1+apply(H,c(1,2),ratio.Mij.Hb) rownames(betaij)<-colnames(betaij)<-inames all.res<-list(betaijT=betaijT,betaij=betaij) } else { if (nboot==0L){ all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW) } else{ if (nboot<100L){ warning("Less than 100 bootstrap requested, can't estimate Conf. Int.") all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW) } if (nl<10L) { warning("Less than 10 loci, can't estimate Conf. Int.") all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW) } boot.bi<-matrix(numeric(nboot*np),nrow=nboot) nls<-apply(ns,1,function(x) which(x>0)) if (is.matrix(nls)){ for (ib in 1:nboot){ for (ip in 1:np){ dum<-sample(nls[,ip],replace=TRUE) boot.bi[ib,ip]<-1-sum(Hi[ip,dum])/sum(Hb[dum]) }}} else{ for (ib in 1:nboot){ for (ip in 1:np){ dum<-sample(nls[[ip]],replace=TRUE) boot.bi[ib,ip]<-1-sum(Hi[ip,dum])/sum(Hb[dum]) }}} boot.bW<-rowMeans(boot.bi) bi.ci<-apply(cbind(boot.bi,boot.bW),2,stats::quantile,lim,na.rm=TRUE) all.res<-list(betaijT=betaijT,Hi=Hi,Hb=Hb,betaiovl=betai,betaW=betaW,ci=bi.ci) }} class(all.res)<-"betas" all.res } #' @describeIn betas print function for betas class #' @param x a betas object #' @param digits number of digits to print #' @param ... further arguments to pass to print #' #' @method print betas #' @export #' #' #################################################################################### print.betas<-function(x,digits=4,...){ if (x$betaijT) {cat(" ***Kinship coefficients*** \n \n ") print(round(x$betaij,digits=digits,...))} else { cat(" ***Population specific and Overall Fst*** \n\n") res<-c(x$betaiovl,x$betaW) names(res)<-c(names(x$betaiovl),"Overall") print(res,digits=digits,...) if (!is.null(x$ci)){ cat("\n ***Bootstrap CI for population specific and overall FSTs*** \n\n") colnames(x$ci)<-names(res) print(x$ci,digits=digits,...) } } invisible(x) }
library(showtext) dest <- file.path("C:", "Windows", "Fonts", "ARIALN.ttf") font_add("arialn", regular = dest) showtext_auto() setwd("E:/Documents/GitHub/EBIO-R-Code/EBIO 3080/Lab/Week 5/Data") flyDnDs <- read.csv("FlyDnDs.csv", header = TRUE) meanDnDs <- mean(flyDnDs$DnDs) par(bg = "#eee9d3") par(mar = c(4.1, 5, 4.1, 5)) hist(flyDnDs$DnDs, main = "", xlab = "", ylab = "", axes = FALSE, col = "#721919" ) title(main = "Dn/Ds of Random Genes Throughout the D. melanogaster Genome", family = "arialn", cex.main = 2, col.main = "#2c3136" ) title(xlab = "Dn/Ds", font.lab = 3, family = "arialn", cex.lab = 1.5, col.lab = "#2c3136" ) title(ylab = "Frequency", font.lab = 3, family = "arialn", cex.lab = 1.5, col.lab = "#2c3136" ) axis(side = 1, col = "#2c3136", col.ticks = "#2c3136", col.axis = "#2c3136" ) axis(side = 2, col = "#2c3136", col.ticks = "#2c3136", col.axis = "#2c3136" ) abline(v = meanDnDs, lwd = 3, col = "#2c3136") legend("topright", "Mean Dn/Ds ratio", pch = "-", col = "#2c3136", bg = "#eee9d3", box.lwd = 1 )
/EBIO 3080/Lab/Week 5/Pre-Lab/Week5_Pre-Lab.R
no_license
dmwo/EBIO-R-Code
R
false
false
1,185
r
library(showtext) dest <- file.path("C:", "Windows", "Fonts", "ARIALN.ttf") font_add("arialn", regular = dest) showtext_auto() setwd("E:/Documents/GitHub/EBIO-R-Code/EBIO 3080/Lab/Week 5/Data") flyDnDs <- read.csv("FlyDnDs.csv", header = TRUE) meanDnDs <- mean(flyDnDs$DnDs) par(bg = "#eee9d3") par(mar = c(4.1, 5, 4.1, 5)) hist(flyDnDs$DnDs, main = "", xlab = "", ylab = "", axes = FALSE, col = "#721919" ) title(main = "Dn/Ds of Random Genes Throughout the D. melanogaster Genome", family = "arialn", cex.main = 2, col.main = "#2c3136" ) title(xlab = "Dn/Ds", font.lab = 3, family = "arialn", cex.lab = 1.5, col.lab = "#2c3136" ) title(ylab = "Frequency", font.lab = 3, family = "arialn", cex.lab = 1.5, col.lab = "#2c3136" ) axis(side = 1, col = "#2c3136", col.ticks = "#2c3136", col.axis = "#2c3136" ) axis(side = 2, col = "#2c3136", col.ticks = "#2c3136", col.axis = "#2c3136" ) abline(v = meanDnDs, lwd = 3, col = "#2c3136") legend("topright", "Mean Dn/Ds ratio", pch = "-", col = "#2c3136", bg = "#eee9d3", box.lwd = 1 )
\name{XTRA 1} \alias{mixed} \alias{mtmixed} \alias{mtgsru} \alias{mm} \alias{NNS} \alias{GSFLM} \alias{GSRR} \alias{GS2EIGEN} \alias{NNSEARCH} \alias{predict_FLMSS} \title{ Mixed model solver } \description{ Function to solve univariate mixed models with or without the usage of omic information. This function allows single-step modeling of replicated observations with marker information available through the usage of a linkage function to connect to a whole-genome regression method. Genomic estimated values can be optionally deregressed (no shrinkage) while fitting the model. } \usage{ mixed(y,random=NULL,fixed=NULL,data=NULL,X=list(), alg=emML,maxit=10,Deregress=FALSE,...) } \arguments{ \item{y}{ Response variable from the data frame containg the dataset. } \item{random}{ Formula. Right-hand side formula of random effects. } \item{fixed}{ Formula. Right-hand side formula of fixed effects. } \item{data}{ Data frame containing the response variable, random and fixed terms. } \item{X}{ List of omic incidence matrix. Row names of these matrices connect the omic information to the levels of the indicated random terms (eg. \code{X=list("ID"=gen)}). } \item{alg}{ Function. Whole-genome regression algorithm utilized to solve link functions. These include MCMC (\code{wgr}, \code{BayesB}, etc) and EM (\code{emEN}, \code{emDE}, etc) algorithms. By default, it runs maximum likelihood \code{emML}. } \item{maxit}{ Integer. Maximum number of iterations. } \item{Deregress}{ Logical. Deregress (unshrink) coefficients while fitting the model? } \item{...}{ Additional arguments to be passed to the whole-genome regression algorithms especified on \code{alg}. } } \details{ The model for the whole-genome regression is as follows: \deqn{y = Xb + Zu + Wa + e} where \eqn{y} is the response variable, \eqn{Xb} corresponds to the fixed effect term, \eqn{Zu} corresponds to one or more random effect terms, \eqn{W} is the incidence matrix of terms with omic information and \eqn{a} is omic values by \eqn{a=Mg}, where \eqn{M} is the genotypic matrix and \eqn{g} are marker effects. Here, \eqn{e} is the residual term. An example is provided using the data from the NAM package with: \code{demo(mixedmodel)}. Alterinative (and updated) implementations have similar syntax: 01) \code{mm(y,random=NULL,fixed=NULL,data=NULL, M=NULL,bin=FALSE,AM=NULL,it=10,verb=TRUE, FLM=TRUE,wgtM=TRUE,cntM=TRUE,nPc=3)} 02) \code{mtmixed = function(resp, random=NULL, fixed=NULL, data, X=list(), maxit=10, init=10, regVC=FALSE)} } \value{ The function wgr returns a list with Fitness values (\code{Fitness}) containing observation \code{obs}, fitted values \code{hat}, residuals \code{res}, and fitted values by model term \code{fits}; Estimated variance components (\code{VarComp}) containing the variance components per se (\code{VarComponents}) and variance explained by each model term (\code{VarExplained}), regression coefficients by model term (\code{Coefficients}), and the effects of structured terms (\code{Structure}) containing the marker effects of each model term where markers were provided. } \references{ Xavier, A. (2019). Efficient Estimation of Marker Effects in Plant Breeding. G3: Genes, Genomes, Genetics, DOI: 10.1534/g3.119.400728 } \author{ Alencar Xavier } \examples{ \dontrun{ demo(mixedmodel) } }
/man/mix.Rd
no_license
alenxav/bWGR
R
false
false
3,501
rd
\name{XTRA 1} \alias{mixed} \alias{mtmixed} \alias{mtgsru} \alias{mm} \alias{NNS} \alias{GSFLM} \alias{GSRR} \alias{GS2EIGEN} \alias{NNSEARCH} \alias{predict_FLMSS} \title{ Mixed model solver } \description{ Function to solve univariate mixed models with or without the usage of omic information. This function allows single-step modeling of replicated observations with marker information available through the usage of a linkage function to connect to a whole-genome regression method. Genomic estimated values can be optionally deregressed (no shrinkage) while fitting the model. } \usage{ mixed(y,random=NULL,fixed=NULL,data=NULL,X=list(), alg=emML,maxit=10,Deregress=FALSE,...) } \arguments{ \item{y}{ Response variable from the data frame containg the dataset. } \item{random}{ Formula. Right-hand side formula of random effects. } \item{fixed}{ Formula. Right-hand side formula of fixed effects. } \item{data}{ Data frame containing the response variable, random and fixed terms. } \item{X}{ List of omic incidence matrix. Row names of these matrices connect the omic information to the levels of the indicated random terms (eg. \code{X=list("ID"=gen)}). } \item{alg}{ Function. Whole-genome regression algorithm utilized to solve link functions. These include MCMC (\code{wgr}, \code{BayesB}, etc) and EM (\code{emEN}, \code{emDE}, etc) algorithms. By default, it runs maximum likelihood \code{emML}. } \item{maxit}{ Integer. Maximum number of iterations. } \item{Deregress}{ Logical. Deregress (unshrink) coefficients while fitting the model? } \item{...}{ Additional arguments to be passed to the whole-genome regression algorithms especified on \code{alg}. } } \details{ The model for the whole-genome regression is as follows: \deqn{y = Xb + Zu + Wa + e} where \eqn{y} is the response variable, \eqn{Xb} corresponds to the fixed effect term, \eqn{Zu} corresponds to one or more random effect terms, \eqn{W} is the incidence matrix of terms with omic information and \eqn{a} is omic values by \eqn{a=Mg}, where \eqn{M} is the genotypic matrix and \eqn{g} are marker effects. Here, \eqn{e} is the residual term. An example is provided using the data from the NAM package with: \code{demo(mixedmodel)}. Alterinative (and updated) implementations have similar syntax: 01) \code{mm(y,random=NULL,fixed=NULL,data=NULL, M=NULL,bin=FALSE,AM=NULL,it=10,verb=TRUE, FLM=TRUE,wgtM=TRUE,cntM=TRUE,nPc=3)} 02) \code{mtmixed = function(resp, random=NULL, fixed=NULL, data, X=list(), maxit=10, init=10, regVC=FALSE)} } \value{ The function wgr returns a list with Fitness values (\code{Fitness}) containing observation \code{obs}, fitted values \code{hat}, residuals \code{res}, and fitted values by model term \code{fits}; Estimated variance components (\code{VarComp}) containing the variance components per se (\code{VarComponents}) and variance explained by each model term (\code{VarExplained}), regression coefficients by model term (\code{Coefficients}), and the effects of structured terms (\code{Structure}) containing the marker effects of each model term where markers were provided. } \references{ Xavier, A. (2019). Efficient Estimation of Marker Effects in Plant Breeding. G3: Genes, Genomes, Genetics, DOI: 10.1534/g3.119.400728 } \author{ Alencar Xavier } \examples{ \dontrun{ demo(mixedmodel) } }
#ultiple Linear/Non-linear regression to determine train delay given 46 factors library(MASS) library(caret) library(xlsx) library(neuralnet) library(e1071) a<-read.csv("TSC_430.csv",sep=",") b<-read.csv("TSC_Meta_data",sheet="Sheet2",header=TRUE) colnames(a)<-b[,2] #Averaging factors of precipitation, visibility, etc at the origin and destination anew2<- transform(anew2, journey_average_precipitation = rowMeans(anew2[,c(2,8)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_temperature = rowMeans(anew2[,c(3,9)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_cloud_cover = rowMeans(anew2[,c(4,10)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_weather_visibility = rowMeans(anew2[,c(5,11)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_weather_wind_gust_speed = rowMeans(anew2[,c(6,12)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_weather_wind_speed = rowMeans(anew2[,c(7,13)], na.rm = TRUE)) anew8<-anew2[,c(19:24)] anew8$journeystopcount<-anew2$journey_stopcount #Computing the actual delay time(Delay at destination-delay at the origin) ptm<-proc.time() for(i in 1:nrow(a)){ if(a$journey_origin_variation_status[i]=="LATE"){ a$actualdelaytime[i]=((a$journey_destination_timetable_variation[i])-(a$journey_origin_timetable_variation[i])) }else if(a$journey_origin_variation_status[i]=="EARLY"){ a$actualdelaytime[i]=((a$journey_destination_timetable_variation[i])+(a$journey_origin_timetable_variation[i]))} else if(a$journey_origin_variation_status[i]=="ON TIME"){ a$actualdelaytime[i]=((a$journey_destination_timetable_variation[i])-(a$journey_origin_timetable_variation[i])) }else if(a$journey_origin_variation_status[i]=="OFF ROUTE"){ a$actualdelaytime[i]=a$journey_destination_timetable_variation[i] }else if(a$journey_origin_variation_status[i]==""){ a$actualdelaytime[i]=NA } } elapsed<-proc.time()-ptm #Calculating mean of origin and destination for all the 12 other variables-reduces to Mean_of_variables_dataset anew8$actualdelaytime<-a$actualdelaytime #Removing outliers in the data-using cooks distance model_for_outliers<-lm(actualdelaytime~.,data=anew8) cooksd<-cooks.distance(model_for_outliers) influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))]) data_without_outliers<-anew8[-influential,] ##Removing rows with NA-complete.cases function final_data_for_prediction<-data_without_outliers[complete.cases(data_without_outliers),] set.seed(345) index <- sample(1:nrow(final_data_for_prediction),round(0.75*nrow(final_data_for_prediction))) train <-final_data_for_prediction[index,] test <- final_data_for_prediction[-index,] # Fitting linear model-without scaling and centering lm.fit <- glm(actualdelaytime~., data=train) summary(lm.fit) # Predicted data from lm pr.lm2 <- predict(lm.fit,test) # Test MSE MSE.lm <- sum((pr.lm2 - test$actualdelaytime)^2)/nrow(test) ##-----Another method-Scaling and using Cross Validation in linear model for measuring RMSE-------------------# std<-apply(final_data_for_prediction,2,sd) data_scaled_with_mean<-as.data.frame(scale(final_data_for_prediction),center=TRUE,scale=std) set.seed(450) cv.error<-NULL variableimportance<-NULL k <- 10 for(i in 1:k){ index <- sample(1:nrow(final_data_for_prediction),round(0.75*nrow(final_data_for_prediction))) train.cv <- data_scaled_with_mean[index,] test.cv <- data_scaled_with_mean[-index,] model2 <- lm(actualdelaytime~.,data=train.cv) pr.lm <- predict(model2,test.cv[,1:8]) pr.lm <- pr.lm*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) test.cv.r <- (test.cv$actualdelaytime)*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) variableimportance[i]<-varImp(model2) cv.error[i] <- (sum((test.cv.r-pr.lm)^2))/length(test.cv.r) } cross_validation_error_in_linear_fit<-mean(cv.error) df<-data.frame(matrix(unlist(variableimportance),nrow=10,byrow=T),stringsasFactors=FALSE) df<-df[,-8] colnames(df)<-names(data_scaled_with_mean[,c(1:7)]) varimp_according_to_linear_model<-apply(df,2,mean)#This gives the mean of the variable importance of each variable through all the 10 iterations correlation<-as.data.frame(cor(data_scaled_with_mean)) ##--------------Using neural networks for regression-------------------------## n <- names(train) f <- as.formula(paste("actualdelaytime ~", paste(n[!n %in% "actualdelaytime"], collapse = " + "))) set.seed(786) m<-10 cv.error.nn<-NULL variableimportance.nn<-NULL for(j in 1:m){ index <- sample(1:nrow(data_scaled_with_mean),round(0.75*nrow(data_scaled_with_mean))) train.cv.nn <- data_scaled_with_mean[index,] test.cv.nn <- data_scaled_with_mean[-index,] nn <- neuralnet(f,data=train.cv.nn,hidden=4,linear.output=TRUE) pr.nn <- compute(nn,test.cv.nn[,1:8]) pr.nn <- pr.nn$net.result*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) test.cv.r.nn <- (test.cv.nn$actualdelaytime)*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) variableimportance.nn[j]<-varImp(nn) cv.error.nn[j] <- (sum((test.cv.r.nn - pr.nn)^2))/nrow(test.cv.nn) } mean(cv.error.nn) df.nn<-data.frame(matrix(unlist(variableimportance.nn),nrow=10,byrow=T),stringsasFactors=FALSE) colnames(df.nn)<-names(data_scaled_with_mean[,c(1:7)]) varimp.nn<-apply(df.nn,2,mean)
/Regression_for_predicting_traindelay.R
no_license
aishiitm/Internship-with-Tech-Mahindra
R
false
false
5,688
r
#ultiple Linear/Non-linear regression to determine train delay given 46 factors library(MASS) library(caret) library(xlsx) library(neuralnet) library(e1071) a<-read.csv("TSC_430.csv",sep=",") b<-read.csv("TSC_Meta_data",sheet="Sheet2",header=TRUE) colnames(a)<-b[,2] #Averaging factors of precipitation, visibility, etc at the origin and destination anew2<- transform(anew2, journey_average_precipitation = rowMeans(anew2[,c(2,8)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_temperature = rowMeans(anew2[,c(3,9)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_cloud_cover = rowMeans(anew2[,c(4,10)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_weather_visibility = rowMeans(anew2[,c(5,11)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_weather_wind_gust_speed = rowMeans(anew2[,c(6,12)], na.rm = TRUE)) anew2<- transform(anew2, journey_average_weather_wind_speed = rowMeans(anew2[,c(7,13)], na.rm = TRUE)) anew8<-anew2[,c(19:24)] anew8$journeystopcount<-anew2$journey_stopcount #Computing the actual delay time(Delay at destination-delay at the origin) ptm<-proc.time() for(i in 1:nrow(a)){ if(a$journey_origin_variation_status[i]=="LATE"){ a$actualdelaytime[i]=((a$journey_destination_timetable_variation[i])-(a$journey_origin_timetable_variation[i])) }else if(a$journey_origin_variation_status[i]=="EARLY"){ a$actualdelaytime[i]=((a$journey_destination_timetable_variation[i])+(a$journey_origin_timetable_variation[i]))} else if(a$journey_origin_variation_status[i]=="ON TIME"){ a$actualdelaytime[i]=((a$journey_destination_timetable_variation[i])-(a$journey_origin_timetable_variation[i])) }else if(a$journey_origin_variation_status[i]=="OFF ROUTE"){ a$actualdelaytime[i]=a$journey_destination_timetable_variation[i] }else if(a$journey_origin_variation_status[i]==""){ a$actualdelaytime[i]=NA } } elapsed<-proc.time()-ptm #Calculating mean of origin and destination for all the 12 other variables-reduces to Mean_of_variables_dataset anew8$actualdelaytime<-a$actualdelaytime #Removing outliers in the data-using cooks distance model_for_outliers<-lm(actualdelaytime~.,data=anew8) cooksd<-cooks.distance(model_for_outliers) influential <- as.numeric(names(cooksd)[(cooksd > 4*mean(cooksd, na.rm=T))]) data_without_outliers<-anew8[-influential,] ##Removing rows with NA-complete.cases function final_data_for_prediction<-data_without_outliers[complete.cases(data_without_outliers),] set.seed(345) index <- sample(1:nrow(final_data_for_prediction),round(0.75*nrow(final_data_for_prediction))) train <-final_data_for_prediction[index,] test <- final_data_for_prediction[-index,] # Fitting linear model-without scaling and centering lm.fit <- glm(actualdelaytime~., data=train) summary(lm.fit) # Predicted data from lm pr.lm2 <- predict(lm.fit,test) # Test MSE MSE.lm <- sum((pr.lm2 - test$actualdelaytime)^2)/nrow(test) ##-----Another method-Scaling and using Cross Validation in linear model for measuring RMSE-------------------# std<-apply(final_data_for_prediction,2,sd) data_scaled_with_mean<-as.data.frame(scale(final_data_for_prediction),center=TRUE,scale=std) set.seed(450) cv.error<-NULL variableimportance<-NULL k <- 10 for(i in 1:k){ index <- sample(1:nrow(final_data_for_prediction),round(0.75*nrow(final_data_for_prediction))) train.cv <- data_scaled_with_mean[index,] test.cv <- data_scaled_with_mean[-index,] model2 <- lm(actualdelaytime~.,data=train.cv) pr.lm <- predict(model2,test.cv[,1:8]) pr.lm <- pr.lm*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) test.cv.r <- (test.cv$actualdelaytime)*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) variableimportance[i]<-varImp(model2) cv.error[i] <- (sum((test.cv.r-pr.lm)^2))/length(test.cv.r) } cross_validation_error_in_linear_fit<-mean(cv.error) df<-data.frame(matrix(unlist(variableimportance),nrow=10,byrow=T),stringsasFactors=FALSE) df<-df[,-8] colnames(df)<-names(data_scaled_with_mean[,c(1:7)]) varimp_according_to_linear_model<-apply(df,2,mean)#This gives the mean of the variable importance of each variable through all the 10 iterations correlation<-as.data.frame(cor(data_scaled_with_mean)) ##--------------Using neural networks for regression-------------------------## n <- names(train) f <- as.formula(paste("actualdelaytime ~", paste(n[!n %in% "actualdelaytime"], collapse = " + "))) set.seed(786) m<-10 cv.error.nn<-NULL variableimportance.nn<-NULL for(j in 1:m){ index <- sample(1:nrow(data_scaled_with_mean),round(0.75*nrow(data_scaled_with_mean))) train.cv.nn <- data_scaled_with_mean[index,] test.cv.nn <- data_scaled_with_mean[-index,] nn <- neuralnet(f,data=train.cv.nn,hidden=4,linear.output=TRUE) pr.nn <- compute(nn,test.cv.nn[,1:8]) pr.nn <- pr.nn$net.result*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) test.cv.r.nn <- (test.cv.nn$actualdelaytime)*(sd(final_data_for_prediction$actualdelaytime))+mean(final_data_for_prediction$actualdelaytime) variableimportance.nn[j]<-varImp(nn) cv.error.nn[j] <- (sum((test.cv.r.nn - pr.nn)^2))/nrow(test.cv.nn) } mean(cv.error.nn) df.nn<-data.frame(matrix(unlist(variableimportance.nn),nrow=10,byrow=T),stringsasFactors=FALSE) colnames(df.nn)<-names(data_scaled_with_mean[,c(1:7)]) varimp.nn<-apply(df.nn,2,mean)
defineModule(sim, list( name="disturbanceDriver", description="generate parameters for the generic percolation model",# spades::spread()", keywords=c("fire"), authors=c(person(c("Steve", "G"), "Cumming", email="stevec@sbf.ulaval.ca", role=c("aut", "cre"))), childModules=character(), version=numeric_version("0.1.0"), spatialExtent=raster::extent(rep(NA_real_, 4)), timeframe=as.POSIXlt(c(NA, NA)), timeunit="year", citation=list(), reqdPkgs=list("stats"), parameters=rbind( defineParameter(".plotInitialTime", "numeric", NA, NA, NA, "This describes the simulation time at which the first plot event should occur"), defineParameter(".saveInitialTime", "numeric", NA, NA, NA, "This describes the simulation time at which the first save event should occur")), #defineParameter("paramName", "paramClass", value, min, max, "parameter description")), inputObjects=data.frame(objectName=c("spreadCalibrationData","fireRegimeParameters","fireMapAttr"), objectClass=c("data.frame","list","list"), other=rep(NA_character_,3), stringsAsFactors=FALSE), #inputObjects=data.frame(objectName=c("fireRegimeParameters","spreadCalibrationData"), objectClass=c("list","data.frame"), other=rep(NA_character_,2), stringsAsFactors=FALSE), outputObjects=data.frame(objectName=c("spreadParameters"), objectClass=c("list"), other=NA_character_, stringsAsFactors=FALSE) )) ## event types # - type `init` is required for initiliazation doEvent.disturbanceDriver = function(sim, eventTime, eventType, debug=FALSE) { if (eventType=="init") { ### check for more detailed object dependencies: ### (use `checkObject` or similar) # do stuff for this event disturbanceDriverInit(sim) # schedule future event(s) scheduleEvent(sim, params(sim)$disturbanceDriver$.plotInitialTime, "disturbanceDriver", "plot") scheduleEvent(sim, params(sim)$disturbanceDriver$.saveInitialTime, "disturbanceDriver", "save") } else if (eventType=="templateEvent") { # ! ----- EDIT BELOW ----- ! # # do stuff for this event # e.g., call your custom functions/methods here # you can define your own methods below this `doEvent` function # schedule future event(s) # e.g., # scheduleEvent(sim, time(sim) + increment, "disturbanceDriver", "templateEvent") # ! ----- STOP EDITING ----- ! # } else { warning(paste("Undefined event type: '", events(sim)[1, "eventType", with=FALSE], "' in module '", events(sim)[1, "moduleName", with=FALSE], "'", sep="")) } return(invisible(sim)) } ## event functions # - follow the naming convention `modulenameEventtype()`; # - `modulenameInit()` function is required for initiliazation; # - keep event functions short and clean, modularize by calling subroutines from section below. ### template initilization # 1 - (1-p0)**N = pEscape # 1 - pEscape = (1-p0)**N # (1 - pEscape)**1/N = 1 - p0 # p0 = 1 - (1 - pEscape)**1/N disturbanceDriverInit = function(sim) { hatP0<-function(pEscape,n=8){ 1 - (1-pEscape)**(1/n) } #a real clever boots would minimise the abs log odds ratio. #be my guest. escapeProbDelta<-function(p0,w,hatPE){ abs(sum(w*(1-(1-p0)**(0:8)))-hatPE) } #this table contains calibration data for several landscape sizes #and several min fire sizes (1 or 2 cells), organised by collumn. #The data were made by Steve Cumming in June 2013 for a whole other purpose. #I chose the one that seems most appropriate to me #browser() y<-log(sim$spreadCalibrationData[,paste("ls",1e3,"fs",2,sep="")]) x<-sim$spreadCalibrationData$pjmp m.glm<-glm(x~I(log(y))) mfs<-sim$fireRegimeParameters$xBar/sim$fireMapAttr$cellSize #mean size escaped fires in cells pJmp<-sum(m.glm$coeff*c(1,log(mfs))) w<-sim$fireMapAttr$nNbrs w<-w/sum(w) hatPE<-sim$fireRegimeParameters$pEscape foo<-optimise(escapeProbDelta,interval=c(hatP0(hatPE,8),hatP0(hatPE,floor(sum(w*0:8)))),tol=1e6,w=w,hatPE=hatPE) spreadParameters<-list(pJmp=pJmp,p0=foo$minimum,naiveP0=hatP0(sim$fireRegimeParameters$pEscape,8)) return(invisible(sim)) } ### template for save events disturbanceDriverSave = function(sim) { # ! ----- EDIT BELOW ----- ! # # do stuff for this event sim <- saveFiles(sim) # ! ----- STOP EDITING ----- ! # return(invisible(sim)) } ### template for plot events disturbanceDriverPlot = function(sim) { # ! ----- EDIT BELOW ----- ! # # do stuff for this event #Plot("object") # ! ----- STOP EDITING ----- ! # return(invisible(sim)) } ### template for your event1 disturbanceDriverEvent1 = function(sim) { # ! ----- EDIT BELOW ----- ! # # ! ----- STOP EDITING ----- ! # return(invisible(sim)) } ### add additional events as needed by copy/pasting from above
/disturbanceDriver/disturbanceDriver.R
no_license
SteveCumming/BEACONs
R
false
false
4,872
r
defineModule(sim, list( name="disturbanceDriver", description="generate parameters for the generic percolation model",# spades::spread()", keywords=c("fire"), authors=c(person(c("Steve", "G"), "Cumming", email="stevec@sbf.ulaval.ca", role=c("aut", "cre"))), childModules=character(), version=numeric_version("0.1.0"), spatialExtent=raster::extent(rep(NA_real_, 4)), timeframe=as.POSIXlt(c(NA, NA)), timeunit="year", citation=list(), reqdPkgs=list("stats"), parameters=rbind( defineParameter(".plotInitialTime", "numeric", NA, NA, NA, "This describes the simulation time at which the first plot event should occur"), defineParameter(".saveInitialTime", "numeric", NA, NA, NA, "This describes the simulation time at which the first save event should occur")), #defineParameter("paramName", "paramClass", value, min, max, "parameter description")), inputObjects=data.frame(objectName=c("spreadCalibrationData","fireRegimeParameters","fireMapAttr"), objectClass=c("data.frame","list","list"), other=rep(NA_character_,3), stringsAsFactors=FALSE), #inputObjects=data.frame(objectName=c("fireRegimeParameters","spreadCalibrationData"), objectClass=c("list","data.frame"), other=rep(NA_character_,2), stringsAsFactors=FALSE), outputObjects=data.frame(objectName=c("spreadParameters"), objectClass=c("list"), other=NA_character_, stringsAsFactors=FALSE) )) ## event types # - type `init` is required for initiliazation doEvent.disturbanceDriver = function(sim, eventTime, eventType, debug=FALSE) { if (eventType=="init") { ### check for more detailed object dependencies: ### (use `checkObject` or similar) # do stuff for this event disturbanceDriverInit(sim) # schedule future event(s) scheduleEvent(sim, params(sim)$disturbanceDriver$.plotInitialTime, "disturbanceDriver", "plot") scheduleEvent(sim, params(sim)$disturbanceDriver$.saveInitialTime, "disturbanceDriver", "save") } else if (eventType=="templateEvent") { # ! ----- EDIT BELOW ----- ! # # do stuff for this event # e.g., call your custom functions/methods here # you can define your own methods below this `doEvent` function # schedule future event(s) # e.g., # scheduleEvent(sim, time(sim) + increment, "disturbanceDriver", "templateEvent") # ! ----- STOP EDITING ----- ! # } else { warning(paste("Undefined event type: '", events(sim)[1, "eventType", with=FALSE], "' in module '", events(sim)[1, "moduleName", with=FALSE], "'", sep="")) } return(invisible(sim)) } ## event functions # - follow the naming convention `modulenameEventtype()`; # - `modulenameInit()` function is required for initiliazation; # - keep event functions short and clean, modularize by calling subroutines from section below. ### template initilization # 1 - (1-p0)**N = pEscape # 1 - pEscape = (1-p0)**N # (1 - pEscape)**1/N = 1 - p0 # p0 = 1 - (1 - pEscape)**1/N disturbanceDriverInit = function(sim) { hatP0<-function(pEscape,n=8){ 1 - (1-pEscape)**(1/n) } #a real clever boots would minimise the abs log odds ratio. #be my guest. escapeProbDelta<-function(p0,w,hatPE){ abs(sum(w*(1-(1-p0)**(0:8)))-hatPE) } #this table contains calibration data for several landscape sizes #and several min fire sizes (1 or 2 cells), organised by collumn. #The data were made by Steve Cumming in June 2013 for a whole other purpose. #I chose the one that seems most appropriate to me #browser() y<-log(sim$spreadCalibrationData[,paste("ls",1e3,"fs",2,sep="")]) x<-sim$spreadCalibrationData$pjmp m.glm<-glm(x~I(log(y))) mfs<-sim$fireRegimeParameters$xBar/sim$fireMapAttr$cellSize #mean size escaped fires in cells pJmp<-sum(m.glm$coeff*c(1,log(mfs))) w<-sim$fireMapAttr$nNbrs w<-w/sum(w) hatPE<-sim$fireRegimeParameters$pEscape foo<-optimise(escapeProbDelta,interval=c(hatP0(hatPE,8),hatP0(hatPE,floor(sum(w*0:8)))),tol=1e6,w=w,hatPE=hatPE) spreadParameters<-list(pJmp=pJmp,p0=foo$minimum,naiveP0=hatP0(sim$fireRegimeParameters$pEscape,8)) return(invisible(sim)) } ### template for save events disturbanceDriverSave = function(sim) { # ! ----- EDIT BELOW ----- ! # # do stuff for this event sim <- saveFiles(sim) # ! ----- STOP EDITING ----- ! # return(invisible(sim)) } ### template for plot events disturbanceDriverPlot = function(sim) { # ! ----- EDIT BELOW ----- ! # # do stuff for this event #Plot("object") # ! ----- STOP EDITING ----- ! # return(invisible(sim)) } ### template for your event1 disturbanceDriverEvent1 = function(sim) { # ! ----- EDIT BELOW ----- ! # # ! ----- STOP EDITING ----- ! # return(invisible(sim)) } ### add additional events as needed by copy/pasting from above
#' pribor #' #' A function returning data frame of PRague InterBank OffeRed rates (PRIBOR). #' #' The function expects date input, and returns data frame of two or more columns - date, and relevant PRIBOR rate (as determined by `maturity` parameter). #' #' PRIBOR rates are reported as fractions, i.e. not as percentages (i.e. 1\% is reported as .01, not 1). #' #' For dates when no PRIBOR was quoted (e.g. weekends, Bank Holidays, such as December 24th on any year, or August 13th, 2002 when no PRIBOR was quoted due to catastrophic floods) no result will be returned. #' #' @name pribor #' #' @param date Date of fixing as date, default is yesterday. #' @param maturity Maturity of loan as string, default is overnight ("1D"). #' #' @return data frame - first column is date, second is relevant PRIBOR rate. #' @export #' #' @examples pribor(as.Date("2002-08-12"), "1D") #' # exported function... pribor <- function(date = Sys.Date() - 1, maturity = "1D") { cnb <- as.logical(Sys.getenv("CNB_UP", unset = TRUE)) # dummy variable to allow testing of network if (!ok_to_proceed("https://www.cnb.cz/en/financial-markets/money-market/pribor/fixing-of-interest-rates-on-interbank-deposits-pribor/year.txt") | !cnb) { # CNB website down message("Data source broken.") return(NULL) } # a quick reality check: if(!inherits(date, "Date")) stop("'date' parameter expected as a Date data type!") if(!all(maturity %in% c("1D", "1W", "2W", "1M", "3M", "6M", "9M", "1Y"))) stop(paste0("'", maturity, "' is not a recognized maturity abbreviation!")) roky <- format(date, "%Y") %>% unique() sazba <- paste0("PRIBOR_", maturity) res <- lapply(roky, dnl_pribor) %>% dplyr::bind_rows() %>% dplyr::filter(date_valid %in% date) %>% dplyr::select(date_valid, !! sazba) %>% dplyr::mutate_if(is.numeric, ~ . / 100) %>% dplyr::arrange(date_valid) res } # / exported function # downloader - a helper function to be l-applied dnl_pribor <- function(year) { remote_path <- "https://www.cnb.cz/cs/financni-trhy/penezni-trh/pribor/fixing-urokovych-sazeb-na-mezibankovnim-trhu-depozit-pribor/rok.txt?year=" # remote archive remote_file <- paste0(remote_path, year) # path to ČNB source data local_file <- file.path(tempdir(), paste0("pr-", year, ".txt")) # local file - in tempdir if (!file.exists(local_file)) { # proceed to download via curl curl::curl_download(url = remote_file, destfile = local_file, quiet = T) Sys.sleep(1/500) } # /if - local file exists local_df <- readr::read_delim(local_file, delim = "|", skip = 2, locale = readr::locale(decimal_mark = ","), col_names = c( "date_valid", "PRIBID_1D", "PRIBOR_1D", "PRIBID_1W", "PRIBOR_1W", "PRIBID_2W", "PRIBOR_2W", "PRIBID_1M", "PRIBOR_1M", "PRIBID_2M", "PRIBOR_2M", "PRIBID_3M", "PRIBOR_3M", "PRIBID_6M", "PRIBOR_6M", "PRIBID_9M", "PRIBOR_9M", "PRIBID_1Y", "PRIBOR_1Y" ), col_types = readr::cols( date_valid = readr::col_date(format = "%d.%m.%Y"), PRIBID_1D = readr::col_double(), PRIBOR_1D = readr::col_double(), PRIBID_1W = readr::col_double(), PRIBOR_1W = readr::col_double(), PRIBID_2W = readr::col_double(), PRIBOR_2W = readr::col_double(), PRIBID_1M = readr::col_double(), PRIBOR_1M = readr::col_double(), PRIBID_2M = readr::col_double(), PRIBOR_2M = readr::col_double(), PRIBID_3M = readr::col_double(), PRIBOR_3M = readr::col_double(), PRIBID_6M = readr::col_double(), PRIBOR_6M = readr::col_double(), PRIBID_9M = readr::col_double(), PRIBOR_9M = readr::col_double(), PRIBID_1Y = readr::col_double(), PRIBOR_1Y = readr::col_double() ) ) attr(local_df, 'spec') <- NULL local_df } # /function
/R/pribor.R
permissive
jla-data/czechrates
R
false
false
4,816
r
#' pribor #' #' A function returning data frame of PRague InterBank OffeRed rates (PRIBOR). #' #' The function expects date input, and returns data frame of two or more columns - date, and relevant PRIBOR rate (as determined by `maturity` parameter). #' #' PRIBOR rates are reported as fractions, i.e. not as percentages (i.e. 1\% is reported as .01, not 1). #' #' For dates when no PRIBOR was quoted (e.g. weekends, Bank Holidays, such as December 24th on any year, or August 13th, 2002 when no PRIBOR was quoted due to catastrophic floods) no result will be returned. #' #' @name pribor #' #' @param date Date of fixing as date, default is yesterday. #' @param maturity Maturity of loan as string, default is overnight ("1D"). #' #' @return data frame - first column is date, second is relevant PRIBOR rate. #' @export #' #' @examples pribor(as.Date("2002-08-12"), "1D") #' # exported function... pribor <- function(date = Sys.Date() - 1, maturity = "1D") { cnb <- as.logical(Sys.getenv("CNB_UP", unset = TRUE)) # dummy variable to allow testing of network if (!ok_to_proceed("https://www.cnb.cz/en/financial-markets/money-market/pribor/fixing-of-interest-rates-on-interbank-deposits-pribor/year.txt") | !cnb) { # CNB website down message("Data source broken.") return(NULL) } # a quick reality check: if(!inherits(date, "Date")) stop("'date' parameter expected as a Date data type!") if(!all(maturity %in% c("1D", "1W", "2W", "1M", "3M", "6M", "9M", "1Y"))) stop(paste0("'", maturity, "' is not a recognized maturity abbreviation!")) roky <- format(date, "%Y") %>% unique() sazba <- paste0("PRIBOR_", maturity) res <- lapply(roky, dnl_pribor) %>% dplyr::bind_rows() %>% dplyr::filter(date_valid %in% date) %>% dplyr::select(date_valid, !! sazba) %>% dplyr::mutate_if(is.numeric, ~ . / 100) %>% dplyr::arrange(date_valid) res } # / exported function # downloader - a helper function to be l-applied dnl_pribor <- function(year) { remote_path <- "https://www.cnb.cz/cs/financni-trhy/penezni-trh/pribor/fixing-urokovych-sazeb-na-mezibankovnim-trhu-depozit-pribor/rok.txt?year=" # remote archive remote_file <- paste0(remote_path, year) # path to ČNB source data local_file <- file.path(tempdir(), paste0("pr-", year, ".txt")) # local file - in tempdir if (!file.exists(local_file)) { # proceed to download via curl curl::curl_download(url = remote_file, destfile = local_file, quiet = T) Sys.sleep(1/500) } # /if - local file exists local_df <- readr::read_delim(local_file, delim = "|", skip = 2, locale = readr::locale(decimal_mark = ","), col_names = c( "date_valid", "PRIBID_1D", "PRIBOR_1D", "PRIBID_1W", "PRIBOR_1W", "PRIBID_2W", "PRIBOR_2W", "PRIBID_1M", "PRIBOR_1M", "PRIBID_2M", "PRIBOR_2M", "PRIBID_3M", "PRIBOR_3M", "PRIBID_6M", "PRIBOR_6M", "PRIBID_9M", "PRIBOR_9M", "PRIBID_1Y", "PRIBOR_1Y" ), col_types = readr::cols( date_valid = readr::col_date(format = "%d.%m.%Y"), PRIBID_1D = readr::col_double(), PRIBOR_1D = readr::col_double(), PRIBID_1W = readr::col_double(), PRIBOR_1W = readr::col_double(), PRIBID_2W = readr::col_double(), PRIBOR_2W = readr::col_double(), PRIBID_1M = readr::col_double(), PRIBOR_1M = readr::col_double(), PRIBID_2M = readr::col_double(), PRIBOR_2M = readr::col_double(), PRIBID_3M = readr::col_double(), PRIBOR_3M = readr::col_double(), PRIBID_6M = readr::col_double(), PRIBOR_6M = readr::col_double(), PRIBID_9M = readr::col_double(), PRIBOR_9M = readr::col_double(), PRIBID_1Y = readr::col_double(), PRIBOR_1Y = readr::col_double() ) ) attr(local_df, 'spec') <- NULL local_df } # /function
#' Finding DMR #' #' Finding DMR by Wilcoxon, t-Student, Kolmogorov-Smirnow tests or logistic regression, logistic regression with mixed models, #' logistic regression with mixed models with correlation matrix. #' In Ttest, Wilcoxon and Ks are compared methylation rate between x and y prob on the same position and chromosome #' and null hypothesis is that mean (median, distribution respectively) of methylation rate. #' In these methods alternative hypothesis is two sided and these sorts regions based on criticial value. #' #' In regression methods, number of success are number of methylated citosines and failures are number of unmethylated citosines. #' Output from this methods is beta coefficient of indicator variable from regression model and criticial value from Wald test on indicator variable. #' Indicator variable is equal 1 if observations are from x prob and 0 otherwise. These methods order regions based on beta coefficients of #' grouping variable or p.values of grouping variable. #' In mixed models explantatory variable is only indicator variable and positions of chromosome are random effects. #' In standard logistic regression explantatory variables are also position of chromosome. #' @param data There are two options: 1. dataframe with specific columns: chr, poz, prob, no, meth, unmeth, meth.rate. #' This dataframe is result of function preprocessing. #' 2. dataframe with specific columns: chr, poz, prob, no, meth, unmeth, meth.rate, tiles and possible tiles.common columns. This dataframe is result of function create.tiles.min.gap or #' create.tiles.fixed.length. #' @param methods vectors with given methods. Possible values are: 'Wilcoxon', 'Ttest', 'KS', 'Reg.Log', 'Reg.Mixed', #' 'Reg.Corr.Mixed'. #' 'Wilcoxon' - Wilcoxon signed test; #' 'Ttest' - t-Student test with unequal variance; #' 'KS' - Kolmogorov-Smirnov test; #' 'Reg.Log' - Wald test of grouping variable from logistic regression; #' 'Reg.Mixed' - Wald test of grouping variable from logistic regression with mixed effects; #' 'Reg.Corr.Mixed' - Wald test of grouping variable from logistic regression with mixed effect and estimated previous correlation matrix #' @param p.value.log.reg if not NULL regions with p.value of prob variable smaller than p.value.log.reg are returned and decreasingly ordered by absolute value of beta coefficient #' of prob variable otherwise regions ale increasingly ordered by p.value #' @param p.value.reg.mixed if not NULL regions with p.value of prob variable smaller than p.value.log.reg are returned and decreasingly ordered by absolute value of beta coefficient #' of prob variable otherwise regions ale increasingly ordered by p.value #' @param p.value.reg.corr.mixed if not NULL regions with p.value of prob variable smaller than p.value.log.reg are returned and decreasingly ordered by absolute value of beta coefficient #' of prob variable otherwise regions ale increasingly ordered by p.value #' @param beta.coef.max only results which have absolute value of beta.coef less than this parameter are returned from Log.Reg, Reg.Mixed, Reg.Corr.Mixed. This prevent cases when algorithm #' did not convergence well #' @return list object. Elements of list are results of given methods. The most interesting regions are on the top #' @export #' @examples #' data('schizophrenia') #' control <- schizophrenia %>% filter(category == 'control') %>% #' dplyr::select(-category) #' #' disease <- schizophrenia %>% filter(category == 'disease') %>% #' dplyr::select(-category) #' #' data <- preprocessing(control, disease) #' data.tiles <- create_tiles_max_gap(data, gaps.length = 100) #' data.tiles.small <- data.tiles %>% filter(tiles < 30) #' #' #finding DMR by all methods with sorting on p.values #' find_DMR(data.tiles.small, c('Wilcoxon', 'Ttest', 'KS', 'Reg.Log', 'Reg.Mixed', 'Reg.Corr.Mixed')) #' #' #finding DMR by 'Reg.Log', 'Reg.Mixed', 'Reg.Corr.Mixed' with sorting on beta values #' find_DMR(data.tiles.small, c('Reg.Log', 'Reg.Mixed', 'Reg.Corr.Mixed'), p.value.log.reg = 0.01, p.value.reg.mixed = 0.02, p.value.reg.corr.mixed=0.03) #' #' #finding DMR only by 'Reg.Log' with sorting on beta values and 'Wilcoxon' with sorting on p.values #' find_DMR(data.tiles.small, c('Wilcoxon', 'Reg.Log'), p.value.log.reg = 0.001) find_DMR <- function(data, methods, p.value.log.reg = NULL, p.value.reg.mixed= NULL, p.value.reg.corr.mixed= NULL, beta.coef.max = 30){ check_data_without_tiles(data[,1:7]) check_tiles_in_data(data) check_args_find_DMR(methods, p.value.log.reg, p.value.reg.mixed, p.value.reg.corr.mixed, beta.coef.max) data <- group_data(data, prob = F) find_DMR_given_methods(data, methods, p.value.log.reg,p.value.reg.mixed, p.value.reg.corr.mixed, beta.coef.max) }
/R/find_DMR.R
no_license
geneticsMiNIng/metR
R
false
false
4,878
r
#' Finding DMR #' #' Finding DMR by Wilcoxon, t-Student, Kolmogorov-Smirnow tests or logistic regression, logistic regression with mixed models, #' logistic regression with mixed models with correlation matrix. #' In Ttest, Wilcoxon and Ks are compared methylation rate between x and y prob on the same position and chromosome #' and null hypothesis is that mean (median, distribution respectively) of methylation rate. #' In these methods alternative hypothesis is two sided and these sorts regions based on criticial value. #' #' In regression methods, number of success are number of methylated citosines and failures are number of unmethylated citosines. #' Output from this methods is beta coefficient of indicator variable from regression model and criticial value from Wald test on indicator variable. #' Indicator variable is equal 1 if observations are from x prob and 0 otherwise. These methods order regions based on beta coefficients of #' grouping variable or p.values of grouping variable. #' In mixed models explantatory variable is only indicator variable and positions of chromosome are random effects. #' In standard logistic regression explantatory variables are also position of chromosome. #' @param data There are two options: 1. dataframe with specific columns: chr, poz, prob, no, meth, unmeth, meth.rate. #' This dataframe is result of function preprocessing. #' 2. dataframe with specific columns: chr, poz, prob, no, meth, unmeth, meth.rate, tiles and possible tiles.common columns. This dataframe is result of function create.tiles.min.gap or #' create.tiles.fixed.length. #' @param methods vectors with given methods. Possible values are: 'Wilcoxon', 'Ttest', 'KS', 'Reg.Log', 'Reg.Mixed', #' 'Reg.Corr.Mixed'. #' 'Wilcoxon' - Wilcoxon signed test; #' 'Ttest' - t-Student test with unequal variance; #' 'KS' - Kolmogorov-Smirnov test; #' 'Reg.Log' - Wald test of grouping variable from logistic regression; #' 'Reg.Mixed' - Wald test of grouping variable from logistic regression with mixed effects; #' 'Reg.Corr.Mixed' - Wald test of grouping variable from logistic regression with mixed effect and estimated previous correlation matrix #' @param p.value.log.reg if not NULL regions with p.value of prob variable smaller than p.value.log.reg are returned and decreasingly ordered by absolute value of beta coefficient #' of prob variable otherwise regions ale increasingly ordered by p.value #' @param p.value.reg.mixed if not NULL regions with p.value of prob variable smaller than p.value.log.reg are returned and decreasingly ordered by absolute value of beta coefficient #' of prob variable otherwise regions ale increasingly ordered by p.value #' @param p.value.reg.corr.mixed if not NULL regions with p.value of prob variable smaller than p.value.log.reg are returned and decreasingly ordered by absolute value of beta coefficient #' of prob variable otherwise regions ale increasingly ordered by p.value #' @param beta.coef.max only results which have absolute value of beta.coef less than this parameter are returned from Log.Reg, Reg.Mixed, Reg.Corr.Mixed. This prevent cases when algorithm #' did not convergence well #' @return list object. Elements of list are results of given methods. The most interesting regions are on the top #' @export #' @examples #' data('schizophrenia') #' control <- schizophrenia %>% filter(category == 'control') %>% #' dplyr::select(-category) #' #' disease <- schizophrenia %>% filter(category == 'disease') %>% #' dplyr::select(-category) #' #' data <- preprocessing(control, disease) #' data.tiles <- create_tiles_max_gap(data, gaps.length = 100) #' data.tiles.small <- data.tiles %>% filter(tiles < 30) #' #' #finding DMR by all methods with sorting on p.values #' find_DMR(data.tiles.small, c('Wilcoxon', 'Ttest', 'KS', 'Reg.Log', 'Reg.Mixed', 'Reg.Corr.Mixed')) #' #' #finding DMR by 'Reg.Log', 'Reg.Mixed', 'Reg.Corr.Mixed' with sorting on beta values #' find_DMR(data.tiles.small, c('Reg.Log', 'Reg.Mixed', 'Reg.Corr.Mixed'), p.value.log.reg = 0.01, p.value.reg.mixed = 0.02, p.value.reg.corr.mixed=0.03) #' #' #finding DMR only by 'Reg.Log' with sorting on beta values and 'Wilcoxon' with sorting on p.values #' find_DMR(data.tiles.small, c('Wilcoxon', 'Reg.Log'), p.value.log.reg = 0.001) find_DMR <- function(data, methods, p.value.log.reg = NULL, p.value.reg.mixed= NULL, p.value.reg.corr.mixed= NULL, beta.coef.max = 30){ check_data_without_tiles(data[,1:7]) check_tiles_in_data(data) check_args_find_DMR(methods, p.value.log.reg, p.value.reg.mixed, p.value.reg.corr.mixed, beta.coef.max) data <- group_data(data, prob = F) find_DMR_given_methods(data, methods, p.value.log.reg,p.value.reg.mixed, p.value.reg.corr.mixed, beta.coef.max) }
library(data.table) library(ggplot2) library(wpp2017) ## IHME pops/mort source("/home/j/temp/central_comp/libraries/current/r/get_demographics.R") source("/home/j/temp/central_comp/libraries/current/r/get_demographics_template.R") mortality_2016_demographics <- get_demographics(gbd_team="mort", gbd_round_id=4) pops <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/WPP2017_INT_F03_2_POPULATION_BY_AGE_ANNUAL_MALE.csv', skip=1) names(pops) <- c('Index','Variant','name','Notes','country_code','year',paste0('age',as.character(c(0:79))), 'age80plus', paste0('age',as.character(c(80:100)))) broad_regions <- c('WORLD','More developed regions','Less developed regions','Least developed countries', 'Less developed regions, excluding least developed countries','Less developed regions, excluding China','High-income countries','Middle-income countries', 'Upper-middle-income countries','Lower-middle-income countries','Low-income countries','Sub-Saharan Africa','AFRICA', 'Eastern Africa','Middle Africa','Northern Africa','Southern Africa','Western Africa','ASIA','Eastern Asia', 'South-Central Asia','Central Asia','South-Eastern Asia','Western Asia','EUROPE','Eastern Europe', 'Northern Europe','Western Europe','Southern Europe','LATIN AMERICA AND THE CARIBBEAN','Caribbean', 'Central America','South America','NORTHERN AMERICA','Canada','United States of America','OCEANIA','Southern Asia') pops <- pops[!(name %in% broad_regions), ] cols <- grep("^age", names(pops), value = TRUE) for(c in cols) { pops[, (c) := as.numeric(gsub(' ','',get(c)))] } pops <- pops[, total_pop := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=grep("^age", names(pops))] total_pops <- pops[, c('name','year','total_pop')] total_pops[, total_pop := total_pop * 1000] for(c in cols) { pops[, paste0('prop_',c) := get(c) / total_pop] } pops <- pops[, size_15_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('age15','age16','age17','age18','age19')] pops <- pops[, prop_15_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('prop_age15','prop_age16','prop_age17','prop_age18','prop_age19')] pops <- pops[, size_10_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('age10','age11','age12','age13','age14','age15','age16','age17','age18','age19')] pops <- pops[, prop_10_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('prop_age10','prop_age11','prop_age12','prop_age13','prop_age14','prop_age15','prop_age16','prop_age17','prop_age18','prop_age19')] pops <- pops[, size_20_24 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('age20','age21','age22','age23','age24')] for(y in seq(1950,2015,5)) pops[year>=y, five_year := y] pops <- pops[, list(prop_15_19=mean(prop_15_19), size_15_19=mean(size_15_19),size_20_24=mean(size_20_24), prop_10_19=mean(prop_10_19), size_10_19=mean(size_10_19)), by=c('country_code','name','five_year')] setnames(pops, 'five_year', 'year') pops[, ratio_15_19_20_24 := size_15_19 / size_20_24] ggplot() + geom_line(data=pops[name=='Liberia',], aes(x=year,y=ratio_15_19_20_24)) + xlim(c(1985,2005)) nm <- copy(net_migration) nm[, year := year - 2.5] ni <- copy(crni) ni[, year := year - 2.5] om <- copy(out_migration[,c('name','year','out_rate','out_migration')]) om[, year := year - 2.5] mx_subset <- mx[sex=='Male' & age==0, ] mx_subset[, year := year - 2.5] cohorts <- merge(om, pops, by=c('name','year'), all.y=TRUE) cohorts <- merge(cohorts, nm, by=c('name','year','country_code'), all.x=TRUE) cohorts <- merge(cohorts, mx_subset, by=c('name','year','country_code'), all.x=TRUE) cohorts <- merge(cohorts, ni, by=c('name','year','country_code'), all.x=TRUE) cohorts <- cohorts[order(name,year)] ## Create lags and changes create_changes <- function(n, dt, vars, lag, change=FALSE, year_step=5) { dt.n <- dt[name==n, ] if(length(dt.n[, name])==1) return(NULL) if(length(dt.n[, name])!=1) { for(r in seq(min(dt.n[, year]),max(dt.n[, year]),year_step)) { for(v in vars) { if(r>=min(dt.n[, year])+lag & change==TRUE) { previous_v <- dt.n[year==r-lag, get(v)] dt.n[year==r, paste0('relchange_',(v)) := (get(v)-previous_v)/previous_v] dt.n[year==r, paste0('abschange_',(v)) := get(v)-previous_v] dt.n[year==r, paste0('r_',(v)) := log(get(v)/previous_v)/lag] } if(r>=min(dt.n[, year])+lag) { lag_v <- dt.n[year==r-lag, get(v)] dt.n[year==r, paste0('lag',lag,'_',(v)) := lag_v] } } } return(dt.n) } } cohort_change <- rbindlist(lapply(unique(cohorts[, name]), create_changes, dt = cohorts, vars = c('prop_15_19','size_15_19','mx','out_rate'), change = TRUE, lag = 5)) cohort_change <- rbindlist(lapply(unique(cohorts[, name]), create_changes, dt = cohort_change, vars = c('prop_10_19','size_10_19'), change = TRUE, lag = 10)) ## Calculate all possible lags of r for migration correlation. for(l in c(0,5,10,15,20)) { cohort_change <- rbindlist(lapply(unique(cohort_change[, name]), create_changes, dt = cohort_change, vars = c('r_size_15_19','r_mx','crni','net_migration','mx','r_size_10_19'), change = FALSE, lag = l)) } ## Angola, Burundi, Burkina Faso, Congo, Honduras write.csv(cohort_change, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/all_migration_data.csv', row.names=FALSE) cohort_change <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/all_migration_data.csv') cor_countries_mort <- readRDS('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/cor_countries_mort.RDS') transition_countries <- data.table(country=cor_countries_mort) # write.csv(transition_countries, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/transition_countries.csv', row.names = FALSE) # transition_countries <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/transition_countries.csv') #write.csv(transition_countries, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/model_countries.csv', row.names = FALSE) # transition_countries <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/transition_countries.csv') # setnames(transition_countries, 'country', 'name') model_countries <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/model_countries.csv') cohort_change <- merge(cohort_change, transition_countries, by='name', all.x = TRUE) ## Merge IHME net migrant data ihme <- fread('C:/Users/ngraetz/Desktop/net_migrants.csv') locs <- fread('C:/Users/ngraetz/Desktop/gaul_to_loc_id.csv') setnames(locs, 'loc_name', 'name') locs[name=='Tanzania', name := 'United Republic of Tanzania'] locs[name=='Democratic Republic of the Congo', name := 'Democratic Republic of Congo'] locs[name=='Ivory Coast', name := "Cote d'Ivoire"] locs[name=='Iran', name := 'Iran (Islamic Republic of)'] locs[name=='Vietnam', name := 'Viet Nam'] locs[name=='Syria', name := 'Syrian Arab Republic'] locs[name=='Czech Republic', name := 'Czechia'] locs[name=='Russia', name := 'Russian Federation'] locs[name=='Bolivia', name := 'Bolivia (Plurinational State of)'] locs[name=='Venezuela', name := 'Venezuela (Bolivarian Republic of)'] locs[name=='United States', name := 'United States of America'] locs[name=='The Gambia', name := 'Gambia'] locs[name=='Laos', name := "Lao People's Democratic Republic"] locs[name=='Cape Verde', name := 'Cabo Verde'] locs[name=='Palestine', name := 'State of Palestine'] setnames(locs, 'ihme_lc_id', 'ihme_loc_id') setnames(ihme, 'value', 'ihme_net_migrants') setnames(ihme, 'year_id', 'year') ihme <- merge(ihme, locs, by='ihme_loc_id') ihme <- ihme[, c('ihme_net_migrants','year','name')] ihme <- ihme[, list(ihme_net_migrants=sum(ihme_net_migrants)), by=c('year','name')] cohort_change <- merge(cohort_change, ihme, by=c('name','year'), all.x=TRUE) # cohort_change <- rbindlist(lapply(unique(cohort_change[, name]), create_changes, # dt = cohort_change, # vars = c('ihme_net_migrants'), # change = TRUE, # lag = 5)) cohort_change <- merge(cohort_change, total_pops, by=c('year','name')) cohort_change[, ihme_rate := (ihme_net_migrants / total_pop)*1000] ## Merge IHME SDI sdi <- fread('J:/temp/ngraetz/sdi.csv') setnames(sdi, 'mean_value', 'sdi') setnames(sdi, 'year_id', 'year') setnames(sdi, 'location_id', 'loc_id') sdi <- merge(sdi, locs, by='loc_id') sdi <- sdi[, c('sdi','year','name')] cohort_change <- merge(cohort_change, sdi, by=c('name','year'), all.x=TRUE) ## Merge ILO % agriculture ilo <- fread("C:/Users/ngraetz/Downloads/ILOSTAT_.csv") ilo <- ilo[sex=='SEX_T' & classif1.label=='Broad sector: Agriculture', ] setnames(ilo, 'ref_area', 'ihme_loc_id') ilo <- merge(ilo, locs, by='ihme_loc_id') setnames(ilo, 'obs_value', 'percent_agriculture') setnames(ilo, 'time', 'year') cohort_change <- merge(cohort_change, ilo, by=c('name','year'), all.x=TRUE) ## For each country that is growing because of reductions in infant mortality, find the lag that produces the highest correlation with out-migration rates find_lag <- function(n, dt, v, target, type) { dt.n <- dt[name==n, ] #message(n) if(length(dt.n[, name])==1) return(NULL) if(length(dt.n[!is.na(get(target)), name])==0) return(NULL) if(length(dt.n[, name])!=1) { for(l in c(0,5,10,15,20)) { dt.n[, (paste0('cor',l)) := cor(dt.n[, get(paste0('lag',l,'_',v))], dt.n[, get(target)], use='complete.obs')] } if(type=='positive') dt.n[, cor := apply(.SD, 1, max, na.rm=TRUE), .SDcols=grep("^cor", names(dt.n))] if(type=='negative') dt.n[, cor := apply(.SD, 1, min, na.rm=TRUE), .SDcols=grep("^cor", names(dt.n))] for(l in c(0,5,10,15,20)) dt.n[get(paste0('cor',l))==cor, bestlag := l] dt.n <- unique(dt.n[, c('name','cor','bestlag')]) return(dt.n) } } this_v <- 'r_size_15_19' net_cors <- rbindlist(lapply(unique(cohort_change[name %in% cor_countries_mort, name]), find_lag, dt=cohort_change, v=this_v, target='net_migration', type='negative')) setnames(net_cors, c('cor','bestlag'), c('net_cor','net_lag')) out_cors <- rbindlist(lapply(unique(cohort_change[name %in% cor_countries_mort, name]), find_lag, dt=cohort_change, v=this_v, target='out_rate', type='positive')) setnames(out_cors, c('cor','bestlag'), c('out_cor','out_lag')) ihme_cors <- rbindlist(lapply(unique(cohort_change[name %in% cor_countries_mort, name]), find_lag, dt=cohort_change, v=this_v, target='ihme_rate', type='negative')) setnames(ihme_cors, c('cor','bestlag'), c('ihme_cor','ihme_lag')) all_cors <- merge(net_cors, out_cors, by='name') all_cors <- merge(all_cors, ihme_cors, by='name') ## STAGE 1: Test mortality correlations get_cor <- function(n, dt, vars) { dt.n <- dt[name==n & year>=1970, ] dt.n <- dt.n[!is.na(get(vars[1])) & !is.na(get(vars[2])), ] c <- cor(dt.n[, get(vars[1])], dt.n[, get(vars[2])]) dt.n[, corr := c] dt.n <- unique(dt.n[, c('name','corr')]) return(dt.n) } mort_cors <- rbindlist(lapply(unique(cohort_change[, name]),get_cor,cohort_change,c('lag15_r_mx','r_size_15_19'))) mort_cors <- mort_cors[order(-corr)] ## 64 countries where correlation <= -0.4 ## Try correlating MAGR 1975-1990 with MAGR in the size of the 15-19 cohorts 1990-2005 by country. global_mort_cors <- cohort_change[year %in% c(1990,1995,2000,2005), list(mx_magr=mean(lag15_mx), size_15_19_magr=mean(r_size_15_19)), by='name'] global_mort_cors <- global_mort_cors[order(-mx_magr)] ## 64 countries where correlation <= -0.4 ggplot() + geom_point(data=gbd, aes(x=lag15_mx, y=r_size_15_19)) ## Try GLMs model_data <- copy(cohort_change) model_data[, lag0_r_size_15_19 := lag0_r_size_15_19*100] model_data[, lag5_r_size_15_19 := lag5_r_size_15_19*100] model_data[, lag10_r_size_15_19 := lag10_r_size_15_19*100] model_data[, lag15_r_size_15_19 := lag15_r_size_15_19*100] model_data[, lag20_r_size_15_19 := lag20_r_size_15_19*100] model_data[, lag20_r_mx := lag20_r_mx*100] model_data[, lag15_r_mx := lag15_r_mx*100] model_data[, lag10_r_size_10_19 := lag10_r_size_10_19*100] fit_glm <- glm(cbind(round(out_migration), round(total_pop-out_migration)) ~ lag5_r_size_15_19 + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ], family=binomial) glm_coefs1 <- data.table(model='GLM1', name=names(fit_glm$coefficients), coef=fit_glm$coefficients, se=coef(summary(fit_glm))[,2], p=coef(summary(fit_glm))[,4]) glm_coefs1[, coef := exp(coef)] glm_coefs1[1:5, ] fit_lm <- lm(out_rate ~ lag5_r_size_15_19 + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm1 <- data.table(model='LM1', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) fit_lm <- lm(out_rate ~ lag20_r_mx + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm2 <- data.table(model='LM2', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) fit_lm <- lm(net_migration ~ lag20_crni + lag5_net_migration + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm3 <- data.table(model='LM3', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) fit_lm <- lm(out_rate ~ lag20_crni + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm4 <- data.table(model='LM4', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) all_lms <- rbind(glm_coefs1, lm1, lm2, lm3, lm4) saveRDS(all_lms, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/lm_fits.RDS') get_coefs <- function(reg='', global=FALSE) { if(global==TRUE) fit_lm <- lm(net_migration ~ lag5_r_size_15_19 + percent_agriculture + lag5_net_migration + as.factor(name) + year, data=model_data[!is.na(transition_region), ]) if(global!=TRUE) fit_lm <- lm(net_migration ~ lag5_r_size_15_19 + percent_agriculture + lag5_net_migration + as.factor(name) + year, data=model_data[transition_region == reg, ]) coefs <- data.table(model=ifelse(global,'global',reg), name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) return(coefs) } get_coefs_glm <- function(reg='', global=FALSE) { if(global==TRUE) fit_lm <- glm(cbind(round(out_migration), round(total_pop-out_migration)) ~ lag5_r_size_15_19 + percent_agriculture + lag5_out_rate + as.factor(name) + year, data=model_data[!is.na(transition_region), ], family=binomial) if(global!=TRUE) fit_lm <- glm(cbind(round(out_migration), round(total_pop-out_migration)) ~ lag5_r_size_15_19 + percent_agriculture + lag5_out_rate + as.factor(name) + year, data=model_data[transition_region == reg], family=binomial) coefs <- data.table(model=ifelse(global,'global',reg), name=names(fit_lm$coefficients), coef=exp(fit_lm$coefficients), se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) return(coefs) } all_lms <- rbind(get_coefs(global=TRUE), get_coefs(reg='ssa'), get_coefs(reg='ea'), get_coefs(reg='ca'), get_coefs(reg='name')) saveRDS(all_lms, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/lm_fits_net_cohort.RDS') all_lms <- rbind(get_coefs_glm(global=TRUE), get_coefs_glm(reg='ssa'), get_coefs_glm(reg='ea'), get_coefs_glm(reg='ca'), get_coefs_glm(reg='name')) saveRDS(all_lms, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/glm_fits_out_cohort.RDS') ## Try random slope models library(lme4) sdi_groups <- model_data[year==2005 & name %in% model_countries[, name] & !is.na(sdi), c('name','sdi')] for(q in rev(seq(.1,1,.9/9))) { sdi_q <- quantile(sdi_groups[, sdi], p=q) message(round(sdi_q, 3)) sdi_groups[sdi < sdi_q, sdi_group := as.character(q)] } for(q in as.character(rev(seq(.1,1,.9/9)))) { message(paste(unique(sdi_groups[sdi_group==q, name]), collapse=' ')) } sdi_data <- merge(model_data, sdi_groups[, c('name','sdi_group')], by='name') sdi_data[, scaled_year := year / 1000] sdi_data[, scaled_sdi := sdi*100] sdi_data <- merge(sdi_data, gbd, by=c('name','year'), all.x = TRUE) #sdi_data[, lag5_r_gbd_size_15_19 := lag5_r_gbd_size_15_19*100] sdi_data$transition_region <- NULL sdi_data$transition_region_detailed <- NULL sdi_data <- merge(sdi_data, model_countries, by='name', all.x=TRUE) saveRDS(sdi_data, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/sdi_data.rds') ## Load GBD data gbd_mort <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/gbd_u5m.csv') setnames(gbd_mort, 'location_name', 'name') gbd_pop <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/gbd_pops.csv') setnames(gbd_pop, 'location_name', 'name') gbd_15_19 <- gbd_pop[age_group_name=="15 to 19", list(gbd_size_15_19=sum(gbd_pops)), by=c('year','name')] gbd_working_age <- gbd_pop[age_group_name %in% c("15 to 19","20 to 24","25 to 29","30 to 34","35 to 39","40 to 44","45 to 49","50 to 54","55 to 59"), list(gbd_size_15_60=sum(gbd_pops)), by=c('year','name')] #gbd_0_5 <- gbd_pop[age_group_name %in% c("Early Neonatal","Late Neonatal","Post Neonatal","1 to 4"), list(gbd_size_0_5=sum(gbd_pops)), by=c('year','name')] gbd_pop <- merge(gbd_15_19, gbd_working_age, by=c('year','name')) #gbd_pop <- merge(gbd_pop, gbd_0_5, by=c('year','name')) gbd_pop[, gbd_propwa_15_19 := gbd_size_15_19/gbd_size_15_60] ## Make changes and lags gbd_pop <- rbindlist(lapply(unique(gbd_pop[, name]), create_changes, dt = gbd_pop, vars = c('gbd_size_15_19'), change = TRUE, lag = 5, year_step = 5)) gbd_mort <- rbindlist(lapply(unique(gbd_mort[, name]), create_changes, dt = gbd_mort, vars = c('gbd_mx'), change = TRUE, lag = 5, year_step = 5)) gbd <- merge(gbd_mort, gbd_pop, by=c('name','year'), all.y=TRUE) for(l in c(0,5,10,15,20)) { gbd <- rbindlist(lapply(unique(gbd[, name]), create_changes, dt = gbd[!is.na(r_gbd_size_15_19)], vars = c('r_gbd_mx','r_gbd_size_15_19','gbd_mx'), change = FALSE, lag = l, year_step = 5)) } #gbd <- gbd[name %in% unique(sdi_data[, name]),] gbd <- gbd[name!='Georgia'] mort_cors <- rbindlist(lapply(unique(gbd[, name]),get_cor,gbd,c('lag15_r_gbd_mx','r_gbd_size_15_19'))) mort_cors <- mort_cors[order(-corr)] ## Try correlating MAGR 1980-1995 with MAGR in the size of the 15-19 cohorts 1995-2010 by country. country_change <- copy(gbd[year %in% c(1980,1995), c('year','name','gbd_mx')]) country_change <- dcast(country_change, name ~ year, value.var = "gbd_mx") country_change[, diff := `1995` - `1980`] country_change <- country_change[order(-diff)] ## 61 countries have experienced an absolute drop in under-5 mortality greater than 0.01 between 1980-1995. model_countries <- country_change[diff <= -.01, name] ## Countries where mortality dropped after 2000 new_countries <- copy(gbd[year %in% c(2000,2015), c('year','name','gbd_mx')]) new_countries <- dcast(new_countries, name ~ year, value.var = "gbd_mx") new_countries[, diff := `2000` - `2015`] new_countries <- new_countries[order(-diff)] ## 61 countries have experienced an absolute drop in under-5 mortality greater than 0.01 between 1980-1995. new_countries <- new_countries[diff >= .01 & !(name %in% model_countries), name] ## Countries where the size of the 15-19 cohorts has significantly increased 1985-2000 size_countries <- copy(gbd[year %in% c(1985,2000), c('year','name','r_gbd_size_15_19')]) size_countries <- dcast(size_countries, name ~ year, value.var = "r_gbd_size_15_19") size_countries[, diff := `1985` - `2000`] size_countries <- size_countries[order(-diff)] ## 61 countries have experienced an absolute drop in under-5 mortality greater than 0.01 between 1980-1995. size_countries <- size_countries[diff >= .01 & !(name %in% model_countries), name] global_mort_cors <- gbd[year %in% 1995:2010 & name %in% model_countries, list(mx_magr=mean(lag15_r_gbd_mx, na.rm=TRUE), size_15_19_magr=mean(r_gbd_size_15_19)), by='name'] global_mort_cors <- global_mort_cors[order(mx_magr)] ## 64 countries where correlation <= -0.4 ggplot() + geom_point(data=global_mort_cors, aes(x=mx_magr, y=size_15_19_magr)) ggplot() + geom_point(data=gbd[name %in% model_countries & year %in% 1995:2010,], aes(x=r_gbd_size_15_19,y=lag15_r_gbd_mx)) ggplot() + geom_line(data=gbd[name=='Uganda'], aes(x=year, y=gbd_mx)) ## Fit random slope model for given IV by given category. fit_random_slope <- function(dv, iv, cat, order_cat, zero_line, dt, country_fe=TRUE, guide_title, size_var=NULL, no_res=FALSE) { if(no_res==TRUE) { f <- as.formula(paste0(dv, ' ~ ', iv, ' + percent_agriculture + scaled_sdi + lag5_out_rate + as.factor(name) + year')) mixedmod <- lm(f, data=dt) return(list(mixedmod)) } if(no_res==FALSE) { if(country_fe) f <- as.formula(paste0(dv, ' ~ ', iv, ' + log_lag5_out_rate + as.factor(name) + scaled_year + (1 + ', iv, ' | ', cat, ')')) if(!country_fe) f <- as.formula(paste0(dv, ' ~ ', iv, ' + log_lag5_out_rate + scaled_year + (1 + ', iv, ' | ', cat, ')')) mixedmod <- lmer(f, data=dt) # examine random and fixed effects gg.data <- data.table(slope=ranef(mixedmod)[[cat]][,iv], group=rownames(ranef(mixedmod)[[cat]])) if(is.null(size_var)) size_var <- dv mean_obs <- dt[, list(outcome=mean(get(size_var), na.rm=TRUE)), by=cat] setnames(mean_obs, cat, 'group') gg.data <- merge(gg.data, mean_obs, by='group') ifelse(order_cat, gg.data[, f_group := factor(group, levels=gg.data$group[order(gg.data[, slope])])], gg.data[, f_group := group]) gg <- ggplot(data=gg.data, aes(x=f_group, y=exp(slope+fixef(mixedmod)[iv]), size=outcome)) + geom_point() + geom_hline(yintercept = exp(fixef(mixedmod)[iv]), color = 'red', size=2) + labs(x='Grouping variable',y='Slope') + theme_minimal() + theme(axis.text.x = element_text(angle=60, hjust=1)) + scale_size_continuous(guide = guide_legend(title = guide_title)) if(zero_line) { gg <- gg + geom_hline(yintercept = 0, linetype='dashed') } return(list(gg, mixedmod)) } } mod <- fit_random_slope(dv='out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data, country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_migration', no_res=TRUE) summary(mod[[1]]) fixef(mod[[2]])['lag5_r_size_15_19'] sdi_data[, lag5_r_gbd_size_15_19 := lag5_r_gbd_size_15_19*100] sdi_data[, log_out_rate := log(out_rate+0.001)] sdi_data[, log_lag5_out_rate := log(lag5_out_rate+0.001)] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data, country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Liberia','Cambodia','Tajikistan'))], country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='transition_region_detailed', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Timor-Leste','Tajikistan','El Salvador','Guinea','Sierra Leone'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='sdi_group', order_cat=FALSE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Timor-Leste','Tajikistan','El Salvador','Guinea'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] out_cors <- rbindlist(lapply(unique(sdi_data[, name]), find_lag, dt=sdi_data, v='r_gbd_size_15_19', target='out_rate', type='positive')) setnames(out_cors, c('cor','bestlag'), c('out_cor','out_lag')) pdf(paste0('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/stage3_v2.pdf'), width = 12, height = 6) mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data, country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Sierra Leone','Bhutan','South Sudan','Afghanistan'))], country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='transition_region_detailed', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Sierra Leone','Bhutan','South Sudan','Afghanistan'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='sdi_group', order_cat=FALSE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Sierra Leone','Bhutan','South Sudan','Afghanistan'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] dev.off() test <- sdi_data[!(name %in% c('Zimbabwe')) & !is.na(percent_agriculture) & year <= 2005 & !is.na(out_rate), ] test[, lme_pred := predict(mod[[2]])] test[, manual := fixef(mod[[2]])['(Intercept)'] + fixef(mod[[2]])['lag5_r_size_15_19'] * lag5_r_size_15_19 + fixef(mod[[2]])['percent_agriculture'] * percent_agriculture + fixef(mod[[2]])['lag5_out_rate'] * lag5_out_rate + fixef(mod[[2]])['as.factor(name)Kenya'] + fixef(mod[[2]])['year'] * year + ranef(mod[[2]])[['transition_region_detailed']][4, 'lag5_r_size_15_19'] * lag5_r_size_15_19 + ranef(mod[[2]])[['transition_region_detailed']][4, '(Intercept)']] test[, inla_pred := inla_model$summary.fitted.values$mean] test[, manual_inla := inla_model$summary.fixed['(Intercept)',]$mean + inla_model$summary.fixed['lag5_r_size_15_19',]$mean * lag5_r_size_15_19 + inla_model$summary.fixed['percent_agriculture',]$mean * percent_agriculture + inla_model$summary.fixed['lag5_out_rate',]$mean * lag5_out_rate + inla_model$summary.fixed['as.factor(name)Kenya',]$mean + inla_model$summary.fixed['year',]$mean * year + inla_model$summary.random$transition_region_detailed[4, ]$mean * lag5_r_size_15_19] ## Test INLA implementation and compare dv <- 'log_out_rate' iv <- 'lag5_r_gbd_size_15_19' cat <- 'name' inla_f <- as.formula(paste0(dv, ' ~ ', iv, ' + lag5_out_rate + year + f(', cat, ', ', iv, ', model = "iid")')) inla_f <- out_rate ~ lag5_r_size_15_19 + f(transition_region_detailed, lag5_r_size_15_19, model = "iid") inla_model = inla(formula=inla_f, data=sdi_data, family="gaussian", control.compute=list(dic=TRUE))#, control.fixed = list(prec.intercept = 0.0001)) summary(inla_model) inla_model$summary.random test <- sdi_data[!is.na(percent_agriculture), ] n.block = max(sdi_data$transition_region_detailed) ## = 4 sdi_data$i.intercept = sdi_data$transition_region_detailed sdi_data$j.intercept = sdi_data$transition_region_detailed + n.block ## see doc for iid2d formule_random_correlated_intercept_slope = y ~ x1 + f(i.intercept, model="iid2d", n=2*n.block) + f(j.intercept, x1, copy="i.intercept") model_random_correlated_intercept_slope_INLA = inla.cpo( formula=formule_random_correlated_intercept_slope, data=mydata, family="gaussian", control.compute=list(dic=TRUE)) summary(model_random_correlated_intercept_slope_INLA) pdf(paste0('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/updated_heat_maps.pdf'), width = 6, height = 10) for(cor_var in c('net_cor','ihme_cor','out_cor')) { heat_data <- unique(all_cors[, c('name','net_cor','out_cor','net_lag','out_lag','ihme_cor','ihme_lag')]) if(cor_var=='out_cor') heat_data[, name_f := factor(name, levels=heat_data$name[order(heat_data[, get(cor_var)])])] if(cor_var!='out_cor') heat_data[, name_f := factor(name, levels=heat_data$name[order(-heat_data[, get(cor_var)])])] heat_data <- melt(heat_data, id.vars = c('name_f','out_lag','net_lag','ihme_lag'), measure.vars = c('net_cor','out_cor','ihme_cor')) heat_data[variable=='net_cor', value_lab := paste0(as.character(round(value,2)), ' (', net_lag, ')')] heat_data[variable=='out_cor', value_lab := paste0(as.character(round(value,2)), ' (', out_lag, ')')] heat_data[variable=='ihme_cor', value_lab := paste0(as.character(round(value,2)), ' (', ihme_lag, ')')] heat_data[variable=='net_cor', variable := 'WPP (net)\n1950-2015'] heat_data[variable=='out_cor', variable := 'Wittgenstein (out)\n1990-2010'] heat_data[variable=='ihme_cor', variable := 'IHME (net)\n1950-2015'] heat_data[, variable := factor(variable, levels=c('WPP (net)\n1950-2015','IHME (net)\n1950-2015','Wittgenstein (out)\n1990-2010'))] redblue <- c('#b2182b','#d6604d','#f4a582','#fddbc7','#f7f7f7','#d1e5f0','#92c5de','#4393c3','#2166ac') heat.gg <- ggplot(heat_data, aes(variable, name_f)) + geom_tile(aes(fill = value), color = "white") + geom_text(aes(label = value_lab)) + #scale_fill_gradient(low = "steelblue", high = "white", na.value = "white", limits=c(-1,0)) + scale_fill_gradientn(colours=rev(redblue), values=c(-1,0,1), na.value = "#000000", rescaler = function(x, ...) x, oob = identity) + ylab("Country") + xlab("Comparison") + theme(legend.title = element_text(size = 10), legend.text = element_text(size = 12), plot.title = element_text(size=16), axis.title=element_text(size=14,face="bold"), axis.text.x = element_text(angle = 90, hjust = 1)) + labs(fill = "Correlation") + theme_minimal() print(heat.gg) } dev.off() get_cor <- function(n, dt, vars) { dt.n <- dt[name==n, ] dt.n <- dt.n[!is.na(get(vars[1])) & !is.na(get(vars[2])), ] c <- cor(dt.n[, get(vars[1])], dt.n[, get(vars[2])]) dt.n[, corr := c] dt.n <- unique(dt.n[, c('name','corr')]) return(dt.n) } cors <- rbindlist(lapply(unique(cohort_change[, name]),get_cor,cohort_change,c('out_rate','lag_age_prop'))) cors <- cors[order(corr)] cohort_change <- merge(cohort_change, cors, by='name') library(grid) library(gridExtra) pdf(paste0('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/all_trends_by_country.pdf'), width = 20, height = 8) for(this_name in unique(sdi_data[order(name), name])) { message(this_name) mort.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=mx), size = 2) + labs(x='Year',y='GBD: U5M') + theme_minimal() rmort.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=r_mx), size = 2) + geom_hline(yintercept = 0, color = 'red') + labs(x='Year',y='GBD: growth rate in U5M') + theme_minimal() age_prop.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=gbd_size_15_19/1000), size = 2) + labs(x='Year',y='GBD: pop size 15-19 (in thousands)') + theme_minimal() age_change.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=r_gbd_size_15_19), size = 2) + geom_hline(yintercept = 0, color = 'red') + labs(x='Year',y='GBD: growth rate in population size 15-19') + theme_minimal() out_migration.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=out_rate), size = 2) + labs(x='Year',y='Wittgenstein: out-migration rate (per 1000)') + theme_minimal() gLegend<-function(a.plot){ if ("ggplot" %in% class(a.plot)) { tmp <- ggplot_gtable(ggplot_build(a.plot)) } else if ("grob" %in% class(a.plot)) { tmp <- .gplot } leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") legend <- tmp$grobs[[leg]] return(legend) } #leg <- gLegend(mx.gg) #leg$vp <- viewport(layout.pos.row = 2:6, layout.pos.col = 13) grid.newpage() pushViewport(viewport(layout = grid.layout(6, 15))) vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y) print(mort.gg + theme(legend.position="none"), vp = vplayout(2:6, 1:3)) print(rmort.gg + theme(legend.position="none"), vp = vplayout(2:6, 4:6)) print(age_prop.gg + theme(legend.position="none"), vp = vplayout(2:6, 7:9)) print(age_change.gg + theme(legend.position="none"), vp = vplayout(2:6, 10:12)) print(out_migration.gg + theme(legend.position="none"), vp = vplayout(2:6, 13:15)) #grid.draw(leg) grid.text(this_name, vp = viewport(layout.pos.row = 1, layout.pos.col = 1:15)) } dev.off() cohort_change[, moving_average := rollapplyr(data=net_migration, width=1:.N, FUN=mean, by=1), by = 'name'] cohort_change[, moving_average := lapply(.SD, rollmean, k = 3, na.pad = TRUE, partial = TRUE), by = name, .SDcols = 'net_migration'] cohort_change[name=='Nigeria', c('net_migration','moving_average')] print('hi') print('hi') print('hi') print('hi')
/abs_cohorts.R
no_license
ngraetz/cfr
R
false
false
35,063
r
library(data.table) library(ggplot2) library(wpp2017) ## IHME pops/mort source("/home/j/temp/central_comp/libraries/current/r/get_demographics.R") source("/home/j/temp/central_comp/libraries/current/r/get_demographics_template.R") mortality_2016_demographics <- get_demographics(gbd_team="mort", gbd_round_id=4) pops <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/WPP2017_INT_F03_2_POPULATION_BY_AGE_ANNUAL_MALE.csv', skip=1) names(pops) <- c('Index','Variant','name','Notes','country_code','year',paste0('age',as.character(c(0:79))), 'age80plus', paste0('age',as.character(c(80:100)))) broad_regions <- c('WORLD','More developed regions','Less developed regions','Least developed countries', 'Less developed regions, excluding least developed countries','Less developed regions, excluding China','High-income countries','Middle-income countries', 'Upper-middle-income countries','Lower-middle-income countries','Low-income countries','Sub-Saharan Africa','AFRICA', 'Eastern Africa','Middle Africa','Northern Africa','Southern Africa','Western Africa','ASIA','Eastern Asia', 'South-Central Asia','Central Asia','South-Eastern Asia','Western Asia','EUROPE','Eastern Europe', 'Northern Europe','Western Europe','Southern Europe','LATIN AMERICA AND THE CARIBBEAN','Caribbean', 'Central America','South America','NORTHERN AMERICA','Canada','United States of America','OCEANIA','Southern Asia') pops <- pops[!(name %in% broad_regions), ] cols <- grep("^age", names(pops), value = TRUE) for(c in cols) { pops[, (c) := as.numeric(gsub(' ','',get(c)))] } pops <- pops[, total_pop := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=grep("^age", names(pops))] total_pops <- pops[, c('name','year','total_pop')] total_pops[, total_pop := total_pop * 1000] for(c in cols) { pops[, paste0('prop_',c) := get(c) / total_pop] } pops <- pops[, size_15_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('age15','age16','age17','age18','age19')] pops <- pops[, prop_15_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('prop_age15','prop_age16','prop_age17','prop_age18','prop_age19')] pops <- pops[, size_10_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('age10','age11','age12','age13','age14','age15','age16','age17','age18','age19')] pops <- pops[, prop_10_19 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('prop_age10','prop_age11','prop_age12','prop_age13','prop_age14','prop_age15','prop_age16','prop_age17','prop_age18','prop_age19')] pops <- pops[, size_20_24 := apply(.SD, 1, sum, na.rm=TRUE), .SDcols=c('age20','age21','age22','age23','age24')] for(y in seq(1950,2015,5)) pops[year>=y, five_year := y] pops <- pops[, list(prop_15_19=mean(prop_15_19), size_15_19=mean(size_15_19),size_20_24=mean(size_20_24), prop_10_19=mean(prop_10_19), size_10_19=mean(size_10_19)), by=c('country_code','name','five_year')] setnames(pops, 'five_year', 'year') pops[, ratio_15_19_20_24 := size_15_19 / size_20_24] ggplot() + geom_line(data=pops[name=='Liberia',], aes(x=year,y=ratio_15_19_20_24)) + xlim(c(1985,2005)) nm <- copy(net_migration) nm[, year := year - 2.5] ni <- copy(crni) ni[, year := year - 2.5] om <- copy(out_migration[,c('name','year','out_rate','out_migration')]) om[, year := year - 2.5] mx_subset <- mx[sex=='Male' & age==0, ] mx_subset[, year := year - 2.5] cohorts <- merge(om, pops, by=c('name','year'), all.y=TRUE) cohorts <- merge(cohorts, nm, by=c('name','year','country_code'), all.x=TRUE) cohorts <- merge(cohorts, mx_subset, by=c('name','year','country_code'), all.x=TRUE) cohorts <- merge(cohorts, ni, by=c('name','year','country_code'), all.x=TRUE) cohorts <- cohorts[order(name,year)] ## Create lags and changes create_changes <- function(n, dt, vars, lag, change=FALSE, year_step=5) { dt.n <- dt[name==n, ] if(length(dt.n[, name])==1) return(NULL) if(length(dt.n[, name])!=1) { for(r in seq(min(dt.n[, year]),max(dt.n[, year]),year_step)) { for(v in vars) { if(r>=min(dt.n[, year])+lag & change==TRUE) { previous_v <- dt.n[year==r-lag, get(v)] dt.n[year==r, paste0('relchange_',(v)) := (get(v)-previous_v)/previous_v] dt.n[year==r, paste0('abschange_',(v)) := get(v)-previous_v] dt.n[year==r, paste0('r_',(v)) := log(get(v)/previous_v)/lag] } if(r>=min(dt.n[, year])+lag) { lag_v <- dt.n[year==r-lag, get(v)] dt.n[year==r, paste0('lag',lag,'_',(v)) := lag_v] } } } return(dt.n) } } cohort_change <- rbindlist(lapply(unique(cohorts[, name]), create_changes, dt = cohorts, vars = c('prop_15_19','size_15_19','mx','out_rate'), change = TRUE, lag = 5)) cohort_change <- rbindlist(lapply(unique(cohorts[, name]), create_changes, dt = cohort_change, vars = c('prop_10_19','size_10_19'), change = TRUE, lag = 10)) ## Calculate all possible lags of r for migration correlation. for(l in c(0,5,10,15,20)) { cohort_change <- rbindlist(lapply(unique(cohort_change[, name]), create_changes, dt = cohort_change, vars = c('r_size_15_19','r_mx','crni','net_migration','mx','r_size_10_19'), change = FALSE, lag = l)) } ## Angola, Burundi, Burkina Faso, Congo, Honduras write.csv(cohort_change, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/all_migration_data.csv', row.names=FALSE) cohort_change <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/all_migration_data.csv') cor_countries_mort <- readRDS('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/cor_countries_mort.RDS') transition_countries <- data.table(country=cor_countries_mort) # write.csv(transition_countries, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/transition_countries.csv', row.names = FALSE) # transition_countries <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/transition_countries.csv') #write.csv(transition_countries, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/model_countries.csv', row.names = FALSE) # transition_countries <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/transition_countries.csv') # setnames(transition_countries, 'country', 'name') model_countries <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/model_countries.csv') cohort_change <- merge(cohort_change, transition_countries, by='name', all.x = TRUE) ## Merge IHME net migrant data ihme <- fread('C:/Users/ngraetz/Desktop/net_migrants.csv') locs <- fread('C:/Users/ngraetz/Desktop/gaul_to_loc_id.csv') setnames(locs, 'loc_name', 'name') locs[name=='Tanzania', name := 'United Republic of Tanzania'] locs[name=='Democratic Republic of the Congo', name := 'Democratic Republic of Congo'] locs[name=='Ivory Coast', name := "Cote d'Ivoire"] locs[name=='Iran', name := 'Iran (Islamic Republic of)'] locs[name=='Vietnam', name := 'Viet Nam'] locs[name=='Syria', name := 'Syrian Arab Republic'] locs[name=='Czech Republic', name := 'Czechia'] locs[name=='Russia', name := 'Russian Federation'] locs[name=='Bolivia', name := 'Bolivia (Plurinational State of)'] locs[name=='Venezuela', name := 'Venezuela (Bolivarian Republic of)'] locs[name=='United States', name := 'United States of America'] locs[name=='The Gambia', name := 'Gambia'] locs[name=='Laos', name := "Lao People's Democratic Republic"] locs[name=='Cape Verde', name := 'Cabo Verde'] locs[name=='Palestine', name := 'State of Palestine'] setnames(locs, 'ihme_lc_id', 'ihme_loc_id') setnames(ihme, 'value', 'ihme_net_migrants') setnames(ihme, 'year_id', 'year') ihme <- merge(ihme, locs, by='ihme_loc_id') ihme <- ihme[, c('ihme_net_migrants','year','name')] ihme <- ihme[, list(ihme_net_migrants=sum(ihme_net_migrants)), by=c('year','name')] cohort_change <- merge(cohort_change, ihme, by=c('name','year'), all.x=TRUE) # cohort_change <- rbindlist(lapply(unique(cohort_change[, name]), create_changes, # dt = cohort_change, # vars = c('ihme_net_migrants'), # change = TRUE, # lag = 5)) cohort_change <- merge(cohort_change, total_pops, by=c('year','name')) cohort_change[, ihme_rate := (ihme_net_migrants / total_pop)*1000] ## Merge IHME SDI sdi <- fread('J:/temp/ngraetz/sdi.csv') setnames(sdi, 'mean_value', 'sdi') setnames(sdi, 'year_id', 'year') setnames(sdi, 'location_id', 'loc_id') sdi <- merge(sdi, locs, by='loc_id') sdi <- sdi[, c('sdi','year','name')] cohort_change <- merge(cohort_change, sdi, by=c('name','year'), all.x=TRUE) ## Merge ILO % agriculture ilo <- fread("C:/Users/ngraetz/Downloads/ILOSTAT_.csv") ilo <- ilo[sex=='SEX_T' & classif1.label=='Broad sector: Agriculture', ] setnames(ilo, 'ref_area', 'ihme_loc_id') ilo <- merge(ilo, locs, by='ihme_loc_id') setnames(ilo, 'obs_value', 'percent_agriculture') setnames(ilo, 'time', 'year') cohort_change <- merge(cohort_change, ilo, by=c('name','year'), all.x=TRUE) ## For each country that is growing because of reductions in infant mortality, find the lag that produces the highest correlation with out-migration rates find_lag <- function(n, dt, v, target, type) { dt.n <- dt[name==n, ] #message(n) if(length(dt.n[, name])==1) return(NULL) if(length(dt.n[!is.na(get(target)), name])==0) return(NULL) if(length(dt.n[, name])!=1) { for(l in c(0,5,10,15,20)) { dt.n[, (paste0('cor',l)) := cor(dt.n[, get(paste0('lag',l,'_',v))], dt.n[, get(target)], use='complete.obs')] } if(type=='positive') dt.n[, cor := apply(.SD, 1, max, na.rm=TRUE), .SDcols=grep("^cor", names(dt.n))] if(type=='negative') dt.n[, cor := apply(.SD, 1, min, na.rm=TRUE), .SDcols=grep("^cor", names(dt.n))] for(l in c(0,5,10,15,20)) dt.n[get(paste0('cor',l))==cor, bestlag := l] dt.n <- unique(dt.n[, c('name','cor','bestlag')]) return(dt.n) } } this_v <- 'r_size_15_19' net_cors <- rbindlist(lapply(unique(cohort_change[name %in% cor_countries_mort, name]), find_lag, dt=cohort_change, v=this_v, target='net_migration', type='negative')) setnames(net_cors, c('cor','bestlag'), c('net_cor','net_lag')) out_cors <- rbindlist(lapply(unique(cohort_change[name %in% cor_countries_mort, name]), find_lag, dt=cohort_change, v=this_v, target='out_rate', type='positive')) setnames(out_cors, c('cor','bestlag'), c('out_cor','out_lag')) ihme_cors <- rbindlist(lapply(unique(cohort_change[name %in% cor_countries_mort, name]), find_lag, dt=cohort_change, v=this_v, target='ihme_rate', type='negative')) setnames(ihme_cors, c('cor','bestlag'), c('ihme_cor','ihme_lag')) all_cors <- merge(net_cors, out_cors, by='name') all_cors <- merge(all_cors, ihme_cors, by='name') ## STAGE 1: Test mortality correlations get_cor <- function(n, dt, vars) { dt.n <- dt[name==n & year>=1970, ] dt.n <- dt.n[!is.na(get(vars[1])) & !is.na(get(vars[2])), ] c <- cor(dt.n[, get(vars[1])], dt.n[, get(vars[2])]) dt.n[, corr := c] dt.n <- unique(dt.n[, c('name','corr')]) return(dt.n) } mort_cors <- rbindlist(lapply(unique(cohort_change[, name]),get_cor,cohort_change,c('lag15_r_mx','r_size_15_19'))) mort_cors <- mort_cors[order(-corr)] ## 64 countries where correlation <= -0.4 ## Try correlating MAGR 1975-1990 with MAGR in the size of the 15-19 cohorts 1990-2005 by country. global_mort_cors <- cohort_change[year %in% c(1990,1995,2000,2005), list(mx_magr=mean(lag15_mx), size_15_19_magr=mean(r_size_15_19)), by='name'] global_mort_cors <- global_mort_cors[order(-mx_magr)] ## 64 countries where correlation <= -0.4 ggplot() + geom_point(data=gbd, aes(x=lag15_mx, y=r_size_15_19)) ## Try GLMs model_data <- copy(cohort_change) model_data[, lag0_r_size_15_19 := lag0_r_size_15_19*100] model_data[, lag5_r_size_15_19 := lag5_r_size_15_19*100] model_data[, lag10_r_size_15_19 := lag10_r_size_15_19*100] model_data[, lag15_r_size_15_19 := lag15_r_size_15_19*100] model_data[, lag20_r_size_15_19 := lag20_r_size_15_19*100] model_data[, lag20_r_mx := lag20_r_mx*100] model_data[, lag15_r_mx := lag15_r_mx*100] model_data[, lag10_r_size_10_19 := lag10_r_size_10_19*100] fit_glm <- glm(cbind(round(out_migration), round(total_pop-out_migration)) ~ lag5_r_size_15_19 + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ], family=binomial) glm_coefs1 <- data.table(model='GLM1', name=names(fit_glm$coefficients), coef=fit_glm$coefficients, se=coef(summary(fit_glm))[,2], p=coef(summary(fit_glm))[,4]) glm_coefs1[, coef := exp(coef)] glm_coefs1[1:5, ] fit_lm <- lm(out_rate ~ lag5_r_size_15_19 + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm1 <- data.table(model='LM1', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) fit_lm <- lm(out_rate ~ lag20_r_mx + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm2 <- data.table(model='LM2', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) fit_lm <- lm(net_migration ~ lag20_crni + lag5_net_migration + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm3 <- data.table(model='LM3', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) fit_lm <- lm(out_rate ~ lag20_crni + lag5_out_rate + as.factor(name) + year, data=model_data[name %in% cor_countries_mort & !is.na(out_migration), ]) lm4 <- data.table(model='LM4', name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) all_lms <- rbind(glm_coefs1, lm1, lm2, lm3, lm4) saveRDS(all_lms, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/lm_fits.RDS') get_coefs <- function(reg='', global=FALSE) { if(global==TRUE) fit_lm <- lm(net_migration ~ lag5_r_size_15_19 + percent_agriculture + lag5_net_migration + as.factor(name) + year, data=model_data[!is.na(transition_region), ]) if(global!=TRUE) fit_lm <- lm(net_migration ~ lag5_r_size_15_19 + percent_agriculture + lag5_net_migration + as.factor(name) + year, data=model_data[transition_region == reg, ]) coefs <- data.table(model=ifelse(global,'global',reg), name=names(fit_lm$coefficients), coef=fit_lm$coefficients, se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) return(coefs) } get_coefs_glm <- function(reg='', global=FALSE) { if(global==TRUE) fit_lm <- glm(cbind(round(out_migration), round(total_pop-out_migration)) ~ lag5_r_size_15_19 + percent_agriculture + lag5_out_rate + as.factor(name) + year, data=model_data[!is.na(transition_region), ], family=binomial) if(global!=TRUE) fit_lm <- glm(cbind(round(out_migration), round(total_pop-out_migration)) ~ lag5_r_size_15_19 + percent_agriculture + lag5_out_rate + as.factor(name) + year, data=model_data[transition_region == reg], family=binomial) coefs <- data.table(model=ifelse(global,'global',reg), name=names(fit_lm$coefficients), coef=exp(fit_lm$coefficients), se=coef(summary(fit_lm))[,2], p=coef(summary(fit_lm))[,4]) return(coefs) } all_lms <- rbind(get_coefs(global=TRUE), get_coefs(reg='ssa'), get_coefs(reg='ea'), get_coefs(reg='ca'), get_coefs(reg='name')) saveRDS(all_lms, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/lm_fits_net_cohort.RDS') all_lms <- rbind(get_coefs_glm(global=TRUE), get_coefs_glm(reg='ssa'), get_coefs_glm(reg='ea'), get_coefs_glm(reg='ca'), get_coefs_glm(reg='name')) saveRDS(all_lms, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/glm_fits_out_cohort.RDS') ## Try random slope models library(lme4) sdi_groups <- model_data[year==2005 & name %in% model_countries[, name] & !is.na(sdi), c('name','sdi')] for(q in rev(seq(.1,1,.9/9))) { sdi_q <- quantile(sdi_groups[, sdi], p=q) message(round(sdi_q, 3)) sdi_groups[sdi < sdi_q, sdi_group := as.character(q)] } for(q in as.character(rev(seq(.1,1,.9/9)))) { message(paste(unique(sdi_groups[sdi_group==q, name]), collapse=' ')) } sdi_data <- merge(model_data, sdi_groups[, c('name','sdi_group')], by='name') sdi_data[, scaled_year := year / 1000] sdi_data[, scaled_sdi := sdi*100] sdi_data <- merge(sdi_data, gbd, by=c('name','year'), all.x = TRUE) #sdi_data[, lag5_r_gbd_size_15_19 := lag5_r_gbd_size_15_19*100] sdi_data$transition_region <- NULL sdi_data$transition_region_detailed <- NULL sdi_data <- merge(sdi_data, model_countries, by='name', all.x=TRUE) saveRDS(sdi_data, 'C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/sdi_data.rds') ## Load GBD data gbd_mort <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/gbd_u5m.csv') setnames(gbd_mort, 'location_name', 'name') gbd_pop <- fread('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/gbd_pops.csv') setnames(gbd_pop, 'location_name', 'name') gbd_15_19 <- gbd_pop[age_group_name=="15 to 19", list(gbd_size_15_19=sum(gbd_pops)), by=c('year','name')] gbd_working_age <- gbd_pop[age_group_name %in% c("15 to 19","20 to 24","25 to 29","30 to 34","35 to 39","40 to 44","45 to 49","50 to 54","55 to 59"), list(gbd_size_15_60=sum(gbd_pops)), by=c('year','name')] #gbd_0_5 <- gbd_pop[age_group_name %in% c("Early Neonatal","Late Neonatal","Post Neonatal","1 to 4"), list(gbd_size_0_5=sum(gbd_pops)), by=c('year','name')] gbd_pop <- merge(gbd_15_19, gbd_working_age, by=c('year','name')) #gbd_pop <- merge(gbd_pop, gbd_0_5, by=c('year','name')) gbd_pop[, gbd_propwa_15_19 := gbd_size_15_19/gbd_size_15_60] ## Make changes and lags gbd_pop <- rbindlist(lapply(unique(gbd_pop[, name]), create_changes, dt = gbd_pop, vars = c('gbd_size_15_19'), change = TRUE, lag = 5, year_step = 5)) gbd_mort <- rbindlist(lapply(unique(gbd_mort[, name]), create_changes, dt = gbd_mort, vars = c('gbd_mx'), change = TRUE, lag = 5, year_step = 5)) gbd <- merge(gbd_mort, gbd_pop, by=c('name','year'), all.y=TRUE) for(l in c(0,5,10,15,20)) { gbd <- rbindlist(lapply(unique(gbd[, name]), create_changes, dt = gbd[!is.na(r_gbd_size_15_19)], vars = c('r_gbd_mx','r_gbd_size_15_19','gbd_mx'), change = FALSE, lag = l, year_step = 5)) } #gbd <- gbd[name %in% unique(sdi_data[, name]),] gbd <- gbd[name!='Georgia'] mort_cors <- rbindlist(lapply(unique(gbd[, name]),get_cor,gbd,c('lag15_r_gbd_mx','r_gbd_size_15_19'))) mort_cors <- mort_cors[order(-corr)] ## Try correlating MAGR 1980-1995 with MAGR in the size of the 15-19 cohorts 1995-2010 by country. country_change <- copy(gbd[year %in% c(1980,1995), c('year','name','gbd_mx')]) country_change <- dcast(country_change, name ~ year, value.var = "gbd_mx") country_change[, diff := `1995` - `1980`] country_change <- country_change[order(-diff)] ## 61 countries have experienced an absolute drop in under-5 mortality greater than 0.01 between 1980-1995. model_countries <- country_change[diff <= -.01, name] ## Countries where mortality dropped after 2000 new_countries <- copy(gbd[year %in% c(2000,2015), c('year','name','gbd_mx')]) new_countries <- dcast(new_countries, name ~ year, value.var = "gbd_mx") new_countries[, diff := `2000` - `2015`] new_countries <- new_countries[order(-diff)] ## 61 countries have experienced an absolute drop in under-5 mortality greater than 0.01 between 1980-1995. new_countries <- new_countries[diff >= .01 & !(name %in% model_countries), name] ## Countries where the size of the 15-19 cohorts has significantly increased 1985-2000 size_countries <- copy(gbd[year %in% c(1985,2000), c('year','name','r_gbd_size_15_19')]) size_countries <- dcast(size_countries, name ~ year, value.var = "r_gbd_size_15_19") size_countries[, diff := `1985` - `2000`] size_countries <- size_countries[order(-diff)] ## 61 countries have experienced an absolute drop in under-5 mortality greater than 0.01 between 1980-1995. size_countries <- size_countries[diff >= .01 & !(name %in% model_countries), name] global_mort_cors <- gbd[year %in% 1995:2010 & name %in% model_countries, list(mx_magr=mean(lag15_r_gbd_mx, na.rm=TRUE), size_15_19_magr=mean(r_gbd_size_15_19)), by='name'] global_mort_cors <- global_mort_cors[order(mx_magr)] ## 64 countries where correlation <= -0.4 ggplot() + geom_point(data=global_mort_cors, aes(x=mx_magr, y=size_15_19_magr)) ggplot() + geom_point(data=gbd[name %in% model_countries & year %in% 1995:2010,], aes(x=r_gbd_size_15_19,y=lag15_r_gbd_mx)) ggplot() + geom_line(data=gbd[name=='Uganda'], aes(x=year, y=gbd_mx)) ## Fit random slope model for given IV by given category. fit_random_slope <- function(dv, iv, cat, order_cat, zero_line, dt, country_fe=TRUE, guide_title, size_var=NULL, no_res=FALSE) { if(no_res==TRUE) { f <- as.formula(paste0(dv, ' ~ ', iv, ' + percent_agriculture + scaled_sdi + lag5_out_rate + as.factor(name) + year')) mixedmod <- lm(f, data=dt) return(list(mixedmod)) } if(no_res==FALSE) { if(country_fe) f <- as.formula(paste0(dv, ' ~ ', iv, ' + log_lag5_out_rate + as.factor(name) + scaled_year + (1 + ', iv, ' | ', cat, ')')) if(!country_fe) f <- as.formula(paste0(dv, ' ~ ', iv, ' + log_lag5_out_rate + scaled_year + (1 + ', iv, ' | ', cat, ')')) mixedmod <- lmer(f, data=dt) # examine random and fixed effects gg.data <- data.table(slope=ranef(mixedmod)[[cat]][,iv], group=rownames(ranef(mixedmod)[[cat]])) if(is.null(size_var)) size_var <- dv mean_obs <- dt[, list(outcome=mean(get(size_var), na.rm=TRUE)), by=cat] setnames(mean_obs, cat, 'group') gg.data <- merge(gg.data, mean_obs, by='group') ifelse(order_cat, gg.data[, f_group := factor(group, levels=gg.data$group[order(gg.data[, slope])])], gg.data[, f_group := group]) gg <- ggplot(data=gg.data, aes(x=f_group, y=exp(slope+fixef(mixedmod)[iv]), size=outcome)) + geom_point() + geom_hline(yintercept = exp(fixef(mixedmod)[iv]), color = 'red', size=2) + labs(x='Grouping variable',y='Slope') + theme_minimal() + theme(axis.text.x = element_text(angle=60, hjust=1)) + scale_size_continuous(guide = guide_legend(title = guide_title)) if(zero_line) { gg <- gg + geom_hline(yintercept = 0, linetype='dashed') } return(list(gg, mixedmod)) } } mod <- fit_random_slope(dv='out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data, country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_migration', no_res=TRUE) summary(mod[[1]]) fixef(mod[[2]])['lag5_r_size_15_19'] sdi_data[, lag5_r_gbd_size_15_19 := lag5_r_gbd_size_15_19*100] sdi_data[, log_out_rate := log(out_rate+0.001)] sdi_data[, log_lag5_out_rate := log(lag5_out_rate+0.001)] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data, country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Liberia','Cambodia','Tajikistan'))], country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='transition_region_detailed', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Timor-Leste','Tajikistan','El Salvador','Guinea','Sierra Leone'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='sdi_group', order_cat=FALSE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Timor-Leste','Tajikistan','El Salvador','Guinea'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] out_cors <- rbindlist(lapply(unique(sdi_data[, name]), find_lag, dt=sdi_data, v='r_gbd_size_15_19', target='out_rate', type='positive')) setnames(out_cors, c('cor','bestlag'), c('out_cor','out_lag')) pdf(paste0('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/stage3_v2.pdf'), width = 12, height = 6) mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data, country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='name', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Sierra Leone','Bhutan','South Sudan','Afghanistan'))], country_fe=FALSE, guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='transition_region_detailed', order_cat=TRUE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Sierra Leone','Bhutan','South Sudan','Afghanistan'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] mod <- fit_random_slope(dv='log_out_rate', iv='lag5_r_gbd_size_15_19', cat='sdi_group', order_cat=FALSE, zero_line=TRUE, dt=sdi_data[!(name %in% c('Sierra Leone','Bhutan','South Sudan','Afghanistan'))], guide_title = 'Out-migration\nper thousand', size_var = 'out_rate') mod[[1]] dev.off() test <- sdi_data[!(name %in% c('Zimbabwe')) & !is.na(percent_agriculture) & year <= 2005 & !is.na(out_rate), ] test[, lme_pred := predict(mod[[2]])] test[, manual := fixef(mod[[2]])['(Intercept)'] + fixef(mod[[2]])['lag5_r_size_15_19'] * lag5_r_size_15_19 + fixef(mod[[2]])['percent_agriculture'] * percent_agriculture + fixef(mod[[2]])['lag5_out_rate'] * lag5_out_rate + fixef(mod[[2]])['as.factor(name)Kenya'] + fixef(mod[[2]])['year'] * year + ranef(mod[[2]])[['transition_region_detailed']][4, 'lag5_r_size_15_19'] * lag5_r_size_15_19 + ranef(mod[[2]])[['transition_region_detailed']][4, '(Intercept)']] test[, inla_pred := inla_model$summary.fitted.values$mean] test[, manual_inla := inla_model$summary.fixed['(Intercept)',]$mean + inla_model$summary.fixed['lag5_r_size_15_19',]$mean * lag5_r_size_15_19 + inla_model$summary.fixed['percent_agriculture',]$mean * percent_agriculture + inla_model$summary.fixed['lag5_out_rate',]$mean * lag5_out_rate + inla_model$summary.fixed['as.factor(name)Kenya',]$mean + inla_model$summary.fixed['year',]$mean * year + inla_model$summary.random$transition_region_detailed[4, ]$mean * lag5_r_size_15_19] ## Test INLA implementation and compare dv <- 'log_out_rate' iv <- 'lag5_r_gbd_size_15_19' cat <- 'name' inla_f <- as.formula(paste0(dv, ' ~ ', iv, ' + lag5_out_rate + year + f(', cat, ', ', iv, ', model = "iid")')) inla_f <- out_rate ~ lag5_r_size_15_19 + f(transition_region_detailed, lag5_r_size_15_19, model = "iid") inla_model = inla(formula=inla_f, data=sdi_data, family="gaussian", control.compute=list(dic=TRUE))#, control.fixed = list(prec.intercept = 0.0001)) summary(inla_model) inla_model$summary.random test <- sdi_data[!is.na(percent_agriculture), ] n.block = max(sdi_data$transition_region_detailed) ## = 4 sdi_data$i.intercept = sdi_data$transition_region_detailed sdi_data$j.intercept = sdi_data$transition_region_detailed + n.block ## see doc for iid2d formule_random_correlated_intercept_slope = y ~ x1 + f(i.intercept, model="iid2d", n=2*n.block) + f(j.intercept, x1, copy="i.intercept") model_random_correlated_intercept_slope_INLA = inla.cpo( formula=formule_random_correlated_intercept_slope, data=mydata, family="gaussian", control.compute=list(dic=TRUE)) summary(model_random_correlated_intercept_slope_INLA) pdf(paste0('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/paper_figs/updated_heat_maps.pdf'), width = 6, height = 10) for(cor_var in c('net_cor','ihme_cor','out_cor')) { heat_data <- unique(all_cors[, c('name','net_cor','out_cor','net_lag','out_lag','ihme_cor','ihme_lag')]) if(cor_var=='out_cor') heat_data[, name_f := factor(name, levels=heat_data$name[order(heat_data[, get(cor_var)])])] if(cor_var!='out_cor') heat_data[, name_f := factor(name, levels=heat_data$name[order(-heat_data[, get(cor_var)])])] heat_data <- melt(heat_data, id.vars = c('name_f','out_lag','net_lag','ihme_lag'), measure.vars = c('net_cor','out_cor','ihme_cor')) heat_data[variable=='net_cor', value_lab := paste0(as.character(round(value,2)), ' (', net_lag, ')')] heat_data[variable=='out_cor', value_lab := paste0(as.character(round(value,2)), ' (', out_lag, ')')] heat_data[variable=='ihme_cor', value_lab := paste0(as.character(round(value,2)), ' (', ihme_lag, ')')] heat_data[variable=='net_cor', variable := 'WPP (net)\n1950-2015'] heat_data[variable=='out_cor', variable := 'Wittgenstein (out)\n1990-2010'] heat_data[variable=='ihme_cor', variable := 'IHME (net)\n1950-2015'] heat_data[, variable := factor(variable, levels=c('WPP (net)\n1950-2015','IHME (net)\n1950-2015','Wittgenstein (out)\n1990-2010'))] redblue <- c('#b2182b','#d6604d','#f4a582','#fddbc7','#f7f7f7','#d1e5f0','#92c5de','#4393c3','#2166ac') heat.gg <- ggplot(heat_data, aes(variable, name_f)) + geom_tile(aes(fill = value), color = "white") + geom_text(aes(label = value_lab)) + #scale_fill_gradient(low = "steelblue", high = "white", na.value = "white", limits=c(-1,0)) + scale_fill_gradientn(colours=rev(redblue), values=c(-1,0,1), na.value = "#000000", rescaler = function(x, ...) x, oob = identity) + ylab("Country") + xlab("Comparison") + theme(legend.title = element_text(size = 10), legend.text = element_text(size = 12), plot.title = element_text(size=16), axis.title=element_text(size=14,face="bold"), axis.text.x = element_text(angle = 90, hjust = 1)) + labs(fill = "Correlation") + theme_minimal() print(heat.gg) } dev.off() get_cor <- function(n, dt, vars) { dt.n <- dt[name==n, ] dt.n <- dt.n[!is.na(get(vars[1])) & !is.na(get(vars[2])), ] c <- cor(dt.n[, get(vars[1])], dt.n[, get(vars[2])]) dt.n[, corr := c] dt.n <- unique(dt.n[, c('name','corr')]) return(dt.n) } cors <- rbindlist(lapply(unique(cohort_change[, name]),get_cor,cohort_change,c('out_rate','lag_age_prop'))) cors <- cors[order(corr)] cohort_change <- merge(cohort_change, cors, by='name') library(grid) library(gridExtra) pdf(paste0('C:/Users/ngraetz/Documents/Penn/papers/cfr_migration/all_trends_by_country.pdf'), width = 20, height = 8) for(this_name in unique(sdi_data[order(name), name])) { message(this_name) mort.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=mx), size = 2) + labs(x='Year',y='GBD: U5M') + theme_minimal() rmort.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=r_mx), size = 2) + geom_hline(yintercept = 0, color = 'red') + labs(x='Year',y='GBD: growth rate in U5M') + theme_minimal() age_prop.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=gbd_size_15_19/1000), size = 2) + labs(x='Year',y='GBD: pop size 15-19 (in thousands)') + theme_minimal() age_change.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=r_gbd_size_15_19), size = 2) + geom_hline(yintercept = 0, color = 'red') + labs(x='Year',y='GBD: growth rate in population size 15-19') + theme_minimal() out_migration.gg <- ggplot() + geom_line(data=sdi_data[name==this_name,], aes(x=year, y=out_rate), size = 2) + labs(x='Year',y='Wittgenstein: out-migration rate (per 1000)') + theme_minimal() gLegend<-function(a.plot){ if ("ggplot" %in% class(a.plot)) { tmp <- ggplot_gtable(ggplot_build(a.plot)) } else if ("grob" %in% class(a.plot)) { tmp <- .gplot } leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") legend <- tmp$grobs[[leg]] return(legend) } #leg <- gLegend(mx.gg) #leg$vp <- viewport(layout.pos.row = 2:6, layout.pos.col = 13) grid.newpage() pushViewport(viewport(layout = grid.layout(6, 15))) vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y) print(mort.gg + theme(legend.position="none"), vp = vplayout(2:6, 1:3)) print(rmort.gg + theme(legend.position="none"), vp = vplayout(2:6, 4:6)) print(age_prop.gg + theme(legend.position="none"), vp = vplayout(2:6, 7:9)) print(age_change.gg + theme(legend.position="none"), vp = vplayout(2:6, 10:12)) print(out_migration.gg + theme(legend.position="none"), vp = vplayout(2:6, 13:15)) #grid.draw(leg) grid.text(this_name, vp = viewport(layout.pos.row = 1, layout.pos.col = 1:15)) } dev.off() cohort_change[, moving_average := rollapplyr(data=net_migration, width=1:.N, FUN=mean, by=1), by = 'name'] cohort_change[, moving_average := lapply(.SD, rollmean, k = 3, na.pad = TRUE, partial = TRUE), by = name, .SDcols = 'net_migration'] cohort_change[name=='Nigeria', c('net_migration','moving_average')] print('hi') print('hi') print('hi') print('hi')
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/add-link.R \name{add_link} \alias{add_link} \title{Add other association link plot on correlation plot.} \usage{ add_link(df, mapping = NULL, spec.key = "spec", env.key = "env", curvature = NULL, spec.label.hspace = NULL, spec.label.vspace = 0, on.left = FALSE, diag.label = FALSE, extra.params = extra_params(), ...) } \arguments{ \item{df}{a data frame object.} \item{mapping}{NULL (default) or a list of aesthetic mappings to use for plot.} \item{spec.key}{string (defaults to "spec"), group variables names in \code{df}.} \item{env.key}{string (defaults to "env"), variables names in \code{df} that associated with the correlation coefficient matrix.} \item{curvature}{a numeric value giving the amount of curvature.} \item{spec.label.hspace, spec.label.vspace}{a numeric value giving the amount of horizontal/vertical space betweed group points and labels.} \item{on.left}{add link plot on left or right when the type of correlation plot is "full".} \item{diag.label}{logical (defaults to FALSE) to indicate whether add diag labels.} \item{extra.params}{other parameters that control details can be setting using the \code{extra_params} function.} \item{...}{extra params passing to \code{\link[ggplot2]{geom_curve}}.} } \description{ This function can add other associated information link plot more quickly, and this function can be used to reflect the relationship between other variables and variables in the correlation coefficient matrix plot. } \examples{ \dontrun{ require(vegan, quietly = TRUE) require(dplyr, quietly = TRUE) require(ggplot2, quietly = TRUE) data("varechem") data("varespec") mantel <- fortify_mantel(varespec, varechem, spec.select = list(1:10, 5:14, 7:22, 9:32)) quickcor(varechem, type = "upper") + geom_square() + add_link(mantel, diag.label = TRUE) + geom_diag_label() + remove_axis("x") mantel01 <- mantel \%>\% mutate(r = cut(r, breaks = c(-Inf, 0.25, 0.5, Inf), labels = c("<0.25", "0.25-0.5", ">=0.5"), right = FALSE), p.value = cut(p.value, breaks = c(-Inf, 0.001, 0.01, 0.05, Inf), labels = c("<0.001", "0.001-0.01", "0.01-0.05", ">=0.05"), right = FALSE)) quickcor(varechem, type = "upper") + geom_square() + add_link(mantel01, mapping = aes(colour = p.value, size = r), diag.label = TRUE) + geom_diag_label() + scale_size_manual(values = c(0.5, 1.5, 3)) + remove_axis("x") } } \author{ Houyun Huang, Lei Zhou, Jian Chen, Taiyun Wei }
/man/add_link.Rd
no_license
xma82/ggcor
R
false
true
2,624
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/add-link.R \name{add_link} \alias{add_link} \title{Add other association link plot on correlation plot.} \usage{ add_link(df, mapping = NULL, spec.key = "spec", env.key = "env", curvature = NULL, spec.label.hspace = NULL, spec.label.vspace = 0, on.left = FALSE, diag.label = FALSE, extra.params = extra_params(), ...) } \arguments{ \item{df}{a data frame object.} \item{mapping}{NULL (default) or a list of aesthetic mappings to use for plot.} \item{spec.key}{string (defaults to "spec"), group variables names in \code{df}.} \item{env.key}{string (defaults to "env"), variables names in \code{df} that associated with the correlation coefficient matrix.} \item{curvature}{a numeric value giving the amount of curvature.} \item{spec.label.hspace, spec.label.vspace}{a numeric value giving the amount of horizontal/vertical space betweed group points and labels.} \item{on.left}{add link plot on left or right when the type of correlation plot is "full".} \item{diag.label}{logical (defaults to FALSE) to indicate whether add diag labels.} \item{extra.params}{other parameters that control details can be setting using the \code{extra_params} function.} \item{...}{extra params passing to \code{\link[ggplot2]{geom_curve}}.} } \description{ This function can add other associated information link plot more quickly, and this function can be used to reflect the relationship between other variables and variables in the correlation coefficient matrix plot. } \examples{ \dontrun{ require(vegan, quietly = TRUE) require(dplyr, quietly = TRUE) require(ggplot2, quietly = TRUE) data("varechem") data("varespec") mantel <- fortify_mantel(varespec, varechem, spec.select = list(1:10, 5:14, 7:22, 9:32)) quickcor(varechem, type = "upper") + geom_square() + add_link(mantel, diag.label = TRUE) + geom_diag_label() + remove_axis("x") mantel01 <- mantel \%>\% mutate(r = cut(r, breaks = c(-Inf, 0.25, 0.5, Inf), labels = c("<0.25", "0.25-0.5", ">=0.5"), right = FALSE), p.value = cut(p.value, breaks = c(-Inf, 0.001, 0.01, 0.05, Inf), labels = c("<0.001", "0.001-0.01", "0.01-0.05", ">=0.05"), right = FALSE)) quickcor(varechem, type = "upper") + geom_square() + add_link(mantel01, mapping = aes(colour = p.value, size = r), diag.label = TRUE) + geom_diag_label() + scale_size_manual(values = c(0.5, 1.5, 3)) + remove_axis("x") } } \author{ Houyun Huang, Lei Zhou, Jian Chen, Taiyun Wei }
data<-read.csv2("Salaries.csv",sep=",",header=TRUE) data$X<-NULL salaire<-as.data.frame(data) summary(data) library(tree) tree.Lin<-tree(salary~yrs.service+yrs.since.phd,data=salaire) #1.2.c tree.model<-tree(log(salary)~yrs.service+yrs.since.phd,data=salaire) plot(tree.Lin) text(tree.Lin,cex=.75) #1.3 salar.deciles<-quantile(salaire$salary,0:10/10) cut.prices<-cut(salaire$salary,salar.deciles,include.lowest=TRUE) plot(salaire$yrs.service,salaire$yrs.since.phd,col=grey(10:2/11)[cut.prices],pch=20,xlab="yrs.service",ylab="yrs.since.phd") ####Partition partition.tree(tree.model,ordvars=c("yrs.service","yrs.since.phd"),add=TRUE) #Figure5 plot(salaire$yrs.since.phd,salaire$salary,pch=19,col=as.numeric(salaire$rank)) partition.tree(tree.model,label="Species",add=TRUE) legend("topright",legend=unique(salaire$rank),col=unique(as.numeric(salaire$rank)),pch=19) summary(tree.model) ###Nouveaumodel tree.model2<-tree(log(salary)~yrs.service+yrs.since.phd, data=salaire,mindev=0.001) plot(tree.model2) text(tree.model2,cex=.75) summary(tree.model2) #Elagation pruned.tree<-prune.tree(tree.model,best=4) plot(pruned.tree) text(pruned.tree) #chargerlesdonnees-attentionauxoptions data<-read.csv2("C:/Users/claey/Documents/cour/MyTD/TD5/ titanic.csv",sep=",",header=TRUE) titanic<-as.data.frame(data) ###Summary summary(titanic) View(data) ###Installeretcharger library(rpart) library(party) library(rpart.plot) str(titanic) myFormula<-survived~class+age# ##CART## fit<-rpart(myFormula,method="class",data=titanic) printcp(fit)#displaytheresults plotcp(fit)#visualizecross-validationresult(Figure8) summary(fit)#detailedsummaryofsplits #plottreeFigure9 plot(fit,uniform=TRUE) text(fit,use.n=TRUE,all=TRUE,cex=.7) library(rattle) library(rpart.plot) library(RColorBrewer) #Onameliorelegraphiquequin"estpastreslisible:Figure10 fancyRpartPlot(fit) ##CTREE## titanic_tree<-ctree(myFormula,data=titanic) print(titanic_tree) ##Figure11 plot(titanic_tree) predictions<-predict(titanic_tree,titanic) table(titanic$survived,predictions) predictions<-predict(titanic_tree2,titanic) table(titanic$survived,predictions) library(randomForest) r<-randomForest(survived~.,data=titanic,importance=TRUE,do. trace=100,ntree=100) plot(r) predictions<-predict(r,titanic) table(titanic$survived,predictions) print(r)
/Cours 5A/Big Data/Module 3 Modélisation/TD2/Pour les pd/td2.R
no_license
hejoseph/workspace
R
false
false
2,333
r
data<-read.csv2("Salaries.csv",sep=",",header=TRUE) data$X<-NULL salaire<-as.data.frame(data) summary(data) library(tree) tree.Lin<-tree(salary~yrs.service+yrs.since.phd,data=salaire) #1.2.c tree.model<-tree(log(salary)~yrs.service+yrs.since.phd,data=salaire) plot(tree.Lin) text(tree.Lin,cex=.75) #1.3 salar.deciles<-quantile(salaire$salary,0:10/10) cut.prices<-cut(salaire$salary,salar.deciles,include.lowest=TRUE) plot(salaire$yrs.service,salaire$yrs.since.phd,col=grey(10:2/11)[cut.prices],pch=20,xlab="yrs.service",ylab="yrs.since.phd") ####Partition partition.tree(tree.model,ordvars=c("yrs.service","yrs.since.phd"),add=TRUE) #Figure5 plot(salaire$yrs.since.phd,salaire$salary,pch=19,col=as.numeric(salaire$rank)) partition.tree(tree.model,label="Species",add=TRUE) legend("topright",legend=unique(salaire$rank),col=unique(as.numeric(salaire$rank)),pch=19) summary(tree.model) ###Nouveaumodel tree.model2<-tree(log(salary)~yrs.service+yrs.since.phd, data=salaire,mindev=0.001) plot(tree.model2) text(tree.model2,cex=.75) summary(tree.model2) #Elagation pruned.tree<-prune.tree(tree.model,best=4) plot(pruned.tree) text(pruned.tree) #chargerlesdonnees-attentionauxoptions data<-read.csv2("C:/Users/claey/Documents/cour/MyTD/TD5/ titanic.csv",sep=",",header=TRUE) titanic<-as.data.frame(data) ###Summary summary(titanic) View(data) ###Installeretcharger library(rpart) library(party) library(rpart.plot) str(titanic) myFormula<-survived~class+age# ##CART## fit<-rpart(myFormula,method="class",data=titanic) printcp(fit)#displaytheresults plotcp(fit)#visualizecross-validationresult(Figure8) summary(fit)#detailedsummaryofsplits #plottreeFigure9 plot(fit,uniform=TRUE) text(fit,use.n=TRUE,all=TRUE,cex=.7) library(rattle) library(rpart.plot) library(RColorBrewer) #Onameliorelegraphiquequin"estpastreslisible:Figure10 fancyRpartPlot(fit) ##CTREE## titanic_tree<-ctree(myFormula,data=titanic) print(titanic_tree) ##Figure11 plot(titanic_tree) predictions<-predict(titanic_tree,titanic) table(titanic$survived,predictions) predictions<-predict(titanic_tree2,titanic) table(titanic$survived,predictions) library(randomForest) r<-randomForest(survived~.,data=titanic,importance=TRUE,do. trace=100,ntree=100) plot(r) predictions<-predict(r,titanic) table(titanic$survived,predictions) print(r)
#--------------- hurst_scan<-scan('mercyhurst.txt',what=character(),sep='\n') hurst_lines<-data_frame(line=1:24066,text=hurst_scan) hurst_lines$group<-hurst_lines$line %/% 80 hurst_words<-unnest_tokens(hurst_lines,word,text) afinn<-get_sentiments('afinn') hurst_words<-inner_join(hurst_words,afinn) hurst_groups<-hurst_words%>% group_by(group)%>% summarize(sentiment=sum(score)) ggplot()+ geom_col(data=hurst_groups,aes(x=group,y=sentiment)) #------------------------ gutenberg_works(str_detect(title,'Frankenstein')) frankenstein<-gutenberg_download(84) frankenstein_words<-unnest_tokens(frankenstein,word,text) frankenstein_words$word_number<-1:75175 frankenstein_words$gutenberg_id<-NULL afinn<-get_sentiments('afinn') frankenstein_words<-inner_join(frankenstein_words,afinn) frankenstein_words$acc_sent<-cumsum(frankenstein_words$score) ggplot()+ geom_line(data=frankenstein_words,aes(x=word_number,y=acc_sent)) #------------------- #\documentclass{article} #\usepackage{natbib} #\begin{document} #\title{My Article} #\author{Charles Redmond} #\maketitle #\section{My First Section} #Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis ornare, libero quis sodales bibendum, dolor augue placerat arcu, sed pellentesque ante urna vel ex. Pellentesque eget purus eget velit ornare sodales et nec augue. In nec diam nibh. Nulla facilisi. Praesent tristique scelerisque lacus, at sollicitudin magna ultrices non. Mauris imperdiet eleifend sapien at mollis. Nullam id justo sollicitudin, euismod purus at, molestie nunc. Quisque et tellus sed risus sollicitudin lacinia viverra sit amet felis. Morbi hendrerit ultrices mauris, non iaculis justo cursus in. Pellentesque eget velit eget neque lobortis scelerisque quis et felis. Mauris commodo magna leo, eu tempor odio varius sed. Etiam erat ipsum, porttitor pellentesque dolor vitae, porta rhoncus ligula. #Ut mi magna, congue vitae sem quis, sodales porttitor urna. Nunc ornare faucibus arcu id tempor. Etiam congue vulputate mattis. Aliquam sollicitudin accumsan turpis vitae malesuada. Quisque aliquet lorem sit amet odio ullamcorper porta. Pellentesque lobortis augue nec dolor sagittis, ut rutrum sem placerat. Duis eu viverra nulla. #Nullam sit amet tempor mi. Curabitur sed odio vitae erat sodales consectetur vitae convallis nulla. Curabitur feugiat mollis consequat. Duis fermentum aliquet sem sit amet tincidunt. Etiam vitae orci dolor. Fusce ac sodales libero. Sed sodales non lorem a auctor. Nunc in tellus ornare, gravida elit a, venenatis justo. Vivamus ipsum augue, dapibus vitae nisi sit amet, faucibus vehicula quam. Ut quis elit accumsan, rhoncus massa tempor, blandit sapien. Quisque eleifend turpis vel nisi porttitor efficitur. #Nulla pretium in ipsum at ultricies. Integer maximus orci ut orci sagittis ornare. Praesent ac pellentesque nibh. Curabitur lacinia, nunc ut lobortis vulputate, augue ipsum consectetur enim, eu eleifend eros magna eget leo. Nulla sit amet laoreet nulla. Duis leo elit, accumsan eu ultrices id, rhoncus eget nibh. Duis eleifend accumsan tortor a bibendum \citep{Lakshmanan}. #Aliquam erat volutpat. Etiam convallis ultrices tortor, vel faucibus sapien finibus in. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nullam nulla dui, imperdiet et elementum eget, vehicula non risus. Duis varius orci id ex egestas vulputate. Donec eleifend tempor sem ac commodo. Vivamus ut nunc nisi. Sed quis lorem erat. Aliquam imperdiet tempus justo, ut laoreet lorem finibus ac. #\bibliographystyle{apa} #\bibliography{article} #\nocite{*} #\end{document} #---------- #@book{Lakshmanan, #author={Valliappa Lakshmanan}, #title={Data Science on the Google Cloud Platform: Implementing End-to-End Real-time Data Pipelines: From Ingest to Machine Learning}, #publisher={O'Reilly Inc.}, #year={2018} #} #pdflatex article #bibtex article #pdflatex article #\citep
/Test Example Problems/test_examples.R
no_license
justinminsk/Communication-and-Data
R
false
false
3,914
r
#--------------- hurst_scan<-scan('mercyhurst.txt',what=character(),sep='\n') hurst_lines<-data_frame(line=1:24066,text=hurst_scan) hurst_lines$group<-hurst_lines$line %/% 80 hurst_words<-unnest_tokens(hurst_lines,word,text) afinn<-get_sentiments('afinn') hurst_words<-inner_join(hurst_words,afinn) hurst_groups<-hurst_words%>% group_by(group)%>% summarize(sentiment=sum(score)) ggplot()+ geom_col(data=hurst_groups,aes(x=group,y=sentiment)) #------------------------ gutenberg_works(str_detect(title,'Frankenstein')) frankenstein<-gutenberg_download(84) frankenstein_words<-unnest_tokens(frankenstein,word,text) frankenstein_words$word_number<-1:75175 frankenstein_words$gutenberg_id<-NULL afinn<-get_sentiments('afinn') frankenstein_words<-inner_join(frankenstein_words,afinn) frankenstein_words$acc_sent<-cumsum(frankenstein_words$score) ggplot()+ geom_line(data=frankenstein_words,aes(x=word_number,y=acc_sent)) #------------------- #\documentclass{article} #\usepackage{natbib} #\begin{document} #\title{My Article} #\author{Charles Redmond} #\maketitle #\section{My First Section} #Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis ornare, libero quis sodales bibendum, dolor augue placerat arcu, sed pellentesque ante urna vel ex. Pellentesque eget purus eget velit ornare sodales et nec augue. In nec diam nibh. Nulla facilisi. Praesent tristique scelerisque lacus, at sollicitudin magna ultrices non. Mauris imperdiet eleifend sapien at mollis. Nullam id justo sollicitudin, euismod purus at, molestie nunc. Quisque et tellus sed risus sollicitudin lacinia viverra sit amet felis. Morbi hendrerit ultrices mauris, non iaculis justo cursus in. Pellentesque eget velit eget neque lobortis scelerisque quis et felis. Mauris commodo magna leo, eu tempor odio varius sed. Etiam erat ipsum, porttitor pellentesque dolor vitae, porta rhoncus ligula. #Ut mi magna, congue vitae sem quis, sodales porttitor urna. Nunc ornare faucibus arcu id tempor. Etiam congue vulputate mattis. Aliquam sollicitudin accumsan turpis vitae malesuada. Quisque aliquet lorem sit amet odio ullamcorper porta. Pellentesque lobortis augue nec dolor sagittis, ut rutrum sem placerat. Duis eu viverra nulla. #Nullam sit amet tempor mi. Curabitur sed odio vitae erat sodales consectetur vitae convallis nulla. Curabitur feugiat mollis consequat. Duis fermentum aliquet sem sit amet tincidunt. Etiam vitae orci dolor. Fusce ac sodales libero. Sed sodales non lorem a auctor. Nunc in tellus ornare, gravida elit a, venenatis justo. Vivamus ipsum augue, dapibus vitae nisi sit amet, faucibus vehicula quam. Ut quis elit accumsan, rhoncus massa tempor, blandit sapien. Quisque eleifend turpis vel nisi porttitor efficitur. #Nulla pretium in ipsum at ultricies. Integer maximus orci ut orci sagittis ornare. Praesent ac pellentesque nibh. Curabitur lacinia, nunc ut lobortis vulputate, augue ipsum consectetur enim, eu eleifend eros magna eget leo. Nulla sit amet laoreet nulla. Duis leo elit, accumsan eu ultrices id, rhoncus eget nibh. Duis eleifend accumsan tortor a bibendum \citep{Lakshmanan}. #Aliquam erat volutpat. Etiam convallis ultrices tortor, vel faucibus sapien finibus in. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nullam nulla dui, imperdiet et elementum eget, vehicula non risus. Duis varius orci id ex egestas vulputate. Donec eleifend tempor sem ac commodo. Vivamus ut nunc nisi. Sed quis lorem erat. Aliquam imperdiet tempus justo, ut laoreet lorem finibus ac. #\bibliographystyle{apa} #\bibliography{article} #\nocite{*} #\end{document} #---------- #@book{Lakshmanan, #author={Valliappa Lakshmanan}, #title={Data Science on the Google Cloud Platform: Implementing End-to-End Real-time Data Pipelines: From Ingest to Machine Learning}, #publisher={O'Reilly Inc.}, #year={2018} #} #pdflatex article #bibtex article #pdflatex article #\citep
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/collection_migrate.R \name{collection_migrate} \alias{collection_migrate} \title{Migrate documents to another collection} \usage{ collection_migrate(conn, name, target.collection, split.key, forward.timeout = NULL, async = NULL, raw = FALSE, callopts = list()) } \arguments{ \item{conn}{A solrium connection object, see \link{SolrClient}} \item{name}{(character) The name of the core to be created. Required} \item{target.collection}{(character) Required. The name of the target collection to which documents will be migrated} \item{split.key}{(character) Required. The routing key prefix. For example, if uniqueKey is a!123, then you would use split.key=a!} \item{forward.timeout}{(integer) The timeout (seconds), until which write requests made to the source collection for the given \code{split.key} will be forwarded to the target shard. Default: 60} \item{async}{(character) Request ID to track this action which will be processed asynchronously} \item{raw}{(logical) If \code{TRUE}, returns raw data} \item{callopts}{curl options passed on to \link[crul:HttpClient]{crul::HttpClient}} } \description{ Migrate documents to another collection } \examples{ \dontrun{ (conn <- SolrClient$new()) # create collection if (!conn$collection_exists("migrate_from")) { conn$collection_create(name = "migrate_from") # OR: bin/solr create -c migrate_from } # create another collection if (!conn$collection_exists("migrate_to")) { conn$collection_create(name = "migrate_to") # OR bin/solr create -c migrate_to } # add some documents file <- system.file("examples", "books.csv", package = "solrium") x <- read.csv(file, stringsAsFactors = FALSE) conn$add(x, "migrate_from") # migrate some documents from one collection to the other ## FIXME - not sure if this is actually working.... # conn$collection_migrate("migrate_from", "migrate_to", split.key = "05535") } }
/man/collection_migrate.Rd
permissive
melsiddieg/solrium
R
false
true
1,955
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/collection_migrate.R \name{collection_migrate} \alias{collection_migrate} \title{Migrate documents to another collection} \usage{ collection_migrate(conn, name, target.collection, split.key, forward.timeout = NULL, async = NULL, raw = FALSE, callopts = list()) } \arguments{ \item{conn}{A solrium connection object, see \link{SolrClient}} \item{name}{(character) The name of the core to be created. Required} \item{target.collection}{(character) Required. The name of the target collection to which documents will be migrated} \item{split.key}{(character) Required. The routing key prefix. For example, if uniqueKey is a!123, then you would use split.key=a!} \item{forward.timeout}{(integer) The timeout (seconds), until which write requests made to the source collection for the given \code{split.key} will be forwarded to the target shard. Default: 60} \item{async}{(character) Request ID to track this action which will be processed asynchronously} \item{raw}{(logical) If \code{TRUE}, returns raw data} \item{callopts}{curl options passed on to \link[crul:HttpClient]{crul::HttpClient}} } \description{ Migrate documents to another collection } \examples{ \dontrun{ (conn <- SolrClient$new()) # create collection if (!conn$collection_exists("migrate_from")) { conn$collection_create(name = "migrate_from") # OR: bin/solr create -c migrate_from } # create another collection if (!conn$collection_exists("migrate_to")) { conn$collection_create(name = "migrate_to") # OR bin/solr create -c migrate_to } # add some documents file <- system.file("examples", "books.csv", package = "solrium") x <- read.csv(file, stringsAsFactors = FALSE) conn$add(x, "migrate_from") # migrate some documents from one collection to the other ## FIXME - not sure if this is actually working.... # conn$collection_migrate("migrate_from", "migrate_to", split.key = "05535") } }
library(RWeka) multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { library(grid) # Make a list from the ... arguments and plotlist plots <- c(list(...), plotlist) numPlots = length(plots) # If layout is NULL, then use 'cols' to determine layout if (is.null(layout)) { # Make the panel # ncol: Number of columns of plots # nrow: Number of rows needed, calculated from # of cols layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), ncol = cols, nrow = ceiling(numPlots/cols)) } if (numPlots==1) { print(plots[[1]]) } else { # Set up the page grid.newpage() pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) # Make each plot, in the correct location for (i in 1:numPlots) { # Get the i,j matrix positions of the regions that contain this subplot matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, layout.pos.col = matchidx$col)) } } } # Refresh caches WPM("refresh-cache") # Load data load_data <- function() { fbppr.true <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/fbppr.true.csv", header=FALSE, sep=" ", col.names=c("query_id","id", "fppr_score", "fppr_rank", "bppr_score", "bppr_rank")) fbppr.false <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/fbppr.false.csv", header=FALSE, sep=" ", col.names=c("query_id","id", "fppr_score", "fppr_rank", "bppr_score", "bppr_rank")) fbppr.true$label <- "T" fbppr.false$label <- "F" fbppr <- rbind(fbppr.true, fbppr.false) sim.true <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/simrank.true.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "sim_score")) sim.false <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/simrank.false.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "sim_score")) sim.true$label <- "T" sim.false$label <- "F" sim <- rbind(sim.true, sim.false) salsa.true <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/salsa.true.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "query_auth_score", "query_auth_rank","query_hub_score", "query_hub_rank","id_auth_score", "id_auth_rank","id_hub_score","id_hub_rank")) salsa.false <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/salsa.false.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "query_auth_score", "query_auth_rank","query_hub_score", "query_hub_rank","id_auth_score", "id_auth_rank","id_hub_score","id_hub_rank")) salsa.true$label <- "T" salsa.false$label <- "F" salsa <- rbind(salsa.true, salsa.false) # Combine them together dat <- merge(fbppr, sim, by=c("query_id","id","label")) dat <- merge(dat, salsa, by=c("query_id","id","label")) return(dat) } # Do logistic regression on all different combinations of features do_logistic <- function(dat) { # Convert label to factor dat$label <- as.factor(dat$label) # Generate all combinations dat.features <- colnames(dat)[! colnames(dat) %in% c("query_id", "id", "label")] dat.res <- NULL for(i in 1:length(dat.features)) { features <- combn(dat.features, i) for(j in 1:dim(features)[2]) { feature <- paste(unlist(features[,j]), collapse = "+") f <- paste("label",feature,sep = "~") model <- Logistic(f, data = dat) res <- evaluate_Weka_classifier(model, numFolds = 5, complexity = FALSE, seed = 1, class = TRUE) dat.res <- rbind(dat.res, data.frame(name=feature, choose=i, t(colMeans(res$detailsClass)))) } } return(dat.res) } extractRes <- function(df, measurevar, topk) { tmpres <- NULL for(i in unique(df$choose)) { tmpdf <- df[which(df$choose == i),] tmpdf <- tmpdf[order(tmpdf[,measurevar], decreasing = TRUE),] len <- ifelse(dim(tmpdf)[1] > topk, topk, dim(tmpdf)[1]) tmpres <- rbind(tmpres, tmpdf[1:len,]) } return(tmpres) } abbr <- function(df) { df$name <- sub("fppr_score", "FS", df$name) df$name <- sub("fppr_rank", "FR", df$name) df$name <- sub("bppr_score", "BS", df$name) df$name <- sub("bppr_rank", "BR", df$name) df$name <- sub("sim_score", "SR", df$name) df$name <- sub("query_auth_score", "SAS", df$name) df$name <- sub("query_auth_rank", "SAR", df$name) df$name <- sub("query_hub_score", "SHS", df$name) df$name <- sub("query_hub_rank", "SHR", df$name) df$name <- sub("id_auth_score", "DAS", df$name) df$name <- sub("id_auth_rank", "DAR", df$name) df$name <- sub("id_hub_score", "DHS", df$name) df$name <- sub("id_hub_rank", "DHR", df$name) return(df) } draw <- function(df, measurevar = "areaUnderROC") { # Add ranking df$ranking <- rank(-df[,measurevar]) maxN <- max(df$choose) df$choose <- as.factor(df$choose) df$x <- 1:dim(df)[1] g <- ggplot(df, aes_string(x = "x", y = measurevar, fill="choose", label="ranking")) + geom_bar(stat="identity") + geom_text(vjust=0.5) + geom_hline(yintercept =max(df[, measurevar]), colour = "red", size=.1) + # coord_cartesian(ylim=c(0.98 * min(df[,measurevar]),1)) + coord_cartesian(ylim=c(0.5, 1)) + scale_x_discrete(breaks=df$x, labels=df$name) + scale_colour_brewer(palette="Set1") + theme_classic() + theme(axis.text.x = element_text(angle = 30, hjust = 1), axis.title.x = element_blank()) g return(g) } drawModel <- function(df, measurevar = "areaUnderROC") { df$x <- 1:dim(df)[1] df$choose <- as.factor(df$choose) ggplot(df, aes_string(x = "x", y = measurevar, label="Models", fill="choose")) + geom_bar(stat="identity") + geom_hline(yintercept =max(df[, measurevar]), colour = "red", size=.1) + coord_cartesian(ylim=c(0.6, 1)) + scale_colour_brewer(palette="Set1") + scale_x_discrete(breaks=df$x, labels=df$Models) + scale_fill_discrete(name="Number of\nModels") + theme_classic() + theme(axis.text.x = element_text(angle = 15, hjust = 1), axis.title.x = element_blank()) } compareAllModels <- function(df, measurevar = "areaUnderROC") { # There are 4 models FPPR/FBPPR/P-SALSA/SIMRANK res <- NULL # Number of models for(i in 1:4) { models <- combn(c("FPPR", "FBPPR", "P-SALSA", "SIMRANK"), i) # Select different model combinations templist <- NULL for( j in 1:dim(models)[2]) { #dim(models)[2] # Get results from this combination tmpdf <- NULL tmpidx <- rep(TRUE, dim(df)[1]) cmodels=setdiff(c("FPPR", "FBPPR", "P-SALSA", "SIMRANK"),models[,j]) for( m in cmodels) { if (m == "FPPR") { if (length(which(cmodels=="FBPPR"))>0) tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("fppr_", df$name)) } if (m == "FBPPR") { tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("bppr_", df$name)) } if (m == "P-SALSA") { tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("query_", df$name)) tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("id_", df$name)) } if (m == "SIMRANK") { tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("sim", df$name)) } } tmpdf <- df[which(tmpidx>0),] templist <- rbind(templist,data.frame(Models=paste(unlist(models[,j]),collapse = "+"), noname=max(tmpdf[,measurevar]), choose = i)) } colnames(templist)[2] <- measurevar templist <- templist[order(templist[, measurevar],decreasing=T),] res <- rbind(res,templist) } return(res) } # Compare different models drawModel(compareAllModels(dat.res, "recall"), "recall") drawModel(compareAllModels(dat.res, "precision"), "precision") drawModel(compareAllModels(dat.res, "fMeasure"), "fMeasure") drawModel(compareAllModels(dat.res, "areaUnderROC"), "areaUnderROC") #-------------------- dat.selected.res <- dat.res[! 1:dim(dat.res)[1] %in% union(grep("hub", dat.res$name), grep("auth_rank", dat.res$name)),] dat.nohub.res <- dat.res[! 1:dim(dat.res)[1] %in% grep("hub", dat.res$name),] dat.nobppr.res <- dat.res[! 1:dim(dat.res)[1] %in% grep("bppr_", dat.res$name),] dat.selected.resRest <- extractRes(dat.selected.res, "areaUnderROC", 5) draw(abbr(dat.selected.resRest), "areaUnderROC") dat.nobppr.bestRes <- extractRes(dat.nobppr.res, "areaUnderROC", 1) draw(abbr(dat.nobppr.bestRes), "areaUnderROC") dat.nohub.bestRes <- extractRes(dat.nohub.res, "areaUnderROC", 1) draw(abbr(dat.nohub.bestRes), "areaUnderROC") dat.bestRes <- extractRes(dat.res, "areaUnderROC", 1) draw(abbr(dat.bestRes),"areaUnderROC")
/scripts/weka.R
no_license
nddsg/forward-backward-ppr
R
false
false
8,964
r
library(RWeka) multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { library(grid) # Make a list from the ... arguments and plotlist plots <- c(list(...), plotlist) numPlots = length(plots) # If layout is NULL, then use 'cols' to determine layout if (is.null(layout)) { # Make the panel # ncol: Number of columns of plots # nrow: Number of rows needed, calculated from # of cols layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), ncol = cols, nrow = ceiling(numPlots/cols)) } if (numPlots==1) { print(plots[[1]]) } else { # Set up the page grid.newpage() pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) # Make each plot, in the correct location for (i in 1:numPlots) { # Get the i,j matrix positions of the regions that contain this subplot matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, layout.pos.col = matchidx$col)) } } } # Refresh caches WPM("refresh-cache") # Load data load_data <- function() { fbppr.true <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/fbppr.true.csv", header=FALSE, sep=" ", col.names=c("query_id","id", "fppr_score", "fppr_rank", "bppr_score", "bppr_rank")) fbppr.false <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/fbppr.false.csv", header=FALSE, sep=" ", col.names=c("query_id","id", "fppr_score", "fppr_rank", "bppr_score", "bppr_rank")) fbppr.true$label <- "T" fbppr.false$label <- "F" fbppr <- rbind(fbppr.true, fbppr.false) sim.true <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/simrank.true.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "sim_score")) sim.false <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/simrank.false.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "sim_score")) sim.true$label <- "T" sim.false$label <- "F" sim <- rbind(sim.true, sim.false) salsa.true <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/salsa.true.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "query_auth_score", "query_auth_rank","query_hub_score", "query_hub_rank","id_auth_score", "id_auth_rank","id_hub_score","id_hub_rank")) salsa.false <- read.csv("/data/bshi/dataset/dblp_citation/link_prediction/salsa.false.csv", header=FALSE, sep=" ", col.names=c("query_id", "id", "query_auth_score", "query_auth_rank","query_hub_score", "query_hub_rank","id_auth_score", "id_auth_rank","id_hub_score","id_hub_rank")) salsa.true$label <- "T" salsa.false$label <- "F" salsa <- rbind(salsa.true, salsa.false) # Combine them together dat <- merge(fbppr, sim, by=c("query_id","id","label")) dat <- merge(dat, salsa, by=c("query_id","id","label")) return(dat) } # Do logistic regression on all different combinations of features do_logistic <- function(dat) { # Convert label to factor dat$label <- as.factor(dat$label) # Generate all combinations dat.features <- colnames(dat)[! colnames(dat) %in% c("query_id", "id", "label")] dat.res <- NULL for(i in 1:length(dat.features)) { features <- combn(dat.features, i) for(j in 1:dim(features)[2]) { feature <- paste(unlist(features[,j]), collapse = "+") f <- paste("label",feature,sep = "~") model <- Logistic(f, data = dat) res <- evaluate_Weka_classifier(model, numFolds = 5, complexity = FALSE, seed = 1, class = TRUE) dat.res <- rbind(dat.res, data.frame(name=feature, choose=i, t(colMeans(res$detailsClass)))) } } return(dat.res) } extractRes <- function(df, measurevar, topk) { tmpres <- NULL for(i in unique(df$choose)) { tmpdf <- df[which(df$choose == i),] tmpdf <- tmpdf[order(tmpdf[,measurevar], decreasing = TRUE),] len <- ifelse(dim(tmpdf)[1] > topk, topk, dim(tmpdf)[1]) tmpres <- rbind(tmpres, tmpdf[1:len,]) } return(tmpres) } abbr <- function(df) { df$name <- sub("fppr_score", "FS", df$name) df$name <- sub("fppr_rank", "FR", df$name) df$name <- sub("bppr_score", "BS", df$name) df$name <- sub("bppr_rank", "BR", df$name) df$name <- sub("sim_score", "SR", df$name) df$name <- sub("query_auth_score", "SAS", df$name) df$name <- sub("query_auth_rank", "SAR", df$name) df$name <- sub("query_hub_score", "SHS", df$name) df$name <- sub("query_hub_rank", "SHR", df$name) df$name <- sub("id_auth_score", "DAS", df$name) df$name <- sub("id_auth_rank", "DAR", df$name) df$name <- sub("id_hub_score", "DHS", df$name) df$name <- sub("id_hub_rank", "DHR", df$name) return(df) } draw <- function(df, measurevar = "areaUnderROC") { # Add ranking df$ranking <- rank(-df[,measurevar]) maxN <- max(df$choose) df$choose <- as.factor(df$choose) df$x <- 1:dim(df)[1] g <- ggplot(df, aes_string(x = "x", y = measurevar, fill="choose", label="ranking")) + geom_bar(stat="identity") + geom_text(vjust=0.5) + geom_hline(yintercept =max(df[, measurevar]), colour = "red", size=.1) + # coord_cartesian(ylim=c(0.98 * min(df[,measurevar]),1)) + coord_cartesian(ylim=c(0.5, 1)) + scale_x_discrete(breaks=df$x, labels=df$name) + scale_colour_brewer(palette="Set1") + theme_classic() + theme(axis.text.x = element_text(angle = 30, hjust = 1), axis.title.x = element_blank()) g return(g) } drawModel <- function(df, measurevar = "areaUnderROC") { df$x <- 1:dim(df)[1] df$choose <- as.factor(df$choose) ggplot(df, aes_string(x = "x", y = measurevar, label="Models", fill="choose")) + geom_bar(stat="identity") + geom_hline(yintercept =max(df[, measurevar]), colour = "red", size=.1) + coord_cartesian(ylim=c(0.6, 1)) + scale_colour_brewer(palette="Set1") + scale_x_discrete(breaks=df$x, labels=df$Models) + scale_fill_discrete(name="Number of\nModels") + theme_classic() + theme(axis.text.x = element_text(angle = 15, hjust = 1), axis.title.x = element_blank()) } compareAllModels <- function(df, measurevar = "areaUnderROC") { # There are 4 models FPPR/FBPPR/P-SALSA/SIMRANK res <- NULL # Number of models for(i in 1:4) { models <- combn(c("FPPR", "FBPPR", "P-SALSA", "SIMRANK"), i) # Select different model combinations templist <- NULL for( j in 1:dim(models)[2]) { #dim(models)[2] # Get results from this combination tmpdf <- NULL tmpidx <- rep(TRUE, dim(df)[1]) cmodels=setdiff(c("FPPR", "FBPPR", "P-SALSA", "SIMRANK"),models[,j]) for( m in cmodels) { if (m == "FPPR") { if (length(which(cmodels=="FBPPR"))>0) tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("fppr_", df$name)) } if (m == "FBPPR") { tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("bppr_", df$name)) } if (m == "P-SALSA") { tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("query_", df$name)) tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("id_", df$name)) } if (m == "SIMRANK") { tmpidx <- tmpidx * (! 1:dim(df)[1] %in% grep("sim", df$name)) } } tmpdf <- df[which(tmpidx>0),] templist <- rbind(templist,data.frame(Models=paste(unlist(models[,j]),collapse = "+"), noname=max(tmpdf[,measurevar]), choose = i)) } colnames(templist)[2] <- measurevar templist <- templist[order(templist[, measurevar],decreasing=T),] res <- rbind(res,templist) } return(res) } # Compare different models drawModel(compareAllModels(dat.res, "recall"), "recall") drawModel(compareAllModels(dat.res, "precision"), "precision") drawModel(compareAllModels(dat.res, "fMeasure"), "fMeasure") drawModel(compareAllModels(dat.res, "areaUnderROC"), "areaUnderROC") #-------------------- dat.selected.res <- dat.res[! 1:dim(dat.res)[1] %in% union(grep("hub", dat.res$name), grep("auth_rank", dat.res$name)),] dat.nohub.res <- dat.res[! 1:dim(dat.res)[1] %in% grep("hub", dat.res$name),] dat.nobppr.res <- dat.res[! 1:dim(dat.res)[1] %in% grep("bppr_", dat.res$name),] dat.selected.resRest <- extractRes(dat.selected.res, "areaUnderROC", 5) draw(abbr(dat.selected.resRest), "areaUnderROC") dat.nobppr.bestRes <- extractRes(dat.nobppr.res, "areaUnderROC", 1) draw(abbr(dat.nobppr.bestRes), "areaUnderROC") dat.nohub.bestRes <- extractRes(dat.nohub.res, "areaUnderROC", 1) draw(abbr(dat.nohub.bestRes), "areaUnderROC") dat.bestRes <- extractRes(dat.res, "areaUnderROC", 1) draw(abbr(dat.bestRes),"areaUnderROC")
# This script creates a SQL table of CFPB comment metadata # subset to Dodd-Frank dockets or RINs as identified by Davis Polk library(DBI) library(RSQLite) library(tidyverse) # API version v4 = FALSE ## now pulling from new search of API v4 if(v4){ load(here::here("data", "CFPBcomments.Rdata")) comments_all <- CFPBcomments } else{ ## originally pulled from Devin's master data load(here::here("data", "comment_metadata.Rdata")) } nrow(comments_all) head(comments_all) names(comments_all) # Rename to fit https://docs.google.com/spreadsheets/d/1i8t_ZMAhjddg7cQz06Z057BqnNQEsC4Gur6p17Uz0i4/edit#gid=1357829693 names(comments_all) <- names(comments_all) %>% str_replace_all("([A-Z])", "_\\1") %>% str_to_lower() names(comments_all) comments_all %<>% mutate(source = "regulations.gov") if(v4){ comments_all %<>% mutate(comment_id = id) comments_all %<>% rename(agency_acronym = agency_id) } else { # v3 comments_all %<>% mutate(comment_id = document_id) } comments_all %<>% mutate(comment_url = str_c("https://www.regulations.gov/comment/", comment_id)) #FIXME v4 does not return comment due date count(comments_all, is.na(posted_date)) count(comments_all, is.na(comment_due_date)) comments_all %<>% mutate(late_comment = as.Date(posted_date) > as.Date(comment_due_date)) count(comments_all, is.na(late_comment)) # V4 no longer returns organization or docket title comments_all %<>% mutate(docket_id = str_remove(comment_id, "-[0-9]*$")) vars_to_keep <- c("fr_document_id", # need this from rules table joined in by document_id - comment_id "docket_title", # this may clash with docket title from attachments table "docket_type", "rin", "attachment_count", "posted_date", "submitter_name", "organization", "late_comment", "allow_late_comment") # FIXME trim down to minimial variables comments_all %<>% select(source, #fr_document_id, # need this from rules table joined in by document_id - comment_id agency_acronym, docket_id, comment_id = document_id, comment_title = title, # rename comment_url, any_of(vars_to_keep) ) # filter to only CFPB comments comments_CFPB <- comments_all %>% filter(agency_acronym == "CFPB") nrow(comments_CFPB) head(comments_CFPB) # save Rdata save(comments_CFPB, file = here::here("data", "comment_metadata_CFPB.Rdata")) # convert dates to character for SQL comments_CFPB %<>% mutate(across(where(is.numeric.Date), as.character) ) # Create RSQLite database for all CFPB comment metadata library(DBI) # install.packages("RSQLite") 1 library(RSQLite) con <- dbConnect(RSQLite::SQLite(), here::here("data", "comment_metadata_CFPB.sqlite")) # check list.files("data") dbListTables(con) dbWriteTable(con, "comments", comments_CFPB, overwrite = T) dbListTables(con) dbListFields(con, "comments") # dbReadTable(con, "comments_CFPB") # oops # fetch results: res <- dbSendQuery(con, "SELECT * FROM comments WHERE agency_acronym = 'CFPB'") dbFetch(res) %>% head() dbClearResult(res) dbDisconnect(con) ################################################### # Subset to Davis Polk Dodd-Frank rules # load(here::here("data", "comment_metadata_CFPB.Rdata")) names(comments_CFPB) # Dodd-Frank rules from Davis Polk Data df <- read_csv(here::here("data", "dockets_to_scrape.csv")) names(df) head(df) df %<>% filter(str_detect(agency, "CFPB")) # Subset to Dodd-Frank rules (by docket or RIN) df_rins <- df$RIN %>% na.omit() %>% unique() df_dockets <- df$identifier %>% na.omit() %>% unique() comments_CFPB_df <- comments_CFPB %>% filter(docket_id %in% df_dockets | rin %in% df_rins) # rins not in dockets to scrape comments_CFPB_df %>% filter(!rin %in% df_rins) %>% select(docket_id, rin) %>% distinct() # dockets not in dockets to scrape comments_CFPB_df %>% filter(!docket_id %in% df_dockets) %>% select(docket_id, rin) %>% distinct() %>% knitr::kable() comments_CFPB_df$docket_id %>% unique() comments_CFPB_df$rin %>% unique() # look back to see how many we matched matched <- df %>% filter(RIN %in% na.omit(comments_CFPB_df$rin) | identifier %in% na.omit(comments_CFPB_df$docket_id)) unmatched <- df %>% anti_join(matched) unmatched %>% select(RIN, identifier) %>% distinct() # # 0 comments # RIN identifier # <chr> <chr> # 1 NA CFPB-2013-0038 # 2 3170-AA30 CFPB-2012-0040 # 3 NA CFPB-2014-0030 # 4 3170-AA36 CFPB-2013-0006 # 5 NA CFPB-2012-0042 # 6 NA CFPB-2013-0034 # 7 NA CFPB-2017-0026 # 8 NA CFPB-2012-0043 # 9 NA CFPB-2013-0035 # 10 NA CFPB-2017-0027 # NOTE see checks against fed reg doc numbers in functions/sql_actions_metadata_CFPB.R # save Rdata save(comments_CFPB_df, file = here::here("data", "comment_metadata_CFPB_df.Rdata")) # Create RSQLite database con <- dbConnect(RSQLite::SQLite(), here::here("data", "comment_metadata_CFPB_df.sqlite")) # check list.files("data") dbListTables(con) dbWriteTable(con, "comments", comments_CFPB_df, overwrite = T) dbListTables(con) dbListFields(con, "comments") # fetch results: res <- dbSendQuery(con, "SELECT * FROM comments WHERE agency_acronym = 'CFPB'") result <- dbFetch(res) result |> head() count(result, posted_date, sort = T) count(result, is.na(posted_date), sort = T) dbClearResult(res) dbDisconnect(con)
/functions/sql_comment_metadata_CFPB.R
no_license
zoeang/rulemaking
R
false
false
5,635
r
# This script creates a SQL table of CFPB comment metadata # subset to Dodd-Frank dockets or RINs as identified by Davis Polk library(DBI) library(RSQLite) library(tidyverse) # API version v4 = FALSE ## now pulling from new search of API v4 if(v4){ load(here::here("data", "CFPBcomments.Rdata")) comments_all <- CFPBcomments } else{ ## originally pulled from Devin's master data load(here::here("data", "comment_metadata.Rdata")) } nrow(comments_all) head(comments_all) names(comments_all) # Rename to fit https://docs.google.com/spreadsheets/d/1i8t_ZMAhjddg7cQz06Z057BqnNQEsC4Gur6p17Uz0i4/edit#gid=1357829693 names(comments_all) <- names(comments_all) %>% str_replace_all("([A-Z])", "_\\1") %>% str_to_lower() names(comments_all) comments_all %<>% mutate(source = "regulations.gov") if(v4){ comments_all %<>% mutate(comment_id = id) comments_all %<>% rename(agency_acronym = agency_id) } else { # v3 comments_all %<>% mutate(comment_id = document_id) } comments_all %<>% mutate(comment_url = str_c("https://www.regulations.gov/comment/", comment_id)) #FIXME v4 does not return comment due date count(comments_all, is.na(posted_date)) count(comments_all, is.na(comment_due_date)) comments_all %<>% mutate(late_comment = as.Date(posted_date) > as.Date(comment_due_date)) count(comments_all, is.na(late_comment)) # V4 no longer returns organization or docket title comments_all %<>% mutate(docket_id = str_remove(comment_id, "-[0-9]*$")) vars_to_keep <- c("fr_document_id", # need this from rules table joined in by document_id - comment_id "docket_title", # this may clash with docket title from attachments table "docket_type", "rin", "attachment_count", "posted_date", "submitter_name", "organization", "late_comment", "allow_late_comment") # FIXME trim down to minimial variables comments_all %<>% select(source, #fr_document_id, # need this from rules table joined in by document_id - comment_id agency_acronym, docket_id, comment_id = document_id, comment_title = title, # rename comment_url, any_of(vars_to_keep) ) # filter to only CFPB comments comments_CFPB <- comments_all %>% filter(agency_acronym == "CFPB") nrow(comments_CFPB) head(comments_CFPB) # save Rdata save(comments_CFPB, file = here::here("data", "comment_metadata_CFPB.Rdata")) # convert dates to character for SQL comments_CFPB %<>% mutate(across(where(is.numeric.Date), as.character) ) # Create RSQLite database for all CFPB comment metadata library(DBI) # install.packages("RSQLite") 1 library(RSQLite) con <- dbConnect(RSQLite::SQLite(), here::here("data", "comment_metadata_CFPB.sqlite")) # check list.files("data") dbListTables(con) dbWriteTable(con, "comments", comments_CFPB, overwrite = T) dbListTables(con) dbListFields(con, "comments") # dbReadTable(con, "comments_CFPB") # oops # fetch results: res <- dbSendQuery(con, "SELECT * FROM comments WHERE agency_acronym = 'CFPB'") dbFetch(res) %>% head() dbClearResult(res) dbDisconnect(con) ################################################### # Subset to Davis Polk Dodd-Frank rules # load(here::here("data", "comment_metadata_CFPB.Rdata")) names(comments_CFPB) # Dodd-Frank rules from Davis Polk Data df <- read_csv(here::here("data", "dockets_to_scrape.csv")) names(df) head(df) df %<>% filter(str_detect(agency, "CFPB")) # Subset to Dodd-Frank rules (by docket or RIN) df_rins <- df$RIN %>% na.omit() %>% unique() df_dockets <- df$identifier %>% na.omit() %>% unique() comments_CFPB_df <- comments_CFPB %>% filter(docket_id %in% df_dockets | rin %in% df_rins) # rins not in dockets to scrape comments_CFPB_df %>% filter(!rin %in% df_rins) %>% select(docket_id, rin) %>% distinct() # dockets not in dockets to scrape comments_CFPB_df %>% filter(!docket_id %in% df_dockets) %>% select(docket_id, rin) %>% distinct() %>% knitr::kable() comments_CFPB_df$docket_id %>% unique() comments_CFPB_df$rin %>% unique() # look back to see how many we matched matched <- df %>% filter(RIN %in% na.omit(comments_CFPB_df$rin) | identifier %in% na.omit(comments_CFPB_df$docket_id)) unmatched <- df %>% anti_join(matched) unmatched %>% select(RIN, identifier) %>% distinct() # # 0 comments # RIN identifier # <chr> <chr> # 1 NA CFPB-2013-0038 # 2 3170-AA30 CFPB-2012-0040 # 3 NA CFPB-2014-0030 # 4 3170-AA36 CFPB-2013-0006 # 5 NA CFPB-2012-0042 # 6 NA CFPB-2013-0034 # 7 NA CFPB-2017-0026 # 8 NA CFPB-2012-0043 # 9 NA CFPB-2013-0035 # 10 NA CFPB-2017-0027 # NOTE see checks against fed reg doc numbers in functions/sql_actions_metadata_CFPB.R # save Rdata save(comments_CFPB_df, file = here::here("data", "comment_metadata_CFPB_df.Rdata")) # Create RSQLite database con <- dbConnect(RSQLite::SQLite(), here::here("data", "comment_metadata_CFPB_df.sqlite")) # check list.files("data") dbListTables(con) dbWriteTable(con, "comments", comments_CFPB_df, overwrite = T) dbListTables(con) dbListFields(con, "comments") # fetch results: res <- dbSendQuery(con, "SELECT * FROM comments WHERE agency_acronym = 'CFPB'") result <- dbFetch(res) result |> head() count(result, posted_date, sort = T) count(result, is.na(posted_date), sort = T) dbClearResult(res) dbDisconnect(con)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utility_define_param.R \name{define.param} \alias{define.param} \title{Define climateR configuration} \usage{ define.param(param, service = NULL) } \arguments{ \item{param}{the parameter(s) of interest} \item{service}{the dataset for which a configuration is needed} } \value{ a vector of N GCMs } \description{ **INTERNAL** Define the parameter configuration to call with climateR. Ensures that the specificed parameters are avialable and structured in the variable sapce of the datasource. } \author{ Mike Johnson } \keyword{internal}
/man/define.param.Rd
permissive
mbjoseph/climateR
R
false
true
616
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utility_define_param.R \name{define.param} \alias{define.param} \title{Define climateR configuration} \usage{ define.param(param, service = NULL) } \arguments{ \item{param}{the parameter(s) of interest} \item{service}{the dataset for which a configuration is needed} } \value{ a vector of N GCMs } \description{ **INTERNAL** Define the parameter configuration to call with climateR. Ensures that the specificed parameters are avialable and structured in the variable sapce of the datasource. } \author{ Mike Johnson } \keyword{internal}
context("logging x and y values") # Helper to check if a logging result has the correct structure expect_logging_result_structure = function(x) { expect_true(is.list(x)) expect_true(is.data.frame(x$pars)) expect_true(is.numeric(x$obj.vals)) } test_that("logging for functions with matrix input works well", { fn = makeBBOBFunction(fid = 1L, iid = 1L, dimension = 10L) fn = addLoggingWrapper(fn, logg.x = TRUE) fn(matrix(runif(10L * 10L), ncol = 10L)) res = getLoggedValues(fn, compact = TRUE) expect_true(is.data.frame(res)) expect_equal(nrow(res), 10L) expect_equal(ncol(res), 10L + 1L) # dim plus y }) test_that("logging for simple functions works well", { # generate Sphere function for (dimension in c(1L, 2L, 5L, 10L)) { fn = makeSphereFunction(dimension = dimension) par.ids = getParamIds(getParamSet(fn), with.nr = TRUE, repeated = TRUE) # add logger for both x and y values fn = addLoggingWrapper(fn, logg.x = TRUE) # now apply some evaluations fn(runif(dimension)) # check for logged vals res = getLoggedValues(fn) expect_logging_result_structure(res) expect_equal(nrow(res$pars), 1L) expect_equal(length(res$obj.vals), 1L) for (i in seq(10L)) { fn(runif(dimension)) } res = getLoggedValues(fn) expect_logging_result_structure(res) expect_equal(nrow(res$pars), 11L) expect_equal(length(res$obj.vals), 11L) # check "compact" logging result res = getLoggedValues(fn, compact = TRUE) expect_true(is.data.frame(res)) expect_equal(nrow(res), 11L) expect_equal(ncol(res), dimension + 1L) # dim plus the single objective value } }) test_that("logging for mixed function works well", { # define a mixed function with three parameters fn = makeSingleObjectiveFunction( name = "Test", fn = function(x) { if (x$disc == "a") { return(x$x1 + x$x2) } return(x$x1 + x$x2 + 1L) }, par.set = makeParamSet( makeDiscreteParam("disc", values = letters[1:2]), makeNumericParam("x1"), makeNumericParam("x2", lower = 0, upper = 10) ), has.simple.signature = FALSE ) # add logger fn = addLoggingWrapper(fn, logg.x = TRUE) test.df = data.frame( disc = c("a", "a", "b"), x1 = c(0, 0, 1), x2 = c(0, 0, 1) ) obj.vals = c(0, 0, 3) for (i in 1:nrow(test.df)) { fn(dfRowToList(test.df, i, par.set = ParamHelpers::getParamSet(fn))) } res = getLoggedValues(fn) expect_logging_result_structure(res) expect_equal(test.df, res$pars) expect_true(all(obj.vals == res$obj.vals)) }) test_that("nesting of wrappers works well", { fn = makeSphereFunction(2L) fn = addCountingWrapper(fn) fn = addLoggingWrapper(fn, logg.x = TRUE) # evaluate 10 times n.evals = 10L for (i in seq(n.evals)) { fn(runif(2)) } # should be a wrapped function now expect_true(isWrappedSmoofFunction(fn)) expect_equal(getNumberOfEvaluations(fn), n.evals) fn2 = fn resetEvaluationCounter(fn2) expect_equal(getNumberOfEvaluations(fn2), 0L) expect_logging_result_structure(getLoggedValues(fn)) # now unwrap step by step fn2 = getWrappedFunction(fn) expect_true(isWrappedSmoofFunction(fn2)) expect_equal(getNumberOfEvaluations(fn), 0L) fn2 = getWrappedFunction(fn2) expect_false(isWrappedSmoofFunction(fn2)) expect_true(isSmoofFunction(fn2)) # now unwrap completely fn2 = getWrappedFunction(fn, deepest = TRUE) expect_false(isWrappedSmoofFunction(fn2)) expect_true(isSmoofFunction(fn2)) }) test_that("getters work for wrapped smoof functions", { fn = makeSphereFunction(2L) fn = addCountingWrapper(fn) fn = addLoggingWrapper(fn, logg.x = TRUE) # getter functions work on wrappers expect_true(hasTags(fn, "unimodal")) expect_true(doesCountEvaluations(fn)) expect_true(all(is.character(getTags(fn)))) expect_true(is.character(getName(fn))) expect_false(isMultiobjective(fn)) expect_true(isSingleobjective(fn)) expect_false(isVectorized(fn)) expect_false(isNoisy(fn)) expect_true(shouldBeMinimized(fn)) expect_is(getParamSet(fn), "ParamSet") expect_true(all(is.numeric(getLowerBoxConstraints(fn)))) expect_true(all(is.numeric(getUpperBoxConstraints(fn)))) expect_true(hasGlobalOptimum(fn)) expect_true(hasConstraints(fn)) expect_false(hasOtherConstraints(fn)) expect_true(hasBoxConstraints(fn)) expect_true(is.list(getGlobalOptimum(fn))) })
/tests/testthat/test_logging.R
permissive
DrRoad/smoof
R
false
false
4,426
r
context("logging x and y values") # Helper to check if a logging result has the correct structure expect_logging_result_structure = function(x) { expect_true(is.list(x)) expect_true(is.data.frame(x$pars)) expect_true(is.numeric(x$obj.vals)) } test_that("logging for functions with matrix input works well", { fn = makeBBOBFunction(fid = 1L, iid = 1L, dimension = 10L) fn = addLoggingWrapper(fn, logg.x = TRUE) fn(matrix(runif(10L * 10L), ncol = 10L)) res = getLoggedValues(fn, compact = TRUE) expect_true(is.data.frame(res)) expect_equal(nrow(res), 10L) expect_equal(ncol(res), 10L + 1L) # dim plus y }) test_that("logging for simple functions works well", { # generate Sphere function for (dimension in c(1L, 2L, 5L, 10L)) { fn = makeSphereFunction(dimension = dimension) par.ids = getParamIds(getParamSet(fn), with.nr = TRUE, repeated = TRUE) # add logger for both x and y values fn = addLoggingWrapper(fn, logg.x = TRUE) # now apply some evaluations fn(runif(dimension)) # check for logged vals res = getLoggedValues(fn) expect_logging_result_structure(res) expect_equal(nrow(res$pars), 1L) expect_equal(length(res$obj.vals), 1L) for (i in seq(10L)) { fn(runif(dimension)) } res = getLoggedValues(fn) expect_logging_result_structure(res) expect_equal(nrow(res$pars), 11L) expect_equal(length(res$obj.vals), 11L) # check "compact" logging result res = getLoggedValues(fn, compact = TRUE) expect_true(is.data.frame(res)) expect_equal(nrow(res), 11L) expect_equal(ncol(res), dimension + 1L) # dim plus the single objective value } }) test_that("logging for mixed function works well", { # define a mixed function with three parameters fn = makeSingleObjectiveFunction( name = "Test", fn = function(x) { if (x$disc == "a") { return(x$x1 + x$x2) } return(x$x1 + x$x2 + 1L) }, par.set = makeParamSet( makeDiscreteParam("disc", values = letters[1:2]), makeNumericParam("x1"), makeNumericParam("x2", lower = 0, upper = 10) ), has.simple.signature = FALSE ) # add logger fn = addLoggingWrapper(fn, logg.x = TRUE) test.df = data.frame( disc = c("a", "a", "b"), x1 = c(0, 0, 1), x2 = c(0, 0, 1) ) obj.vals = c(0, 0, 3) for (i in 1:nrow(test.df)) { fn(dfRowToList(test.df, i, par.set = ParamHelpers::getParamSet(fn))) } res = getLoggedValues(fn) expect_logging_result_structure(res) expect_equal(test.df, res$pars) expect_true(all(obj.vals == res$obj.vals)) }) test_that("nesting of wrappers works well", { fn = makeSphereFunction(2L) fn = addCountingWrapper(fn) fn = addLoggingWrapper(fn, logg.x = TRUE) # evaluate 10 times n.evals = 10L for (i in seq(n.evals)) { fn(runif(2)) } # should be a wrapped function now expect_true(isWrappedSmoofFunction(fn)) expect_equal(getNumberOfEvaluations(fn), n.evals) fn2 = fn resetEvaluationCounter(fn2) expect_equal(getNumberOfEvaluations(fn2), 0L) expect_logging_result_structure(getLoggedValues(fn)) # now unwrap step by step fn2 = getWrappedFunction(fn) expect_true(isWrappedSmoofFunction(fn2)) expect_equal(getNumberOfEvaluations(fn), 0L) fn2 = getWrappedFunction(fn2) expect_false(isWrappedSmoofFunction(fn2)) expect_true(isSmoofFunction(fn2)) # now unwrap completely fn2 = getWrappedFunction(fn, deepest = TRUE) expect_false(isWrappedSmoofFunction(fn2)) expect_true(isSmoofFunction(fn2)) }) test_that("getters work for wrapped smoof functions", { fn = makeSphereFunction(2L) fn = addCountingWrapper(fn) fn = addLoggingWrapper(fn, logg.x = TRUE) # getter functions work on wrappers expect_true(hasTags(fn, "unimodal")) expect_true(doesCountEvaluations(fn)) expect_true(all(is.character(getTags(fn)))) expect_true(is.character(getName(fn))) expect_false(isMultiobjective(fn)) expect_true(isSingleobjective(fn)) expect_false(isVectorized(fn)) expect_false(isNoisy(fn)) expect_true(shouldBeMinimized(fn)) expect_is(getParamSet(fn), "ParamSet") expect_true(all(is.numeric(getLowerBoxConstraints(fn)))) expect_true(all(is.numeric(getUpperBoxConstraints(fn)))) expect_true(hasGlobalOptimum(fn)) expect_true(hasConstraints(fn)) expect_false(hasOtherConstraints(fn)) expect_true(hasBoxConstraints(fn)) expect_true(is.list(getGlobalOptimum(fn))) })
############################################################################################################ # ANÁLISE EMPÍRICA - ESTIMAÇÃO OLS E EFEITOS FIXOS (LAST YEAR) ############################################################################################################ rm(list = ls()) # Pacotes: library(dplyr) library(ggplot2) library(tidyr) library(readr) library(stringr) library(htmltools) library(htmlwidgets) library(zeallot) library(readxl) library(gdata) library(stringi) library(Hmisc) library(gmodels) library(broom) # Pacotes para estatísticas descritivas: library(psych) library(summarytools) # Pacotes Específicos para se trabalhar com RDD: library(rdd) # Pacote mais básico library(rddtools) # Pacote com muitas opções de testes de placebo e sensibilidade das estimações e estimação paramétrica library(rdrobust) # Pacote mais abrangente library(rddapp) # Pacote com interface em Shiny, reduz a necessidade de se saber programar. library(rddensity) # Pacotes para se visualizar resultados de modelos: library(stargazer) library(jtools) library(huxtable) library(texreg) # Pacote para regressões de Dados em Painel: library(plm) # Opções: options(scipen = 999) # Desabilita notação scientífica. Para voltar ao padrão -> options(scipen = 1) # Definindo o diretório onde se encontram as bases de dados prontas para análise empírica: setwd("C:/Users/joseg_000.PC-JE/Documents/Dissertação - Dados/Bases de Dados Prontas") # ---------------------------------------------------------------------------------------------------------------------------------- # Baixando as bases de dados (ESCOLHER A QUE FOR USAR) # load("bases_prontas_ECD") load("bases_prontas_ED") # Definindo o diretório para o R salvar as tabelas geradas: # setwd("C:/Users/joseg_000.PC-JE/Google Drive/FGV-EPGE/Dissertação/Tabelas Geradas no R/Análise com partidos de esquerda, centro e direita") setwd("C:/Users/joseg_000.PC-JE/Google Drive/FGV-EPGE/Dissertação/Tabelas Geradas no R/Análise com partidos de esquerda e direita") # ---------------------------------------------------------------------------------------------------------------------------------- # Analisando quais partidos estão sendo considerados: table(base_pronta_last_year$ideologia_partido_eleito) summarytools::freq(base_pronta_last_year$ideologia_partido_eleito) summarytools::descr(base_pronta_last_year$margem_vitoria_esquerda, transpose = T, stats = "common", round.digits = 3) # Lista de variáveis outcome de interesse: # outcomes <- c("despesa_geral_pc", "despesa_geral_pib", # "total_receitas_pc", "total_receitas_pib", # "receita_tributaria_pc", "receita_tributaria_pib", # "educacao_prop", "saude_prop", "assistencia_social_prop", # "urbanismo_prop", "transporte_prop", "desporto_e_lazer_prop", # "seguranca_publica_prop", "gestao_ambiental_prop", # "servidores_comissionados_mil") # Lista de variáveis de controle de interesse: # covariates <- c("regiao", "pop", "fracao_pop_masculina", "fracao_pop_urbana", # "proporcao_idoso", "proporcao_jovem", "proporcao_brancos", "pib_pc") # ----------------------------------------------------------------------------------------------------------------------- # Estimação RDD Paramétrica usando o pacote rddtools # Usando a função rddtools::rdd_data() para construir os RDD objects de interesse: # Primeiramente, devemos armazenar os modelos RDD como rdd objects: (SEM COVARIATES) # O prefixo p_ significa "PARAMÉTRICO": p_rdd_object_unconditional_1 <- rdd_data(y = log(despesa_geral_pc), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_2 <- rdd_data(y = log(despesa_geral_pib), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_3 <- rdd_data(y = log(total_receitas_pc), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_4 <- rdd_data(y = log(total_receitas_pib), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_5 <- rdd_data(y = log(receita_tributaria_pc + 0.0001), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_6 <- rdd_data(y = log(receita_tributaria_pib + 0.0001), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_7 <- rdd_data(y = log(servidores_comissionados_mil + 0.0001), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_8 <- rdd_data(y = educacao_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_9 <- rdd_data(y = saude_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_10 <- rdd_data(y = assistencia_social_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_11 <- rdd_data(y = urbanismo_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_12 <- rdd_data(y = transporte_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_13 <- rdd_data(y = desporto_e_lazer_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_14 <- rdd_data(y = seguranca_publica_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_15 <- rdd_data(y = gestao_ambiental_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) # ------------------------------------------------------------------------------------------------------------ # REGRESSÕES RDD PARAMÉTRICAS SEM COVARIATES: # Regressões sem covariates, polinômio de ordem 3: p_rdd_unconditional_1 <- rdd_reg_lm(p_rdd_object_unconditional_1, order = 3, slope = "separate") p_rdd_unconditional_2 <- rdd_reg_lm(p_rdd_object_unconditional_2, order = 3, slope = "separate") p_rdd_unconditional_3 <- rdd_reg_lm(p_rdd_object_unconditional_3, order = 3, slope = "separate") p_rdd_unconditional_4 <- rdd_reg_lm(p_rdd_object_unconditional_4, order = 3, slope = "separate") p_rdd_unconditional_5 <- rdd_reg_lm(p_rdd_object_unconditional_5, order = 3, slope = "separate") p_rdd_unconditional_6 <- rdd_reg_lm(p_rdd_object_unconditional_6, order = 3, slope = "separate") p_rdd_unconditional_7 <- rdd_reg_lm(p_rdd_object_unconditional_7, order = 3, slope = "separate") p_rdd_unconditional_8 <- rdd_reg_lm(p_rdd_object_unconditional_8, order = 3, slope = "separate") p_rdd_unconditional_9 <- rdd_reg_lm(p_rdd_object_unconditional_9, order = 3, slope = "separate") p_rdd_unconditional_10 <- rdd_reg_lm(p_rdd_object_unconditional_10, order = 3, slope = "separate") p_rdd_unconditional_11 <- rdd_reg_lm(p_rdd_object_unconditional_11, order = 3, slope = "separate") p_rdd_unconditional_12 <- rdd_reg_lm(p_rdd_object_unconditional_12, order = 3, slope = "separate") p_rdd_unconditional_13 <- rdd_reg_lm(p_rdd_object_unconditional_13, order = 3, slope = "separate") p_rdd_unconditional_14 <- rdd_reg_lm(p_rdd_object_unconditional_14, order = 3, slope = "separate") p_rdd_unconditional_15 <- rdd_reg_lm(p_rdd_object_unconditional_15, order = 3, slope = "separate") stargazer(p_rdd_unconditional_1, p_rdd_unconditional_2, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total expenditures (per capita)", "Total Expeditures (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_unconditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_2, type = "HC0", cluster = "group"))))) stargazer(p_rdd_unconditional_3, p_rdd_unconditional_4, p_rdd_unconditional_5, p_rdd_unconditional_6, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total Revenues (per capita)", "Total Revenues (share of income)", "Tax Revenues (per capita)", "Tax Revenues (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_unconditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_6, type = "HC0", cluster = "group"))))) stargazer(p_rdd_unconditional_7, p_rdd_unconditional_8, p_rdd_unconditional_9, p_rdd_unconditional_10, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Comission Employees (per 1000 residents)", "Spending on Education (share of total)", "Spending on Health (share of total)", "Spending on Social Assistance (share of total)"), se = list(sqrt(diag(vcovHC(p_rdd_unconditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_10, type = "HC0", cluster = "group"))))) column_labels_vector <- c("Total expenditures (per capita)", "Total Expeditures (share of income)", "Total Revenues (per capita)", "Total Revenues (share of income)", "Tax Revenues (per capita)", "Tax Revenues (share of income)", "Comission Employees (per 1000 residents)", "Spending on Education (share of total)", "Spending on Health (share of total)", "Spending on Social Assistance (share of total)", "Spending on Urbanism (Share of Total)", "Spending on Transportation (Share of Total)", "Spending on Sports and Leisure (Share of Total)", "Spending on Public Safety (Share of Total)", "Spending on Environmental management (Share of Total)") # Todas as regressões em uma só tabela, exportada para excel xls, e erros padrão com cluster: # (Abrir os arquivos em html, copiar e colar (transpondo) no excel e arrumar os dados na tabela) stargazer(p_rdd_unconditional_1, p_rdd_unconditional_2, p_rdd_unconditional_3, p_rdd_unconditional_4, p_rdd_unconditional_5, p_rdd_unconditional_6, p_rdd_unconditional_7, p_rdd_unconditional_8, p_rdd_unconditional_9, p_rdd_unconditional_10, p_rdd_unconditional_11, p_rdd_unconditional_12, p_rdd_unconditional_13, p_rdd_unconditional_14, p_rdd_unconditional_15, digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD. No covariates. Polymonial of order 3", column.labels = column_labels_vector, se = list(sqrt(diag(vcovHC(p_rdd_unconditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_2, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_6, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_10, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_11, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_12, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_13, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_14, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_15, type = "HC0", cluster = "group")))), type = "html", out = "p_rdd_unconditional.html") plot(p_rdd_unconditional_1) plot(p_rdd_unconditional_2) plot(p_rdd_unconditional_3) plot(p_rdd_unconditional_4) plot(p_rdd_unconditional_5) plot(p_rdd_unconditional_6) plot(p_rdd_unconditional_7) plot(p_rdd_unconditional_8) plot(p_rdd_unconditional_9) plot(p_rdd_unconditional_10) # ------------------------------------------------------------------------------------------------------------ # REGRESSÕES RDD PARAMÉTRICAS COM COVARIATES: # Primeiramente, devemos armazenar os modelos RDD como rdd objects: (COM COVARIATES) # O prefixo p_ significa "PARAMÉTRICO": covariates_df <- base_pronta_last_year %>% select(pop, fracao_pop_masculina, fracao_pop_urbana, pib_pc) p_rdd_object_conditional_1 <- rdd_data(y = log(despesa_geral_pc), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_2 <- rdd_data(y = log(despesa_geral_pib), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_3 <- rdd_data(y = log(total_receitas_pc), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_4 <- rdd_data(y = log(total_receitas_pib), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_5 <- rdd_data(y = log(receita_tributaria_pc + 0.0001), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_6 <- rdd_data(y = log(receita_tributaria_pib + 0.0001), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_7 <- rdd_data(y = log(servidores_comissionados_mil + 0.0001), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_8 <- rdd_data(y = educacao_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_9 <- rdd_data(y = saude_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_10 <- rdd_data(y = assistencia_social_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_11 <- rdd_data(y = urbanismo_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_12 <- rdd_data(y = transporte_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_13 <- rdd_data(y = desporto_e_lazer_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_14 <- rdd_data(y = seguranca_publica_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_15 <- rdd_data(y = gestao_ambiental_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) # Regressões com covariates, polinômio de ordem 3: attach(base_pronta_last_year) p_rdd_conditional_1 <- rdd_reg_lm(p_rdd_object_conditional_1, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_2 <- rdd_reg_lm(p_rdd_object_conditional_2, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_3 <- rdd_reg_lm(p_rdd_object_conditional_3, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_4 <- rdd_reg_lm(p_rdd_object_conditional_4, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_5 <- rdd_reg_lm(p_rdd_object_conditional_5, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_6 <- rdd_reg_lm(p_rdd_object_conditional_6, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_7 <- rdd_reg_lm(p_rdd_object_conditional_7, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_8 <- rdd_reg_lm(p_rdd_object_conditional_8, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_9 <- rdd_reg_lm(p_rdd_object_conditional_9, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_10 <- rdd_reg_lm(p_rdd_object_conditional_10, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_11 <- rdd_reg_lm(p_rdd_object_conditional_11, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_12 <- rdd_reg_lm(p_rdd_object_conditional_12, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_13 <- rdd_reg_lm(p_rdd_object_conditional_13, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_14 <- rdd_reg_lm(p_rdd_object_conditional_14, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_15 <- rdd_reg_lm(p_rdd_object_conditional_15, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) stargazer(p_rdd_conditional_1, p_rdd_conditional_2, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total expenditures (per capita)", "Total Expeditures (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_conditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_2, type = "HC0", cluster = "group"))))) stargazer(p_rdd_conditional_3, p_rdd_conditional_4, p_rdd_conditional_5, p_rdd_conditional_6, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total Revenues (per capita)", "Total Revenues (share of income)", "Tax Revenues (per capita)", "Tax Revenues (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_conditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_6, type = "HC0", cluster = "group"))))) stargazer(p_rdd_conditional_7, p_rdd_conditional_8, p_rdd_conditional_9, p_rdd_conditional_10, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Comission Employees (per 1000 residents)", "Spending on Education (share of total)", "Spending on Health (share of total)", "Spending on Social Assistance (share of total)"), se = list(sqrt(diag(vcovHC(p_rdd_conditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_10, type = "HC0", cluster = "group"))))) # Todas as regressões em uma só tabela, exportada para excel xls, e erros padrão com cluster: # (Abrir os arquivos em html, copiar e colar (transpondo) no excel e arrumar os dados na tabela) stargazer(p_rdd_conditional_1, p_rdd_conditional_2, p_rdd_conditional_3, p_rdd_conditional_4, p_rdd_conditional_5, p_rdd_conditional_6, p_rdd_conditional_7, p_rdd_conditional_8, p_rdd_conditional_9, p_rdd_conditional_10, p_rdd_conditional_11, p_rdd_conditional_12, p_rdd_conditional_13, p_rdd_conditional_14, p_rdd_conditional_15, digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD. Four covariates. Polymonial of order 3", column.labels = column_labels_vector, se = list(sqrt(diag(vcovHC(p_rdd_conditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_2, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_6, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_10, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_11, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_12, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_13, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_14, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_15, type = "HC0", cluster = "group")))), type = "html", out = "p_rdd_conditional.html") # plot(p_rdd_conditional_1) # plot(p_rdd_conditional_2) # plot(p_rdd_conditional_3) # plot(p_rdd_conditional_4) # plot(p_rdd_conditional_5) # plot(p_rdd_conditional_6) # plot(p_rdd_conditional_7) # plot(p_rdd_conditional_8) # plot(p_rdd_conditional_9) # plot(p_rdd_conditional_10) # plot(p_rdd_conditional_11) # plot(p_rdd_conditional_12) detach(base_pronta_last_year)
/4.5 - Estimação RDD Paramétrico (last year).R
no_license
joseeduardo-gs/do-political-parties-matter
R
false
false
23,941
r
############################################################################################################ # ANÁLISE EMPÍRICA - ESTIMAÇÃO OLS E EFEITOS FIXOS (LAST YEAR) ############################################################################################################ rm(list = ls()) # Pacotes: library(dplyr) library(ggplot2) library(tidyr) library(readr) library(stringr) library(htmltools) library(htmlwidgets) library(zeallot) library(readxl) library(gdata) library(stringi) library(Hmisc) library(gmodels) library(broom) # Pacotes para estatísticas descritivas: library(psych) library(summarytools) # Pacotes Específicos para se trabalhar com RDD: library(rdd) # Pacote mais básico library(rddtools) # Pacote com muitas opções de testes de placebo e sensibilidade das estimações e estimação paramétrica library(rdrobust) # Pacote mais abrangente library(rddapp) # Pacote com interface em Shiny, reduz a necessidade de se saber programar. library(rddensity) # Pacotes para se visualizar resultados de modelos: library(stargazer) library(jtools) library(huxtable) library(texreg) # Pacote para regressões de Dados em Painel: library(plm) # Opções: options(scipen = 999) # Desabilita notação scientífica. Para voltar ao padrão -> options(scipen = 1) # Definindo o diretório onde se encontram as bases de dados prontas para análise empírica: setwd("C:/Users/joseg_000.PC-JE/Documents/Dissertação - Dados/Bases de Dados Prontas") # ---------------------------------------------------------------------------------------------------------------------------------- # Baixando as bases de dados (ESCOLHER A QUE FOR USAR) # load("bases_prontas_ECD") load("bases_prontas_ED") # Definindo o diretório para o R salvar as tabelas geradas: # setwd("C:/Users/joseg_000.PC-JE/Google Drive/FGV-EPGE/Dissertação/Tabelas Geradas no R/Análise com partidos de esquerda, centro e direita") setwd("C:/Users/joseg_000.PC-JE/Google Drive/FGV-EPGE/Dissertação/Tabelas Geradas no R/Análise com partidos de esquerda e direita") # ---------------------------------------------------------------------------------------------------------------------------------- # Analisando quais partidos estão sendo considerados: table(base_pronta_last_year$ideologia_partido_eleito) summarytools::freq(base_pronta_last_year$ideologia_partido_eleito) summarytools::descr(base_pronta_last_year$margem_vitoria_esquerda, transpose = T, stats = "common", round.digits = 3) # Lista de variáveis outcome de interesse: # outcomes <- c("despesa_geral_pc", "despesa_geral_pib", # "total_receitas_pc", "total_receitas_pib", # "receita_tributaria_pc", "receita_tributaria_pib", # "educacao_prop", "saude_prop", "assistencia_social_prop", # "urbanismo_prop", "transporte_prop", "desporto_e_lazer_prop", # "seguranca_publica_prop", "gestao_ambiental_prop", # "servidores_comissionados_mil") # Lista de variáveis de controle de interesse: # covariates <- c("regiao", "pop", "fracao_pop_masculina", "fracao_pop_urbana", # "proporcao_idoso", "proporcao_jovem", "proporcao_brancos", "pib_pc") # ----------------------------------------------------------------------------------------------------------------------- # Estimação RDD Paramétrica usando o pacote rddtools # Usando a função rddtools::rdd_data() para construir os RDD objects de interesse: # Primeiramente, devemos armazenar os modelos RDD como rdd objects: (SEM COVARIATES) # O prefixo p_ significa "PARAMÉTRICO": p_rdd_object_unconditional_1 <- rdd_data(y = log(despesa_geral_pc), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_2 <- rdd_data(y = log(despesa_geral_pib), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_3 <- rdd_data(y = log(total_receitas_pc), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_4 <- rdd_data(y = log(total_receitas_pib), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_5 <- rdd_data(y = log(receita_tributaria_pc + 0.0001), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_6 <- rdd_data(y = log(receita_tributaria_pib + 0.0001), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_7 <- rdd_data(y = log(servidores_comissionados_mil + 0.0001), x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_8 <- rdd_data(y = educacao_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_9 <- rdd_data(y = saude_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_10 <- rdd_data(y = assistencia_social_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_11 <- rdd_data(y = urbanismo_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_12 <- rdd_data(y = transporte_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_13 <- rdd_data(y = desporto_e_lazer_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_14 <- rdd_data(y = seguranca_publica_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_unconditional_15 <- rdd_data(y = gestao_ambiental_prop, x = margem_vitoria_esquerda, cutpoint = 0, data = base_pronta_last_year) # ------------------------------------------------------------------------------------------------------------ # REGRESSÕES RDD PARAMÉTRICAS SEM COVARIATES: # Regressões sem covariates, polinômio de ordem 3: p_rdd_unconditional_1 <- rdd_reg_lm(p_rdd_object_unconditional_1, order = 3, slope = "separate") p_rdd_unconditional_2 <- rdd_reg_lm(p_rdd_object_unconditional_2, order = 3, slope = "separate") p_rdd_unconditional_3 <- rdd_reg_lm(p_rdd_object_unconditional_3, order = 3, slope = "separate") p_rdd_unconditional_4 <- rdd_reg_lm(p_rdd_object_unconditional_4, order = 3, slope = "separate") p_rdd_unconditional_5 <- rdd_reg_lm(p_rdd_object_unconditional_5, order = 3, slope = "separate") p_rdd_unconditional_6 <- rdd_reg_lm(p_rdd_object_unconditional_6, order = 3, slope = "separate") p_rdd_unconditional_7 <- rdd_reg_lm(p_rdd_object_unconditional_7, order = 3, slope = "separate") p_rdd_unconditional_8 <- rdd_reg_lm(p_rdd_object_unconditional_8, order = 3, slope = "separate") p_rdd_unconditional_9 <- rdd_reg_lm(p_rdd_object_unconditional_9, order = 3, slope = "separate") p_rdd_unconditional_10 <- rdd_reg_lm(p_rdd_object_unconditional_10, order = 3, slope = "separate") p_rdd_unconditional_11 <- rdd_reg_lm(p_rdd_object_unconditional_11, order = 3, slope = "separate") p_rdd_unconditional_12 <- rdd_reg_lm(p_rdd_object_unconditional_12, order = 3, slope = "separate") p_rdd_unconditional_13 <- rdd_reg_lm(p_rdd_object_unconditional_13, order = 3, slope = "separate") p_rdd_unconditional_14 <- rdd_reg_lm(p_rdd_object_unconditional_14, order = 3, slope = "separate") p_rdd_unconditional_15 <- rdd_reg_lm(p_rdd_object_unconditional_15, order = 3, slope = "separate") stargazer(p_rdd_unconditional_1, p_rdd_unconditional_2, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total expenditures (per capita)", "Total Expeditures (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_unconditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_2, type = "HC0", cluster = "group"))))) stargazer(p_rdd_unconditional_3, p_rdd_unconditional_4, p_rdd_unconditional_5, p_rdd_unconditional_6, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total Revenues (per capita)", "Total Revenues (share of income)", "Tax Revenues (per capita)", "Tax Revenues (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_unconditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_6, type = "HC0", cluster = "group"))))) stargazer(p_rdd_unconditional_7, p_rdd_unconditional_8, p_rdd_unconditional_9, p_rdd_unconditional_10, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Comission Employees (per 1000 residents)", "Spending on Education (share of total)", "Spending on Health (share of total)", "Spending on Social Assistance (share of total)"), se = list(sqrt(diag(vcovHC(p_rdd_unconditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_10, type = "HC0", cluster = "group"))))) column_labels_vector <- c("Total expenditures (per capita)", "Total Expeditures (share of income)", "Total Revenues (per capita)", "Total Revenues (share of income)", "Tax Revenues (per capita)", "Tax Revenues (share of income)", "Comission Employees (per 1000 residents)", "Spending on Education (share of total)", "Spending on Health (share of total)", "Spending on Social Assistance (share of total)", "Spending on Urbanism (Share of Total)", "Spending on Transportation (Share of Total)", "Spending on Sports and Leisure (Share of Total)", "Spending on Public Safety (Share of Total)", "Spending on Environmental management (Share of Total)") # Todas as regressões em uma só tabela, exportada para excel xls, e erros padrão com cluster: # (Abrir os arquivos em html, copiar e colar (transpondo) no excel e arrumar os dados na tabela) stargazer(p_rdd_unconditional_1, p_rdd_unconditional_2, p_rdd_unconditional_3, p_rdd_unconditional_4, p_rdd_unconditional_5, p_rdd_unconditional_6, p_rdd_unconditional_7, p_rdd_unconditional_8, p_rdd_unconditional_9, p_rdd_unconditional_10, p_rdd_unconditional_11, p_rdd_unconditional_12, p_rdd_unconditional_13, p_rdd_unconditional_14, p_rdd_unconditional_15, digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD. No covariates. Polymonial of order 3", column.labels = column_labels_vector, se = list(sqrt(diag(vcovHC(p_rdd_unconditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_2, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_6, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_10, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_11, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_12, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_13, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_14, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_unconditional_15, type = "HC0", cluster = "group")))), type = "html", out = "p_rdd_unconditional.html") plot(p_rdd_unconditional_1) plot(p_rdd_unconditional_2) plot(p_rdd_unconditional_3) plot(p_rdd_unconditional_4) plot(p_rdd_unconditional_5) plot(p_rdd_unconditional_6) plot(p_rdd_unconditional_7) plot(p_rdd_unconditional_8) plot(p_rdd_unconditional_9) plot(p_rdd_unconditional_10) # ------------------------------------------------------------------------------------------------------------ # REGRESSÕES RDD PARAMÉTRICAS COM COVARIATES: # Primeiramente, devemos armazenar os modelos RDD como rdd objects: (COM COVARIATES) # O prefixo p_ significa "PARAMÉTRICO": covariates_df <- base_pronta_last_year %>% select(pop, fracao_pop_masculina, fracao_pop_urbana, pib_pc) p_rdd_object_conditional_1 <- rdd_data(y = log(despesa_geral_pc), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_2 <- rdd_data(y = log(despesa_geral_pib), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_3 <- rdd_data(y = log(total_receitas_pc), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_4 <- rdd_data(y = log(total_receitas_pib), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_5 <- rdd_data(y = log(receita_tributaria_pc + 0.0001), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_6 <- rdd_data(y = log(receita_tributaria_pib + 0.0001), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_7 <- rdd_data(y = log(servidores_comissionados_mil + 0.0001), x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_8 <- rdd_data(y = educacao_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_9 <- rdd_data(y = saude_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_10 <- rdd_data(y = assistencia_social_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_11 <- rdd_data(y = urbanismo_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_12 <- rdd_data(y = transporte_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_13 <- rdd_data(y = desporto_e_lazer_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_14 <- rdd_data(y = seguranca_publica_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) p_rdd_object_conditional_15 <- rdd_data(y = gestao_ambiental_prop, x = margem_vitoria_esquerda, covar = covariates_df, cutpoint = 0, data = base_pronta_last_year) # Regressões com covariates, polinômio de ordem 3: attach(base_pronta_last_year) p_rdd_conditional_1 <- rdd_reg_lm(p_rdd_object_conditional_1, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_2 <- rdd_reg_lm(p_rdd_object_conditional_2, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_3 <- rdd_reg_lm(p_rdd_object_conditional_3, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_4 <- rdd_reg_lm(p_rdd_object_conditional_4, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_5 <- rdd_reg_lm(p_rdd_object_conditional_5, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_6 <- rdd_reg_lm(p_rdd_object_conditional_6, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_7 <- rdd_reg_lm(p_rdd_object_conditional_7, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_8 <- rdd_reg_lm(p_rdd_object_conditional_8, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_9 <- rdd_reg_lm(p_rdd_object_conditional_9, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_10 <- rdd_reg_lm(p_rdd_object_conditional_10, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_11 <- rdd_reg_lm(p_rdd_object_conditional_11, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_12 <- rdd_reg_lm(p_rdd_object_conditional_12, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_13 <- rdd_reg_lm(p_rdd_object_conditional_13, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_14 <- rdd_reg_lm(p_rdd_object_conditional_14, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) p_rdd_conditional_15 <- rdd_reg_lm(p_rdd_object_conditional_15, order = 3, slope = "separate", covariates = "pop", covar.opt = list("include")) stargazer(p_rdd_conditional_1, p_rdd_conditional_2, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total expenditures (per capita)", "Total Expeditures (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_conditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_2, type = "HC0", cluster = "group"))))) stargazer(p_rdd_conditional_3, p_rdd_conditional_4, p_rdd_conditional_5, p_rdd_conditional_6, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Total Revenues (per capita)", "Total Revenues (share of income)", "Tax Revenues (per capita)", "Tax Revenues (share of income)"), se = list(sqrt(diag(vcovHC(p_rdd_conditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_6, type = "HC0", cluster = "group"))))) stargazer(p_rdd_conditional_7, p_rdd_conditional_8, p_rdd_conditional_9, p_rdd_conditional_10, type = "text", digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD", column.labels = c("Comission Employees (per 1000 residents)", "Spending on Education (share of total)", "Spending on Health (share of total)", "Spending on Social Assistance (share of total)"), se = list(sqrt(diag(vcovHC(p_rdd_conditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_10, type = "HC0", cluster = "group"))))) # Todas as regressões em uma só tabela, exportada para excel xls, e erros padrão com cluster: # (Abrir os arquivos em html, copiar e colar (transpondo) no excel e arrumar os dados na tabela) stargazer(p_rdd_conditional_1, p_rdd_conditional_2, p_rdd_conditional_3, p_rdd_conditional_4, p_rdd_conditional_5, p_rdd_conditional_6, p_rdd_conditional_7, p_rdd_conditional_8, p_rdd_conditional_9, p_rdd_conditional_10, p_rdd_conditional_11, p_rdd_conditional_12, p_rdd_conditional_13, p_rdd_conditional_14, p_rdd_conditional_15, digits = 3, digits.extra = 2, digit.separator = "", keep = "D", single.row = F, align = T, table.placement = "h!", covariate.labels = "Left-Wing Party", title = "Parametric RDD. Four covariates. Polymonial of order 3", column.labels = column_labels_vector, se = list(sqrt(diag(vcovHC(p_rdd_conditional_1, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_2, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_3, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_4, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_5, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_6, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_7, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_8, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_9, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_10, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_11, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_12, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_13, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_14, type = "HC0", cluster = "group"))), sqrt(diag(vcovHC(p_rdd_conditional_15, type = "HC0", cluster = "group")))), type = "html", out = "p_rdd_conditional.html") # plot(p_rdd_conditional_1) # plot(p_rdd_conditional_2) # plot(p_rdd_conditional_3) # plot(p_rdd_conditional_4) # plot(p_rdd_conditional_5) # plot(p_rdd_conditional_6) # plot(p_rdd_conditional_7) # plot(p_rdd_conditional_8) # plot(p_rdd_conditional_9) # plot(p_rdd_conditional_10) # plot(p_rdd_conditional_11) # plot(p_rdd_conditional_12) detach(base_pronta_last_year)
# Andy Philips # andrew.philips@colorado.edu # 06/08/17 # --------------------------------# shinyUI(fluidPage( includeCSS("style.css"), titlePanel("Central Limit Theorem Simulator"), sidebarLayout(position = "right", sidebarPanel( radioButtons("dist", "Choose Distribution", c("Normal" = "norm", "Uniform" = "unif", "Exponential" = "expo")), sliderInput(inputId = "obs", label = "Number of Observations Per Sample", min = 1, max = 500, value = 50), br(), sliderInput(inputId = "samples", label = "Number of Samples", min = 1, max = 10000, value = 100), br() ), mainPanel( p("This app shows the Central Limit Theorem in action. The Central Limit Theorem states that, given a large enough number of independent, identically distributed samples, the resulting means of the samples will be distributed approximately normal. In other words, the mean of the means of the samples converge to the population mean, given enough samples."), p("Below you can try out the CLT for yourself across a number of different distributions, number of observations in each sample, and the total number of samples. Note that the data were sampled with mean equal to one for all distributions."), p("Author: ", a("Andrew Q. Philips", href = "http://www.andyphilips.com/")), plotOutput("plot1"), br(), fluidRow(column(6, p("Summary Statistics of Means of Samples"), verbatimTextOutput("summary")), column(6, plotOutput("plot2"))) ) ) ))
/CLT-Simulator/ui.R
no_license
anhnguyendepocen/Shiny-2
R
false
false
1,656
r
# Andy Philips # andrew.philips@colorado.edu # 06/08/17 # --------------------------------# shinyUI(fluidPage( includeCSS("style.css"), titlePanel("Central Limit Theorem Simulator"), sidebarLayout(position = "right", sidebarPanel( radioButtons("dist", "Choose Distribution", c("Normal" = "norm", "Uniform" = "unif", "Exponential" = "expo")), sliderInput(inputId = "obs", label = "Number of Observations Per Sample", min = 1, max = 500, value = 50), br(), sliderInput(inputId = "samples", label = "Number of Samples", min = 1, max = 10000, value = 100), br() ), mainPanel( p("This app shows the Central Limit Theorem in action. The Central Limit Theorem states that, given a large enough number of independent, identically distributed samples, the resulting means of the samples will be distributed approximately normal. In other words, the mean of the means of the samples converge to the population mean, given enough samples."), p("Below you can try out the CLT for yourself across a number of different distributions, number of observations in each sample, and the total number of samples. Note that the data were sampled with mean equal to one for all distributions."), p("Author: ", a("Andrew Q. Philips", href = "http://www.andyphilips.com/")), plotOutput("plot1"), br(), fluidRow(column(6, p("Summary Statistics of Means of Samples"), verbatimTextOutput("summary")), column(6, plotOutput("plot2"))) ) ) ))
setwd("C://Project1") getwd() dataset <- read.csv("./household_power_consumption.txt", header=T, sep=';', na.strings="?", nrows=2075259, check.names=F, stringsAsFactors=F, comment.char="", quote='\"') dataset$Date <- as.Date(dataset$Date, format="%d/%m/%Y") data <- subset(dataset, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) rm(dataset) datetime <- paste(as.Date(data$Date), data$Time) data$Datetime <- as.POSIXct(datetime) par(mfrow=c(2,2), mar=c(4,4,2,1), oma=c(0,0,2,0)) with(data, { plot(Global_active_power~Datetime, type="l", ylab="Active Power (kW)", xlab="") plot(Voltage~Datetime, type="l", ylab="Voltage (V)", xlab="") plot(Sub_metering_1~Datetime, type="l", ylab="Active Power (kW)", xlab="") lines(Sub_metering_2~Datetime,col='Red') lines(Sub_metering_3~Datetime,col='Blue') legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, bty="n", legend=c("Sub Meter 1", "Sub Meter 2", "Sub Meter 3")) plot(Global_reactive_power~Datetime, type="l", ylab="Re-Active Power (kW)",xlab="") }) dev.copy(png, file="plot4.png", height=480, width=480) dev.off()
/plot4.R
no_license
williewilkins/ExData_Plotting1
R
false
false
1,150
r
setwd("C://Project1") getwd() dataset <- read.csv("./household_power_consumption.txt", header=T, sep=';', na.strings="?", nrows=2075259, check.names=F, stringsAsFactors=F, comment.char="", quote='\"') dataset$Date <- as.Date(dataset$Date, format="%d/%m/%Y") data <- subset(dataset, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) rm(dataset) datetime <- paste(as.Date(data$Date), data$Time) data$Datetime <- as.POSIXct(datetime) par(mfrow=c(2,2), mar=c(4,4,2,1), oma=c(0,0,2,0)) with(data, { plot(Global_active_power~Datetime, type="l", ylab="Active Power (kW)", xlab="") plot(Voltage~Datetime, type="l", ylab="Voltage (V)", xlab="") plot(Sub_metering_1~Datetime, type="l", ylab="Active Power (kW)", xlab="") lines(Sub_metering_2~Datetime,col='Red') lines(Sub_metering_3~Datetime,col='Blue') legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, bty="n", legend=c("Sub Meter 1", "Sub Meter 2", "Sub Meter 3")) plot(Global_reactive_power~Datetime, type="l", ylab="Re-Active Power (kW)",xlab="") }) dev.copy(png, file="plot4.png", height=480, width=480) dev.off()
#basic class that points to the database and allows easier manipulations setClass("BuxcoDB", representation(db.name="character", annotation.table="character"), prototype=prototype(db.name=character(0), annotation.table="Additional_labels")) .run.update.statement <- function(db.con, query){ state <- dbSendStatement(db.con, query) dbHasCompleted(state) dbClearResult(state) } .insert.data <- function(db.con, query, data){ #way too slow, stick with depricated version for now #state <- dbSendQuery(db.con, query) #dbBind(state, data) #dbClearResult(state) dbBegin(db.con) suppressWarnings(state <- dbSendPreparedQuery(db.con, query, bind.data = data)) dbClearResult(state) dbCommit(db.con) } makeBuxcoDB <- function(db.name=NULL, annotation.table="Additional_labels") { if (missing(db.name) || is.null(db.name)) { stop("ERROR: Need to supply a valid file name for db.name") } else if (! file.exists(db.name)) { stop(paste("ERROR:", db.name, "does not exist")) } if (is.character(annotation.table) == FALSE || length(annotation.table) != 1) { stop("ERROR annotation.table needs to be a character vector of length 1") } return(new("BuxcoDB", db.name=db.name, annotation.table=annotation.table)) } setGeneric("tsplot", def=function(obj,...) standardGeneric("tsplot")) setMethod("tsplot", signature("BuxcoDB"), function(obj, ..., exp.factor=NULL, summary.func=function(x) mean(log(x)), legend.name="Factor", xlab="Days", ylab="mean(log(Value))") { if (is.function(summary.func) == F) { stop("ERROR: summary.func needs to be a function that takes vector and returns a single value") } if ((missing(legend.name) || (is.character(legend.name) && length(legend.name) == 1)) == F) { stop("ERROR: If legend.name is non-missing, it needs to be a single character value") } if ((missing(xlab) || (is.character(xlab) && length(xlab) == 1)) == F) { stop("ERROR: If xlab is non-missing, it needs to be a single character value") } if ((missing(ylab) || (is.character(ylab) && length(ylab) == 1)) == F) { stop("ERROR: If ylab is non-missing, it needs to be a single character value") } use.dta <- retrieveData(obj, ...) if ((missing(exp.factor) || is.null(exp.factor) || (is.character(exp.factor) && length(exp.factor) == 1 && exp.factor %in% names(use.dta))) == F) { stop("ERROR: If exp.factor is specified, it needs to correspond to a column from 'retrieveData'") } show(qplot(x=Days, y=Value, data=use.dta, group=Sample_Name, stat="summary", fun.y=summary.func, facets=.~Variable_Name, geom="line", xlab=xlab, ylab=ylab) + aes_string(color=exp.factor) + labs(color=legend.name)) }) setGeneric("mvtsplot", def=function(obj,...) standardGeneric("mvtsplot")) setMethod("mvtsplot", signature("BuxcoDB"), function(obj,..., plot.value="Penh",main=plot.value, summary.func=function(x) data.frame(Value=mean(log(x$Value))), outer.group.name=NULL, inner.group.name=NULL, outer.cols=NULL, colorbrewer.pal="PRGn") { if ("Days" %in% annoCols(obj) == F) { stop("ERROR: The BuxcoDB object needs to contain a 'Days' column potentially created through the use of 'day.infer.query'") } if ((is.character(plot.value) && length(plot.value) == 1 && plot.value %in% variables(obj)) == F) { stop("ERROR: plot.value needs to be a single character value corresponding to a variable in 'obj'") } bux.dta <- retrieveData(obj, variables=plot.value,...) mean.dta <- ddply(.data=bux.dta, .variables=c("Days", "Sample_Name", inner.group.name, outer.group.name), .fun=summary.func) names(mean.dta)[names(mean.dta) == "Value"] <- plot.value mvtsplot.data.frame(use.dta=mean.dta, plot.value=plot.value, main=main, outer.group.name=outer.group.name, inner.group.name=inner.group.name, outer.cols=outer.cols,colorbrewer.pal=colorbrewer.pal) }) setGeneric("makeIndexes", def=function(obj,...) standardGeneric("makeIndexes")) setMethod("makeIndexes", signature("BuxcoDB"), function(obj, annotation.table=annoTable(obj)) { db.con <- dbConnect(SQLite(), dbName(obj)) make.annotation.indexes(db.con, annotation.table) invisible(dbDisconnect(db.con)) }) setMethod("show", signature("BuxcoDB"), function(object) { db.con <- dbConnect(SQLite(), dbName(object)) #Adapted from AnnotationDbi::show if ("metadata" %in% dbListTables(db.con)) { metadata <- dbGetQuery(db.con, "SELECT * FROM metadata") cat(class(object), "object:\n") cat(paste("Database:", object@db.name, "\n")) cat(paste("Annotation Table:", object@annotation.table, "\n")) for (i in seq_len(nrow(metadata))) { cat("| ", metadata[i, "name"], ": ", metadata[i, "value"], "\n", sep = "") } }else{ cat("BuxcoDB object\n") cat(paste("Database:", object@db.name, "\n")) cat(paste("Annotation Table:", object@annotation.table, "\n")) cat("No metadata is available\n") } }) setGeneric("summaryMeasures", def=function(obj,...) standardGeneric("summaryMeasures")) setMethod("summaryMeasures", signature("BuxcoDB"), function(obj, summary.type=c("time.to.max.response", "max.response", "auc.response", "mean.response"), sample.summary.func=function(x) data.frame(Value=mean(x$Value)), samples=NULL, variables=NULL, tables=NULL, Break_type_label="EXP", day.summary.column="Days") { summaries <- match.arg(summary.type, several.ok=TRUE) if (is.function(sample.summary.func) == FALSE) { stop("ERROR: sample.summary.func needs to be a valid function") } ret.dta <- retrieveData(obj, samples=samples, variables=variables, tables=tables, Break_type_label=Break_type_label) if (day.summary.column %in% names(ret.dta) == FALSE || any(is.na(as.numeric(ret.dta[,day.summary.column])))) { stop("ERROR: day.summary.column needs to be a valid name in the database and be coercible to numeric values") } if ("Break_type_label" %in% names(ret.dta) == FALSE) { stop("ERROR: Break_type_label needs to be part of the returned values for ret.dta") } if (any(Break_type_label %in% ret.dta$Break_type_label) == FALSE) { stop("ERROR: At least one type element of Break_type_label needs to exist in the current output") } sum.days <- ddply(ret.dta, c("Variable_Name", "Sample_Name", day.summary.column), .fun=sample.summary.func) #a hack because ddply can't find the functions if they are supplied as characters... ret.dta <- data.frame(Variable_Name=character(0), Sample_Name=character(), stringsAsFactors=FALSE) for (i in summaries) { summary.func <- get(i) temp.dta <- ddply(sum.days, c("Variable_Name", "Sample_Name"), .fun=summary.func, day.name=day.summary.column) temp.dta$Variable_Name <- as.character(temp.dta$Variable_Name) temp.dta$Sample_Name <- as.character(temp.dta$Sample_Name) ret.dta <- merge(ret.dta, temp.dta, by=c("Variable_Name", "Sample_Name"), all=TRUE, incomparables=NULL, sort=FALSE) } return(ret.dta) }) setGeneric("retrieveMatrix", def=function(obj,...) standardGeneric("retrieveMatrix")) setMethod("retrieveMatrix", signature("BuxcoDB"), function(obj,...,formula=Sample_Name~Days~Variable_Name, summary.func=function(x) mean(log(x))) { if (is.function(summary.func)==F) { stop("summary.func needs to be a function taking a vector as an argument and returning a single value") } ret.dta <- retrieveData(obj,...) form.terms <- all.vars(attr(terms(formula), "variables")) if (class(formula) != "formula" || all(form.terms %in% names(ret.dta))==F) { stop("formula needs to refer to a valid formula involving columns as found using 'retrieveData'") } temp.mat <- acast(data=ret.dta, formula=formula, fun.aggregate=summary.func, value.var="Value") temp.mat[is.nan(temp.mat)] <- NA return(temp.mat) }) setGeneric("annoTable", def=function(obj,...) standardGeneric("annoTable")) setMethod("annoTable", signature("BuxcoDB"), function(obj) { return(obj@annotation.table) }) setGeneric("annoCols", def=function(obj,...) standardGeneric("annoCols")) setMethod("annoCols", signature("BuxcoDB"), function(obj) { db.con <- dbConnect(SQLite(), dbName(obj)) if (annoTable(obj) %in% dbListTables(db.con) == FALSE) { return(character(0)) } else { #modified this 9-03-2013 to deal with the case of columns added by user that had _ID, really only deal with the case of Break_Chunk_ID as the ID col... test.query <- dbListFields(db.con, annoTable(obj)) dbDisconnect(db.con) id.col <- test.query[test.query == "Break_Chunk_ID"] stopifnot(length(id.col) == 1) lo.cols <- setdiff(test.query, id.col) return(lo.cols) } }) setGeneric("annoLevels", def=function(obj,...) standardGeneric("annoLevels")) setMethod("annoLevels", signature("BuxcoDB"), function(obj) { db.con <- dbConnect(SQLite(), dbName(obj)) use.cols <- annoCols(obj) if (length(use.cols) == 0) { return(character(0)) } else { ret.list <- lapply(use.cols, function(x) { dbGetQuery(db.con, paste("SELECT DISTINCT (", x,") FROM", annoTable(obj)))[,1] }) names(ret.list) <- use.cols dbDisconnect(db.con) return(ret.list) } }) setGeneric("dbName", def=function(obj,...) standardGeneric("dbName")) setMethod("dbName", signature("BuxcoDB"), function(obj) { return(obj@db.name) }) setGeneric("samples", def=function(obj,...) standardGeneric("samples")) setMethod("samples", signature("BuxcoDB"), function(obj) { get.simple.single.col.query(db.name=dbName(obj), var.name="Sample", col.suffix="_Name") }) setGeneric("variables", def=function(obj,...) standardGeneric("variables")) setMethod("variables", signature("BuxcoDB"), function(obj) { get.simple.single.col.query(db.name=dbName(obj), var.name="Variable", col.suffix="_Name") }) setGeneric("tables", def=function(obj,...) standardGeneric("tables")) setMethod("tables", signature("BuxcoDB"), function(obj) { get.simple.single.col.query(db.name=dbName(obj), var.name="Bux_table", col.suffix="_Name") }) setGeneric("retrieveData", def=function(obj,...) standardGeneric("retrieveData")) setMethod("retrieveData", signature("BuxcoDB"), function(obj, samples=NULL, variables=NULL, tables=NULL,phase=NULL,timepoint=NULL, debug=FALSE, ...) { supplied.args <- ls() db.con <- dbConnect(SQLite(), dbName(obj)) #modified this on 1-22-2013, added column="P_Time" and break=list(table="Chunk_Time", column="Break_number") to make sure these make #it to the results table.map <- list(data=list(table="Data", column="Value"), timepoint=list(table="Timepoint", column="P_Time"), chunk.time=list(table="Chunk_Time", column="Break_sec_start"), samples=list(table="Sample", column="Sample_Name"), variables=list(table="Variable", column="Variable_Name"), tables=list(table="Bux_table", column="Bux_table_Name"), phase=list(table="Chunk_Time", column="Rec_Exp_date"), break.num=list(table="Chunk_Time", column="Break_number")) #if additional table are present if (annoTable(obj) %in% dbListTables(db.con)) { anno.tab.args <- list(...) if (length(anno.tab.args) > 0 && (is.null(names(anno.tab.args)) == TRUE || all(names(anno.tab.args) %in% annoCols(obj)) == FALSE)) { stop("ERROR: Need to supply named arguments (arg.name=c(1:10)) corresponding to columns of the annotation table, use annoCols(obj)") } for (column in annoCols(obj)) { table.map[[column]] <- list(table=annoTable(obj), column=column, value=anno.tab.args[[column]]) } } supplied.args <- supplied.args[supplied.args %in% c("obj", "debug") == FALSE] for (i in supplied.args) { arg.vals <- get(i) table.map[[i]]$value <- arg.vals } query.res <- execute.query.map(db.con=db.con, query.map=table.map, debug=debug) dbDisconnect(db.con) #enforce kind of a rough ordering of the columns mainly for asthetics--sample is first, value is last if (all(c("Value", "Sample_Name") %in% colnames(query.res))) { lo.names <- setdiff(colnames(query.res), c("Value", "Sample_Name")) new.order <- c("Sample_Name", lo.names, "Value") query.res <- query.res[,new.order] } return(query.res) }) setGeneric("addAnnotation", def=function(obj,...) standardGeneric("addAnnotation")) setMethod("addAnnotation", signature("BuxcoDB"), function(obj, query=NULL, index=FALSE, id.col.regex="_ID", debug=FALSE) { if (missing(query) || is.null(query) || is.function(query) == FALSE) { stop("ERROR: Need to supply a function which takes a BuxcoDB object to the query argument") } if (length(index) != 1 || is.logical(index) == FALSE) { stop("ERROR: index needs to be a logical value") } if (length(id.col.regex) != 1 || is.character(id.col.regex) == FALSE) { stop("ERROR: id.col.regex needs to be a character string") } if (length(debug) != 1 || is.logical(debug) == FALSE) { stop("ERROR: debug needs to be a logical value") } db.con <- dbConnect(SQLite(), dbName(obj)) cur.tables <- dbListTables(db.con) use.query <- query(obj) if(annoTable(obj) %in% cur.tables) { temp.tab.1 <- paste(annoTable(obj), "temp1", sep="_") temp.tab.2 <- paste(annoTable(obj), "temp2", sep="_") query.list <- paste("CREATE TEMPORARY TABLE", temp.tab.1,"AS SELECT * FROM", annoTable(obj)) if (length(use.query) > 1) { query.list <- c(query.list, use.query[1:(length(use.query)-1)]) } query.list <- c(query.list, paste("CREATE TEMPORARY TABLE", temp.tab.2, " AS", use.query[length(use.query)]), paste("DROP TABLE", annoTable(obj)), paste("CREATE TABLE ", annoTable(obj), "AS SELECT * FROM", temp.tab.1, "NATURAL JOIN", temp.tab.2), paste("DROP TABLE", temp.tab.1), paste("DROP TABLE", temp.tab.2)) } else { #otherwise just create the table directly if (length(use.query) > 1) { query.list <- c(use.query[1:(length(use.query)-1)], paste("CREATE TABLE", annoTable(obj), "AS", use.query[length(use.query)])) } else { query.list <- paste("CREATE TABLE", annoTable(obj), "AS", use.query[length(use.query)]) } } for (i in query.list) { if (debug==TRUE) { message(i) } else { .run.update.statement(db.con, i) } } if (index==TRUE) { make.annotation.indexes(db.con, annoTable(obj)) } dbDisconnect(db.con) }) make.annotation.indexes <- function(db.con, anno.table) { test.query <- dbGetQuery(db.con, paste("SELECT * FROM", anno.table, "limit 5")) id.col <- names(test.query)[grep("_ID", names(test.query))] if (length(id.col) > 1 && any(grep("_ID", names(test.query)) == 1)) { id.col <- names(test.query)[1] }else if (length(id.col) == 0) { warning(paste("Warning:", anno.table, "does not appear to have an ID column, skipping indexing...")) invisible(T) }else if (length(id.col) > 1) { warning(paste("Warning: There appears to be multiple _ID columns for table:", anno.table, "skipping indexing...")) invisible(T) } lo.cols <- setdiff(names(test.query), id.col) index.query <- paste("CREATE INDEX IF NOT EXISTS",paste(anno.table,"_", id.col, "_ind", sep=""),"ON",anno.table,"(",id.col,")") .run.update.statement(db.con, index.query) if (length(lo.cols) > 1) { perms <- expand.grid(rep(list(lo.cols), length(lo.cols))) use.perms <- apply(perms, 1, function(x) sum(duplicated(x)) == 0) perms <- perms[use.perms,] for (i in 1:nrow(perms)) { paste.rows <- paste(unlist(perms[i,]), collapse=", ") var.query <- paste("CREATE INDEX IF NOT EXISTS",paste(anno.table,"_ind_",i,sep=""),"ON",anno.table,"(",paste.rows,")") .run.update.statement(db.con, var.query) } } } dbImport <- function(bux.db=NULL, bux.dta, db.name="merge_test_1.db", debug=FALSE) { if (missing(bux.db) == FALSE && is.null(bux.db) == FALSE && class(bux.db) != "BuxcoDB") { stop("ERROR: bux.db needs to be a BuxcoDB object or not specified at all") } else if (missing(bux.db) == FALSE && is.null(bux.db) == FALSE && class(bux.db) == "BuxcoDB") { file.copy(from=dbName(bux.db), to=db.name) } if (is.data.frame(bux.dta) == FALSE || nrow(bux.dta) < 1) { stop("ERROR: bux.dta needs to be a dataframe containing at least one row") } else if (validate.dta(bux.db, bux.dta) == FALSE) { stop("ERROR: bux.dta needs to have the same columns as bux.db, compare bux.dta with retrieveData(bux.db)") } if (is.character(db.name) == FALSE || length(db.name) != 1) { stop("ERROR: db.name needs to be a character string of the path to a new database") } #first create the simple tables, Sample, Bux_table, Variable, Timepoint #then do chunk_time followed by additional labels and data at the end #to do this first define a list containing definitions to create database tables: schema.list <- list(Sample=list(primary.key="Sample_ID", foreign.keys=NULL, record.vars="Sample_Name"), Bux_table=list(primary.key="Bux_table_ID", foreign.keys=NULL, record.vars="Bux_table_Name"), Variable=list(primary.key="Variable_ID", foreign.keys=NULL, record.vars="Variable_Name"), Timepoint=list(primary.key="Time_ID", foreign.keys=NULL, record.vars="P_Time"), Chunk_Time=list(primary.key="Break_Chunk_ID", foreign.keys=c("Sample_ID", "Time_ID", "Bux_table_ID", "Variable_ID", "Break_number"), record.vars=c("Break_sec_start", "Rec_Exp_date")), Data=list(primary.key="Data_ID", foreign.keys=c("Time_ID", "Variable_ID", "Sample_ID", "Bux_table_ID"), record.vars="Value")) db.con <- dbConnect(SQLite(), db.name) db.tables <- dbListTables(db.con) if ("metadata" %in% db.tables) { .run.update.statement(db.con, "DROP TABLE metadata;") db.tables <- dbListTables(db.con) } if (length(setdiff(names(schema.list), db.tables)) == length(schema.list)) { create.tables(db.con) db.tables <- dbListTables(db.con) } for (i in names(schema.list)) { if (debug == TRUE) message(paste("Starting table", i)) cur.schema <- schema.list[[i]] if (i %in% db.tables == FALSE) { stop(paste("ERROR: table", i, "not found in database")) } if (is.null(cur.schema$foreign.key)) { rev.query <- db.insert.autoinc(db.con=db.con, table.name=i, col.name=cur.schema$record.vars, values=unique(bux.dta[,cur.schema$record.vars]), return.query.type="reverse", debug=debug) bux.dta <- merge(bux.dta, rev.query, all=TRUE, incomparables=NULL, sort=FALSE) } else { relevant.cols <- c(cur.schema$foreign.keys, cur.schema$record.vars) temp.dta <- bux.dta[,relevant.cols] temp.dta <- temp.dta[!duplicated(temp.dta),] use.sql <- paste("INSERT INTO", i, "(", paste(relevant.cols, collapse=",") ,")","VALUES (", paste(paste("$", relevant.cols, sep=""), collapse=",") ,")") if (debug==TRUE) message(use.sql) #find the previous max primary key if applicable prev.max.primary <- as.numeric(dbGetQuery(db.con, paste("SELECT MAX(",cur.schema$primary.key,") FROM", i))[,1]) if (is.na(prev.max.primary)) prev.max.primary <- 0 .insert.data(db.con, use.sql, temp.dta) bux.dta <- merge(bux.dta, dbGetQuery(db.con, paste("SELECT * FROM", i, "WHERE", cur.schema$primary.key, ">", prev.max.primary)), all=TRUE, incomparables=NULL, sort=FALSE) } } if (debug==TRUE) message("Starting annotation portion") #figure out if additional annotation is present annot.cols <- setdiff(colnames(bux.dta), unique(as.character(unlist(schema.list)))) if (length(annot.cols) > 0) { #does the annotation table exist? annot.tab <- setdiff(db.tables, c(names(schema.list), "sqlite_sequence")) temp.dta <- bux.dta[,c(schema.list$Chunk_Time$primary.key, annot.cols)] temp.dta <- temp.dta[!duplicated(temp.dta),] #if it doesn't exist if (length(annot.tab) == 0) { #just to get the default additional annotation table name specified via the prototype temp.obj <- new("BuxcoDB") dbWriteTable(db.con, annoTable(temp.obj), temp.dta, row.names=FALSE) make.annotation.indexes(db.con, anno.table=annoTable(temp.obj)) cur.annot.table <- annoTable(temp.obj) } else { cur.annot.tab.cols <- dbListFields(db.con, annot.tab) if (all(annot.cols %in% cur.annot.tab.cols) == FALSE) { stop("ERROR: annotation columns are discordant between bux.dta and bux.db") } use.sql <- paste("INSERT INTO", annot.tab, "(", paste(colnames(temp.dta), collapse=",") ,")","VALUES (", paste(paste("$", colnames(temp.dta), sep=""), collapse=",") ,")") .insert.data(db.con, use.sql, temp.dta) cur.annot.table <- annot.tab } } else { cur.annot.table <- "Additional_labels" } #now make a new metadata table meta.dta <- data.frame(name=c("PARSE_DATE", "DBSCHEMA", "package", "Db type", "DBSCHEMAVERION"), value=c(as.character(Sys.time()), "Buxco", "plethy", "BuxcoDB", "1.0"), stringsAsFactors=F) dbWriteTable(db.con, "metadata", meta.dta, row.names=F) dbDisconnect(db.con) return(makeBuxcoDB(db.name=db.name, annotation.table=cur.annot.table)) } #incomplete for now validate.dta <- function(bux.db, bux.dta) { return(TRUE) }
/R/BuxcoDB.R
no_license
dbottomly/plethy
R
false
false
26,316
r
#basic class that points to the database and allows easier manipulations setClass("BuxcoDB", representation(db.name="character", annotation.table="character"), prototype=prototype(db.name=character(0), annotation.table="Additional_labels")) .run.update.statement <- function(db.con, query){ state <- dbSendStatement(db.con, query) dbHasCompleted(state) dbClearResult(state) } .insert.data <- function(db.con, query, data){ #way too slow, stick with depricated version for now #state <- dbSendQuery(db.con, query) #dbBind(state, data) #dbClearResult(state) dbBegin(db.con) suppressWarnings(state <- dbSendPreparedQuery(db.con, query, bind.data = data)) dbClearResult(state) dbCommit(db.con) } makeBuxcoDB <- function(db.name=NULL, annotation.table="Additional_labels") { if (missing(db.name) || is.null(db.name)) { stop("ERROR: Need to supply a valid file name for db.name") } else if (! file.exists(db.name)) { stop(paste("ERROR:", db.name, "does not exist")) } if (is.character(annotation.table) == FALSE || length(annotation.table) != 1) { stop("ERROR annotation.table needs to be a character vector of length 1") } return(new("BuxcoDB", db.name=db.name, annotation.table=annotation.table)) } setGeneric("tsplot", def=function(obj,...) standardGeneric("tsplot")) setMethod("tsplot", signature("BuxcoDB"), function(obj, ..., exp.factor=NULL, summary.func=function(x) mean(log(x)), legend.name="Factor", xlab="Days", ylab="mean(log(Value))") { if (is.function(summary.func) == F) { stop("ERROR: summary.func needs to be a function that takes vector and returns a single value") } if ((missing(legend.name) || (is.character(legend.name) && length(legend.name) == 1)) == F) { stop("ERROR: If legend.name is non-missing, it needs to be a single character value") } if ((missing(xlab) || (is.character(xlab) && length(xlab) == 1)) == F) { stop("ERROR: If xlab is non-missing, it needs to be a single character value") } if ((missing(ylab) || (is.character(ylab) && length(ylab) == 1)) == F) { stop("ERROR: If ylab is non-missing, it needs to be a single character value") } use.dta <- retrieveData(obj, ...) if ((missing(exp.factor) || is.null(exp.factor) || (is.character(exp.factor) && length(exp.factor) == 1 && exp.factor %in% names(use.dta))) == F) { stop("ERROR: If exp.factor is specified, it needs to correspond to a column from 'retrieveData'") } show(qplot(x=Days, y=Value, data=use.dta, group=Sample_Name, stat="summary", fun.y=summary.func, facets=.~Variable_Name, geom="line", xlab=xlab, ylab=ylab) + aes_string(color=exp.factor) + labs(color=legend.name)) }) setGeneric("mvtsplot", def=function(obj,...) standardGeneric("mvtsplot")) setMethod("mvtsplot", signature("BuxcoDB"), function(obj,..., plot.value="Penh",main=plot.value, summary.func=function(x) data.frame(Value=mean(log(x$Value))), outer.group.name=NULL, inner.group.name=NULL, outer.cols=NULL, colorbrewer.pal="PRGn") { if ("Days" %in% annoCols(obj) == F) { stop("ERROR: The BuxcoDB object needs to contain a 'Days' column potentially created through the use of 'day.infer.query'") } if ((is.character(plot.value) && length(plot.value) == 1 && plot.value %in% variables(obj)) == F) { stop("ERROR: plot.value needs to be a single character value corresponding to a variable in 'obj'") } bux.dta <- retrieveData(obj, variables=plot.value,...) mean.dta <- ddply(.data=bux.dta, .variables=c("Days", "Sample_Name", inner.group.name, outer.group.name), .fun=summary.func) names(mean.dta)[names(mean.dta) == "Value"] <- plot.value mvtsplot.data.frame(use.dta=mean.dta, plot.value=plot.value, main=main, outer.group.name=outer.group.name, inner.group.name=inner.group.name, outer.cols=outer.cols,colorbrewer.pal=colorbrewer.pal) }) setGeneric("makeIndexes", def=function(obj,...) standardGeneric("makeIndexes")) setMethod("makeIndexes", signature("BuxcoDB"), function(obj, annotation.table=annoTable(obj)) { db.con <- dbConnect(SQLite(), dbName(obj)) make.annotation.indexes(db.con, annotation.table) invisible(dbDisconnect(db.con)) }) setMethod("show", signature("BuxcoDB"), function(object) { db.con <- dbConnect(SQLite(), dbName(object)) #Adapted from AnnotationDbi::show if ("metadata" %in% dbListTables(db.con)) { metadata <- dbGetQuery(db.con, "SELECT * FROM metadata") cat(class(object), "object:\n") cat(paste("Database:", object@db.name, "\n")) cat(paste("Annotation Table:", object@annotation.table, "\n")) for (i in seq_len(nrow(metadata))) { cat("| ", metadata[i, "name"], ": ", metadata[i, "value"], "\n", sep = "") } }else{ cat("BuxcoDB object\n") cat(paste("Database:", object@db.name, "\n")) cat(paste("Annotation Table:", object@annotation.table, "\n")) cat("No metadata is available\n") } }) setGeneric("summaryMeasures", def=function(obj,...) standardGeneric("summaryMeasures")) setMethod("summaryMeasures", signature("BuxcoDB"), function(obj, summary.type=c("time.to.max.response", "max.response", "auc.response", "mean.response"), sample.summary.func=function(x) data.frame(Value=mean(x$Value)), samples=NULL, variables=NULL, tables=NULL, Break_type_label="EXP", day.summary.column="Days") { summaries <- match.arg(summary.type, several.ok=TRUE) if (is.function(sample.summary.func) == FALSE) { stop("ERROR: sample.summary.func needs to be a valid function") } ret.dta <- retrieveData(obj, samples=samples, variables=variables, tables=tables, Break_type_label=Break_type_label) if (day.summary.column %in% names(ret.dta) == FALSE || any(is.na(as.numeric(ret.dta[,day.summary.column])))) { stop("ERROR: day.summary.column needs to be a valid name in the database and be coercible to numeric values") } if ("Break_type_label" %in% names(ret.dta) == FALSE) { stop("ERROR: Break_type_label needs to be part of the returned values for ret.dta") } if (any(Break_type_label %in% ret.dta$Break_type_label) == FALSE) { stop("ERROR: At least one type element of Break_type_label needs to exist in the current output") } sum.days <- ddply(ret.dta, c("Variable_Name", "Sample_Name", day.summary.column), .fun=sample.summary.func) #a hack because ddply can't find the functions if they are supplied as characters... ret.dta <- data.frame(Variable_Name=character(0), Sample_Name=character(), stringsAsFactors=FALSE) for (i in summaries) { summary.func <- get(i) temp.dta <- ddply(sum.days, c("Variable_Name", "Sample_Name"), .fun=summary.func, day.name=day.summary.column) temp.dta$Variable_Name <- as.character(temp.dta$Variable_Name) temp.dta$Sample_Name <- as.character(temp.dta$Sample_Name) ret.dta <- merge(ret.dta, temp.dta, by=c("Variable_Name", "Sample_Name"), all=TRUE, incomparables=NULL, sort=FALSE) } return(ret.dta) }) setGeneric("retrieveMatrix", def=function(obj,...) standardGeneric("retrieveMatrix")) setMethod("retrieveMatrix", signature("BuxcoDB"), function(obj,...,formula=Sample_Name~Days~Variable_Name, summary.func=function(x) mean(log(x))) { if (is.function(summary.func)==F) { stop("summary.func needs to be a function taking a vector as an argument and returning a single value") } ret.dta <- retrieveData(obj,...) form.terms <- all.vars(attr(terms(formula), "variables")) if (class(formula) != "formula" || all(form.terms %in% names(ret.dta))==F) { stop("formula needs to refer to a valid formula involving columns as found using 'retrieveData'") } temp.mat <- acast(data=ret.dta, formula=formula, fun.aggregate=summary.func, value.var="Value") temp.mat[is.nan(temp.mat)] <- NA return(temp.mat) }) setGeneric("annoTable", def=function(obj,...) standardGeneric("annoTable")) setMethod("annoTable", signature("BuxcoDB"), function(obj) { return(obj@annotation.table) }) setGeneric("annoCols", def=function(obj,...) standardGeneric("annoCols")) setMethod("annoCols", signature("BuxcoDB"), function(obj) { db.con <- dbConnect(SQLite(), dbName(obj)) if (annoTable(obj) %in% dbListTables(db.con) == FALSE) { return(character(0)) } else { #modified this 9-03-2013 to deal with the case of columns added by user that had _ID, really only deal with the case of Break_Chunk_ID as the ID col... test.query <- dbListFields(db.con, annoTable(obj)) dbDisconnect(db.con) id.col <- test.query[test.query == "Break_Chunk_ID"] stopifnot(length(id.col) == 1) lo.cols <- setdiff(test.query, id.col) return(lo.cols) } }) setGeneric("annoLevels", def=function(obj,...) standardGeneric("annoLevels")) setMethod("annoLevels", signature("BuxcoDB"), function(obj) { db.con <- dbConnect(SQLite(), dbName(obj)) use.cols <- annoCols(obj) if (length(use.cols) == 0) { return(character(0)) } else { ret.list <- lapply(use.cols, function(x) { dbGetQuery(db.con, paste("SELECT DISTINCT (", x,") FROM", annoTable(obj)))[,1] }) names(ret.list) <- use.cols dbDisconnect(db.con) return(ret.list) } }) setGeneric("dbName", def=function(obj,...) standardGeneric("dbName")) setMethod("dbName", signature("BuxcoDB"), function(obj) { return(obj@db.name) }) setGeneric("samples", def=function(obj,...) standardGeneric("samples")) setMethod("samples", signature("BuxcoDB"), function(obj) { get.simple.single.col.query(db.name=dbName(obj), var.name="Sample", col.suffix="_Name") }) setGeneric("variables", def=function(obj,...) standardGeneric("variables")) setMethod("variables", signature("BuxcoDB"), function(obj) { get.simple.single.col.query(db.name=dbName(obj), var.name="Variable", col.suffix="_Name") }) setGeneric("tables", def=function(obj,...) standardGeneric("tables")) setMethod("tables", signature("BuxcoDB"), function(obj) { get.simple.single.col.query(db.name=dbName(obj), var.name="Bux_table", col.suffix="_Name") }) setGeneric("retrieveData", def=function(obj,...) standardGeneric("retrieveData")) setMethod("retrieveData", signature("BuxcoDB"), function(obj, samples=NULL, variables=NULL, tables=NULL,phase=NULL,timepoint=NULL, debug=FALSE, ...) { supplied.args <- ls() db.con <- dbConnect(SQLite(), dbName(obj)) #modified this on 1-22-2013, added column="P_Time" and break=list(table="Chunk_Time", column="Break_number") to make sure these make #it to the results table.map <- list(data=list(table="Data", column="Value"), timepoint=list(table="Timepoint", column="P_Time"), chunk.time=list(table="Chunk_Time", column="Break_sec_start"), samples=list(table="Sample", column="Sample_Name"), variables=list(table="Variable", column="Variable_Name"), tables=list(table="Bux_table", column="Bux_table_Name"), phase=list(table="Chunk_Time", column="Rec_Exp_date"), break.num=list(table="Chunk_Time", column="Break_number")) #if additional table are present if (annoTable(obj) %in% dbListTables(db.con)) { anno.tab.args <- list(...) if (length(anno.tab.args) > 0 && (is.null(names(anno.tab.args)) == TRUE || all(names(anno.tab.args) %in% annoCols(obj)) == FALSE)) { stop("ERROR: Need to supply named arguments (arg.name=c(1:10)) corresponding to columns of the annotation table, use annoCols(obj)") } for (column in annoCols(obj)) { table.map[[column]] <- list(table=annoTable(obj), column=column, value=anno.tab.args[[column]]) } } supplied.args <- supplied.args[supplied.args %in% c("obj", "debug") == FALSE] for (i in supplied.args) { arg.vals <- get(i) table.map[[i]]$value <- arg.vals } query.res <- execute.query.map(db.con=db.con, query.map=table.map, debug=debug) dbDisconnect(db.con) #enforce kind of a rough ordering of the columns mainly for asthetics--sample is first, value is last if (all(c("Value", "Sample_Name") %in% colnames(query.res))) { lo.names <- setdiff(colnames(query.res), c("Value", "Sample_Name")) new.order <- c("Sample_Name", lo.names, "Value") query.res <- query.res[,new.order] } return(query.res) }) setGeneric("addAnnotation", def=function(obj,...) standardGeneric("addAnnotation")) setMethod("addAnnotation", signature("BuxcoDB"), function(obj, query=NULL, index=FALSE, id.col.regex="_ID", debug=FALSE) { if (missing(query) || is.null(query) || is.function(query) == FALSE) { stop("ERROR: Need to supply a function which takes a BuxcoDB object to the query argument") } if (length(index) != 1 || is.logical(index) == FALSE) { stop("ERROR: index needs to be a logical value") } if (length(id.col.regex) != 1 || is.character(id.col.regex) == FALSE) { stop("ERROR: id.col.regex needs to be a character string") } if (length(debug) != 1 || is.logical(debug) == FALSE) { stop("ERROR: debug needs to be a logical value") } db.con <- dbConnect(SQLite(), dbName(obj)) cur.tables <- dbListTables(db.con) use.query <- query(obj) if(annoTable(obj) %in% cur.tables) { temp.tab.1 <- paste(annoTable(obj), "temp1", sep="_") temp.tab.2 <- paste(annoTable(obj), "temp2", sep="_") query.list <- paste("CREATE TEMPORARY TABLE", temp.tab.1,"AS SELECT * FROM", annoTable(obj)) if (length(use.query) > 1) { query.list <- c(query.list, use.query[1:(length(use.query)-1)]) } query.list <- c(query.list, paste("CREATE TEMPORARY TABLE", temp.tab.2, " AS", use.query[length(use.query)]), paste("DROP TABLE", annoTable(obj)), paste("CREATE TABLE ", annoTable(obj), "AS SELECT * FROM", temp.tab.1, "NATURAL JOIN", temp.tab.2), paste("DROP TABLE", temp.tab.1), paste("DROP TABLE", temp.tab.2)) } else { #otherwise just create the table directly if (length(use.query) > 1) { query.list <- c(use.query[1:(length(use.query)-1)], paste("CREATE TABLE", annoTable(obj), "AS", use.query[length(use.query)])) } else { query.list <- paste("CREATE TABLE", annoTable(obj), "AS", use.query[length(use.query)]) } } for (i in query.list) { if (debug==TRUE) { message(i) } else { .run.update.statement(db.con, i) } } if (index==TRUE) { make.annotation.indexes(db.con, annoTable(obj)) } dbDisconnect(db.con) }) make.annotation.indexes <- function(db.con, anno.table) { test.query <- dbGetQuery(db.con, paste("SELECT * FROM", anno.table, "limit 5")) id.col <- names(test.query)[grep("_ID", names(test.query))] if (length(id.col) > 1 && any(grep("_ID", names(test.query)) == 1)) { id.col <- names(test.query)[1] }else if (length(id.col) == 0) { warning(paste("Warning:", anno.table, "does not appear to have an ID column, skipping indexing...")) invisible(T) }else if (length(id.col) > 1) { warning(paste("Warning: There appears to be multiple _ID columns for table:", anno.table, "skipping indexing...")) invisible(T) } lo.cols <- setdiff(names(test.query), id.col) index.query <- paste("CREATE INDEX IF NOT EXISTS",paste(anno.table,"_", id.col, "_ind", sep=""),"ON",anno.table,"(",id.col,")") .run.update.statement(db.con, index.query) if (length(lo.cols) > 1) { perms <- expand.grid(rep(list(lo.cols), length(lo.cols))) use.perms <- apply(perms, 1, function(x) sum(duplicated(x)) == 0) perms <- perms[use.perms,] for (i in 1:nrow(perms)) { paste.rows <- paste(unlist(perms[i,]), collapse=", ") var.query <- paste("CREATE INDEX IF NOT EXISTS",paste(anno.table,"_ind_",i,sep=""),"ON",anno.table,"(",paste.rows,")") .run.update.statement(db.con, var.query) } } } dbImport <- function(bux.db=NULL, bux.dta, db.name="merge_test_1.db", debug=FALSE) { if (missing(bux.db) == FALSE && is.null(bux.db) == FALSE && class(bux.db) != "BuxcoDB") { stop("ERROR: bux.db needs to be a BuxcoDB object or not specified at all") } else if (missing(bux.db) == FALSE && is.null(bux.db) == FALSE && class(bux.db) == "BuxcoDB") { file.copy(from=dbName(bux.db), to=db.name) } if (is.data.frame(bux.dta) == FALSE || nrow(bux.dta) < 1) { stop("ERROR: bux.dta needs to be a dataframe containing at least one row") } else if (validate.dta(bux.db, bux.dta) == FALSE) { stop("ERROR: bux.dta needs to have the same columns as bux.db, compare bux.dta with retrieveData(bux.db)") } if (is.character(db.name) == FALSE || length(db.name) != 1) { stop("ERROR: db.name needs to be a character string of the path to a new database") } #first create the simple tables, Sample, Bux_table, Variable, Timepoint #then do chunk_time followed by additional labels and data at the end #to do this first define a list containing definitions to create database tables: schema.list <- list(Sample=list(primary.key="Sample_ID", foreign.keys=NULL, record.vars="Sample_Name"), Bux_table=list(primary.key="Bux_table_ID", foreign.keys=NULL, record.vars="Bux_table_Name"), Variable=list(primary.key="Variable_ID", foreign.keys=NULL, record.vars="Variable_Name"), Timepoint=list(primary.key="Time_ID", foreign.keys=NULL, record.vars="P_Time"), Chunk_Time=list(primary.key="Break_Chunk_ID", foreign.keys=c("Sample_ID", "Time_ID", "Bux_table_ID", "Variable_ID", "Break_number"), record.vars=c("Break_sec_start", "Rec_Exp_date")), Data=list(primary.key="Data_ID", foreign.keys=c("Time_ID", "Variable_ID", "Sample_ID", "Bux_table_ID"), record.vars="Value")) db.con <- dbConnect(SQLite(), db.name) db.tables <- dbListTables(db.con) if ("metadata" %in% db.tables) { .run.update.statement(db.con, "DROP TABLE metadata;") db.tables <- dbListTables(db.con) } if (length(setdiff(names(schema.list), db.tables)) == length(schema.list)) { create.tables(db.con) db.tables <- dbListTables(db.con) } for (i in names(schema.list)) { if (debug == TRUE) message(paste("Starting table", i)) cur.schema <- schema.list[[i]] if (i %in% db.tables == FALSE) { stop(paste("ERROR: table", i, "not found in database")) } if (is.null(cur.schema$foreign.key)) { rev.query <- db.insert.autoinc(db.con=db.con, table.name=i, col.name=cur.schema$record.vars, values=unique(bux.dta[,cur.schema$record.vars]), return.query.type="reverse", debug=debug) bux.dta <- merge(bux.dta, rev.query, all=TRUE, incomparables=NULL, sort=FALSE) } else { relevant.cols <- c(cur.schema$foreign.keys, cur.schema$record.vars) temp.dta <- bux.dta[,relevant.cols] temp.dta <- temp.dta[!duplicated(temp.dta),] use.sql <- paste("INSERT INTO", i, "(", paste(relevant.cols, collapse=",") ,")","VALUES (", paste(paste("$", relevant.cols, sep=""), collapse=",") ,")") if (debug==TRUE) message(use.sql) #find the previous max primary key if applicable prev.max.primary <- as.numeric(dbGetQuery(db.con, paste("SELECT MAX(",cur.schema$primary.key,") FROM", i))[,1]) if (is.na(prev.max.primary)) prev.max.primary <- 0 .insert.data(db.con, use.sql, temp.dta) bux.dta <- merge(bux.dta, dbGetQuery(db.con, paste("SELECT * FROM", i, "WHERE", cur.schema$primary.key, ">", prev.max.primary)), all=TRUE, incomparables=NULL, sort=FALSE) } } if (debug==TRUE) message("Starting annotation portion") #figure out if additional annotation is present annot.cols <- setdiff(colnames(bux.dta), unique(as.character(unlist(schema.list)))) if (length(annot.cols) > 0) { #does the annotation table exist? annot.tab <- setdiff(db.tables, c(names(schema.list), "sqlite_sequence")) temp.dta <- bux.dta[,c(schema.list$Chunk_Time$primary.key, annot.cols)] temp.dta <- temp.dta[!duplicated(temp.dta),] #if it doesn't exist if (length(annot.tab) == 0) { #just to get the default additional annotation table name specified via the prototype temp.obj <- new("BuxcoDB") dbWriteTable(db.con, annoTable(temp.obj), temp.dta, row.names=FALSE) make.annotation.indexes(db.con, anno.table=annoTable(temp.obj)) cur.annot.table <- annoTable(temp.obj) } else { cur.annot.tab.cols <- dbListFields(db.con, annot.tab) if (all(annot.cols %in% cur.annot.tab.cols) == FALSE) { stop("ERROR: annotation columns are discordant between bux.dta and bux.db") } use.sql <- paste("INSERT INTO", annot.tab, "(", paste(colnames(temp.dta), collapse=",") ,")","VALUES (", paste(paste("$", colnames(temp.dta), sep=""), collapse=",") ,")") .insert.data(db.con, use.sql, temp.dta) cur.annot.table <- annot.tab } } else { cur.annot.table <- "Additional_labels" } #now make a new metadata table meta.dta <- data.frame(name=c("PARSE_DATE", "DBSCHEMA", "package", "Db type", "DBSCHEMAVERION"), value=c(as.character(Sys.time()), "Buxco", "plethy", "BuxcoDB", "1.0"), stringsAsFactors=F) dbWriteTable(db.con, "metadata", meta.dta, row.names=F) dbDisconnect(db.con) return(makeBuxcoDB(db.name=db.name, annotation.table=cur.annot.table)) } #incomplete for now validate.dta <- function(bux.db, bux.dta) { return(TRUE) }
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/dse22e.R \docType{data} \name{dse22e} \alias{dse22e} \title{Dataset for Exercise E, Chapter 22} \format{A \code{data.frame} with 9 rows and 7 variables: \describe{ \item{y}{} \item{x1}{} \item{x2}{} \item{x3}{} \item{x4}{} \item{x5}{} \item{x6}{} }} \source{ Draper, N.R., Smith, H., (1998) Applied Regression Analyis, 3rd ed., New York: Wiley } \usage{ dse22e } \description{ Dataset for Exercise E, Chapter 22 } \examples{ dse22e } \keyword{datasets}
/man/dse22e.Rd
no_license
danielgil1/aprean3
R
false
false
540
rd
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/dse22e.R \docType{data} \name{dse22e} \alias{dse22e} \title{Dataset for Exercise E, Chapter 22} \format{A \code{data.frame} with 9 rows and 7 variables: \describe{ \item{y}{} \item{x1}{} \item{x2}{} \item{x3}{} \item{x4}{} \item{x5}{} \item{x6}{} }} \source{ Draper, N.R., Smith, H., (1998) Applied Regression Analyis, 3rd ed., New York: Wiley } \usage{ dse22e } \description{ Dataset for Exercise E, Chapter 22 } \examples{ dse22e } \keyword{datasets}
#' FindBestModel #' #' @description Find the best model for a given forecast time #' #' @param dfPerf The performance dataframe #' @param forecast The forecast time #' @param vecOutcome The vector of outcome considered #' #' @return The label of the best model #' @export FindBestModel <- function(dfPerf, forecast = 7, vecOutcome = c("Prevalent variation", "HOSP_DERIV", "Prevalent")){ res <- dfPerf %>% filter(FORECAST == forecast, OUTCOME %in% vecOutcome) %>% slice_min(MRE, n = 1) %>% mutate(Label = paste0(OUTCOME, "_", SELECTION, "_span", SPAN, "_", Model)) %>% pull(Label) return(res) }
/R/FindBestModel.R
no_license
thomasferte/PredictCovidOpen
R
false
false
615
r
#' FindBestModel #' #' @description Find the best model for a given forecast time #' #' @param dfPerf The performance dataframe #' @param forecast The forecast time #' @param vecOutcome The vector of outcome considered #' #' @return The label of the best model #' @export FindBestModel <- function(dfPerf, forecast = 7, vecOutcome = c("Prevalent variation", "HOSP_DERIV", "Prevalent")){ res <- dfPerf %>% filter(FORECAST == forecast, OUTCOME %in% vecOutcome) %>% slice_min(MRE, n = 1) %>% mutate(Label = paste0(OUTCOME, "_", SELECTION, "_span", SPAN, "_", Model)) %>% pull(Label) return(res) }
#This is an applicaiton that predicts the next word based on ngram user input library(shiny) # Define UI for the application shinyUI(fluidPage( titlePanel("Next Word Prediction"), sidebarLayout( sidebarPanel( # Create the text input box textInput("inpNgram", label = h5("Please provide the text to be completed"), value = ""), hr(), actionButton("loadNgram", "Load Vocabulary"), helpText("Please load the vocabulary only once then type sentences") ), mainPanel( h3("Best Predicted Next Words - left to right"), #hr(), strong(verbatimTextOutput('predWord')) ) ) ) )
/ui.R
no_license
cmba50/Final
R
false
false
691
r
#This is an applicaiton that predicts the next word based on ngram user input library(shiny) # Define UI for the application shinyUI(fluidPage( titlePanel("Next Word Prediction"), sidebarLayout( sidebarPanel( # Create the text input box textInput("inpNgram", label = h5("Please provide the text to be completed"), value = ""), hr(), actionButton("loadNgram", "Load Vocabulary"), helpText("Please load the vocabulary only once then type sentences") ), mainPanel( h3("Best Predicted Next Words - left to right"), #hr(), strong(verbatimTextOutput('predWord')) ) ) ) )
# These functions are depricated # Only relsurv uses them, and I'm working on that ratetable <- function(...) { datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) args <- list(...) nargs <- length(args) ll <- sapply(args, length) n <- max(ll) # We assume this is the dimension of the user's data frame levlist <- vector("list", nargs) x <- matrix(0,n,nargs) dimnames(x) <- list(1:n, names(args)) isDate <- sapply(args, datecheck) for (i in 1:nargs) { if (ll[i] ==1) args[[i]] <- rep(args[[i]], n) else if (ll[i] != n) stop(gettextf("Aguments do not all have the same length (arg %d)", i)) # In Splus cut and tcut produce class 'category' if (inherits(args[[i]], 'cateogory') || is.character(args[[i]])) args[[i]] <- as.factor(args[[i]]) if (is.factor(args[[i]])) { levlist[[i]] <- levels(args[[i]]) x[,i] <- as.numeric(args[[i]]) # the vector of levels } else x[,i] <- ratetableDate(args[[i]]) } attr(x, "isDate") <- isDate attr(x, "levlist") <- levlist class(x) <- 'ratetable2' x } # The two functions below should only be called internally, when missing # values cause model.frame to drop some rows is.na.ratetable2 <- function(x) { attributes(x) <- list(dim=dim(x)) as.vector((1 * is.na(x)) %*% rep(1, ncol(x)) >0) } "[.ratetable2" <- function(x, rows, cols, drop=FALSE) { if (!missing(cols)) { stop("This should never be called!") } aa <- attributes(x) attributes(x) <- aa[c("dim", "dimnames")] y <- x[rows,,drop=FALSE] attr(y,'isDate') <- aa$isDate attr(y,'levlist') <- aa$levlist class(y) <- 'ratetable2' y }
/Recommended/survival/R/ratetableold.R
no_license
lukaszdaniel/ivory
R
false
false
1,791
r
# These functions are depricated # Only relsurv uses them, and I'm working on that ratetable <- function(...) { datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) args <- list(...) nargs <- length(args) ll <- sapply(args, length) n <- max(ll) # We assume this is the dimension of the user's data frame levlist <- vector("list", nargs) x <- matrix(0,n,nargs) dimnames(x) <- list(1:n, names(args)) isDate <- sapply(args, datecheck) for (i in 1:nargs) { if (ll[i] ==1) args[[i]] <- rep(args[[i]], n) else if (ll[i] != n) stop(gettextf("Aguments do not all have the same length (arg %d)", i)) # In Splus cut and tcut produce class 'category' if (inherits(args[[i]], 'cateogory') || is.character(args[[i]])) args[[i]] <- as.factor(args[[i]]) if (is.factor(args[[i]])) { levlist[[i]] <- levels(args[[i]]) x[,i] <- as.numeric(args[[i]]) # the vector of levels } else x[,i] <- ratetableDate(args[[i]]) } attr(x, "isDate") <- isDate attr(x, "levlist") <- levlist class(x) <- 'ratetable2' x } # The two functions below should only be called internally, when missing # values cause model.frame to drop some rows is.na.ratetable2 <- function(x) { attributes(x) <- list(dim=dim(x)) as.vector((1 * is.na(x)) %*% rep(1, ncol(x)) >0) } "[.ratetable2" <- function(x, rows, cols, drop=FALSE) { if (!missing(cols)) { stop("This should never be called!") } aa <- attributes(x) attributes(x) <- aa[c("dim", "dimnames")] y <- x[rows,,drop=FALSE] attr(y,'isDate') <- aa$isDate attr(y,'levlist') <- aa$levlist class(y) <- 'ratetable2' y }
\name{toBiblatex} \alias{toBiblatex} \alias{toBibtex} \alias{toBibtex.BibEntry} \title{Convert BibEntry objects to BibTeX or BibLaTeX} \usage{ toBiblatex(object, ...) \method{toBibtex}{BibEntry}(object, note.replace.field = c("urldate", "pubsate", "addendum"), extra.fields = NULL, ...) } \arguments{ \item{object}{an object of class BibEntry to be converted} \item{note.replace.field}{a character vector of BibLaTeX fields. When converting an entry to BibTeX, the first field in the entry that matches one specified in this vector will be added to the note field, \emph{if} the note field is not already present} \item{extra.fields}{character vector; fields that are not supported in standard BibTeX styles are by default dropped in the result return by the toBibtex function. Any fields specified in extra.fields will \emph{not} be dropped if present in an entry.} \item{...}{ignored} } \value{ an object of class \dQuote{Bibtex} - character vectors where each element holds one line of a BibTeX or BibLaTeX file } \description{ toBiblatex converts a BibEntry object to character vectors with BibLaTeX markup. toBibtex will convert a BibEntry object to character vectors with BibTeX markup, converting some BibLaTeX fields and all entry types that are not supported by BibTeX to ones that are supported. } \details{ toBiblatex converts the BibEntry object to a vector containing the corresponding BibLaTeX file, it ensures the name list fields (e.g. author and editor) are formatted properly to be read by bibtex and biber and otherwise prints all fields as is, thus it is similar to \code{\link{toBibtex}}. toBibtex will attempt to convert BibLaTeX entries to a format that can be read by bibtex. Any fields not supported by bibtex are dropped unless they are specified in \code{extra.fields}. The fields below, if they are present, are converted as described and added to a bibtex supported field, unless that field is already present. \itemize{ \item date - The \code{date} field, if present will be truncated to a year and added to the \code{year} field, if it is not already present. If a month is specified with the date, it will be added to the \code{month} field. \item journaltitle - Will be changed to journal, if it is not already present \item location - Will be changed to address \item institution - Converted to \code{school} for thesis entries \item sortkey - Converted to \code{key} \item maintitle - Converted to \code{series} \item issuetitle - Converted to \code{booktitle} \item eventtitle - Converted to \code{booktitle} \item eprinttype - Converted to \code{archiveprefix} (for arXiv references) \item eprintclass - Converted to \code{primaryclass} (for arXiv references) } If no \code{note} field is present, the note.replace.field can be used to specified BibLaTeX fields that can be looked for and added to the note field if they are present. BibLaTeX entry types that are not supported by bibtex are converted by toBibtex as follows "mvbook" = "Book", "bookinbook" = "InBook", "suppbook" = "InBook", \itemize{ \item MvBook,Collection,MvCollection,Reference,MvReference,Proceedings,MvProceedings,Periodical - to Book \item BookInBook,SuppBook,InReference,SuppPeriodical - to InBook \item report,patent - to TechReport \item SuppCollection - to InCollection \item thesis - to MastersThesis if \code{type = mathesis}, else to PhdThesis \item \emph{rest} - to Misc } } \examples{ file.name <- system.file("Bib", "biblatexExamples.bib", package="RefManageR") bib <- suppressMessages(ReadBib(file.name)) toBiblatex(bib[70:72]) toBiblatex(bib[70:72]) } \author{ McLean, M. W. \email{mathew.w.mclean@gmail.com} } \seealso{ \code{\link{toBibtex}}, \code{\link{BibEntry}}, \code{\link{print.BibEntry}} } \keyword{IO} \keyword{database} \keyword{utilities}
/man/toBiblatex.Rd
no_license
aurora-mareviv/RefManageR
R
false
false
3,918
rd
\name{toBiblatex} \alias{toBiblatex} \alias{toBibtex} \alias{toBibtex.BibEntry} \title{Convert BibEntry objects to BibTeX or BibLaTeX} \usage{ toBiblatex(object, ...) \method{toBibtex}{BibEntry}(object, note.replace.field = c("urldate", "pubsate", "addendum"), extra.fields = NULL, ...) } \arguments{ \item{object}{an object of class BibEntry to be converted} \item{note.replace.field}{a character vector of BibLaTeX fields. When converting an entry to BibTeX, the first field in the entry that matches one specified in this vector will be added to the note field, \emph{if} the note field is not already present} \item{extra.fields}{character vector; fields that are not supported in standard BibTeX styles are by default dropped in the result return by the toBibtex function. Any fields specified in extra.fields will \emph{not} be dropped if present in an entry.} \item{...}{ignored} } \value{ an object of class \dQuote{Bibtex} - character vectors where each element holds one line of a BibTeX or BibLaTeX file } \description{ toBiblatex converts a BibEntry object to character vectors with BibLaTeX markup. toBibtex will convert a BibEntry object to character vectors with BibTeX markup, converting some BibLaTeX fields and all entry types that are not supported by BibTeX to ones that are supported. } \details{ toBiblatex converts the BibEntry object to a vector containing the corresponding BibLaTeX file, it ensures the name list fields (e.g. author and editor) are formatted properly to be read by bibtex and biber and otherwise prints all fields as is, thus it is similar to \code{\link{toBibtex}}. toBibtex will attempt to convert BibLaTeX entries to a format that can be read by bibtex. Any fields not supported by bibtex are dropped unless they are specified in \code{extra.fields}. The fields below, if they are present, are converted as described and added to a bibtex supported field, unless that field is already present. \itemize{ \item date - The \code{date} field, if present will be truncated to a year and added to the \code{year} field, if it is not already present. If a month is specified with the date, it will be added to the \code{month} field. \item journaltitle - Will be changed to journal, if it is not already present \item location - Will be changed to address \item institution - Converted to \code{school} for thesis entries \item sortkey - Converted to \code{key} \item maintitle - Converted to \code{series} \item issuetitle - Converted to \code{booktitle} \item eventtitle - Converted to \code{booktitle} \item eprinttype - Converted to \code{archiveprefix} (for arXiv references) \item eprintclass - Converted to \code{primaryclass} (for arXiv references) } If no \code{note} field is present, the note.replace.field can be used to specified BibLaTeX fields that can be looked for and added to the note field if they are present. BibLaTeX entry types that are not supported by bibtex are converted by toBibtex as follows "mvbook" = "Book", "bookinbook" = "InBook", "suppbook" = "InBook", \itemize{ \item MvBook,Collection,MvCollection,Reference,MvReference,Proceedings,MvProceedings,Periodical - to Book \item BookInBook,SuppBook,InReference,SuppPeriodical - to InBook \item report,patent - to TechReport \item SuppCollection - to InCollection \item thesis - to MastersThesis if \code{type = mathesis}, else to PhdThesis \item \emph{rest} - to Misc } } \examples{ file.name <- system.file("Bib", "biblatexExamples.bib", package="RefManageR") bib <- suppressMessages(ReadBib(file.name)) toBiblatex(bib[70:72]) toBiblatex(bib[70:72]) } \author{ McLean, M. W. \email{mathew.w.mclean@gmail.com} } \seealso{ \code{\link{toBibtex}}, \code{\link{BibEntry}}, \code{\link{print.BibEntry}} } \keyword{IO} \keyword{database} \keyword{utilities}
testlist <- list(m = NULL, repetitions = 0L, in_m = structure(c(2.31584307429747e+77, 9.53818252170339e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L))) result <- do.call(CNull:::communities_individual_based_sampling_alpha,testlist) str(result)
/CNull/inst/testfiles/communities_individual_based_sampling_alpha/AFL_communities_individual_based_sampling_alpha/communities_individual_based_sampling_alpha_valgrind_files/1615769617-test.R
no_license
akhikolla/updatedatatype-list2
R
false
false
362
r
testlist <- list(m = NULL, repetitions = 0L, in_m = structure(c(2.31584307429747e+77, 9.53818252170339e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L))) result <- do.call(CNull:::communities_individual_based_sampling_alpha,testlist) str(result)
library(testthat) library(cprint) test_check("cprint")
/tests/testthat.R
no_license
bgreenwell/cprint
R
false
false
56
r
library(testthat) library(cprint) test_check("cprint")
setwd("~/Documents/PushMe/Data") require(ggplot2) require(reshape2) require(splines) require(signal) require(entropy) require(RSEIS) rm(results) results = data.frame("time"=0, "meanX"=0, "meanY"=0, "meanZ"=0, "sdX"=0, "sdY"=0, "sdZ"=0, "sdT"=0, "energyX"=0, "energyY"=0, "energyZ"=0, "energyT"=0, "lat"=mean(sample$Latitude[1:140]), "lon"=mean(sample$Longitude[1:140]), "entropyX"=0, "entropyY"=0, "entropyZ"=0, "entropyT"=0) # Read in .csv file. sample=read.csv('rDrive1.csv') # State sample-specific variables time = sample$Elapsed.Time # Split sensor output into 3 dataframes dX=data.frame(x=time, y=sample$X) dY=data.frame(x=time, y=sample$Y) dZ=data.frame(x=time, y=sample$Z) ntot = floor(nrow(sample)/140) for(u in seq(140, 140*(ntot-1), by = 140)) { # Define range of samples rangeS = u:(u+140) # Location mlat = mean(sample$Latitude[rangeS]) mlon = mean(sample$Longitude[rangeS]) # Create interpolated spline along raw values for each sensor interpX = interpSpline(dX$x[rangeS], dX$y[rangeS]) interpY = interpSpline(dY$x[rangeS], dY$y[rangeS]) interpZ = interpSpline(dZ$x[rangeS], dZ$y[rangeS]) # Resample along spline, with a number of segments proportional to the range that the data covers resampleX = predict(interpX, nseg = 128) resampleX = data.frame(x=resampleX$x, y=resampleX$y) resampleY = predict(interpY, nseg = 128) resampleY = data.frame(x=resampleY$x, y=resampleY$y) resampleZ = predict(interpZ, nseg = 128) resampleZ = data.frame(x=resampleZ$x, y=resampleZ$y) # Calculate means of signal components meanX = mean(resampleX$y) meanY = mean(resampleY$y) meanZ = mean(resampleZ$y) # Calculate standard deviation of signal components sdX = sd(resampleX$y) sdY = sd(resampleY$y) sdZ = sd(resampleZ$y) # Calculate energy proxy and information entropy from fourier transform window = 128 freq = 20 start = 0 fftX = Mod(fft(resampleX$y-mean(resampleX$y))) fftY = Mod(fft(resampleY$y-mean(resampleY$y))) fftZ = Mod(fft(resampleZ$y-mean(resampleZ$y))) energyX = sum(fftX)/window energyY = sum(fftY)/window energyZ = sum(fftZ)/window entropyX = entropy(fftX) entropyY = entropy(fftY) entropyZ = entropy(fftZ) row = nrow(results)+1 results[row,1] = time[u] results[row,2] = meanX results[row,3] = meanY results[row,4] = meanZ results[row,5] = sdX results[row,6] = sdY results[row,7] = sdZ results[row,8] = sqrt((sdX^2)+(sdY^2)+(sdZ^2)) results[row,9] = energyX results[row,10] = energyY results[row,11] = energyZ results[row,12] = sqrt((energyX^2)+(energyY^2)+(energyZ^2)) results[row,13] = mlat results[row,14] = mlon results[row,15] = entropyX results[row,16] = entropyY results[row,17] = entropyZ results[row,18] = sqrt((entropyX^2)+(entropyY^2)+(entropyZ^2)) cat("Pass",nrow(results)-1,"of",ntot-1,"Complete ","[",u,"to",u+140,"]","\n") } print("Run Complete")
/continuousMethod.R
permissive
jhrrsn/push_me
R
false
false
2,928
r
setwd("~/Documents/PushMe/Data") require(ggplot2) require(reshape2) require(splines) require(signal) require(entropy) require(RSEIS) rm(results) results = data.frame("time"=0, "meanX"=0, "meanY"=0, "meanZ"=0, "sdX"=0, "sdY"=0, "sdZ"=0, "sdT"=0, "energyX"=0, "energyY"=0, "energyZ"=0, "energyT"=0, "lat"=mean(sample$Latitude[1:140]), "lon"=mean(sample$Longitude[1:140]), "entropyX"=0, "entropyY"=0, "entropyZ"=0, "entropyT"=0) # Read in .csv file. sample=read.csv('rDrive1.csv') # State sample-specific variables time = sample$Elapsed.Time # Split sensor output into 3 dataframes dX=data.frame(x=time, y=sample$X) dY=data.frame(x=time, y=sample$Y) dZ=data.frame(x=time, y=sample$Z) ntot = floor(nrow(sample)/140) for(u in seq(140, 140*(ntot-1), by = 140)) { # Define range of samples rangeS = u:(u+140) # Location mlat = mean(sample$Latitude[rangeS]) mlon = mean(sample$Longitude[rangeS]) # Create interpolated spline along raw values for each sensor interpX = interpSpline(dX$x[rangeS], dX$y[rangeS]) interpY = interpSpline(dY$x[rangeS], dY$y[rangeS]) interpZ = interpSpline(dZ$x[rangeS], dZ$y[rangeS]) # Resample along spline, with a number of segments proportional to the range that the data covers resampleX = predict(interpX, nseg = 128) resampleX = data.frame(x=resampleX$x, y=resampleX$y) resampleY = predict(interpY, nseg = 128) resampleY = data.frame(x=resampleY$x, y=resampleY$y) resampleZ = predict(interpZ, nseg = 128) resampleZ = data.frame(x=resampleZ$x, y=resampleZ$y) # Calculate means of signal components meanX = mean(resampleX$y) meanY = mean(resampleY$y) meanZ = mean(resampleZ$y) # Calculate standard deviation of signal components sdX = sd(resampleX$y) sdY = sd(resampleY$y) sdZ = sd(resampleZ$y) # Calculate energy proxy and information entropy from fourier transform window = 128 freq = 20 start = 0 fftX = Mod(fft(resampleX$y-mean(resampleX$y))) fftY = Mod(fft(resampleY$y-mean(resampleY$y))) fftZ = Mod(fft(resampleZ$y-mean(resampleZ$y))) energyX = sum(fftX)/window energyY = sum(fftY)/window energyZ = sum(fftZ)/window entropyX = entropy(fftX) entropyY = entropy(fftY) entropyZ = entropy(fftZ) row = nrow(results)+1 results[row,1] = time[u] results[row,2] = meanX results[row,3] = meanY results[row,4] = meanZ results[row,5] = sdX results[row,6] = sdY results[row,7] = sdZ results[row,8] = sqrt((sdX^2)+(sdY^2)+(sdZ^2)) results[row,9] = energyX results[row,10] = energyY results[row,11] = energyZ results[row,12] = sqrt((energyX^2)+(energyY^2)+(energyZ^2)) results[row,13] = mlat results[row,14] = mlon results[row,15] = entropyX results[row,16] = entropyY results[row,17] = entropyZ results[row,18] = sqrt((entropyX^2)+(entropyY^2)+(entropyZ^2)) cat("Pass",nrow(results)-1,"of",ntot-1,"Complete ","[",u,"to",u+140,"]","\n") } print("Run Complete")
######## load packages library(tidyverse) library(corrplot) library(fastDummies) library(rpart) library(rpart.plot) library(caret) library(glmnet) library(randomForest) library(ROCR) library(pROC) library(naivebayes) library(xgboost) library(e1071) library(vegan) library(factoextra) library(kableExtra) library(jtools) library(inspectdf) library(cowplot) ######### load the data set bank <- read.csv("data/bank.csv") ########################################## ## Exploratory Data Analysis ########################################## ## Categorical variables overview x <- inspect_cat(bank, show_plot = T) show_plot(x, text_labels = T) ## Distributions of deposit in numbers and percentages ## dataset is balanced. No need to do resampling. deposit_number <- bank %>% group_by(deposit) %>% summarize(Count = n()) %>% ggplot(aes(x = deposit, y = Count)) + geom_bar(stat = "identity", fill = "#b779ed", color = "grey40") + theme_bw() + coord_flip() + geom_text(aes(x = deposit, y = 0.01, label = Count), hjust = -0.8, vjust = -1, size = 3, color = "black", fontface = "bold") + labs(title = "Deposit", x = "Deposit", y="Amount") + theme(plot.title=element_text(hjust=0.5)) deposit_percentage <- bank %>% group_by(deposit) %>% summarise(Count=n()) %>% mutate(pct = round(prop.table(Count), 2) * 100) %>% ggplot(aes(x=deposit, y=pct)) + geom_bar(stat = "identity", fill = "#62dce3", color="grey40") + geom_text(aes(x=deposit, y=0.01, label= sprintf("%.2f%%", pct)), hjust=0.5, vjust=-3, size=4, color="black", fontface = "bold") + theme_bw() + labs(x = "Deposit", y="Percentage") + labs(title = "Deposit (%)") + theme(plot.title=element_text(hjust=0.5)) plot_grid(deposit_number, deposit_percentage, align="h", ncol=2) ## Deposit Subscriptions based on Education Level bank %>% group_by(education, deposit) %>% tally() %>% ggplot(aes(x = education, y = n, fill = deposit)) + geom_bar(stat = "identity", position = "dodge") + labs(x = "Education Level", y = "Number of People") + ggtitle("Deposit Subscriptions Based on Education Level") + geom_text(aes(label = n), vjust = -0.5, position = position_dodge(0.8)) ## Deposit Subscriptions based on Marital Status bank %>% group_by(marital, deposit) %>% tally() %>% ggplot(aes(x = marital, y = n, fill = deposit)) + geom_bar(stat = "identity", position = "dodge") + labs(x = "Marital Status", y = "Number of People") + ggtitle("Deposit Subscriptions based on Marital Status") + geom_text(aes(label = n), vjust = -0.5, position = position_dodge(0.8)) ## Deposit Subscriptions Based on Last Contact Duration(in seconds) bank %>% group_by(duration, deposit) %>% tally() %>% ggplot(aes(x = duration, y = n, color = deposit)) + geom_smooth(se = F) + labs(x = "Duration(in seconds)", y = "Number of People") + ggtitle("Deposit Subscriptions Based on Last Contact Duration") ## Deposit Subscriptions based on jobs bank %>% group_by(job, deposit) %>% tally() %>% ggplot(aes(x = job, y = n, fill = deposit)) + geom_bar(stat = "identity", position = "dodge") + labs(x = "Job", y = "Number of People") + ggtitle("Deposit Subscriptions Based on Jobs") + geom_text(aes(label = n), vjust = -0.5, position = position_dodge(0.8)) ## Changes in Deposit Subscriptions vs Age vs Personal Loans bank %>% group_by(age, deposit, loan) %>% tally() %>% ggplot(aes(x = age, y = n, color = loan)) + geom_smooth(se=F) + labs(title = "Changes in Deposit Subscriptions vs Age vs Personal Loans", x = "Age", y = "Number of People") ## Changes in Deposit Subscriptions vs Age vs Contact Methods bank %>% group_by(contact, age, deposit) %>% tally() %>% ggplot(aes(x = age, y = n, color = contact)) + geom_smooth(se=F) + labs(title = "Changes in Deposit Subscriptions vs Age vs Contact Methods", x = "Age", y = "Number of People") ########################################## ## Data Cleaning ########################################## ## remove unnecessary columns - month and day ## they are overlapped variables bank2 <- bank %>% filter(!(pdays != -1 & poutcome=='unknown')) %>% filter(!(job == "unknown")) %>% select(-month, -day, -poutcome) ## convert categorical variables to dummies ## and drop the following unknown dummy variables bank_clean <- fastDummies::dummy_cols(bank2, remove_first_dummy = T) %>% select(-contact, -default, -deposit, -education, -housing, -job, -loan, -marital, -job_unknown) colnames(bank_clean) <- sub("-","_", colnames(bank_clean)) ## Split into training/test dataset set.seed(820) # Determine sample size bank_clean$train <- sample(c(0,1), nrow(bank_clean), replace = TRUE, prob = c(0.3, 0.7)) # train dataset - 7731 observations bank_train <- bank_clean %>% filter(train == 1) bank_train$train <- NULL # test dataset - 3359 observations bank_test <- bank_clean %>% filter(train == 0) bank_test$train <- NULL ## for future models bank_clean$train <- NULL x_train <- model.matrix(deposit_yes ~ ., bank_train)[, -1] y_train <- bank_train$deposit_yes x_test <- model.matrix(deposit_yes ~ ., bank_test)[ ,-1] y_test <- bank_test$deposit_yes ######################################################## ## Logistic regression ######################################################## ## build logistic model logit <- glm(deposit_yes~., data=bank_train, family="binomial") yhat_logit <- predict(logit, bank_test,type='response') ## review model summary and important variables summary(logit) sort(logit$coefficients) sort(desc(logit$coefficients)) ## Model performance measurement modelroc_logit <- roc(as.ordered(y_test), yhat_logit) modelroc_logit # AUC = 0.867 plot(modelroc_logit, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Lasso ######################################################## ## build Lasso model fit_lasso <- cv.glmnet(x_train, y_train, alpha = 1, nfolds = 10, family="binomial") yhat_lasso_test <- predict(fit_lasso, x_test, s = fit_lasso$lambda.min) ## Model performance measurement modelroc_lasso <- roc(as.ordered(y_test), yhat_lasso_test) modelroc_lasso # AUC = 0.867 plot(modelroc_lasso, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) # view variables coefficients coef(fit_lasso) ######################################################## ## Random Forest ######################################################## ## build Random Forest model ## number of trees = 500 rf <- randomForest(deposit_yes ~ ., data = bank_train, ntree = 500) yhat_rf_test <- predict(rf, bank_test[, -27], type='response') ## view variables importance varImpPlot(rf) ## Model performance measurement modelroc_rf <- roc(as.ordered(y_test), as.ordered(yhat_rf_test)) modelroc_rf # AUC = 0.887 plot(modelroc_rf, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Boosting ######################################################## train_bst <- bank_train %>% dplyr::select(-deposit_yes) test_bst <- bank_test %>% dplyr::select(-deposit_yes) test_m <- as.matrix(test_bst) train_m <- as.matrix(train_bst) deposit_train <- bank_train$deposit_yes deposit_test <- bank_test$deposit_yes ## build Boosting model # here we choose 0.01 instead of 0.001 # to avoid overfitting controlling 1000 rounds. bst <- xgboost(data = train_m, label = deposit_train, eta =0.01, max_depth = 6, nrounds = 800, objective = "binary:logistic") pred <- predict(bst,test_m, type='response') ## Model performance measurement modelroc_boost <- roc(as.ordered(y_test), pred) modelroc_boost # AUC = 0.891 plot(modelroc_boost, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ## model summary summary(bst) ######################################################## ## Support Vector Machines ######################################################## ## build SVM model svm_model <- svm(deposit_yes ~ ., data = bank_train, kernel="linear", scale = T) yhat_svm_test <- predict(svm_model, bank_test[, -27]) ## Model performance measurement modelroc_svm <- roc(as.ordered(y_test), yhat_svm_test) modelroc_svm # AUC = 0.862 plot(modelroc_svm, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Naive Bayes ######################################################## bank_train_nb <- bank_train bank_train_nb$deposit_yes <- as.factor(bank_train_nb$deposit_yes) ## build Naive Bayes model nb <- naive_bayes(deposit_yes ~ ., data = bank_train_nb) yhat_nb_test <- predict(nb, bank_test[, -27], type = "prob") ## Model performance measurement modelroc_nb <- roc(as.ordered(y_test), yhat_nb_test[, 2]) modelroc_nb # AUC = 0.781 plot(modelroc_nb, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Models Measurement ######################################################## auc_table <- tibble(Model = c("Logistic", "Lasso", "Random Forest", "Boosting", "SVM", "Naive Bayes"), AUC = c(modelroc_logit$auc, modelroc_lasso$auc, modelroc_rf$auc, modelroc_boost$auc, modelroc_svm$auc, modelroc_nb$auc)) ggplot(auc_table, aes(x = Model, y = AUC)) + geom_bar(aes(fill = Model), stat = "identity") + geom_text(aes(label = round(AUC, 4)), vjust=1.6, color="white", size=3.5) + coord_cartesian(ylim = c(0.75, 0.9)) + scale_fill_manual(values = c("#0072B2", "#999999","dark grey", "#D55E00","#56B4E9", "purple")) + theme_minimal() ######################################################## ## Apply best model ######################################################## ## so far, our best model is Boosting (AUC:0.892) ## here we apply the threshold = 0.447 bank_test$deposit_predict <- ifelse(pred > 0.447, 1, 0) ## Confusion Matrix confusionMatrix(table(bank_test$deposit_yes, bank_test$deposit_predict)) ######################################################## ## Clustering ######################################################## library(analogue) library(sets) data <- bank_clean data_n <- data[, 1:6] data_c <- data[, 7:27] data_nscale = scale(data_n) distc <- vegdist(data_c, method = "jaccard") distn <- vegdist(data_nscale,method = "euclidean") complete_dis <- fuse(distc,distn, weights = c(0.5,0.5)) dm <- as.matrix(complete_dis) hward <- hclust(complete_dis, method = "ward.D") plot(hward) table(cutree(hward,k = 3)) cutree(hward,k = 3) -> grouping fviz_cluster(list(data = data, cluster = grouping)) fviz_nbclust(data, FUN = hcut, method = "wss") fviz_nbclust(data, FUN = hcut, method = "silhouette") data$cluster = cutree(hward, k = 3) data$cluster1 = cutree(hward, k = 4) data$cluster2 = cutree(hward, k = 2) cluster_s <- data %>% group_by(cluster) %>% skimr::skim_to_wide() %>% select(cluster, variable, mean) %>% mutate_at(vars(mean), as.numeric) cluster_dat = cluster_s%>% pivot_wider(names_from = variable, values_from=mean) heatmap(as.matrix(cluster_dat), scale="column", Colv = NA, Rowv = NA) data %>% group_by(cluster) %>% skimr::skim_to_wide()%>% summary() data %>% group_by(cluster) %>% summarize(cluster_age = mean(age), cluster_balance = mean(balance), cluster_campaign = mean(campaign), cluster_days = mean(pdays), cluster_duration = mean(duration), cluster_previous = mean(previous)) # ggplot(data, aes(age, balance, group = cluster, color = factor(cluster))) + # geom_point(alpha = 0.5,position = "jitter") + # scale_color_manual(values = c("#c41414","#ffb92e","#6ca5f5",#1b9400","#006bc2")) + # theme_bw() ggplot(data, aes(factor(cluster),age,fill = factor(cluster))) + geom_boxplot() + scale_fill_manual(values = c("#c41414","#ffb92e","#6ca5f5","#1b9400","#006bc2")) + theme_bw() + labs(title = "Age Distribution by Cluster") ggplot(data, aes(balance, fill = factor(cluster))) + geom_histogram(position = "dodge") + facet_wrap(~factor(cluster)) + scale_fill_manual(values = c("#c41414","#ffb92e","#6ca5f5","#1b9400","#006bc2")) + theme_bw() + labs(title = "Balance Distribution by Cluster") dend <- as.dendrogram(hward) dend %>% set("labels_col", value = c("#c41414","#ffb92e","#6ca5f5","#1b9400","#006bc2"), k = 3) %>% plot(horiz = F, axes=F, main = "Visual Breakdown of Three Clusters")
/Bank_Marketing_Campaign_Analysis.R
no_license
davidzhang647/Machine_Learning_Projects
R
false
false
13,767
r
######## load packages library(tidyverse) library(corrplot) library(fastDummies) library(rpart) library(rpart.plot) library(caret) library(glmnet) library(randomForest) library(ROCR) library(pROC) library(naivebayes) library(xgboost) library(e1071) library(vegan) library(factoextra) library(kableExtra) library(jtools) library(inspectdf) library(cowplot) ######### load the data set bank <- read.csv("data/bank.csv") ########################################## ## Exploratory Data Analysis ########################################## ## Categorical variables overview x <- inspect_cat(bank, show_plot = T) show_plot(x, text_labels = T) ## Distributions of deposit in numbers and percentages ## dataset is balanced. No need to do resampling. deposit_number <- bank %>% group_by(deposit) %>% summarize(Count = n()) %>% ggplot(aes(x = deposit, y = Count)) + geom_bar(stat = "identity", fill = "#b779ed", color = "grey40") + theme_bw() + coord_flip() + geom_text(aes(x = deposit, y = 0.01, label = Count), hjust = -0.8, vjust = -1, size = 3, color = "black", fontface = "bold") + labs(title = "Deposit", x = "Deposit", y="Amount") + theme(plot.title=element_text(hjust=0.5)) deposit_percentage <- bank %>% group_by(deposit) %>% summarise(Count=n()) %>% mutate(pct = round(prop.table(Count), 2) * 100) %>% ggplot(aes(x=deposit, y=pct)) + geom_bar(stat = "identity", fill = "#62dce3", color="grey40") + geom_text(aes(x=deposit, y=0.01, label= sprintf("%.2f%%", pct)), hjust=0.5, vjust=-3, size=4, color="black", fontface = "bold") + theme_bw() + labs(x = "Deposit", y="Percentage") + labs(title = "Deposit (%)") + theme(plot.title=element_text(hjust=0.5)) plot_grid(deposit_number, deposit_percentage, align="h", ncol=2) ## Deposit Subscriptions based on Education Level bank %>% group_by(education, deposit) %>% tally() %>% ggplot(aes(x = education, y = n, fill = deposit)) + geom_bar(stat = "identity", position = "dodge") + labs(x = "Education Level", y = "Number of People") + ggtitle("Deposit Subscriptions Based on Education Level") + geom_text(aes(label = n), vjust = -0.5, position = position_dodge(0.8)) ## Deposit Subscriptions based on Marital Status bank %>% group_by(marital, deposit) %>% tally() %>% ggplot(aes(x = marital, y = n, fill = deposit)) + geom_bar(stat = "identity", position = "dodge") + labs(x = "Marital Status", y = "Number of People") + ggtitle("Deposit Subscriptions based on Marital Status") + geom_text(aes(label = n), vjust = -0.5, position = position_dodge(0.8)) ## Deposit Subscriptions Based on Last Contact Duration(in seconds) bank %>% group_by(duration, deposit) %>% tally() %>% ggplot(aes(x = duration, y = n, color = deposit)) + geom_smooth(se = F) + labs(x = "Duration(in seconds)", y = "Number of People") + ggtitle("Deposit Subscriptions Based on Last Contact Duration") ## Deposit Subscriptions based on jobs bank %>% group_by(job, deposit) %>% tally() %>% ggplot(aes(x = job, y = n, fill = deposit)) + geom_bar(stat = "identity", position = "dodge") + labs(x = "Job", y = "Number of People") + ggtitle("Deposit Subscriptions Based on Jobs") + geom_text(aes(label = n), vjust = -0.5, position = position_dodge(0.8)) ## Changes in Deposit Subscriptions vs Age vs Personal Loans bank %>% group_by(age, deposit, loan) %>% tally() %>% ggplot(aes(x = age, y = n, color = loan)) + geom_smooth(se=F) + labs(title = "Changes in Deposit Subscriptions vs Age vs Personal Loans", x = "Age", y = "Number of People") ## Changes in Deposit Subscriptions vs Age vs Contact Methods bank %>% group_by(contact, age, deposit) %>% tally() %>% ggplot(aes(x = age, y = n, color = contact)) + geom_smooth(se=F) + labs(title = "Changes in Deposit Subscriptions vs Age vs Contact Methods", x = "Age", y = "Number of People") ########################################## ## Data Cleaning ########################################## ## remove unnecessary columns - month and day ## they are overlapped variables bank2 <- bank %>% filter(!(pdays != -1 & poutcome=='unknown')) %>% filter(!(job == "unknown")) %>% select(-month, -day, -poutcome) ## convert categorical variables to dummies ## and drop the following unknown dummy variables bank_clean <- fastDummies::dummy_cols(bank2, remove_first_dummy = T) %>% select(-contact, -default, -deposit, -education, -housing, -job, -loan, -marital, -job_unknown) colnames(bank_clean) <- sub("-","_", colnames(bank_clean)) ## Split into training/test dataset set.seed(820) # Determine sample size bank_clean$train <- sample(c(0,1), nrow(bank_clean), replace = TRUE, prob = c(0.3, 0.7)) # train dataset - 7731 observations bank_train <- bank_clean %>% filter(train == 1) bank_train$train <- NULL # test dataset - 3359 observations bank_test <- bank_clean %>% filter(train == 0) bank_test$train <- NULL ## for future models bank_clean$train <- NULL x_train <- model.matrix(deposit_yes ~ ., bank_train)[, -1] y_train <- bank_train$deposit_yes x_test <- model.matrix(deposit_yes ~ ., bank_test)[ ,-1] y_test <- bank_test$deposit_yes ######################################################## ## Logistic regression ######################################################## ## build logistic model logit <- glm(deposit_yes~., data=bank_train, family="binomial") yhat_logit <- predict(logit, bank_test,type='response') ## review model summary and important variables summary(logit) sort(logit$coefficients) sort(desc(logit$coefficients)) ## Model performance measurement modelroc_logit <- roc(as.ordered(y_test), yhat_logit) modelroc_logit # AUC = 0.867 plot(modelroc_logit, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Lasso ######################################################## ## build Lasso model fit_lasso <- cv.glmnet(x_train, y_train, alpha = 1, nfolds = 10, family="binomial") yhat_lasso_test <- predict(fit_lasso, x_test, s = fit_lasso$lambda.min) ## Model performance measurement modelroc_lasso <- roc(as.ordered(y_test), yhat_lasso_test) modelroc_lasso # AUC = 0.867 plot(modelroc_lasso, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) # view variables coefficients coef(fit_lasso) ######################################################## ## Random Forest ######################################################## ## build Random Forest model ## number of trees = 500 rf <- randomForest(deposit_yes ~ ., data = bank_train, ntree = 500) yhat_rf_test <- predict(rf, bank_test[, -27], type='response') ## view variables importance varImpPlot(rf) ## Model performance measurement modelroc_rf <- roc(as.ordered(y_test), as.ordered(yhat_rf_test)) modelroc_rf # AUC = 0.887 plot(modelroc_rf, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Boosting ######################################################## train_bst <- bank_train %>% dplyr::select(-deposit_yes) test_bst <- bank_test %>% dplyr::select(-deposit_yes) test_m <- as.matrix(test_bst) train_m <- as.matrix(train_bst) deposit_train <- bank_train$deposit_yes deposit_test <- bank_test$deposit_yes ## build Boosting model # here we choose 0.01 instead of 0.001 # to avoid overfitting controlling 1000 rounds. bst <- xgboost(data = train_m, label = deposit_train, eta =0.01, max_depth = 6, nrounds = 800, objective = "binary:logistic") pred <- predict(bst,test_m, type='response') ## Model performance measurement modelroc_boost <- roc(as.ordered(y_test), pred) modelroc_boost # AUC = 0.891 plot(modelroc_boost, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ## model summary summary(bst) ######################################################## ## Support Vector Machines ######################################################## ## build SVM model svm_model <- svm(deposit_yes ~ ., data = bank_train, kernel="linear", scale = T) yhat_svm_test <- predict(svm_model, bank_test[, -27]) ## Model performance measurement modelroc_svm <- roc(as.ordered(y_test), yhat_svm_test) modelroc_svm # AUC = 0.862 plot(modelroc_svm, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Naive Bayes ######################################################## bank_train_nb <- bank_train bank_train_nb$deposit_yes <- as.factor(bank_train_nb$deposit_yes) ## build Naive Bayes model nb <- naive_bayes(deposit_yes ~ ., data = bank_train_nb) yhat_nb_test <- predict(nb, bank_test[, -27], type = "prob") ## Model performance measurement modelroc_nb <- roc(as.ordered(y_test), yhat_nb_test[, 2]) modelroc_nb # AUC = 0.781 plot(modelroc_nb, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE) ######################################################## ## Models Measurement ######################################################## auc_table <- tibble(Model = c("Logistic", "Lasso", "Random Forest", "Boosting", "SVM", "Naive Bayes"), AUC = c(modelroc_logit$auc, modelroc_lasso$auc, modelroc_rf$auc, modelroc_boost$auc, modelroc_svm$auc, modelroc_nb$auc)) ggplot(auc_table, aes(x = Model, y = AUC)) + geom_bar(aes(fill = Model), stat = "identity") + geom_text(aes(label = round(AUC, 4)), vjust=1.6, color="white", size=3.5) + coord_cartesian(ylim = c(0.75, 0.9)) + scale_fill_manual(values = c("#0072B2", "#999999","dark grey", "#D55E00","#56B4E9", "purple")) + theme_minimal() ######################################################## ## Apply best model ######################################################## ## so far, our best model is Boosting (AUC:0.892) ## here we apply the threshold = 0.447 bank_test$deposit_predict <- ifelse(pred > 0.447, 1, 0) ## Confusion Matrix confusionMatrix(table(bank_test$deposit_yes, bank_test$deposit_predict)) ######################################################## ## Clustering ######################################################## library(analogue) library(sets) data <- bank_clean data_n <- data[, 1:6] data_c <- data[, 7:27] data_nscale = scale(data_n) distc <- vegdist(data_c, method = "jaccard") distn <- vegdist(data_nscale,method = "euclidean") complete_dis <- fuse(distc,distn, weights = c(0.5,0.5)) dm <- as.matrix(complete_dis) hward <- hclust(complete_dis, method = "ward.D") plot(hward) table(cutree(hward,k = 3)) cutree(hward,k = 3) -> grouping fviz_cluster(list(data = data, cluster = grouping)) fviz_nbclust(data, FUN = hcut, method = "wss") fviz_nbclust(data, FUN = hcut, method = "silhouette") data$cluster = cutree(hward, k = 3) data$cluster1 = cutree(hward, k = 4) data$cluster2 = cutree(hward, k = 2) cluster_s <- data %>% group_by(cluster) %>% skimr::skim_to_wide() %>% select(cluster, variable, mean) %>% mutate_at(vars(mean), as.numeric) cluster_dat = cluster_s%>% pivot_wider(names_from = variable, values_from=mean) heatmap(as.matrix(cluster_dat), scale="column", Colv = NA, Rowv = NA) data %>% group_by(cluster) %>% skimr::skim_to_wide()%>% summary() data %>% group_by(cluster) %>% summarize(cluster_age = mean(age), cluster_balance = mean(balance), cluster_campaign = mean(campaign), cluster_days = mean(pdays), cluster_duration = mean(duration), cluster_previous = mean(previous)) # ggplot(data, aes(age, balance, group = cluster, color = factor(cluster))) + # geom_point(alpha = 0.5,position = "jitter") + # scale_color_manual(values = c("#c41414","#ffb92e","#6ca5f5",#1b9400","#006bc2")) + # theme_bw() ggplot(data, aes(factor(cluster),age,fill = factor(cluster))) + geom_boxplot() + scale_fill_manual(values = c("#c41414","#ffb92e","#6ca5f5","#1b9400","#006bc2")) + theme_bw() + labs(title = "Age Distribution by Cluster") ggplot(data, aes(balance, fill = factor(cluster))) + geom_histogram(position = "dodge") + facet_wrap(~factor(cluster)) + scale_fill_manual(values = c("#c41414","#ffb92e","#6ca5f5","#1b9400","#006bc2")) + theme_bw() + labs(title = "Balance Distribution by Cluster") dend <- as.dendrogram(hward) dend %>% set("labels_col", value = c("#c41414","#ffb92e","#6ca5f5","#1b9400","#006bc2"), k = 3) %>% plot(horiz = F, axes=F, main = "Visual Breakdown of Three Clusters")
# Hierarchical Clustering dataset<-read.csv("Mall_Customers.csv") X=dataset[4:5] #Using the dendogram to find the optimal number of clusters dendogram=hclust(dist(X,method="euclidean"),method="ward.D") plot(dendogram, main=paste("Dendogram"), xlab="Customers", ylab="Euclidean Distances") #Fitting hierarchical clustering to the mall dataset hc=hclust(dist(X,method="euclidean"),method="ward.D") y_hc=cutree(hc,5) # Visualising the clusters library(cluster) clusplot(X, y_hc, lines=0, shade=TRUE, color=TRUE, labels=2, plotchar=FALSE, span=TRUE, main=paste("Clusters of clients"), xlab="Annual Income", ylab="Spending Score")
/03_Clustering/Hierarchical_Clustering/Hierarchical_Clustering_R_AM.R
no_license
AMDonati/ML_Algorithms_inR
R
false
false
736
r
# Hierarchical Clustering dataset<-read.csv("Mall_Customers.csv") X=dataset[4:5] #Using the dendogram to find the optimal number of clusters dendogram=hclust(dist(X,method="euclidean"),method="ward.D") plot(dendogram, main=paste("Dendogram"), xlab="Customers", ylab="Euclidean Distances") #Fitting hierarchical clustering to the mall dataset hc=hclust(dist(X,method="euclidean"),method="ward.D") y_hc=cutree(hc,5) # Visualising the clusters library(cluster) clusplot(X, y_hc, lines=0, shade=TRUE, color=TRUE, labels=2, plotchar=FALSE, span=TRUE, main=paste("Clusters of clients"), xlab="Annual Income", ylab="Spending Score")
#' @title Creatinine Normalisation #' @description Creatinine Normalisation (CN) is a useful method much like region of interest normalisation that can normalise spectra based on the total area of the creatinine signal at the chemical shift 3.05ppm. #' @details `creNorm()` works by dividing each element in a row with the sum of the values from its Creatinine signal. #' @family {Attribute-Based} #' @param X The spectra intended to be normalised. Can either be a single spectrum in the form of a numerical array or multiple spectra in a numerical matrix with the rows being the spectra/samples and the columns being the ppm variables #' @param ppm A numerical array holding the chemical shift values of the X matrix. Only necessary when X is an array, not when X is a matrix #' @param cre3 A concatenated numerical value of the lower and upper ppm values where the creatinine peak at 3.05 starts and ends. #' @param cre4 A concatenated numerical value of the lower and upper ppm values where the creatinine peak at 4.05 starts and ends. #' @param err The level of error given when calculating the creatinine peak ratios. interperted as a percentage (i.e., 5 = 5%) #' @return This function assigns the normalised X argument (as X_cre) and the calculated dilution factors (as dilf_cre) to the global environment. #' @author \email{kylebario1@@gmail.com} #' @seealso More on the methodology of CN and issue with using it are outlined here: \url{https://doi.org/10.1021/ac051632c} #' @examples #' # When X contains multiple spectra, ppm is not required #' data(X, ppm) #' creNorm(X) #' cat(dilf_cre) #' #' # When X has only one spectrum, ppm is required #' data(X, ppm) #' creNorm(X[1,], ppm) #' cat(dilf_cre) #' #' @export creNorm <- function(X, ppm = NULL, cre3 = c(3, 3.1), cre4 = c(4, 4.1), err = 5){ if (length(cre3)!=2 | length(cre4)!=2){ stop("Please provide only two values for each of the args cre3 and cre4. The first for each should be the lower bounds of the creatinine regions and the second should be the upper bounds.") } if (is.null(err)){ err = 5 } if (is.null(dim(X))){ if (is.null(length(X))){ stop("Please provide a valid X variable. X is neither a matrix or an array") } if (is.null(ppm)){ stop("Please provide a X-matched ppm. None was provided and ppm cannot be determined from a single spectrum") } else if (length(ppm)!=length(X)){ stop('Please make sure that the length of X and ppm match') } cat('\033[0;34mCalculating Dilfs... \033[0m') i3 <- shift_pickr(X, ppm, cre3, 0.005) i4 <- shift_pickr(X, ppm, cre4, 0.005) a3 <- sum(X[i3]) a4 <- sum(X[i4]) r <- a4/a3 cat('\033[1;32mDone.\n\033[0m') cat('\033[0;34mChecking creatinine peak ratio... \033[0m') er <- ((2/3)/100)*err lo <- (2/3)-er up <- (2/3)+er if(r<=up & r>=lo){ cat('\033[1;32mRatio is within limit.\n\033[0m') } else{ cat('\033[1;31mThe provided spectra is outside of the error limit.\n\033[1;33mRefer to Df_cre for more information.\n\033[0m') } e <- as.array(r<=up & r>=lo) df <- data.frame(a3, r, e) colnames(df) <- c('dilf', 'ratio', paste('ratio within a', err, '% error margin')) cat('\033[0;34mNormalising X... \033[0m') Xn <- X/a3 } else if (!is.null(dim(X))){ cat('\033[0;34mCalculating Dilfs... \033[0m') if (is.null(ppm)){ p <- as.numeric(colnames(X)) } else { if (length(ppm)!=ncol(X)){ stop('Please provide a column-matched ppm and X variable') } else { p <- ppm } } i3 <- shift_pickr(X, p, cre3, 0.005) i4 <- shift_pickr(X, p, cre4, 0.005) a3 <- vapply(seq_len(nrow(X)),function(i){ j <- i3[i,] a <- sum(X[i,j]) return(a) }, FUN.VALUE = 1.1) a4 <- vapply(seq_len(nrow(X)),function(i){ j <- i4[i,] a <- sum(X[i,j]) return(a) }, FUN.VALUE = 1.1) r <- a3/a4 cat('\033[1;32mDone.\n\033[0m') cat('\033[0;34mChecking creatinine peak ratios... \033[0m') er <- ((2/3)/100)*err lo <- (2/3)-er up <- (2/3)+er if(all(r<=up & r>=lo)){ cat('\033[1;32mAll within limits.\n\033[0m') } else{ cat('\033[1;31mspec', which(r>=up | r<=lo), 'are outside error limits.\n\033[1;33mRefer to Df_cre for more information.\n\033[0m') } e <- as.array(r<=up & r>=lo) df <- data.frame(a3, r, e) colnames(df) <- c('dilf', 'ratio', paste('ratio within a', err, '% error margin')) cat('\033[0;34mNormalising X... \033[0m') Xn <- t(vapply(seq_len(nrow(X)), function(i){ X[i,]/a3[i] }, FUN.VALUE = X[1,])) rownames(Xn) <- rownames(X) } else { stop("X cannot be normalised") } cat('\033[1;32mDone.\n\033[0m') assign("X_cre", Xn, envir = .GlobalEnv) assign("dilf_cre", a3, envir = .GlobalEnv) assign("Df_cre", df, envir = .GlobalEnv) }
/R/creNorm.R
permissive
kbario/concentr8r
R
false
false
5,031
r
#' @title Creatinine Normalisation #' @description Creatinine Normalisation (CN) is a useful method much like region of interest normalisation that can normalise spectra based on the total area of the creatinine signal at the chemical shift 3.05ppm. #' @details `creNorm()` works by dividing each element in a row with the sum of the values from its Creatinine signal. #' @family {Attribute-Based} #' @param X The spectra intended to be normalised. Can either be a single spectrum in the form of a numerical array or multiple spectra in a numerical matrix with the rows being the spectra/samples and the columns being the ppm variables #' @param ppm A numerical array holding the chemical shift values of the X matrix. Only necessary when X is an array, not when X is a matrix #' @param cre3 A concatenated numerical value of the lower and upper ppm values where the creatinine peak at 3.05 starts and ends. #' @param cre4 A concatenated numerical value of the lower and upper ppm values where the creatinine peak at 4.05 starts and ends. #' @param err The level of error given when calculating the creatinine peak ratios. interperted as a percentage (i.e., 5 = 5%) #' @return This function assigns the normalised X argument (as X_cre) and the calculated dilution factors (as dilf_cre) to the global environment. #' @author \email{kylebario1@@gmail.com} #' @seealso More on the methodology of CN and issue with using it are outlined here: \url{https://doi.org/10.1021/ac051632c} #' @examples #' # When X contains multiple spectra, ppm is not required #' data(X, ppm) #' creNorm(X) #' cat(dilf_cre) #' #' # When X has only one spectrum, ppm is required #' data(X, ppm) #' creNorm(X[1,], ppm) #' cat(dilf_cre) #' #' @export creNorm <- function(X, ppm = NULL, cre3 = c(3, 3.1), cre4 = c(4, 4.1), err = 5){ if (length(cre3)!=2 | length(cre4)!=2){ stop("Please provide only two values for each of the args cre3 and cre4. The first for each should be the lower bounds of the creatinine regions and the second should be the upper bounds.") } if (is.null(err)){ err = 5 } if (is.null(dim(X))){ if (is.null(length(X))){ stop("Please provide a valid X variable. X is neither a matrix or an array") } if (is.null(ppm)){ stop("Please provide a X-matched ppm. None was provided and ppm cannot be determined from a single spectrum") } else if (length(ppm)!=length(X)){ stop('Please make sure that the length of X and ppm match') } cat('\033[0;34mCalculating Dilfs... \033[0m') i3 <- shift_pickr(X, ppm, cre3, 0.005) i4 <- shift_pickr(X, ppm, cre4, 0.005) a3 <- sum(X[i3]) a4 <- sum(X[i4]) r <- a4/a3 cat('\033[1;32mDone.\n\033[0m') cat('\033[0;34mChecking creatinine peak ratio... \033[0m') er <- ((2/3)/100)*err lo <- (2/3)-er up <- (2/3)+er if(r<=up & r>=lo){ cat('\033[1;32mRatio is within limit.\n\033[0m') } else{ cat('\033[1;31mThe provided spectra is outside of the error limit.\n\033[1;33mRefer to Df_cre for more information.\n\033[0m') } e <- as.array(r<=up & r>=lo) df <- data.frame(a3, r, e) colnames(df) <- c('dilf', 'ratio', paste('ratio within a', err, '% error margin')) cat('\033[0;34mNormalising X... \033[0m') Xn <- X/a3 } else if (!is.null(dim(X))){ cat('\033[0;34mCalculating Dilfs... \033[0m') if (is.null(ppm)){ p <- as.numeric(colnames(X)) } else { if (length(ppm)!=ncol(X)){ stop('Please provide a column-matched ppm and X variable') } else { p <- ppm } } i3 <- shift_pickr(X, p, cre3, 0.005) i4 <- shift_pickr(X, p, cre4, 0.005) a3 <- vapply(seq_len(nrow(X)),function(i){ j <- i3[i,] a <- sum(X[i,j]) return(a) }, FUN.VALUE = 1.1) a4 <- vapply(seq_len(nrow(X)),function(i){ j <- i4[i,] a <- sum(X[i,j]) return(a) }, FUN.VALUE = 1.1) r <- a3/a4 cat('\033[1;32mDone.\n\033[0m') cat('\033[0;34mChecking creatinine peak ratios... \033[0m') er <- ((2/3)/100)*err lo <- (2/3)-er up <- (2/3)+er if(all(r<=up & r>=lo)){ cat('\033[1;32mAll within limits.\n\033[0m') } else{ cat('\033[1;31mspec', which(r>=up | r<=lo), 'are outside error limits.\n\033[1;33mRefer to Df_cre for more information.\n\033[0m') } e <- as.array(r<=up & r>=lo) df <- data.frame(a3, r, e) colnames(df) <- c('dilf', 'ratio', paste('ratio within a', err, '% error margin')) cat('\033[0;34mNormalising X... \033[0m') Xn <- t(vapply(seq_len(nrow(X)), function(i){ X[i,]/a3[i] }, FUN.VALUE = X[1,])) rownames(Xn) <- rownames(X) } else { stop("X cannot be normalised") } cat('\033[1;32mDone.\n\033[0m') assign("X_cre", Xn, envir = .GlobalEnv) assign("dilf_cre", a3, envir = .GlobalEnv) assign("Df_cre", df, envir = .GlobalEnv) }
screePlotAPA <- function(data, rep=1000, cent=.05) { library(nFactors) library(ggplot2) ev <- eigen(cor(data)) # get eigenvalues eig <- ev$values # eigenvalues ap <- parallel(subject = nrow(data), var = ncol(data), rep = rep, cent = cent) eig_pa <- ap$eigen$qevpea # The 95 centile nS <- nScree(x=ev$values, aparallel=eig_pa, model = "components") xlab = "Components" ylab = "Eigenvalues" main = "Parallel Scree Test" df <- data.frame(eig, eig_pa) k <- 1:length(eig) # Only plotting Factors to 25% of the sample size n <- round(length(eig)/4) #APA theme apatheme = theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), panel.border = element_blank(), text = element_text(family='Arial'), legend.title = element_blank(), legend.position = c(.7, .8), axis.line.x = element_line(color = 'black'), axis.line.y = element_line(color = 'black')) # Plot par(col = 1, pch = 1) par(mfrow = c(1, 1)) #Use data from eigendat. Map number of factors to x-axis, eigenvalue to y-axis, and give different data point shapes depending on whether eigenvalue is observed or simulated p <- ggplot(df[1:n,], aes(x=k[1:n])) + #Add lines connecting data points geom_line(mapping = aes(y=eig[1:n]), size=1) + geom_point(mapping = aes(y=eig[1:n]), size=3, shape=16) + geom_line(mapping = aes(y=eig_pa[1:n]), size=1, linetype = "dotdash") + geom_point(mapping = aes(y=eig_pa[1:n]), size=3, shape=1) + #Label the y-axis 'Eigenvalue' ylab('Eigenvalue') + #Label the x-axis 'Factor Number', and ensure that it ranges from 1-max # of factors, increasing by one with each 'tick' mark. xlab('Factor/Component Number') + #Add vertical line indicating parallel analysis suggested max # of factors to retain geom_vline(xintercept = nS$Components$nparallel, linetype = 'dashed') + #Add X limit to 25% of number of factors xlim(1, n) + #Apply our apa-formatting theme apatheme # How many Factors? cat("Parallel Analysis (n = ", nS$Components$nparallel, ")", sep = "") return(p) }
/Factor Analysis/screePlotAPA.R
no_license
storopoli/R_Scripts
R
false
false
2,205
r
screePlotAPA <- function(data, rep=1000, cent=.05) { library(nFactors) library(ggplot2) ev <- eigen(cor(data)) # get eigenvalues eig <- ev$values # eigenvalues ap <- parallel(subject = nrow(data), var = ncol(data), rep = rep, cent = cent) eig_pa <- ap$eigen$qevpea # The 95 centile nS <- nScree(x=ev$values, aparallel=eig_pa, model = "components") xlab = "Components" ylab = "Eigenvalues" main = "Parallel Scree Test" df <- data.frame(eig, eig_pa) k <- 1:length(eig) # Only plotting Factors to 25% of the sample size n <- round(length(eig)/4) #APA theme apatheme = theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), panel.border = element_blank(), text = element_text(family='Arial'), legend.title = element_blank(), legend.position = c(.7, .8), axis.line.x = element_line(color = 'black'), axis.line.y = element_line(color = 'black')) # Plot par(col = 1, pch = 1) par(mfrow = c(1, 1)) #Use data from eigendat. Map number of factors to x-axis, eigenvalue to y-axis, and give different data point shapes depending on whether eigenvalue is observed or simulated p <- ggplot(df[1:n,], aes(x=k[1:n])) + #Add lines connecting data points geom_line(mapping = aes(y=eig[1:n]), size=1) + geom_point(mapping = aes(y=eig[1:n]), size=3, shape=16) + geom_line(mapping = aes(y=eig_pa[1:n]), size=1, linetype = "dotdash") + geom_point(mapping = aes(y=eig_pa[1:n]), size=3, shape=1) + #Label the y-axis 'Eigenvalue' ylab('Eigenvalue') + #Label the x-axis 'Factor Number', and ensure that it ranges from 1-max # of factors, increasing by one with each 'tick' mark. xlab('Factor/Component Number') + #Add vertical line indicating parallel analysis suggested max # of factors to retain geom_vline(xintercept = nS$Components$nparallel, linetype = 'dashed') + #Add X limit to 25% of number of factors xlim(1, n) + #Apply our apa-formatting theme apatheme # How many Factors? cat("Parallel Analysis (n = ", nS$Components$nparallel, ")", sep = "") return(p) }
library(nimble) ### Name: Wishart ### Title: The Wishart Distribution ### Aliases: Wishart dwish_chol rwish_chol wishart ### ** Examples df <- 40 ch <- chol(matrix(c(1, .7, .7, 1), 2)) x <- rwish_chol(1, ch, df = df) dwish_chol(x, ch, df = df)
/data/genthat_extracted_code/nimble/examples/Wishart.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
252
r
library(nimble) ### Name: Wishart ### Title: The Wishart Distribution ### Aliases: Wishart dwish_chol rwish_chol wishart ### ** Examples df <- 40 ch <- chol(matrix(c(1, .7, .7, 1), 2)) x <- rwish_chol(1, ch, df = df) dwish_chol(x, ch, df = df)
library(dplyr) library(ggplot2) library(lubridate) library(stringr) # Input ------------------------------------------------------------------- data = read.csv('gun-violence-data_01-2013_03-2018.csv') # Understand data --------------------------------------------------------- glimpse(data) count_unique = data.frame() for (i in 1:ncol(data)) { count_unique[i,1] = sum(!is.na(data[,i])) count_unique[i,2] = round(sum(!is.na(data[,i])) / nrow(data) * 100,3) count_unique[i,3] = length(unique(data[,i])) } rownames(count_unique) = colnames(data) colnames(count_unique) = c("Total records", "% populated", "Unique values") ?month # Date -------------------------------------------------------------------- data$date = as.Date(data$date) dqrDate = data %>% group_by(date=round_date(date,'month')) %>% summarize(count = n()) %>% arrange(desc(date)) head(dqrDate) tail(dqrDate) ggplot(dqrDate,aes(date,count)) + geom_line(group=1) # State ------------------------------------------------------------------- dqrState = data %>% group_by(state) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrState,20) tail(dqrState,20) # City/County ------------------------------------------------------------- dqrCity = data %>% group_by(city_or_county) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrCity,20) tail(dqrCity,20) # Address ----------------------------------------------------------------- dqrAddress = data %>% group_by(address) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrAddress,20) tail(dqrAddress,20) data %>% filter(address == '2375 International Pkwy') %>% arrange(desc(date)) %>% select(date) # number of killed -------------------------------------------------------- data %>% ggplot(aes(x=1,y=n_killed)) + geom_boxplot() # number of injured ------------------------------------------------------- # gun stolen -------------------------------------------------------------- dqrAddress = data %>% group_by(address) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrAddress,20) tail(dqrAddress,20) # gun type ---------------------------------------------------------------- dqrGunType = data %>% group_by(gun_type) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrGunType,20) tail(dqrGunType,20) # incident characteristics ------------------------------------------------ # location description ---------------------------------------------------- # number of guns involved ------------------------------------------------- # participant age --------------------------------------------------------- # participant age group --------------------------------------------------- # participant gender ------------------------------------------------------ # participant name -------------------------------------------------------- # participant relationship ------------------------------------------------ # participant status ------------------------------------------------------ # participant type ------------------------------------------------------- # Strategy: # 1. Explore + understand the data # 2. Experiment + create raw charts # 3. Theme-tify all charts # 4. Structure + add wordings
/Gun Violence in US/EDA.R
no_license
kennhan/DataVis
R
false
false
3,389
r
library(dplyr) library(ggplot2) library(lubridate) library(stringr) # Input ------------------------------------------------------------------- data = read.csv('gun-violence-data_01-2013_03-2018.csv') # Understand data --------------------------------------------------------- glimpse(data) count_unique = data.frame() for (i in 1:ncol(data)) { count_unique[i,1] = sum(!is.na(data[,i])) count_unique[i,2] = round(sum(!is.na(data[,i])) / nrow(data) * 100,3) count_unique[i,3] = length(unique(data[,i])) } rownames(count_unique) = colnames(data) colnames(count_unique) = c("Total records", "% populated", "Unique values") ?month # Date -------------------------------------------------------------------- data$date = as.Date(data$date) dqrDate = data %>% group_by(date=round_date(date,'month')) %>% summarize(count = n()) %>% arrange(desc(date)) head(dqrDate) tail(dqrDate) ggplot(dqrDate,aes(date,count)) + geom_line(group=1) # State ------------------------------------------------------------------- dqrState = data %>% group_by(state) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrState,20) tail(dqrState,20) # City/County ------------------------------------------------------------- dqrCity = data %>% group_by(city_or_county) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrCity,20) tail(dqrCity,20) # Address ----------------------------------------------------------------- dqrAddress = data %>% group_by(address) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrAddress,20) tail(dqrAddress,20) data %>% filter(address == '2375 International Pkwy') %>% arrange(desc(date)) %>% select(date) # number of killed -------------------------------------------------------- data %>% ggplot(aes(x=1,y=n_killed)) + geom_boxplot() # number of injured ------------------------------------------------------- # gun stolen -------------------------------------------------------------- dqrAddress = data %>% group_by(address) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrAddress,20) tail(dqrAddress,20) # gun type ---------------------------------------------------------------- dqrGunType = data %>% group_by(gun_type) %>% summarize(count = n()) %>% arrange(desc(count)) head(dqrGunType,20) tail(dqrGunType,20) # incident characteristics ------------------------------------------------ # location description ---------------------------------------------------- # number of guns involved ------------------------------------------------- # participant age --------------------------------------------------------- # participant age group --------------------------------------------------- # participant gender ------------------------------------------------------ # participant name -------------------------------------------------------- # participant relationship ------------------------------------------------ # participant status ------------------------------------------------------ # participant type ------------------------------------------------------- # Strategy: # 1. Explore + understand the data # 2. Experiment + create raw charts # 3. Theme-tify all charts # 4. Structure + add wordings
##Plot 2 #Geting the data and transforming the first two collumns into a single variable for time tabela1 <- read.table(file = "household_power_consumption.txt",sep = ";",header = T,colClasses = c(rep("character",2),rep("numeric",7)),na.strings = "?") tabela1[,1]<- as.Date(tabela1[,1],"%d/%m/%Y") tabela2 <- subset.data.frame(tabela1,tabela1[,1]<="2007-02-02" & tabela1[,1] >= "2007-02-01") teste2 <- strptime(paste(tabela2[,1],tabela2[,2]),format = "%Y-%m-%d %H:%M:%S") tabela4 <- cbind(teste2,tabela2[,3:9]) ##Plot 2 #Global Active Power by Period of Time - Line png(filename = "Plot 2.png",width = 480, height = 480) plot(tabela4$Global_active_power ~ tabela4$teste2, type = "l",ylab = "Global Active Power (kilowatts)", xlab="") dev.off()
/Plot 2.R
no_license
Alibanio/ExData_Plotting1
R
false
false
744
r
##Plot 2 #Geting the data and transforming the first two collumns into a single variable for time tabela1 <- read.table(file = "household_power_consumption.txt",sep = ";",header = T,colClasses = c(rep("character",2),rep("numeric",7)),na.strings = "?") tabela1[,1]<- as.Date(tabela1[,1],"%d/%m/%Y") tabela2 <- subset.data.frame(tabela1,tabela1[,1]<="2007-02-02" & tabela1[,1] >= "2007-02-01") teste2 <- strptime(paste(tabela2[,1],tabela2[,2]),format = "%Y-%m-%d %H:%M:%S") tabela4 <- cbind(teste2,tabela2[,3:9]) ##Plot 2 #Global Active Power by Period of Time - Line png(filename = "Plot 2.png",width = 480, height = 480) plot(tabela4$Global_active_power ~ tabela4$teste2, type = "l",ylab = "Global Active Power (kilowatts)", xlab="") dev.off()
#install.packages("smoothmest") #install.packages("extraDistr") #install.packages("truncdist") library(MASS) #library(smoothmest) library(stats) library(extraDistr) set.seed(106) eps=runif(15) dexp_err = -log(log(eps^-1)) f = function( x, alpha , beta, gamma){ alpha*exp(-exp(beta-gamma*x)) } x = seq(from=1,to=15) y = f(x, 22.37 , 2.14 , 0.395) + dexp_err plot(x,y,type = "l") bs = cbind(x,y) for (i in 1:1000){ x_bs = sample(x,15,replace = TRUE) y_bs= f(x_bs, 22.37 , 2.14 , 0.395) + rgumbel(15, mu = 0, sigma = 1) bs = rbind(bs , cbind(x_bs,y_bs)) } bs=data.frame(bs) avr = NULL low=NULL upp=NULL for(i in 1:15){ bs_s = bs[which(bs$x==i),] a=mean(bs_s$y) avr[i] = a low[i] = a - 1.96*sd(bs_s$y) upp[i] = a + 1.96*sd(bs_s$y) } plot(x,avr,type = "l", ylim =range(-2,25), ylab = "Y") lines(x,low, type="b", pch=22, col="red", lty=2) lines(x,upp, type="b", pch=22, col="red", lty=2) points(x,y,col = "blue", pch = 20) ############# ### MLE for parameter ############ mle= function(x,y,alpha,beta,gamma){ # parameters constrained to be non-negative ll=0 for ( i in 1:15){ l= -abs(y[i]-alpha*exp(-exp(beta-gamma*x[i]))) ll=ll+l } return(ll) } ################ ###initial population population = cbind(a=runif(200,min=15,max=30),b=runif(200,min=0,max=5),c=runif(200,min=0,max=1) ) ########### ##selection## ########### selec = function(population ){ new_pop = matrix(NA,200,3) # initialize next generation for( i in 1:100){ f1= mle(x,y, population[i,1], population[i,2], population[i,3]) f2= mle(x,y, population[i+100,1], population[i+100,2], population[i+100,3]) if (f1 > f2){new_pop[i,]= population[i,]} else {new_pop[i,]= population[i+100,]} } return(new_pop) } ############# ##recombination ############# library(truncdist) recomb = function() { for(j in 1:100){ s=sample(1:100,2) alphas = new_pop[s,1] betas = new_pop[s,2] gammas = new_pop[s,3] a_d = alphas[1] a_m = alphas[2] b_d = betas[1] b_m = betas[2] g_d = gammas[1] g_m = gammas[2] if(a_d > a_m){a_baby = (a_d+a_m)/2 + rtrunc(1, spec="cauchy", a=(30-a_d-a_m)/(a_d-a_m) ,b=(50-a_d-a_m)/(a_d-a_m))*(a_d-a_m)/2} else if(a_d < a_m){a_baby = (a_d+a_m)/2 + rtrunc(1, spec="cauchy", a=(50-a_d-a_m)/(a_d-a_m) ,b=(30-a_d-a_m)/(a_d-a_m))*(a_d-a_m)/2} else {a_baby = 0.5*(a_d+a_m) } if(b_d>b_m){b_baby = (b_d+b_m)/2 + rtrunc(1, spec="cauchy", a=(-b_d-b_m)/(b_d-b_m) ,b=(10-b_d-b_m)/(b_d-b_m))*(b_d-b_m)/2} else if(b_d < b_m){b_baby = (b_d+b_m)/2 + rtrunc(1, spec="cauchy", a=(10-b_d-b_m)/(b_d-b_m),b=(-b_d-b_m)/(b_d-b_m))*(b_d-b_m)/2} else {b_baby = 0.5*(b_d+b_m) } if(g_d>g_m){g_baby = (g_d+g_m)/2 + rtrunc(1, spec="cauchy", a=(-g_d-g_m)/(g_d-g_m) ,b=(2-g_d-g_m)/(g_d-g_m))*(g_d-g_m)/2} else if(g_d < g_m){g_baby = (g_d+g_m)/2 + rtrunc(1, spec="cauchy", a=(2-g_d-g_m)/(g_d-g_m) ,b=(-g_d-g_m)/(g_d-g_m))*(g_d-g_m)/2} else {g_baby = 0.5*(g_d+g_m) } new_pop[j+100,1] = a_baby new_pop[j+100,2] = b_baby new_pop[j+100,3] = g_baby } return(new_pop) } ################ ### random select 10 member from each generation and keep ################ num_cycle = 100 # ##dim = c(10,3,num_cycle) gen_num = 1 big_gens = list(list()) id=sample(1:200,10,replace=FALSE) big_gens[[1]][[1]]= population[id,] #gen_sub(population) ############## ###mutation#### ############### #############3 ### Evolution ########## for (m in 2:num_cycle){ new_pop = selec(population) new_pop = recomb() ########## population = new_pop gen_num = m id=sample(1:200,10,replace=FALSE) gens[[m]]= population[id,] #new_pop = matrix(NA,200,3) } sin=NULL for (i in 1:100){ sin[i]= gens[[i]][5,2] } plot(sin,type = "l") ##################### #################### seed = sample(1:999999999, 1000, replace = FALSE) big_gens=list() for (k in 1:1000){ set.seed(seed[k]) population = cbind(a=runif(200,min=15,max=30),b=runif(200,min=0,max=5),c=runif(200,min=0,max=1) ) id=sample(1:200,10,replace=FALSE) big_gens[[k]]= list() big_gens[[k]][[1]]=population[id,] for (m in 2:num_cycle){ new_pop = selec(population) new_pop = recomb() ########## population = new_pop gen_num = m id=sample(1:200,10,replace=FALSE) big_gens[[k]][[m]]= population[id,] #new_pop = matrix(NA,200,3) } } #save(big_gens, file="proj1_result.RData") alpha=rep(NA,1000) beta=rep(NA,1000) gamma=rep(NA,1000) for (i in 1:1000){ alpha[i]=big_gens[[i]][[100]][10,1] beta[i]= big_gens[[i]][[100]][10,2] gamma[i]= big_gens[[i]][[100]][10,3] } hist(alpha,breaks = "scott",col="yellow", xlab = bquote(alpha),main="") hist(beta,breaks = "scott",xlab = bquote(beta),main="") hist(gamma,breaks = "scott",xlab = bquote(gamma),main="") mean(alpha) mean(beta) mean(gamma) par(mfrow=c(1,3)) hist(alpha,breaks = "scott",col="yellow",xlab = bquote(alpha),main="") hist(beta,breaks = "scott",col="yellow",xlab = bquote(beta),main="") hist(gamma,breaks = "scott",col="yellow",xlab = bquote(gamma),main="")
/proj1.R
no_license
sinasanei/Genetic-Algorithms-and-their-applications-in-statistics
R
false
false
5,033
r
#install.packages("smoothmest") #install.packages("extraDistr") #install.packages("truncdist") library(MASS) #library(smoothmest) library(stats) library(extraDistr) set.seed(106) eps=runif(15) dexp_err = -log(log(eps^-1)) f = function( x, alpha , beta, gamma){ alpha*exp(-exp(beta-gamma*x)) } x = seq(from=1,to=15) y = f(x, 22.37 , 2.14 , 0.395) + dexp_err plot(x,y,type = "l") bs = cbind(x,y) for (i in 1:1000){ x_bs = sample(x,15,replace = TRUE) y_bs= f(x_bs, 22.37 , 2.14 , 0.395) + rgumbel(15, mu = 0, sigma = 1) bs = rbind(bs , cbind(x_bs,y_bs)) } bs=data.frame(bs) avr = NULL low=NULL upp=NULL for(i in 1:15){ bs_s = bs[which(bs$x==i),] a=mean(bs_s$y) avr[i] = a low[i] = a - 1.96*sd(bs_s$y) upp[i] = a + 1.96*sd(bs_s$y) } plot(x,avr,type = "l", ylim =range(-2,25), ylab = "Y") lines(x,low, type="b", pch=22, col="red", lty=2) lines(x,upp, type="b", pch=22, col="red", lty=2) points(x,y,col = "blue", pch = 20) ############# ### MLE for parameter ############ mle= function(x,y,alpha,beta,gamma){ # parameters constrained to be non-negative ll=0 for ( i in 1:15){ l= -abs(y[i]-alpha*exp(-exp(beta-gamma*x[i]))) ll=ll+l } return(ll) } ################ ###initial population population = cbind(a=runif(200,min=15,max=30),b=runif(200,min=0,max=5),c=runif(200,min=0,max=1) ) ########### ##selection## ########### selec = function(population ){ new_pop = matrix(NA,200,3) # initialize next generation for( i in 1:100){ f1= mle(x,y, population[i,1], population[i,2], population[i,3]) f2= mle(x,y, population[i+100,1], population[i+100,2], population[i+100,3]) if (f1 > f2){new_pop[i,]= population[i,]} else {new_pop[i,]= population[i+100,]} } return(new_pop) } ############# ##recombination ############# library(truncdist) recomb = function() { for(j in 1:100){ s=sample(1:100,2) alphas = new_pop[s,1] betas = new_pop[s,2] gammas = new_pop[s,3] a_d = alphas[1] a_m = alphas[2] b_d = betas[1] b_m = betas[2] g_d = gammas[1] g_m = gammas[2] if(a_d > a_m){a_baby = (a_d+a_m)/2 + rtrunc(1, spec="cauchy", a=(30-a_d-a_m)/(a_d-a_m) ,b=(50-a_d-a_m)/(a_d-a_m))*(a_d-a_m)/2} else if(a_d < a_m){a_baby = (a_d+a_m)/2 + rtrunc(1, spec="cauchy", a=(50-a_d-a_m)/(a_d-a_m) ,b=(30-a_d-a_m)/(a_d-a_m))*(a_d-a_m)/2} else {a_baby = 0.5*(a_d+a_m) } if(b_d>b_m){b_baby = (b_d+b_m)/2 + rtrunc(1, spec="cauchy", a=(-b_d-b_m)/(b_d-b_m) ,b=(10-b_d-b_m)/(b_d-b_m))*(b_d-b_m)/2} else if(b_d < b_m){b_baby = (b_d+b_m)/2 + rtrunc(1, spec="cauchy", a=(10-b_d-b_m)/(b_d-b_m),b=(-b_d-b_m)/(b_d-b_m))*(b_d-b_m)/2} else {b_baby = 0.5*(b_d+b_m) } if(g_d>g_m){g_baby = (g_d+g_m)/2 + rtrunc(1, spec="cauchy", a=(-g_d-g_m)/(g_d-g_m) ,b=(2-g_d-g_m)/(g_d-g_m))*(g_d-g_m)/2} else if(g_d < g_m){g_baby = (g_d+g_m)/2 + rtrunc(1, spec="cauchy", a=(2-g_d-g_m)/(g_d-g_m) ,b=(-g_d-g_m)/(g_d-g_m))*(g_d-g_m)/2} else {g_baby = 0.5*(g_d+g_m) } new_pop[j+100,1] = a_baby new_pop[j+100,2] = b_baby new_pop[j+100,3] = g_baby } return(new_pop) } ################ ### random select 10 member from each generation and keep ################ num_cycle = 100 # ##dim = c(10,3,num_cycle) gen_num = 1 big_gens = list(list()) id=sample(1:200,10,replace=FALSE) big_gens[[1]][[1]]= population[id,] #gen_sub(population) ############## ###mutation#### ############### #############3 ### Evolution ########## for (m in 2:num_cycle){ new_pop = selec(population) new_pop = recomb() ########## population = new_pop gen_num = m id=sample(1:200,10,replace=FALSE) gens[[m]]= population[id,] #new_pop = matrix(NA,200,3) } sin=NULL for (i in 1:100){ sin[i]= gens[[i]][5,2] } plot(sin,type = "l") ##################### #################### seed = sample(1:999999999, 1000, replace = FALSE) big_gens=list() for (k in 1:1000){ set.seed(seed[k]) population = cbind(a=runif(200,min=15,max=30),b=runif(200,min=0,max=5),c=runif(200,min=0,max=1) ) id=sample(1:200,10,replace=FALSE) big_gens[[k]]= list() big_gens[[k]][[1]]=population[id,] for (m in 2:num_cycle){ new_pop = selec(population) new_pop = recomb() ########## population = new_pop gen_num = m id=sample(1:200,10,replace=FALSE) big_gens[[k]][[m]]= population[id,] #new_pop = matrix(NA,200,3) } } #save(big_gens, file="proj1_result.RData") alpha=rep(NA,1000) beta=rep(NA,1000) gamma=rep(NA,1000) for (i in 1:1000){ alpha[i]=big_gens[[i]][[100]][10,1] beta[i]= big_gens[[i]][[100]][10,2] gamma[i]= big_gens[[i]][[100]][10,3] } hist(alpha,breaks = "scott",col="yellow", xlab = bquote(alpha),main="") hist(beta,breaks = "scott",xlab = bquote(beta),main="") hist(gamma,breaks = "scott",xlab = bquote(gamma),main="") mean(alpha) mean(beta) mean(gamma) par(mfrow=c(1,3)) hist(alpha,breaks = "scott",col="yellow",xlab = bquote(alpha),main="") hist(beta,breaks = "scott",col="yellow",xlab = bquote(beta),main="") hist(gamma,breaks = "scott",col="yellow",xlab = bquote(gamma),main="")
library(tidyverse) library(imager) ############################# # # Color transformation # ########################### bi <- load.image("images/black_iris.jpg") bi_df <- bi %>% as.data.frame() %>% mutate(cc = factor(cc,labels=c('R','G','B'))) %>% group_by(cc) %>% mutate(cd = ecdf(value)(value) * 3.5) %>% ungroup #### Color density analysis p_density <- bi_df %>% ggplot() + geom_density(aes(value, fill = cc, color = cc), alpha = 0.1, size = 0.75) + scale_fill_manual(name = "channel", values = c("R" = "red", "G" = "green", "B" = "blue")) + scale_color_manual(name = "channel", values = c("R" = "red", "G" = "green", "B" = "blue")) + scale_y_continuous(sec.axis = sec_axis(~./3.5, name = "cumulative distribution")) + theme(legend.position = "none") #ggsave("output/density.png", p_density) p_cumulative <- p_density + geom_line(aes(value, cd, color = cc), size = 0.75, linetype = "dashed") #ggsave("output/cumulative.png", p_cumulative) #### Red enhancement R(bi) <- as.cimg(ecdf(R(bi))(R(bi)),dim=dim(R(bi))) #save.image(bi, "output/bf_red.jpg", quality = 1) ########################### # # Edge detection # ########################### aw <- load.image("images/abstract_wave.jpg") wave_mask <- aw %>% isoblur(1) %>% grayscale() %>% imgradient("xy") %>% enorm() %>% threshold("80%") wave <- as.cimg(wave_mask) wave[which(wave_mask)] <- 0.9 #save.image(wave, "output/wave.jpg", quality = 1) ########################### # # Masking # ########################### drawing <- load.image("images/drawing_xii.jpg") mask <- drawing %>% isoblur(7) %>% grayscale() %>% threshold("25%") m_drawing <- drawing alpha <- 0.7 R(m_drawing)[which(mask)] <- alpha + (1 - alpha) * R(m_drawing)[which(mask)] G(m_drawing)[which(mask)] <- (1 - alpha) * G(m_drawing)[which(mask)] B(m_drawing)[which(mask)] <- (1 - alpha) * B(m_drawing)[which(mask)] save.image(m_drawing, "output/m_drawing.jpg", quality = 1)
/okeeffe.R
no_license
doritge/img_processing
R
false
false
1,987
r
library(tidyverse) library(imager) ############################# # # Color transformation # ########################### bi <- load.image("images/black_iris.jpg") bi_df <- bi %>% as.data.frame() %>% mutate(cc = factor(cc,labels=c('R','G','B'))) %>% group_by(cc) %>% mutate(cd = ecdf(value)(value) * 3.5) %>% ungroup #### Color density analysis p_density <- bi_df %>% ggplot() + geom_density(aes(value, fill = cc, color = cc), alpha = 0.1, size = 0.75) + scale_fill_manual(name = "channel", values = c("R" = "red", "G" = "green", "B" = "blue")) + scale_color_manual(name = "channel", values = c("R" = "red", "G" = "green", "B" = "blue")) + scale_y_continuous(sec.axis = sec_axis(~./3.5, name = "cumulative distribution")) + theme(legend.position = "none") #ggsave("output/density.png", p_density) p_cumulative <- p_density + geom_line(aes(value, cd, color = cc), size = 0.75, linetype = "dashed") #ggsave("output/cumulative.png", p_cumulative) #### Red enhancement R(bi) <- as.cimg(ecdf(R(bi))(R(bi)),dim=dim(R(bi))) #save.image(bi, "output/bf_red.jpg", quality = 1) ########################### # # Edge detection # ########################### aw <- load.image("images/abstract_wave.jpg") wave_mask <- aw %>% isoblur(1) %>% grayscale() %>% imgradient("xy") %>% enorm() %>% threshold("80%") wave <- as.cimg(wave_mask) wave[which(wave_mask)] <- 0.9 #save.image(wave, "output/wave.jpg", quality = 1) ########################### # # Masking # ########################### drawing <- load.image("images/drawing_xii.jpg") mask <- drawing %>% isoblur(7) %>% grayscale() %>% threshold("25%") m_drawing <- drawing alpha <- 0.7 R(m_drawing)[which(mask)] <- alpha + (1 - alpha) * R(m_drawing)[which(mask)] G(m_drawing)[which(mask)] <- (1 - alpha) * G(m_drawing)[which(mask)] B(m_drawing)[which(mask)] <- (1 - alpha) * B(m_drawing)[which(mask)] save.image(m_drawing, "output/m_drawing.jpg", quality = 1)
## ## Plot closeness ## closeness <- function(file){ # Cumulative proportion of intronic sQTLs/non-sQTLs distances to the closest exon table<-read.table(file) distances<-as.factor(table[,2]) df<-as.data.frame(table(factor(distances))) df<-df[-c(1),] df<-rbind(c(0,0),df) total= sum(df$Freq) df$h = df$Freq/total for (i in 1:nrow(df)){ if (i==1){ Acum <-df[i,3] v<-c(Acum) }else{ Acum <- Acum + df[i,3] v<-c(v,Acum) } } df<-cbind(df,v) return(df) } ## Arguments from the command line args <- commandArgs(TRUE) sqtls.df<-closeness(args[1]) # closeness.txt control.df<-closeness(args[2]) # closeness.control.txt ## PNG plot png(args[3]) plot(type="l",as.character(sqtls.df[1:5001,1]),sqtls.df[1:5001,4],col="darkgreen",ylim=c(0, 1), xlim=c(0,5000), main="Intronic SNPs", xlab="Distance to the closest exon (bp)",ylab="Cumulative proportion") lines(type="l",control.df[1:5001,4],col="darkred") dev.off()
/4.Blueprint/Enrichments/closeness.R
no_license
dgarmar/MT
R
false
false
975
r
## ## Plot closeness ## closeness <- function(file){ # Cumulative proportion of intronic sQTLs/non-sQTLs distances to the closest exon table<-read.table(file) distances<-as.factor(table[,2]) df<-as.data.frame(table(factor(distances))) df<-df[-c(1),] df<-rbind(c(0,0),df) total= sum(df$Freq) df$h = df$Freq/total for (i in 1:nrow(df)){ if (i==1){ Acum <-df[i,3] v<-c(Acum) }else{ Acum <- Acum + df[i,3] v<-c(v,Acum) } } df<-cbind(df,v) return(df) } ## Arguments from the command line args <- commandArgs(TRUE) sqtls.df<-closeness(args[1]) # closeness.txt control.df<-closeness(args[2]) # closeness.control.txt ## PNG plot png(args[3]) plot(type="l",as.character(sqtls.df[1:5001,1]),sqtls.df[1:5001,4],col="darkgreen",ylim=c(0, 1), xlim=c(0,5000), main="Intronic SNPs", xlab="Distance to the closest exon (bp)",ylab="Cumulative proportion") lines(type="l",control.df[1:5001,4],col="darkred") dev.off()
setwd("C:/Users/smull2/R/exploratory") pfile<-file("household_power_consumption.txt","r") power.raw<-read.table(text = grep("^[1,2]/2/2007",readLines(pfile),value=TRUE),sep=";",dec=".",na.strings="?",header=FALSE,stringsAsFactors=FALSE) str(power.raw) ##Use colClasses to help when readLines ##colClass<-read.table("household_power_consumption.txt",header=TRUE,sep=";",stringsAsFactors=FALSE,nrows=3) ##classes <- sapply(colClass,class) pfile<-file("household_power_consumption.txt","r") power.colHeaders<-read.table(text = grep("Date",readLines(pfile),value=TRUE),sep=";",dec=".",na.strings="?",header=FALSE,stringsAsFactors=FALSE) colnames(power.raw) <- power.colHeaders str(power.raw) colnames(power.raw) <- tolower(colnames(power.raw)) power.data <- power.raw ##combine date and time to create timestamp. convert date field to date ##if ran these in opposite order - result NAs. Suspect strptime requires character vector inputs power.data$ts =strptime(paste(power.data$date, power.data$time), format = "%d/%m/%Y %H:%M:%S") power.data$date <- as.Date(power.data$date,format="%d/%m/%Y") with(power.data, hist(global_active_power, breaks=12,col="red", main="Global Active Power", xlab= "Global Active Power (kilowats)")) dev.copy(png, file = "plot1.png") dev.off() ## Dont forget to close the png device ##how can we use OR in grep ##power.file <- read.table(text = grep("Date | ^[1,2]/2/2007",readLines(pfile),value=TRUE),sep=";",dec=".",na.strings="?",header=TRUE,stringsAsFactors=FALSE)
/Plot1.R
no_license
smullen17/ExData_Plotting1
R
false
false
1,501
r
setwd("C:/Users/smull2/R/exploratory") pfile<-file("household_power_consumption.txt","r") power.raw<-read.table(text = grep("^[1,2]/2/2007",readLines(pfile),value=TRUE),sep=";",dec=".",na.strings="?",header=FALSE,stringsAsFactors=FALSE) str(power.raw) ##Use colClasses to help when readLines ##colClass<-read.table("household_power_consumption.txt",header=TRUE,sep=";",stringsAsFactors=FALSE,nrows=3) ##classes <- sapply(colClass,class) pfile<-file("household_power_consumption.txt","r") power.colHeaders<-read.table(text = grep("Date",readLines(pfile),value=TRUE),sep=";",dec=".",na.strings="?",header=FALSE,stringsAsFactors=FALSE) colnames(power.raw) <- power.colHeaders str(power.raw) colnames(power.raw) <- tolower(colnames(power.raw)) power.data <- power.raw ##combine date and time to create timestamp. convert date field to date ##if ran these in opposite order - result NAs. Suspect strptime requires character vector inputs power.data$ts =strptime(paste(power.data$date, power.data$time), format = "%d/%m/%Y %H:%M:%S") power.data$date <- as.Date(power.data$date,format="%d/%m/%Y") with(power.data, hist(global_active_power, breaks=12,col="red", main="Global Active Power", xlab= "Global Active Power (kilowats)")) dev.copy(png, file = "plot1.png") dev.off() ## Dont forget to close the png device ##how can we use OR in grep ##power.file <- read.table(text = grep("Date | ^[1,2]/2/2007",readLines(pfile),value=TRUE),sep=";",dec=".",na.strings="?",header=TRUE,stringsAsFactors=FALSE)
normalize_pipe_rhs <- function(rhs, binding) { if (!rlang::is_quosure(rhs)) { stop(paste("'rhs' parameter must be a quosure. Try calling", "'rhs <- rlang::enquo(rhs)' first")) } # Turn bare symbols into functions. if (rlang::is_symbol(rlang::f_rhs(rhs))) { rlang::f_rhs(rhs) <- rlang::lang(rlang::f_rhs(rhs)) } # Prevent some pathelogical inputs, such as `x %>>=% "cats"`. if (!rlang::is_lang(rlang::f_rhs(rhs))) { stop("RHS must be callable; '", rlang::f_rhs(rhs), "' is not", call. = FALSE) } # Handle parenthetical inputs and bare anonymous functions. rhs <- normalize_anon_fns(rhs) # Blocks are simply executed with `.` bound. if (!is_block(rhs)) { rhs <- ensure_dot(rhs) } # Modify the environment so that `.` is bound to `binding`. rlang::f_env(rhs) <- rlang::child_env(.parent = rlang::f_env(rhs), . = binding) rhs } normalize_anon_fns <- function(expr) { stopifnot(rlang::is_quosure(expr) && rlang::is_lang(rlang::f_rhs(expr))) rhs <- rlang::f_rhs(expr) # First, check for bare anonymous functions and wrap them in parentheses. if (identical(function_symbol, rlang::node_car(rhs))) { rlang::f_rhs(expr) <- rlang::lang(rhs) return(expr) } # Look for the first part of the pairlist that isn't another expression. This # supports forms like `(function(x, y) log(x, y))(., 20)`. while (rlang::is_lang(rlang::node_car(rhs))) { rhs <- rlang::node_car(rhs) } if (identical(paren_symbol, rlang::node_car(rhs))) { inside <- rlang::node_cadr(rhs) if (!rlang::is_lang(inside) || !identical(function_symbol, rlang::node_car(inside))) { stop("parenthesized expressions must contain an anonymous function", call. = FALSE) } # If the right-hand-side doesn't have arguments, add them. This effectively # turns forms like `(function(x) x)` into `(function(x) x)()`, meaning they # can be handled natively by `ensure_dot()`. if (!rlang::is_lang(rlang::node_car(rlang::f_rhs(expr)))) { rlang::f_rhs(expr) <- rlang::lang(rlang::f_rhs(expr)) } } expr } is_block <- function(expr) { stopifnot(rlang::is_quosure(expr) && rlang::is_lang(rlang::f_rhs(expr))) car <- rlang::node_car(rlang::f_rhs(expr)) # Look for the first part of the pairlist that isn't another expression. This # supports forms like `{ y <- . * 2; function() { log(., y) } }()`, although # it seems unlikely they are useful. while (rlang::is_lang(car)) { car <- rlang::node_car(car) } identical(bracket_symbol, car) } ensure_dot <- function(expr) { stopifnot(rlang::is_quosure(expr) && rlang::is_lang(rlang::f_rhs(expr))) # The right-hand side is a CONS where the CAR is the function symbol and the # CDR is the pairlist of arguments (or NULL). args <- rlang::node_cdr(rlang::f_rhs(expr)) # Loop over the CONS cells. arg <- args while (!rlang::is_null(arg)) { # The CAR of an argument is its value, as in `name = value` or just `value` # if it is not a named argument. We're looking for dots in these values. If # we find one, the quosure is fine as-is. if (identical(dot_symbol, rlang::node_car(arg))) { return(expr) } arg <- rlang::node_cdr(arg) } # No dots found. Prefix the argument CONS with one, in place. new_args <- rlang::node(dot_symbol, args) rlang::mut_node_cdr(rlang::f_rhs(expr), new_args) invisible(expr) } paren_symbol <- quote(`(`) function_symbol <- quote(`function`) dot_symbol <- quote(.) bracket_symbol <- quote(`{`)
/R/normalize.R
no_license
atheriel/rrails
R
false
false
3,588
r
normalize_pipe_rhs <- function(rhs, binding) { if (!rlang::is_quosure(rhs)) { stop(paste("'rhs' parameter must be a quosure. Try calling", "'rhs <- rlang::enquo(rhs)' first")) } # Turn bare symbols into functions. if (rlang::is_symbol(rlang::f_rhs(rhs))) { rlang::f_rhs(rhs) <- rlang::lang(rlang::f_rhs(rhs)) } # Prevent some pathelogical inputs, such as `x %>>=% "cats"`. if (!rlang::is_lang(rlang::f_rhs(rhs))) { stop("RHS must be callable; '", rlang::f_rhs(rhs), "' is not", call. = FALSE) } # Handle parenthetical inputs and bare anonymous functions. rhs <- normalize_anon_fns(rhs) # Blocks are simply executed with `.` bound. if (!is_block(rhs)) { rhs <- ensure_dot(rhs) } # Modify the environment so that `.` is bound to `binding`. rlang::f_env(rhs) <- rlang::child_env(.parent = rlang::f_env(rhs), . = binding) rhs } normalize_anon_fns <- function(expr) { stopifnot(rlang::is_quosure(expr) && rlang::is_lang(rlang::f_rhs(expr))) rhs <- rlang::f_rhs(expr) # First, check for bare anonymous functions and wrap them in parentheses. if (identical(function_symbol, rlang::node_car(rhs))) { rlang::f_rhs(expr) <- rlang::lang(rhs) return(expr) } # Look for the first part of the pairlist that isn't another expression. This # supports forms like `(function(x, y) log(x, y))(., 20)`. while (rlang::is_lang(rlang::node_car(rhs))) { rhs <- rlang::node_car(rhs) } if (identical(paren_symbol, rlang::node_car(rhs))) { inside <- rlang::node_cadr(rhs) if (!rlang::is_lang(inside) || !identical(function_symbol, rlang::node_car(inside))) { stop("parenthesized expressions must contain an anonymous function", call. = FALSE) } # If the right-hand-side doesn't have arguments, add them. This effectively # turns forms like `(function(x) x)` into `(function(x) x)()`, meaning they # can be handled natively by `ensure_dot()`. if (!rlang::is_lang(rlang::node_car(rlang::f_rhs(expr)))) { rlang::f_rhs(expr) <- rlang::lang(rlang::f_rhs(expr)) } } expr } is_block <- function(expr) { stopifnot(rlang::is_quosure(expr) && rlang::is_lang(rlang::f_rhs(expr))) car <- rlang::node_car(rlang::f_rhs(expr)) # Look for the first part of the pairlist that isn't another expression. This # supports forms like `{ y <- . * 2; function() { log(., y) } }()`, although # it seems unlikely they are useful. while (rlang::is_lang(car)) { car <- rlang::node_car(car) } identical(bracket_symbol, car) } ensure_dot <- function(expr) { stopifnot(rlang::is_quosure(expr) && rlang::is_lang(rlang::f_rhs(expr))) # The right-hand side is a CONS where the CAR is the function symbol and the # CDR is the pairlist of arguments (or NULL). args <- rlang::node_cdr(rlang::f_rhs(expr)) # Loop over the CONS cells. arg <- args while (!rlang::is_null(arg)) { # The CAR of an argument is its value, as in `name = value` or just `value` # if it is not a named argument. We're looking for dots in these values. If # we find one, the quosure is fine as-is. if (identical(dot_symbol, rlang::node_car(arg))) { return(expr) } arg <- rlang::node_cdr(arg) } # No dots found. Prefix the argument CONS with one, in place. new_args <- rlang::node(dot_symbol, args) rlang::mut_node_cdr(rlang::f_rhs(expr), new_args) invisible(expr) } paren_symbol <- quote(`(`) function_symbol <- quote(`function`) dot_symbol <- quote(.) bracket_symbol <- quote(`{`)
library(pollagg) # Fit a model y <- matrix(c(10, 900, 50, 50), ncol = 2, byrow = TRUE) n <- rowSums(y) fit <- yapa(y = y, n = n, dates = NULL, iter = 1000, chains = 3) # Test model fit if(!all(dim(fit$params$theta) == c(1500, 2, 2))) { stop("yapa is not returning results as expected") } # Test plot p <- plot(fit) if(!"ggplot" %in% class(p)) { stop("plot.yapafit is not returning an object of class ggplot2") } # Test summary sf <- summary(fit) if(!identical(names(sf), c("delta", "polls", "pct", "trend"))) { stop("summary.fit is not summarising the four output data.frames (delta, polls, pct, and trend)") }
/tests/test-yapa.R
permissive
alexpavlakis/pollagg
R
false
false
621
r
library(pollagg) # Fit a model y <- matrix(c(10, 900, 50, 50), ncol = 2, byrow = TRUE) n <- rowSums(y) fit <- yapa(y = y, n = n, dates = NULL, iter = 1000, chains = 3) # Test model fit if(!all(dim(fit$params$theta) == c(1500, 2, 2))) { stop("yapa is not returning results as expected") } # Test plot p <- plot(fit) if(!"ggplot" %in% class(p)) { stop("plot.yapafit is not returning an object of class ggplot2") } # Test summary sf <- summary(fit) if(!identical(names(sf), c("delta", "polls", "pct", "trend"))) { stop("summary.fit is not summarising the four output data.frames (delta, polls, pct, and trend)") }
library(TrenaProjectBrainCell) library(RUnit) library(trenaSGM) library(org.Hs.eg.db) #------------------------------------------------------------------------------------------------------------------------ if(!exists("tp")) { message(sprintf("--- creating instance of TrenaProjectBrainCell")) tp <- TrenaProjectBrainCell(); } #------------------------------------------------------------------------------------------------------------------------ runTests <- function() { test_constructor() test_supportedGenes() test_variants() test_footprintDatabases() test_expressionMatrices() test_setTargetGene() test_buildSingleGeneModel() test_buildSingleGeneModel_slowGenes() test_buildSingleGeneModel_footprintsAndWithout_MEF2C() } # runTests #------------------------------------------------------------------------------------------------------------------------ test_constructor <- function() { message(sprintf("--- test_constructor")) checkTrue(all(c("TrenaProjectBrainCell", "TrenaProjectHG38") %in% is(tp))) checkEquals(getFootprintDatabasePort(tp), 5432) } # test_constructor #------------------------------------------------------------------------------------------------------------------------ test_supportedGenes <- function() { message(sprintf("--- test_supportedGenes")) subset.expected <- c("APOE") checkTrue(all(subset.expected %in% getSupportedGenes(tp))) } # test_supportedGenes #------------------------------------------------------------------------------------------------------------------------ test_variants <- function() { message(sprintf("--- test_variants")) checkEquals(length(getVariantDatasetNames(tp)), 0) } # test_variants #------------------------------------------------------------------------------------------------------------------------ test_footprintDatabases <- function() { message(sprintf("--- test_footprintDatabases")) expected <- c("brain_hint_16", "brain_hint_20", "brain_wellington_16", "brain_wellington_20") checkTrue(all(expected %in% getFootprintDatabaseNames(tp))) checkEquals(getFootprintDatabaseHost(tp), "khaleesi.systemsbiology.net") checkEquals(getFootprintDatabasePort(tp), 5432) } # test_footprintDatabases #------------------------------------------------------------------------------------------------------------------------ test_expressionMatrices <- function() { message(sprintf("--- test_expressionMatrices")) expected.matrix <- "Micro_TYROBP" checkTrue(all(expected.matrix %in% getExpressionMatrixNames(tp))) mtx <- getExpressionMatrix(tp, expected.matrix) checkEquals(dim(mtx), c(13974, 264)) expected.genes <- c("AACS", "AADAT", "AAED1") checkTrue(all(expected.genes %in% rownames(mtx))) summary.stats <- fivenum(mtx) checkTrue(summary.stats[1] < 0.01) checkTrue(summary.stats[1] > 0) checkTrue(summary.stats[5] < 10) checkTrue(summary.stats[5] > 9) } # test_expressionMatrices #------------------------------------------------------------------------------------------------------------------------ # setting the target gene implies a few other assignements, all tested here: # geneInfo (temporarily also masquerading at tbl.transcripts # geneRegion # geneEnhancersRegion (when avaialable, defaults to geneRegion) # test_setTargetGene <- function() { message(sprintf("--- test_setTargetGene")) setTargetGene(tp, "MICA") checkEquals(getTargetGene(tp), "MICA") message(sprintf(" transcripts")) tbl.transcripts <- getTranscriptsTable(tp) checkTrue(nrow(tbl.transcripts) == 1) checkEquals(tbl.transcripts$chr, "chr6") checkEquals(tbl.transcripts$start, 31399784) checkEquals(tbl.transcripts$end , 31415315) checkEquals(tbl.transcripts$tss, 31403579) checkEquals(tbl.transcripts$strand, 1) message(sprintf(" geneRegion")) region <- getGeneRegion(tp, flankingPercent=0) checkTrue(all(c("chromLocString", "chrom", "start", "end") %in% names(region))) checkEquals(region$chromLocString, "chr6:31399784-31415315") message(sprintf(" enhancers")) tbl.enhancers <- getEnhancers(tp, tissues=c("brain", "Brain")) checkEquals(head(colnames(tbl.enhancers)), c("chrom", "start", "end", "gene", "eqtl", "hic")) checkTrue(nrow(tbl.enhancers) >= 0) message(sprintf(" geneGeneEnhancersRegion")) region <- getGeneEnhancersRegion(tp, flankingPercent=0) checkTrue(all(c("chromLocString", "chrom", "start", "end") %in% names(region))) message(sprintf(" encode DHS")) tbl.dhs <- getEncodeDHS(tp) checkTrue(nrow(tbl.dhs) > 1900) message(sprintf(" ChIP-seq")) tbl.chipSeq <- with(tbl.transcripts, getChipSeq(tp, chrom=chrom, start=start, end=end, tfs="BCLAF1")) checkEquals(nrow(tbl.chipSeq), 2) } # test_setTargetGene #------------------------------------------------------------------------------------------------------------------------ test_buildSingleGeneModel <- function() { printf("--- test_buildSingleGeneModel") genome <- "hg38" targetGene <- "APOE" chromosome <- "chr19" tss <- 44905751 # strand-aware start and end: trem2 is on the minus strand geneHancer.promoter.chromLocString <- "chr19:44,903,353-44,907,298" start <- 44903353 end <- 44907298 tbl.regions <- data.frame(chrom=chromosome, start=start, end=end, stringsAsFactors=FALSE) matrix.name <- "Micro_TYROBP" checkTrue(matrix.name %in% getExpressionMatrixNames(tp)) mtx <- getExpressionMatrix(tp, matrix.name) build.spec <- list(title="unit test on APOE", type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tss, matrix=mtx, db.host=getFootprintDatabaseHost(tp), db.port=getFootprintDatabasePort(tp), databases=getFootprintDatabaseNames(tp), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping="MotifDB", tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, build.spec, quiet=FALSE) suppressWarnings(x <- build(fpBuilder)) lapply(x, dim) checkEquals(sort(names(x)), c("model", "regulatoryRegions")) tbl.regulatoryRegions <- x$regulatoryRegions tbl.model <- x$model tbl.model <- tbl.model[order(tbl.model$rfScore, decreasing=TRUE),] checkTrue(all(tbl.model$gene %in% tbl.regulatoryRegions$geneSymbol)) checkTrue(nrow(x$model) > 50) checkTrue("TP53" %in% head(x$model$gene, n=20)) checkTrue(max(tbl.model$pearsonCoeff) > 0.85) # a modest sanity check on pearsonCoeff: should be exactly what we see in the expression matrix checkEqualsNumeric(cor(mtx["APOE",], mtx["TP53",]), subset(tbl.model, gene=="TP53")$pearsonCoeff) } # test_buildSingleGeneModel #------------------------------------------------------------------------------------------------------------------------ # cory's top genes producing huge output (5 jun 2019): "SF3A2" "ZNF764" "PRR12" "ALDH16A1" "EIF1AD" "ZNF44" test_buildSingleGeneModel_slowGenes <- function() { printf("--- test_buildSingleGeneModel_slowGenes") #slowGenes <- c("SF3A2", "ZNF764", "PRR12", "ALDH16A1", "EIF1AD", "ZNF44") #slowGenes <- "SF3A2"#"ABCB4"" slowGenes <- "TCTA" genome <- "hg38" targetGene <- slowGenes[1] setTargetGene(tp, slowGenes[1]) tss <- getTranscriptsTable(tp, targetGene)$tss tbl.regions <- getEnhancers(tp)[, c("chrom", "start", "end")] tbl.regions <- tbl.regions[order(tbl.regions$start, decreasing=FALSE),] #matrix.name <- "Micro_TYROBP" matrix.name <- "Exc_ALL" checkTrue(matrix.name %in% getExpressionMatrixNames(tp)) #load("/ssd/cory/github/TrenaProjectBrainCell/inst/extdata/expression/Micro_TYROBP.RData") mtx <- getExpressionMatrix(tp, matrix.name) target.gene.expression <- mtx[targetGene,] other.tfs <- intersect(rownames(mtx), allKnownTFs()) # is our target.gene itself a TF? # if so, it will skew the overall correlations: eliminate it target.gene.among.tfs <- match(targetGene, other.tfs) if(!is.na(target.gene.among.tfs)) other.tfs <- other.tfs[-target.gene.among.tfs] mtx.test <- mtx[other.tfs,] dim(mtx.test) correlations <- abs(apply(mtx.test, 1, function(row) cor(target.gene.expression, row))) range.of.correlations <- fivenum(correlations) third.quartile <- range.of.correlations[4] max <- range.of.correlations[5] #if(third.quartile < 0.25) return() build.spec <- list(title=sprintf("unit test on %s", targetGene), type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tss, matrix=mtx, db.host=getFootprintDatabaseHost(tp), db.port=getFootprintDatabasePort(tp), databases=getFootprintDatabaseNames(tp), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping=c("MotifDB", "TFClass"), tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, build.spec, quiet=FALSE) print(system.time(suppressWarnings(x <- build(fpBuilder)))) checkEquals(sort(names(x)), c("model", "regulatoryRegions")) tbl.regulatoryRegions <- x$regulatoryRegions tbl.model <- x$model tbl.model <- tbl.model[order(abs(tbl.model$pearsonCoeff), decreasing=TRUE),] checkTrue(all(tbl.model$gene %in% tbl.regulatoryRegions$geneSymbol)) checkTrue(nrow(tbl.model) > 50) sample.strong.tf <- tbl.model$gene[1] checkTrue(max(tbl.model$pearsonCoeff) > 0.5) # a modest sanity check on pearsonCoeff: should be exactly what we see in the expression matrix checkEqualsNumeric(cor(mtx[targetGene,], mtx[sample.strong.tf,]), subset(tbl.model, gene==sample.strong.tf)$pearsonCoeff) } # test_buildSingleGeneModel_slowGenes #------------------------------------------------------------------------------------------------------------------------ # no genehancer info for this gene, and though we have gene expression, there are no footprints. # do we handle this oddity gracefully? test_buildSingleGeneModel_RBMXP2 <- function() { printf("--- test_buildSingleGeneModel_RBMXP2") genome <- "hg38" targetGene <- "RBMXP2" chromosome <- "chr9" tss <- 30689105 start <- tss - 5000 end <- tss + 5000 tbl.regions <- data.frame(chrom=chromosome, start=start, end=end, stringsAsFactors=FALSE) matrix.name <- "Micro_TYROBP" checkTrue(matrix.name %in% getExpressionMatrixNames(tpl)) mtx <- getExpressionMatrix(tpl, matrix.name) build.spec <- list(title="unit test on RBMXP2", type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tss, matrix=mtx, db.host=getFootprintDatabaseHost(tpl), db.port=getFootprintDatabasePort(tpl), databases=getFootprintDatabaseNames(tpl), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping="MotifDB", tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, build.spec, quiet=FALSE) checkException(x <- build(fpBuilder), silent=TRUE) } # test_buildSingleGeneModel_RBMXP2 #------------------------------------------------------------------------------------------------------------------------ # build mef2c model with footprints, and simply based on expression (with all TFs) test_buildSingleGeneModel_footprintsAndWithout_MEF2C <- function() { printf("--- test_buildSingleGeneModel_footprintsAndWithout_MEF2C") genome <- "hg38" targetGene <- "MEF2C" setTargetGene(tp, targetGene) tbl.geneInfo <- getTranscriptsTable(tp) brain.related.tissues <- grep("brain", listTissues(tp@genehancer), ignore.case=TRUE, v=TRUE) tbl.enhancers <- getEnhancers(tp, tissues=brain.related.tissues) dim(tbl.enhancers) tbl.regions <- subset(tbl.enhancers, elite==TRUE) dim(tbl.regions) matrix.name <- "Micro_TYROBP" checkTrue(matrix.name %in% getExpressionMatrixNames(tp)) mtx <- getExpressionMatrix(tp, matrix.name) dim(mtx) recipe <- list(title="TREM2 with genehancer", type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tbl.geneInfo$tss, matrix=mtx, db.host=getFootprintDatabaseHost(tp), db.port=getFootprintDatabasePort(tp), databases=getFootprintDatabaseNames(tp), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping="MotifDB", tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, recipe, quiet=FALSE) x.fp <- build(fpBuilder) #------------------------------------------------------------ # now a "noDNA" model #------------------------------------------------------------ candidate.tfs <- intersect(rownames(mtx), allKnownTFs()) length(candidate.tfs) # 1102 recipe.noDNA <- list(title="trem2.noDNA.allTFs", type="noDNA.tfsSupplied", matrix=mtx, candidateTFs=candidate.tfs, tfPool=allKnownTFs(), tfPrefilterCorrelation=0.5, annotationDbFile=dbfile(org.Hs.eg.db), orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman"), quiet=FALSE) builder <- NoDnaModelBuilder(genome, targetGene, recipe.noDNA, quiet=FALSE) x.noDNA <- build(builder) checkEquals(x.noDNA$regulatoryRegions, data.frame()) tbl.model <- x.noDNA$model checkTrue(nrow(tbl.model) > 600) # 708 on (3 apr 2020) tfs.in.both <- intersect(tbl.model$gene, x.fp$model$gene) checkTrue(length(tfs.in.both) > 10) new.tfs.withoutBindingSites <- setdiff(tbl.model$gene, x.fp$model$gene) checkTrue(length(new.tfs.withoutBindingSites) > 500) checkTrue("CSRNP3" %in% new.tfs.withoutBindingSites) } # test_buildSingleGeneModel_footprintsgAndWithout_MEF2C #------------------------------------------------------------------------------------------------------------------------ if(!interactive()) runTests()
/inst/unitTests/test_TrenaProjectBrainCell.R
permissive
PriceLab/TrenaProjectBrainCell
R
false
false
15,715
r
library(TrenaProjectBrainCell) library(RUnit) library(trenaSGM) library(org.Hs.eg.db) #------------------------------------------------------------------------------------------------------------------------ if(!exists("tp")) { message(sprintf("--- creating instance of TrenaProjectBrainCell")) tp <- TrenaProjectBrainCell(); } #------------------------------------------------------------------------------------------------------------------------ runTests <- function() { test_constructor() test_supportedGenes() test_variants() test_footprintDatabases() test_expressionMatrices() test_setTargetGene() test_buildSingleGeneModel() test_buildSingleGeneModel_slowGenes() test_buildSingleGeneModel_footprintsAndWithout_MEF2C() } # runTests #------------------------------------------------------------------------------------------------------------------------ test_constructor <- function() { message(sprintf("--- test_constructor")) checkTrue(all(c("TrenaProjectBrainCell", "TrenaProjectHG38") %in% is(tp))) checkEquals(getFootprintDatabasePort(tp), 5432) } # test_constructor #------------------------------------------------------------------------------------------------------------------------ test_supportedGenes <- function() { message(sprintf("--- test_supportedGenes")) subset.expected <- c("APOE") checkTrue(all(subset.expected %in% getSupportedGenes(tp))) } # test_supportedGenes #------------------------------------------------------------------------------------------------------------------------ test_variants <- function() { message(sprintf("--- test_variants")) checkEquals(length(getVariantDatasetNames(tp)), 0) } # test_variants #------------------------------------------------------------------------------------------------------------------------ test_footprintDatabases <- function() { message(sprintf("--- test_footprintDatabases")) expected <- c("brain_hint_16", "brain_hint_20", "brain_wellington_16", "brain_wellington_20") checkTrue(all(expected %in% getFootprintDatabaseNames(tp))) checkEquals(getFootprintDatabaseHost(tp), "khaleesi.systemsbiology.net") checkEquals(getFootprintDatabasePort(tp), 5432) } # test_footprintDatabases #------------------------------------------------------------------------------------------------------------------------ test_expressionMatrices <- function() { message(sprintf("--- test_expressionMatrices")) expected.matrix <- "Micro_TYROBP" checkTrue(all(expected.matrix %in% getExpressionMatrixNames(tp))) mtx <- getExpressionMatrix(tp, expected.matrix) checkEquals(dim(mtx), c(13974, 264)) expected.genes <- c("AACS", "AADAT", "AAED1") checkTrue(all(expected.genes %in% rownames(mtx))) summary.stats <- fivenum(mtx) checkTrue(summary.stats[1] < 0.01) checkTrue(summary.stats[1] > 0) checkTrue(summary.stats[5] < 10) checkTrue(summary.stats[5] > 9) } # test_expressionMatrices #------------------------------------------------------------------------------------------------------------------------ # setting the target gene implies a few other assignements, all tested here: # geneInfo (temporarily also masquerading at tbl.transcripts # geneRegion # geneEnhancersRegion (when avaialable, defaults to geneRegion) # test_setTargetGene <- function() { message(sprintf("--- test_setTargetGene")) setTargetGene(tp, "MICA") checkEquals(getTargetGene(tp), "MICA") message(sprintf(" transcripts")) tbl.transcripts <- getTranscriptsTable(tp) checkTrue(nrow(tbl.transcripts) == 1) checkEquals(tbl.transcripts$chr, "chr6") checkEquals(tbl.transcripts$start, 31399784) checkEquals(tbl.transcripts$end , 31415315) checkEquals(tbl.transcripts$tss, 31403579) checkEquals(tbl.transcripts$strand, 1) message(sprintf(" geneRegion")) region <- getGeneRegion(tp, flankingPercent=0) checkTrue(all(c("chromLocString", "chrom", "start", "end") %in% names(region))) checkEquals(region$chromLocString, "chr6:31399784-31415315") message(sprintf(" enhancers")) tbl.enhancers <- getEnhancers(tp, tissues=c("brain", "Brain")) checkEquals(head(colnames(tbl.enhancers)), c("chrom", "start", "end", "gene", "eqtl", "hic")) checkTrue(nrow(tbl.enhancers) >= 0) message(sprintf(" geneGeneEnhancersRegion")) region <- getGeneEnhancersRegion(tp, flankingPercent=0) checkTrue(all(c("chromLocString", "chrom", "start", "end") %in% names(region))) message(sprintf(" encode DHS")) tbl.dhs <- getEncodeDHS(tp) checkTrue(nrow(tbl.dhs) > 1900) message(sprintf(" ChIP-seq")) tbl.chipSeq <- with(tbl.transcripts, getChipSeq(tp, chrom=chrom, start=start, end=end, tfs="BCLAF1")) checkEquals(nrow(tbl.chipSeq), 2) } # test_setTargetGene #------------------------------------------------------------------------------------------------------------------------ test_buildSingleGeneModel <- function() { printf("--- test_buildSingleGeneModel") genome <- "hg38" targetGene <- "APOE" chromosome <- "chr19" tss <- 44905751 # strand-aware start and end: trem2 is on the minus strand geneHancer.promoter.chromLocString <- "chr19:44,903,353-44,907,298" start <- 44903353 end <- 44907298 tbl.regions <- data.frame(chrom=chromosome, start=start, end=end, stringsAsFactors=FALSE) matrix.name <- "Micro_TYROBP" checkTrue(matrix.name %in% getExpressionMatrixNames(tp)) mtx <- getExpressionMatrix(tp, matrix.name) build.spec <- list(title="unit test on APOE", type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tss, matrix=mtx, db.host=getFootprintDatabaseHost(tp), db.port=getFootprintDatabasePort(tp), databases=getFootprintDatabaseNames(tp), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping="MotifDB", tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, build.spec, quiet=FALSE) suppressWarnings(x <- build(fpBuilder)) lapply(x, dim) checkEquals(sort(names(x)), c("model", "regulatoryRegions")) tbl.regulatoryRegions <- x$regulatoryRegions tbl.model <- x$model tbl.model <- tbl.model[order(tbl.model$rfScore, decreasing=TRUE),] checkTrue(all(tbl.model$gene %in% tbl.regulatoryRegions$geneSymbol)) checkTrue(nrow(x$model) > 50) checkTrue("TP53" %in% head(x$model$gene, n=20)) checkTrue(max(tbl.model$pearsonCoeff) > 0.85) # a modest sanity check on pearsonCoeff: should be exactly what we see in the expression matrix checkEqualsNumeric(cor(mtx["APOE",], mtx["TP53",]), subset(tbl.model, gene=="TP53")$pearsonCoeff) } # test_buildSingleGeneModel #------------------------------------------------------------------------------------------------------------------------ # cory's top genes producing huge output (5 jun 2019): "SF3A2" "ZNF764" "PRR12" "ALDH16A1" "EIF1AD" "ZNF44" test_buildSingleGeneModel_slowGenes <- function() { printf("--- test_buildSingleGeneModel_slowGenes") #slowGenes <- c("SF3A2", "ZNF764", "PRR12", "ALDH16A1", "EIF1AD", "ZNF44") #slowGenes <- "SF3A2"#"ABCB4"" slowGenes <- "TCTA" genome <- "hg38" targetGene <- slowGenes[1] setTargetGene(tp, slowGenes[1]) tss <- getTranscriptsTable(tp, targetGene)$tss tbl.regions <- getEnhancers(tp)[, c("chrom", "start", "end")] tbl.regions <- tbl.regions[order(tbl.regions$start, decreasing=FALSE),] #matrix.name <- "Micro_TYROBP" matrix.name <- "Exc_ALL" checkTrue(matrix.name %in% getExpressionMatrixNames(tp)) #load("/ssd/cory/github/TrenaProjectBrainCell/inst/extdata/expression/Micro_TYROBP.RData") mtx <- getExpressionMatrix(tp, matrix.name) target.gene.expression <- mtx[targetGene,] other.tfs <- intersect(rownames(mtx), allKnownTFs()) # is our target.gene itself a TF? # if so, it will skew the overall correlations: eliminate it target.gene.among.tfs <- match(targetGene, other.tfs) if(!is.na(target.gene.among.tfs)) other.tfs <- other.tfs[-target.gene.among.tfs] mtx.test <- mtx[other.tfs,] dim(mtx.test) correlations <- abs(apply(mtx.test, 1, function(row) cor(target.gene.expression, row))) range.of.correlations <- fivenum(correlations) third.quartile <- range.of.correlations[4] max <- range.of.correlations[5] #if(third.quartile < 0.25) return() build.spec <- list(title=sprintf("unit test on %s", targetGene), type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tss, matrix=mtx, db.host=getFootprintDatabaseHost(tp), db.port=getFootprintDatabasePort(tp), databases=getFootprintDatabaseNames(tp), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping=c("MotifDB", "TFClass"), tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, build.spec, quiet=FALSE) print(system.time(suppressWarnings(x <- build(fpBuilder)))) checkEquals(sort(names(x)), c("model", "regulatoryRegions")) tbl.regulatoryRegions <- x$regulatoryRegions tbl.model <- x$model tbl.model <- tbl.model[order(abs(tbl.model$pearsonCoeff), decreasing=TRUE),] checkTrue(all(tbl.model$gene %in% tbl.regulatoryRegions$geneSymbol)) checkTrue(nrow(tbl.model) > 50) sample.strong.tf <- tbl.model$gene[1] checkTrue(max(tbl.model$pearsonCoeff) > 0.5) # a modest sanity check on pearsonCoeff: should be exactly what we see in the expression matrix checkEqualsNumeric(cor(mtx[targetGene,], mtx[sample.strong.tf,]), subset(tbl.model, gene==sample.strong.tf)$pearsonCoeff) } # test_buildSingleGeneModel_slowGenes #------------------------------------------------------------------------------------------------------------------------ # no genehancer info for this gene, and though we have gene expression, there are no footprints. # do we handle this oddity gracefully? test_buildSingleGeneModel_RBMXP2 <- function() { printf("--- test_buildSingleGeneModel_RBMXP2") genome <- "hg38" targetGene <- "RBMXP2" chromosome <- "chr9" tss <- 30689105 start <- tss - 5000 end <- tss + 5000 tbl.regions <- data.frame(chrom=chromosome, start=start, end=end, stringsAsFactors=FALSE) matrix.name <- "Micro_TYROBP" checkTrue(matrix.name %in% getExpressionMatrixNames(tpl)) mtx <- getExpressionMatrix(tpl, matrix.name) build.spec <- list(title="unit test on RBMXP2", type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tss, matrix=mtx, db.host=getFootprintDatabaseHost(tpl), db.port=getFootprintDatabasePort(tpl), databases=getFootprintDatabaseNames(tpl), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping="MotifDB", tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, build.spec, quiet=FALSE) checkException(x <- build(fpBuilder), silent=TRUE) } # test_buildSingleGeneModel_RBMXP2 #------------------------------------------------------------------------------------------------------------------------ # build mef2c model with footprints, and simply based on expression (with all TFs) test_buildSingleGeneModel_footprintsAndWithout_MEF2C <- function() { printf("--- test_buildSingleGeneModel_footprintsAndWithout_MEF2C") genome <- "hg38" targetGene <- "MEF2C" setTargetGene(tp, targetGene) tbl.geneInfo <- getTranscriptsTable(tp) brain.related.tissues <- grep("brain", listTissues(tp@genehancer), ignore.case=TRUE, v=TRUE) tbl.enhancers <- getEnhancers(tp, tissues=brain.related.tissues) dim(tbl.enhancers) tbl.regions <- subset(tbl.enhancers, elite==TRUE) dim(tbl.regions) matrix.name <- "Micro_TYROBP" checkTrue(matrix.name %in% getExpressionMatrixNames(tp)) mtx <- getExpressionMatrix(tp, matrix.name) dim(mtx) recipe <- list(title="TREM2 with genehancer", type="footprint.database", regions=tbl.regions, geneSymbol=targetGene, tss=tbl.geneInfo$tss, matrix=mtx, db.host=getFootprintDatabaseHost(tp), db.port=getFootprintDatabasePort(tp), databases=getFootprintDatabaseNames(tp), annotationDbFile=dbfile(org.Hs.eg.db), motifDiscovery="builtinFimo", tfPool=allKnownTFs(), tfMapping="MotifDB", tfPrefilterCorrelation=0.1, orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman")) fpBuilder <- FootprintDatabaseModelBuilder(genome, targetGene, recipe, quiet=FALSE) x.fp <- build(fpBuilder) #------------------------------------------------------------ # now a "noDNA" model #------------------------------------------------------------ candidate.tfs <- intersect(rownames(mtx), allKnownTFs()) length(candidate.tfs) # 1102 recipe.noDNA <- list(title="trem2.noDNA.allTFs", type="noDNA.tfsSupplied", matrix=mtx, candidateTFs=candidate.tfs, tfPool=allKnownTFs(), tfPrefilterCorrelation=0.5, annotationDbFile=dbfile(org.Hs.eg.db), orderModelByColumn="rfScore", solverNames=c("lasso", "lassopv", "pearson", "randomForest", "ridge", "spearman"), quiet=FALSE) builder <- NoDnaModelBuilder(genome, targetGene, recipe.noDNA, quiet=FALSE) x.noDNA <- build(builder) checkEquals(x.noDNA$regulatoryRegions, data.frame()) tbl.model <- x.noDNA$model checkTrue(nrow(tbl.model) > 600) # 708 on (3 apr 2020) tfs.in.both <- intersect(tbl.model$gene, x.fp$model$gene) checkTrue(length(tfs.in.both) > 10) new.tfs.withoutBindingSites <- setdiff(tbl.model$gene, x.fp$model$gene) checkTrue(length(new.tfs.withoutBindingSites) > 500) checkTrue("CSRNP3" %in% new.tfs.withoutBindingSites) } # test_buildSingleGeneModel_footprintsgAndWithout_MEF2C #------------------------------------------------------------------------------------------------------------------------ if(!interactive()) runTests()
testlist <- list(id = NULL, id = NULL, booklet_id = c(8168473L, 2127314835L, 171177770L, -1942759639L, -1815221204L, 601253144L, -804651186L, 2094281728L, 860713787L, -971707632L, -1475044502L, 870040598L, -1182814578L, -1415711445L, 1901326755L, -1882837573L, 1340545259L, 1156041943L, 823641812L, -1106109928L, -1048158709L), person_id = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)) result <- do.call(dexterMST:::is_person_booklet_sorted,testlist) str(result)
/dexterMST/inst/testfiles/is_person_booklet_sorted/AFL_is_person_booklet_sorted/is_person_booklet_sorted_valgrind_files/1615940028-test.R
no_license
akhikolla/updatedatatype-list1
R
false
false
826
r
testlist <- list(id = NULL, id = NULL, booklet_id = c(8168473L, 2127314835L, 171177770L, -1942759639L, -1815221204L, 601253144L, -804651186L, 2094281728L, 860713787L, -971707632L, -1475044502L, 870040598L, -1182814578L, -1415711445L, 1901326755L, -1882837573L, 1340545259L, 1156041943L, 823641812L, -1106109928L, -1048158709L), person_id = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)) result <- do.call(dexterMST:::is_person_booklet_sorted,testlist) str(result)
library(ape) testtree <- read.tree("2548_1.txt") unrooted_tr <- unroot(testtree) write.tree(unrooted_tr, file="2548_1_unrooted.txt")
/codeml_files/newick_trees_processed/2548_1/rinput.R
no_license
DaniBoo/cyanobacteria_project
R
false
false
135
r
library(ape) testtree <- read.tree("2548_1.txt") unrooted_tr <- unroot(testtree) write.tree(unrooted_tr, file="2548_1_unrooted.txt")
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats_met.R \name{stats_met} \alias{stats_met} \title{Statistical Methods} \usage{ stats_met() } \value{ } \description{ Statistical Methods } \examples{ }
/man/stats_met.Rd
permissive
sbalci/histopathRaddins
R
false
true
236
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/stats_met.R \name{stats_met} \alias{stats_met} \title{Statistical Methods} \usage{ stats_met() } \value{ } \description{ Statistical Methods } \examples{ }
### comp_plot_sdhunter_year <- function(group = spgp, var = "sdhunter", prov = "", zone = "", M = out2, castes = jdat$castes ){ dsum = as.data.frame(M$summary) names(dsum)[3:7] <- c("lci","lqrt","med","uqrt","uci") dsum$Parameter = row.names(dsum) d1 = filter(dsum,grepl(Parameter,pattern = paste0(var,"["),fixed = T)) d1$caste = jags_dim(var = var,dat = d1) d1$yr = jags_dim(var = var,dat = d1,dim = 2) d1$year = d1$yr+(Y-(jdat$nyears)) d1$mod = "Cst" dd = d1 dd$mod <- factor(dd$mod,levels = c("Old","New"), ordered = T) dd <- dd[which(dd$year >= FY),] my_col <- scale_color_viridis_d(aesthetics = c("colour","fill"), begin = 0.3,end = 0.9,option = "B",direction = -1) outgg = ggplot(data = dd,aes(x = year,y = mean))+ geom_point(aes(colour = mod),size = 0.5)+ geom_line(aes(colour = mod))+ labs(title = paste0("caste specific sdhunter ",prov," zn",zone," (mean and 95 CI)"))+ geom_ribbon(aes(ymax = uci,ymin = lci),alpha = 0.2)+ #scale_y_continuous(limits = c(0,NA))+ my_col+ theme_classic()+ facet_wrap(facets = ~caste,nrow = 2,ncol = 2,scales = "fixed") return(outgg) }
/functions/comparison_plotting_function_sdhunter_year.R
no_license
AdamCSmithCWS/CWS_National_Harvest_Survey
R
false
false
1,314
r
### comp_plot_sdhunter_year <- function(group = spgp, var = "sdhunter", prov = "", zone = "", M = out2, castes = jdat$castes ){ dsum = as.data.frame(M$summary) names(dsum)[3:7] <- c("lci","lqrt","med","uqrt","uci") dsum$Parameter = row.names(dsum) d1 = filter(dsum,grepl(Parameter,pattern = paste0(var,"["),fixed = T)) d1$caste = jags_dim(var = var,dat = d1) d1$yr = jags_dim(var = var,dat = d1,dim = 2) d1$year = d1$yr+(Y-(jdat$nyears)) d1$mod = "Cst" dd = d1 dd$mod <- factor(dd$mod,levels = c("Old","New"), ordered = T) dd <- dd[which(dd$year >= FY),] my_col <- scale_color_viridis_d(aesthetics = c("colour","fill"), begin = 0.3,end = 0.9,option = "B",direction = -1) outgg = ggplot(data = dd,aes(x = year,y = mean))+ geom_point(aes(colour = mod),size = 0.5)+ geom_line(aes(colour = mod))+ labs(title = paste0("caste specific sdhunter ",prov," zn",zone," (mean and 95 CI)"))+ geom_ribbon(aes(ymax = uci,ymin = lci),alpha = 0.2)+ #scale_y_continuous(limits = c(0,NA))+ my_col+ theme_classic()+ facet_wrap(facets = ~caste,nrow = 2,ncol = 2,scales = "fixed") return(outgg) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot_gg.R \name{plot_gg} \alias{plot_gg} \title{Transform ggplot2 objects into 3D} \usage{ plot_gg( ggobj, width = 3, height = 3, height_aes = NULL, invert = FALSE, shadow_intensity = 0.5, units = c("in", "cm", "mm"), scale = 150, pointcontract = 0.7, offset_edges = FALSE, preview = FALSE, raytrace = TRUE, sunangle = 315, anglebreaks = seq(30, 40, 0.1), multicore = FALSE, lambert = TRUE, triangulate = TRUE, max_error = 0.001, max_tri = 0, verbose = FALSE, reduce_size = NULL, save_height_matrix = FALSE, save_shadow_matrix = FALSE, saved_shadow_matrix = NULL, ... ) } \arguments{ \item{ggobj}{ggplot object to projected into 3D.} \item{width}{Default `3`. Width of ggplot, in `units`.} \item{height}{Default `3`. Height of ggplot, in `units`.} \item{height_aes}{Default `NULL`. Whether the `fill` or `color` aesthetic should be used for height values, which the user can specify by passing either `fill` or `color` to this argument. Automatically detected. If both `fill` and `color` aesthetics are present, then `fill` is default.} \item{invert}{Default `FALSE`. If `TRUE`, the height mapping is inverted.} \item{shadow_intensity}{Default `0.5`. The intensity of the calculated shadows.} \item{units}{Default `in`. One of c("in", "cm", "mm").} \item{scale}{Default `150`. Multiplier for vertical scaling: a higher number increases the height of the 3D transformation.} \item{pointcontract}{Default `0.7`. This multiplies the size of the points and shrinks them around their center in the 3D surface mapping. Decrease this to reduce color bleed on edges, and set to `1` to turn off entirely. Note: If `size` is passed as an aesthetic to the same geom that is being mapped to elevation, this scaling will not be applied. If `alpha` varies on the variable being mapped, you may want to set this to `1`, since the points now have a non-zero width stroke outline (however, mapping `alpha` in the same variable you are projecting to height is probably not a good choice. as the `alpha` variable is ignored when performing the 3D projection).} \item{offset_edges}{Default `FALSE`. If `TRUE`, inserts a small amount of space between polygons for "geom_sf", "geom_tile", "geom_hex", and "geom_polygon" layers. If you pass in a number, the space between polygons will be a line of that width. Note: this feature may end up removing thin polygons from the plot entirely--use with care.} \item{preview}{Default `FALSE`. If `TRUE`, the raytraced 2D ggplot will be displayed on the current device.} \item{raytrace}{Default `FALSE`. Whether to add a raytraced layer.} \item{sunangle}{Default `315` (NW). If raytracing, the angle (in degrees) around the matrix from which the light originates.} \item{anglebreaks}{Default `seq(30,40,0.1)`. The azimuth angle(s), in degrees, as measured from the horizon from which the light originates.} \item{multicore}{Default `FALSE`. If raytracing and `TRUE`, multiple cores will be used to compute the shadow matrix. By default, this uses all cores available, unless the user has set `options("cores")` in which the multicore option will only use that many cores.} \item{lambert}{Default `TRUE`. If raytracing, changes the intensity of the light at each point based proportional to the dot product of the ray direction and the surface normal at that point. Zeros out all values directed away from the ray.} \item{triangulate}{Default `FALSE`. Reduce the size of the 3D model by triangulating the height map. Set this to `TRUE` if generating the model is slow, or moving it is choppy. Will also reduce the size of 3D models saved to disk.} \item{max_error}{Default `0.001`. Maximum allowable error when triangulating the height map, when `triangulate = TRUE`. Increase this if you encounter problems with 3D performance, want to decrease render time with `render_highquality()`, or need to save a smaller 3D OBJ file to disk with `save_obj()`,} \item{max_tri}{Default `0`, which turns this setting off and uses `max_error`. Maximum number of triangles allowed with triangulating the height map, when `triangulate = TRUE`. Increase this if you encounter problems with 3D performance, want to decrease render time with `render_highquality()`, or need to save a smaller 3D OBJ file to disk with `save_obj()`,} \item{verbose}{Default `TRUE`, if `interactive()`. Prints information about the mesh triangulation if `triangulate = TRUE`.} \item{reduce_size}{Default `NULL`. A number between `0` and `1` that specifies how much to reduce the resolution of the plot, for faster plotting. By default, this just decreases the size of height map, not the image. If you wish the image to be reduced in resolution as well, pass a numeric vector of size 2.} \item{save_height_matrix}{Default `FALSE`. If `TRUE`, the function will return the height matrix used for the ggplot.} \item{save_shadow_matrix}{Default `FALSE`. If `TRUE`, the function will return the shadow matrix for use in future updates via the `shadow_cache` argument passed to `ray_shade`.} \item{saved_shadow_matrix}{Default `NULL`. A cached shadow matrix (saved by the a previous invocation of `plot_gg(..., save_shadow_matrix=TRUE)` to use instead of raytracing a shadow map each time.} \item{...}{Additional arguments to be passed to `plot_3d()`.} } \value{ Opens a 3D plot in rgl. } \description{ Plots a ggplot2 object in 3D by mapping the color or fill aesthetic to elevation. Currently, this function does not transform lines mapped to color into 3D. If there are multiple legends/guides due to multiple aesthetics being mapped (e.g. color and shape), the package author recommends that the user pass the order of the guides manually using the ggplot2 function "guides()`. Otherwise, the order may change when processing the ggplot2 object and result in a mismatch between the 3D mapping and the underlying plot. Using the shape aesthetic with more than three groups is not recommended, unless the user passes in custom, solid shapes. By default in ggplot2, only the first three shapes are solid, which is a requirement to be projected into 3D. } \examples{ library(ggplot2) library(viridis) ggdiamonds = ggplot(diamonds, aes(x, depth)) + stat_density_2d(aes(fill = stat(nlevel)), geom = "polygon", n = 100, bins = 10,contour = TRUE) + facet_wrap(clarity~.) + scale_fill_viridis_c(option = "A") \donttest{ plot_gg(ggdiamonds,multicore=TRUE,width=5,height=5,scale=250,windowsize=c(1400,866), zoom = 0.55, phi = 30) render_snapshot() } #Change the camera angle and take a snapshot: \donttest{ render_camera(zoom=0.5,theta=-30,phi=30) render_snapshot(clear = TRUE) } #Contours and other lines will automatically be ignored. Here is the volcano dataset: ggvolcano = volcano \%>\% reshape2::melt() \%>\% ggplot() + geom_tile(aes(x=Var1,y=Var2,fill=value)) + geom_contour(aes(x=Var1,y=Var2,z=value),color="black") + scale_x_continuous("X",expand = c(0,0)) + scale_y_continuous("Y",expand = c(0,0)) + scale_fill_gradientn("Z",colours = terrain.colors(10)) + coord_fixed() ggvolcano \donttest{ plot_gg(ggvolcano, multicore = TRUE, raytrace = TRUE, width = 7, height = 4, scale = 300, windowsize = c(1400, 866), zoom = 0.6, phi = 30, theta = 30) render_snapshot(clear = TRUE) } #Here, we will create a 3D plot of the mtcars dataset. This automatically detects #that the user used the `color` aesthetic instead of the `fill`. mtplot = ggplot(mtcars) + geom_point(aes(x=mpg,y=disp,color=cyl)) + scale_color_continuous(limits=c(0,8)) #Preview how the plot will look by setting `preview = TRUE`: We also adjust the angle of the light. \donttest{ plot_gg(mtplot, width=3.5, sunangle=225, preview = TRUE) } \donttest{ plot_gg(mtplot, width=3.5, multicore = TRUE, windowsize = c(1400,866), sunangle=225, zoom = 0.60, phi = 30, theta = 45) render_snapshot(clear = TRUE) } #Now let's plot a density plot in 3D. mtplot_density = ggplot(mtcars) + stat_density_2d(aes(x=mpg,y=disp, fill=..density..), geom = "raster", contour = FALSE) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + scale_fill_gradient(low="pink", high="red") mtplot_density \donttest{ plot_gg(mtplot_density, width = 4,zoom = 0.60, theta = -45, phi = 30, windowsize = c(1400,866)) render_snapshot(clear = TRUE) } #This also works facetted. mtplot_density_facet = mtplot_density + facet_wrap(~cyl) #Preview this plot in 2D: \donttest{ plot_gg(mtplot_density_facet, preview = TRUE) } \donttest{ plot_gg(mtplot_density_facet, windowsize=c(1400,866), zoom = 0.55, theta = -10, phi = 25) render_snapshot(clear = TRUE) } #That is a little cramped. Specifying a larger width will improve the readability of this plot. \donttest{ plot_gg(mtplot_density_facet, width = 6, preview = TRUE) } #That's better. Let's plot it in 3D, and increase the scale. \donttest{ plot_gg(mtplot_density_facet, width = 6, windowsize=c(1400,866), zoom = 0.55, theta = -10, phi = 25, scale=300) render_snapshot(clear = TRUE) } # }
/man/plot_gg.Rd
no_license
hiter-joe/rayshader
R
false
true
9,105
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot_gg.R \name{plot_gg} \alias{plot_gg} \title{Transform ggplot2 objects into 3D} \usage{ plot_gg( ggobj, width = 3, height = 3, height_aes = NULL, invert = FALSE, shadow_intensity = 0.5, units = c("in", "cm", "mm"), scale = 150, pointcontract = 0.7, offset_edges = FALSE, preview = FALSE, raytrace = TRUE, sunangle = 315, anglebreaks = seq(30, 40, 0.1), multicore = FALSE, lambert = TRUE, triangulate = TRUE, max_error = 0.001, max_tri = 0, verbose = FALSE, reduce_size = NULL, save_height_matrix = FALSE, save_shadow_matrix = FALSE, saved_shadow_matrix = NULL, ... ) } \arguments{ \item{ggobj}{ggplot object to projected into 3D.} \item{width}{Default `3`. Width of ggplot, in `units`.} \item{height}{Default `3`. Height of ggplot, in `units`.} \item{height_aes}{Default `NULL`. Whether the `fill` or `color` aesthetic should be used for height values, which the user can specify by passing either `fill` or `color` to this argument. Automatically detected. If both `fill` and `color` aesthetics are present, then `fill` is default.} \item{invert}{Default `FALSE`. If `TRUE`, the height mapping is inverted.} \item{shadow_intensity}{Default `0.5`. The intensity of the calculated shadows.} \item{units}{Default `in`. One of c("in", "cm", "mm").} \item{scale}{Default `150`. Multiplier for vertical scaling: a higher number increases the height of the 3D transformation.} \item{pointcontract}{Default `0.7`. This multiplies the size of the points and shrinks them around their center in the 3D surface mapping. Decrease this to reduce color bleed on edges, and set to `1` to turn off entirely. Note: If `size` is passed as an aesthetic to the same geom that is being mapped to elevation, this scaling will not be applied. If `alpha` varies on the variable being mapped, you may want to set this to `1`, since the points now have a non-zero width stroke outline (however, mapping `alpha` in the same variable you are projecting to height is probably not a good choice. as the `alpha` variable is ignored when performing the 3D projection).} \item{offset_edges}{Default `FALSE`. If `TRUE`, inserts a small amount of space between polygons for "geom_sf", "geom_tile", "geom_hex", and "geom_polygon" layers. If you pass in a number, the space between polygons will be a line of that width. Note: this feature may end up removing thin polygons from the plot entirely--use with care.} \item{preview}{Default `FALSE`. If `TRUE`, the raytraced 2D ggplot will be displayed on the current device.} \item{raytrace}{Default `FALSE`. Whether to add a raytraced layer.} \item{sunangle}{Default `315` (NW). If raytracing, the angle (in degrees) around the matrix from which the light originates.} \item{anglebreaks}{Default `seq(30,40,0.1)`. The azimuth angle(s), in degrees, as measured from the horizon from which the light originates.} \item{multicore}{Default `FALSE`. If raytracing and `TRUE`, multiple cores will be used to compute the shadow matrix. By default, this uses all cores available, unless the user has set `options("cores")` in which the multicore option will only use that many cores.} \item{lambert}{Default `TRUE`. If raytracing, changes the intensity of the light at each point based proportional to the dot product of the ray direction and the surface normal at that point. Zeros out all values directed away from the ray.} \item{triangulate}{Default `FALSE`. Reduce the size of the 3D model by triangulating the height map. Set this to `TRUE` if generating the model is slow, or moving it is choppy. Will also reduce the size of 3D models saved to disk.} \item{max_error}{Default `0.001`. Maximum allowable error when triangulating the height map, when `triangulate = TRUE`. Increase this if you encounter problems with 3D performance, want to decrease render time with `render_highquality()`, or need to save a smaller 3D OBJ file to disk with `save_obj()`,} \item{max_tri}{Default `0`, which turns this setting off and uses `max_error`. Maximum number of triangles allowed with triangulating the height map, when `triangulate = TRUE`. Increase this if you encounter problems with 3D performance, want to decrease render time with `render_highquality()`, or need to save a smaller 3D OBJ file to disk with `save_obj()`,} \item{verbose}{Default `TRUE`, if `interactive()`. Prints information about the mesh triangulation if `triangulate = TRUE`.} \item{reduce_size}{Default `NULL`. A number between `0` and `1` that specifies how much to reduce the resolution of the plot, for faster plotting. By default, this just decreases the size of height map, not the image. If you wish the image to be reduced in resolution as well, pass a numeric vector of size 2.} \item{save_height_matrix}{Default `FALSE`. If `TRUE`, the function will return the height matrix used for the ggplot.} \item{save_shadow_matrix}{Default `FALSE`. If `TRUE`, the function will return the shadow matrix for use in future updates via the `shadow_cache` argument passed to `ray_shade`.} \item{saved_shadow_matrix}{Default `NULL`. A cached shadow matrix (saved by the a previous invocation of `plot_gg(..., save_shadow_matrix=TRUE)` to use instead of raytracing a shadow map each time.} \item{...}{Additional arguments to be passed to `plot_3d()`.} } \value{ Opens a 3D plot in rgl. } \description{ Plots a ggplot2 object in 3D by mapping the color or fill aesthetic to elevation. Currently, this function does not transform lines mapped to color into 3D. If there are multiple legends/guides due to multiple aesthetics being mapped (e.g. color and shape), the package author recommends that the user pass the order of the guides manually using the ggplot2 function "guides()`. Otherwise, the order may change when processing the ggplot2 object and result in a mismatch between the 3D mapping and the underlying plot. Using the shape aesthetic with more than three groups is not recommended, unless the user passes in custom, solid shapes. By default in ggplot2, only the first three shapes are solid, which is a requirement to be projected into 3D. } \examples{ library(ggplot2) library(viridis) ggdiamonds = ggplot(diamonds, aes(x, depth)) + stat_density_2d(aes(fill = stat(nlevel)), geom = "polygon", n = 100, bins = 10,contour = TRUE) + facet_wrap(clarity~.) + scale_fill_viridis_c(option = "A") \donttest{ plot_gg(ggdiamonds,multicore=TRUE,width=5,height=5,scale=250,windowsize=c(1400,866), zoom = 0.55, phi = 30) render_snapshot() } #Change the camera angle and take a snapshot: \donttest{ render_camera(zoom=0.5,theta=-30,phi=30) render_snapshot(clear = TRUE) } #Contours and other lines will automatically be ignored. Here is the volcano dataset: ggvolcano = volcano \%>\% reshape2::melt() \%>\% ggplot() + geom_tile(aes(x=Var1,y=Var2,fill=value)) + geom_contour(aes(x=Var1,y=Var2,z=value),color="black") + scale_x_continuous("X",expand = c(0,0)) + scale_y_continuous("Y",expand = c(0,0)) + scale_fill_gradientn("Z",colours = terrain.colors(10)) + coord_fixed() ggvolcano \donttest{ plot_gg(ggvolcano, multicore = TRUE, raytrace = TRUE, width = 7, height = 4, scale = 300, windowsize = c(1400, 866), zoom = 0.6, phi = 30, theta = 30) render_snapshot(clear = TRUE) } #Here, we will create a 3D plot of the mtcars dataset. This automatically detects #that the user used the `color` aesthetic instead of the `fill`. mtplot = ggplot(mtcars) + geom_point(aes(x=mpg,y=disp,color=cyl)) + scale_color_continuous(limits=c(0,8)) #Preview how the plot will look by setting `preview = TRUE`: We also adjust the angle of the light. \donttest{ plot_gg(mtplot, width=3.5, sunangle=225, preview = TRUE) } \donttest{ plot_gg(mtplot, width=3.5, multicore = TRUE, windowsize = c(1400,866), sunangle=225, zoom = 0.60, phi = 30, theta = 45) render_snapshot(clear = TRUE) } #Now let's plot a density plot in 3D. mtplot_density = ggplot(mtcars) + stat_density_2d(aes(x=mpg,y=disp, fill=..density..), geom = "raster", contour = FALSE) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + scale_fill_gradient(low="pink", high="red") mtplot_density \donttest{ plot_gg(mtplot_density, width = 4,zoom = 0.60, theta = -45, phi = 30, windowsize = c(1400,866)) render_snapshot(clear = TRUE) } #This also works facetted. mtplot_density_facet = mtplot_density + facet_wrap(~cyl) #Preview this plot in 2D: \donttest{ plot_gg(mtplot_density_facet, preview = TRUE) } \donttest{ plot_gg(mtplot_density_facet, windowsize=c(1400,866), zoom = 0.55, theta = -10, phi = 25) render_snapshot(clear = TRUE) } #That is a little cramped. Specifying a larger width will improve the readability of this plot. \donttest{ plot_gg(mtplot_density_facet, width = 6, preview = TRUE) } #That's better. Let's plot it in 3D, and increase the scale. \donttest{ plot_gg(mtplot_density_facet, width = 6, windowsize=c(1400,866), zoom = 0.55, theta = -10, phi = 25, scale=300) render_snapshot(clear = TRUE) } # }
isat_my=function(y, mc = TRUE, ar = NULL, ewma = NULL, mxreg = NULL, iis = TRUE, sis = TRUE, tis = FALSE, uis = FALSE, blocks = NULL, ratio.threshold = 0.8, max.block.size = 30, t.pval = 0.001, wald.pval = t.pval, vcov.type = c("ordinary", "white", "newey-west"), do.pet = FALSE, ar.LjungB = NULL, arch.LjungB = NULL, normality.JarqueB = NULL, user.diagnostics = NULL, info.method = c("sc", "aic", "hq"), include.gum = NULL, include.1cut = FALSE, include.empty = FALSE, max.paths = NULL, parallel.options = NULL, turbo =FALSE, tol = 1e-07, LAPACK = FALSE, max.regs = NULL, print.searchinfo = TRUE, plot = NULL, alarm = FALSE, #for my version of the code (for a local level model) model.ssmod = "local-level", pars.ssmod = c(var1 = log(var(y)), var2 = log(var(y)), P0=10000000,a0=y[1]), nopars.ssmod = NULL, cpar.ssmod = NULL, xreg.ssmod = NULL, lower.ssmod = NULL, upper.ssmod = NULL, transPars.ssmod = NULL, ssd.ssmod = FALSE, sgfc.ssmod = FALSE, kf.args = list(P0cov = FALSE), # if we would set this one to TRUE, we would say that # P0 for max likelihood with KF is not diagonal method.kfs ="L-BFGS-B", gr.kfs = c("numerical", "analytical"), optim.kfs = list(lower = 0, upper = Inf, hessian = TRUE) #this should be later rewritten #into hessian = FALSE, can really slow down the whole process ) { #(y_m, t.pval=0.001, model.ssmod = "local-level", # vcov.type = "ordinary",info.method = 'aic', gr.kfs ="numerical", # optim.kfs = list(lower = 0, upper = Inf, hessian = TRUE)) ################################################# # mc = TRUE # ar = NULL # ewma = NULL # mxreg = NULL # iis = TRUE # sis = TRUE # tis = FALSE # uis = FALSE # blocks = NULL # ratio.threshold = 0.8 # max.block.size = 30 # t.pval = 0.001 # wald.pval = t.pval # vcov.type = "ordinary" # do.pet = FALSE # ar.LjungB = NULL # arch.LjungB = NULL # normality.JarqueB = NULL # user.diagnostics = NULL # info.method ="aic" # include.gum = NULL # include.1cut = FALSE # include.empty = FALSE # max.paths = NULL # parallel.options = NULL # turbo = FALSE # tol = 1e-07 # LAPACK = FALSE # max.regs = NULL # print.searchinfo = TRUE # plot = NULL # alarm = FALSE # model.ssmod = "local-level" #pars.ssmod <- c(var1 =var(y), var2 =var(y)) # pars.ssmod = c("var1" = var(y), "var2" = var(y),"P01"=10000000,"a01"=y[1]) # nopars.ssmod = NULL # cpar.ssmod = NULL # xreg.ssmod = NULL # lower.ssmod = NULL # upper.ssmod = NULL # transPars.ssmod = NULL # ssd.ssmod = FALSE # sgfc.ssmod = FALSE # kf.args = list(P0cov = FALSE) # if we would set this one to TRUE, we would say that # P0 for max likelihood with KF is not diagonal # method.kfs ="L-BFGS-B" # gr.kfs = "analytical" # optim.kfs =list(maxit = 100000000) #this should be later rewritten #into hessian = FALSE, can really slow down the whole process ########################################### require(zoo) require(stsm) require(dlm) isat.call <- sys.call() vcov.type <- match.arg(vcov.type) info.method <- match.arg(info.method) if (!is.null(include.gum)) { warning("The 'include.gum' argument is ignored (temporarily deprecated in isat)") } include.gum <- TRUE olsMethod <- switch(vcov.type, ordinary = 3, white = 4, `newey-west` = 5) if (!is.null(max.paths) && max.paths < 1) { stop("'max.paths' cannot be smaller than 1") } if (!is.null(parallel.options)) { if (is.numeric(parallel.options)) { clusterSpec <- parallel.options } OScores <- detectCores() if (parallel.options > OScores) { stop("parallel.options > number of cores/threads") } } #my own version for state space modelling # (y, mc = mc, ar = ar, ewma = ewma, mxreg = mxreg, # vcov.type = vcov.type, qstat.options = NULL, user.diagnostics = user.diagnostics, # tol = tol, LAPACK = LAPACK, plot = FALSE) y=as.ts(y) mod <- kfs.arx(y, mc = mc, mxreg = mxreg, vcov.type = vcov.type, qstat.options = NULL, user.diagnostics = user.diagnostics, tol = tol, LAPACK = LAPACK, plot = FALSE) # mod <- arx(y, mc = mc, ar = ar, ewma = ewma, mxreg = mxreg, # vcov.type = vcov.type, qstat.options = NULL, user.diagnostics = user.diagnostics, # tol = tol, LAPACK = LAPACK, plot = FALSE) y <- mod$aux$y y.n <- mod$aux$y.n y.index <- mod$aux$y.index y.index.as.char <- as.character(y.index) y.name <- mod$aux$y.name mX <- mod$aux$mX mXnames <- mod$aux$mXnames colnames(mX) <- mXnames mXncol <- mod$aux$mXncol vcov.type <- mod$aux$vcov.type qstat.options <- mod$aux$qstat.options if (is.null(mX)){ mxkeep <- NULL }else{ mxkeep <- 1:mXncol } arLjungB <- NULL if (!is.null(ar.LjungB)) { #two item list with lag and pval for Ljung Box test for serial correlation in the standardised residuals. arLjungB <- c(NA, ar.LjungB$pval) if (is.null(ar.LjungB$lag)) { arLjungB[1] <- qstat.options[1] }else { arLjungB[1] <- ar.LjungB$lag } } archLjungB <- NULL if (!is.null(arch.LjungB)) { archLjungB <- c(NA, arch.LjungB$pval) if (is.null(arch.LjungB$lag)) { archLjungB[1] <- qstat.options[2] }else { archLjungB[1] <- arch.LjungB$lag } } ISmatrices <- list() if (iis) { mIIS <- matrix(0, y.n, y.n) diag(mIIS) <- 1 colnames(mIIS) <- paste("iis", y.index.as.char, sep = "") ISmatrices <- c(ISmatrices, list(IIS = mIIS)) } if (sis) { mSIS <- matrix(0, y.n, y.n) loop.indx <- 1:y.n tmp <- function(i) { mSIS[i, 1:i] <<- 1 } tmp <- sapply(loop.indx, tmp) colnames(mSIS) <- paste("sis", y.index.as.char, sep = "") mSIS <- mSIS[, -1] ISmatrices <- c(ISmatrices, list(SIS = mSIS)) } if (tis) { mTIS <- matrix(0, y.n, y.n) v1n <- seq(1, y.n) loop.indx <- 1:y.n tmp <- function(i) { mTIS[c(i:y.n), i] <<- v1n[1:c(y.n - i + 1)] } tmp <- sapply(loop.indx, tmp) colnames(mTIS) <- paste("tis", y.index.as.char, sep = "") mTIS <- mTIS[, -1] ISmatrices <- c(ISmatrices, list(TIS = mTIS)) } if (!is.list(uis) && !identical(as.numeric(uis), 0)) { uis <- as.zoo(cbind(uis)) uis.names <- colnames(uis) if (is.null(uis.names)) { uis.names <- paste("uisxreg", 1:NCOL(uis), sep = "") } if (any(uis.names == "")) { missing.colnames <- which(uis.names == "") for (i in 1:length(missing.colnames)) { uis.names[i] <- paste("uisxreg", missing.colnames[i], sep = "") } } uis <- na.trim(uis, sides = "both", is.na = "any") uis.index.as.char <- as.character(index(uis)) t1 <- which(uis.index.as.char == y.index.as.char[1]) t2 <- which(uis.index.as.char == y.index.as.char[length(y.index.as.char)]) uis <- coredata(uis) uis <- window(uis, start = t1, end = t2) uis <- cbind(coredata(as.zoo(uis))) colnames(uis) <- uis.names if (nrow(uis) != y.n) stop("nrow(uis) is unequal to no. of observations") ISmatrices <- c(ISmatrices, list(UIS = uis)) } if (is.list(uis)) { for (i in 1:length(uis)) { uis[[i]] <- as.matrix(coredata(as.zoo(uis[[i]]))) if (nrow(uis[[i]]) != y.n) { stop(paste("nrow(uis[[", i, "]]) is unequal to no. of observations", sep = "")) } } uis.names <- paste("UIS", 1:length(uis), sep = "") if (is.null(names(uis))) { names(uis) <- uis.names } else { for (i in 1:length(uis)) { if (names(uis)[i] == "") { names(uis)[i] <- uis.names[i] }else { names(uis)[i] <- paste(uis.names[i], ".", names(uis)[i], sep = "") } } } ISmatrices <- c(ISmatrices, uis) } if (is.list(blocks)) { if (length(ISmatrices) != length(blocks)) { stop("No. of IS matrices is unequal to length(blocks)") } blocks.is.list <- TRUE ISblocks <- blocks }else { blocks.is.list <- FALSE ISblocks <- list() } ISfinalmodels <- list() for (i in 1:length(ISmatrices)) { if (!blocks.is.list) { ncol.adj <- NCOL(ISmatrices[[i]]) if (is.null(blocks)) { blockratio.value <- ncol.adj/(ratio.threshold * ncol.adj - mXncol) blocksize.value <- ncol.adj/min(y.n * ratio.threshold, max.block.size) no.of.blocks <- max(2, blockratio.value, blocksize.value) no.of.blocks <- ceiling(no.of.blocks) no.of.blocks <- min(ncol.adj, no.of.blocks) }else{ no.of.blocks <- blocks } blocksize <- ceiling(ncol.adj/no.of.blocks) partitions.t2 <- blocksize for (j in 1:no.of.blocks) { if (blocksize * j <= ncol.adj) { partitions.t2[j] <- blocksize * j } } if (partitions.t2[length(partitions.t2)] < ncol.adj) { partitions.t2 <- c(partitions.t2, ncol.adj) } blocksadj <- length(partitions.t2) partitions.t1 <- partitions.t2 + 1 partitions.t1 <- c(1, partitions.t1[-blocksadj]) tmp <- list() for (j in 1:blocksadj) { tmp[[j]] <- partitions.t1[j]:partitions.t2[j] } ISblocks[[i]] <- tmp } #there is some problem with this one ISblocksFun <- function(j, i, ISmatrices, ISblocks, mX, parallel.options, y, olsMethod, t.pval, wald.pval, do.pet, arLjungB, archLjungB, normality.JarqueB, user.diagnostics, info.method, mxkeep, include.gum, include.1cut, include.empty, max.paths, turbo, tol, LAPACK, max.regs, print.searchinfo) { if (length(ISblocks[[i]][[j]]) == 1) { tmp <- colnames(ISmatrices[[i]])[ISblocks[[i]][[j]]] mXis <- cbind(ISmatrices[[i]][, ISblocks[[i]][[j]]]) colnames(mXis) <- tmp mXis <- cbind(mX, mXis) }else { mXis <- cbind(mX, ISmatrices[[i]][, ISblocks[[i]][[j]]]) } mXis <- dropvar(mXis, tol = tol, LAPACK = LAPACK, silent = print.searchinfo) if (is.null(parallel.options)) { if (print.searchinfo) { message("\n", appendLF = FALSE) message(names(ISmatrices)[i], " block ", j, " of ", length(ISblocks[[i]]), ":", appendLF = TRUE) } } #this one performs backwards selection of the best model getsis <- gets::getsFun(y, mXis, untransformed.residuals = NULL, user.estimator = list(name = "kfs", tol = tol, LAPACK = LAPACK, method = olsMethod), gum.result = NULL, t.pval = t.pval, wald.pval = wald.pval, do.pet = do.pet, ar.LjungB = arLjungB, arch.LjungB = archLjungB, normality.JarqueB = normality.JarqueB, user.diagnostics = user.diagnostics, gof.function = list(name = "infocrit", method = info.method), gof.method = "min", keep = mxkeep, include.gum = include.gum, include.1cut = include.1cut, include.empty = include.empty, max.paths = max.paths, turbo = turbo, tol = tol, LAPACK = LAPACK, max.regs = max.regs, print.searchinfo = print.searchinfo, alarm = FALSE) if (is.null(getsis$specific.spec)) { ISspecific.models <- NULL }else { ISspecific.models <- names(getsis$specific.spec) } return(ISspecific.models) } if (is.null(parallel.options)) { ISspecific.models <- lapply(1:length(ISblocks[[i]]), ISblocksFun, i, ISmatrices, ISblocks, mX, parallel.options, y, olsMethod, t.pval, wald.pval, do.pet, arLjungB, archLjungB, normality.JarqueB, user.diagnostics, info.method, mxkeep, include.gum, include.1cut, include.empty, max.paths, turbo, tol, LAPACK, max.regs, print.searchinfo) } if (!is.null(parallel.options)) { if (print.searchinfo) { message("\n", appendLF = FALSE) message("Preparing parallel computing...", appendLF = TRUE) message(names(ISmatrices)[i], " blocks to search in parallel: ", length(ISblocks[[i]]), appendLF = TRUE) message("Searching...", appendLF = TRUE) } blocksClust <- makeCluster(clusterSpec, outfile = "") clusterExport(blocksClust, c("dropvar", "getsFun", "ols", "infocrit", "diagnostics"), envir = .GlobalEnv) ISspecific.models <- parLapply(blocksClust, 1:length(ISblocks[[i]]), ISblocksFun, i, ISmatrices, ISblocks, mX, parallel.options, y, olsMethod, t.pval, wald.pval, do.pet, arLjungB, archLjungB, normality.JarqueB, user.diagnostics, info.method, mxkeep, include.gum, include.1cut, include.empty, max.paths, turbo, tol, LAPACK, max.regs, print.searchinfo) stopCluster(blocksClust) } if (print.searchinfo) { message("\n", appendLF = FALSE) message("GETS of union of retained ", names(ISmatrices)[i], " variables... ", appendLF = TRUE) } if (length(ISspecific.models) == 0) { isNames <- NULL ISfinalmodels[[i]] <- NULL } if (length(ISspecific.models) > 0) { isNames <- NULL for (j in 1:length(ISspecific.models)) { if (!is.null(ISspecific.models[[j]])) { isNames <- union(isNames, ISspecific.models[[j]]) } } isNames <- setdiff(isNames, mXnames) if (length(isNames) == 0) { ISfinalmodels[[i]] <- mXnames } else { mXisNames <- c(mXnames, isNames) mXis <- cbind(mX, ISmatrices[[i]][, isNames]) colnames(mXis) <- mXisNames mXis <- dropvar(mXis, tol = tol, LAPACK = LAPACK, silent = print.searchinfo) getsis <- gets::getsFun(y, mXis, untransformed.residuals = NULL, user.estimator = list(name ="kfs", tol = tol, LAPACK = LAPACK, method = olsMethod), gum.result = NULL, t.pval = t.pval, wald.pval = wald.pval, do.pet = do.pet, ar.LjungB = arLjungB, arch.LjungB = archLjungB, normality.JarqueB = normality.JarqueB, user.diagnostics = user.diagnostics, gof.function = list(name = "infocrit", method = info.method), gof.method = "min", keep = mxkeep, include.gum = include.gum, include.1cut = include.1cut, include.empty = include.empty, max.paths = max.paths, turbo = turbo, tol = tol, LAPACK = LAPACK, max.regs = max.regs, print.searchinfo = print.searchinfo, alarm = FALSE) ISfinalmodels[[i]] <- names(getsis$specific.spec) } } } names(ISblocks) <- names(ISmatrices) if (print.searchinfo) { message("\n", appendLF = FALSE) message("GETS of union of ALL retained variables...", appendLF = TRUE) message("\n", appendLF = FALSE) } if (length(ISfinalmodels) == 0) { ISfinalmodels <- NULL if (is.null(mX)) { mXis <- NULL } else { mXis <- zoo(cbind(mX), order.by = y.index) colnames(mXis) <- mXnames } } if (length(ISfinalmodels) > 0) { mIS <- NULL for (i in 1:length(ISfinalmodels)) { isNames <- NULL if (!is.null(ISfinalmodels[[i]])) { isNames <- setdiff(ISfinalmodels[[i]], mXnames) } if (length(isNames) > 0) { tmp <- cbind(ISmatrices[[i]][, isNames]) colnames(tmp) <- isNames mIS <- cbind(mIS, tmp) } } mXis <- dropvar(cbind(mX, mIS), tol = tol, LAPACK = LAPACK, silent = print.searchinfo) mXis <- zoo(mXis, order.by = y.index) } #y <- as.ts(y, order.by = y.index) #y <- zoo(y, order.by = y.index) #mod <- arx(y, mxreg = mXis, vcov.type = vcov.type, qstat.options = qstat.options, # user.diagnostics = user.diagnostics, tol = tol, LAPACK = LAPACK, # plot = FALSE) #this part has to be done properly mod <-kfs.arx(y, mxreg = mXis, vcov.type = vcov.type, qstat.options = qstat.options, user.diagnostics = user.diagnostics, tol = tol, LAPACK = LAPACK ) y <- zoo(y, order.by = y.index) getsis <- getsm_my(mod, keep = mxkeep, t.pval = t.pval, do.pet = do.pet, wald.pval = wald.pval, ar.LjungB = ar.LjungB, arch.LjungB = arch.LjungB, normality.JarqueB = normality.JarqueB, user.diagnostics = user.diagnostics, info.method = info.method, include.empty = include.empty, max.paths = max.paths, max.regs = max.regs, print.searchinfo = print.searchinfo, #added by me cuz of using kfs instead of vcov.type = vcov.type) ISnames <- setdiff(getsis$aux$mXnames, mXnames) if (length(ISnames) == 0) { ISnames <- NULL } colnames(getsis$aux$mX) <- getsis$aux$mXnames getsis$gets.type <- "isat" getsis$call <- isat.call getsis <- c(list(ISfinalmodels = ISfinalmodels, ISnames = ISnames), getsis) getsis$aux$t.pval <- t.pval class(getsis) <- "isat" if (alarm) { alarm() } if (is.null(plot)) { plot <- getOption("plot") if (is.null(plot)) { plot <- FALSE } } if (plot) { plot.isat(getsis, coef.path = TRUE) } getsis$hessian = hessian return(getsis) }
/ISA_indicator_saturation_v2.R
no_license
zuzanale/Master-thesis
R
false
false
18,439
r
isat_my=function(y, mc = TRUE, ar = NULL, ewma = NULL, mxreg = NULL, iis = TRUE, sis = TRUE, tis = FALSE, uis = FALSE, blocks = NULL, ratio.threshold = 0.8, max.block.size = 30, t.pval = 0.001, wald.pval = t.pval, vcov.type = c("ordinary", "white", "newey-west"), do.pet = FALSE, ar.LjungB = NULL, arch.LjungB = NULL, normality.JarqueB = NULL, user.diagnostics = NULL, info.method = c("sc", "aic", "hq"), include.gum = NULL, include.1cut = FALSE, include.empty = FALSE, max.paths = NULL, parallel.options = NULL, turbo =FALSE, tol = 1e-07, LAPACK = FALSE, max.regs = NULL, print.searchinfo = TRUE, plot = NULL, alarm = FALSE, #for my version of the code (for a local level model) model.ssmod = "local-level", pars.ssmod = c(var1 = log(var(y)), var2 = log(var(y)), P0=10000000,a0=y[1]), nopars.ssmod = NULL, cpar.ssmod = NULL, xreg.ssmod = NULL, lower.ssmod = NULL, upper.ssmod = NULL, transPars.ssmod = NULL, ssd.ssmod = FALSE, sgfc.ssmod = FALSE, kf.args = list(P0cov = FALSE), # if we would set this one to TRUE, we would say that # P0 for max likelihood with KF is not diagonal method.kfs ="L-BFGS-B", gr.kfs = c("numerical", "analytical"), optim.kfs = list(lower = 0, upper = Inf, hessian = TRUE) #this should be later rewritten #into hessian = FALSE, can really slow down the whole process ) { #(y_m, t.pval=0.001, model.ssmod = "local-level", # vcov.type = "ordinary",info.method = 'aic', gr.kfs ="numerical", # optim.kfs = list(lower = 0, upper = Inf, hessian = TRUE)) ################################################# # mc = TRUE # ar = NULL # ewma = NULL # mxreg = NULL # iis = TRUE # sis = TRUE # tis = FALSE # uis = FALSE # blocks = NULL # ratio.threshold = 0.8 # max.block.size = 30 # t.pval = 0.001 # wald.pval = t.pval # vcov.type = "ordinary" # do.pet = FALSE # ar.LjungB = NULL # arch.LjungB = NULL # normality.JarqueB = NULL # user.diagnostics = NULL # info.method ="aic" # include.gum = NULL # include.1cut = FALSE # include.empty = FALSE # max.paths = NULL # parallel.options = NULL # turbo = FALSE # tol = 1e-07 # LAPACK = FALSE # max.regs = NULL # print.searchinfo = TRUE # plot = NULL # alarm = FALSE # model.ssmod = "local-level" #pars.ssmod <- c(var1 =var(y), var2 =var(y)) # pars.ssmod = c("var1" = var(y), "var2" = var(y),"P01"=10000000,"a01"=y[1]) # nopars.ssmod = NULL # cpar.ssmod = NULL # xreg.ssmod = NULL # lower.ssmod = NULL # upper.ssmod = NULL # transPars.ssmod = NULL # ssd.ssmod = FALSE # sgfc.ssmod = FALSE # kf.args = list(P0cov = FALSE) # if we would set this one to TRUE, we would say that # P0 for max likelihood with KF is not diagonal # method.kfs ="L-BFGS-B" # gr.kfs = "analytical" # optim.kfs =list(maxit = 100000000) #this should be later rewritten #into hessian = FALSE, can really slow down the whole process ########################################### require(zoo) require(stsm) require(dlm) isat.call <- sys.call() vcov.type <- match.arg(vcov.type) info.method <- match.arg(info.method) if (!is.null(include.gum)) { warning("The 'include.gum' argument is ignored (temporarily deprecated in isat)") } include.gum <- TRUE olsMethod <- switch(vcov.type, ordinary = 3, white = 4, `newey-west` = 5) if (!is.null(max.paths) && max.paths < 1) { stop("'max.paths' cannot be smaller than 1") } if (!is.null(parallel.options)) { if (is.numeric(parallel.options)) { clusterSpec <- parallel.options } OScores <- detectCores() if (parallel.options > OScores) { stop("parallel.options > number of cores/threads") } } #my own version for state space modelling # (y, mc = mc, ar = ar, ewma = ewma, mxreg = mxreg, # vcov.type = vcov.type, qstat.options = NULL, user.diagnostics = user.diagnostics, # tol = tol, LAPACK = LAPACK, plot = FALSE) y=as.ts(y) mod <- kfs.arx(y, mc = mc, mxreg = mxreg, vcov.type = vcov.type, qstat.options = NULL, user.diagnostics = user.diagnostics, tol = tol, LAPACK = LAPACK, plot = FALSE) # mod <- arx(y, mc = mc, ar = ar, ewma = ewma, mxreg = mxreg, # vcov.type = vcov.type, qstat.options = NULL, user.diagnostics = user.diagnostics, # tol = tol, LAPACK = LAPACK, plot = FALSE) y <- mod$aux$y y.n <- mod$aux$y.n y.index <- mod$aux$y.index y.index.as.char <- as.character(y.index) y.name <- mod$aux$y.name mX <- mod$aux$mX mXnames <- mod$aux$mXnames colnames(mX) <- mXnames mXncol <- mod$aux$mXncol vcov.type <- mod$aux$vcov.type qstat.options <- mod$aux$qstat.options if (is.null(mX)){ mxkeep <- NULL }else{ mxkeep <- 1:mXncol } arLjungB <- NULL if (!is.null(ar.LjungB)) { #two item list with lag and pval for Ljung Box test for serial correlation in the standardised residuals. arLjungB <- c(NA, ar.LjungB$pval) if (is.null(ar.LjungB$lag)) { arLjungB[1] <- qstat.options[1] }else { arLjungB[1] <- ar.LjungB$lag } } archLjungB <- NULL if (!is.null(arch.LjungB)) { archLjungB <- c(NA, arch.LjungB$pval) if (is.null(arch.LjungB$lag)) { archLjungB[1] <- qstat.options[2] }else { archLjungB[1] <- arch.LjungB$lag } } ISmatrices <- list() if (iis) { mIIS <- matrix(0, y.n, y.n) diag(mIIS) <- 1 colnames(mIIS) <- paste("iis", y.index.as.char, sep = "") ISmatrices <- c(ISmatrices, list(IIS = mIIS)) } if (sis) { mSIS <- matrix(0, y.n, y.n) loop.indx <- 1:y.n tmp <- function(i) { mSIS[i, 1:i] <<- 1 } tmp <- sapply(loop.indx, tmp) colnames(mSIS) <- paste("sis", y.index.as.char, sep = "") mSIS <- mSIS[, -1] ISmatrices <- c(ISmatrices, list(SIS = mSIS)) } if (tis) { mTIS <- matrix(0, y.n, y.n) v1n <- seq(1, y.n) loop.indx <- 1:y.n tmp <- function(i) { mTIS[c(i:y.n), i] <<- v1n[1:c(y.n - i + 1)] } tmp <- sapply(loop.indx, tmp) colnames(mTIS) <- paste("tis", y.index.as.char, sep = "") mTIS <- mTIS[, -1] ISmatrices <- c(ISmatrices, list(TIS = mTIS)) } if (!is.list(uis) && !identical(as.numeric(uis), 0)) { uis <- as.zoo(cbind(uis)) uis.names <- colnames(uis) if (is.null(uis.names)) { uis.names <- paste("uisxreg", 1:NCOL(uis), sep = "") } if (any(uis.names == "")) { missing.colnames <- which(uis.names == "") for (i in 1:length(missing.colnames)) { uis.names[i] <- paste("uisxreg", missing.colnames[i], sep = "") } } uis <- na.trim(uis, sides = "both", is.na = "any") uis.index.as.char <- as.character(index(uis)) t1 <- which(uis.index.as.char == y.index.as.char[1]) t2 <- which(uis.index.as.char == y.index.as.char[length(y.index.as.char)]) uis <- coredata(uis) uis <- window(uis, start = t1, end = t2) uis <- cbind(coredata(as.zoo(uis))) colnames(uis) <- uis.names if (nrow(uis) != y.n) stop("nrow(uis) is unequal to no. of observations") ISmatrices <- c(ISmatrices, list(UIS = uis)) } if (is.list(uis)) { for (i in 1:length(uis)) { uis[[i]] <- as.matrix(coredata(as.zoo(uis[[i]]))) if (nrow(uis[[i]]) != y.n) { stop(paste("nrow(uis[[", i, "]]) is unequal to no. of observations", sep = "")) } } uis.names <- paste("UIS", 1:length(uis), sep = "") if (is.null(names(uis))) { names(uis) <- uis.names } else { for (i in 1:length(uis)) { if (names(uis)[i] == "") { names(uis)[i] <- uis.names[i] }else { names(uis)[i] <- paste(uis.names[i], ".", names(uis)[i], sep = "") } } } ISmatrices <- c(ISmatrices, uis) } if (is.list(blocks)) { if (length(ISmatrices) != length(blocks)) { stop("No. of IS matrices is unequal to length(blocks)") } blocks.is.list <- TRUE ISblocks <- blocks }else { blocks.is.list <- FALSE ISblocks <- list() } ISfinalmodels <- list() for (i in 1:length(ISmatrices)) { if (!blocks.is.list) { ncol.adj <- NCOL(ISmatrices[[i]]) if (is.null(blocks)) { blockratio.value <- ncol.adj/(ratio.threshold * ncol.adj - mXncol) blocksize.value <- ncol.adj/min(y.n * ratio.threshold, max.block.size) no.of.blocks <- max(2, blockratio.value, blocksize.value) no.of.blocks <- ceiling(no.of.blocks) no.of.blocks <- min(ncol.adj, no.of.blocks) }else{ no.of.blocks <- blocks } blocksize <- ceiling(ncol.adj/no.of.blocks) partitions.t2 <- blocksize for (j in 1:no.of.blocks) { if (blocksize * j <= ncol.adj) { partitions.t2[j] <- blocksize * j } } if (partitions.t2[length(partitions.t2)] < ncol.adj) { partitions.t2 <- c(partitions.t2, ncol.adj) } blocksadj <- length(partitions.t2) partitions.t1 <- partitions.t2 + 1 partitions.t1 <- c(1, partitions.t1[-blocksadj]) tmp <- list() for (j in 1:blocksadj) { tmp[[j]] <- partitions.t1[j]:partitions.t2[j] } ISblocks[[i]] <- tmp } #there is some problem with this one ISblocksFun <- function(j, i, ISmatrices, ISblocks, mX, parallel.options, y, olsMethod, t.pval, wald.pval, do.pet, arLjungB, archLjungB, normality.JarqueB, user.diagnostics, info.method, mxkeep, include.gum, include.1cut, include.empty, max.paths, turbo, tol, LAPACK, max.regs, print.searchinfo) { if (length(ISblocks[[i]][[j]]) == 1) { tmp <- colnames(ISmatrices[[i]])[ISblocks[[i]][[j]]] mXis <- cbind(ISmatrices[[i]][, ISblocks[[i]][[j]]]) colnames(mXis) <- tmp mXis <- cbind(mX, mXis) }else { mXis <- cbind(mX, ISmatrices[[i]][, ISblocks[[i]][[j]]]) } mXis <- dropvar(mXis, tol = tol, LAPACK = LAPACK, silent = print.searchinfo) if (is.null(parallel.options)) { if (print.searchinfo) { message("\n", appendLF = FALSE) message(names(ISmatrices)[i], " block ", j, " of ", length(ISblocks[[i]]), ":", appendLF = TRUE) } } #this one performs backwards selection of the best model getsis <- gets::getsFun(y, mXis, untransformed.residuals = NULL, user.estimator = list(name = "kfs", tol = tol, LAPACK = LAPACK, method = olsMethod), gum.result = NULL, t.pval = t.pval, wald.pval = wald.pval, do.pet = do.pet, ar.LjungB = arLjungB, arch.LjungB = archLjungB, normality.JarqueB = normality.JarqueB, user.diagnostics = user.diagnostics, gof.function = list(name = "infocrit", method = info.method), gof.method = "min", keep = mxkeep, include.gum = include.gum, include.1cut = include.1cut, include.empty = include.empty, max.paths = max.paths, turbo = turbo, tol = tol, LAPACK = LAPACK, max.regs = max.regs, print.searchinfo = print.searchinfo, alarm = FALSE) if (is.null(getsis$specific.spec)) { ISspecific.models <- NULL }else { ISspecific.models <- names(getsis$specific.spec) } return(ISspecific.models) } if (is.null(parallel.options)) { ISspecific.models <- lapply(1:length(ISblocks[[i]]), ISblocksFun, i, ISmatrices, ISblocks, mX, parallel.options, y, olsMethod, t.pval, wald.pval, do.pet, arLjungB, archLjungB, normality.JarqueB, user.diagnostics, info.method, mxkeep, include.gum, include.1cut, include.empty, max.paths, turbo, tol, LAPACK, max.regs, print.searchinfo) } if (!is.null(parallel.options)) { if (print.searchinfo) { message("\n", appendLF = FALSE) message("Preparing parallel computing...", appendLF = TRUE) message(names(ISmatrices)[i], " blocks to search in parallel: ", length(ISblocks[[i]]), appendLF = TRUE) message("Searching...", appendLF = TRUE) } blocksClust <- makeCluster(clusterSpec, outfile = "") clusterExport(blocksClust, c("dropvar", "getsFun", "ols", "infocrit", "diagnostics"), envir = .GlobalEnv) ISspecific.models <- parLapply(blocksClust, 1:length(ISblocks[[i]]), ISblocksFun, i, ISmatrices, ISblocks, mX, parallel.options, y, olsMethod, t.pval, wald.pval, do.pet, arLjungB, archLjungB, normality.JarqueB, user.diagnostics, info.method, mxkeep, include.gum, include.1cut, include.empty, max.paths, turbo, tol, LAPACK, max.regs, print.searchinfo) stopCluster(blocksClust) } if (print.searchinfo) { message("\n", appendLF = FALSE) message("GETS of union of retained ", names(ISmatrices)[i], " variables... ", appendLF = TRUE) } if (length(ISspecific.models) == 0) { isNames <- NULL ISfinalmodels[[i]] <- NULL } if (length(ISspecific.models) > 0) { isNames <- NULL for (j in 1:length(ISspecific.models)) { if (!is.null(ISspecific.models[[j]])) { isNames <- union(isNames, ISspecific.models[[j]]) } } isNames <- setdiff(isNames, mXnames) if (length(isNames) == 0) { ISfinalmodels[[i]] <- mXnames } else { mXisNames <- c(mXnames, isNames) mXis <- cbind(mX, ISmatrices[[i]][, isNames]) colnames(mXis) <- mXisNames mXis <- dropvar(mXis, tol = tol, LAPACK = LAPACK, silent = print.searchinfo) getsis <- gets::getsFun(y, mXis, untransformed.residuals = NULL, user.estimator = list(name ="kfs", tol = tol, LAPACK = LAPACK, method = olsMethod), gum.result = NULL, t.pval = t.pval, wald.pval = wald.pval, do.pet = do.pet, ar.LjungB = arLjungB, arch.LjungB = archLjungB, normality.JarqueB = normality.JarqueB, user.diagnostics = user.diagnostics, gof.function = list(name = "infocrit", method = info.method), gof.method = "min", keep = mxkeep, include.gum = include.gum, include.1cut = include.1cut, include.empty = include.empty, max.paths = max.paths, turbo = turbo, tol = tol, LAPACK = LAPACK, max.regs = max.regs, print.searchinfo = print.searchinfo, alarm = FALSE) ISfinalmodels[[i]] <- names(getsis$specific.spec) } } } names(ISblocks) <- names(ISmatrices) if (print.searchinfo) { message("\n", appendLF = FALSE) message("GETS of union of ALL retained variables...", appendLF = TRUE) message("\n", appendLF = FALSE) } if (length(ISfinalmodels) == 0) { ISfinalmodels <- NULL if (is.null(mX)) { mXis <- NULL } else { mXis <- zoo(cbind(mX), order.by = y.index) colnames(mXis) <- mXnames } } if (length(ISfinalmodels) > 0) { mIS <- NULL for (i in 1:length(ISfinalmodels)) { isNames <- NULL if (!is.null(ISfinalmodels[[i]])) { isNames <- setdiff(ISfinalmodels[[i]], mXnames) } if (length(isNames) > 0) { tmp <- cbind(ISmatrices[[i]][, isNames]) colnames(tmp) <- isNames mIS <- cbind(mIS, tmp) } } mXis <- dropvar(cbind(mX, mIS), tol = tol, LAPACK = LAPACK, silent = print.searchinfo) mXis <- zoo(mXis, order.by = y.index) } #y <- as.ts(y, order.by = y.index) #y <- zoo(y, order.by = y.index) #mod <- arx(y, mxreg = mXis, vcov.type = vcov.type, qstat.options = qstat.options, # user.diagnostics = user.diagnostics, tol = tol, LAPACK = LAPACK, # plot = FALSE) #this part has to be done properly mod <-kfs.arx(y, mxreg = mXis, vcov.type = vcov.type, qstat.options = qstat.options, user.diagnostics = user.diagnostics, tol = tol, LAPACK = LAPACK ) y <- zoo(y, order.by = y.index) getsis <- getsm_my(mod, keep = mxkeep, t.pval = t.pval, do.pet = do.pet, wald.pval = wald.pval, ar.LjungB = ar.LjungB, arch.LjungB = arch.LjungB, normality.JarqueB = normality.JarqueB, user.diagnostics = user.diagnostics, info.method = info.method, include.empty = include.empty, max.paths = max.paths, max.regs = max.regs, print.searchinfo = print.searchinfo, #added by me cuz of using kfs instead of vcov.type = vcov.type) ISnames <- setdiff(getsis$aux$mXnames, mXnames) if (length(ISnames) == 0) { ISnames <- NULL } colnames(getsis$aux$mX) <- getsis$aux$mXnames getsis$gets.type <- "isat" getsis$call <- isat.call getsis <- c(list(ISfinalmodels = ISfinalmodels, ISnames = ISnames), getsis) getsis$aux$t.pval <- t.pval class(getsis) <- "isat" if (alarm) { alarm() } if (is.null(plot)) { plot <- getOption("plot") if (is.null(plot)) { plot <- FALSE } } if (plot) { plot.isat(getsis, coef.path = TRUE) } getsis$hessian = hessian return(getsis) }
## These functions can compute the inverse matrix of 'x' ## to save time, if the matrix has been calculated, the inverse ## matrix should be retrieved from the cache ## This function creates a special "matrix" object that can cache its inverse makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setInverse <- function(solve) m <<- solve getInverse <- function() m list(set = set, get = get, setInverse = setInverse, getInverse = getInverse) } ## This function computes the inverse of 'x' ## If the inverse has already been calculated, ## then the function should retrieve the inverse from the cache. cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' m <- x$getInverse() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setInverse(m) m }
/cachematrix.R
no_license
wangjun341/ProgrammingAssignment2
R
false
false
954
r
## These functions can compute the inverse matrix of 'x' ## to save time, if the matrix has been calculated, the inverse ## matrix should be retrieved from the cache ## This function creates a special "matrix" object that can cache its inverse makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setInverse <- function(solve) m <<- solve getInverse <- function() m list(set = set, get = get, setInverse = setInverse, getInverse = getInverse) } ## This function computes the inverse of 'x' ## If the inverse has already been calculated, ## then the function should retrieve the inverse from the cache. cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' m <- x$getInverse() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setInverse(m) m }
\name{dtWV} \alias{dtWV} \title{Noncentral t Distribution Density by W.V.} \description{ Compute the density function \eqn{f(x)} of the t distribution with \code{df} degrees of freedom and non-centrality parameter \code{ncp}, according to Wolfgang Viechtbauer's proposal in 2002. } \usage{%--> ../R/t-nonc-fn.R + ?dt at ~/R/D/r-devel/R/src/library/stats/man/TDist.Rd dtWV(x, df, ncp = 0, log = FALSE) } \arguments{ \item{x}{numeric vector.} \item{df}{degrees of freedom (\eqn{> 0}, maybe non-integer). \code{df = Inf} is allowed.} \item{ncp}{non-centrality parameter \eqn{\delta}{delta}; If omitted, use the central t distribution.} \item{log}{logical; if TRUE, \eqn{log(f(x))} is returned instead of \eqn{f(x)}.} } \details{ The formula used is \dQuote{asymptotic}: Resnikoff and Lieberman (1957), p.1 and p.25ff, proposed to use recursive polynomials for (\emph{integer !}) degrees of freedom \eqn{f = 1,2,\dots, 20}, and then, for \code{df}\eqn{ = f > 20}, use the asymptotic approximation which Wolfgang Viechtbauer proposed as a first version of a non-central t density for \R (when \code{\link{dt}()} did not yet have an \code{ncp} argument). } \value{ numeric vector of density values, properly recycled in \code{(x, df, ncp)}. } \references{ Resnikoff, George J. and Lieberman, Gerald J. (1957) \emph{Tables of the non-central t-distribution}; Technical report no. 32 (\code{LIE ONR 32}), April 1, 1957; Applied Math. and Stat. Lab., Stanford University. \url{https://statistics.stanford.edu/technical-reports/tables-non-central-t-distribution-density-function-cumulative-distribution} %was \url{https://statistics.stanford.edu/research/tables-non-central-t-distribution-density-function-cumulative-distribution-function-and} } \author{Wolfgang Viechtbauer (2002) post to R-help (\url{https://stat.ethz.ch/pipermail/r-help/2002-October/026044.html}), and Martin Maechler (\code{log} argument; tweaks, notably recycling). } \seealso{ \code{\link{dt}}, \R's (C level) implementation of the (non-central) t density; \code{\link{dntJKBf}}, for Johnson et al.'s summation formula approximation. } \examples{ tt <- seq(0, 10, len = 21) ncp <- seq(0, 6, len = 31) dt3R <- outer(tt, ncp, dt , df = 3) dt3WV <- outer(tt, ncp, dtWV, df = 3) all.equal(dt3R, dt3WV) # rel.err 0.00063 dt25R <- outer(tt, ncp, dt , df = 25) dt25WV <- outer(tt, ncp, dtWV, df = 25) all.equal(dt25R, dt25WV) # rel.err 1.1e-5 x <- -10:700 fx <- dt (x, df = 22, ncp =100) lfx <- dt (x, df = 22, ncp =100, log=TRUE) lfV <- dtWV(x, df = 22, ncp =100, log=TRUE) head(lfx, 20) # shows that R's dt(*, log=TRUE) implementation is "quite suboptimal" ## graphics opa <- par(no.readonly=TRUE) par(mar=.1+c(5,4,4,3), mgp = c(2, .8,0)) plot(fx ~ x, type="l") par(new=TRUE) ; cc <- c("red", adjustcolor("orange", 0.4)) plot(lfx ~ x, type = "o", pch=".", col=cc[1], cex=2, ann=FALSE, yaxt="n") sfsmisc::eaxis(4, col=cc[1], col.axis=cc[1], small.args = list(col=cc[1])) lines(x, lfV, col=cc[2], lwd=3) dtt1 <- " dt"; dtt2 <- "(x, df=22, ncp=100"; dttL <- paste0(dtt2,", log=TRUE)") legend("right", c(paste0(dtt1,dtt2,")"), paste0(c(dtt1,"dtWV"), dttL)), lty=1, lwd=c(1,1,3), col=c("black", cc), bty = "n") par(opa) # reset } \keyword{distribution} \keyword{math}
/man/dtWV.Rd
no_license
cran/DPQ
R
false
false
3,305
rd
\name{dtWV} \alias{dtWV} \title{Noncentral t Distribution Density by W.V.} \description{ Compute the density function \eqn{f(x)} of the t distribution with \code{df} degrees of freedom and non-centrality parameter \code{ncp}, according to Wolfgang Viechtbauer's proposal in 2002. } \usage{%--> ../R/t-nonc-fn.R + ?dt at ~/R/D/r-devel/R/src/library/stats/man/TDist.Rd dtWV(x, df, ncp = 0, log = FALSE) } \arguments{ \item{x}{numeric vector.} \item{df}{degrees of freedom (\eqn{> 0}, maybe non-integer). \code{df = Inf} is allowed.} \item{ncp}{non-centrality parameter \eqn{\delta}{delta}; If omitted, use the central t distribution.} \item{log}{logical; if TRUE, \eqn{log(f(x))} is returned instead of \eqn{f(x)}.} } \details{ The formula used is \dQuote{asymptotic}: Resnikoff and Lieberman (1957), p.1 and p.25ff, proposed to use recursive polynomials for (\emph{integer !}) degrees of freedom \eqn{f = 1,2,\dots, 20}, and then, for \code{df}\eqn{ = f > 20}, use the asymptotic approximation which Wolfgang Viechtbauer proposed as a first version of a non-central t density for \R (when \code{\link{dt}()} did not yet have an \code{ncp} argument). } \value{ numeric vector of density values, properly recycled in \code{(x, df, ncp)}. } \references{ Resnikoff, George J. and Lieberman, Gerald J. (1957) \emph{Tables of the non-central t-distribution}; Technical report no. 32 (\code{LIE ONR 32}), April 1, 1957; Applied Math. and Stat. Lab., Stanford University. \url{https://statistics.stanford.edu/technical-reports/tables-non-central-t-distribution-density-function-cumulative-distribution} %was \url{https://statistics.stanford.edu/research/tables-non-central-t-distribution-density-function-cumulative-distribution-function-and} } \author{Wolfgang Viechtbauer (2002) post to R-help (\url{https://stat.ethz.ch/pipermail/r-help/2002-October/026044.html}), and Martin Maechler (\code{log} argument; tweaks, notably recycling). } \seealso{ \code{\link{dt}}, \R's (C level) implementation of the (non-central) t density; \code{\link{dntJKBf}}, for Johnson et al.'s summation formula approximation. } \examples{ tt <- seq(0, 10, len = 21) ncp <- seq(0, 6, len = 31) dt3R <- outer(tt, ncp, dt , df = 3) dt3WV <- outer(tt, ncp, dtWV, df = 3) all.equal(dt3R, dt3WV) # rel.err 0.00063 dt25R <- outer(tt, ncp, dt , df = 25) dt25WV <- outer(tt, ncp, dtWV, df = 25) all.equal(dt25R, dt25WV) # rel.err 1.1e-5 x <- -10:700 fx <- dt (x, df = 22, ncp =100) lfx <- dt (x, df = 22, ncp =100, log=TRUE) lfV <- dtWV(x, df = 22, ncp =100, log=TRUE) head(lfx, 20) # shows that R's dt(*, log=TRUE) implementation is "quite suboptimal" ## graphics opa <- par(no.readonly=TRUE) par(mar=.1+c(5,4,4,3), mgp = c(2, .8,0)) plot(fx ~ x, type="l") par(new=TRUE) ; cc <- c("red", adjustcolor("orange", 0.4)) plot(lfx ~ x, type = "o", pch=".", col=cc[1], cex=2, ann=FALSE, yaxt="n") sfsmisc::eaxis(4, col=cc[1], col.axis=cc[1], small.args = list(col=cc[1])) lines(x, lfV, col=cc[2], lwd=3) dtt1 <- " dt"; dtt2 <- "(x, df=22, ncp=100"; dttL <- paste0(dtt2,", log=TRUE)") legend("right", c(paste0(dtt1,dtt2,")"), paste0(c(dtt1,"dtWV"), dttL)), lty=1, lwd=c(1,1,3), col=c("black", cc), bty = "n") par(opa) # reset } \keyword{distribution} \keyword{math}
### Load packages require( geomorph ) require( ape ) #Clear workspace rm( list = ls() ) #Set working directory to where turtle landmark data (from supplemental folder) is stored setwd( "INSERT DIRECTORY PATH" ) #Load landmark data and transform to correct format for GPA commands temp.file <- list.files(pattern = ".csv") landmark.data <- lapply (temp.file, read.csv, row.names=1) names(landmark.data) <- gsub(".csv","",temp.file) landmark.data.temp <- array(as.numeric(unlist(landmark.data)), dim = c(123, 3, 184)) #number of landmarks, number of dimensions (3D coordinates), number of specimens dimnames(landmark.data.temp)[[3]] <- gsub(".csv","",temp.file) dimnames(landmark.data.temp)[[1]] <- rownames(landmark.data[[1]]) dimnames(landmark.data.temp)[[2]] <- c("x","y","z") #Load slider information and colour information for deformation plots setwd( "INSERT DIRECTORY PATH" ) sliders <- read.csv("Dataset 4. sliders.turtles.csv", row.names=1) colours <- as.character( read.csv("Dataset 5. landmark_colours.csv", row.names=1)[,1] ) #Load specimen information setwd( "INSERT DIRECTORY PATH" ) specimen.info <- read.csv( "Dataset 2. Specimen info.csv", header = TRUE ) rownames( specimen.info ) <- specimen.info[ , "Specimen_name" ] #Load tree setwd( "INSERT DIRECTORY PATH" ) tree <- read.nexus( "Dataset 7. cal3tree.calibrated.txt" ) alternative.tree <- read.nexus("Dataset 8. mbltree.calibrated.txt") #Do GPA of labyrinth shape for all taxa available GPA.data <- landmark.data.temp tree.names <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Tree_names" ] ) skull.box.temp <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "logV_mm3" ] ) #'ecologies' is only needed to delete marine species as well #ecologies <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Plotting_habitat" ] ) #'families' is only needed to exclude chelonioids #families <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Family" ] ) dimnames( GPA.data )[[ 3 ]][ !is.na( tree.names ) ] <- tree.names[ !is.na( tree.names ) ] duplicate.specimens <- which( is.na(tree.names) == TRUE ) no.skull.box <- which (is.na(skull.box.temp) == TRUE ) #'marine' is only needed to delete marine species as well #marine <- which( ecologies[] == "marine" ) #'chelonidoids' is only needed to exclude chelonioids #chelonioids <- which( families[] == "Chelonioidea" ) #include 'marine' from this list for analysis including marine species; same for 'chelonioids' delete.these <- unique(c(duplicate.specimens, no.skull.box)) GPA.data <- GPA.data[,, - delete.these] #Delete inner loop landmarks ASC.loop.landmarks <- which(grepl("loop", dimnames( GPA.data )[[ 1 ]]) == TRUE) GPA.data <- GPA.data[-ASC.loop.landmarks,,] sliders <- sliders[- which( grepl("loop", rownames(sliders)) == TRUE) , ] rows.to.modify <- c( which( grepl("LSC", rownames(sliders)) == TRUE) , which(grepl("PSC", rownames(sliders)) == TRUE ) ) sliders[rows.to.modify, ] <-sliders[rows.to.modify, ] -39 GPA.labyrinth.all <- gpagen( GPA.data , curves = sliders , ProcD = F ) labyrinth.Csize.all <- GPA.labyrinth.all$Csize labyrinth.Csize.all[ labyrinth.Csize.all > 5000 ] <- labyrinth.Csize.all[ labyrinth.Csize.all > 5000 ] / 1000 #DO PCA PCA.labyrinth <- plotTangentSpace( GPA.labyrinth.all$coords , warpgrids = F ) #Prepare tree that has same tips as the shape data blocks tree.temp <- drop.tip( tree , tree$tip.label[ ! tree$tip.label %in% names( GPA.labyrinth.all$Csize ) ] ) #For tests with alternative calibration tree.temp.alternative <- drop.tip( alternative.tree , alternative.tree $tip.label[ ! alternative.tree $tip.label %in% names( GPA.labyrinth.all$Csize ) ] ) #Examine trees plot(tree.temp, cex=0.4) plot(tree.temp.alternative, cex=0.4) ##Make a version of the specimen data that matches the taxon sample data.temp <- specimen.info[ specimen.info$Tree_names %in% tree.temp$tip.label , ] rownames( data.temp ) <- data.temp$Tree_names data.temp <- data.temp[ tree.temp$tip.label , ] ##Make explanatory variables ##Habitat ecology marine.all <- data.temp$Habitat_general == "marine" | data.temp$Fossil_marine == "yes" names( marine.all ) <- rownames( data.temp ) marine.all <- marine.all[ tree.temp$tip.label ] marine.all[which(is.na(marine.all))] <- "FALSE" which(marine.all == TRUE) marine <- data.temp$Habitat_general == "marine" names( marine ) <- rownames( data.temp ) marine <- marine[ tree.temp$tip.label ] marine[which(is.na(marine))] <- "FALSE" which(marine == TRUE) freshwater <- data.temp$Plotting_habitat == "freshwater" names( freshwater ) <- rownames( data.temp ) freshwater <- freshwater[ tree.temp$tip.label ] freshwater[which(is.na(freshwater))] <- "FALSE" which(freshwater == TRUE) terrestrial <- data.temp$Plotting_habitat == "terrestrial" names( terrestrial ) <- rownames( data.temp ) terrestrial <- terrestrial[ tree.temp$tip.label ] terrestrial[which(is.na(terrestrial))] <- "FALSE" which(terrestrial == TRUE) ##Neck categories no_plane <- data.temp$Retraction_type == "none" names( no_plane ) <- rownames( data.temp ) no_plane <- no_plane[ tree.temp$tip.label ] no_plane[which(is.na(no_plane))] <- "FALSE" which(no_plane == TRUE) vertical <- data.temp$Retraction_type == "vertical" names( vertical ) <- rownames( data.temp ) vertical <- vertical[ tree.temp$tip.label ] vertical[which(is.na(vertical))] <- "FALSE" which(vertical == TRUE) horizontal <- data.temp$Retraction_type == "sideways" names( horizontal ) <- rownames( data.temp ) horizontal <- horizontal[ tree.temp$tip.label ] horizontal[which(is.na(horizontal))] <- "FALSE" which(horizontal == TRUE) incomplete_retr <- data.temp$Retratction_ability == "incomplete" names( incomplete_retr ) <- rownames( data.temp ) incomplete_retr <- incomplete_retr[ tree.temp$tip.label ] incomplete_retr[which(is.na(incomplete_retr))] <- "FALSE" which(incomplete_retr == TRUE) full_retr <- data.temp$Retratction_ability == "full" names( full_retr ) <- rownames( data.temp ) full_retr <- full_retr[ tree.temp$tip.label ] full_retr[which(is.na(full_retr))] <- "FALSE" which(full_retr == TRUE) ##Size proxies skull_length.temp <- data.temp$Skull_length_mm names(skull_length.temp) <- rownames (data.temp) skull_length.temp <- skull_length.temp[ tree.temp$tip.label ] skull_width.temp <- data.temp$Skull_width_mm names(skull_width.temp) <- rownames (data.temp) skull_width.temp <- skull_width.temp[ tree.temp$tip.label ] skull_height.temp <- data.temp$Skull_height_mm names(skull_height.temp) <- rownames (data.temp) skull_height.temp <- skull_height.temp[ tree.temp$tip.label ] ##Skull geometry proxy skull_geometry.temp <- skull_height.temp / skull_width.temp #check frequency distribution hist(skull_geometry.temp) #check if these make sense which(skull_geometry.temp[] == max(skull_geometry.temp)) which(skull_geometry.temp[] == min(skull_geometry.temp)) #Make a big data frame for analyses gdf <- geomorph.data.frame( shape = GPA.labyrinth.all$coords[ ,, tree.temp$tip.label ] , phy = tree.temp , marine = marine , freshwater = freshwater , terrestrial = terrestrial , marine.all = marine.all, no_plane = no_plane, vertical = vertical, horizontal = horizontal, incomplete_retr = incomplete_retr, full_retr = full_retr, skull_length = log10( skull_length.temp ) , skull_width = log10(skull_width.temp) , skull_height = log10(skull_height.temp) , skull_box = data.temp[ tree.temp$tip.label , "logV_mm3" ] , labyrinth_Csize = log10( labyrinth.Csize.all )[ tree.temp$tip.label ] , skull_geometry = skull_geometry.temp) ##In this script we're setting up all the combinations of explanatory variables for the right sizes of the models, # and then running them all in a loop. This makes it easy to add regression models by extending the vector called "right.sides". #as the model building process was iterative, several models that were initially explored are muted below. #Models that are active are those reported in the table <shape_models_incl_fossils> right.sides <- c( #following models test relations of size variables as correlates of shape, exploring allometric effects "skull_length" , "skull_width", "skull_height", "skull_box" , "labyrinth_Csize" , # -> skull height performs best (R2), followed by skull box. #following model tests relations of skull geometry as correlates of shape "skull_geometry" , # -> significant and explains much of the variance #following models test independent effect of skull size and labyrinth size # "skull_length + labyrinth_Csize" , "skull_box + labyrinth_Csize" , #-> both models show significant indipendent effect, skull box performs better #following models test independent effect of skull size and skull geometry # "skull_length + skull_geometry" , "skull_box + skull_geometry" , "skull_height + skull_geometry", #-> all models significant. in the height+geometry model, proportion of variance explained is near equal between both variables #-> in other models, more variance is explanation is attributed to geometry than skull size #following models test independent effect of skull geometry and labyrinth size # "skull_geometry + labyrinth_Csize" , # -> also significant #following models test independent effects of skull size and skull geometry and labyrinth size # "skull_length + skull_geometry + labyrinth_Csize" , #slightly worse in R2 than below model # "skull_box + skull_geometry + labyrinth_Csize" , #slightly better in R2 than above model #-> all independent effects are important #following models test non-independent effects, i.e. hypothesis that taxa with prop. larger labyrinths in relation to skull size have different laby shapes # "skull_length * labyrinth_Csize" , # # "skull_box * labyrinth_Csize" , #interaction term significant # # "skull_box * labyrinth_Csize + skull_geometry" , #->interaction term remains significant #following models test non-independent effects, i.e. hypothesis that taxa with higher/broader skulls in relation to skull size have different laby shapes # "skull_length * skull_geometry" , #slightly worse in R2 than below model # "skull_box * skull_geometry" , #slightly better in R2 than above model #-> interaction term is significant #the following models ask: do terrestrial turtles have a different mean labyrinth shape than non-terrestrial trutles? # -> initial analyses show: only freshwater and terretrial are relevant "terrestrial" , "freshwater", "marine.all", "marine" , #-> marine extant variables not significant #-> marine all near significant #->terrestrial not significant #->freshwater not significant #the following models ask: do turtles with/without neck retraction have a different mean labyrinth shapes? "incomplete_retr" , "full_retr", #both non significant #the following models ask: do turtles with specific neck retractions have a different mean labyrinth shapes? "no_plane" , "vertical", "horizontal", #all non significant # "skull_box * skull_geometry + labyrinth_Csize + incomplete_retr", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + full_retr", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + no_plane", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + vertical", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + horizontal", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + freshwater", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + terrestrial", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + marine.all", #non-significant #check if ecological effects are redundant with skull size # "skull_box + marine.all" , #marine.all becomes clearly non-significant, indicating the near-significant effect in bivarite models can be explained by skull size # "labyrinth_Csize + marine.all" , #marine all remains near significnt significant # "skull_geometry + marine.all" , #marine,all remains near significant #Further tests for effect of marine.all # "skull_box + skull_geometry + labyrinth_Csize + marine.all" , #also insignificant, not further considered #are ecological effects important when included in the best model: # "skull_box * skull_geometry + labyrinth_Csize + marine.all" , # -> marine remains non significant #best model excludes ecological effects: "skull_box * skull_geometry + labyrinth_Csize" #-> all model parameters signifciant, brain case shape explains most of variance ) models <- paste( "shape ~" , right.sides ) models <- lapply( models , as.formula ) ##Run Procrustes distance pGLS analyses (Adams 2014) procD.pgls.fits <- list() for( i in 1:length( models ) ) { procD.pgls.fits[[ i ]] <- procD.pgls( models[[ i ]] , phy = phy , SS.type = "II" , data = gdf ) } ##See summaries of procD.pgls results model.summaries <- lapply( procD.pgls.fits , summary ) model.summaries[15] #Print all coefficents to file capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_incl_fossils.txt") capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_excl_marine_species.txt") capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_excl_chelonioids.txt") capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_no_ASCloop.txt") ##Altermative run with alternative tree gdf2 <- geomorph.data.frame( shape = GPA.labyrinth.all$coords[ ,, tree.temp$tip.label ] , phy = tree.temp.alternative , marine = marine , freshwater = freshwater , terrestrial = terrestrial , marine.all = marine.all, no_plane = no_plane, vertical = vertical, horizontal = horizontal, incomplete_retr = incomplete_retr, full_retr = full_retr, skull_length = log10( skull_length.temp ) , skull_width = log10(skull_width.temp) , skull_height = log10(skull_height.temp) , skull_box = data.temp[ tree.temp$tip.label , "logV_mm3" ] , labyrinth_Csize = log10( labyrinth.Csize.all )[ tree.temp$tip.label ] , skull_geometry = skull_geometry.temp) procD.pgls.fits.2 <- list() for( i in 1:length( models ) ) { procD.pgls.fits.2[[ i ]] <- procD.pgls( models[[ i ]] , phy = phy , SS.type = "II" , data = gdf2 ) } ##See summaries of procD.pgls results model.summaries.2 <- lapply( procD.pgls.fits.2 , summary ) #Print all coefficents to file capture.output(model.summaries.2, file = "Labyrinth_shape_model_summaries_incl_fossils_alternative_tree.txt") ##Phylogenetic signal from Procrustes shape variables physig <- physignal(gdf$shape, phy = gdf$phy) summary(physig) plot(physig)
/Dataset 11. Labyrinth shape model comparisons.R
no_license
SerjoschaEvers/Turtle-Labyrinth-Ecomorphology-and-Evolution-Data
R
false
false
15,719
r
### Load packages require( geomorph ) require( ape ) #Clear workspace rm( list = ls() ) #Set working directory to where turtle landmark data (from supplemental folder) is stored setwd( "INSERT DIRECTORY PATH" ) #Load landmark data and transform to correct format for GPA commands temp.file <- list.files(pattern = ".csv") landmark.data <- lapply (temp.file, read.csv, row.names=1) names(landmark.data) <- gsub(".csv","",temp.file) landmark.data.temp <- array(as.numeric(unlist(landmark.data)), dim = c(123, 3, 184)) #number of landmarks, number of dimensions (3D coordinates), number of specimens dimnames(landmark.data.temp)[[3]] <- gsub(".csv","",temp.file) dimnames(landmark.data.temp)[[1]] <- rownames(landmark.data[[1]]) dimnames(landmark.data.temp)[[2]] <- c("x","y","z") #Load slider information and colour information for deformation plots setwd( "INSERT DIRECTORY PATH" ) sliders <- read.csv("Dataset 4. sliders.turtles.csv", row.names=1) colours <- as.character( read.csv("Dataset 5. landmark_colours.csv", row.names=1)[,1] ) #Load specimen information setwd( "INSERT DIRECTORY PATH" ) specimen.info <- read.csv( "Dataset 2. Specimen info.csv", header = TRUE ) rownames( specimen.info ) <- specimen.info[ , "Specimen_name" ] #Load tree setwd( "INSERT DIRECTORY PATH" ) tree <- read.nexus( "Dataset 7. cal3tree.calibrated.txt" ) alternative.tree <- read.nexus("Dataset 8. mbltree.calibrated.txt") #Do GPA of labyrinth shape for all taxa available GPA.data <- landmark.data.temp tree.names <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Tree_names" ] ) skull.box.temp <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "logV_mm3" ] ) #'ecologies' is only needed to delete marine species as well #ecologies <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Plotting_habitat" ] ) #'families' is only needed to exclude chelonioids #families <- as.character( specimen.info[ dimnames( GPA.data )[[ 3 ]] , "Family" ] ) dimnames( GPA.data )[[ 3 ]][ !is.na( tree.names ) ] <- tree.names[ !is.na( tree.names ) ] duplicate.specimens <- which( is.na(tree.names) == TRUE ) no.skull.box <- which (is.na(skull.box.temp) == TRUE ) #'marine' is only needed to delete marine species as well #marine <- which( ecologies[] == "marine" ) #'chelonidoids' is only needed to exclude chelonioids #chelonioids <- which( families[] == "Chelonioidea" ) #include 'marine' from this list for analysis including marine species; same for 'chelonioids' delete.these <- unique(c(duplicate.specimens, no.skull.box)) GPA.data <- GPA.data[,, - delete.these] #Delete inner loop landmarks ASC.loop.landmarks <- which(grepl("loop", dimnames( GPA.data )[[ 1 ]]) == TRUE) GPA.data <- GPA.data[-ASC.loop.landmarks,,] sliders <- sliders[- which( grepl("loop", rownames(sliders)) == TRUE) , ] rows.to.modify <- c( which( grepl("LSC", rownames(sliders)) == TRUE) , which(grepl("PSC", rownames(sliders)) == TRUE ) ) sliders[rows.to.modify, ] <-sliders[rows.to.modify, ] -39 GPA.labyrinth.all <- gpagen( GPA.data , curves = sliders , ProcD = F ) labyrinth.Csize.all <- GPA.labyrinth.all$Csize labyrinth.Csize.all[ labyrinth.Csize.all > 5000 ] <- labyrinth.Csize.all[ labyrinth.Csize.all > 5000 ] / 1000 #DO PCA PCA.labyrinth <- plotTangentSpace( GPA.labyrinth.all$coords , warpgrids = F ) #Prepare tree that has same tips as the shape data blocks tree.temp <- drop.tip( tree , tree$tip.label[ ! tree$tip.label %in% names( GPA.labyrinth.all$Csize ) ] ) #For tests with alternative calibration tree.temp.alternative <- drop.tip( alternative.tree , alternative.tree $tip.label[ ! alternative.tree $tip.label %in% names( GPA.labyrinth.all$Csize ) ] ) #Examine trees plot(tree.temp, cex=0.4) plot(tree.temp.alternative, cex=0.4) ##Make a version of the specimen data that matches the taxon sample data.temp <- specimen.info[ specimen.info$Tree_names %in% tree.temp$tip.label , ] rownames( data.temp ) <- data.temp$Tree_names data.temp <- data.temp[ tree.temp$tip.label , ] ##Make explanatory variables ##Habitat ecology marine.all <- data.temp$Habitat_general == "marine" | data.temp$Fossil_marine == "yes" names( marine.all ) <- rownames( data.temp ) marine.all <- marine.all[ tree.temp$tip.label ] marine.all[which(is.na(marine.all))] <- "FALSE" which(marine.all == TRUE) marine <- data.temp$Habitat_general == "marine" names( marine ) <- rownames( data.temp ) marine <- marine[ tree.temp$tip.label ] marine[which(is.na(marine))] <- "FALSE" which(marine == TRUE) freshwater <- data.temp$Plotting_habitat == "freshwater" names( freshwater ) <- rownames( data.temp ) freshwater <- freshwater[ tree.temp$tip.label ] freshwater[which(is.na(freshwater))] <- "FALSE" which(freshwater == TRUE) terrestrial <- data.temp$Plotting_habitat == "terrestrial" names( terrestrial ) <- rownames( data.temp ) terrestrial <- terrestrial[ tree.temp$tip.label ] terrestrial[which(is.na(terrestrial))] <- "FALSE" which(terrestrial == TRUE) ##Neck categories no_plane <- data.temp$Retraction_type == "none" names( no_plane ) <- rownames( data.temp ) no_plane <- no_plane[ tree.temp$tip.label ] no_plane[which(is.na(no_plane))] <- "FALSE" which(no_plane == TRUE) vertical <- data.temp$Retraction_type == "vertical" names( vertical ) <- rownames( data.temp ) vertical <- vertical[ tree.temp$tip.label ] vertical[which(is.na(vertical))] <- "FALSE" which(vertical == TRUE) horizontal <- data.temp$Retraction_type == "sideways" names( horizontal ) <- rownames( data.temp ) horizontal <- horizontal[ tree.temp$tip.label ] horizontal[which(is.na(horizontal))] <- "FALSE" which(horizontal == TRUE) incomplete_retr <- data.temp$Retratction_ability == "incomplete" names( incomplete_retr ) <- rownames( data.temp ) incomplete_retr <- incomplete_retr[ tree.temp$tip.label ] incomplete_retr[which(is.na(incomplete_retr))] <- "FALSE" which(incomplete_retr == TRUE) full_retr <- data.temp$Retratction_ability == "full" names( full_retr ) <- rownames( data.temp ) full_retr <- full_retr[ tree.temp$tip.label ] full_retr[which(is.na(full_retr))] <- "FALSE" which(full_retr == TRUE) ##Size proxies skull_length.temp <- data.temp$Skull_length_mm names(skull_length.temp) <- rownames (data.temp) skull_length.temp <- skull_length.temp[ tree.temp$tip.label ] skull_width.temp <- data.temp$Skull_width_mm names(skull_width.temp) <- rownames (data.temp) skull_width.temp <- skull_width.temp[ tree.temp$tip.label ] skull_height.temp <- data.temp$Skull_height_mm names(skull_height.temp) <- rownames (data.temp) skull_height.temp <- skull_height.temp[ tree.temp$tip.label ] ##Skull geometry proxy skull_geometry.temp <- skull_height.temp / skull_width.temp #check frequency distribution hist(skull_geometry.temp) #check if these make sense which(skull_geometry.temp[] == max(skull_geometry.temp)) which(skull_geometry.temp[] == min(skull_geometry.temp)) #Make a big data frame for analyses gdf <- geomorph.data.frame( shape = GPA.labyrinth.all$coords[ ,, tree.temp$tip.label ] , phy = tree.temp , marine = marine , freshwater = freshwater , terrestrial = terrestrial , marine.all = marine.all, no_plane = no_plane, vertical = vertical, horizontal = horizontal, incomplete_retr = incomplete_retr, full_retr = full_retr, skull_length = log10( skull_length.temp ) , skull_width = log10(skull_width.temp) , skull_height = log10(skull_height.temp) , skull_box = data.temp[ tree.temp$tip.label , "logV_mm3" ] , labyrinth_Csize = log10( labyrinth.Csize.all )[ tree.temp$tip.label ] , skull_geometry = skull_geometry.temp) ##In this script we're setting up all the combinations of explanatory variables for the right sizes of the models, # and then running them all in a loop. This makes it easy to add regression models by extending the vector called "right.sides". #as the model building process was iterative, several models that were initially explored are muted below. #Models that are active are those reported in the table <shape_models_incl_fossils> right.sides <- c( #following models test relations of size variables as correlates of shape, exploring allometric effects "skull_length" , "skull_width", "skull_height", "skull_box" , "labyrinth_Csize" , # -> skull height performs best (R2), followed by skull box. #following model tests relations of skull geometry as correlates of shape "skull_geometry" , # -> significant and explains much of the variance #following models test independent effect of skull size and labyrinth size # "skull_length + labyrinth_Csize" , "skull_box + labyrinth_Csize" , #-> both models show significant indipendent effect, skull box performs better #following models test independent effect of skull size and skull geometry # "skull_length + skull_geometry" , "skull_box + skull_geometry" , "skull_height + skull_geometry", #-> all models significant. in the height+geometry model, proportion of variance explained is near equal between both variables #-> in other models, more variance is explanation is attributed to geometry than skull size #following models test independent effect of skull geometry and labyrinth size # "skull_geometry + labyrinth_Csize" , # -> also significant #following models test independent effects of skull size and skull geometry and labyrinth size # "skull_length + skull_geometry + labyrinth_Csize" , #slightly worse in R2 than below model # "skull_box + skull_geometry + labyrinth_Csize" , #slightly better in R2 than above model #-> all independent effects are important #following models test non-independent effects, i.e. hypothesis that taxa with prop. larger labyrinths in relation to skull size have different laby shapes # "skull_length * labyrinth_Csize" , # # "skull_box * labyrinth_Csize" , #interaction term significant # # "skull_box * labyrinth_Csize + skull_geometry" , #->interaction term remains significant #following models test non-independent effects, i.e. hypothesis that taxa with higher/broader skulls in relation to skull size have different laby shapes # "skull_length * skull_geometry" , #slightly worse in R2 than below model # "skull_box * skull_geometry" , #slightly better in R2 than above model #-> interaction term is significant #the following models ask: do terrestrial turtles have a different mean labyrinth shape than non-terrestrial trutles? # -> initial analyses show: only freshwater and terretrial are relevant "terrestrial" , "freshwater", "marine.all", "marine" , #-> marine extant variables not significant #-> marine all near significant #->terrestrial not significant #->freshwater not significant #the following models ask: do turtles with/without neck retraction have a different mean labyrinth shapes? "incomplete_retr" , "full_retr", #both non significant #the following models ask: do turtles with specific neck retractions have a different mean labyrinth shapes? "no_plane" , "vertical", "horizontal", #all non significant # "skull_box * skull_geometry + labyrinth_Csize + incomplete_retr", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + full_retr", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + no_plane", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + vertical", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + horizontal", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + freshwater", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + terrestrial", #non-significant # "skull_box * skull_geometry + labyrinth_Csize + marine.all", #non-significant #check if ecological effects are redundant with skull size # "skull_box + marine.all" , #marine.all becomes clearly non-significant, indicating the near-significant effect in bivarite models can be explained by skull size # "labyrinth_Csize + marine.all" , #marine all remains near significnt significant # "skull_geometry + marine.all" , #marine,all remains near significant #Further tests for effect of marine.all # "skull_box + skull_geometry + labyrinth_Csize + marine.all" , #also insignificant, not further considered #are ecological effects important when included in the best model: # "skull_box * skull_geometry + labyrinth_Csize + marine.all" , # -> marine remains non significant #best model excludes ecological effects: "skull_box * skull_geometry + labyrinth_Csize" #-> all model parameters signifciant, brain case shape explains most of variance ) models <- paste( "shape ~" , right.sides ) models <- lapply( models , as.formula ) ##Run Procrustes distance pGLS analyses (Adams 2014) procD.pgls.fits <- list() for( i in 1:length( models ) ) { procD.pgls.fits[[ i ]] <- procD.pgls( models[[ i ]] , phy = phy , SS.type = "II" , data = gdf ) } ##See summaries of procD.pgls results model.summaries <- lapply( procD.pgls.fits , summary ) model.summaries[15] #Print all coefficents to file capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_incl_fossils.txt") capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_excl_marine_species.txt") capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_excl_chelonioids.txt") capture.output(model.summaries, file = "Labyrinth_shape_model_summaries_no_ASCloop.txt") ##Altermative run with alternative tree gdf2 <- geomorph.data.frame( shape = GPA.labyrinth.all$coords[ ,, tree.temp$tip.label ] , phy = tree.temp.alternative , marine = marine , freshwater = freshwater , terrestrial = terrestrial , marine.all = marine.all, no_plane = no_plane, vertical = vertical, horizontal = horizontal, incomplete_retr = incomplete_retr, full_retr = full_retr, skull_length = log10( skull_length.temp ) , skull_width = log10(skull_width.temp) , skull_height = log10(skull_height.temp) , skull_box = data.temp[ tree.temp$tip.label , "logV_mm3" ] , labyrinth_Csize = log10( labyrinth.Csize.all )[ tree.temp$tip.label ] , skull_geometry = skull_geometry.temp) procD.pgls.fits.2 <- list() for( i in 1:length( models ) ) { procD.pgls.fits.2[[ i ]] <- procD.pgls( models[[ i ]] , phy = phy , SS.type = "II" , data = gdf2 ) } ##See summaries of procD.pgls results model.summaries.2 <- lapply( procD.pgls.fits.2 , summary ) #Print all coefficents to file capture.output(model.summaries.2, file = "Labyrinth_shape_model_summaries_incl_fossils_alternative_tree.txt") ##Phylogenetic signal from Procrustes shape variables physig <- physignal(gdf$shape, phy = gdf$phy) summary(physig) plot(physig)
library(igraph) load_graph <- function(filename) { edgelist <- read.table(filename, sep = "", header = F) return(edgelist) } convert_graph <- function(graph_df) { e <- c() for(i in 1:nrow(graph_df)) { row <- graph_df[i,] e <- c(e, row[[1]] + 1) e <- c(e, row[[2]] + 1) } return(graph(edges = e, n = max(graph_df, na.rm = T) + 1, directed = F)) } embed_graph <- function(graph) { return(labne_hm(net = graph, gma = 2.3, Temp = 0.15, k.speedup = 10, w = 2*pi)) }
/hypermap/hyper_embed.R
no_license
mananshah99/hyperbolic
R
false
false
476
r
library(igraph) load_graph <- function(filename) { edgelist <- read.table(filename, sep = "", header = F) return(edgelist) } convert_graph <- function(graph_df) { e <- c() for(i in 1:nrow(graph_df)) { row <- graph_df[i,] e <- c(e, row[[1]] + 1) e <- c(e, row[[2]] + 1) } return(graph(edges = e, n = max(graph_df, na.rm = T) + 1, directed = F)) } embed_graph <- function(graph) { return(labne_hm(net = graph, gma = 2.3, Temp = 0.15, k.speedup = 10, w = 2*pi)) }
# Solution to question 2 # V, the given matrix: V <- matrix(c(3, -1, 1, -1, 5, -1, 1, -1, 3), 3) # Q (orthogonal here) contains eigenvectors in its columns: Q <- eigen(V)$vectors # D contains the inverse square roots of of V's eigenvalues # on the diagonal, zeros elsewhere: D <- diag(1/sqrt(eigen(V)$values)) # The desired `inverse square root` matrix: W <- Q %*% D %*% t(Q) # W %*% W #check that this returns solve(V)
/week2/question2.R
no_license
david-dobor/8004
R
false
false
450
r
# Solution to question 2 # V, the given matrix: V <- matrix(c(3, -1, 1, -1, 5, -1, 1, -1, 3), 3) # Q (orthogonal here) contains eigenvectors in its columns: Q <- eigen(V)$vectors # D contains the inverse square roots of of V's eigenvalues # on the diagonal, zeros elsewhere: D <- diag(1/sqrt(eigen(V)$values)) # The desired `inverse square root` matrix: W <- Q %*% D %*% t(Q) # W %*% W #check that this returns solve(V)
\name{LaplacesDemonCpp-package} \alias{LaplacesDemonCpp-package} \alias{LaplacesDemonCpp} \alias{.colVars} \alias{.iqagh} \alias{.iqaghsg} \alias{.iqcagh} \alias{.laaga} \alias{.labfgs} \alias{.labhhh} \alias{.lacg} \alias{.ladfp} \alias{.lahar} \alias{.lahj} \alias{.lalbfgs} \alias{.lalm} \alias{.lanm} \alias{.lanr} \alias{.lapso} \alias{.larprop} \alias{.lasgd} \alias{.lasoma} \alias{.laspg} \alias{.lasr1} \alias{.latr} \alias{.mcmcadmg} \alias{.mcmcagg} \alias{.mcmcahmc} \alias{.mcmcaies} \alias{.mcmcam} \alias{.mcmcamm} \alias{.mcmcamm.b} \alias{.mcmcamwg} \alias{.mcmccharm} \alias{.mcmcdemc} \alias{.mcmcdram} \alias{.mcmcdrm} \alias{.mcmcess} \alias{.mcmcgibbs} \alias{.mcmcgg} \alias{.mcmcggcp} \alias{.mcmcggcpp} \alias{.mcmcggdp} \alias{.mcmcggdpp} \alias{.mcmcharm} \alias{.mcmchmc} \alias{.mcmchmcda} \alias{.mcmcim} \alias{.mcmcinca} \alias{.mcmcmala} \alias{.mcmcmcmcmc} \alias{.mcmcmtm} \alias{.mcmcmwg} \alias{.mcmcnuts} \alias{.mcmcohss} \alias{.mcmcram} \alias{.mcmcrdmh} \alias{.mcmcrefractive} \alias{.mcmcrj} \alias{.mcmcrss} \alias{.mcmcrwm} \alias{.mcmcsamwg} \alias{.mcmcsgld} \alias{.mcmcslice} \alias{.mcmcsmwg} \alias{.mcmcthmc} \alias{.mcmctwalk} \alias{.mcmcuess} \alias{.mcmcusamwg} \alias{.mcmcusmwg} \alias{.rowVars} \alias{.vbsalimans2} \docType{package} \title{ LaplacesDemonCpp is an R package that includes C++ functions as an extension to the LaplacesDemon package. } \description{ The LaplacesDemon package is a complete environment for Bayesian inference in R. LaplacesDemon is written entirely in R. C++ is valuable for speed. This package consists of C++ functions to be used with the LaplacesDemon package. } \details{ \tabular{ll}{ Package: \tab LaplacesDemonCpp\cr Type: \tab Package\cr Version: \tab 2014-06-23\cr Date: \tab 2014-06-23\cr License: \tab MIT\cr } The LaplacesDemonCpp package consists of C++ functions that replace functions written in R in LaplacesDemon. Documentation exists, but is minimal, because these functions are fully documented in the LaplacesDemon package. To use LaplacesDemonCpp, simply activate the LaplacesDemonCpp library, and any C++ functions here will replace the R functions in LaplacesDemon. } \author{Statisticat, LLC. \email{software@bayesian-inference.com}} \keyword{package}
/man/LaplacesDemonCpp-package.Rd
permissive
sakex/LaplacesDemonCpp
R
false
false
2,319
rd
\name{LaplacesDemonCpp-package} \alias{LaplacesDemonCpp-package} \alias{LaplacesDemonCpp} \alias{.colVars} \alias{.iqagh} \alias{.iqaghsg} \alias{.iqcagh} \alias{.laaga} \alias{.labfgs} \alias{.labhhh} \alias{.lacg} \alias{.ladfp} \alias{.lahar} \alias{.lahj} \alias{.lalbfgs} \alias{.lalm} \alias{.lanm} \alias{.lanr} \alias{.lapso} \alias{.larprop} \alias{.lasgd} \alias{.lasoma} \alias{.laspg} \alias{.lasr1} \alias{.latr} \alias{.mcmcadmg} \alias{.mcmcagg} \alias{.mcmcahmc} \alias{.mcmcaies} \alias{.mcmcam} \alias{.mcmcamm} \alias{.mcmcamm.b} \alias{.mcmcamwg} \alias{.mcmccharm} \alias{.mcmcdemc} \alias{.mcmcdram} \alias{.mcmcdrm} \alias{.mcmcess} \alias{.mcmcgibbs} \alias{.mcmcgg} \alias{.mcmcggcp} \alias{.mcmcggcpp} \alias{.mcmcggdp} \alias{.mcmcggdpp} \alias{.mcmcharm} \alias{.mcmchmc} \alias{.mcmchmcda} \alias{.mcmcim} \alias{.mcmcinca} \alias{.mcmcmala} \alias{.mcmcmcmcmc} \alias{.mcmcmtm} \alias{.mcmcmwg} \alias{.mcmcnuts} \alias{.mcmcohss} \alias{.mcmcram} \alias{.mcmcrdmh} \alias{.mcmcrefractive} \alias{.mcmcrj} \alias{.mcmcrss} \alias{.mcmcrwm} \alias{.mcmcsamwg} \alias{.mcmcsgld} \alias{.mcmcslice} \alias{.mcmcsmwg} \alias{.mcmcthmc} \alias{.mcmctwalk} \alias{.mcmcuess} \alias{.mcmcusamwg} \alias{.mcmcusmwg} \alias{.rowVars} \alias{.vbsalimans2} \docType{package} \title{ LaplacesDemonCpp is an R package that includes C++ functions as an extension to the LaplacesDemon package. } \description{ The LaplacesDemon package is a complete environment for Bayesian inference in R. LaplacesDemon is written entirely in R. C++ is valuable for speed. This package consists of C++ functions to be used with the LaplacesDemon package. } \details{ \tabular{ll}{ Package: \tab LaplacesDemonCpp\cr Type: \tab Package\cr Version: \tab 2014-06-23\cr Date: \tab 2014-06-23\cr License: \tab MIT\cr } The LaplacesDemonCpp package consists of C++ functions that replace functions written in R in LaplacesDemon. Documentation exists, but is minimal, because these functions are fully documented in the LaplacesDemon package. To use LaplacesDemonCpp, simply activate the LaplacesDemonCpp library, and any C++ functions here will replace the R functions in LaplacesDemon. } \author{Statisticat, LLC. \email{software@bayesian-inference.com}} \keyword{package}
#Use fold change change data to look for trends in gene expression changes and make line plots install.packages("ggplot2") install.packages("reshape2") install.packages("pheatmap") install.packages("tidyr") install.packages("reshape") library(ggplot2) library(reshape2) library(pheatmap) library(tidyr) library(reshape) #Here, I am reading in data that describes the samples associated with each file name phenodata2 = read.csv("~/Data/rnaseq_data/rnaseq.phenotypedata.csv", header = FALSE) #here, I am creating lists with specific genes I want to look at wnt = c("APC","ASCL1","ASCL2","AXIN1","AXIN2","CTNNB1","BCL9","BCL92","ABL1","CSNK1A1","CSNK1D","DIXDC1","CREB","DVL1","DVL2","DVL3","DRAXIN","GSK3A","GSK3B","TGFB1I1","CTNNBIP1", "PYGO1","PYGO2","HNF1B","UBE2A","TCF7","TCF7L1","TLE2") crc = c("AKT1", "AKT2","AKT3","APC","APC2","APPL1","ARAF","Axin1","AXIN2","BAD","BAX","BCL2","BIRC5","BRAF","casp3","CASP9","CCND1","CTNNB1","CYCS","DCC","FOS","GSK3B","JUN","KRAS","LEF1","MAP2K1","MAPK1","MAPK10","MAPK3","MAPK8","MAPK9","MLH1","MSH2","MSH3","MSH6","MYC","PIK3CA","PIK3CB","PIK3CD","PIK3CG","PIK3R1","PIK3R2","PIK3R3","PIK3R5","RAC1","RAC2","RAC3","RAF1","RALGDS","RHOA","SMAD2","SMAD3","SMAD4","TCF7","TCF7L1","TCF7L2","TGFB1","TGFB2","TGFB3","TGFBR1","TGFBR2","TP53") bcat = c("MYC","MYCN","CCND1","HNF1A","LEF1","PPARD","JUN","FOSL1","PLAUR","MMP7","AXIN2","NRCAM","TCF4","GAST","CD44","EFNB1","EFNB2","BMP4","CLDN1","BIRC5","VEGFA","FGF18","ATOH1","MET","EDN1","MYCBP","L1CAM","ID2","JAG1","MSL1","TIAM1","NOS2","TERT","DKK1","FGF9","LBH","FGF20","LGR5","SOX9","SOX17","RUNX2","GREM1","SALL4","TNFSF11","TNFRSF11B","CYR61","PTTG1","DLL1","FOXN1","MMP26","NANOG","POU5F1","SNAI1","FN1","FZD7","ISL1","MMP2","MMP9","FST","WNT3A","TWIST1","TBX3","GBX2","CACNA1G","CDC25","WISP1","WISP2","IGF2","EMP1","IGF1","VEGFC","PTGS2","IL6","PITX2","EGFR","CDH1","CDKN2A","CTLA4","CXCL8","VCAN","TNFRSF19") # INFO FROM https://web.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes #read in 24hrbft2 expression data expres.24 = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.24 = expres.24[expres.24$condition %in% c("24hrbft2"),] expres.24 = expres.24[order(expres.24$target_id),] expres.24$logtpm= log2(expres.24$tpm + 1) #expres.24 = expres.24[expres.24$logtpm>1,] expres.24 = merge(expres.24, phenodata2, by.x= "sample", by.y= "V1") expres.24 = expres.24[order(expres.24$target_id),] #read in 24hrblank data expres.24b = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.24b = expres.24b[expres.24b$condition %in% c("24blank"),] expres.24b = expres.24b[order(expres.24b$target_id),] expres.24b$logtpm= log2(expres.24b$tpm + 1) #expres.24b = expres.24b[expres.24b$logtpm>1,] expres.24b = merge(expres.24b, phenodata2, by.x= "sample", by.y= "V1") expres.24b = expres.24b[order(expres.24b$target_id),] #split up data for each group expres.24.220 = expres.24[expres.24$V2=="24hrbft2.220",] expres.24.031 = expres.24[expres.24$V2=="24hrbft2.031",] expres.24.trial1 = expres.24[expres.24$V2=="24hrbft2.trial1",] expres.24b.220 = expres.24b[expres.24b$V2=="24blank.220",] expres.24b.031 = expres.24b[expres.24b$V2=="24blank.031",] expres.24b.trial1 = expres.24b[expres.24b$V2=="24blank.trial1",] #calculate the logfc in expression between blank and bft2 samples then combine all the samples, then get rid of low expressing genes expres.24.220$logfc = log2((1+expres.24.220$tpm)/(1+expres.24b.220$tpm)) expres.24.031$logfc = log2((1+expres.24.031$tpm)/(1+expres.24b.031$tpm)) expres.24.trial1$logfc = log2((1+expres.24.trial1$tpm)/(1+expres.24b.trial1$tpm)) expres.24.all=rbind(expres.24.220, expres.24.trial1, expres.24.031) #expres.24.all = expres.24.all[expres.24.all$logtpm>1,] #read in 48hrbft2 expression data expres.48 = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.48 = expres.48[expres.48$condition %in% c("48hrbft2"),] expres.48 = expres.48[order(expres.48$target_id),] expres.48$logtpm= log2(expres.48$tpm + 1) #expres.48 = expres.48[expres.48$logtpm>1,] expres.48 = merge(expres.48, phenodata2, by.x= "sample", by.y= "V1") expres.48 = expres.48[order(expres.48$target_id),] #read in 48hrblank data expres.48b = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.48b = expres.48b[expres.48b$condition %in% c("48blank"),] expres.48b = expres.48b[order(expres.48b$target_id),] expres.48b$logtpm= log2(expres.48b$tpm + 1) #expres.48b = expres.48b[expres.48b$logtpm>1,] expres.48b = merge(expres.48b, phenodata2, by.x= "sample", by.y= "V1") expres.48b = expres.48b[order(expres.48b$target_id),] #separate out replicate groups expres.48.220 = expres.48[expres.48$V2=="48hrbft2.220",] expres.48.031 = expres.48[expres.48$V2=="48hrbft2.031",] expres.48.trial1 = expres.48[expres.48$V2=="48hrbft2.trial1",] expres.48b.220 = expres.48b[expres.48b$V2=="48blank.220",] expres.48b.031 = expres.48b[expres.48b$V2=="48blank.031",] expres.48b.trial1 = expres.48b[expres.48b$V2=="48blank.trial1",] #calculate logfc for the differnce in expression between bft2 and blank, then combine samples, then get rid of low expressing genes expres.48.220$logfc = log2((1+expres.48.220$tpm)/(1+expres.48b.220$tpm)) expres.48.031$logfc = log2((1+expres.48.031$tpm)/(1+expres.48b.031$tpm)) expres.48.trial1$logfc = log2((1+expres.48.trial1$tpm)/(1+expres.48b.trial1$tpm)) expres.48.all = rbind(expres.48.220, expres.48.trial1, expres.48.031)#do not remove 031 time point because it looks like an outlier #expres.48.all = expres.48.all[expres.48.all$logtpm>1,] #################### #set up data to be run with pheatmap function expres.2448.wnt = rbind(expres.24.all, expres.48.all) #get average logfc setup.expres.wnt = expres.2448.wnt[ ,c("target_id","V2","logfc")] setup.expres.wnt.melt = melt(setup.expres.wnt, target_id=c("target_id","logfc")) setup.expres.wnt.melt.cast = cast(setup.expres.wnt.melt, target_id~V2, mean) setup.expres.wnt.melt.names = setup.expres.wnt.melt.cast row.names(setup.expres.wnt.melt.names) = setup.expres.wnt.melt.names[ ,1] setup.expres.wnt.melt.names = setup.expres.wnt.melt.names[ ,-1] #these 3 commands make my sample names my row names colnames(setup.expres.wnt.melt.names) = c("hr24bft2.031","hr24bft2.220","hr24bft2.trial1","hr48bft2.031","hr48bft2.220","hr48bft2.trial1") expres.wnt.averages = setup.expres.wnt.melt.names expres.wnt.averages$average24hrbft2 = (expres.wnt.averages$hr24bft2.031 + expres.wnt.averages$hr24bft2.220 + expres.wnt.averages$hr24bft2.trial1)/3 expres.wnt.averages$average48hrbft2 = (expres.wnt.averages$hr48bft2.031 + expres.wnt.averages$hr48bft2.220 + expres.wnt.averages$hr48bft2.trial1)/3 expres.wnt.averages = expres.wnt.averages [ , c("average24hrbft2","average48hrbft2")] expres.wnt.averages.df = data.frame(expres.wnt.averages) expres.wnt.averages.df$target_id= rownames(expres.wnt.averages.df) expres.wnt.averages.melt = melt(expres.wnt.averages.df) colnames(expres.wnt.averages.melt) = c("target_id","variable","average_logfc") #get average tpm values setup.expres.wnt.tpm = expres.2448.wnt[ ,c("target_id","V2","tpm")] setup.expres.wnt.tpm.melt = melt(setup.expres.wnt.tpm, target_id=c("target_id","tpm")) setup.expres.wnt.tpm.melt.cast = cast(setup.expres.wnt.tpm.melt, target_id~V2, mean) setup.expres.wnt.tpm.melt.names = setup.expres.wnt.tpm.melt.cast row.names(setup.expres.wnt.tpm.melt.names) = setup.expres.wnt.tpm.melt.names[ ,1] setup.expres.wnt.tpm.melt.names = setup.expres.wnt.tpm.melt.names[ ,-1] #these 3 commands make my sample names my row names colnames(setup.expres.wnt.tpm.melt.names) = c("hr24bft2.031","hr24bft2.220","hr24bft2.trial1","hr48bft2.031","hr48bft2.220","hr48bft2.trial1") expres.wnt.tpm.averages = setup.expres.wnt.tpm.melt.names expres.wnt.tpm.averages$average24hrbft2 = (expres.wnt.tpm.averages$hr24bft2.031 + expres.wnt.tpm.averages$hr24bft2.220 + expres.wnt.tpm.averages$hr24bft2.trial1)/3 expres.wnt.tpm.averages$average48hrbft2 = (expres.wnt.tpm.averages$hr48bft2.031 + expres.wnt.tpm.averages$hr48bft2.220 + expres.wnt.tpm.averages$hr48bft2.trial1)/3 expres.wnt.tpm.averages = expres.wnt.tpm.averages [ , c("average24hrbft2","average48hrbft2")] expres.wnt.tpm.averages.df = data.frame(expres.wnt.tpm.averages) expres.wnt.tpm.averages.df$target_id= rownames(expres.wnt.tpm.averages.df) expres.wnt.tpm.averages.melt = melt(expres.wnt.tpm.averages.df) colnames(expres.wnt.tpm.averages.melt) = c("target_id","variable","average_tpm") #here, I am separating out my 24hr and 48hr data, then merging my logfc data with my average tpm data expres.wnt.averages.melt.24 = expres.wnt.averages.melt[expres.wnt.averages.melt$variable=="average24hrbft2", ] expres.wnt.averages.melt.48 = expres.wnt.averages.melt[expres.wnt.averages.melt$variable=="average48hrbft2", ] expres.wnt.tpm.averages.melt.24 = expres.wnt.tpm.averages.melt[expres.wnt.tpm.averages.melt$variable=="average24hrbft2", ] expres.wnt.tpm.averages.melt.48 = expres.wnt.tpm.averages.melt[expres.wnt.tpm.averages.melt$variable=="average48hrbft2", ] expres.wnt.tpm.logfc.24 = merge(expres.wnt.tpm.averages.melt.24, expres.wnt.averages.melt.24, by.x= "target_id", by.y= "target_id") expres.wnt.tpm.logfc.48 = merge(expres.wnt.tpm.averages.melt.48, expres.wnt.averages.melt.48, by.x= "target_id", by.y= "target_id") #here, I am making a new logtpm column expres.wnt.tpm.logfc.24$logtpm = log2(expres.wnt.tpm.logfc.24$average_tpm +1) expres.wnt.tpm.logfc.48$logtpm = log2(expres.wnt.tpm.logfc.48$average_tpm +1) #Add chromatin state data to all of my samples #first, I will read in data with info on uniquepeak locations upeaks.24hrbft2= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique24hrbft2peaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file upeaks.24hrblank= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique24hrblankpeaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file upeaks.48hrbft2= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique48hrbft2peaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file upeaks.48hrblank= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique48hrblankpeaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file #genes in wnt pathway expres.wnt.tpm.logfc.24$bft48hr.chromatin="nochange" expres.wnt.tpm.logfc.24$bft48hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.48hrbft2$symbol]="opened" expres.wnt.tpm.logfc.24$bft48hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.48hrblank$symbol]="closed" expres.wnt.tpm.logfc.24$bft24hr.chromatin="nochange" expres.wnt.tpm.logfc.24$bft24hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.24hrbft2$symbol]="opened" expres.wnt.tpm.logfc.24$bft24hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.24hrblank$symbol]="closed" expres.wnt.tpm.logfc.48$bft48hr.chromatin="nochange" expres.wnt.tpm.logfc.48$bft48hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.48hrbft2$symbol]="opened" expres.wnt.tpm.logfc.48$bft48hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.48hrblank$symbol]="closed" expres.wnt.tpm.logfc.48$bft24hr.chromatin="nochange" expres.wnt.tpm.logfc.48$bft24hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.24hrbft2$symbol]="opened" expres.wnt.tpm.logfc.48$bft24hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.24hrblank$symbol]="closed" table(expres.wnt.tpm.logfc.24$bft24hr.chromatin) table(expres.wnt.tpm.logfc.24$bft48hr.chromatin) table(expres.wnt.tpm.logfc.24$bftboth.chromatin) table(expres.wnt.tpm.logfc.48$bft24hr.chromatin) table(expres.wnt.tpm.logfc.48$bft48hr.chromatin) table(expres.wnt.tpm.logfc.48$bftboth.chromatin) expres.wnt.tpm.logfc.24.nono = expres.wnt.tpm.logfc.24[ expres.wnt.tpm.logfc.24$bft24hr.chromatin !="nochange",] #writes only genes that are opened or closed expres.wnt.tpm.logfc.48.nono = expres.wnt.tpm.logfc.48[ expres.wnt.tpm.logfc.48$bft48hr.chromatin !="nochange",] #writes only genes that are opened or closed #perform stats wilcox.test (expres.wnt.tpm.logfc.24[ expres.wnt.tpm.logfc.24$bft24hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.24[ expres.wnt.tpm.logfc.24$bft24hr.chromatin=="closed","average_logfc" ]) #testing whether baseline expression is different for open and closed genes mean(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="opened","average_logfc"]) mean(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="closed","average_logfc"]) median(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="opened","average_logfc"]) median(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="closed","average_logfc"]) wilcox.test (expres.wnt.tpm.logfc.48[ expres.wnt.tpm.logfc.48$bft48hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.48[ expres.wnt.tpm.logfc.48$bft48hr.chromatin=="closed","average_logfc" ]) mean(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="opened","average_logfc"]) mean(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="closed","average_logfc"]) median(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="opened","average_logfc"]) median(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="closed","average_logfc"]) #get rid of low expression genes expres.wnt.tpm.logfc.24.nolow = expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$logtpm>1,] expres.wnt.tpm.logfc.48.nolow = expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$logtpm>1,] expres.wnt.tpm.logfc.24.nono.nolow = expres.wnt.tpm.logfc.24.nolow[ expres.wnt.tpm.logfc.24.nolow$bft24hr.chromatin !="nochange",] #writes only genes that are opened or closed expres.wnt.tpm.logfc.48.nono.nolow = expres.wnt.tpm.logfc.48.nolow[ expres.wnt.tpm.logfc.48.nolow$bft48hr.chromatin !="nochange",] #writes only genes that are opened or closed #stats with low expression genes removed wilcox.test (expres.wnt.tpm.logfc.24.nolow[ expres.wnt.tpm.logfc.24.nolow$bft24hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.24.nolow[ expres.wnt.tpm.logfc.24.nolow$bft24hr.chromatin=="closed","average_logfc" ]) wilcox.test (expres.wnt.tpm.logfc.48.nolow[ expres.wnt.tpm.logfc.48.nolow$bft48hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.48.nolow[ expres.wnt.tpm.logfc.48.nolow$bft48hr.chromatin=="closed","average_logfc" ]) #plot pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.24hrs.rerun.pdf") ggplot( expres.wnt.tpm.logfc.24, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft24hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.015 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.24hrs.nonochange.rerun.pdf") ggplot( expres.wnt.tpm.logfc.24.nono, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft24hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.015 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.24hrs.nonochange.nolow.rerun.pdf") ggplot( expres.wnt.tpm.logfc.24.nono.nolow, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft24hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.009 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.48hrs.rerun.pdf") ggplot( expres.wnt.tpm.logfc.48, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft48hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2) + geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.456 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.48hrs.nonochange.rerun.pdf") ggplot( expres.wnt.tpm.logfc.48.nono, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft48hr.chromatin),alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.456 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.48hrs.nonochange.nolow.rerun.pdf") ggplot( expres.wnt.tpm.logfc.48.nono.nolow, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft48hr.chromatin),alpha=0.75) + geom_abline(intercept=0.5, slope=0)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.383 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() ##################
/sleuth.maplot.rerun.R
no_license
Jawara22/fragillis
R
false
false
18,289
r
#Use fold change change data to look for trends in gene expression changes and make line plots install.packages("ggplot2") install.packages("reshape2") install.packages("pheatmap") install.packages("tidyr") install.packages("reshape") library(ggplot2) library(reshape2) library(pheatmap) library(tidyr) library(reshape) #Here, I am reading in data that describes the samples associated with each file name phenodata2 = read.csv("~/Data/rnaseq_data/rnaseq.phenotypedata.csv", header = FALSE) #here, I am creating lists with specific genes I want to look at wnt = c("APC","ASCL1","ASCL2","AXIN1","AXIN2","CTNNB1","BCL9","BCL92","ABL1","CSNK1A1","CSNK1D","DIXDC1","CREB","DVL1","DVL2","DVL3","DRAXIN","GSK3A","GSK3B","TGFB1I1","CTNNBIP1", "PYGO1","PYGO2","HNF1B","UBE2A","TCF7","TCF7L1","TLE2") crc = c("AKT1", "AKT2","AKT3","APC","APC2","APPL1","ARAF","Axin1","AXIN2","BAD","BAX","BCL2","BIRC5","BRAF","casp3","CASP9","CCND1","CTNNB1","CYCS","DCC","FOS","GSK3B","JUN","KRAS","LEF1","MAP2K1","MAPK1","MAPK10","MAPK3","MAPK8","MAPK9","MLH1","MSH2","MSH3","MSH6","MYC","PIK3CA","PIK3CB","PIK3CD","PIK3CG","PIK3R1","PIK3R2","PIK3R3","PIK3R5","RAC1","RAC2","RAC3","RAF1","RALGDS","RHOA","SMAD2","SMAD3","SMAD4","TCF7","TCF7L1","TCF7L2","TGFB1","TGFB2","TGFB3","TGFBR1","TGFBR2","TP53") bcat = c("MYC","MYCN","CCND1","HNF1A","LEF1","PPARD","JUN","FOSL1","PLAUR","MMP7","AXIN2","NRCAM","TCF4","GAST","CD44","EFNB1","EFNB2","BMP4","CLDN1","BIRC5","VEGFA","FGF18","ATOH1","MET","EDN1","MYCBP","L1CAM","ID2","JAG1","MSL1","TIAM1","NOS2","TERT","DKK1","FGF9","LBH","FGF20","LGR5","SOX9","SOX17","RUNX2","GREM1","SALL4","TNFSF11","TNFRSF11B","CYR61","PTTG1","DLL1","FOXN1","MMP26","NANOG","POU5F1","SNAI1","FN1","FZD7","ISL1","MMP2","MMP9","FST","WNT3A","TWIST1","TBX3","GBX2","CACNA1G","CDC25","WISP1","WISP2","IGF2","EMP1","IGF1","VEGFC","PTGS2","IL6","PITX2","EGFR","CDH1","CDKN2A","CTLA4","CXCL8","VCAN","TNFRSF19") # INFO FROM https://web.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes #read in 24hrbft2 expression data expres.24 = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.24 = expres.24[expres.24$condition %in% c("24hrbft2"),] expres.24 = expres.24[order(expres.24$target_id),] expres.24$logtpm= log2(expres.24$tpm + 1) #expres.24 = expres.24[expres.24$logtpm>1,] expres.24 = merge(expres.24, phenodata2, by.x= "sample", by.y= "V1") expres.24 = expres.24[order(expres.24$target_id),] #read in 24hrblank data expres.24b = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.24b = expres.24b[expres.24b$condition %in% c("24blank"),] expres.24b = expres.24b[order(expres.24b$target_id),] expres.24b$logtpm= log2(expres.24b$tpm + 1) #expres.24b = expres.24b[expres.24b$logtpm>1,] expres.24b = merge(expres.24b, phenodata2, by.x= "sample", by.y= "V1") expres.24b = expres.24b[order(expres.24b$target_id),] #split up data for each group expres.24.220 = expres.24[expres.24$V2=="24hrbft2.220",] expres.24.031 = expres.24[expres.24$V2=="24hrbft2.031",] expres.24.trial1 = expres.24[expres.24$V2=="24hrbft2.trial1",] expres.24b.220 = expres.24b[expres.24b$V2=="24blank.220",] expres.24b.031 = expres.24b[expres.24b$V2=="24blank.031",] expres.24b.trial1 = expres.24b[expres.24b$V2=="24blank.trial1",] #calculate the logfc in expression between blank and bft2 samples then combine all the samples, then get rid of low expressing genes expres.24.220$logfc = log2((1+expres.24.220$tpm)/(1+expres.24b.220$tpm)) expres.24.031$logfc = log2((1+expres.24.031$tpm)/(1+expres.24b.031$tpm)) expres.24.trial1$logfc = log2((1+expres.24.trial1$tpm)/(1+expres.24b.trial1$tpm)) expres.24.all=rbind(expres.24.220, expres.24.trial1, expres.24.031) #expres.24.all = expres.24.all[expres.24.all$logtpm>1,] #read in 48hrbft2 expression data expres.48 = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.48 = expres.48[expres.48$condition %in% c("48hrbft2"),] expres.48 = expres.48[order(expres.48$target_id),] expres.48$logtpm= log2(expres.48$tpm + 1) #expres.48 = expres.48[expres.48$logtpm>1,] expres.48 = merge(expres.48, phenodata2, by.x= "sample", by.y= "V1") expres.48 = expres.48[order(expres.48$target_id),] #read in 48hrblank data expres.48b = read.csv("~/Data/rnaseq_data/gene.level.analysis/rerun/tpmcounts.sleuth.genelevel.allsamples.rerun.csv", row.names = 1) expres.48b = expres.48b[expres.48b$condition %in% c("48blank"),] expres.48b = expres.48b[order(expres.48b$target_id),] expres.48b$logtpm= log2(expres.48b$tpm + 1) #expres.48b = expres.48b[expres.48b$logtpm>1,] expres.48b = merge(expres.48b, phenodata2, by.x= "sample", by.y= "V1") expres.48b = expres.48b[order(expres.48b$target_id),] #separate out replicate groups expres.48.220 = expres.48[expres.48$V2=="48hrbft2.220",] expres.48.031 = expres.48[expres.48$V2=="48hrbft2.031",] expres.48.trial1 = expres.48[expres.48$V2=="48hrbft2.trial1",] expres.48b.220 = expres.48b[expres.48b$V2=="48blank.220",] expres.48b.031 = expres.48b[expres.48b$V2=="48blank.031",] expres.48b.trial1 = expres.48b[expres.48b$V2=="48blank.trial1",] #calculate logfc for the differnce in expression between bft2 and blank, then combine samples, then get rid of low expressing genes expres.48.220$logfc = log2((1+expres.48.220$tpm)/(1+expres.48b.220$tpm)) expres.48.031$logfc = log2((1+expres.48.031$tpm)/(1+expres.48b.031$tpm)) expres.48.trial1$logfc = log2((1+expres.48.trial1$tpm)/(1+expres.48b.trial1$tpm)) expres.48.all = rbind(expres.48.220, expres.48.trial1, expres.48.031)#do not remove 031 time point because it looks like an outlier #expres.48.all = expres.48.all[expres.48.all$logtpm>1,] #################### #set up data to be run with pheatmap function expres.2448.wnt = rbind(expres.24.all, expres.48.all) #get average logfc setup.expres.wnt = expres.2448.wnt[ ,c("target_id","V2","logfc")] setup.expres.wnt.melt = melt(setup.expres.wnt, target_id=c("target_id","logfc")) setup.expres.wnt.melt.cast = cast(setup.expres.wnt.melt, target_id~V2, mean) setup.expres.wnt.melt.names = setup.expres.wnt.melt.cast row.names(setup.expres.wnt.melt.names) = setup.expres.wnt.melt.names[ ,1] setup.expres.wnt.melt.names = setup.expres.wnt.melt.names[ ,-1] #these 3 commands make my sample names my row names colnames(setup.expres.wnt.melt.names) = c("hr24bft2.031","hr24bft2.220","hr24bft2.trial1","hr48bft2.031","hr48bft2.220","hr48bft2.trial1") expres.wnt.averages = setup.expres.wnt.melt.names expres.wnt.averages$average24hrbft2 = (expres.wnt.averages$hr24bft2.031 + expres.wnt.averages$hr24bft2.220 + expres.wnt.averages$hr24bft2.trial1)/3 expres.wnt.averages$average48hrbft2 = (expres.wnt.averages$hr48bft2.031 + expres.wnt.averages$hr48bft2.220 + expres.wnt.averages$hr48bft2.trial1)/3 expres.wnt.averages = expres.wnt.averages [ , c("average24hrbft2","average48hrbft2")] expres.wnt.averages.df = data.frame(expres.wnt.averages) expres.wnt.averages.df$target_id= rownames(expres.wnt.averages.df) expres.wnt.averages.melt = melt(expres.wnt.averages.df) colnames(expres.wnt.averages.melt) = c("target_id","variable","average_logfc") #get average tpm values setup.expres.wnt.tpm = expres.2448.wnt[ ,c("target_id","V2","tpm")] setup.expres.wnt.tpm.melt = melt(setup.expres.wnt.tpm, target_id=c("target_id","tpm")) setup.expres.wnt.tpm.melt.cast = cast(setup.expres.wnt.tpm.melt, target_id~V2, mean) setup.expres.wnt.tpm.melt.names = setup.expres.wnt.tpm.melt.cast row.names(setup.expres.wnt.tpm.melt.names) = setup.expres.wnt.tpm.melt.names[ ,1] setup.expres.wnt.tpm.melt.names = setup.expres.wnt.tpm.melt.names[ ,-1] #these 3 commands make my sample names my row names colnames(setup.expres.wnt.tpm.melt.names) = c("hr24bft2.031","hr24bft2.220","hr24bft2.trial1","hr48bft2.031","hr48bft2.220","hr48bft2.trial1") expres.wnt.tpm.averages = setup.expres.wnt.tpm.melt.names expres.wnt.tpm.averages$average24hrbft2 = (expres.wnt.tpm.averages$hr24bft2.031 + expres.wnt.tpm.averages$hr24bft2.220 + expres.wnt.tpm.averages$hr24bft2.trial1)/3 expres.wnt.tpm.averages$average48hrbft2 = (expres.wnt.tpm.averages$hr48bft2.031 + expres.wnt.tpm.averages$hr48bft2.220 + expres.wnt.tpm.averages$hr48bft2.trial1)/3 expres.wnt.tpm.averages = expres.wnt.tpm.averages [ , c("average24hrbft2","average48hrbft2")] expres.wnt.tpm.averages.df = data.frame(expres.wnt.tpm.averages) expres.wnt.tpm.averages.df$target_id= rownames(expres.wnt.tpm.averages.df) expres.wnt.tpm.averages.melt = melt(expres.wnt.tpm.averages.df) colnames(expres.wnt.tpm.averages.melt) = c("target_id","variable","average_tpm") #here, I am separating out my 24hr and 48hr data, then merging my logfc data with my average tpm data expres.wnt.averages.melt.24 = expres.wnt.averages.melt[expres.wnt.averages.melt$variable=="average24hrbft2", ] expres.wnt.averages.melt.48 = expres.wnt.averages.melt[expres.wnt.averages.melt$variable=="average48hrbft2", ] expres.wnt.tpm.averages.melt.24 = expres.wnt.tpm.averages.melt[expres.wnt.tpm.averages.melt$variable=="average24hrbft2", ] expres.wnt.tpm.averages.melt.48 = expres.wnt.tpm.averages.melt[expres.wnt.tpm.averages.melt$variable=="average48hrbft2", ] expres.wnt.tpm.logfc.24 = merge(expres.wnt.tpm.averages.melt.24, expres.wnt.averages.melt.24, by.x= "target_id", by.y= "target_id") expres.wnt.tpm.logfc.48 = merge(expres.wnt.tpm.averages.melt.48, expres.wnt.averages.melt.48, by.x= "target_id", by.y= "target_id") #here, I am making a new logtpm column expres.wnt.tpm.logfc.24$logtpm = log2(expres.wnt.tpm.logfc.24$average_tpm +1) expres.wnt.tpm.logfc.48$logtpm = log2(expres.wnt.tpm.logfc.48$average_tpm +1) #Add chromatin state data to all of my samples #first, I will read in data with info on uniquepeak locations upeaks.24hrbft2= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique24hrbft2peaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file upeaks.24hrblank= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique24hrblankpeaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file upeaks.48hrbft2= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique48hrbft2peaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file upeaks.48hrblank= read.csv("~/Data/atac/final.analysis/chippeakanno_peaks/unique48hrblankpeaks.promoters.1000.1.chippeakanno.csv") #use promoters only or promoters.andgenebodies file #genes in wnt pathway expres.wnt.tpm.logfc.24$bft48hr.chromatin="nochange" expres.wnt.tpm.logfc.24$bft48hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.48hrbft2$symbol]="opened" expres.wnt.tpm.logfc.24$bft48hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.48hrblank$symbol]="closed" expres.wnt.tpm.logfc.24$bft24hr.chromatin="nochange" expres.wnt.tpm.logfc.24$bft24hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.24hrbft2$symbol]="opened" expres.wnt.tpm.logfc.24$bft24hr.chromatin[expres.wnt.tpm.logfc.24$target_id %in% upeaks.24hrblank$symbol]="closed" expres.wnt.tpm.logfc.48$bft48hr.chromatin="nochange" expres.wnt.tpm.logfc.48$bft48hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.48hrbft2$symbol]="opened" expres.wnt.tpm.logfc.48$bft48hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.48hrblank$symbol]="closed" expres.wnt.tpm.logfc.48$bft24hr.chromatin="nochange" expres.wnt.tpm.logfc.48$bft24hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.24hrbft2$symbol]="opened" expres.wnt.tpm.logfc.48$bft24hr.chromatin[expres.wnt.tpm.logfc.48$target_id %in% upeaks.24hrblank$symbol]="closed" table(expres.wnt.tpm.logfc.24$bft24hr.chromatin) table(expres.wnt.tpm.logfc.24$bft48hr.chromatin) table(expres.wnt.tpm.logfc.24$bftboth.chromatin) table(expres.wnt.tpm.logfc.48$bft24hr.chromatin) table(expres.wnt.tpm.logfc.48$bft48hr.chromatin) table(expres.wnt.tpm.logfc.48$bftboth.chromatin) expres.wnt.tpm.logfc.24.nono = expres.wnt.tpm.logfc.24[ expres.wnt.tpm.logfc.24$bft24hr.chromatin !="nochange",] #writes only genes that are opened or closed expres.wnt.tpm.logfc.48.nono = expres.wnt.tpm.logfc.48[ expres.wnt.tpm.logfc.48$bft48hr.chromatin !="nochange",] #writes only genes that are opened or closed #perform stats wilcox.test (expres.wnt.tpm.logfc.24[ expres.wnt.tpm.logfc.24$bft24hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.24[ expres.wnt.tpm.logfc.24$bft24hr.chromatin=="closed","average_logfc" ]) #testing whether baseline expression is different for open and closed genes mean(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="opened","average_logfc"]) mean(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="closed","average_logfc"]) median(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="opened","average_logfc"]) median(expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$bft24hr.chromatin=="closed","average_logfc"]) wilcox.test (expres.wnt.tpm.logfc.48[ expres.wnt.tpm.logfc.48$bft48hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.48[ expres.wnt.tpm.logfc.48$bft48hr.chromatin=="closed","average_logfc" ]) mean(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="opened","average_logfc"]) mean(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="closed","average_logfc"]) median(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="opened","average_logfc"]) median(expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$bft48hr.chromatin=="closed","average_logfc"]) #get rid of low expression genes expres.wnt.tpm.logfc.24.nolow = expres.wnt.tpm.logfc.24[expres.wnt.tpm.logfc.24$logtpm>1,] expres.wnt.tpm.logfc.48.nolow = expres.wnt.tpm.logfc.48[expres.wnt.tpm.logfc.48$logtpm>1,] expres.wnt.tpm.logfc.24.nono.nolow = expres.wnt.tpm.logfc.24.nolow[ expres.wnt.tpm.logfc.24.nolow$bft24hr.chromatin !="nochange",] #writes only genes that are opened or closed expres.wnt.tpm.logfc.48.nono.nolow = expres.wnt.tpm.logfc.48.nolow[ expres.wnt.tpm.logfc.48.nolow$bft48hr.chromatin !="nochange",] #writes only genes that are opened or closed #stats with low expression genes removed wilcox.test (expres.wnt.tpm.logfc.24.nolow[ expres.wnt.tpm.logfc.24.nolow$bft24hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.24.nolow[ expres.wnt.tpm.logfc.24.nolow$bft24hr.chromatin=="closed","average_logfc" ]) wilcox.test (expres.wnt.tpm.logfc.48.nolow[ expres.wnt.tpm.logfc.48.nolow$bft48hr.chromatin=="opened", "average_logfc"], expres.wnt.tpm.logfc.48.nolow[ expres.wnt.tpm.logfc.48.nolow$bft48hr.chromatin=="closed","average_logfc" ]) #plot pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.24hrs.rerun.pdf") ggplot( expres.wnt.tpm.logfc.24, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft24hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.015 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.24hrs.nonochange.rerun.pdf") ggplot( expres.wnt.tpm.logfc.24.nono, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft24hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.015 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.24hrs.nonochange.nolow.rerun.pdf") ggplot( expres.wnt.tpm.logfc.24.nono.nolow, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft24hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.009 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.48hrs.rerun.pdf") ggplot( expres.wnt.tpm.logfc.48, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft48hr.chromatin), alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2) + geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.456 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.48hrs.nonochange.rerun.pdf") ggplot( expres.wnt.tpm.logfc.48.nono, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft48hr.chromatin),alpha=0.75) + geom_abline(intercept=0.5, slope=0, linetype=2)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.456 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() pdf("~/Data/rnaseq_data/gene.level.analysis/rerun/maplot.48hrs.nonochange.nolow.rerun.pdf") ggplot( expres.wnt.tpm.logfc.48.nono.nolow, aes(x=logtpm, y=average_logfc)) + geom_point(aes(colour=bft48hr.chromatin),alpha=0.75) + geom_abline(intercept=0.5, slope=0)+ geom_abline(slope=0, intercept = -0.5, linetype=2) +labs(x= "mean (logTPM +1) ", y="logFC expression") + annotate("text", x = 10,y=1.3, label = "pvalue [opened ~ closed] =0.383 \nwilcoxon rank sum test") + ylim(-1.5,1.5) + xlim(0,15) dev.off() ##################
\name{tesseract} \alias{tesseract} \alias{TesseractBaseAPI-class} \alias{SetImage} \alias{Recognize} \alias{SetRectangle} \alias{SetSourceResolution} \alias{GetInputName} \alias{SetInputName} \alias{GetDatapath} \alias{GetInitLanguages} \alias{ReadConfigFile} \alias{GetSourceYResolution} \alias{IsValidWord} \alias{Init} \alias{End} \alias{Clear} \alias{plot,TesseractBaseAPI-method} \alias{coerce,TesseractBaseAPI,ResultIterator-method} %\alias{SetVariables} \title{Top-level Tesseract OCR API Functions and Classes} \description{ To perform OCR on an image, we need a Tesseract API object and then can call its methods. } \usage{ tesseract(image = character(), ..., init = TRUE) SetImage(api, pix) Init(api, lang = "eng") SetRectangle(api, ..., dims = sapply(list(...), as.integer)) SetSourceResolution(api, ppi) Recognize(api) SetInputName(api, name) GetInputName(api) GetDatapath(api) GetInitLanguages(api) ReadConfigFile(api, files) GetSourceYResolution(api) IsValidWord(api, word) Clear(api) End(api) } \arguments{ \item{image,pix}{either a \code{\link{Pix-class}} object, or a file name from which to read the image. Specifying the name of a file also arranges to call \code{\link{SetInputName}} and so the \code{\link{TesseractBaseAPI-class}} instance knows where the image is located. This means we can query it. If speciyfing the name of a file, make certain to assign the result to a variable that persists until \code{Recognize} is called for this \code{\link{TesseractBaseAPI-class}} instance. In the future, we will ensure that garbage collection protects the image, but it is not the case now.} \item{api}{the instance of the \code{\link{TesseractBaseAPI-class}} in which to perform the operations.} \item{\dots}{\code{name = value} pairs that are passed to \code{SetVariables} to configure the \code{\link{TesseractBaseAPI-class}} instance.} \item{init}{a logical value controlling whether \code{Init} is called by the \code{tesseract} function.} \item{ppi}{the per-pixel resolution as an integer.} \item{dims}{a vector of length 4 giving the location of the rectangle as x1, y1, x2, y2.} \item{files}{a character vector specifying the full or relative paths to the configuration files.} \item{word}{a character vector of words whose validity we want to check} \item{name}{the name of the file being processed by the OCR system.} \item{lang}{a string specifying the language for the text to be recognized.} } \value{ The different functions return very different objects. } \references{ Tesseract \url{https://code.google.com/p/tesseract-ocr/}, specifically \url{http://zdenop.github.io/tesseract-doc/classtesseract_1_1_tess_base_a_p_i.html} } \author{ Duncan Temple Lang } \seealso{ \code{\link{GetIterator}}, \code{\link{lapply}}. \code{\link{SetVariables}}, \code{\link{PrintVariables}} } \examples{ f = system.file("images", "OCRSample2.png", package = "Rtesseract") api = tesseract(f) GetInputName(api) Recognize(api) ri = GetIterator(api) bbox = lapply(ri, BoundingBox, "word") if(require("png")) { i = readPNG(f) plot(api, level = "symbol", img = i, border = "red") } } \keyword{IO } \keyword{programming}
/man/tesseract.Rd
no_license
aorimi/Rtesseract
R
false
false
3,256
rd
\name{tesseract} \alias{tesseract} \alias{TesseractBaseAPI-class} \alias{SetImage} \alias{Recognize} \alias{SetRectangle} \alias{SetSourceResolution} \alias{GetInputName} \alias{SetInputName} \alias{GetDatapath} \alias{GetInitLanguages} \alias{ReadConfigFile} \alias{GetSourceYResolution} \alias{IsValidWord} \alias{Init} \alias{End} \alias{Clear} \alias{plot,TesseractBaseAPI-method} \alias{coerce,TesseractBaseAPI,ResultIterator-method} %\alias{SetVariables} \title{Top-level Tesseract OCR API Functions and Classes} \description{ To perform OCR on an image, we need a Tesseract API object and then can call its methods. } \usage{ tesseract(image = character(), ..., init = TRUE) SetImage(api, pix) Init(api, lang = "eng") SetRectangle(api, ..., dims = sapply(list(...), as.integer)) SetSourceResolution(api, ppi) Recognize(api) SetInputName(api, name) GetInputName(api) GetDatapath(api) GetInitLanguages(api) ReadConfigFile(api, files) GetSourceYResolution(api) IsValidWord(api, word) Clear(api) End(api) } \arguments{ \item{image,pix}{either a \code{\link{Pix-class}} object, or a file name from which to read the image. Specifying the name of a file also arranges to call \code{\link{SetInputName}} and so the \code{\link{TesseractBaseAPI-class}} instance knows where the image is located. This means we can query it. If speciyfing the name of a file, make certain to assign the result to a variable that persists until \code{Recognize} is called for this \code{\link{TesseractBaseAPI-class}} instance. In the future, we will ensure that garbage collection protects the image, but it is not the case now.} \item{api}{the instance of the \code{\link{TesseractBaseAPI-class}} in which to perform the operations.} \item{\dots}{\code{name = value} pairs that are passed to \code{SetVariables} to configure the \code{\link{TesseractBaseAPI-class}} instance.} \item{init}{a logical value controlling whether \code{Init} is called by the \code{tesseract} function.} \item{ppi}{the per-pixel resolution as an integer.} \item{dims}{a vector of length 4 giving the location of the rectangle as x1, y1, x2, y2.} \item{files}{a character vector specifying the full or relative paths to the configuration files.} \item{word}{a character vector of words whose validity we want to check} \item{name}{the name of the file being processed by the OCR system.} \item{lang}{a string specifying the language for the text to be recognized.} } \value{ The different functions return very different objects. } \references{ Tesseract \url{https://code.google.com/p/tesseract-ocr/}, specifically \url{http://zdenop.github.io/tesseract-doc/classtesseract_1_1_tess_base_a_p_i.html} } \author{ Duncan Temple Lang } \seealso{ \code{\link{GetIterator}}, \code{\link{lapply}}. \code{\link{SetVariables}}, \code{\link{PrintVariables}} } \examples{ f = system.file("images", "OCRSample2.png", package = "Rtesseract") api = tesseract(f) GetInputName(api) Recognize(api) ri = GetIterator(api) bbox = lapply(ri, BoundingBox, "word") if(require("png")) { i = readPNG(f) plot(api, level = "symbol", img = i, border = "red") } } \keyword{IO } \keyword{programming}
#' Tests of radiative transfer models library(PEcAnRTM) context("SAIL models") data(model.list) setkey(model.list, modname) p <- defparam("pro4sail") pout <- pro4sail(p) test.dim <- c(2101,4) test_that("Returns matrix", { expect_is(pout, "matrix") }) test_that("Correct dimensions", { expect_equal(dim(pout), test.dim) }) test_that("Don't return 0", { expect_true(all(colSums(pout) > 0)) })
/modules/rtm/tests/testthat/test.sail.R
permissive
davidjpmoore/pecan
R
false
false
437
r
#' Tests of radiative transfer models library(PEcAnRTM) context("SAIL models") data(model.list) setkey(model.list, modname) p <- defparam("pro4sail") pout <- pro4sail(p) test.dim <- c(2101,4) test_that("Returns matrix", { expect_is(pout, "matrix") }) test_that("Correct dimensions", { expect_equal(dim(pout), test.dim) }) test_that("Don't return 0", { expect_true(all(colSums(pout) > 0)) })
### XXX is the stuff in this file correct or should we be exporting *formatted* values to ### meet the needs of consumers of this? Do we ened to support both? #' Create Enriched flat value table with paths #' #' #' This function creates a flat tabular file of cell values and #' corresponding paths. #' #' List columns where at least one value has length > 1 are collapsed #' to character vectors by collapsing the list element with \code{"|"}. #' #' @note There is currently no round-trip capability for this type of export. #' You can read values exported this way back in via \code{import_from_tsv} #' but you will receive only the data.frame version back, NOT a \code{TableTree}. #' #' @inheritParams gen_args #' @param file character(1). The path of the file to written to or read from. #' @param pathproc function. Internal detail, not intended for use by end users. #' @return \code{NULL} silently for \code{export_as_tsv}, a data.frame with #' re-constituted list values for \code{export_as_tsv}. #' @export #' @rdname tsv_io #' @importFrom utils write.table read.table export_as_tsv <- function(tt, file = NULL, pathproc = collapse_path) { df <- path_enriched_df(tt, pathproc = pathproc) write.table(df, file, sep = "\t") } .collapse_char <- "|" .collapse_char_esc <- "\\|" ##' @export ##' @rdname tsv_io import_from_tsv <- function(file) { rawdf <- read.table(file, header = TRUE, sep = "\t") as.data.frame(lapply(rawdf, function(col) { if(!any(grepl(.collapse_char, col, fixed = TRUE))) col else I(strsplit(col, split = .collapse_char_esc)) })) } collapse_path <- function(paths) { if(is.list(paths)) return(vapply(paths, collapse_path, "")) paste(paths, collapse = .collapse_char) } collapse_values <- function(colvals) { if(!is.list(colvals) || all(vapply(colvals, length, 1L) == 1)) return(colvals) vapply(colvals, paste, "", collapse = .collapse_char) } path_enriched_df <- function(tt, pathproc = collapse_path) { rdf <- make_row_df(tt) cdf <- make_col_df(tt) cvs <- as.data.frame(do.call(rbind, cell_values(tt))) cvs <- as.data.frame(lapply(cvs, collapse_values)) row.names(cvs) <- NULL colnames(cvs) <- pathproc(cdf$path) preppaths <- pathproc(rdf[rdf$node_class != "LabelRow",]$path) cbind.data.frame(row_path = preppaths, cvs) } #' Export as plain text with page break symbol #' #' @inheritParams gen_args #' @param file character(1). File to write. #' @param paginate logical(1). Should \code{tt} be paginated before writing the file. #' @param \dots Passed directly to \code{\link{paginate_table}} #' @param page_break character(1). Page break symbol (defaults to outputting \code{"\\s"}). #' @return \code{file} (this function is called for the side effect of writing the file. #' #' #' @export #' #' @seealso `export_as_pdf` #' #' @examples #' #' lyt <- basic_table() %>% #' split_cols_by("ARM") %>% #' analyze(c("AGE", "BMRKR2", "COUNTRY")) #' #' tbl <- build_table(lyt, ex_adsl) #' #' cat(export_as_txt(tbl, file = NULL, paginate = TRUE, lpp = 8)) #' #' \dontrun{ #' tf <- tempfile(fileext = ".txt") #' export_as_txt(tbl, file = tf) #' system2("cat", tf) #' } export_as_txt <- function(tt, file = NULL, paginate = FALSE, ..., page_break = "\\s\\n") { colwidths <- propose_column_widths(tt) if(paginate) { tbls <- paginate_table(tt, ...) } else { tbls <- list(tt) } res <- paste(sapply(tbls, toString, widths = colwidths), collapse = page_break) if(!is.null(file)) cat(res, file = file) else res } #' Export as PDF #' #' The PDF output is based on the ASCII output created with `toString` #' #' @inheritParams export_as_txt #' @inheritParams grid::plotViewport #' @inheritParams paginate_table #' @param file file to write, must have `.pdf` extension #' @param width the width and height of the graphics region in inches #' @param height the width and height of the graphics region in inches #' @param fontsize the size of text (in points) #' @param ... arguments passed on to `paginate_table` #' #' @importFrom grDevices pdf #' @importFrom grid textGrob grid.newpage gpar pushViewport plotViewport unit grid.draw #' convertWidth convertHeight grobHeight grobWidth #' #' @seealso `export_as_txt` #' #' #' @importFrom grid textGrob get.gpar #' @importFrom grDevices dev.off #' @export #' #' @examples #' lyt <- basic_table() %>% #' split_cols_by("ARM") %>% #' analyze(c("AGE", "BMRKR2", "COUNTRY")) #' #' tbl <- build_table(lyt, ex_adsl) #' #' \dontrun{ #' tf <- tempfile(fileext = ".pdf") #' export_as_pdf(tbl, file = tf, height = 4) #' tf <- tempfile(fileext = ".pdf") #' export_as_pdf(tbl, file = tf, lpp = 8) #' } #' export_as_pdf <- function(tt, file, width = 11.7, height = 8.3, # passed to pdf() margins = c(4, 4, 4, 4), fontsize = 8, # grid parameters paginate = TRUE, lpp = NULL, ... # passed to paginate_table ) { stopifnot(tools::file_ext(file) != ".pdf") gp_plot <- gpar(fontsize = fontsize, fontfamily = "mono") pdf(file = file, width = width, height = height) grid.newpage() pushViewport(plotViewport(margins = margins, gp = gp_plot)) colwidths <- propose_column_widths(tt) tbls <- if (paginate) { if (is.null(lpp)) { cur_gpar <- get.gpar() lpp <- floor(convertHeight(unit(1, "npc"), "lines", valueOnly = TRUE) / (cur_gpar$cex * cur_gpar$lineheight)) } paginate_table(tt, lpp = lpp, ...) } else { list(tt) } stbls <- lapply(lapply(tbls, toString, widths = colwidths), function(xi) substr(xi, 1, nchar(xi) - nchar("\n"))) gtbls <- lapply(stbls, function(txt) { textGrob( label = txt, x = unit(0, "npc"), y = unit(1, "npc"), just = c("left", "top") ) }) npages <- length(gtbls) exceeds_width = rep(FALSE, npages) exceeds_height = rep(FALSE, npages) for (i in seq_along(gtbls)) { g <- gtbls[[i]] if (i > 1) { grid.newpage() pushViewport(plotViewport(margins = margins, gp = gp_plot)) } if (convertHeight(grobHeight(g), "inches", valueOnly = TRUE) > convertHeight(unit(1, "npc"), "inches", valueOnly = TRUE)) { exceeds_height[i] <- TRUE warning("height of page ", i, " exceeds the available space") } if (convertWidth(grobWidth(g), "inches", valueOnly = TRUE) > convertWidth(unit(1, "npc"), "inches", valueOnly = TRUE)) { exceeds_width[i] <- TRUE warning("width of page ", i, " exceeds the available space") } grid.draw(g) } dev.off() list(file = file, npages = npages, exceeds_width = exceeds_width, exceeds_height = exceeds_height, lpp = lpp) }
/R/tt_export.R
permissive
jcheng5/rtables
R
false
false
6,986
r
### XXX is the stuff in this file correct or should we be exporting *formatted* values to ### meet the needs of consumers of this? Do we ened to support both? #' Create Enriched flat value table with paths #' #' #' This function creates a flat tabular file of cell values and #' corresponding paths. #' #' List columns where at least one value has length > 1 are collapsed #' to character vectors by collapsing the list element with \code{"|"}. #' #' @note There is currently no round-trip capability for this type of export. #' You can read values exported this way back in via \code{import_from_tsv} #' but you will receive only the data.frame version back, NOT a \code{TableTree}. #' #' @inheritParams gen_args #' @param file character(1). The path of the file to written to or read from. #' @param pathproc function. Internal detail, not intended for use by end users. #' @return \code{NULL} silently for \code{export_as_tsv}, a data.frame with #' re-constituted list values for \code{export_as_tsv}. #' @export #' @rdname tsv_io #' @importFrom utils write.table read.table export_as_tsv <- function(tt, file = NULL, pathproc = collapse_path) { df <- path_enriched_df(tt, pathproc = pathproc) write.table(df, file, sep = "\t") } .collapse_char <- "|" .collapse_char_esc <- "\\|" ##' @export ##' @rdname tsv_io import_from_tsv <- function(file) { rawdf <- read.table(file, header = TRUE, sep = "\t") as.data.frame(lapply(rawdf, function(col) { if(!any(grepl(.collapse_char, col, fixed = TRUE))) col else I(strsplit(col, split = .collapse_char_esc)) })) } collapse_path <- function(paths) { if(is.list(paths)) return(vapply(paths, collapse_path, "")) paste(paths, collapse = .collapse_char) } collapse_values <- function(colvals) { if(!is.list(colvals) || all(vapply(colvals, length, 1L) == 1)) return(colvals) vapply(colvals, paste, "", collapse = .collapse_char) } path_enriched_df <- function(tt, pathproc = collapse_path) { rdf <- make_row_df(tt) cdf <- make_col_df(tt) cvs <- as.data.frame(do.call(rbind, cell_values(tt))) cvs <- as.data.frame(lapply(cvs, collapse_values)) row.names(cvs) <- NULL colnames(cvs) <- pathproc(cdf$path) preppaths <- pathproc(rdf[rdf$node_class != "LabelRow",]$path) cbind.data.frame(row_path = preppaths, cvs) } #' Export as plain text with page break symbol #' #' @inheritParams gen_args #' @param file character(1). File to write. #' @param paginate logical(1). Should \code{tt} be paginated before writing the file. #' @param \dots Passed directly to \code{\link{paginate_table}} #' @param page_break character(1). Page break symbol (defaults to outputting \code{"\\s"}). #' @return \code{file} (this function is called for the side effect of writing the file. #' #' #' @export #' #' @seealso `export_as_pdf` #' #' @examples #' #' lyt <- basic_table() %>% #' split_cols_by("ARM") %>% #' analyze(c("AGE", "BMRKR2", "COUNTRY")) #' #' tbl <- build_table(lyt, ex_adsl) #' #' cat(export_as_txt(tbl, file = NULL, paginate = TRUE, lpp = 8)) #' #' \dontrun{ #' tf <- tempfile(fileext = ".txt") #' export_as_txt(tbl, file = tf) #' system2("cat", tf) #' } export_as_txt <- function(tt, file = NULL, paginate = FALSE, ..., page_break = "\\s\\n") { colwidths <- propose_column_widths(tt) if(paginate) { tbls <- paginate_table(tt, ...) } else { tbls <- list(tt) } res <- paste(sapply(tbls, toString, widths = colwidths), collapse = page_break) if(!is.null(file)) cat(res, file = file) else res } #' Export as PDF #' #' The PDF output is based on the ASCII output created with `toString` #' #' @inheritParams export_as_txt #' @inheritParams grid::plotViewport #' @inheritParams paginate_table #' @param file file to write, must have `.pdf` extension #' @param width the width and height of the graphics region in inches #' @param height the width and height of the graphics region in inches #' @param fontsize the size of text (in points) #' @param ... arguments passed on to `paginate_table` #' #' @importFrom grDevices pdf #' @importFrom grid textGrob grid.newpage gpar pushViewport plotViewport unit grid.draw #' convertWidth convertHeight grobHeight grobWidth #' #' @seealso `export_as_txt` #' #' #' @importFrom grid textGrob get.gpar #' @importFrom grDevices dev.off #' @export #' #' @examples #' lyt <- basic_table() %>% #' split_cols_by("ARM") %>% #' analyze(c("AGE", "BMRKR2", "COUNTRY")) #' #' tbl <- build_table(lyt, ex_adsl) #' #' \dontrun{ #' tf <- tempfile(fileext = ".pdf") #' export_as_pdf(tbl, file = tf, height = 4) #' tf <- tempfile(fileext = ".pdf") #' export_as_pdf(tbl, file = tf, lpp = 8) #' } #' export_as_pdf <- function(tt, file, width = 11.7, height = 8.3, # passed to pdf() margins = c(4, 4, 4, 4), fontsize = 8, # grid parameters paginate = TRUE, lpp = NULL, ... # passed to paginate_table ) { stopifnot(tools::file_ext(file) != ".pdf") gp_plot <- gpar(fontsize = fontsize, fontfamily = "mono") pdf(file = file, width = width, height = height) grid.newpage() pushViewport(plotViewport(margins = margins, gp = gp_plot)) colwidths <- propose_column_widths(tt) tbls <- if (paginate) { if (is.null(lpp)) { cur_gpar <- get.gpar() lpp <- floor(convertHeight(unit(1, "npc"), "lines", valueOnly = TRUE) / (cur_gpar$cex * cur_gpar$lineheight)) } paginate_table(tt, lpp = lpp, ...) } else { list(tt) } stbls <- lapply(lapply(tbls, toString, widths = colwidths), function(xi) substr(xi, 1, nchar(xi) - nchar("\n"))) gtbls <- lapply(stbls, function(txt) { textGrob( label = txt, x = unit(0, "npc"), y = unit(1, "npc"), just = c("left", "top") ) }) npages <- length(gtbls) exceeds_width = rep(FALSE, npages) exceeds_height = rep(FALSE, npages) for (i in seq_along(gtbls)) { g <- gtbls[[i]] if (i > 1) { grid.newpage() pushViewport(plotViewport(margins = margins, gp = gp_plot)) } if (convertHeight(grobHeight(g), "inches", valueOnly = TRUE) > convertHeight(unit(1, "npc"), "inches", valueOnly = TRUE)) { exceeds_height[i] <- TRUE warning("height of page ", i, " exceeds the available space") } if (convertWidth(grobWidth(g), "inches", valueOnly = TRUE) > convertWidth(unit(1, "npc"), "inches", valueOnly = TRUE)) { exceeds_width[i] <- TRUE warning("width of page ", i, " exceeds the available space") } grid.draw(g) } dev.off() list(file = file, npages = npages, exceeds_width = exceeds_width, exceeds_height = exceeds_height, lpp = lpp) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mod_table_pieces.R \name{mod_table_piecesui} \alias{mod_table_piecesui} \alias{mod_table_pieces} \title{mod_table_piecesui and mod_table_pieces} \usage{ mod_table_piecesui(id) mod_table_pieces( input, output, session, scale_obj, steps_range, step_choice, width_table = "100\%" ) } \arguments{ \item{id}{shiny id} \item{input}{internal} \item{output}{internal} \item{session}{internal} } \description{ A shiny Module that ... }
/man/mod_table_piecesui.Rd
permissive
federman/shinylego
R
false
true
523
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mod_table_pieces.R \name{mod_table_piecesui} \alias{mod_table_piecesui} \alias{mod_table_pieces} \title{mod_table_piecesui and mod_table_pieces} \usage{ mod_table_piecesui(id) mod_table_pieces( input, output, session, scale_obj, steps_range, step_choice, width_table = "100\%" ) } \arguments{ \item{id}{shiny id} \item{input}{internal} \item{output}{internal} \item{session}{internal} } \description{ A shiny Module that ... }
# # This file is for plot 1 for Expolitory Data Analysis Project 1 # ############################################################################### # Step 1 Set the file locations and read the file # Note: This file assumes the data file exists in the "explore_p_1" subdirectory # under the working directory ############################################################################### readfile <- paste(getwd(),"/explore_p_1", "/", "household_power_consumption.txt", sep="") writefile <- paste(getwd(),"/explore_p_1", "/", "plot1.png", sep="") # Read the file power.df <- as.data.frame(read.table(readfile, header=TRUE, sep=";", na.strings="?")) # Step 2 Clean the data set ############################################################################### #subset the data frame to innclude only the dates of interest power.df <- subset(power.df, Date == "1/2/2007" | Date == "2/2/2007") # Step 3 Generate the histogram ############################################################################### png(filename = writefile, width = 480, height = 480, units = "px", bg = "white") par(mar = c(6, 6, 5, 4)) hist(power.df$Global_active_power, col = "red", main = "Global Active Power", xlab = "Global Active Power(kilowatts)") dev.off()
/plot1.R
no_license
MGoodman10/ExData_Plotting1
R
false
false
1,310
r
# # This file is for plot 1 for Expolitory Data Analysis Project 1 # ############################################################################### # Step 1 Set the file locations and read the file # Note: This file assumes the data file exists in the "explore_p_1" subdirectory # under the working directory ############################################################################### readfile <- paste(getwd(),"/explore_p_1", "/", "household_power_consumption.txt", sep="") writefile <- paste(getwd(),"/explore_p_1", "/", "plot1.png", sep="") # Read the file power.df <- as.data.frame(read.table(readfile, header=TRUE, sep=";", na.strings="?")) # Step 2 Clean the data set ############################################################################### #subset the data frame to innclude only the dates of interest power.df <- subset(power.df, Date == "1/2/2007" | Date == "2/2/2007") # Step 3 Generate the histogram ############################################################################### png(filename = writefile, width = 480, height = 480, units = "px", bg = "white") par(mar = c(6, 6, 5, 4)) hist(power.df$Global_active_power, col = "red", main = "Global Active Power", xlab = "Global Active Power(kilowatts)") dev.off()
context("Checking findVariance") test_that("One cat column, one measure col, and no date columns give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = "LOS") expected <- data.frame(DimensionalAttributes = c('Gender','Gender'), CategoriesGrouped = c('M','F'), MeasureCOV = c('LOS|0.66','LOS|0.49'), MeasureVolumeRaw = c('LOS|3','LOS|4'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57'), MeasureImpact = c('LOS|1.98','LOS|1.96'), AboveMeanCOVFLG = c('LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y'), # findVariation returns strings as characters stringsAsFactors = FALSE) # Drop row names, so the two dfs can match w/o specifying row names explicitly rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat column, one measure col, and no date col and NA in cat col give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F',NA,'F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = "LOS") expected <- data.frame(DimensionalAttributes = c('Gender','Gender'), CategoriesGrouped = c('M','F'), MeasureCOV = c('LOS|0.66','LOS|0.22'), MeasureVolumeRaw = c('LOS|3','LOS|3'), MeasureVolumePercent = c('LOS|0.5','LOS|0.5'), MeasureImpact = c('LOS|1.98','LOS|0.66'), AboveMeanCOVFLG = c('LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|N'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("Two cat columns and no date columns give correct df", { df <- data.frame(Dept = c('A','A','A','B','B','B','B'), Gender = c('F','M','M','M','M','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9)) categoricalCols <- c("Dept","Gender") dfRes <- findVariation(df = df, categoricalCols = categoricalCols, measureCol = "LOS") expected <- data.frame( DimensionalAttributes = c('Dept','Dept','Gender','Gender', 'Dept|Gender','Dept|Gender'), CategoriesGrouped = c('B','A','M','F','B|F','B|M'), MeasureCOV = c('LOS|0.81','LOS|0.31','LOS|0.66', 'LOS|0.58','LOS|0.54','LOS|0.42'), MeasureVolumeRaw = c('LOS|4','LOS|2','LOS|3','LOS|3','LOS|2','LOS|2'), MeasureVolumePercent = c('LOS|0.67','LOS|0.33','LOS|0.5','LOS|0.5', 'LOS|0.5','LOS|0.5'), MeasureImpact = c('LOS|3.24','LOS|0.62','LOS|1.98','LOS|1.74', 'LOS|1.08','LOS|0.84'), AboveMeanCOVFLG = c('LOS|Y','LOS|N','LOS|Y','LOS|N', 'LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|Y','LOS|N','LOS|N','LOS|N', 'LOS|Y','LOS|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat col, one measure col, and one date col give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), StartDTS = c('2012-01-01 10:04:23', '2012-01-01 10:04:23', '2012-02-01 10:04:23', '2012-02-02 10:04:23', '2012-01-01 10:04:23', '2012-03-01 10:04:23', '2012-04-01 10:04:23', '2012-04-01 10:04:23')) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = "LOS", dateCol = 'StartDTS') expected <- data.frame( DimensionalAttributes = c('Gender','Gender', 'StartDTS','StartDTS','StartDTS', 'Gender|StartDTS','Gender|StartDTS'), CategoriesGrouped = c('M','F', '2012-02','2012-04','2012-01', 'M|2012-02','F|2012-04'), MeasureCOV = c('LOS|0.66','LOS|0.49', 'LOS|0.83','LOS|0.4','LOS|0.2', 'LOS|0.83','LOS|0.4'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'LOS|2','LOS|2','LOS|2', 'LOS|2','LOS|2'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57', 'LOS|0.33','LOS|0.33','LOS|0.33', 'LOS|0.5','LOS|0.5'), MeasureImpact = c('LOS|1.98','LOS|1.96', 'LOS|1.66','LOS|0.8','LOS|0.4', 'LOS|1.66','LOS|0.8'), AboveMeanCOVFLG = c('LOS|Y','LOS|N', 'LOS|Y','LOS|N','LOS|N', 'LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y', 'LOS|Y','LOS|Y','LOS|Y', 'LOS|Y','LOS|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat column, two measure col, and no date columns give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), BP = c(123,129,89,150,90,58,160,145)) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = c("LOS","BP")) expected <- data.frame(DimensionalAttributes = c('Gender','Gender', 'Gender','Gender'), CategoriesGrouped = c('M','F', 'F','M'), MeasureCOV = c('LOS|0.66','LOS|0.49', 'BP|0.37','BP|0.26'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'BP|4','BP|4'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57', 'BP|0.5','BP|0.5'), MeasureImpact = c('LOS|1.98','LOS|1.96', 'BP|1.48','BP|1.04'), AboveMeanCOVFLG = c('LOS|Y','LOS|N', 'BP|Y','BP|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y', 'BP|N','BP|N'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() # Reset factor levels of both dataframes (as we don't care if they're equal) testthat::expect_equal(dfRes,expected) }) test_that("One cat col, two measure cols, and one date col give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), BP = c(123,129,89,150,90,58,160,145), StartDTS = c('2012-01-01 10:04:23', '2012-01-01 10:04:23', '2012-02-01 10:04:23', '2012-02-02 10:04:23', '2012-01-01 10:04:23', '2012-03-01 10:04:23', '2012-04-01 10:04:23', '2012-04-01 10:04:23')) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = c("LOS","BP"), dateCol = 'StartDTS') expected <- data.frame( DimensionalAttributes = c('Gender','Gender','Gender','Gender', 'StartDTS','StartDTS','StartDTS', 'StartDTS','StartDTS','StartDTS', 'Gender|StartDTS','Gender|StartDTS', 'Gender|StartDTS','Gender|StartDTS', 'Gender|StartDTS'), CategoriesGrouped = c('M','F','F','M', '2012-02','2012-04','2012-02', '2012-01','2012-01','2012-04', 'M|2012-02','F|2012-04','M|2012-02', 'M|2012-01','F|2012-04'), MeasureCOV = c('LOS|0.66','LOS|0.49', 'BP|0.37','BP|0.26', 'LOS|0.83','LOS|0.4', 'BP|0.36','BP|0.18', 'LOS|0.2', 'BP|0.07', 'LOS|0.83','LOS|0.4', 'BP|0.36','BP|0.25','BP|0.07'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'BP|4','BP|4', 'LOS|2','LOS|2', 'BP|2','BP|3', 'LOS|2', 'BP|2', 'LOS|2','LOS|2', 'BP|2','BP|2','BP|2'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57', 'BP|0.5','BP|0.5', 'LOS|0.33','LOS|0.33', 'BP|0.29','BP|0.43', 'LOS|0.33', 'BP|0.29', 'LOS|0.5','LOS|0.5', 'BP|0.33','BP|0.33','BP|0.33'), MeasureImpact = c('LOS|1.98','LOS|1.96', 'BP|1.48','BP|1.04', 'LOS|1.66','LOS|0.8', 'BP|0.72','BP|0.54', 'LOS|0.4', 'BP|0.14', 'LOS|1.66','LOS|0.8', 'BP|0.72','BP|0.5','BP|0.14'), AboveMeanCOVFLG = c('LOS|Y','LOS|N', 'BP|Y','BP|N', 'LOS|Y','LOS|N', 'BP|Y','BP|N', 'LOS|N', 'BP|N', 'LOS|Y','LOS|N', 'BP|Y','BP|Y','BP|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y', 'BP|N','BP|N', 'LOS|Y','LOS|Y', 'BP|N','BP|Y', 'LOS|Y', 'BP|N', 'LOS|Y','LOS|Y', 'BP|Y','BP|Y','BP|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat col, two measure cols,one date col, & threshold give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), BP = c(123,129,89,150,90,58,160,145), StartDTS = c('2012-01-01 10:04:23', '2012-01-01 10:04:23', '2012-02-01 10:04:23', '2012-02-02 10:04:23', '2012-01-01 10:04:23', '2012-03-01 10:04:23', '2012-04-01 10:04:23', '2012-04-01 10:04:23')) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = c("LOS","BP"), dateCol = 'StartDTS', threshold = 1.0) expected <- data.frame( DimensionalAttributes = c('Gender','Gender','Gender','Gender', 'StartDTS', 'Gender|StartDTS'), CategoriesGrouped = c('M','F','F','M', '2012-02', 'M|2012-02'), MeasureCOV = c('LOS|0.66','LOS|0.49','BP|0.37','BP|0.26', 'LOS|0.83', 'LOS|0.83'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'BP|4','BP|4', 'LOS|2', 'LOS|2'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57','BP|0.5','BP|0.5', 'LOS|0.33', 'LOS|0.5'), MeasureImpact = c('LOS|1.98','LOS|1.96','BP|1.48','BP|1.04', 'LOS|1.66', 'LOS|1.66'), AboveMeanCOVFLG = c('LOS|Y','LOS|N','BP|Y','BP|N', 'LOS|Y','LOS|Y'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y','BP|N','BP|N', 'LOS|Y', 'LOS|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("Measure col missing from df gives correct error (when one specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gender", measureCol = "LO"), # <-- error "The measure column or one of the categorical cols is") }) test_that("Measure col missing from df gives correct error (when two specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gender", measureCol = "LO"), # <-- error "The measure column or one of the categorical cols is") }) test_that("Categorical col missing from df gives correct error (when one specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gendr", # <-- error measureCol = "LOS"), "The measure column or one of the categorical cols is") }) test_that("Categorical col missing from df gives correct error (when two specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), Age = c(23,45,63,42,78,32,15,65)) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender"), measureCol = c("LOS","Ag")), "The measure column or one of the categorical cols is") }) test_that("Measure col as strings gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), Married = c('Y','N','Y','N','N','Y','N','Y'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gender", measureCol = "Married"), # <-- error "measureColumn needs to be of class numeric or int") }) test_that("Categorical col as numbers gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), Age = c(23,45,63,42,78,32,15,65)) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender","Age"), measureCol = "LOS"), "categoricalCols cannot be of class numeric or int") }) test_that("Date column in wrong format gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), AdmitDTS = c('01-2012 12:34:12','2012-01-01 12:34:12', '2012-01-01 12:34:12','2012-01-01 12:34:12', '2012-01-01 12:34:12','2012-01-01 12:34:12', '2012-01-01 12:34:12','2012-01-01 12:34:12')) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender"), measureCol = "LOS", dateCol = "AdmitDTS"), # <-- error paste0("AdmitDTS may not be a datetime column, or the", " column may not be in format YYYY-MM-DD")) }) test_that("Date column passed as number gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), Age = c(23,45,63,42,78,32,15,65)) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender"), measureCol = "LOS", dateCol = "Age"), # <-- error paste0("Age may not be a datetime column, or the", " column may not be in format YYYY-MM-DD")) })
/tests/testthat/test-find-variance.R
permissive
Quantitative72/healthcareai-r
R
false
false
17,564
r
context("Checking findVariance") test_that("One cat column, one measure col, and no date columns give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = "LOS") expected <- data.frame(DimensionalAttributes = c('Gender','Gender'), CategoriesGrouped = c('M','F'), MeasureCOV = c('LOS|0.66','LOS|0.49'), MeasureVolumeRaw = c('LOS|3','LOS|4'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57'), MeasureImpact = c('LOS|1.98','LOS|1.96'), AboveMeanCOVFLG = c('LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y'), # findVariation returns strings as characters stringsAsFactors = FALSE) # Drop row names, so the two dfs can match w/o specifying row names explicitly rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat column, one measure col, and no date col and NA in cat col give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F',NA,'F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = "LOS") expected <- data.frame(DimensionalAttributes = c('Gender','Gender'), CategoriesGrouped = c('M','F'), MeasureCOV = c('LOS|0.66','LOS|0.22'), MeasureVolumeRaw = c('LOS|3','LOS|3'), MeasureVolumePercent = c('LOS|0.5','LOS|0.5'), MeasureImpact = c('LOS|1.98','LOS|0.66'), AboveMeanCOVFLG = c('LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|N'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("Two cat columns and no date columns give correct df", { df <- data.frame(Dept = c('A','A','A','B','B','B','B'), Gender = c('F','M','M','M','M','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9)) categoricalCols <- c("Dept","Gender") dfRes <- findVariation(df = df, categoricalCols = categoricalCols, measureCol = "LOS") expected <- data.frame( DimensionalAttributes = c('Dept','Dept','Gender','Gender', 'Dept|Gender','Dept|Gender'), CategoriesGrouped = c('B','A','M','F','B|F','B|M'), MeasureCOV = c('LOS|0.81','LOS|0.31','LOS|0.66', 'LOS|0.58','LOS|0.54','LOS|0.42'), MeasureVolumeRaw = c('LOS|4','LOS|2','LOS|3','LOS|3','LOS|2','LOS|2'), MeasureVolumePercent = c('LOS|0.67','LOS|0.33','LOS|0.5','LOS|0.5', 'LOS|0.5','LOS|0.5'), MeasureImpact = c('LOS|3.24','LOS|0.62','LOS|1.98','LOS|1.74', 'LOS|1.08','LOS|0.84'), AboveMeanCOVFLG = c('LOS|Y','LOS|N','LOS|Y','LOS|N', 'LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|Y','LOS|N','LOS|N','LOS|N', 'LOS|Y','LOS|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat col, one measure col, and one date col give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), StartDTS = c('2012-01-01 10:04:23', '2012-01-01 10:04:23', '2012-02-01 10:04:23', '2012-02-02 10:04:23', '2012-01-01 10:04:23', '2012-03-01 10:04:23', '2012-04-01 10:04:23', '2012-04-01 10:04:23')) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = "LOS", dateCol = 'StartDTS') expected <- data.frame( DimensionalAttributes = c('Gender','Gender', 'StartDTS','StartDTS','StartDTS', 'Gender|StartDTS','Gender|StartDTS'), CategoriesGrouped = c('M','F', '2012-02','2012-04','2012-01', 'M|2012-02','F|2012-04'), MeasureCOV = c('LOS|0.66','LOS|0.49', 'LOS|0.83','LOS|0.4','LOS|0.2', 'LOS|0.83','LOS|0.4'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'LOS|2','LOS|2','LOS|2', 'LOS|2','LOS|2'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57', 'LOS|0.33','LOS|0.33','LOS|0.33', 'LOS|0.5','LOS|0.5'), MeasureImpact = c('LOS|1.98','LOS|1.96', 'LOS|1.66','LOS|0.8','LOS|0.4', 'LOS|1.66','LOS|0.8'), AboveMeanCOVFLG = c('LOS|Y','LOS|N', 'LOS|Y','LOS|N','LOS|N', 'LOS|Y','LOS|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y', 'LOS|Y','LOS|Y','LOS|Y', 'LOS|Y','LOS|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat column, two measure col, and no date columns give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), BP = c(123,129,89,150,90,58,160,145)) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = c("LOS","BP")) expected <- data.frame(DimensionalAttributes = c('Gender','Gender', 'Gender','Gender'), CategoriesGrouped = c('M','F', 'F','M'), MeasureCOV = c('LOS|0.66','LOS|0.49', 'BP|0.37','BP|0.26'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'BP|4','BP|4'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57', 'BP|0.5','BP|0.5'), MeasureImpact = c('LOS|1.98','LOS|1.96', 'BP|1.48','BP|1.04'), AboveMeanCOVFLG = c('LOS|Y','LOS|N', 'BP|Y','BP|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y', 'BP|N','BP|N'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() # Reset factor levels of both dataframes (as we don't care if they're equal) testthat::expect_equal(dfRes,expected) }) test_that("One cat col, two measure cols, and one date col give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), BP = c(123,129,89,150,90,58,160,145), StartDTS = c('2012-01-01 10:04:23', '2012-01-01 10:04:23', '2012-02-01 10:04:23', '2012-02-02 10:04:23', '2012-01-01 10:04:23', '2012-03-01 10:04:23', '2012-04-01 10:04:23', '2012-04-01 10:04:23')) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = c("LOS","BP"), dateCol = 'StartDTS') expected <- data.frame( DimensionalAttributes = c('Gender','Gender','Gender','Gender', 'StartDTS','StartDTS','StartDTS', 'StartDTS','StartDTS','StartDTS', 'Gender|StartDTS','Gender|StartDTS', 'Gender|StartDTS','Gender|StartDTS', 'Gender|StartDTS'), CategoriesGrouped = c('M','F','F','M', '2012-02','2012-04','2012-02', '2012-01','2012-01','2012-04', 'M|2012-02','F|2012-04','M|2012-02', 'M|2012-01','F|2012-04'), MeasureCOV = c('LOS|0.66','LOS|0.49', 'BP|0.37','BP|0.26', 'LOS|0.83','LOS|0.4', 'BP|0.36','BP|0.18', 'LOS|0.2', 'BP|0.07', 'LOS|0.83','LOS|0.4', 'BP|0.36','BP|0.25','BP|0.07'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'BP|4','BP|4', 'LOS|2','LOS|2', 'BP|2','BP|3', 'LOS|2', 'BP|2', 'LOS|2','LOS|2', 'BP|2','BP|2','BP|2'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57', 'BP|0.5','BP|0.5', 'LOS|0.33','LOS|0.33', 'BP|0.29','BP|0.43', 'LOS|0.33', 'BP|0.29', 'LOS|0.5','LOS|0.5', 'BP|0.33','BP|0.33','BP|0.33'), MeasureImpact = c('LOS|1.98','LOS|1.96', 'BP|1.48','BP|1.04', 'LOS|1.66','LOS|0.8', 'BP|0.72','BP|0.54', 'LOS|0.4', 'BP|0.14', 'LOS|1.66','LOS|0.8', 'BP|0.72','BP|0.5','BP|0.14'), AboveMeanCOVFLG = c('LOS|Y','LOS|N', 'BP|Y','BP|N', 'LOS|Y','LOS|N', 'BP|Y','BP|N', 'LOS|N', 'BP|N', 'LOS|Y','LOS|N', 'BP|Y','BP|Y','BP|N'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y', 'BP|N','BP|N', 'LOS|Y','LOS|Y', 'BP|N','BP|Y', 'LOS|Y', 'BP|N', 'LOS|Y','LOS|Y', 'BP|Y','BP|Y','BP|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("One cat col, two measure cols,one date col, & threshold give correct df", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), BP = c(123,129,89,150,90,58,160,145), StartDTS = c('2012-01-01 10:04:23', '2012-01-01 10:04:23', '2012-02-01 10:04:23', '2012-02-02 10:04:23', '2012-01-01 10:04:23', '2012-03-01 10:04:23', '2012-04-01 10:04:23', '2012-04-01 10:04:23')) dfRes <- findVariation(df = df, categoricalCols = "Gender", measureCol = c("LOS","BP"), dateCol = 'StartDTS', threshold = 1.0) expected <- data.frame( DimensionalAttributes = c('Gender','Gender','Gender','Gender', 'StartDTS', 'Gender|StartDTS'), CategoriesGrouped = c('M','F','F','M', '2012-02', 'M|2012-02'), MeasureCOV = c('LOS|0.66','LOS|0.49','BP|0.37','BP|0.26', 'LOS|0.83', 'LOS|0.83'), MeasureVolumeRaw = c('LOS|3','LOS|4', 'BP|4','BP|4', 'LOS|2', 'LOS|2'), MeasureVolumePercent = c('LOS|0.43','LOS|0.57','BP|0.5','BP|0.5', 'LOS|0.33', 'LOS|0.5'), MeasureImpact = c('LOS|1.98','LOS|1.96','BP|1.48','BP|1.04', 'LOS|1.66', 'LOS|1.66'), AboveMeanCOVFLG = c('LOS|Y','LOS|N','BP|Y','BP|N', 'LOS|Y','LOS|Y'), AboveMeanVolumeFLG = c('LOS|N','LOS|Y','BP|N','BP|N', 'LOS|Y', 'LOS|Y'), stringsAsFactors = FALSE) rownames(dfRes) <- c() rownames(expected) <- c() testthat::expect_equal(dfRes,expected) }) test_that("Measure col missing from df gives correct error (when one specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gender", measureCol = "LO"), # <-- error "The measure column or one of the categorical cols is") }) test_that("Measure col missing from df gives correct error (when two specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gender", measureCol = "LO"), # <-- error "The measure column or one of the categorical cols is") }) test_that("Categorical col missing from df gives correct error (when one specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gendr", # <-- error measureCol = "LOS"), "The measure column or one of the categorical cols is") }) test_that("Categorical col missing from df gives correct error (when two specified)", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), Age = c(23,45,63,42,78,32,15,65)) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender"), measureCol = c("LOS","Ag")), "The measure column or one of the categorical cols is") }) test_that("Measure col as strings gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), Married = c('Y','N','Y','N','N','Y','N','Y'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5)) testthat::expect_error(findVariation(df = df, categoricalCols = "Gender", measureCol = "Married"), # <-- error "measureColumn needs to be of class numeric or int") }) test_that("Categorical col as numbers gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), Age = c(23,45,63,42,78,32,15,65)) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender","Age"), measureCol = "LOS"), "categoricalCols cannot be of class numeric or int") }) test_that("Date column in wrong format gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), AdmitDTS = c('01-2012 12:34:12','2012-01-01 12:34:12', '2012-01-01 12:34:12','2012-01-01 12:34:12', '2012-01-01 12:34:12','2012-01-01 12:34:12', '2012-01-01 12:34:12','2012-01-01 12:34:12')) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender"), measureCol = "LOS", dateCol = "AdmitDTS"), # <-- error paste0("AdmitDTS may not be a datetime column, or the", " column may not be in format YYYY-MM-DD")) }) test_that("Date column passed as number gives correct error", { df <- data.frame(Gender = c('F','M','M','M','M','F','F','F'), LOS = c(3.2,NA,5,1.3,2.4,4,9,5), Age = c(23,45,63,42,78,32,15,65)) testthat::expect_error(findVariation(df = df, categoricalCols = c("Gender"), measureCol = "LOS", dateCol = "Age"), # <-- error paste0("Age may not be a datetime column, or the", " column may not be in format YYYY-MM-DD")) })
# Apriori # Data Preprocessing # install.packages('arules') library(arules) dataset = read.csv('~/Dropbox/github/machine_learning_udemy/machine-learning-udemy/part-5-association-rule-learning/Apriori/Market_Basket_Optimisation.csv', header = FALSE) dataset = read.transactions('~/Dropbox/github/machine_learning_udemy/machine-learning-udemy/part-5-association-rule-learning/Apriori/Market_Basket_Optimisation.csv', sep = ',', rm.duplicates = TRUE) summary(dataset) itemFrequencyPlot(dataset, topN = 10) # Training Apriori on the dataset rules = apriori(data = dataset, parameter = list(support = 0.004, confidence = 0.2)) # Visualising the results inspect(sort(rules, by = 'lift')[1:10])
/part-5-association-rule-learning/Apriori/apriori.R
no_license
adamzolotarev/machine-learning-udemy
R
false
false
691
r
# Apriori # Data Preprocessing # install.packages('arules') library(arules) dataset = read.csv('~/Dropbox/github/machine_learning_udemy/machine-learning-udemy/part-5-association-rule-learning/Apriori/Market_Basket_Optimisation.csv', header = FALSE) dataset = read.transactions('~/Dropbox/github/machine_learning_udemy/machine-learning-udemy/part-5-association-rule-learning/Apriori/Market_Basket_Optimisation.csv', sep = ',', rm.duplicates = TRUE) summary(dataset) itemFrequencyPlot(dataset, topN = 10) # Training Apriori on the dataset rules = apriori(data = dataset, parameter = list(support = 0.004, confidence = 0.2)) # Visualising the results inspect(sort(rules, by = 'lift')[1:10])
#capturing old digitized data require(digitize) ##there is no angle correction on this if the file is rotated you get wrong values ca = ReadAndCal('~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganTotalEffortTotalTraps.png') #click xlow, xhigh, ylow, yhigh and calibratin is now ca dp = DigitData(col = 'red') #right click when done #Landings first dF = Calibrate(dp,ca,1877,1979, 0, 800) names(dF) = c('Year','TLand') dF$Year = round(dF$Year) #Traps ca1 = ReadAndCal('~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganTotalEffortTotalTraps.png') #click xlow, xhigh, ylow, yhigh and calibratin is now ca dp1 = DigitData(col = 'red') #right click when done dF1 = Calibrate(dp1,ca1,1877,1979, 0, 50000) names(dF1) = c('Year','Traps') dF1$Year = round(dF1$Year) #Licenses ca2 = ReadAndCal('~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganTotalEffortTotalTraps.png') #click xlow, xhigh, ylow, yhigh and calibratin is now ca dp2 = DigitData(col = 'red') #right click when done dF2 = Calibrate(dp2,ca2,1877,1979, 0, 300) #calibrating numbers, names(dF2) = c('Year','Licenses') dF2$Year = round(dF2$Year) LFA38Data = merge(merge(dF,dF1,all=T),dF2,all=T) write.csv(LFA38Data,file='~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganFigureData.csv')
/inst/IP/DigitizingOldFigs.r
no_license
jfontestad/bio.lobster
R
false
false
1,281
r
#capturing old digitized data require(digitize) ##there is no angle correction on this if the file is rotated you get wrong values ca = ReadAndCal('~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganTotalEffortTotalTraps.png') #click xlow, xhigh, ylow, yhigh and calibratin is now ca dp = DigitData(col = 'red') #right click when done #Landings first dF = Calibrate(dp,ca,1877,1979, 0, 800) names(dF) = c('Year','TLand') dF$Year = round(dF$Year) #Traps ca1 = ReadAndCal('~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganTotalEffortTotalTraps.png') #click xlow, xhigh, ylow, yhigh and calibratin is now ca dp1 = DigitData(col = 'red') #right click when done dF1 = Calibrate(dp1,ca1,1877,1979, 0, 50000) names(dF1) = c('Year','Traps') dF1$Year = round(dF1$Year) #Licenses ca2 = ReadAndCal('~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganTotalEffortTotalTraps.png') #click xlow, xhigh, ylow, yhigh and calibratin is now ca dp2 = DigitData(col = 'red') #right click when done dF2 = Calibrate(dp2,ca2,1877,1979, 0, 300) #calibrating numbers, names(dF2) = c('Year','Licenses') dF2$Year = round(dF2$Year) LFA38Data = merge(merge(dF,dF1,all=T),dF2,all=T) write.csv(LFA38Data,file='~/Documents/Adam/Lobster/LFA38/Jan2020/CampbellandDugganFigureData.csv')
hero <- function(bullets, dragons) { ifelse(bullets / dragons >= 2, TRUE, FALSE) }
/R/8_kyu/Is_he_gonna_survive.R
no_license
y0wel/Codewars-Kata
R
false
false
84
r
hero <- function(bullets, dragons) { ifelse(bullets / dragons >= 2, TRUE, FALSE) }
# plotmo.R: plot the model response when varying one or two predictors # # Stephen Milborrow Sep 2006 Cape Town plotmo <- function(object = stop("no 'object' argument"), type = NULL, nresponse = NA, pt.col = 0, jitter = .5, smooth.col = 0, level = 0, func = NULL, inverse.func = NULL, nrug = 0, grid.col = 0, type2 = "persp", degree1 = TRUE, all1 = FALSE, degree2 = TRUE, all2 = FALSE, do.par = TRUE, clip = TRUE, ylim = NULL, caption = NULL, trace = 0, grid.func = median, grid.levels = NULL, extend = 0, ngrid1 = 50, ngrid2 = 20, ndiscrete = 5, npoints = 3000, center = FALSE, xflip = FALSE, yflip = FALSE, swapxy = FALSE, int.only.ok = TRUE, ...) { init.global.data() on.exit(init.global.data()) # release memory on exit object.name <- quote.deparse(substitute(object)) object # make sure object exists trace <- as.numeric(check.integer.scalar(trace, logical.ok=TRUE)) # Associate the model environment with the object. # (This is instead of passing it as an argument to plotmo's data access # functions. It saves a few hundred references to model.env in the code.) attr(object, ".Environment") <- get.model.env(object, object.name, trace) temp <- plotmo_prolog(object, object.name, trace, ...) object <- temp$object my.call <- temp$my.call # We will later make two passes through the plots if we need to # automatically determine ylim (see get.ylim.by.dummy.plots). # The trace2 variable is used for disabling tracing on the second pass. trace2 <- trace # trace=100 to 103 are special values used for development # (they are for tracing just plotmo_x with no plotting) special.trace <- FALSE if(trace >= 100 && trace <= 103) { special.trace <- TRUE trace <- trace - 100 } clip <- check.boolean(clip) all1 <- check.boolean(all1) all2 <- check.boolean(all2) center <- check.boolean(center) swapxy <- check.boolean(swapxy) xflip <- check.boolean(xflip) yflip <- check.boolean(yflip) type2 <- match.choices(type2, c("persp", "contour", "image"), "type2") level <- get.level(level, ...) pt.col <- get.pt.col(pt.col, ...) jitter <- get.jitter(jitter, ...) ngrid1 <- get.ngrid1(ngrid1, ...) ngrid2 <- get.ngrid2(ngrid2, ...) smooth.col <- get.smooth.col(smooth.col, ...) check.integer.scalar(ndiscrete, min=0) nrug <- get.nrug(nrug, ...) extend <- check.numeric.scalar(extend) stopifnot(extend > -.3, extend <= 10) # .3 prevents shrinking to nothing, 10 is arb # TODO revisit this, causes issues because the following for example produces # the identical last two plots: for(i in 1:3) a <- earth(.., nfold=3); plot(a) rnorm(1) # seems to be necessary to make .Random.seed available old.seed <- .Random.seed on.exit(set.seed(old.seed), add=TRUE) set.seed(2015) if(!is.specified(degree1)) degree1 <- 0 if(!is.specified(degree2)) degree2 <- 0 if(!is.specified(nresponse)) nresponse <- NA if(!is.specified(clip)) clip <- FALSE if(center && clip) { clip <- FALSE # otherwise incorrect clipping (TODO revisit) warning0("forcing clip=FALSE because center=TRUE ", "(a limitation of the current implementation)") } # get x so we can get the predictor names and ux.list x <- plotmo_x(object, trace) if(NCOL(x) == 0 || NROW(x) == 0) stop("x is empty") if(special.trace) # special value of trace was used? return(invisible(x)) meta <- plotmo_meta(object, type, nresponse, trace, msg.if.predictions.not.numeric= if(level > 0) "the level argument is not allowed" else NULL, ...) y <- meta$y.as.numeric.mat # y as a numeric mat, only the nresponse column nresponse <- meta$nresponse # column index resp.name <- meta$resp.name # used only in automatic caption, may be NULL resp.levs <- meta$resp.levs # to convert predicted strings to factors, may be NULL type <- meta$type # always a string (converted from NULL if necessary) # following prevents aliasing on nrow(data) to ensure we catch the following: # "warning: predict(): newdata' had 31 rows but variable(s) found have 30 rows" if(ngrid1 == length(y)) { trace2(trace, "changed ngrid1 from %g to %g\n", ngrid1, ngrid1+1) ngrid1 <- ngrid1 + 1 } temp <- get.unique.xyvals(x, y, npoints, trace) ux.list <- temp$ux.list # list, each elem is unique vals in a column of x uy <- temp$uy # unique y vals npoints <- temp$npoints y <- apply.inverse.func(inverse.func, y, object, trace) if(center) y <- my.center(y, trace) # get iresponse ncases <- nrow(x) iresponse <- NULL if(is.specified(pt.col)) { iresponse <- get.iresponse(npoints, ncases) if(is.null(iresponse)) pt.col <- 0 } # singles is a vector of indices of predictors for degree1 plots temp <- plotmo_singles(object, x, nresponse, trace, degree1, all1) some.singles <- temp$some.singles singles <- temp$singles # each row of pairs is the indices of two predictors for a degree2 plot temp <- plotmo_pairs(object, x, nresponse, trace, all2, degree2) some.pairs <- temp$some.pairs pairs <- temp$pairs nsingles <- length(singles) npairs <- NROW(pairs) temp <- get.pred.names(colnames(x), nsingles + npairs) pred.names <- temp$pred.names abbr.pred.names <- temp$abbr.pred.names def.cex.main <- temp$def.cex.main is.int.only <- !some.singles && !some.pairs if(is.int.only && int.only.ok && !all(degree1 == 0)) { singles <- 1 # plot the first predictor nsingles <- 1 } if(nsingles > 100) { # 100 is arb, 10 * 10 singles <- singles[1:100] warning0("Will plot only the first 100 degree1 plots") } if(npairs > 100) { pairs <- pairs[1:100,] warning0("Will plot only the first 100 degree2 plots") } if(extend != 0 && npairs) { warning0("extend=", extend, ": will not plot degree2 plots ", "(extend is not yet implemented for degree2 plots)") pairs <- NULL npairs <- 0 } nfigs <- nsingles + npairs if(nfigs == 0) { if(trace >= 0) { if(is.int.only) warning0("plotmo: nothing to plot (intercept-only model)") else warning0("plotmo: nothing to plot") } return(invisible()) } do.par <- check.do.par(do.par, nfigs) # do.par is 0, 1, or 2 # Prepare caption --- we need it now for do.par() but # can only display it later after at least one plot. # nfigs=2 (any number greater than 1) because by default we do.par in plotmo. caption <- get.caption(nfigs=2, do.par, caption, resp.name, type, object$call, object.name, my.call) if(do.par) { # TODO document what happens here and in plotres if only one plot oldpar <- par(no.readonly=TRUE) # need xlab etc. so so we can figure out margin sizes in do.par xlab <- dot("xlab", DEF="", ...) ylab <- dot("ylab", DEF="", ...) main <- dot("main", ...) do.par(nfigs=nfigs, caption=caption, main1=main, xlab1=xlab, ylab1=ylab, trace=trace, def.cex.main=def.cex.main, ...) if(do.par == 1) on.exit(par(oldpar), add=TRUE) } else { # do.par=FALSE oldpar <- do.par.dots(..., trace=trace) if(length(oldpar)) on.exit(do.call(par, oldpar), add=TRUE) } trace2(trace, "\n----Figuring out ylim\n") is.na.ylim <- !is.null(ylim) && anyNA(ylim) jittered.y <- apply.jitter(as.numeric(y), jitter) # get.ylim will do dummy plots if necessary temp <- get.ylim(object=object, type=type, nresponse=nresponse, pt.col=pt.col, jitter=jitter, smooth.col=smooth.col, level=level, func=func, inverse.func=inverse.func, nrug=nrug, grid.col=grid.col, type2=type2, degree1=degree1, all1=all1, degree2=degree2, all2=all2, do.par=do.par, clip=clip, ylim=ylim, caption=caption, trace=trace, grid.func=grid.func, grid.levels=grid.levels, extend=extend, ngrid1=ngrid1, ngrid2=ngrid2, npoints=npoints, ndiscrete=ndiscrete, int.only.ok=int.only.ok, center=center, xflip=xflip, yflip=yflip, swapxy=swapxy, def.cex.main=def.cex.main, x=x, y=y, singles=singles, resp.levs=resp.levs, ux.list=ux.list, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nsingles=nsingles, npairs=npairs, nfigs=nfigs, uy=uy, is.na.ylim=is.na.ylim, is.int.only=is.int.only, trace2=trace2, pairs=pairs, iresponse=iresponse, jittered.y=jittered.y, ...) ylim <- temp$ylim trace2 <- temp$trace2 if(nsingles) plot.degree1(object=object, degree1=degree1, all1=all1, center=center, ylim=if(is.na.ylim) NULL else ylim, # each graph has its own ylim? nresponse=nresponse, type=type, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, smooth.col=smooth.col, grid.col=grid.col, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, ngrid1=ngrid1, is.int.only=is.int.only, level=level, func=func, nrug=nrug, draw.plot=TRUE, x=x, y=y, singles=singles, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, uy=uy, xflip=xflip, jittered.y=jittered.y, ...) if(npairs) plot.degree2(object=object, degree2=degree2, all2=all2, center, ylim=if(is.na.ylim) NULL else ylim, # each graph has its own ylim? nresponse=nresponse, type=type, clip=clip, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, type2=type2, ngrid2=ngrid2, draw.plot=TRUE, do.par=do.par, x=x, y=y, pairs=pairs, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, nsingles=nsingles, npairs=npairs, xflip=xflip, yflip=yflip, swapxy=swapxy, def.cex.main=def.cex.main, ...) draw.caption(caption, ...) invisible(x) } plotmo_prolog <- function(object, object.name, trace, ...) { object <- plotmo.prolog(object, object.name, trace, ...) my.call <- call.as.char(n=2) callers.name <- callers.name() if(trace >= 2) { printf.wrap("%s trace %g: %s\n", callers.name, trace, my.call) if(is.null(object$call)) printf("object class is \"%s\" with no object$call\n", class(object)[1]) else printf.wrap("object$call is %s\n", strip.deparse(object$call)) } SHOWCALL <- dot("SHOWCALL", ...) if(!is.specified(SHOWCALL)) my.call <- NULL list(object=object, my.call=my.call) } get.pred.names <- function(colnames.x, nfigs) { # numbers below are somewhat arb nrows <- ceiling(sqrt(nfigs)) # nrows in plot grid minlength <- 20; def.cex.main <- 1.2 if (nrows >= 9) { minlength <- 6; def.cex.main <- .7 } else if(nrows >= 8) { minlength <- 7; def.cex.main <- .8 } else if(nrows >= 7) { minlength <- 7; def.cex.main <- .8 } else if(nrows >= 6) { minlength <- 7; def.cex.main <- .8 } else if(nrows >= 5) { minlength <- 8; def.cex.main <- 1 } else if(nrows >= 4) { minlength <- 9; def.cex.main <- 1.1 } stopifnot(!is.null(colnames.x)) # plotmo_x always returns colnames (unless no columns) list(pred.names = colnames.x, abbr.pred.names = abbreviate(strip.space(colnames.x), minlength=minlength, method="both.sides"), def.cex.main = def.cex.main) } # always returns a vector of 2 elems, could be c(-Inf, Inf) get.ylim <- function(object, type, nresponse, pt.col, jitter, smooth.col, level, func, inverse.func, nrug, grid.col, type2, degree1, all1, degree2, all2, do.par, clip, ylim, caption, trace, grid.func, grid.levels, extend=extend, ngrid1, ngrid2, npoints, ndiscrete, int.only.ok, center, xflip, yflip, swapxy, def.cex.main, x, y, singles, resp.levs, ux.list, pred.names, abbr.pred.names, nsingles, npairs, nfigs, uy, is.na.ylim, is.int.only, trace2, pairs, iresponse, jittered.y, ...) { get.ylim.by.dummy.plots <- function(..., trace) { # call the plotting functions with draw.plot=FALSE to get the ylim trace2(trace, "--get.ylim.by.dummy.plots\n") all.yhat <- NULL if(nsingles) { # get all.yhat by calling with draw.plot=FALSE # have to use explicit arg names to prevent alias probs # with dots, because the user can pass in any name with dots all.yhat <- c(all.yhat, plot.degree1(object=object, degree1=degree1, all1=all1, center=center, ylim=ylim, nresponse=nresponse, type=type, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, smooth.col=smooth.col, grid.col=grid.col, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, ngrid1=ngrid1, is.int.only=is.int.only, level=level, func=func, nrug=nrug, draw.plot=FALSE, x=x, y=y, singles=singles, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, uy=uy, xflip=xflip, jittered.y=jittered.y, ...)) } if(npairs) { all.yhat <- c(all.yhat, plot.degree2(object=object, degree2=degree2, all2=all2, center=center, ylim=ylim, nresponse=nresponse, type=type, clip=clip, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, type2=type2, ngrid2=ngrid2, draw.plot=FALSE, do.par=do.par, x=x, y=y, pairs=pairs, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, nsingles=nsingles, npairs=npairs, xflip=xflip, yflip=yflip, swapxy=swapxy, def.cex.main=def.cex.main, ...)) } # 1 2 3 4 5 q <- quantile(all.yhat, probs=c(0, .25, .5, .75, 1)) ylim <- c(q[1], q[5]) # all the data # iqr test to prevent clipping in some pathological cases iqr <- q[4] - q[2] # middle 50% of the data (inter-quartile range) if(clip && iqr > .05 * (max(y) - min(y))) { median <- q[3] ylim[1] <- max(ylim[1], median - 10 * iqr) ylim[2] <- min(ylim[2], median + 10 * iqr) } if(is.specified(pt.col) || is.specified(smooth.col) || is.specified(level)) ylim <- range1(ylim, jittered.y) # ensure ylim big enough for resp points else if(is.specified(smooth.col)) ylim <- range1(ylim, y) # binary or ternary reponse? # the range(uy) test is needed for binomial models specified using counts else if(length(uy) <= 3 || range(y) == c(0,1)) ylim <- range1(ylim, y) if(is.specified(nrug)) # space for rug ylim[1] <- ylim[1] - .1 * (ylim[2] - ylim[1]) trace2(trace, "--done get.ylim.by.dummy.plots\n\n") # have called the plot functions, minimize tracing in further calls to them trace2 <<- 0 # note <<- not <- ylim } #--- get.ylim starts here if(!(is.null(ylim) || is.na(ylim[1]) || length(ylim) == 2)) stop0("ylim must be one of:\n", " NULL all graphs have same vertical axes\n", " NA each graph has its own vertical axis\n", " c(min,max) ylim for all graphs") if(length(ylim) == 2 && ylim[2] <= ylim[1]) stop0("ylim[2] ", ylim[2], " is not greater than ylim[1] ", ylim[1]) if(is.na.ylim) ylim <- c(NA, NA) # won't be used else if(is.null(ylim)) # auto ylim ylim <- if(is.int.only) range(y, na.rm=TRUE) else get.ylim.by.dummy.plots(trace=trace, ...) if(!anyNA(ylim)) ylim <- fix.lim(ylim) if(trace >= 2) printf("ylim c(%.4g, %.4g) clip %s\n\n", ylim[1], ylim[2], if(clip) "TRUE" else "FALSE") list(ylim=ylim, trace2=trace2) } do.degree2.par <- function(type2, nfigs, detailed.ticktype) { nrows <- ceiling(sqrt(nfigs)) if(type2 == "persp") { # perspective plot # note: persp ignores both the global mgp and any mgp passed directly to persp mar <- c(if(detailed.ticktype) 1 else .2, .3, 1.7, 0.1) par(mar=mar) return(NULL) } else { # contour or image plot if(nrows >= 5) mar <- c(2, 2, 1.2, .5) # space for bottom and left axis labels else mar <- c(3, 3, 2, .5) par(mar=mar) cex <- par("cex") # TODO would be better to use nfigs here? mgp <- # compact title and axis annotations if (cex < .7) c(1.2, 0.2, 0) else if(cex < .8) c(1.3, 0.3, 0) else c(1.5, 0.4, 0) par(mgp=mgp) } } plotmo_singles <- function(object, x, nresponse, trace, degree1, all1) { trace2(trace, "\n----plotmo_singles for %s object\n", class(object)[1]) singles <- plotmo.singles(object=object, x=x, nresponse=nresponse, trace=trace, all1=all1) some.singles <- FALSE if(length(singles)) { singles <- sort.unique(singles) some.singles <- TRUE } nsingles <- length(singles) if(nsingles) { degree1 <- check.index(degree1, "degree1", singles, colnames=colnames(x), allow.empty=TRUE, is.degree.spec=TRUE) singles <- singles[degree1] } else if(is.degree.specified(degree1) && degree1[1] != 0 && trace >= 0) warning0("'degree1' specified but no degree1 plots") if(trace >= 2) { if(nsingles) cat("singles:", paste0(singles, " ", colnames(x)[singles], collapse=", "), "\n") else cat("no singles\n") } list(some.singles=some.singles, singles =singles) # a vector of indices of predictors for degree1 plots } plotmo_pairs <- function(object, x, nresponse, trace, all2, degree2) { trace2(trace, "\n----plotmo_pairs for %s object\n", class(object)[1]) pairs <- plotmo.pairs(object, x, nresponse, trace, all2) if(!NROW(pairs) || !NCOL(pairs)) pairs <- NULL npairs <- NROW(pairs) some.pairs <- FALSE if(npairs) { some.pairs <- TRUE # put lowest numbered predictor first and remove duplicate pairs pairs <- unique(t(apply(pairs, 1, sort))) # order the pairs on the predictor order order <- order(pairs[,1], pairs[,2]) pairs <- pairs[order, , drop=FALSE] degree2 <- check.index(degree2, "degree2", pairs, colnames=colnames(x), allow.empty=TRUE, is.degree.spec=TRUE) pairs <- pairs[degree2, , drop=FALSE] } if(trace >= 2) { if(npairs) { cat("pairs:\n") print(matrix(paste(pairs, colnames(x)[pairs]), ncol=2)) } else cat("no pairs\n") } if(npairs == 0 && is.degree.specified(degree2) && degree2[1] != 0 && trace >= 0) warning0("'degree2' specified but no degree2 plots") list(some.pairs=some.pairs, pairs =pairs) } # pt.col is a formal arg, but for back compat we also support col.response get.pt.col <- function(pt.col, ...) { pt.col <- pt.col if(!is.specified(pt.col) && !is.dot("col", ...)) pt.col <- dot("col.response", EX=0, ...) # partial match, "col" excluded above # if any other response argument is specified, set the response color if(!is.specified(pt.col) && is.dot("pch cex.response pch.response pt.cex pt.pch", EX=c(1,1,1,0,0), ...)) pt.col <- "slategray4" if(!is.specified(pt.col)) pt.col <- 0 pt.col } get.jitter <- function(jitter, ...) { if(anyNA(jitter)) # allow jitter=NA jitter <- 0 check.numeric.scalar(jitter, logical.ok=TRUE) jitter <- as.numeric(jitter) if(jitter < 0 || jitter > 100) stop0("jitter=", jitter, " is illegal") jitter } get.smooth.col <- function(smooth.col, ...) { smooth.col <- dot("col.smooth", DEF=smooth.col, ...) # back compat # if any other smooth argument is specified, set the smooth color if(!is.specified(smooth.col) && is.dot("lty.smooth lwd.smooth lwd.loess smooth.lty smooth.lwd", EX=c(1,1,1,0,0), ...)) smooth.col <- 2 if(!is.specified(smooth.col)) smooth.col <- 0 smooth.col } get.ngrid1 <- function(ngrid1, ...) { check.integer.scalar(ngrid1) if(ngrid1 < 2) stop0("illegal ngrid1 ", ngrid1) if(ngrid1 > 1000) { warning0("clipped ngrid1=", ngrid1, " to 1000") ngrid1 <- 1000 } ngrid1 } get.ngrid2 <- function(ngrid2, ...) { check.integer.scalar(ngrid2) if(ngrid2 < 2) stop0("illegal ngrid2 ", ngrid2) if(ngrid2 > 500) { warning0("clipped ngrid2=", ngrid2, " to 500") ngrid2 <- 500 } ngrid2 } get.level <- function(level, ...) { if(anyNA(level) || is.null(level)) # treat NA and NULL as 0 level <- 0 check.numeric.scalar(level) # some code for backward compatibility (se is now deprecated) se <- 0 if(is.dot("se", ...)) se <- dot("se", ...) check.numeric.scalar(se, logical.ok=TRUE) if(se && level) # both specified? stop0("plotmo's 'se' argument is deprecated, please use 'level' instead") if(identical(se, TRUE)) { level <- .95 warning0( "plotmo's 'se' argument is deprecated, please use 'level=.95' instead") } else if (se < 0 || se > 5) # 5 is arb stop0("plotmo's 'se' argument is deprecated, please use 'level=.95' instead") else if (se > 0 && se < 1) # e.g. se=.95 stop0("plotmo's 'se' argument is deprecated, please use 'level=.95' instead") else if (se > 0) { level <- 1 - 2 * (1 - pnorm(se)) # se=2 becomes level=.954 warning0(sprintf( "plotmo's 'se' argument is deprecated, please use 'level=%.2f' instead", level)) } else if(level != 0 && (level < .5 || level >= 1)) stop0("level=", level, " is out of range, try level=.95") level } get.unique.xyvals <- function(x, y, npoints, trace) { # convert special values of npoints ncases <- nrow(x) check.integer.scalar(npoints, min=-1, null.ok=TRUE, logical.ok=TRUE) npoints.was.neg <- FALSE if(is.null(npoints)) npoints <- 0 else if(is.logical(npoints)) npoints <- if(npoints) ncases else 0 else if(npoints == -1) { npoints.was.neg <- TRUE npoints <- ncases } else if(npoints > ncases) npoints <- ncases # Use a maximum of NMAX cases for calculating ux.list and uy # (unless npoints is bigger or TRUE or negative). # Allows plotmo to be fast even on models with millions of cases. NMAX <- 1e4 nmax <- max(NMAX, npoints) if(!npoints.was.neg && ncases > nmax) { trace2(trace, "using %g of %g cases to calculate unique x and y values\n", npoints, ncases) isubset <- get.isubset(y, npoints) y <- y[isubset] x <- x[isubset, , drop=FALSE] } list(ux.list = get.ux.list(x, trace), uy = unique(y), npoints = npoints) } # return a list, each element is the unique levels for corresponding column of x # TODO this is where we spend a lot of time in plotmo for big data get.ux.list <- function(x, trace) { ux.list <- list(colnames(x)) for(i in seq_len(ncol(x))) ux.list[[i]] <- if(is.factor(x[,i])) levels(x[,i]) else sort.unique(x[,i]) trace2(trace, "number of x values: %s\n", paste.trunc(colnames(x), sapply(ux.list, length))) ux.list } # Remove duplicates in x, then sort (smallest first). # I had sort(unique(x)), but following is faster because it requires only one sort. sort.unique <- function(x) { rle(sort(x))[["values"]] # rle() is in base } points.or.text <- function(..., x, y, pt.col, iresponse) { stopifnot(!is.na(pt.col)) cex <- dot("pt.cex cex.response", DEF=1, EX=c(0,1), NEW=1, ...) cex <- cex * pt.cex(NROW(x)) pch <- dot("pt.pch pch.response pch", DEF=20, EX=c(0,1,1), NEW=1, ...) # recycle then select only iresponse points n <- length(y) col <- repl(pt.col, n)[iresponse] pch <- repl(pch, n)[iresponse] cex <- repl(cex, n)[iresponse] x <- x[iresponse] y <- y[iresponse] if(is.character(pch) && pch[1] != ".") call.plot(graphics::text.default, PREFIX="pt.", force.x = x, force.y = y, force.labels = pch, force.col = col, force.cex = pmax(.1, .9 * cex), def.xpd = NA, # allow writing beyond plot area ...) else call.plot(graphics::points.default, PREFIX="pt.", force.x = x, force.y = y, force.pch = pch, force.col = col, force.cex = cex, # commented out because looks messy in image plots # def.xpd = NA, # allow writing beyond plot area ...) } # The following global variables are for efficiency when we make two # passes through the plot. We store the data from the first pass so we # don't have to regenerate it. degree1.xgrid.global <- NULL degree2.xgrid.global <- NULL # TODO Following is ugly. I would prefer to have two namespace level # variables, degree1.data.global and degree2.data.global, similar to the # above two variables. But CRAN check won't allow # unlockBinding(degree1.data.global, asNamespace("plotmo")) so we can update # those variables. Also, we can't directly use assignInMyNamespace for these # variables because we need to update individual list elements. make.static.list <- function() { data <- list() func <- function(i, newdata=NULL) { if(is.null(i)) # init the data? data <<- list() else if(!missing(newdata)) # assign to the data? data[[i]] <<- newdata else if(i <= length(data)) # return the data element data[[i]] else # return the element, but it's NULL NULL } func } degree1.data <- make.static.list() degree2.data <- make.static.list() trace.call.global <- 0 # nonzero to trace call to predict, residuals, etc init.global.data <- function() { assignInMyNamespace("trace.call.global", 0) assignInMyNamespace("degree1.xgrid.global", NULL) assignInMyNamespace("degree2.xgrid.global", NULL) degree1.data(NULL) # clear the degree1 data by passing NULL degree2.data(NULL) } plot.degree1 <- function( # plot all degree1 graphs # copy of args from plotmo, some have been tweaked slightly object, degree1, all1, center, ylim, nresponse, type, trace, trace2, pt.col, jitter, iresponse, smooth.col, grid.col, inverse.func, grid.func, grid.levels, extend, ngrid1, is.int.only, level, func, nrug, # the following args are generated in plotmo draw.plot, # draw.plot=FALSE means get predictions but don't actually plot x, y, singles, resp.levs, ux.list, ndiscrete, pred.names, abbr.pred.names, nfigs, uy, xflip, jittered.y, ...) { get.degree1.data <- function(isingle) { data <- degree1.data(isingle) if(!is.null(data)) # data is already initialized? return(data) # yes, use it # create data.frame of x values to be plotted, by updating xgrid for this predictor xframe <- get.degree1.xframe(xgrid, x, ipred, ngrid1, ndiscrete, ux.list, extend) trace2(trace, "degree1 plot %d %s\n", isingle, pred.names[ipred]) yhat <- plotmo_predict(object, xframe, nresponse, type, resp.levs, trace2, inverse.func, ...)$yhat # prediction intervals, NULL if level argument not used intervals <- NULL if(level > 0) intervals <- plotmo_pint(object, xframe, type, level, trace2, ipred, inverse.func) temp <- blockify.degree1.frame(xframe, yhat, intervals, ipred, ux.list, ndiscrete) xframe <- temp$xframe yhat <- temp$yhat intervals <- temp$intervals if(center) { yhat <- my.center(yhat, trace2) intervals$fit <- my.center(intervals$fit, trace2) intervals$lwr <- my.center(intervals$lwr, trace2) intervals$upr <- my.center(intervals$upr, trace2) intervals$cint.lwr <- my.center(intervals$cint.lwr, trace2) intervals$cint.upr <- my.center(intervals$cint.upr, trace2) } all.yhat <- c(all.yhat, yhat, intervals$lwr, intervals$upr, intervals$cint.lwr, intervals$cint.upr) data <- list(xframe=xframe, yhat=yhat, intervals=intervals, all.yhat=all.yhat) if(!draw.plot) # save the data, if there is going to be a next time degree1.data(isingle, data) data } draw.degree1 <- function(...) { draw.degree1.fac <- function(...) { draw.grid(grid.col, nx=NA, ...) # nx=NA for horiz-only grid draw.fac.intervals(xframe[,ipred], intervals, ...) if(is.specified(pt.col)) points.or.text(x=jittered.x, y=jittered.y, pt.col=pt.col, iresponse=iresponse, ...) draw.smooth1(smooth.col, x, ipred, y, ux.list, ndiscrete, center, ...) # formal args for plot.factor, needed because "CRAN check" # doesn't allow ":::" and plot.factor isn't public plot.factor.formals <- c("x", "y", "legend.text") call.plot(graphics::plot, # calls plot.factor PREFIX = "degree1.", FORMALS = plot.factor.formals, TRACE = if(isingle == 1 && trace >= 2) trace-1 else 0, force.x = xframe[,ipred], force.y=yhat, force.add = TRUE, def.xaxt = if(xaxis.is.levs) "n" else "s", def.yaxt = if(yaxis.is.levs) "n" else "s", force.lty = 1, # else lty=2 say is printed weirdly force.lwd = 1, ...) if(xaxis.is.levs) # plot x level names along the x axis mtext(xlevnames, side=1, at=1:length(xlevnames), cex=par("cex") * cex.lab, line=.5, las=get.las(xlevnames)) if(yaxis.is.levs) # plot y level names along the y axis mtext(ylevnames, side=2, at=1:length(ylevnames), cex=par("cex") * cex.lab, line=.5, las=get.las(ylevnames)) } draw.degree1.numeric <- function(...) { draw.grid(grid.col, ...) draw.numeric.intervals(xframe[,ipred], intervals, ...) draw.func(func, object, xframe, ipred, center, trace, ...) if(is.specified(pt.col)) points.or.text(x=jittered.x, y=jittered.y, pt.col=pt.col, iresponse=iresponse, ...) draw.smooth1(smooth.col, x, ipred, y, ux.list, ndiscrete, center, ...) call.plot(graphics::lines.default, PREFIX="degree1.", force.x = xframe[,ipred], force.y = yhat, force.col = dot("degree1.col col.degree1 col", EX=c(0,1,1), DEF=1, NEW=1, ...), force.lty = dot("degree1.lty lty.degree1 lty", EX=c(0,1,1), DEF=1, NEW=1, ...), force.lwd = dot("degree1.lwd lwd.degree1 lwd", EX=c(0,1,1), DEF=1, NEW=1, ...), ...) } #--- draw.degree1 starts here x1 <- x[,ipred] numeric.x <- jittered.x <- as.numeric(x1) jittered.x <- apply.jitter(numeric.x, jitter) xlim <- get.degree1.xlim(ipred, xframe, ux.list, ndiscrete, pt.col, jittered.x, xflip, ...) # title of the current plot main <- dot("main", ...) main <- if(is.specified(main)) repl(main, isingle)[isingle] else { main <- "" if(nfigs > 1 && !is.degree.specified(degree1)) main <- paste0(isingle, " ") # show plot number in headers paste(main, abbr.pred.names[ipred]) } xlevnames <- abbreviate(levels(xframe[,ipred]), minlength=6, strict=TRUE) xaxis.is.levs <- is.factor(x1) && length(xlevnames) <= 12 yaxis.is.levs <- length(resp.levs) >= 1 && length(resp.levs) <= 12 if(yaxis.is.levs) ylevnames <- abbreviate(resp.levs, minlength=6, strict=TRUE) yaxis.is.levs <- FALSE # TODO should only do this if response is a string or a factor xlab <- dot("xlab", ...) xlab <- if(is.null(xlab)) abbr.pred.names[ipred] else if(is.specified(xlab)) repl(xlab, isingle)[isingle] else "" ylab <- dot("ylab", DEF=NULL, ...) ylab <- if(is.specified(ylab)) repl(ylab, isingle)[isingle] else "" call.plot(graphics::plot.default, PREFIX="degree1.", TRACE = if(isingle == 1 && trace >= 2) trace-1 else 0, force.x = xframe[,ipred], force.y = yhat, force.type = "n", # nothing in interior of plot yet force.main = main, force.xlab = xlab, force.ylab = ylab, force.xlim = xlim, force.ylim = ylim, def.xaxt = if(xaxis.is.levs) "n" else "s", def.yaxt = if(yaxis.is.levs) "n" else "s", ...) if(yaxis.is.levs) # plot y level names along the y axis mtext(ylevnames, side=2, at=1:length(ylevnames), cex=par("cex") * cex.lab, line=.5, las=get.las(ylevnames)) if(center && !is.specified(grid.col) && !is.specified(dot("col.grid", ...))) abline(h=0, col="gray", lwd=.6) # gray line at y=0 if(is.int.only) # make it obvious that this is an intercept-only model legend("topleft", "intercept-only model", bg="white") if(is.factor(x1)) draw.degree1.fac(...) else draw.degree1.numeric(...) if(is.character(nrug) || is.dot("density.col", EX=0, ...)) draw.density.along.the.bottom(numeric.x, ...) else if(nrug) call.plot(graphics::rug, force.x=jittered.x, def.quiet=TRUE, ...) } #--- plot.degree1 starts here trace2(trace, "--plot.degree1(draw.plot=%s)\n", if(draw.plot) "TRUE" else "FALSE") # get the x matrix we will plot, will be updated later for each predictor one by one if(!is.null(degree1.xgrid.global)) # already have the data? xgrid <- degree1.xgrid.global # yes, use it else { xgrid <- get.degree1.xgrid(x, grid.func, grid.levels, pred.names, ngrid1) if(!draw.plot) # save the data, if there is going to be a next time assignInMyNamespace("degree1.xgrid.global", xgrid) } # is.int.only test because we don't call get.ylim.by.dummy.plots for int only models if((!draw.plot || is.int.only) && trace >= 0 && ncol(xgrid) > 1) print.grid.values(xgrid, trace) cex.lab <- dot("cex.lab", DEF=.8 * par("cex.main"), ...) irug <- get.degree1.irug(nrug, x, draw.plot, ...) # get indices of rug points, if any all.yhat <- NULL for(isingle in seq_along(singles)) { if(isingle == 2 && trace2 == 2) { trace2 <- 1 printf("Reducing trace level for subsequent degree1 plots\n") } ipred <- singles[isingle] # ipred is the predictor index i.e. col in model mat # following happens with lm if you do e.g. ozone1$doy <- NULL after using ozone1 # this won't catch all such errors if(ipred > NCOL(x)) stop0("illegal index=", ipred, " (missing column in x?) NCOL(x)=", NCOL(x)) temp <- get.degree1.data(isingle) xframe <- temp$xframe yhat <- temp$yhat intervals <- temp$intervals all.yhat <- temp$all.yhat if(draw.plot) draw.degree1(...) } all.yhat # numeric vector of all predicted values } get.degree1.xlim <- function(ipred, xframe, ux.list, ndiscrete, pt.col, jittered.x, xflip, ...) { xlim <- dot("xlim", ...) if(is.specified(xlim)) stopifnot(is.numeric(xlim), length(xlim) == 2) else { x1 <- xframe[,ipred] xlim <- range1(x1) if(is.factor(x1)) { xlim[1] <- xlim[1] - .4 xlim[2] <- xlim[2] + .4 } else if(length(ux.list[[ipred]]) <= ndiscrete) xlim <- c(xlim[1] - .1, xlim[2] + .1) if(is.specified(pt.col)) xlim <- range1(xlim, jittered.x) } xlim <- fix.lim(xlim) if(xflip) { temp <- xlim[1] xlim[1] <- xlim[2] xlim[2] <- temp } xlim } apply.jitter <- function(x, jitter, adjust=1) { if(jitter == 0) return(x) jitter(x, factor=adjust * jitter) } get.iresponse <- function(npoints, ncases) # get indices of xrows { check.integer.scalar(npoints) if(npoints == 0) return(NULL) if(npoints == 1) npoints <- -1 if(npoints <= 1 || npoints > ncases) # -1 or TRUE means all cases npoints <- ncases if(npoints == ncases) seq_len(ncases) else sample(seq_len(ncases), size=npoints, replace=FALSE) } draw.smooth1 <- function(smooth.col, x, ipred, y, ux.list, ndiscrete, center, ...) { if(!is.specified(smooth.col)) return(NULL) x1 <- x[,ipred] is.discrete.x <- FALSE if(is.factor(x1)) { is.discrete.x <- TRUE levels <- sort.unique(as.numeric(x1)) } else if(length(ux.list[[ipred]]) <= ndiscrete) { is.discrete.x <- TRUE levels <- ux.list[[ipred]] } if(is.discrete.x) { # x1 has discrete levels, display the mean y at each value of x1 smooth <- sapply(split(y, x1), mean) if(center) smooth <- my.center(smooth) else smooth call.plot(graphics::lines.default, PREFIX="smooth.", drop.f=1, force.x = levels, force.y = smooth, force.col = smooth.col, force.lty = dot("smooth.lty lty.smooth", EX=c(0,1), DEF=1, NEW=1, ...), force.lwd = dot("smooth.lwd lwd.smooth lwd.loess", EX=c(0,1,1), DEF=1, NEW=1, ...), force.pch = dot("smooth.pch", DEF=20, EX=0, ...), def.type = "b", ...) } else { # For less smoothing (so we can better judge earth inflection points), # we use a default value for f lower than the default 2/3. smooth.f <- dot("smooth.f loess.f", DEF=.5, NEW=1, ...) check.numeric.scalar(smooth.f) stopifnot(smooth.f > .01, smooth.f < 1) smooth <- lowess(x1, y, f=smooth.f) y <- if(center) my.center(smooth$y) else smooth$y call.plot(graphics::lines.default, PREFIX="smooth.", drop.f=1, force.x = smooth$x, force.y = y, force.col = smooth.col, force.lty = dot("smooth.lty lty.smooth", EX=c(0,1), DEF=1, NEW=1, ...), force.lwd = dot("smooth.lwd lwd.smooth lwd.loess", EX=c(0,1,1), DEF=1, NEW=1, ...), force.pch = dot("smooth.pch", DEF=20, EX=0, ...), ...) } } get.nrug <- function(nrug, ...) { if(!is.specified(nrug)) nrug <- 0 else if(!is.character(nrug)) { check.integer.scalar(nrug, logical.ok=TRUE) if(nrug == TRUE) nrug <- -1 else if(!is.specified(nrug) && is.dot("rug.col", ...)) nrug <- -1 } nrug } get.degree1.irug <- function(nrug, x, draw.plot, ...) # indices of xrows for rug { if(!draw.plot || nrug == 0) return(NULL) if(is.character(nrug)) nrug <- -1 else check.integer.scalar(nrug, logical.ok=TRUE) if(nrug < 0 || nrug > nrow(x)) nrug <- nrow(x) if(nrug == nrow(x)) seq_len(nrow(x)) else sample(seq_len(nrow(x)), size=nrug, replace=FALSE) } draw.grid <- function(grid.col, nx=NULL, ...) { if(is.specified(grid.col) || is.specified(dot("col.grid", ...))) { if(is.specified(grid.col) && is.logical(grid.col) && grid.col) grid.col <- "lightgray" grid.col <- if(is.specified(grid.col)) grid.col else dot("col.grid", DEF="lightgray", ...) # grid() doesn't have a dots arg so we invoke call.plot without dots call.plot(graphics::grid, force.nx = dot("grid.nx", DEF=nx, ...), force.ny = dot("grid.ny", DEF=NULL, ...), force.col = grid.col, force.lty = dot("grid.lty", DEF=1, ...), force.lwd = dot("grid.lwd", DEF=1, ...)) } } get.level.shades <- function(intervals, ...) { level.shade <- dot("level.shade shade.pints", DEF="mistyrose2", ...) if(is.null(intervals$lwr) || is.null(intervals$cint.lwr)) c(level.shade, level.shade) else { # use level.shade2 only if two kinds of intervals # use exact match here because level.shade2 is also matched by level.shade level.shade2 <- dot("level.shade2 shade2.pints", DEF="mistyrose4", ...) c(level.shade, level.shade2) } } # draw std err bars for a numeric predictor draw.numeric.intervals <- function(x, intervals, ...) { if(!is.null(intervals)) { level.shades <- get.level.shades(intervals, ...) if(!is.null(intervals$lwr)) polygon1(x=x, lwr=intervals$lwr, upr=intervals$upr, shade=level.shades[1], ...) if(!is.null(intervals$cint.lwr)) polygon1(x=x, lwr=intervals$cint.lwr, upr=intervals$cint.upr, shade=level.shades[2]) if(!is.null(intervals$lwr) || !is.null(intervals$cint.lwr)) box() # replot the box because intervals sometimes drawn over it } } # TODO you can't get just the confidence lines with no shading, following looks not ok: # plotmo(a, level=.8, level.lty=1, level.border=1, level.shade=2, level.density=0) polygon1 <- function(x, lwr, upr, shade, ...) { call.plot(graphics::polygon, PREFIX="level.", drop.shade=1, drop.shade2=1, force.x = c(x[1], x, rev(x)), force.y = c(lwr[1], lwr, rev(upr)), force.col = shade, def.border = shade, def.lty = 0, ...) } # draw std err bands for a factor predictor draw.fac.intervals <- function(x, intervals, ...) { draw.intervals <- function(lwr, upr, shade) { for(ilev in seq_along(levels(x))) { min <- min(lwr[[ilev]]) max <- max(upr[[ilev]]) polygon(c(ilev - .4, ilev - .4, ilev + .4, ilev + .4), c(min, max, max, min), col=shade, border=shade, lty=0) } } if(!is.null(intervals)) { level.shades <- get.level.shades(intervals, ...) if(!is.null(intervals$lwr)) draw.intervals(split(intervals$lwr, x), split(intervals$upr, x), level.shades[1]) if(!is.null(intervals$cint.lwr)) draw.intervals(split(intervals$cint.lwr, x), split(intervals$cint.upr, x), level.shades[2]) if(!is.null(intervals$lwr) || !is.null(intervals$cint.lwr)) box() # replot the box because intervals sometimes drawn over it } } # draw the func arg, if specified draw.func <- function(func, object, xframe, ipred, center, trace, ...) { if(!is.null(func)) { print_summary(xframe, "Data for func", trace) if(!is.function(func)) stop0("'func' is not a function"); y <- process.y(func(xframe), object, type="response", nresponse=1, nrow(xframe), expected.levs=NULL, trace, "func returned")$y if(center) y <- my.center(y, trace) call.plot(graphics::lines.default, PREFIX="func.", force.x = xframe[,ipred], force.y = y, def.type = "l", force.col = dot("func.col col.func", EX=c(0,1), DEF="lightblue3", NEW=1, ...), force.lty = dot("func.lty lty.func", EX=c(0,1), DEF=1, NEW=1, ...), force.lwd = dot("func.lwd lwd.func", EX=c(0,1), DEF=2, NEW=1, ...), ...) } } plot.degree2 <- function( # plot all degree2 graphs # copy of args from plotmo, some have been tweaked slightly object, degree2, all2, center, ylim, nresponse, type, clip, trace, trace2, pt.col, jitter, iresponse, inverse.func, grid.func, grid.levels, extend, type2, ngrid2, # the following args are generated in plotmo draw.plot, # draw.plot=FALSE means get and return all.yhat but don't actually plot do.par, x, y, pairs, resp.levs, ux.list, ndiscrete, pred.names, abbr.pred.names, nfigs, nsingles, npairs, xflip, yflip, swapxy, def.cex.main, ...) { get.degree2.data <- function(ipair) { data <- degree2.data(ipair) if(!is.null(data)) # data is already initialized? return(data) # yes, use it # create data.frame of x values to be plotted, by updating xgrid for this pair temp <- get.degree2.xframe(xgrid, x, ipred1, ipred2, ngrid2, xranges, ux.list, ndiscrete) xframe <- temp$xframe grid1 <- temp$grid1 grid2 <- temp$grid2 trace2(trace, "degree2 plot %d %s:%s\n", ipair, pred.names[ipred1], pred.names[ipred2]) yhat <- plotmo_predict(object, xframe, nresponse, type, resp.levs, trace2, inverse.func, ...)$yhat # image plots for factors look better if not blockified if(type2 != "image") { temp <- blockify.degree2.frame(x, yhat, grid1, grid2, ipred1, ipred2, ux.list, ndiscrete) yhat <- temp$yhat grid1 <- temp$grid1 grid2 <- temp$grid2 } if(center) yhat <- my.center(yhat, trace2) yhat <- matrix(yhat, nrow=length(grid1), ncol=length(grid2)) data <- list(xframe=xframe, grid1=grid1, grid2=grid2, yhat=yhat) if(!draw.plot) # save the data, if there is going to be a next time degree2.data(ipair, data) data } draw.degree2 <- function(type2 = c("persp", "contour", "image"), ...) { name1 <- abbr.pred.names[ipred1] name2 <- abbr.pred.names[ipred2] # title of the current plot main <- dot("main", ...) main <- if(is.specified(main)) repl(main, nsingles+ipair)[nsingles+ipair] else { main <- "" if(nfigs > 1 && !is.degree.specified(degree2)) main <- paste0(ipair, " ") # show plot number in headers if(swapxy) paste0(main, name2, ": ", name1) else paste0(main, name1, ": ", name2) } if(clip) { yhat[yhat < ylim[1]] <- NA # we don't clip upper values for persp plot because its own clipping is ok # (whereas its own clipping for lower values tends to allow overwrite of axes). if(type2 != "persp") yhat[yhat > ylim[2]] <- NA } switch(type2, persp=plot.persp( x=x, grid1=grid1, grid2=grid2, yhat=yhat, name1=name1, name2=name2, ipred1=ipred1, ipred2=ipred2, ipair=ipair, nsingles=nsingles, trace=trace, ylim=ylim, xflip=xflip, yflip=yflip, swapxy=swapxy, ngrid2=ngrid2, main2=main, ticktype2=ticktype, def.cex.main=def.cex.main, ...), contour=plot.contour( x=x, grid1=grid1, grid2=grid2, yhat=yhat, name1=name1, name2=name2, ipred1=ipred1, ipred2=ipred2, xflip=xflip, yflip=yflip, swapxy=swapxy, main2=main, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, ...), image=plot.image( x=x, grid1=grid1, grid2=grid2, yhat=yhat, name1=name1, name2=name2, ipred1=ipred1, ipred2=ipred2, xflip=xflip, yflip=yflip, swapxy=swapxy, main2=main, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, ...)) } #--- plot.degree2 starts here trace2(trace, "--plot.degree2(draw.plot=%s)\n", if(draw.plot) "TRUE" else "FALSE") stopifnot(npairs > 0) # need ticktype to determine degree2 margins ticktype <- dot("persp.ticktype", DEF="simple", EX=0, ...) ticktype <- match.choices(ticktype, c("simple", "detailed"), "ticktype") if(draw.plot && do.par) { opar=par("mar", "mgp") on.exit(par(mar=opar$mar, mgp=opar$mgp)) do.degree2.par(type2, nfigs, substr(ticktype, 1, 1) == "d") } # get the x matrix we will plot, will be updated later for each pair of predictors xranges <- get.degree2.xranges(x, extend, ux.list, ndiscrete) if(!is.null(degree2.xgrid.global)) # already have the data? xgrid <- degree2.xgrid.global # yes, use it else { xgrid <- get.degree2.xgrid(x, grid.func, grid.levels, pred.names, ngrid2) if(!draw.plot) # save the data, if there is going to be a next time assignInMyNamespace("degree2.xgrid.global", xgrid) } all.yhat <- NULL for(ipair in seq_len(npairs)) { ipred1 <- pairs[ipair,1] # index of first predictor ipred2 <- pairs[ipair,2] # index of second predictor if(ipair == 2 && trace2 == 2) { trace2 <- 1 printf("Reducing trace level for subsequent degree2 plots\n") } temp <- get.degree2.data(ipair) xframe <- temp$xframe grid1 <- temp$grid1 grid2 <- temp$grid2 yhat <- temp$yhat all.yhat <- c(all.yhat, yhat) if(draw.plot) draw.degree2(type2, ...) } all.yhat } get.degree2.xranges <- function(x, extend, ux.list, ndiscrete) { xranges <- matrix(NA, ncol=ncol(x), nrow=2) colnames(xranges) <- colnames(x) for(icol in seq_len(ncol(x))) { x1 <- x[,icol] xrange <- range1(x1, na.rm=TRUE) nxvals <- length(ux.list[[icol]]) # TODO this extends xrange correctly but that doesn't suffice # because get.degree2.xframe doesn't necessarily use xranges if(extend != 0 && nxvals > ndiscrete && !is.factor(x1)) { stopifnot(xrange[2] >= xrange[1]) ext <- extend * (xrange[2] - xrange[1]) xrange[1] <- xrange[1] - ext xrange[2] <- xrange[2] + ext } xranges[,icol] <- xrange } xranges } draw.response.sites <- function(x, ipred1, ipred2, pt.col, jitter, ux.list, ndiscrete, iresponse, swapxy, ...) { if(swapxy) { x1 <- x[,ipred2] x2 <- x[,ipred1] } else { x1 <- x[,ipred1] x2 <- x[,ipred2] } points.or.text( x=apply.jitter(as.numeric(x1), jitter, adjust=1.5), y=apply.jitter(as.numeric(x2), jitter, adjust=1.5), pt.col=pt.col, iresponse=iresponse, ...) } plot.persp <- function(x, grid1, grid2, yhat, name1, name2, ipred1, ipred2, ipair, nsingles, trace, ylim, xflip, yflip, swapxy, ngrid2, main2, ticktype2, def.cex.main, ...) { get.theta <- function(...) # theta arg for persp() { get.diag.val <- function(diag1, diag2) # return first non NA along diag { vals <- yhat[diag1, diag2] (vals[!is.na(vals)])[1] # return first non NA in vals } theta <- dot("persp.theta theta", EX=c(0,1), ...) if(is.na(theta)) { # no user specified theta? # rotate graph so highest point is farthest (this could be improved) theta <- -35 nr <- nrow(yhat) nc <- ncol(yhat) imax <- which.max(c( get.diag.val(nr:1, nc:1), get.diag.val(1:nr, nc:1), get.diag.val(1:nr, 1:nc), get.diag.val(nr:1, 1:nc))) if(length(imax)) # length>0 unless entire diag is NA theta <- theta + switch(imax, 0, 90, 180, 270) } theta } #--- plot.persp starts here # following needed because persp() rejects a reversed xlim or ylim if(xflip) warning0("ignoring xflip=TRUE for persp plot") if(yflip) warning0("ignoring yflip=TRUE for persp plot") theta <- get.theta(...) cex1 <- par("cex") # persp needs an explicit cex arg, doesn't use par("cex") trace2(trace, "persp(%s:%s) theta %.3g\n", name1, name2, theta) if(swapxy) { temp <- grid1; grid1 <- grid2; grid2 <- temp # swap grid1 and grid2 temp <- ipred1; ipred1 <- ipred2; ipred2 <- temp # swap ipred1 and ipred2 temp <- name1; name1 <- name2; name2 <- temp # swap name1 and name2 yhat <- t(yhat) } zlab <- dot("ylab", DEF="", ...) # use ylab as zlab if specified zlab <- repl(zlab, nsingles+ipair)[nsingles+ipair] cex.lab <- dot("persp.cex.lab", # make the labels small if multiple figures DEF=if(def.cex.main < 1) .8 * def.cex.main else 1, ...) # persp ignores mgp so prefix a newline to space the axis label # we also prepend spaces else bottom of label tends to get cut off if(theta < 0) theta <- theta + 360 theta <- theta %% 360 if((0 < theta && theta <= 90) || (180 < theta && theta <= 270)) { xlab <- paste0("\n", name1, " ") ylab <- paste0("\n ", name2) } else { xlab <- paste0("\n ", name1) ylab <- paste0("\n", name2, " ") } # We use deprefix directly (and not call.plot) because # we have to do a bit of manipulation of the args for nticks. # Also we cannot use graphics:::persp.default because CRAN check complains # about ":::". Instead we explicitly pass the formal argnames with formals. persp.def.formals <- c( # formal args for persp.default (R version 3.2.0) "x", "y", "z", "xlim", "zlim", "xlab", "ylab", "zlab", "main", "sub", "theta", "phi", "r", "d", "scale", "expand", "col", "border", "ltheta", "lphi", "shade", "box", "axes", "nticks", "ticktype") args <- deprefix(graphics::persp, # calls persp.default FNAME = "persp", KEEP = "PREFIX,PLOT.ARGS", FORMALS = persp.def.formals, TRACE = if(ipair == 1 && trace >= 2) trace-1 else 0, force.x = grid1, force.y = grid2, force.z = yhat, force.xlim = range(grid1), # prevent use of user specified xlim and ylim force.ylim = range(grid2), # persp won't accept zlim=NULL force.zlim = if(is.null(ylim)) ylim <- range(yhat) else ylim, force.xlab = xlab, force.ylab = ylab, force.theta = theta, force.phi = dot("persp.phi phi", EX=c(0,1), DEF=30, ...), force.d = dot("persp.d dvalue", EX=c(0,1), DEF=1, ...), force.main = main2, def.cex.lab = cex.lab, def.cex.axis = cex.lab, def.zlab = zlab, def.ticktype = "simple", def.nticks = 5, def.cex = cex1, force.col = dot("persp.col col.persp", EX=c(0,1), DEF="lightblue", NEW=1, ...), def.border = NULL, def.shade = .5, ...) # if ticktype="simple" we must call persp without the nticks arg # else persp emits confusing error messages if(substr(ticktype2, 1, 1) == "s") args["nticks"] <- NULL # We use suppressWarnings below to suppress the warning # "surface extends beyond the box" that was introduced in R 2.13-1. # This warning may be issued multiple times and may be annoying to the plotmo user. # (Unfortunately this also suppress any other warnings in persp.) # TODO Want to use lab=c(2,2,7) or similar in persp but persp ignores it suppressWarnings( do.call.trace(graphics::persp, args, fname="graphics::persp", trace=0)) } plot.contour <- function(x, grid1, grid2, yhat, name1, name2, ipred1, ipred2, xflip, yflip, swapxy, main2, pt.col, jitter, ux.list, ndiscrete, iresponse, ...) { get.lim <- function(xflip, grid1, ipred) { # contour() automatically extends ylim, so we don't need to do it here xrange <- range(grid1) if(xflip) c(xrange[2], xrange[1]) else c(xrange[1], xrange[2]) } #--- plot.contour starts here x1 <- x[,ipred1] x2 <- x[,ipred2] levnames1 <- levels(x1) levnames2 <- levels(x2) is.fac1 <- is.factor(x1) && length(levnames1) <= 12 is.fac2 <- is.factor(x2) && length(levnames2) <= 12 xlab <- if(is.fac1) "" else name1 # no lab if fac else on top of lev name ylab <- if(is.fac2) "" else name2 if(swapxy) { temp <- levnames2; levnames2 <- levnames1; levnames1 <- temp temp <- is.fac2; is.fac2 <- is.fac1; is.fac1 <- temp temp <- ylab; ylab <- xlab; xlab <- temp } xlim <- get.lim(xflip, grid1, ipred1) ylim <- get.lim(yflip, grid2, ipred2) if(swapxy) { temp <- xlim; xlim <- ylim; ylim <- temp } levels <- get.contour.levs(yhat) labels <- signif(levels, 2) # else contour prints labels like 0.0157895 cex.lab <- par("cex") * dot("cex.lab", DEF=1, ...) # We use suppressWarnings below to suppress the warning "all z values are # equal" This warning may be issued multiple times and may be annoying to # the plotmo user. (Unfortunately this also suppress any other warnings # in persp.) suppressWarnings( call.plot(graphics::contour.default, force.x = if(swapxy) grid2 else grid1, force.y = if(swapxy) grid1 else grid2, force.z = if(swapxy) t(yhat) else yhat, force.xlim = xlim, force.ylim = ylim, force.xlab = xlab, force.ylab = ylab, def.xaxt = if(is.fac1) "n" else "s", def.yaxt = if(is.fac2) "n" else "s", def.main = main2, def.levels = levels, def.labels = labels, def.labcex = par("cex") * cex.lab, ...)) if(is.fac1) { levnames1 <- abbreviate(levnames1, minlength=6, strict=TRUE) mtext(levnames1, side=1, at=1:length(levnames1), cex=cex.lab, line=.5, las=get.las(levnames1)) } if(is.fac2) mtext(abbreviate(levnames2, minlength=6, strict=TRUE), side=2, at=1:length(levnames2), cex=cex.lab, line=.5, las=2) if(is.specified(pt.col)) draw.response.sites(x=x, ipred1=ipred1, ipred2=ipred2, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, swapxy=swapxy, ...) } get.contour.levs <- function(yhat) { # the default, as calculated internally by plot.contour levs <- pretty(range(yhat, finite=TRUE), 10) # reduce the default if the number of unique yhat values is less # this is mainly for factors unique.yhat <- sort.unique(yhat) if(length(unique.yhat) > 1 && length(unique.yhat) < length(levs)) levs <- unique.yhat levs } plot.image <- function(x, grid1, grid2, yhat, name1, name2, ipred1, ipred2, xflip, yflip, swapxy, main2, pt.col, jitter, ux.list, ndiscrete, iresponse, ...) { # like image but fill the plot area with lightblue first so NAs are obvious image.with.lightblue.na <- function(grid1, grid2, yhat, ...) { if(anyNA(yhat)) { image(grid1, grid2, matrix(0, nrow(yhat), ncol(yhat)), col="lightblue", xlab="", ylab="", xaxt="n", yaxt="n", bty="n", main="") par(new=TRUE) # so next plot is on top of this plot } call.plot(graphics::image.default, force.x=grid1, force.y=grid2, force.z=yhat, ...) box() # image() tends to overwrite the borders of the box } get.lim <- function(xflip, grid1, is.discrete) { xrange <- range(grid1) if(is.discrete) { xrange[1] <- xrange[1] - .5 xrange[2] <- xrange[2] + .5 } else { range <- xrange[2] - xrange[1] # .025 seems the max we can use without getting unsightly # gaps at the edges of the plot xrange[1] <- xrange[1] - .025 * range xrange[2] <- xrange[2] + .025 * range } if(xflip) c(xrange[2], xrange[1]) else c(xrange[1], xrange[2]) } #--- plot.image starts here x1 <- x[,ipred1] x2 <- x[,ipred2] levnames1 <- levels(x1) levnames2 <- levels(x2) use.fac.names1 <- is.factor(x1) && length(levnames1) <= 12 use.fac.names2 <- is.factor(x2) && length(levnames2) <= 12 xlab <- if(use.fac.names1) "" else name1 # no lab if fac else on top of lev name ylab <- if(use.fac.names2) "" else name2 if(swapxy) { temp <- levnames2; levnames2 <- levnames1; levnames1 <- temp temp <- use.fac.names2; use.fac.names2 <- use.fac.names1; use.fac.names1 <- temp temp <- ylab; ylab <- xlab; xlab <- temp } xlim <- get.lim(xflip, grid1, use.fac.names1 || length(ux.list[[ipred1]]) <= ndiscrete) ylim <- get.lim(yflip, grid2, use.fac.names2 || length(ux.list[[ipred2]]) <= ndiscrete) # default col: white high values (snowy mountain tops), dark low values (dark depths) if(swapxy) image.with.lightblue.na(grid1=grid2, grid2=grid1, yhat=t(yhat), force.col = dot("image.col col.image", EX=c(0,1), DEF=gray((0:10)/10), NEW=1, ...), force.main = main2, force.xlim = ylim, force.ylim = xlim, force.xaxt = if(use.fac.names1) "n" else "s", force.yaxt = if(use.fac.names2) "n" else "s", force.xlab = xlab, force.ylab = ylab, ...) else image.with.lightblue.na(grid1=grid1, grid2=grid2, yhat=yhat, force.col = dot("image.col col.image", EX=c(0,1), DEF=gray((0:10)/10), NEW=1, ...), force.main = main2, force.xlim = xlim, force.ylim = ylim, force.xaxt = if(use.fac.names1) "n" else "s", force.yaxt = if(use.fac.names2) "n" else "s", force.xlab = xlab, force.ylab = ylab, ...) cex.lab <- par("cex") * dot("cex.lab", DEF=1, ...) if(use.fac.names1) { levnames1 <- abbreviate(levnames1, minlength=6, strict=TRUE) mtext(levnames1, side=1, at=1:length(levnames1), cex=cex.lab, line=.5, las=get.las(levnames1)) } if(use.fac.names2) mtext(abbreviate(levnames2, minlength=6, strict=TRUE), side=2, at=1:length(levnames2), cex=cex.lab, line=.5, las=2) if(is.specified(pt.col)) draw.response.sites(x=x, ipred1=ipred1, ipred2=ipred2, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, swapxy=swapxy, ...) } apply.inverse.func <- function(inverse.func, y, object, trace) { if(!is.null(inverse.func)) { if(!is.numeric(y[1])) stopf("inverse.func cannot be used on \"%s\" values", class(y[1])[1]) y <- process.y(inverse.func(y), object, type="response", nresponse=1, length(y), NULL, trace, "inverse.func")$y } y } # should the factor labels on the x axis be printed horizontally or vertically? get.las <- function(labels) { if(length(labels) * max(nchar(labels)) <= 20) # 20 is arbitrary 0 # horizontal else 2 # vertical } # true if a plot was selected by the user (excluding the default setting) is.degree.specified <- function(degree) { !is.logical(degree) || length(degree) > 1 } my.center <- function(x, trace=FALSE) { if(!is.null(x) && !is.factor(x)) { x <- x - mean(x[is.finite(x)], na.rm=TRUE) if(trace >= 2) { name <- paste0("centered ", trunc.deparse(substitute(x))) cat(name, "length ", length(x)) print.first.few.elements.of.vector(x, trace, name) } } x }
/plotmo/R/plotmo.R
no_license
ingted/R-Examples
R
false
false
67,472
r
# plotmo.R: plot the model response when varying one or two predictors # # Stephen Milborrow Sep 2006 Cape Town plotmo <- function(object = stop("no 'object' argument"), type = NULL, nresponse = NA, pt.col = 0, jitter = .5, smooth.col = 0, level = 0, func = NULL, inverse.func = NULL, nrug = 0, grid.col = 0, type2 = "persp", degree1 = TRUE, all1 = FALSE, degree2 = TRUE, all2 = FALSE, do.par = TRUE, clip = TRUE, ylim = NULL, caption = NULL, trace = 0, grid.func = median, grid.levels = NULL, extend = 0, ngrid1 = 50, ngrid2 = 20, ndiscrete = 5, npoints = 3000, center = FALSE, xflip = FALSE, yflip = FALSE, swapxy = FALSE, int.only.ok = TRUE, ...) { init.global.data() on.exit(init.global.data()) # release memory on exit object.name <- quote.deparse(substitute(object)) object # make sure object exists trace <- as.numeric(check.integer.scalar(trace, logical.ok=TRUE)) # Associate the model environment with the object. # (This is instead of passing it as an argument to plotmo's data access # functions. It saves a few hundred references to model.env in the code.) attr(object, ".Environment") <- get.model.env(object, object.name, trace) temp <- plotmo_prolog(object, object.name, trace, ...) object <- temp$object my.call <- temp$my.call # We will later make two passes through the plots if we need to # automatically determine ylim (see get.ylim.by.dummy.plots). # The trace2 variable is used for disabling tracing on the second pass. trace2 <- trace # trace=100 to 103 are special values used for development # (they are for tracing just plotmo_x with no plotting) special.trace <- FALSE if(trace >= 100 && trace <= 103) { special.trace <- TRUE trace <- trace - 100 } clip <- check.boolean(clip) all1 <- check.boolean(all1) all2 <- check.boolean(all2) center <- check.boolean(center) swapxy <- check.boolean(swapxy) xflip <- check.boolean(xflip) yflip <- check.boolean(yflip) type2 <- match.choices(type2, c("persp", "contour", "image"), "type2") level <- get.level(level, ...) pt.col <- get.pt.col(pt.col, ...) jitter <- get.jitter(jitter, ...) ngrid1 <- get.ngrid1(ngrid1, ...) ngrid2 <- get.ngrid2(ngrid2, ...) smooth.col <- get.smooth.col(smooth.col, ...) check.integer.scalar(ndiscrete, min=0) nrug <- get.nrug(nrug, ...) extend <- check.numeric.scalar(extend) stopifnot(extend > -.3, extend <= 10) # .3 prevents shrinking to nothing, 10 is arb # TODO revisit this, causes issues because the following for example produces # the identical last two plots: for(i in 1:3) a <- earth(.., nfold=3); plot(a) rnorm(1) # seems to be necessary to make .Random.seed available old.seed <- .Random.seed on.exit(set.seed(old.seed), add=TRUE) set.seed(2015) if(!is.specified(degree1)) degree1 <- 0 if(!is.specified(degree2)) degree2 <- 0 if(!is.specified(nresponse)) nresponse <- NA if(!is.specified(clip)) clip <- FALSE if(center && clip) { clip <- FALSE # otherwise incorrect clipping (TODO revisit) warning0("forcing clip=FALSE because center=TRUE ", "(a limitation of the current implementation)") } # get x so we can get the predictor names and ux.list x <- plotmo_x(object, trace) if(NCOL(x) == 0 || NROW(x) == 0) stop("x is empty") if(special.trace) # special value of trace was used? return(invisible(x)) meta <- plotmo_meta(object, type, nresponse, trace, msg.if.predictions.not.numeric= if(level > 0) "the level argument is not allowed" else NULL, ...) y <- meta$y.as.numeric.mat # y as a numeric mat, only the nresponse column nresponse <- meta$nresponse # column index resp.name <- meta$resp.name # used only in automatic caption, may be NULL resp.levs <- meta$resp.levs # to convert predicted strings to factors, may be NULL type <- meta$type # always a string (converted from NULL if necessary) # following prevents aliasing on nrow(data) to ensure we catch the following: # "warning: predict(): newdata' had 31 rows but variable(s) found have 30 rows" if(ngrid1 == length(y)) { trace2(trace, "changed ngrid1 from %g to %g\n", ngrid1, ngrid1+1) ngrid1 <- ngrid1 + 1 } temp <- get.unique.xyvals(x, y, npoints, trace) ux.list <- temp$ux.list # list, each elem is unique vals in a column of x uy <- temp$uy # unique y vals npoints <- temp$npoints y <- apply.inverse.func(inverse.func, y, object, trace) if(center) y <- my.center(y, trace) # get iresponse ncases <- nrow(x) iresponse <- NULL if(is.specified(pt.col)) { iresponse <- get.iresponse(npoints, ncases) if(is.null(iresponse)) pt.col <- 0 } # singles is a vector of indices of predictors for degree1 plots temp <- plotmo_singles(object, x, nresponse, trace, degree1, all1) some.singles <- temp$some.singles singles <- temp$singles # each row of pairs is the indices of two predictors for a degree2 plot temp <- plotmo_pairs(object, x, nresponse, trace, all2, degree2) some.pairs <- temp$some.pairs pairs <- temp$pairs nsingles <- length(singles) npairs <- NROW(pairs) temp <- get.pred.names(colnames(x), nsingles + npairs) pred.names <- temp$pred.names abbr.pred.names <- temp$abbr.pred.names def.cex.main <- temp$def.cex.main is.int.only <- !some.singles && !some.pairs if(is.int.only && int.only.ok && !all(degree1 == 0)) { singles <- 1 # plot the first predictor nsingles <- 1 } if(nsingles > 100) { # 100 is arb, 10 * 10 singles <- singles[1:100] warning0("Will plot only the first 100 degree1 plots") } if(npairs > 100) { pairs <- pairs[1:100,] warning0("Will plot only the first 100 degree2 plots") } if(extend != 0 && npairs) { warning0("extend=", extend, ": will not plot degree2 plots ", "(extend is not yet implemented for degree2 plots)") pairs <- NULL npairs <- 0 } nfigs <- nsingles + npairs if(nfigs == 0) { if(trace >= 0) { if(is.int.only) warning0("plotmo: nothing to plot (intercept-only model)") else warning0("plotmo: nothing to plot") } return(invisible()) } do.par <- check.do.par(do.par, nfigs) # do.par is 0, 1, or 2 # Prepare caption --- we need it now for do.par() but # can only display it later after at least one plot. # nfigs=2 (any number greater than 1) because by default we do.par in plotmo. caption <- get.caption(nfigs=2, do.par, caption, resp.name, type, object$call, object.name, my.call) if(do.par) { # TODO document what happens here and in plotres if only one plot oldpar <- par(no.readonly=TRUE) # need xlab etc. so so we can figure out margin sizes in do.par xlab <- dot("xlab", DEF="", ...) ylab <- dot("ylab", DEF="", ...) main <- dot("main", ...) do.par(nfigs=nfigs, caption=caption, main1=main, xlab1=xlab, ylab1=ylab, trace=trace, def.cex.main=def.cex.main, ...) if(do.par == 1) on.exit(par(oldpar), add=TRUE) } else { # do.par=FALSE oldpar <- do.par.dots(..., trace=trace) if(length(oldpar)) on.exit(do.call(par, oldpar), add=TRUE) } trace2(trace, "\n----Figuring out ylim\n") is.na.ylim <- !is.null(ylim) && anyNA(ylim) jittered.y <- apply.jitter(as.numeric(y), jitter) # get.ylim will do dummy plots if necessary temp <- get.ylim(object=object, type=type, nresponse=nresponse, pt.col=pt.col, jitter=jitter, smooth.col=smooth.col, level=level, func=func, inverse.func=inverse.func, nrug=nrug, grid.col=grid.col, type2=type2, degree1=degree1, all1=all1, degree2=degree2, all2=all2, do.par=do.par, clip=clip, ylim=ylim, caption=caption, trace=trace, grid.func=grid.func, grid.levels=grid.levels, extend=extend, ngrid1=ngrid1, ngrid2=ngrid2, npoints=npoints, ndiscrete=ndiscrete, int.only.ok=int.only.ok, center=center, xflip=xflip, yflip=yflip, swapxy=swapxy, def.cex.main=def.cex.main, x=x, y=y, singles=singles, resp.levs=resp.levs, ux.list=ux.list, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nsingles=nsingles, npairs=npairs, nfigs=nfigs, uy=uy, is.na.ylim=is.na.ylim, is.int.only=is.int.only, trace2=trace2, pairs=pairs, iresponse=iresponse, jittered.y=jittered.y, ...) ylim <- temp$ylim trace2 <- temp$trace2 if(nsingles) plot.degree1(object=object, degree1=degree1, all1=all1, center=center, ylim=if(is.na.ylim) NULL else ylim, # each graph has its own ylim? nresponse=nresponse, type=type, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, smooth.col=smooth.col, grid.col=grid.col, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, ngrid1=ngrid1, is.int.only=is.int.only, level=level, func=func, nrug=nrug, draw.plot=TRUE, x=x, y=y, singles=singles, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, uy=uy, xflip=xflip, jittered.y=jittered.y, ...) if(npairs) plot.degree2(object=object, degree2=degree2, all2=all2, center, ylim=if(is.na.ylim) NULL else ylim, # each graph has its own ylim? nresponse=nresponse, type=type, clip=clip, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, type2=type2, ngrid2=ngrid2, draw.plot=TRUE, do.par=do.par, x=x, y=y, pairs=pairs, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, nsingles=nsingles, npairs=npairs, xflip=xflip, yflip=yflip, swapxy=swapxy, def.cex.main=def.cex.main, ...) draw.caption(caption, ...) invisible(x) } plotmo_prolog <- function(object, object.name, trace, ...) { object <- plotmo.prolog(object, object.name, trace, ...) my.call <- call.as.char(n=2) callers.name <- callers.name() if(trace >= 2) { printf.wrap("%s trace %g: %s\n", callers.name, trace, my.call) if(is.null(object$call)) printf("object class is \"%s\" with no object$call\n", class(object)[1]) else printf.wrap("object$call is %s\n", strip.deparse(object$call)) } SHOWCALL <- dot("SHOWCALL", ...) if(!is.specified(SHOWCALL)) my.call <- NULL list(object=object, my.call=my.call) } get.pred.names <- function(colnames.x, nfigs) { # numbers below are somewhat arb nrows <- ceiling(sqrt(nfigs)) # nrows in plot grid minlength <- 20; def.cex.main <- 1.2 if (nrows >= 9) { minlength <- 6; def.cex.main <- .7 } else if(nrows >= 8) { minlength <- 7; def.cex.main <- .8 } else if(nrows >= 7) { minlength <- 7; def.cex.main <- .8 } else if(nrows >= 6) { minlength <- 7; def.cex.main <- .8 } else if(nrows >= 5) { minlength <- 8; def.cex.main <- 1 } else if(nrows >= 4) { minlength <- 9; def.cex.main <- 1.1 } stopifnot(!is.null(colnames.x)) # plotmo_x always returns colnames (unless no columns) list(pred.names = colnames.x, abbr.pred.names = abbreviate(strip.space(colnames.x), minlength=minlength, method="both.sides"), def.cex.main = def.cex.main) } # always returns a vector of 2 elems, could be c(-Inf, Inf) get.ylim <- function(object, type, nresponse, pt.col, jitter, smooth.col, level, func, inverse.func, nrug, grid.col, type2, degree1, all1, degree2, all2, do.par, clip, ylim, caption, trace, grid.func, grid.levels, extend=extend, ngrid1, ngrid2, npoints, ndiscrete, int.only.ok, center, xflip, yflip, swapxy, def.cex.main, x, y, singles, resp.levs, ux.list, pred.names, abbr.pred.names, nsingles, npairs, nfigs, uy, is.na.ylim, is.int.only, trace2, pairs, iresponse, jittered.y, ...) { get.ylim.by.dummy.plots <- function(..., trace) { # call the plotting functions with draw.plot=FALSE to get the ylim trace2(trace, "--get.ylim.by.dummy.plots\n") all.yhat <- NULL if(nsingles) { # get all.yhat by calling with draw.plot=FALSE # have to use explicit arg names to prevent alias probs # with dots, because the user can pass in any name with dots all.yhat <- c(all.yhat, plot.degree1(object=object, degree1=degree1, all1=all1, center=center, ylim=ylim, nresponse=nresponse, type=type, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, smooth.col=smooth.col, grid.col=grid.col, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, ngrid1=ngrid1, is.int.only=is.int.only, level=level, func=func, nrug=nrug, draw.plot=FALSE, x=x, y=y, singles=singles, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, uy=uy, xflip=xflip, jittered.y=jittered.y, ...)) } if(npairs) { all.yhat <- c(all.yhat, plot.degree2(object=object, degree2=degree2, all2=all2, center=center, ylim=ylim, nresponse=nresponse, type=type, clip=clip, trace=trace, trace2=trace2, pt.col=pt.col, jitter=jitter, iresponse=iresponse, inverse.func=inverse.func, grid.func=grid.func, grid.levels=grid.levels, extend=extend, type2=type2, ngrid2=ngrid2, draw.plot=FALSE, do.par=do.par, x=x, y=y, pairs=pairs, resp.levs=resp.levs, ux.list=ux.list, ndiscrete=ndiscrete, pred.names=pred.names, abbr.pred.names=abbr.pred.names, nfigs=nfigs, nsingles=nsingles, npairs=npairs, xflip=xflip, yflip=yflip, swapxy=swapxy, def.cex.main=def.cex.main, ...)) } # 1 2 3 4 5 q <- quantile(all.yhat, probs=c(0, .25, .5, .75, 1)) ylim <- c(q[1], q[5]) # all the data # iqr test to prevent clipping in some pathological cases iqr <- q[4] - q[2] # middle 50% of the data (inter-quartile range) if(clip && iqr > .05 * (max(y) - min(y))) { median <- q[3] ylim[1] <- max(ylim[1], median - 10 * iqr) ylim[2] <- min(ylim[2], median + 10 * iqr) } if(is.specified(pt.col) || is.specified(smooth.col) || is.specified(level)) ylim <- range1(ylim, jittered.y) # ensure ylim big enough for resp points else if(is.specified(smooth.col)) ylim <- range1(ylim, y) # binary or ternary reponse? # the range(uy) test is needed for binomial models specified using counts else if(length(uy) <= 3 || range(y) == c(0,1)) ylim <- range1(ylim, y) if(is.specified(nrug)) # space for rug ylim[1] <- ylim[1] - .1 * (ylim[2] - ylim[1]) trace2(trace, "--done get.ylim.by.dummy.plots\n\n") # have called the plot functions, minimize tracing in further calls to them trace2 <<- 0 # note <<- not <- ylim } #--- get.ylim starts here if(!(is.null(ylim) || is.na(ylim[1]) || length(ylim) == 2)) stop0("ylim must be one of:\n", " NULL all graphs have same vertical axes\n", " NA each graph has its own vertical axis\n", " c(min,max) ylim for all graphs") if(length(ylim) == 2 && ylim[2] <= ylim[1]) stop0("ylim[2] ", ylim[2], " is not greater than ylim[1] ", ylim[1]) if(is.na.ylim) ylim <- c(NA, NA) # won't be used else if(is.null(ylim)) # auto ylim ylim <- if(is.int.only) range(y, na.rm=TRUE) else get.ylim.by.dummy.plots(trace=trace, ...) if(!anyNA(ylim)) ylim <- fix.lim(ylim) if(trace >= 2) printf("ylim c(%.4g, %.4g) clip %s\n\n", ylim[1], ylim[2], if(clip) "TRUE" else "FALSE") list(ylim=ylim, trace2=trace2) } do.degree2.par <- function(type2, nfigs, detailed.ticktype) { nrows <- ceiling(sqrt(nfigs)) if(type2 == "persp") { # perspective plot # note: persp ignores both the global mgp and any mgp passed directly to persp mar <- c(if(detailed.ticktype) 1 else .2, .3, 1.7, 0.1) par(mar=mar) return(NULL) } else { # contour or image plot if(nrows >= 5) mar <- c(2, 2, 1.2, .5) # space for bottom and left axis labels else mar <- c(3, 3, 2, .5) par(mar=mar) cex <- par("cex") # TODO would be better to use nfigs here? mgp <- # compact title and axis annotations if (cex < .7) c(1.2, 0.2, 0) else if(cex < .8) c(1.3, 0.3, 0) else c(1.5, 0.4, 0) par(mgp=mgp) } } plotmo_singles <- function(object, x, nresponse, trace, degree1, all1) { trace2(trace, "\n----plotmo_singles for %s object\n", class(object)[1]) singles <- plotmo.singles(object=object, x=x, nresponse=nresponse, trace=trace, all1=all1) some.singles <- FALSE if(length(singles)) { singles <- sort.unique(singles) some.singles <- TRUE } nsingles <- length(singles) if(nsingles) { degree1 <- check.index(degree1, "degree1", singles, colnames=colnames(x), allow.empty=TRUE, is.degree.spec=TRUE) singles <- singles[degree1] } else if(is.degree.specified(degree1) && degree1[1] != 0 && trace >= 0) warning0("'degree1' specified but no degree1 plots") if(trace >= 2) { if(nsingles) cat("singles:", paste0(singles, " ", colnames(x)[singles], collapse=", "), "\n") else cat("no singles\n") } list(some.singles=some.singles, singles =singles) # a vector of indices of predictors for degree1 plots } plotmo_pairs <- function(object, x, nresponse, trace, all2, degree2) { trace2(trace, "\n----plotmo_pairs for %s object\n", class(object)[1]) pairs <- plotmo.pairs(object, x, nresponse, trace, all2) if(!NROW(pairs) || !NCOL(pairs)) pairs <- NULL npairs <- NROW(pairs) some.pairs <- FALSE if(npairs) { some.pairs <- TRUE # put lowest numbered predictor first and remove duplicate pairs pairs <- unique(t(apply(pairs, 1, sort))) # order the pairs on the predictor order order <- order(pairs[,1], pairs[,2]) pairs <- pairs[order, , drop=FALSE] degree2 <- check.index(degree2, "degree2", pairs, colnames=colnames(x), allow.empty=TRUE, is.degree.spec=TRUE) pairs <- pairs[degree2, , drop=FALSE] } if(trace >= 2) { if(npairs) { cat("pairs:\n") print(matrix(paste(pairs, colnames(x)[pairs]), ncol=2)) } else cat("no pairs\n") } if(npairs == 0 && is.degree.specified(degree2) && degree2[1] != 0 && trace >= 0) warning0("'degree2' specified but no degree2 plots") list(some.pairs=some.pairs, pairs =pairs) } # pt.col is a formal arg, but for back compat we also support col.response get.pt.col <- function(pt.col, ...) { pt.col <- pt.col if(!is.specified(pt.col) && !is.dot("col", ...)) pt.col <- dot("col.response", EX=0, ...) # partial match, "col" excluded above # if any other response argument is specified, set the response color if(!is.specified(pt.col) && is.dot("pch cex.response pch.response pt.cex pt.pch", EX=c(1,1,1,0,0), ...)) pt.col <- "slategray4" if(!is.specified(pt.col)) pt.col <- 0 pt.col } get.jitter <- function(jitter, ...) { if(anyNA(jitter)) # allow jitter=NA jitter <- 0 check.numeric.scalar(jitter, logical.ok=TRUE) jitter <- as.numeric(jitter) if(jitter < 0 || jitter > 100) stop0("jitter=", jitter, " is illegal") jitter } get.smooth.col <- function(smooth.col, ...) { smooth.col <- dot("col.smooth", DEF=smooth.col, ...) # back compat # if any other smooth argument is specified, set the smooth color if(!is.specified(smooth.col) && is.dot("lty.smooth lwd.smooth lwd.loess smooth.lty smooth.lwd", EX=c(1,1,1,0,0), ...)) smooth.col <- 2 if(!is.specified(smooth.col)) smooth.col <- 0 smooth.col } get.ngrid1 <- function(ngrid1, ...) { check.integer.scalar(ngrid1) if(ngrid1 < 2) stop0("illegal ngrid1 ", ngrid1) if(ngrid1 > 1000) { warning0("clipped ngrid1=", ngrid1, " to 1000") ngrid1 <- 1000 } ngrid1 } get.ngrid2 <- function(ngrid2, ...) { check.integer.scalar(ngrid2) if(ngrid2 < 2) stop0("illegal ngrid2 ", ngrid2) if(ngrid2 > 500) { warning0("clipped ngrid2=", ngrid2, " to 500") ngrid2 <- 500 } ngrid2 } get.level <- function(level, ...) { if(anyNA(level) || is.null(level)) # treat NA and NULL as 0 level <- 0 check.numeric.scalar(level) # some code for backward compatibility (se is now deprecated) se <- 0 if(is.dot("se", ...)) se <- dot("se", ...) check.numeric.scalar(se, logical.ok=TRUE) if(se && level) # both specified? stop0("plotmo's 'se' argument is deprecated, please use 'level' instead") if(identical(se, TRUE)) { level <- .95 warning0( "plotmo's 'se' argument is deprecated, please use 'level=.95' instead") } else if (se < 0 || se > 5) # 5 is arb stop0("plotmo's 'se' argument is deprecated, please use 'level=.95' instead") else if (se > 0 && se < 1) # e.g. se=.95 stop0("plotmo's 'se' argument is deprecated, please use 'level=.95' instead") else if (se > 0) { level <- 1 - 2 * (1 - pnorm(se)) # se=2 becomes level=.954 warning0(sprintf( "plotmo's 'se' argument is deprecated, please use 'level=%.2f' instead", level)) } else if(level != 0 && (level < .5 || level >= 1)) stop0("level=", level, " is out of range, try level=.95") level } get.unique.xyvals <- function(x, y, npoints, trace) { # convert special values of npoints ncases <- nrow(x) check.integer.scalar(npoints, min=-1, null.ok=TRUE, logical.ok=TRUE) npoints.was.neg <- FALSE if(is.null(npoints)) npoints <- 0 else if(is.logical(npoints)) npoints <- if(npoints) ncases else 0 else if(npoints == -1) { npoints.was.neg <- TRUE npoints <- ncases } else if(npoints > ncases) npoints <- ncases # Use a maximum of NMAX cases for calculating ux.list and uy # (unless npoints is bigger or TRUE or negative). # Allows plotmo to be fast even on models with millions of cases. NMAX <- 1e4 nmax <- max(NMAX, npoints) if(!npoints.was.neg && ncases > nmax) { trace2(trace, "using %g of %g cases to calculate unique x and y values\n", npoints, ncases) isubset <- get.isubset(y, npoints) y <- y[isubset] x <- x[isubset, , drop=FALSE] } list(ux.list = get.ux.list(x, trace), uy = unique(y), npoints = npoints) } # return a list, each element is the unique levels for corresponding column of x # TODO this is where we spend a lot of time in plotmo for big data get.ux.list <- function(x, trace) { ux.list <- list(colnames(x)) for(i in seq_len(ncol(x))) ux.list[[i]] <- if(is.factor(x[,i])) levels(x[,i]) else sort.unique(x[,i]) trace2(trace, "number of x values: %s\n", paste.trunc(colnames(x), sapply(ux.list, length))) ux.list } # Remove duplicates in x, then sort (smallest first). # I had sort(unique(x)), but following is faster because it requires only one sort. sort.unique <- function(x) { rle(sort(x))[["values"]] # rle() is in base } points.or.text <- function(..., x, y, pt.col, iresponse) { stopifnot(!is.na(pt.col)) cex <- dot("pt.cex cex.response", DEF=1, EX=c(0,1), NEW=1, ...) cex <- cex * pt.cex(NROW(x)) pch <- dot("pt.pch pch.response pch", DEF=20, EX=c(0,1,1), NEW=1, ...) # recycle then select only iresponse points n <- length(y) col <- repl(pt.col, n)[iresponse] pch <- repl(pch, n)[iresponse] cex <- repl(cex, n)[iresponse] x <- x[iresponse] y <- y[iresponse] if(is.character(pch) && pch[1] != ".") call.plot(graphics::text.default, PREFIX="pt.", force.x = x, force.y = y, force.labels = pch, force.col = col, force.cex = pmax(.1, .9 * cex), def.xpd = NA, # allow writing beyond plot area ...) else call.plot(graphics::points.default, PREFIX="pt.", force.x = x, force.y = y, force.pch = pch, force.col = col, force.cex = cex, # commented out because looks messy in image plots # def.xpd = NA, # allow writing beyond plot area ...) } # The following global variables are for efficiency when we make two # passes through the plot. We store the data from the first pass so we # don't have to regenerate it. degree1.xgrid.global <- NULL degree2.xgrid.global <- NULL # TODO Following is ugly. I would prefer to have two namespace level # variables, degree1.data.global and degree2.data.global, similar to the # above two variables. But CRAN check won't allow # unlockBinding(degree1.data.global, asNamespace("plotmo")) so we can update # those variables. Also, we can't directly use assignInMyNamespace for these # variables because we need to update individual list elements. make.static.list <- function() { data <- list() func <- function(i, newdata=NULL) { if(is.null(i)) # init the data? data <<- list() else if(!missing(newdata)) # assign to the data? data[[i]] <<- newdata else if(i <= length(data)) # return the data element data[[i]] else # return the element, but it's NULL NULL } func } degree1.data <- make.static.list() degree2.data <- make.static.list() trace.call.global <- 0 # nonzero to trace call to predict, residuals, etc init.global.data <- function() { assignInMyNamespace("trace.call.global", 0) assignInMyNamespace("degree1.xgrid.global", NULL) assignInMyNamespace("degree2.xgrid.global", NULL) degree1.data(NULL) # clear the degree1 data by passing NULL degree2.data(NULL) } plot.degree1 <- function( # plot all degree1 graphs # copy of args from plotmo, some have been tweaked slightly object, degree1, all1, center, ylim, nresponse, type, trace, trace2, pt.col, jitter, iresponse, smooth.col, grid.col, inverse.func, grid.func, grid.levels, extend, ngrid1, is.int.only, level, func, nrug, # the following args are generated in plotmo draw.plot, # draw.plot=FALSE means get predictions but don't actually plot x, y, singles, resp.levs, ux.list, ndiscrete, pred.names, abbr.pred.names, nfigs, uy, xflip, jittered.y, ...) { get.degree1.data <- function(isingle) { data <- degree1.data(isingle) if(!is.null(data)) # data is already initialized? return(data) # yes, use it # create data.frame of x values to be plotted, by updating xgrid for this predictor xframe <- get.degree1.xframe(xgrid, x, ipred, ngrid1, ndiscrete, ux.list, extend) trace2(trace, "degree1 plot %d %s\n", isingle, pred.names[ipred]) yhat <- plotmo_predict(object, xframe, nresponse, type, resp.levs, trace2, inverse.func, ...)$yhat # prediction intervals, NULL if level argument not used intervals <- NULL if(level > 0) intervals <- plotmo_pint(object, xframe, type, level, trace2, ipred, inverse.func) temp <- blockify.degree1.frame(xframe, yhat, intervals, ipred, ux.list, ndiscrete) xframe <- temp$xframe yhat <- temp$yhat intervals <- temp$intervals if(center) { yhat <- my.center(yhat, trace2) intervals$fit <- my.center(intervals$fit, trace2) intervals$lwr <- my.center(intervals$lwr, trace2) intervals$upr <- my.center(intervals$upr, trace2) intervals$cint.lwr <- my.center(intervals$cint.lwr, trace2) intervals$cint.upr <- my.center(intervals$cint.upr, trace2) } all.yhat <- c(all.yhat, yhat, intervals$lwr, intervals$upr, intervals$cint.lwr, intervals$cint.upr) data <- list(xframe=xframe, yhat=yhat, intervals=intervals, all.yhat=all.yhat) if(!draw.plot) # save the data, if there is going to be a next time degree1.data(isingle, data) data } draw.degree1 <- function(...) { draw.degree1.fac <- function(...) { draw.grid(grid.col, nx=NA, ...) # nx=NA for horiz-only grid draw.fac.intervals(xframe[,ipred], intervals, ...) if(is.specified(pt.col)) points.or.text(x=jittered.x, y=jittered.y, pt.col=pt.col, iresponse=iresponse, ...) draw.smooth1(smooth.col, x, ipred, y, ux.list, ndiscrete, center, ...) # formal args for plot.factor, needed because "CRAN check" # doesn't allow ":::" and plot.factor isn't public plot.factor.formals <- c("x", "y", "legend.text") call.plot(graphics::plot, # calls plot.factor PREFIX = "degree1.", FORMALS = plot.factor.formals, TRACE = if(isingle == 1 && trace >= 2) trace-1 else 0, force.x = xframe[,ipred], force.y=yhat, force.add = TRUE, def.xaxt = if(xaxis.is.levs) "n" else "s", def.yaxt = if(yaxis.is.levs) "n" else "s", force.lty = 1, # else lty=2 say is printed weirdly force.lwd = 1, ...) if(xaxis.is.levs) # plot x level names along the x axis mtext(xlevnames, side=1, at=1:length(xlevnames), cex=par("cex") * cex.lab, line=.5, las=get.las(xlevnames)) if(yaxis.is.levs) # plot y level names along the y axis mtext(ylevnames, side=2, at=1:length(ylevnames), cex=par("cex") * cex.lab, line=.5, las=get.las(ylevnames)) } draw.degree1.numeric <- function(...) { draw.grid(grid.col, ...) draw.numeric.intervals(xframe[,ipred], intervals, ...) draw.func(func, object, xframe, ipred, center, trace, ...) if(is.specified(pt.col)) points.or.text(x=jittered.x, y=jittered.y, pt.col=pt.col, iresponse=iresponse, ...) draw.smooth1(smooth.col, x, ipred, y, ux.list, ndiscrete, center, ...) call.plot(graphics::lines.default, PREFIX="degree1.", force.x = xframe[,ipred], force.y = yhat, force.col = dot("degree1.col col.degree1 col", EX=c(0,1,1), DEF=1, NEW=1, ...), force.lty = dot("degree1.lty lty.degree1 lty", EX=c(0,1,1), DEF=1, NEW=1, ...), force.lwd = dot("degree1.lwd lwd.degree1 lwd", EX=c(0,1,1), DEF=1, NEW=1, ...), ...) } #--- draw.degree1 starts here x1 <- x[,ipred] numeric.x <- jittered.x <- as.numeric(x1) jittered.x <- apply.jitter(numeric.x, jitter) xlim <- get.degree1.xlim(ipred, xframe, ux.list, ndiscrete, pt.col, jittered.x, xflip, ...) # title of the current plot main <- dot("main", ...) main <- if(is.specified(main)) repl(main, isingle)[isingle] else { main <- "" if(nfigs > 1 && !is.degree.specified(degree1)) main <- paste0(isingle, " ") # show plot number in headers paste(main, abbr.pred.names[ipred]) } xlevnames <- abbreviate(levels(xframe[,ipred]), minlength=6, strict=TRUE) xaxis.is.levs <- is.factor(x1) && length(xlevnames) <= 12 yaxis.is.levs <- length(resp.levs) >= 1 && length(resp.levs) <= 12 if(yaxis.is.levs) ylevnames <- abbreviate(resp.levs, minlength=6, strict=TRUE) yaxis.is.levs <- FALSE # TODO should only do this if response is a string or a factor xlab <- dot("xlab", ...) xlab <- if(is.null(xlab)) abbr.pred.names[ipred] else if(is.specified(xlab)) repl(xlab, isingle)[isingle] else "" ylab <- dot("ylab", DEF=NULL, ...) ylab <- if(is.specified(ylab)) repl(ylab, isingle)[isingle] else "" call.plot(graphics::plot.default, PREFIX="degree1.", TRACE = if(isingle == 1 && trace >= 2) trace-1 else 0, force.x = xframe[,ipred], force.y = yhat, force.type = "n", # nothing in interior of plot yet force.main = main, force.xlab = xlab, force.ylab = ylab, force.xlim = xlim, force.ylim = ylim, def.xaxt = if(xaxis.is.levs) "n" else "s", def.yaxt = if(yaxis.is.levs) "n" else "s", ...) if(yaxis.is.levs) # plot y level names along the y axis mtext(ylevnames, side=2, at=1:length(ylevnames), cex=par("cex") * cex.lab, line=.5, las=get.las(ylevnames)) if(center && !is.specified(grid.col) && !is.specified(dot("col.grid", ...))) abline(h=0, col="gray", lwd=.6) # gray line at y=0 if(is.int.only) # make it obvious that this is an intercept-only model legend("topleft", "intercept-only model", bg="white") if(is.factor(x1)) draw.degree1.fac(...) else draw.degree1.numeric(...) if(is.character(nrug) || is.dot("density.col", EX=0, ...)) draw.density.along.the.bottom(numeric.x, ...) else if(nrug) call.plot(graphics::rug, force.x=jittered.x, def.quiet=TRUE, ...) } #--- plot.degree1 starts here trace2(trace, "--plot.degree1(draw.plot=%s)\n", if(draw.plot) "TRUE" else "FALSE") # get the x matrix we will plot, will be updated later for each predictor one by one if(!is.null(degree1.xgrid.global)) # already have the data? xgrid <- degree1.xgrid.global # yes, use it else { xgrid <- get.degree1.xgrid(x, grid.func, grid.levels, pred.names, ngrid1) if(!draw.plot) # save the data, if there is going to be a next time assignInMyNamespace("degree1.xgrid.global", xgrid) } # is.int.only test because we don't call get.ylim.by.dummy.plots for int only models if((!draw.plot || is.int.only) && trace >= 0 && ncol(xgrid) > 1) print.grid.values(xgrid, trace) cex.lab <- dot("cex.lab", DEF=.8 * par("cex.main"), ...) irug <- get.degree1.irug(nrug, x, draw.plot, ...) # get indices of rug points, if any all.yhat <- NULL for(isingle in seq_along(singles)) { if(isingle == 2 && trace2 == 2) { trace2 <- 1 printf("Reducing trace level for subsequent degree1 plots\n") } ipred <- singles[isingle] # ipred is the predictor index i.e. col in model mat # following happens with lm if you do e.g. ozone1$doy <- NULL after using ozone1 # this won't catch all such errors if(ipred > NCOL(x)) stop0("illegal index=", ipred, " (missing column in x?) NCOL(x)=", NCOL(x)) temp <- get.degree1.data(isingle) xframe <- temp$xframe yhat <- temp$yhat intervals <- temp$intervals all.yhat <- temp$all.yhat if(draw.plot) draw.degree1(...) } all.yhat # numeric vector of all predicted values } get.degree1.xlim <- function(ipred, xframe, ux.list, ndiscrete, pt.col, jittered.x, xflip, ...) { xlim <- dot("xlim", ...) if(is.specified(xlim)) stopifnot(is.numeric(xlim), length(xlim) == 2) else { x1 <- xframe[,ipred] xlim <- range1(x1) if(is.factor(x1)) { xlim[1] <- xlim[1] - .4 xlim[2] <- xlim[2] + .4 } else if(length(ux.list[[ipred]]) <= ndiscrete) xlim <- c(xlim[1] - .1, xlim[2] + .1) if(is.specified(pt.col)) xlim <- range1(xlim, jittered.x) } xlim <- fix.lim(xlim) if(xflip) { temp <- xlim[1] xlim[1] <- xlim[2] xlim[2] <- temp } xlim } apply.jitter <- function(x, jitter, adjust=1) { if(jitter == 0) return(x) jitter(x, factor=adjust * jitter) } get.iresponse <- function(npoints, ncases) # get indices of xrows { check.integer.scalar(npoints) if(npoints == 0) return(NULL) if(npoints == 1) npoints <- -1 if(npoints <= 1 || npoints > ncases) # -1 or TRUE means all cases npoints <- ncases if(npoints == ncases) seq_len(ncases) else sample(seq_len(ncases), size=npoints, replace=FALSE) } draw.smooth1 <- function(smooth.col, x, ipred, y, ux.list, ndiscrete, center, ...) { if(!is.specified(smooth.col)) return(NULL) x1 <- x[,ipred] is.discrete.x <- FALSE if(is.factor(x1)) { is.discrete.x <- TRUE levels <- sort.unique(as.numeric(x1)) } else if(length(ux.list[[ipred]]) <= ndiscrete) { is.discrete.x <- TRUE levels <- ux.list[[ipred]] } if(is.discrete.x) { # x1 has discrete levels, display the mean y at each value of x1 smooth <- sapply(split(y, x1), mean) if(center) smooth <- my.center(smooth) else smooth call.plot(graphics::lines.default, PREFIX="smooth.", drop.f=1, force.x = levels, force.y = smooth, force.col = smooth.col, force.lty = dot("smooth.lty lty.smooth", EX=c(0,1), DEF=1, NEW=1, ...), force.lwd = dot("smooth.lwd lwd.smooth lwd.loess", EX=c(0,1,1), DEF=1, NEW=1, ...), force.pch = dot("smooth.pch", DEF=20, EX=0, ...), def.type = "b", ...) } else { # For less smoothing (so we can better judge earth inflection points), # we use a default value for f lower than the default 2/3. smooth.f <- dot("smooth.f loess.f", DEF=.5, NEW=1, ...) check.numeric.scalar(smooth.f) stopifnot(smooth.f > .01, smooth.f < 1) smooth <- lowess(x1, y, f=smooth.f) y <- if(center) my.center(smooth$y) else smooth$y call.plot(graphics::lines.default, PREFIX="smooth.", drop.f=1, force.x = smooth$x, force.y = y, force.col = smooth.col, force.lty = dot("smooth.lty lty.smooth", EX=c(0,1), DEF=1, NEW=1, ...), force.lwd = dot("smooth.lwd lwd.smooth lwd.loess", EX=c(0,1,1), DEF=1, NEW=1, ...), force.pch = dot("smooth.pch", DEF=20, EX=0, ...), ...) } } get.nrug <- function(nrug, ...) { if(!is.specified(nrug)) nrug <- 0 else if(!is.character(nrug)) { check.integer.scalar(nrug, logical.ok=TRUE) if(nrug == TRUE) nrug <- -1 else if(!is.specified(nrug) && is.dot("rug.col", ...)) nrug <- -1 } nrug } get.degree1.irug <- function(nrug, x, draw.plot, ...) # indices of xrows for rug { if(!draw.plot || nrug == 0) return(NULL) if(is.character(nrug)) nrug <- -1 else check.integer.scalar(nrug, logical.ok=TRUE) if(nrug < 0 || nrug > nrow(x)) nrug <- nrow(x) if(nrug == nrow(x)) seq_len(nrow(x)) else sample(seq_len(nrow(x)), size=nrug, replace=FALSE) } draw.grid <- function(grid.col, nx=NULL, ...) { if(is.specified(grid.col) || is.specified(dot("col.grid", ...))) { if(is.specified(grid.col) && is.logical(grid.col) && grid.col) grid.col <- "lightgray" grid.col <- if(is.specified(grid.col)) grid.col else dot("col.grid", DEF="lightgray", ...) # grid() doesn't have a dots arg so we invoke call.plot without dots call.plot(graphics::grid, force.nx = dot("grid.nx", DEF=nx, ...), force.ny = dot("grid.ny", DEF=NULL, ...), force.col = grid.col, force.lty = dot("grid.lty", DEF=1, ...), force.lwd = dot("grid.lwd", DEF=1, ...)) } } get.level.shades <- function(intervals, ...) { level.shade <- dot("level.shade shade.pints", DEF="mistyrose2", ...) if(is.null(intervals$lwr) || is.null(intervals$cint.lwr)) c(level.shade, level.shade) else { # use level.shade2 only if two kinds of intervals # use exact match here because level.shade2 is also matched by level.shade level.shade2 <- dot("level.shade2 shade2.pints", DEF="mistyrose4", ...) c(level.shade, level.shade2) } } # draw std err bars for a numeric predictor draw.numeric.intervals <- function(x, intervals, ...) { if(!is.null(intervals)) { level.shades <- get.level.shades(intervals, ...) if(!is.null(intervals$lwr)) polygon1(x=x, lwr=intervals$lwr, upr=intervals$upr, shade=level.shades[1], ...) if(!is.null(intervals$cint.lwr)) polygon1(x=x, lwr=intervals$cint.lwr, upr=intervals$cint.upr, shade=level.shades[2]) if(!is.null(intervals$lwr) || !is.null(intervals$cint.lwr)) box() # replot the box because intervals sometimes drawn over it } } # TODO you can't get just the confidence lines with no shading, following looks not ok: # plotmo(a, level=.8, level.lty=1, level.border=1, level.shade=2, level.density=0) polygon1 <- function(x, lwr, upr, shade, ...) { call.plot(graphics::polygon, PREFIX="level.", drop.shade=1, drop.shade2=1, force.x = c(x[1], x, rev(x)), force.y = c(lwr[1], lwr, rev(upr)), force.col = shade, def.border = shade, def.lty = 0, ...) } # draw std err bands for a factor predictor draw.fac.intervals <- function(x, intervals, ...) { draw.intervals <- function(lwr, upr, shade) { for(ilev in seq_along(levels(x))) { min <- min(lwr[[ilev]]) max <- max(upr[[ilev]]) polygon(c(ilev - .4, ilev - .4, ilev + .4, ilev + .4), c(min, max, max, min), col=shade, border=shade, lty=0) } } if(!is.null(intervals)) { level.shades <- get.level.shades(intervals, ...) if(!is.null(intervals$lwr)) draw.intervals(split(intervals$lwr, x), split(intervals$upr, x), level.shades[1]) if(!is.null(intervals$cint.lwr)) draw.intervals(split(intervals$cint.lwr, x), split(intervals$cint.upr, x), level.shades[2]) if(!is.null(intervals$lwr) || !is.null(intervals$cint.lwr)) box() # replot the box because intervals sometimes drawn over it } } # draw the func arg, if specified draw.func <- function(func, object, xframe, ipred, center, trace, ...) { if(!is.null(func)) { print_summary(xframe, "Data for func", trace) if(!is.function(func)) stop0("'func' is not a function"); y <- process.y(func(xframe), object, type="response", nresponse=1, nrow(xframe), expected.levs=NULL, trace, "func returned")$y if(center) y <- my.center(y, trace) call.plot(graphics::lines.default, PREFIX="func.", force.x = xframe[,ipred], force.y = y, def.type = "l", force.col = dot("func.col col.func", EX=c(0,1), DEF="lightblue3", NEW=1, ...), force.lty = dot("func.lty lty.func", EX=c(0,1), DEF=1, NEW=1, ...), force.lwd = dot("func.lwd lwd.func", EX=c(0,1), DEF=2, NEW=1, ...), ...) } } plot.degree2 <- function( # plot all degree2 graphs # copy of args from plotmo, some have been tweaked slightly object, degree2, all2, center, ylim, nresponse, type, clip, trace, trace2, pt.col, jitter, iresponse, inverse.func, grid.func, grid.levels, extend, type2, ngrid2, # the following args are generated in plotmo draw.plot, # draw.plot=FALSE means get and return all.yhat but don't actually plot do.par, x, y, pairs, resp.levs, ux.list, ndiscrete, pred.names, abbr.pred.names, nfigs, nsingles, npairs, xflip, yflip, swapxy, def.cex.main, ...) { get.degree2.data <- function(ipair) { data <- degree2.data(ipair) if(!is.null(data)) # data is already initialized? return(data) # yes, use it # create data.frame of x values to be plotted, by updating xgrid for this pair temp <- get.degree2.xframe(xgrid, x, ipred1, ipred2, ngrid2, xranges, ux.list, ndiscrete) xframe <- temp$xframe grid1 <- temp$grid1 grid2 <- temp$grid2 trace2(trace, "degree2 plot %d %s:%s\n", ipair, pred.names[ipred1], pred.names[ipred2]) yhat <- plotmo_predict(object, xframe, nresponse, type, resp.levs, trace2, inverse.func, ...)$yhat # image plots for factors look better if not blockified if(type2 != "image") { temp <- blockify.degree2.frame(x, yhat, grid1, grid2, ipred1, ipred2, ux.list, ndiscrete) yhat <- temp$yhat grid1 <- temp$grid1 grid2 <- temp$grid2 } if(center) yhat <- my.center(yhat, trace2) yhat <- matrix(yhat, nrow=length(grid1), ncol=length(grid2)) data <- list(xframe=xframe, grid1=grid1, grid2=grid2, yhat=yhat) if(!draw.plot) # save the data, if there is going to be a next time degree2.data(ipair, data) data } draw.degree2 <- function(type2 = c("persp", "contour", "image"), ...) { name1 <- abbr.pred.names[ipred1] name2 <- abbr.pred.names[ipred2] # title of the current plot main <- dot("main", ...) main <- if(is.specified(main)) repl(main, nsingles+ipair)[nsingles+ipair] else { main <- "" if(nfigs > 1 && !is.degree.specified(degree2)) main <- paste0(ipair, " ") # show plot number in headers if(swapxy) paste0(main, name2, ": ", name1) else paste0(main, name1, ": ", name2) } if(clip) { yhat[yhat < ylim[1]] <- NA # we don't clip upper values for persp plot because its own clipping is ok # (whereas its own clipping for lower values tends to allow overwrite of axes). if(type2 != "persp") yhat[yhat > ylim[2]] <- NA } switch(type2, persp=plot.persp( x=x, grid1=grid1, grid2=grid2, yhat=yhat, name1=name1, name2=name2, ipred1=ipred1, ipred2=ipred2, ipair=ipair, nsingles=nsingles, trace=trace, ylim=ylim, xflip=xflip, yflip=yflip, swapxy=swapxy, ngrid2=ngrid2, main2=main, ticktype2=ticktype, def.cex.main=def.cex.main, ...), contour=plot.contour( x=x, grid1=grid1, grid2=grid2, yhat=yhat, name1=name1, name2=name2, ipred1=ipred1, ipred2=ipred2, xflip=xflip, yflip=yflip, swapxy=swapxy, main2=main, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, ...), image=plot.image( x=x, grid1=grid1, grid2=grid2, yhat=yhat, name1=name1, name2=name2, ipred1=ipred1, ipred2=ipred2, xflip=xflip, yflip=yflip, swapxy=swapxy, main2=main, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, ...)) } #--- plot.degree2 starts here trace2(trace, "--plot.degree2(draw.plot=%s)\n", if(draw.plot) "TRUE" else "FALSE") stopifnot(npairs > 0) # need ticktype to determine degree2 margins ticktype <- dot("persp.ticktype", DEF="simple", EX=0, ...) ticktype <- match.choices(ticktype, c("simple", "detailed"), "ticktype") if(draw.plot && do.par) { opar=par("mar", "mgp") on.exit(par(mar=opar$mar, mgp=opar$mgp)) do.degree2.par(type2, nfigs, substr(ticktype, 1, 1) == "d") } # get the x matrix we will plot, will be updated later for each pair of predictors xranges <- get.degree2.xranges(x, extend, ux.list, ndiscrete) if(!is.null(degree2.xgrid.global)) # already have the data? xgrid <- degree2.xgrid.global # yes, use it else { xgrid <- get.degree2.xgrid(x, grid.func, grid.levels, pred.names, ngrid2) if(!draw.plot) # save the data, if there is going to be a next time assignInMyNamespace("degree2.xgrid.global", xgrid) } all.yhat <- NULL for(ipair in seq_len(npairs)) { ipred1 <- pairs[ipair,1] # index of first predictor ipred2 <- pairs[ipair,2] # index of second predictor if(ipair == 2 && trace2 == 2) { trace2 <- 1 printf("Reducing trace level for subsequent degree2 plots\n") } temp <- get.degree2.data(ipair) xframe <- temp$xframe grid1 <- temp$grid1 grid2 <- temp$grid2 yhat <- temp$yhat all.yhat <- c(all.yhat, yhat) if(draw.plot) draw.degree2(type2, ...) } all.yhat } get.degree2.xranges <- function(x, extend, ux.list, ndiscrete) { xranges <- matrix(NA, ncol=ncol(x), nrow=2) colnames(xranges) <- colnames(x) for(icol in seq_len(ncol(x))) { x1 <- x[,icol] xrange <- range1(x1, na.rm=TRUE) nxvals <- length(ux.list[[icol]]) # TODO this extends xrange correctly but that doesn't suffice # because get.degree2.xframe doesn't necessarily use xranges if(extend != 0 && nxvals > ndiscrete && !is.factor(x1)) { stopifnot(xrange[2] >= xrange[1]) ext <- extend * (xrange[2] - xrange[1]) xrange[1] <- xrange[1] - ext xrange[2] <- xrange[2] + ext } xranges[,icol] <- xrange } xranges } draw.response.sites <- function(x, ipred1, ipred2, pt.col, jitter, ux.list, ndiscrete, iresponse, swapxy, ...) { if(swapxy) { x1 <- x[,ipred2] x2 <- x[,ipred1] } else { x1 <- x[,ipred1] x2 <- x[,ipred2] } points.or.text( x=apply.jitter(as.numeric(x1), jitter, adjust=1.5), y=apply.jitter(as.numeric(x2), jitter, adjust=1.5), pt.col=pt.col, iresponse=iresponse, ...) } plot.persp <- function(x, grid1, grid2, yhat, name1, name2, ipred1, ipred2, ipair, nsingles, trace, ylim, xflip, yflip, swapxy, ngrid2, main2, ticktype2, def.cex.main, ...) { get.theta <- function(...) # theta arg for persp() { get.diag.val <- function(diag1, diag2) # return first non NA along diag { vals <- yhat[diag1, diag2] (vals[!is.na(vals)])[1] # return first non NA in vals } theta <- dot("persp.theta theta", EX=c(0,1), ...) if(is.na(theta)) { # no user specified theta? # rotate graph so highest point is farthest (this could be improved) theta <- -35 nr <- nrow(yhat) nc <- ncol(yhat) imax <- which.max(c( get.diag.val(nr:1, nc:1), get.diag.val(1:nr, nc:1), get.diag.val(1:nr, 1:nc), get.diag.val(nr:1, 1:nc))) if(length(imax)) # length>0 unless entire diag is NA theta <- theta + switch(imax, 0, 90, 180, 270) } theta } #--- plot.persp starts here # following needed because persp() rejects a reversed xlim or ylim if(xflip) warning0("ignoring xflip=TRUE for persp plot") if(yflip) warning0("ignoring yflip=TRUE for persp plot") theta <- get.theta(...) cex1 <- par("cex") # persp needs an explicit cex arg, doesn't use par("cex") trace2(trace, "persp(%s:%s) theta %.3g\n", name1, name2, theta) if(swapxy) { temp <- grid1; grid1 <- grid2; grid2 <- temp # swap grid1 and grid2 temp <- ipred1; ipred1 <- ipred2; ipred2 <- temp # swap ipred1 and ipred2 temp <- name1; name1 <- name2; name2 <- temp # swap name1 and name2 yhat <- t(yhat) } zlab <- dot("ylab", DEF="", ...) # use ylab as zlab if specified zlab <- repl(zlab, nsingles+ipair)[nsingles+ipair] cex.lab <- dot("persp.cex.lab", # make the labels small if multiple figures DEF=if(def.cex.main < 1) .8 * def.cex.main else 1, ...) # persp ignores mgp so prefix a newline to space the axis label # we also prepend spaces else bottom of label tends to get cut off if(theta < 0) theta <- theta + 360 theta <- theta %% 360 if((0 < theta && theta <= 90) || (180 < theta && theta <= 270)) { xlab <- paste0("\n", name1, " ") ylab <- paste0("\n ", name2) } else { xlab <- paste0("\n ", name1) ylab <- paste0("\n", name2, " ") } # We use deprefix directly (and not call.plot) because # we have to do a bit of manipulation of the args for nticks. # Also we cannot use graphics:::persp.default because CRAN check complains # about ":::". Instead we explicitly pass the formal argnames with formals. persp.def.formals <- c( # formal args for persp.default (R version 3.2.0) "x", "y", "z", "xlim", "zlim", "xlab", "ylab", "zlab", "main", "sub", "theta", "phi", "r", "d", "scale", "expand", "col", "border", "ltheta", "lphi", "shade", "box", "axes", "nticks", "ticktype") args <- deprefix(graphics::persp, # calls persp.default FNAME = "persp", KEEP = "PREFIX,PLOT.ARGS", FORMALS = persp.def.formals, TRACE = if(ipair == 1 && trace >= 2) trace-1 else 0, force.x = grid1, force.y = grid2, force.z = yhat, force.xlim = range(grid1), # prevent use of user specified xlim and ylim force.ylim = range(grid2), # persp won't accept zlim=NULL force.zlim = if(is.null(ylim)) ylim <- range(yhat) else ylim, force.xlab = xlab, force.ylab = ylab, force.theta = theta, force.phi = dot("persp.phi phi", EX=c(0,1), DEF=30, ...), force.d = dot("persp.d dvalue", EX=c(0,1), DEF=1, ...), force.main = main2, def.cex.lab = cex.lab, def.cex.axis = cex.lab, def.zlab = zlab, def.ticktype = "simple", def.nticks = 5, def.cex = cex1, force.col = dot("persp.col col.persp", EX=c(0,1), DEF="lightblue", NEW=1, ...), def.border = NULL, def.shade = .5, ...) # if ticktype="simple" we must call persp without the nticks arg # else persp emits confusing error messages if(substr(ticktype2, 1, 1) == "s") args["nticks"] <- NULL # We use suppressWarnings below to suppress the warning # "surface extends beyond the box" that was introduced in R 2.13-1. # This warning may be issued multiple times and may be annoying to the plotmo user. # (Unfortunately this also suppress any other warnings in persp.) # TODO Want to use lab=c(2,2,7) or similar in persp but persp ignores it suppressWarnings( do.call.trace(graphics::persp, args, fname="graphics::persp", trace=0)) } plot.contour <- function(x, grid1, grid2, yhat, name1, name2, ipred1, ipred2, xflip, yflip, swapxy, main2, pt.col, jitter, ux.list, ndiscrete, iresponse, ...) { get.lim <- function(xflip, grid1, ipred) { # contour() automatically extends ylim, so we don't need to do it here xrange <- range(grid1) if(xflip) c(xrange[2], xrange[1]) else c(xrange[1], xrange[2]) } #--- plot.contour starts here x1 <- x[,ipred1] x2 <- x[,ipred2] levnames1 <- levels(x1) levnames2 <- levels(x2) is.fac1 <- is.factor(x1) && length(levnames1) <= 12 is.fac2 <- is.factor(x2) && length(levnames2) <= 12 xlab <- if(is.fac1) "" else name1 # no lab if fac else on top of lev name ylab <- if(is.fac2) "" else name2 if(swapxy) { temp <- levnames2; levnames2 <- levnames1; levnames1 <- temp temp <- is.fac2; is.fac2 <- is.fac1; is.fac1 <- temp temp <- ylab; ylab <- xlab; xlab <- temp } xlim <- get.lim(xflip, grid1, ipred1) ylim <- get.lim(yflip, grid2, ipred2) if(swapxy) { temp <- xlim; xlim <- ylim; ylim <- temp } levels <- get.contour.levs(yhat) labels <- signif(levels, 2) # else contour prints labels like 0.0157895 cex.lab <- par("cex") * dot("cex.lab", DEF=1, ...) # We use suppressWarnings below to suppress the warning "all z values are # equal" This warning may be issued multiple times and may be annoying to # the plotmo user. (Unfortunately this also suppress any other warnings # in persp.) suppressWarnings( call.plot(graphics::contour.default, force.x = if(swapxy) grid2 else grid1, force.y = if(swapxy) grid1 else grid2, force.z = if(swapxy) t(yhat) else yhat, force.xlim = xlim, force.ylim = ylim, force.xlab = xlab, force.ylab = ylab, def.xaxt = if(is.fac1) "n" else "s", def.yaxt = if(is.fac2) "n" else "s", def.main = main2, def.levels = levels, def.labels = labels, def.labcex = par("cex") * cex.lab, ...)) if(is.fac1) { levnames1 <- abbreviate(levnames1, minlength=6, strict=TRUE) mtext(levnames1, side=1, at=1:length(levnames1), cex=cex.lab, line=.5, las=get.las(levnames1)) } if(is.fac2) mtext(abbreviate(levnames2, minlength=6, strict=TRUE), side=2, at=1:length(levnames2), cex=cex.lab, line=.5, las=2) if(is.specified(pt.col)) draw.response.sites(x=x, ipred1=ipred1, ipred2=ipred2, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, swapxy=swapxy, ...) } get.contour.levs <- function(yhat) { # the default, as calculated internally by plot.contour levs <- pretty(range(yhat, finite=TRUE), 10) # reduce the default if the number of unique yhat values is less # this is mainly for factors unique.yhat <- sort.unique(yhat) if(length(unique.yhat) > 1 && length(unique.yhat) < length(levs)) levs <- unique.yhat levs } plot.image <- function(x, grid1, grid2, yhat, name1, name2, ipred1, ipred2, xflip, yflip, swapxy, main2, pt.col, jitter, ux.list, ndiscrete, iresponse, ...) { # like image but fill the plot area with lightblue first so NAs are obvious image.with.lightblue.na <- function(grid1, grid2, yhat, ...) { if(anyNA(yhat)) { image(grid1, grid2, matrix(0, nrow(yhat), ncol(yhat)), col="lightblue", xlab="", ylab="", xaxt="n", yaxt="n", bty="n", main="") par(new=TRUE) # so next plot is on top of this plot } call.plot(graphics::image.default, force.x=grid1, force.y=grid2, force.z=yhat, ...) box() # image() tends to overwrite the borders of the box } get.lim <- function(xflip, grid1, is.discrete) { xrange <- range(grid1) if(is.discrete) { xrange[1] <- xrange[1] - .5 xrange[2] <- xrange[2] + .5 } else { range <- xrange[2] - xrange[1] # .025 seems the max we can use without getting unsightly # gaps at the edges of the plot xrange[1] <- xrange[1] - .025 * range xrange[2] <- xrange[2] + .025 * range } if(xflip) c(xrange[2], xrange[1]) else c(xrange[1], xrange[2]) } #--- plot.image starts here x1 <- x[,ipred1] x2 <- x[,ipred2] levnames1 <- levels(x1) levnames2 <- levels(x2) use.fac.names1 <- is.factor(x1) && length(levnames1) <= 12 use.fac.names2 <- is.factor(x2) && length(levnames2) <= 12 xlab <- if(use.fac.names1) "" else name1 # no lab if fac else on top of lev name ylab <- if(use.fac.names2) "" else name2 if(swapxy) { temp <- levnames2; levnames2 <- levnames1; levnames1 <- temp temp <- use.fac.names2; use.fac.names2 <- use.fac.names1; use.fac.names1 <- temp temp <- ylab; ylab <- xlab; xlab <- temp } xlim <- get.lim(xflip, grid1, use.fac.names1 || length(ux.list[[ipred1]]) <= ndiscrete) ylim <- get.lim(yflip, grid2, use.fac.names2 || length(ux.list[[ipred2]]) <= ndiscrete) # default col: white high values (snowy mountain tops), dark low values (dark depths) if(swapxy) image.with.lightblue.na(grid1=grid2, grid2=grid1, yhat=t(yhat), force.col = dot("image.col col.image", EX=c(0,1), DEF=gray((0:10)/10), NEW=1, ...), force.main = main2, force.xlim = ylim, force.ylim = xlim, force.xaxt = if(use.fac.names1) "n" else "s", force.yaxt = if(use.fac.names2) "n" else "s", force.xlab = xlab, force.ylab = ylab, ...) else image.with.lightblue.na(grid1=grid1, grid2=grid2, yhat=yhat, force.col = dot("image.col col.image", EX=c(0,1), DEF=gray((0:10)/10), NEW=1, ...), force.main = main2, force.xlim = xlim, force.ylim = ylim, force.xaxt = if(use.fac.names1) "n" else "s", force.yaxt = if(use.fac.names2) "n" else "s", force.xlab = xlab, force.ylab = ylab, ...) cex.lab <- par("cex") * dot("cex.lab", DEF=1, ...) if(use.fac.names1) { levnames1 <- abbreviate(levnames1, minlength=6, strict=TRUE) mtext(levnames1, side=1, at=1:length(levnames1), cex=cex.lab, line=.5, las=get.las(levnames1)) } if(use.fac.names2) mtext(abbreviate(levnames2, minlength=6, strict=TRUE), side=2, at=1:length(levnames2), cex=cex.lab, line=.5, las=2) if(is.specified(pt.col)) draw.response.sites(x=x, ipred1=ipred1, ipred2=ipred2, pt.col=pt.col, jitter=jitter, ux.list=ux.list, ndiscrete=ndiscrete, iresponse=iresponse, swapxy=swapxy, ...) } apply.inverse.func <- function(inverse.func, y, object, trace) { if(!is.null(inverse.func)) { if(!is.numeric(y[1])) stopf("inverse.func cannot be used on \"%s\" values", class(y[1])[1]) y <- process.y(inverse.func(y), object, type="response", nresponse=1, length(y), NULL, trace, "inverse.func")$y } y } # should the factor labels on the x axis be printed horizontally or vertically? get.las <- function(labels) { if(length(labels) * max(nchar(labels)) <= 20) # 20 is arbitrary 0 # horizontal else 2 # vertical } # true if a plot was selected by the user (excluding the default setting) is.degree.specified <- function(degree) { !is.logical(degree) || length(degree) > 1 } my.center <- function(x, trace=FALSE) { if(!is.null(x) && !is.factor(x)) { x <- x - mean(x[is.finite(x)], na.rm=TRUE) if(trace >= 2) { name <- paste0("centered ", trunc.deparse(substitute(x))) cat(name, "length ", length(x)) print.first.few.elements.of.vector(x, trace, name) } } x }
testlist <- list(m = NULL, repetitions = 0L, in_m = structure(c(2.31638858795802e+77, 9.53818252170339e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0), .Dim = c(5L, 1L))) result <- do.call(CNull:::communities_individual_based_sampling_beta,testlist) str(result)
/CNull/inst/testfiles/communities_individual_based_sampling_beta/AFL_communities_individual_based_sampling_beta/communities_individual_based_sampling_beta_valgrind_files/1615833592-test.R
no_license
akhikolla/updatedatatype-list2
R
false
false
270
r
testlist <- list(m = NULL, repetitions = 0L, in_m = structure(c(2.31638858795802e+77, 9.53818252170339e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0), .Dim = c(5L, 1L))) result <- do.call(CNull:::communities_individual_based_sampling_beta,testlist) str(result)
data <- read.table("./data/household_power_consumption.txt", header=TRUE, sep=";", stringsAsFactors=FALSE, dec=".") data1 <- subset(data,as.Date(data$Date,"%d/%m/%Y")=="2007-02-01") data2 <- subset(data,as.Date(data$Date,"%d/%m/%Y")=="2007-02-02") data3 <- rbind(data1,data2) data4 <- strptime(paste(data3$Date,data3$Time,sep=" "), "%d/%m/%Y %H:%M:%S") data5 <- as.numeric(subSetData$Sub_metering_1) data6 <- as.numeric(subSetData$Sub_metering_2) data7 <- as.numeric(subSetData$Sub_metering_3) png("plot3.png", width=480, height=480) plot(data4,data5,type="l",ylab="Energy Submetering",xlab="") lines(data4,data6,type="l",col="red") lines(data4,data7,type="l",col="blue") legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty=1, lwd=2.5, col=c("black", "red", "blue")) dev.off()
/plot3.R
no_license
weizuo/ExData_Plotting1
R
false
false
805
r
data <- read.table("./data/household_power_consumption.txt", header=TRUE, sep=";", stringsAsFactors=FALSE, dec=".") data1 <- subset(data,as.Date(data$Date,"%d/%m/%Y")=="2007-02-01") data2 <- subset(data,as.Date(data$Date,"%d/%m/%Y")=="2007-02-02") data3 <- rbind(data1,data2) data4 <- strptime(paste(data3$Date,data3$Time,sep=" "), "%d/%m/%Y %H:%M:%S") data5 <- as.numeric(subSetData$Sub_metering_1) data6 <- as.numeric(subSetData$Sub_metering_2) data7 <- as.numeric(subSetData$Sub_metering_3) png("plot3.png", width=480, height=480) plot(data4,data5,type="l",ylab="Energy Submetering",xlab="") lines(data4,data6,type="l",col="red") lines(data4,data7,type="l",col="blue") legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty=1, lwd=2.5, col=c("black", "red", "blue")) dev.off()
# set up parallelized portion from qsub jobnum <- as.numeric(commandArgs()[3]) root_path <- commandArgs()[4] outpath <- commandArgs()[5] if (Sys.info()[1] == "Linux"){ j <- "FILEPATH" h <- paste0("FILEPATH",Sys.info()[6]) package_lib <- paste0(j,'FILEPATH') } else { j <- "FILEPATH" h <- "FILEPATH" package_lib <- paste0(j,'FILEPATH') } .libPaths(package_lib) #load necessary packages library(dplyr) library(maptools) library(raster) library(rgeos) library(rgdal) library(data.table) library(seegSDM) library(stringr) library(sp) repo <- paste0(j, 'FILEPATH') source(paste0(repo, 'FILEPATH/functions.R')) source(paste0(repo, 'FILEPATH/econiche_qsub.R')) source(paste0(repo, 'FILEPATH/check_loc_results.R')) # set i i <- jobnum # set up filepaths and directories ############## ## pull in mean map nichemap_mansoni <- raster(paste0(root_path, 'FILEPATH/preds_', i, '.tif'), band=1) nichemap_haematobium <- raster(paste0(root_path, 'FILEPATH/preds_', i, '.tif'), band=1) urbanicity <- raster(paste0(j, 'FILEPATH/ghslurbanicity_mean_1y_2005_00_00.tif')) urbanicity[urbanicity>0 & urbanicity<=100000] <- 3 urbanicity[is.na(urbanicity) | urbanicity == 0] <- 1 urbanicity[urbanicity == 3] <- 0 # # get world shapefile # worldshp = readOGR(paste0(j, 'FILEPATH'), 'GBD2016_analysis_final') # # get rid of the factor class # worldshp$loc_id = as.numeric(levels(worldshp$loc_id))[as.integer(worldshp$loc_id)] # # pull in geographic restrictions # excl_list = data.table(read.csv(paste0(j, "FILEPATH/species_specific_exclusions.csv"), stringsAsFactors = F)) # # keep if a location is endemic # excl_list = excl_list[japonicum == "" | mansoni == "" | haematobium =="" | other == "",] # excl_list_mansoni = excl_list[mansoni == "" | location_id == 172,] # excl_list_haematobium = excl_list[haematobium =="" | location_id == 215,] # excl_list_japonicum = excl_list[japonicum == "" | location_id == 10 | location_id == 12,] # #subset world shp to be only locations with da shishto # worldshp = worldshp[worldshp$loc_id %in% excl_list[,location_id],] # worldshp_mansoni = worldshp[worldshp$loc_id %in% excl_list_mansoni[,location_id],] # worldshp_haematobium = worldshp[worldshp$loc_id %in% excl_list_haematobium[,location_id],] # worldshp_japonicum = worldshp[worldshp$loc_id %in% excl_list_japonicum[,location_id],] #load world pop pop = raster(paste0(j, 'FILEPATH/worldpop_total_5y_2005_00_00.tif')) # mask our urban areas pop <- pop * urbanicity ras_shp <- raster(paste0(j, "FILEPATH/ras_shp.tif")) ras_shp_mansoni <- raster(paste0(j, "FILEPATH/ras_shp_mansoni.tif")) ras_shp_haematobium <- raster(paste0(j, "FILEPATH/ras_shp_haematobium.tif")) setExtent(pop, ras_shp) #load in occurrence reference csv occ_raw_mansoni<-read.csv(paste0(root_path, 'FILEPATH/dat_all.csv')) occ_raw_haematobium<-read.csv(paste0(root_path, 'FILEPATH/dat_all.csv')) #define threshold value stringexte threshold<-seq(0,1,0.001) threshold<-threshold[order(threshold, decreasing = TRUE)] #generate independent subset of the data using a subset of the occurrence probabilities sensitivity<-rep(NA, length(threshold)) ROC_mega_table<-list(NA) optimal_thresholds<-NA optimal_thresholds_m<-NA optimal_thresholds_h<-NA #for each map extract values for all occurrences and pseudo 0s occ_mansoni <- occ_raw_mansoni[occ_raw_mansoni$PA == 1,] occ_mansoni$X <- seq.int(nrow(occ_mansoni)) occ_haematobium <- occ_raw_haematobium[occ_raw_haematobium$PA == 1,] occ_haematobium$X <- seq.int(nrow(occ_haematobium)) occ_coords_mansoni <- occ_mansoni[c('longitude', 'latitude')] occ_coords_haematobium <- occ_haematobium[c('longitude', 'latitude')] pseudoz_mansoni <- occ_raw_mansoni[occ_raw_mansoni$PA == 0,] pseudoz_haematobium <- occ_raw_haematobium[occ_raw_haematobium$PA == 0,] # now do this for pseudo 0s pseudoz_coords_mansoni <- pseudoz_mansoni[c('longitude', 'latitude')] pseudoz_coords_haematobium <- pseudoz_haematobium[c('longitude', 'latitude')] ############################## ##### TEST WITH MEAN MAP ##### ############################## # extract these values from the raster occ_preds_mansoni <- raster::extract(nichemap_mansoni, occ_coords_mansoni, df = T, method = 'simple') occ_preds_haematobium <- raster::extract(nichemap_haematobium, occ_coords_haematobium, df = T, method = 'simple') # setup for merge colnames(occ_preds_mansoni) <- c('X', 'prob') colnames(occ_preds_haematobium) <- c('X', 'prob') occ_mansoni <- merge(occ_mansoni, occ_preds_mansoni, by = "X") occ_haematobium <- merge(occ_haematobium, occ_preds_haematobium, by = "X") #generate independent subset of the data using a subset of the occurrence probabilities sensitivity_mansoni<-rep(NA, length(threshold)) sensitivity_haematobium<-rep(NA, length(threshold)) # extract raster values for true occurence data only # set sensitivities for (k in 1:length(threshold)){ sensitivity_mansoni[k]<-length(occ_mansoni$prob[occ_mansoni$prob>threshold[k]])/length(occ_mansoni$prob) sensitivity_haematobium[k]<-length(occ_haematobium$prob[occ_haematobium$prob>threshold[k]])/length(occ_haematobium$prob) } ## now for pseudo 0s ## extract these values from the raster pseudoz_preds_mansoni <- raster::extract(nichemap_mansoni, pseudoz_coords_mansoni, df = T, method = 'simple') pseudoz_preds_haematobium <- raster::extract(nichemap_haematobium, pseudoz_coords_haematobium, df = T, method = 'simple') # setup for merge colnames(pseudoz_preds_mansoni) <- c('X', 'prob') colnames(pseudoz_preds_haematobium) <- c('X', 'prob') # setup pseudoz pseudoz_mansoni$X <- (1:nrow(pseudoz_mansoni)) pseudoz_haematobium$X <- (1:nrow(pseudoz_haematobium)) # merge together pseudoz_mansoni <- merge(pseudoz_mansoni, pseudoz_preds_mansoni, by = "X") pseudoz_haematobium <- merge(pseudoz_haematobium, pseudoz_preds_haematobium, by = "X") fpr_mansoni<-rep(NA, length(threshold)) fpr_haematobium<-rep(NA, length(threshold)) for (a in 1:length(threshold)){ fpr_mansoni[a]<-length(pseudoz_mansoni$prob[pseudoz_mansoni$prob>threshold[a]])/length(pseudoz_mansoni$prob) fpr_haematobium[a]<-length(pseudoz_haematobium$prob[pseudoz_haematobium$prob>threshold[a]])/length(pseudoz_haematobium$prob) } ROC_table<-data.frame(threshold=threshold, sensitivity_m=sensitivity_mansoni, sensitivity_h=sensitivity_haematobium, fp_m=fpr_mansoni, fp_h=fpr_haematobium) # plot(x=ROC_table$false_positive, y=ROC_table$sensitivity, type='l', main=paste(i)) for(a in 1:nrow(ROC_table)){ ROC_table$hypotenuse_m[a]<-sqrt(((1-ROC_table$sensitivity_m[a])^2)+(ROC_table$fp_m[a]^2)) ROC_table$hypotenuse_h[a]<-sqrt(((1-ROC_table$sensitivity_h[a])^2)+(ROC_table$fp_h[a]^2)) } ROC_mega_table[[1]]<-ROC_table optimal_thresholds_m[1]<-ROC_table$threshold[which(ROC_table$hypotenuse_m==min(ROC_table$hypotenuse_m))] optimal_thresholds_h[1]<-ROC_table$threshold[which(ROC_table$hypotenuse_h==min(ROC_table$hypotenuse_h))] ############### ## generate PAR per district per map ############### zonal_PAR<-list() PAR<-list() # setup raster shapes for stamping out areas ras_shp_mansoni[ras_shp_mansoni>0 & ras_shp_mansoni<=100000]<- 1 ras_shp_mansoni[is.na(ras_shp_mansoni)]<-0 ras_shp_haematobium[ras_shp_haematobium>0 & ras_shp_haematobium<=100000]<- 1 ras_shp_haematobium[is.na(ras_shp_haematobium)]<-0 threshold_map_m<-nichemap_mansoni>optimal_thresholds_m[1] threshold_map_m<-threshold_map_m*ras_shp_mansoni threshold_map_m[is.na(threshold_map_m)]<- 0 threshold_map_h<-nichemap_haematobium>optimal_thresholds_h[1] threshold_map_h<-threshold_map_h*ras_shp_haematobium threshold_map_h[is.na(threshold_map_h)]<- 0 threshold_map <- do.call("sum", list(threshold_map_m, threshold_map_h)) threshold_map[threshold_map>=1 & threshold_map <= 2]<-1 PAR[[1]]<-threshold_map*pop zonal_PAR[[1]]<-zonal(PAR[[1]], ras_shp, fun='sum', na.rm=TRUE) zonal_PAR_clean<-zonal_PAR[[1]] for (i in 1:nrow(zonal_PAR_clean)){ if (zonal_PAR_clean[i,2]<1){ zonal_PAR_clean[i,2]<-0 } } zonal_PAR[[1]]<-zonal_PAR_clean colnames(zonal_PAR[[1]]) <- c('zone', 'par') #calculate zonal totals total_sums<-zonal(pop, ras_shp, fun = 'sum', na.rm = TRUE) for (i in 1:nrow(total_sums)){ if (total_sums[i,2]<=0){ total_sums[i,2]<-NA } } # generate the total population to get proportion prop_par <- cbind(total_sums, zonal_PAR[[1]]) prop_par <- as.data.table(prop_par) prop_par[, prop:=par/sum] prop_par <- prop_par[, c("zone", "prop")] colnames(prop_par)[2] <- c(paste0("prop_", jobnum)) write.csv(prop_par, file = paste0(outpath, "FILEPATH/prop_", jobnum, ".csv")) # save optimal thresholds optimal_thresholds[1] <- optimal_thresholds_m[1] optimal_thresholds[2] <- optimal_thresholds_h[1] write.csv(optimal_thresholds, file = paste0(outpath, "FILEPATH/threshold_", jobnum, ".csv"))
/gbd_2017/nonfatal_code/ntd_schisto/extract_par_species_parallel.r
no_license
Nermin-Ghith/ihme-modeling
R
false
false
8,805
r
# set up parallelized portion from qsub jobnum <- as.numeric(commandArgs()[3]) root_path <- commandArgs()[4] outpath <- commandArgs()[5] if (Sys.info()[1] == "Linux"){ j <- "FILEPATH" h <- paste0("FILEPATH",Sys.info()[6]) package_lib <- paste0(j,'FILEPATH') } else { j <- "FILEPATH" h <- "FILEPATH" package_lib <- paste0(j,'FILEPATH') } .libPaths(package_lib) #load necessary packages library(dplyr) library(maptools) library(raster) library(rgeos) library(rgdal) library(data.table) library(seegSDM) library(stringr) library(sp) repo <- paste0(j, 'FILEPATH') source(paste0(repo, 'FILEPATH/functions.R')) source(paste0(repo, 'FILEPATH/econiche_qsub.R')) source(paste0(repo, 'FILEPATH/check_loc_results.R')) # set i i <- jobnum # set up filepaths and directories ############## ## pull in mean map nichemap_mansoni <- raster(paste0(root_path, 'FILEPATH/preds_', i, '.tif'), band=1) nichemap_haematobium <- raster(paste0(root_path, 'FILEPATH/preds_', i, '.tif'), band=1) urbanicity <- raster(paste0(j, 'FILEPATH/ghslurbanicity_mean_1y_2005_00_00.tif')) urbanicity[urbanicity>0 & urbanicity<=100000] <- 3 urbanicity[is.na(urbanicity) | urbanicity == 0] <- 1 urbanicity[urbanicity == 3] <- 0 # # get world shapefile # worldshp = readOGR(paste0(j, 'FILEPATH'), 'GBD2016_analysis_final') # # get rid of the factor class # worldshp$loc_id = as.numeric(levels(worldshp$loc_id))[as.integer(worldshp$loc_id)] # # pull in geographic restrictions # excl_list = data.table(read.csv(paste0(j, "FILEPATH/species_specific_exclusions.csv"), stringsAsFactors = F)) # # keep if a location is endemic # excl_list = excl_list[japonicum == "" | mansoni == "" | haematobium =="" | other == "",] # excl_list_mansoni = excl_list[mansoni == "" | location_id == 172,] # excl_list_haematobium = excl_list[haematobium =="" | location_id == 215,] # excl_list_japonicum = excl_list[japonicum == "" | location_id == 10 | location_id == 12,] # #subset world shp to be only locations with da shishto # worldshp = worldshp[worldshp$loc_id %in% excl_list[,location_id],] # worldshp_mansoni = worldshp[worldshp$loc_id %in% excl_list_mansoni[,location_id],] # worldshp_haematobium = worldshp[worldshp$loc_id %in% excl_list_haematobium[,location_id],] # worldshp_japonicum = worldshp[worldshp$loc_id %in% excl_list_japonicum[,location_id],] #load world pop pop = raster(paste0(j, 'FILEPATH/worldpop_total_5y_2005_00_00.tif')) # mask our urban areas pop <- pop * urbanicity ras_shp <- raster(paste0(j, "FILEPATH/ras_shp.tif")) ras_shp_mansoni <- raster(paste0(j, "FILEPATH/ras_shp_mansoni.tif")) ras_shp_haematobium <- raster(paste0(j, "FILEPATH/ras_shp_haematobium.tif")) setExtent(pop, ras_shp) #load in occurrence reference csv occ_raw_mansoni<-read.csv(paste0(root_path, 'FILEPATH/dat_all.csv')) occ_raw_haematobium<-read.csv(paste0(root_path, 'FILEPATH/dat_all.csv')) #define threshold value stringexte threshold<-seq(0,1,0.001) threshold<-threshold[order(threshold, decreasing = TRUE)] #generate independent subset of the data using a subset of the occurrence probabilities sensitivity<-rep(NA, length(threshold)) ROC_mega_table<-list(NA) optimal_thresholds<-NA optimal_thresholds_m<-NA optimal_thresholds_h<-NA #for each map extract values for all occurrences and pseudo 0s occ_mansoni <- occ_raw_mansoni[occ_raw_mansoni$PA == 1,] occ_mansoni$X <- seq.int(nrow(occ_mansoni)) occ_haematobium <- occ_raw_haematobium[occ_raw_haematobium$PA == 1,] occ_haematobium$X <- seq.int(nrow(occ_haematobium)) occ_coords_mansoni <- occ_mansoni[c('longitude', 'latitude')] occ_coords_haematobium <- occ_haematobium[c('longitude', 'latitude')] pseudoz_mansoni <- occ_raw_mansoni[occ_raw_mansoni$PA == 0,] pseudoz_haematobium <- occ_raw_haematobium[occ_raw_haematobium$PA == 0,] # now do this for pseudo 0s pseudoz_coords_mansoni <- pseudoz_mansoni[c('longitude', 'latitude')] pseudoz_coords_haematobium <- pseudoz_haematobium[c('longitude', 'latitude')] ############################## ##### TEST WITH MEAN MAP ##### ############################## # extract these values from the raster occ_preds_mansoni <- raster::extract(nichemap_mansoni, occ_coords_mansoni, df = T, method = 'simple') occ_preds_haematobium <- raster::extract(nichemap_haematobium, occ_coords_haematobium, df = T, method = 'simple') # setup for merge colnames(occ_preds_mansoni) <- c('X', 'prob') colnames(occ_preds_haematobium) <- c('X', 'prob') occ_mansoni <- merge(occ_mansoni, occ_preds_mansoni, by = "X") occ_haematobium <- merge(occ_haematobium, occ_preds_haematobium, by = "X") #generate independent subset of the data using a subset of the occurrence probabilities sensitivity_mansoni<-rep(NA, length(threshold)) sensitivity_haematobium<-rep(NA, length(threshold)) # extract raster values for true occurence data only # set sensitivities for (k in 1:length(threshold)){ sensitivity_mansoni[k]<-length(occ_mansoni$prob[occ_mansoni$prob>threshold[k]])/length(occ_mansoni$prob) sensitivity_haematobium[k]<-length(occ_haematobium$prob[occ_haematobium$prob>threshold[k]])/length(occ_haematobium$prob) } ## now for pseudo 0s ## extract these values from the raster pseudoz_preds_mansoni <- raster::extract(nichemap_mansoni, pseudoz_coords_mansoni, df = T, method = 'simple') pseudoz_preds_haematobium <- raster::extract(nichemap_haematobium, pseudoz_coords_haematobium, df = T, method = 'simple') # setup for merge colnames(pseudoz_preds_mansoni) <- c('X', 'prob') colnames(pseudoz_preds_haematobium) <- c('X', 'prob') # setup pseudoz pseudoz_mansoni$X <- (1:nrow(pseudoz_mansoni)) pseudoz_haematobium$X <- (1:nrow(pseudoz_haematobium)) # merge together pseudoz_mansoni <- merge(pseudoz_mansoni, pseudoz_preds_mansoni, by = "X") pseudoz_haematobium <- merge(pseudoz_haematobium, pseudoz_preds_haematobium, by = "X") fpr_mansoni<-rep(NA, length(threshold)) fpr_haematobium<-rep(NA, length(threshold)) for (a in 1:length(threshold)){ fpr_mansoni[a]<-length(pseudoz_mansoni$prob[pseudoz_mansoni$prob>threshold[a]])/length(pseudoz_mansoni$prob) fpr_haematobium[a]<-length(pseudoz_haematobium$prob[pseudoz_haematobium$prob>threshold[a]])/length(pseudoz_haematobium$prob) } ROC_table<-data.frame(threshold=threshold, sensitivity_m=sensitivity_mansoni, sensitivity_h=sensitivity_haematobium, fp_m=fpr_mansoni, fp_h=fpr_haematobium) # plot(x=ROC_table$false_positive, y=ROC_table$sensitivity, type='l', main=paste(i)) for(a in 1:nrow(ROC_table)){ ROC_table$hypotenuse_m[a]<-sqrt(((1-ROC_table$sensitivity_m[a])^2)+(ROC_table$fp_m[a]^2)) ROC_table$hypotenuse_h[a]<-sqrt(((1-ROC_table$sensitivity_h[a])^2)+(ROC_table$fp_h[a]^2)) } ROC_mega_table[[1]]<-ROC_table optimal_thresholds_m[1]<-ROC_table$threshold[which(ROC_table$hypotenuse_m==min(ROC_table$hypotenuse_m))] optimal_thresholds_h[1]<-ROC_table$threshold[which(ROC_table$hypotenuse_h==min(ROC_table$hypotenuse_h))] ############### ## generate PAR per district per map ############### zonal_PAR<-list() PAR<-list() # setup raster shapes for stamping out areas ras_shp_mansoni[ras_shp_mansoni>0 & ras_shp_mansoni<=100000]<- 1 ras_shp_mansoni[is.na(ras_shp_mansoni)]<-0 ras_shp_haematobium[ras_shp_haematobium>0 & ras_shp_haematobium<=100000]<- 1 ras_shp_haematobium[is.na(ras_shp_haematobium)]<-0 threshold_map_m<-nichemap_mansoni>optimal_thresholds_m[1] threshold_map_m<-threshold_map_m*ras_shp_mansoni threshold_map_m[is.na(threshold_map_m)]<- 0 threshold_map_h<-nichemap_haematobium>optimal_thresholds_h[1] threshold_map_h<-threshold_map_h*ras_shp_haematobium threshold_map_h[is.na(threshold_map_h)]<- 0 threshold_map <- do.call("sum", list(threshold_map_m, threshold_map_h)) threshold_map[threshold_map>=1 & threshold_map <= 2]<-1 PAR[[1]]<-threshold_map*pop zonal_PAR[[1]]<-zonal(PAR[[1]], ras_shp, fun='sum', na.rm=TRUE) zonal_PAR_clean<-zonal_PAR[[1]] for (i in 1:nrow(zonal_PAR_clean)){ if (zonal_PAR_clean[i,2]<1){ zonal_PAR_clean[i,2]<-0 } } zonal_PAR[[1]]<-zonal_PAR_clean colnames(zonal_PAR[[1]]) <- c('zone', 'par') #calculate zonal totals total_sums<-zonal(pop, ras_shp, fun = 'sum', na.rm = TRUE) for (i in 1:nrow(total_sums)){ if (total_sums[i,2]<=0){ total_sums[i,2]<-NA } } # generate the total population to get proportion prop_par <- cbind(total_sums, zonal_PAR[[1]]) prop_par <- as.data.table(prop_par) prop_par[, prop:=par/sum] prop_par <- prop_par[, c("zone", "prop")] colnames(prop_par)[2] <- c(paste0("prop_", jobnum)) write.csv(prop_par, file = paste0(outpath, "FILEPATH/prop_", jobnum, ".csv")) # save optimal thresholds optimal_thresholds[1] <- optimal_thresholds_m[1] optimal_thresholds[2] <- optimal_thresholds_h[1] write.csv(optimal_thresholds, file = paste0(outpath, "FILEPATH/threshold_", jobnum, ".csv"))
## ----setup,echo=FALSE,include=FALSE-------------------------------------- library(knitr) library(bodenmiller) library(ggplot2) library(dplyr) library(reshape2) library(RColorBrewer) knitr::opts_chunk$set(warning=FALSE, fig.keep='high', fig.align='center') do.fan <- function(x,step=0.01) { data.frame(ymin=quantile(x,probs=seq(0,1,step))[-length(seq(0,1,step))], ymax=quantile(x,probs=seq(0,1,step))[-1], id=seq(1,length(seq(step,1,step))), percent=abs(seq(step,1,step)-0.5)) } scale_fill_fan <- function(...) scale_fill_gradientn(colours=rev(brewer.pal(9,'Oranges')) ) ## ----ref_pheno_boxplot--------------------------------------------------- data(refPhenoMat) refPhenoFrame <- melt(refPhenoMat) names(refPhenoFrame) <- c('cell_id','channel','value') ggplot(data=refPhenoFrame,aes(x=channel,y=value))+ geom_boxplot()+ theme(axis.text.x = element_text(angle = 45, hjust = 1)) ## ----annots-------------------------------------------------------------- data('refAnnots') refPhenoFrame$Cells <- rep(refAnnots$Cells,ncol(refPhenoMat)) cell.colors <- setNames(c('#9CA5D5','#0015C5','#5B6CB4','#BFC5E8','#C79ED0','#850094', '#A567B1','#DBBCE2','#D3C6A1','#5E4500','#BBDEB1','#8A1923', '#B35E62','#CEA191'), c('cd14-hladr-','cd14-hladrhigh','cd14-hladrmid','cd14-surf-', 'cd14+hladr-','cd14+hladrhigh','cd14+hladrmid','cd14+surf-', 'cd4+','cd8+','dendritic','igm-','igm+','nk')) ## ----ref_pheno_pop_boxplot,fig.width=6,fig.height=4---------------------- cd7.pops <- refPhenoFrame %>% filter(channel=='CD7') ggplot(data=cd7.pops, aes(x=Cells,y=value,fill=Cells))+ geom_boxplot()+ scale_fill_manual(values=cell.colors)+ guides(fill=FALSE)+ theme(axis.text.x = element_text(angle = 45, hjust = 1)) ## ----ref_pheno_sub_fan--------------------------------------------------- ggplot(refPhenoFrame %>% filter(Cells=='cd4+') %>% group_by(Cells,channel) %>% do(do.fan(.$value)), aes(x=channel,fill=percent,group=id))+ geom_ribbon(aes(ymin=ymin,ymax=ymax))+ guides(fill=F)+ facet_wrap(~Cells)+ theme(axis.text.x = element_text(angle = 45, hjust = 1))+ scale_fill_fan() ## ----ref_func_sub_fan,fig.width=5,fig.height=3--------------------------- data(refFuncMat) refFuncFrame <- melt(refFuncMat) names(refFuncFrame) <- c('cell_id','channel','value') refFuncFrame$Cells <- rep(refAnnots$Cells,ncol(refFuncMat)) ggplot(refFuncFrame %>% filter(Cells=='cd4+') %>% group_by(Cells,channel) %>% do(do.fan(.$value)), aes(x=channel,fill=percent,group=id))+ geom_ribbon(aes(ymin=ymin,ymax=ymax))+ facet_wrap(~Cells)+ guides(fill=FALSE)+ theme(axis.text.x = element_text(angle = 45, hjust = 1))+ scale_fill_fan() ## ----untreated_func------------------------------------------------------ data('untreatedFuncMat') data('untreatedAnnots') untreatedFuncFrame <- melt(untreatedFuncMat) names(untreatedFuncFrame) <- c('cell_id','channel','value') untreatedFuncFrame$Cells <- rep(untreatedAnnots$Cells,ncol(untreatedFuncMat)) untreatedFuncFrame$Treatment <- rep(untreatedAnnots$Treatment,ncol(untreatedFuncMat)) ## ----un_func_sub_fan,fig.width=6,fig.height=6---------------------------- refFuncLine <- refFuncFrame %>% filter(Cells=='cd4+') %>% group_by(Cells,channel) %>% summarise(value=median(value)) refFuncLine <- do.call(rbind,lapply(seq(1,3),function(x) refFuncLine)) refFuncLine$Treatment <- rep(levels(untreatedFuncFrame$Treatment),each=nlevels(refFuncLine$channel)) refFuncLine$percent <- 0 refFuncLine$id <- 'ref' ggplot(untreatedFuncFrame %>% filter(Cells=='cd4+') %>% group_by(Treatment,Cells,channel) %>% do(do.fan(.$value)), aes(x=channel,fill=percent,group=id))+ geom_ribbon(aes(ymin=ymin,ymax=ymax))+ geom_line(data=refFuncLine,aes(y=value), col='black',linetype=4)+ guides(fill=F)+ facet_wrap(~Cells*Treatment,ncol=2,scale='free_x')+ theme(axis.text.x = element_text(angle = 45, hjust = 1))+ scale_fill_fan()
/data/genthat_extracted_code/bodenmiller/vignettes/bodenmiller.R
no_license
surayaaramli/typeRrh
R
false
false
4,239
r
## ----setup,echo=FALSE,include=FALSE-------------------------------------- library(knitr) library(bodenmiller) library(ggplot2) library(dplyr) library(reshape2) library(RColorBrewer) knitr::opts_chunk$set(warning=FALSE, fig.keep='high', fig.align='center') do.fan <- function(x,step=0.01) { data.frame(ymin=quantile(x,probs=seq(0,1,step))[-length(seq(0,1,step))], ymax=quantile(x,probs=seq(0,1,step))[-1], id=seq(1,length(seq(step,1,step))), percent=abs(seq(step,1,step)-0.5)) } scale_fill_fan <- function(...) scale_fill_gradientn(colours=rev(brewer.pal(9,'Oranges')) ) ## ----ref_pheno_boxplot--------------------------------------------------- data(refPhenoMat) refPhenoFrame <- melt(refPhenoMat) names(refPhenoFrame) <- c('cell_id','channel','value') ggplot(data=refPhenoFrame,aes(x=channel,y=value))+ geom_boxplot()+ theme(axis.text.x = element_text(angle = 45, hjust = 1)) ## ----annots-------------------------------------------------------------- data('refAnnots') refPhenoFrame$Cells <- rep(refAnnots$Cells,ncol(refPhenoMat)) cell.colors <- setNames(c('#9CA5D5','#0015C5','#5B6CB4','#BFC5E8','#C79ED0','#850094', '#A567B1','#DBBCE2','#D3C6A1','#5E4500','#BBDEB1','#8A1923', '#B35E62','#CEA191'), c('cd14-hladr-','cd14-hladrhigh','cd14-hladrmid','cd14-surf-', 'cd14+hladr-','cd14+hladrhigh','cd14+hladrmid','cd14+surf-', 'cd4+','cd8+','dendritic','igm-','igm+','nk')) ## ----ref_pheno_pop_boxplot,fig.width=6,fig.height=4---------------------- cd7.pops <- refPhenoFrame %>% filter(channel=='CD7') ggplot(data=cd7.pops, aes(x=Cells,y=value,fill=Cells))+ geom_boxplot()+ scale_fill_manual(values=cell.colors)+ guides(fill=FALSE)+ theme(axis.text.x = element_text(angle = 45, hjust = 1)) ## ----ref_pheno_sub_fan--------------------------------------------------- ggplot(refPhenoFrame %>% filter(Cells=='cd4+') %>% group_by(Cells,channel) %>% do(do.fan(.$value)), aes(x=channel,fill=percent,group=id))+ geom_ribbon(aes(ymin=ymin,ymax=ymax))+ guides(fill=F)+ facet_wrap(~Cells)+ theme(axis.text.x = element_text(angle = 45, hjust = 1))+ scale_fill_fan() ## ----ref_func_sub_fan,fig.width=5,fig.height=3--------------------------- data(refFuncMat) refFuncFrame <- melt(refFuncMat) names(refFuncFrame) <- c('cell_id','channel','value') refFuncFrame$Cells <- rep(refAnnots$Cells,ncol(refFuncMat)) ggplot(refFuncFrame %>% filter(Cells=='cd4+') %>% group_by(Cells,channel) %>% do(do.fan(.$value)), aes(x=channel,fill=percent,group=id))+ geom_ribbon(aes(ymin=ymin,ymax=ymax))+ facet_wrap(~Cells)+ guides(fill=FALSE)+ theme(axis.text.x = element_text(angle = 45, hjust = 1))+ scale_fill_fan() ## ----untreated_func------------------------------------------------------ data('untreatedFuncMat') data('untreatedAnnots') untreatedFuncFrame <- melt(untreatedFuncMat) names(untreatedFuncFrame) <- c('cell_id','channel','value') untreatedFuncFrame$Cells <- rep(untreatedAnnots$Cells,ncol(untreatedFuncMat)) untreatedFuncFrame$Treatment <- rep(untreatedAnnots$Treatment,ncol(untreatedFuncMat)) ## ----un_func_sub_fan,fig.width=6,fig.height=6---------------------------- refFuncLine <- refFuncFrame %>% filter(Cells=='cd4+') %>% group_by(Cells,channel) %>% summarise(value=median(value)) refFuncLine <- do.call(rbind,lapply(seq(1,3),function(x) refFuncLine)) refFuncLine$Treatment <- rep(levels(untreatedFuncFrame$Treatment),each=nlevels(refFuncLine$channel)) refFuncLine$percent <- 0 refFuncLine$id <- 'ref' ggplot(untreatedFuncFrame %>% filter(Cells=='cd4+') %>% group_by(Treatment,Cells,channel) %>% do(do.fan(.$value)), aes(x=channel,fill=percent,group=id))+ geom_ribbon(aes(ymin=ymin,ymax=ymax))+ geom_line(data=refFuncLine,aes(y=value), col='black',linetype=4)+ guides(fill=F)+ facet_wrap(~Cells*Treatment,ncol=2,scale='free_x')+ theme(axis.text.x = element_text(angle = 45, hjust = 1))+ scale_fill_fan()
# load the required packages install.packages("caret") install.packages("rattle") install.packages("rpart") install.packages("rpart.plot") install.packages("randomForest") install.packages("repmis") install.packages("e1071") library(caret) library(rattle) library(rpart) library(rpart.plot) library(randomForest) library(repmis) library(e1071) training <- read.csv("pml-training.csv", na.strings = c("NA", "")) testing <- read.csv("pml-testing.csv", na.strings = c("NA", "")) training <- training[, colSums(is.na(training)) == 0] testing <- testing[, colSums(is.na(testing)) == 0] trainData <- training[, -c(1:7)] testData <- testing[, -c(1:7)] set.seed(7826) inTrain <- createDataPartition(trainData$classe, p = 0.7, list = FALSE) train <- trainData[inTrain, ] valid <- trainData[-inTrain, ] control <- trainControl(method = "cv", number = 5) fitRpart <- train(classe ~ ., data = train, method = "rpart", trControl = control) print(fitRpart, digits = 4) # predict outcomes using validation set predictRpart <- predict(fitRpart, valid) fancyRpartPlot(fitRpart$finalModel) # Show prediction result confRpart <- confusionMatrix(valid$classe, predict_rpart) ## Confusion Matrix and Statistics accuracyRpart <- confRpart$overall[1] ##### Using Random Forest... ##### fitRf <- train(classe ~ ., data = train, method = "rf", trControl = control) print(fitRf, digits = 4) # predict outcomes using validation set predictRf <- predict(fitRf, valid) # Show prediction result confRf <- confusionMatrix(valid$classe, predictRf) accuracyRf <- confRf$overall[1] predict(fitRf, testData) ## Result: B A B A A E D B A A B C B A E E A B B B
/predict.R
no_license
CherryPon/predictionAssignment
R
false
false
1,664
r
# load the required packages install.packages("caret") install.packages("rattle") install.packages("rpart") install.packages("rpart.plot") install.packages("randomForest") install.packages("repmis") install.packages("e1071") library(caret) library(rattle) library(rpart) library(rpart.plot) library(randomForest) library(repmis) library(e1071) training <- read.csv("pml-training.csv", na.strings = c("NA", "")) testing <- read.csv("pml-testing.csv", na.strings = c("NA", "")) training <- training[, colSums(is.na(training)) == 0] testing <- testing[, colSums(is.na(testing)) == 0] trainData <- training[, -c(1:7)] testData <- testing[, -c(1:7)] set.seed(7826) inTrain <- createDataPartition(trainData$classe, p = 0.7, list = FALSE) train <- trainData[inTrain, ] valid <- trainData[-inTrain, ] control <- trainControl(method = "cv", number = 5) fitRpart <- train(classe ~ ., data = train, method = "rpart", trControl = control) print(fitRpart, digits = 4) # predict outcomes using validation set predictRpart <- predict(fitRpart, valid) fancyRpartPlot(fitRpart$finalModel) # Show prediction result confRpart <- confusionMatrix(valid$classe, predict_rpart) ## Confusion Matrix and Statistics accuracyRpart <- confRpart$overall[1] ##### Using Random Forest... ##### fitRf <- train(classe ~ ., data = train, method = "rf", trControl = control) print(fitRf, digits = 4) # predict outcomes using validation set predictRf <- predict(fitRf, valid) # Show prediction result confRf <- confusionMatrix(valid$classe, predictRf) accuracyRf <- confRf$overall[1] predict(fitRf, testData) ## Result: B A B A A E D B A A B C B A E E A B B B
library(raster) library(rgdal) library(ggplot2) library(reshape2) library(plyr) # -------------------------------------------------------------------------------- # Note: This first part I found in a tutorial online: # https://downwithtime.wordpress.com/2013/12/04/naturalearthdata-and-r-in-ggplot2/ # -------------------------------------------------------------------------------- # Assuming you have a path 'Maps' that you store your spatial files in. This # is all downloaded from <a href="http://www.naturalearthdata.com/downloads/">http://www.naturalearthdata.com/downloads/</a> using the # 1:50m "Medium" scale data. nat.earth <- stack('./Maps/NE2_50M_SR_W/NE2_50M_SR_W.tif') ne_lakes <- readOGR('./Maps/NaturalEarth/ne_50m_lakes.shp', 'ne_50m_lakes') ne_rivers <- readOGR('./Maps/NaturalEarth/ne_50m_rivers_lake_centerlines.shp', 'ne_50m_rivers_lake_centerlines') ne_coast <- readOGR('./Maps/NaturalEarth/ne_50m_coastline.shp', 'ne_50m_coastline') # I have a domain I'm interested in, but there's no reason you can't define something else: quick.subset <- function(x, longlat){ # longlat should be a vector of four values: c(xmin, xmax, ymin, ymax) x@data$id <- rownames(x@data) x.f = fortify(x, region="id") x.join = join(x.f, x@data, by="id") x.subset <- subset(x.join, x.join$long > longlat[1] & x.join$long < longlat[2] & x.join$lat > longlat[3] & x.join$lat < longlat[4]) x.subset } domain <- c(-98.6, -66.1, 36.5, 49.7) lakes.subset <- quick.subset(ne_lakes, domain) river.subset <- quick.subset(ne_rivers, domain) coast.subset <- quick.subset(ne_coast, domain) nat.crop <- crop(nat.earth, y=extent(domain)) rast.table <- data.frame(xyFromCell(nat.crop, 1:ncell(nat.crop)), getValues(nat.crop/255)) rast.table$rgb <- with(rast.table, rgb(NE2_50M_SR_W.1, NE2_50M_SR_W.2, NE2_50M_SR_W.3, 1)) # et voila! ggplot(data = rast.table, aes(x = x, y = y)) + geom_tile(fill = rast.table$rgb) + geom_polygon(data=lakes.subset, aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') ggplot(data = lakes.subset) + geom_polygon(aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') # __________________________________________________________________________ # This is me borrowing from above to try with india (for my Ptolemy project..) # domain <- c(40, 120, 0, 45) lakes.subset <- quick.subset(ne_lakes, domain) river.subset <- quick.subset(ne_rivers, domain) coast.subset <- quick.subset(ne_coast, domain) nat.crop <- crop(nat.earth, y=extent(domain)) rast.table <- data.frame(xyFromCell(nat.crop, 1:ncell(nat.crop)), getValues(nat.crop/255)) rast.table$rgb <- with(rast.table, rgb(NE2_50M_SR_W.1, NE2_50M_SR_W.2, NE2_50M_SR_W.3, 1)) # et voila! ggplot(data = rast.table, aes(x = x, y = y)) + geom_tile(fill = rast.table$rgb) + geom_polygon(data=lakes.subset, aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') ggplot(data = lakes.subset) + geom_polygon(aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') # __________________________________________________________________________ # This is the one I used for the GTAP data (and thus the poster). # admin0 <- readOGR('../Maps/NaturalEarth/ne_50m_admin_0_countries.shp', 'ne_50m_admin_0_countries') domain <- c(-180, 180, -90, 90) admin0.subset <- quick.subset(admin0, domain) admin0.subset$id <- as.integer(admin0.subset$id) nat.crop <- crop(nat.earth, y=extent(domain)) rast.table <- data.frame(xyFromCell(nat.crop, 1:ncell(nat.crop)), getValues(nat.crop/255)) ggplot(data = admin0.subset) + geom_polygon(aes(x = long, y = lat, group = group, color = pop_est, fill = pop_est)) + scale_alpha_discrete(range=c(1,0)) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') admin0.merge <- merge(x=admin0.subset, y=trade.exp1995, by.x="iso_a3", by.y="iso3code", all.x=T) admin0.merge$id <- as.integer(admin0.merge$id) admin0.merge <- admin0.merge[order(admin0.merge$id, admin0.merge$order),] admin0.iso3 <- ddply(admin0.merge, .(iso_a3), "nrow") pdf("geo1995.pdf", width=6, height=3) ggplot(data = admin0.merge) + geom_polygon(aes(x = long, y = lat, group = group, fill = expval), color = "#000000") + scale_alpha_discrete(range=c(1,0)) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') dev.off() admin0.merge <- merge(x=admin0.subset, y=trade.exp2009, by.x="iso_a3", by.y="iso3code", all.x=T) admin0.merge$id <- as.integer(admin0.merge$id) admin0.merge <- admin0.merge[order(admin0.merge$id, admin0.merge$order),] admin0.iso3 <- ddply(admin0.merge, .(iso_a3), "nrow") pdf("geo2009.pdf", width=6, height=3) ggplot(data = admin0.merge) + geom_polygon(aes(x = long, y = lat, group = group, fill = expval), color = "#000000") + scale_alpha_discrete(range=c(1,0)) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') dev.off() admin0.iso3$iso_a3 trade.exp2000[!(trade.exp2000$iso3code %in% admin0.iso3$iso_a3), ] admin0.iso3[!(admin0.iso3$iso_a3 %in% trade.exp2000$iso3code), ]
/natearthtest.R
permissive
coreyabshire/ivmooc-gtap
R
false
false
7,272
r
library(raster) library(rgdal) library(ggplot2) library(reshape2) library(plyr) # -------------------------------------------------------------------------------- # Note: This first part I found in a tutorial online: # https://downwithtime.wordpress.com/2013/12/04/naturalearthdata-and-r-in-ggplot2/ # -------------------------------------------------------------------------------- # Assuming you have a path 'Maps' that you store your spatial files in. This # is all downloaded from <a href="http://www.naturalearthdata.com/downloads/">http://www.naturalearthdata.com/downloads/</a> using the # 1:50m "Medium" scale data. nat.earth <- stack('./Maps/NE2_50M_SR_W/NE2_50M_SR_W.tif') ne_lakes <- readOGR('./Maps/NaturalEarth/ne_50m_lakes.shp', 'ne_50m_lakes') ne_rivers <- readOGR('./Maps/NaturalEarth/ne_50m_rivers_lake_centerlines.shp', 'ne_50m_rivers_lake_centerlines') ne_coast <- readOGR('./Maps/NaturalEarth/ne_50m_coastline.shp', 'ne_50m_coastline') # I have a domain I'm interested in, but there's no reason you can't define something else: quick.subset <- function(x, longlat){ # longlat should be a vector of four values: c(xmin, xmax, ymin, ymax) x@data$id <- rownames(x@data) x.f = fortify(x, region="id") x.join = join(x.f, x@data, by="id") x.subset <- subset(x.join, x.join$long > longlat[1] & x.join$long < longlat[2] & x.join$lat > longlat[3] & x.join$lat < longlat[4]) x.subset } domain <- c(-98.6, -66.1, 36.5, 49.7) lakes.subset <- quick.subset(ne_lakes, domain) river.subset <- quick.subset(ne_rivers, domain) coast.subset <- quick.subset(ne_coast, domain) nat.crop <- crop(nat.earth, y=extent(domain)) rast.table <- data.frame(xyFromCell(nat.crop, 1:ncell(nat.crop)), getValues(nat.crop/255)) rast.table$rgb <- with(rast.table, rgb(NE2_50M_SR_W.1, NE2_50M_SR_W.2, NE2_50M_SR_W.3, 1)) # et voila! ggplot(data = rast.table, aes(x = x, y = y)) + geom_tile(fill = rast.table$rgb) + geom_polygon(data=lakes.subset, aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') ggplot(data = lakes.subset) + geom_polygon(aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') # __________________________________________________________________________ # This is me borrowing from above to try with india (for my Ptolemy project..) # domain <- c(40, 120, 0, 45) lakes.subset <- quick.subset(ne_lakes, domain) river.subset <- quick.subset(ne_rivers, domain) coast.subset <- quick.subset(ne_coast, domain) nat.crop <- crop(nat.earth, y=extent(domain)) rast.table <- data.frame(xyFromCell(nat.crop, 1:ncell(nat.crop)), getValues(nat.crop/255)) rast.table$rgb <- with(rast.table, rgb(NE2_50M_SR_W.1, NE2_50M_SR_W.2, NE2_50M_SR_W.3, 1)) # et voila! ggplot(data = rast.table, aes(x = x, y = y)) + geom_tile(fill = rast.table$rgb) + geom_polygon(data=lakes.subset, aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') ggplot(data = lakes.subset) + geom_polygon(aes(x = long, y = lat, group = group), fill = '#ADD8E6') + scale_alpha_discrete(range=c(1,0)) + geom_path(data=lakes.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=river.subset, aes(x = long, y = lat, group = group), color = 'blue') + geom_path(data=coast.subset, aes(x = long, y = lat, group = group), color = 'blue') + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') # __________________________________________________________________________ # This is the one I used for the GTAP data (and thus the poster). # admin0 <- readOGR('../Maps/NaturalEarth/ne_50m_admin_0_countries.shp', 'ne_50m_admin_0_countries') domain <- c(-180, 180, -90, 90) admin0.subset <- quick.subset(admin0, domain) admin0.subset$id <- as.integer(admin0.subset$id) nat.crop <- crop(nat.earth, y=extent(domain)) rast.table <- data.frame(xyFromCell(nat.crop, 1:ncell(nat.crop)), getValues(nat.crop/255)) ggplot(data = admin0.subset) + geom_polygon(aes(x = long, y = lat, group = group, color = pop_est, fill = pop_est)) + scale_alpha_discrete(range=c(1,0)) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') admin0.merge <- merge(x=admin0.subset, y=trade.exp1995, by.x="iso_a3", by.y="iso3code", all.x=T) admin0.merge$id <- as.integer(admin0.merge$id) admin0.merge <- admin0.merge[order(admin0.merge$id, admin0.merge$order),] admin0.iso3 <- ddply(admin0.merge, .(iso_a3), "nrow") pdf("geo1995.pdf", width=6, height=3) ggplot(data = admin0.merge) + geom_polygon(aes(x = long, y = lat, group = group, fill = expval), color = "#000000") + scale_alpha_discrete(range=c(1,0)) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') dev.off() admin0.merge <- merge(x=admin0.subset, y=trade.exp2009, by.x="iso_a3", by.y="iso3code", all.x=T) admin0.merge$id <- as.integer(admin0.merge$id) admin0.merge <- admin0.merge[order(admin0.merge$id, admin0.merge$order),] admin0.iso3 <- ddply(admin0.merge, .(iso_a3), "nrow") pdf("geo2009.pdf", width=6, height=3) ggplot(data = admin0.merge) + geom_polygon(aes(x = long, y = lat, group = group, fill = expval), color = "#000000") + scale_alpha_discrete(range=c(1,0)) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0)) + xlab('') + ylab('') dev.off() admin0.iso3$iso_a3 trade.exp2000[!(trade.exp2000$iso3code %in% admin0.iso3$iso_a3), ] admin0.iso3[!(admin0.iso3$iso_a3 %in% trade.exp2000$iso3code), ]
library(Signac) library(Seurat) library(ggplot2) library(harmony) library(dplyr) options(future.globals.maxSize = 50000 * 1024^2) load('../data_processed/obj_all.rda') ######## Quality control to filter cells ######## ## Filter cells # RNA-seq: nCount_RNA, percent.mt # ATAC-seq: nCount_ATAC, nucleosome_signal, TSS.enrichment pbmc <- subset(x = obj_all, subset = nCount_RNA > 2e2 & nCount_RNA < 5e4 & nCount_ATAC > 2e2 & nCount_ATAC < 1e5 & percent.mt < 5 & nucleosome_signal < 3 & TSS.enrichment > 1) ######## Precessing and Clustering ######## preprocess <- function(object, n.pc = 30, n.lsi = 10){ ## Filter peaks/genes which are detected in < 10 cells tmp <- Matrix::rowSums(object[['RNA']]@counts > 0) object[['RNA']] <- subset(object[['RNA']], features = names(which(tmp >= 10))) tmp <- Matrix::rowSums(object[['ATAC']]@counts > 0) object[['ATAC']] <- subset(object[['ATAC']], features = names(which(tmp >= 10))) ## Normalization, dimensional reduction, and clustering on RNA-seq and ATAC-seq separately # RNA-seq DefaultAssay(object) <- 'RNA' object <- SCTransform(object) object <- RunPCA(object) object <- RunUMAP(object, reduction = 'pca', dims = 1:n.pc, assay = 'SCT', reduction.name = 'umap.rna', reduction.key = 'rnaUMAP_') object <- FindNeighbors(object, reduction = 'pca', dims = 1:n.pc, assay = 'SCT') object <- FindClusters(object, graph.name = 'SCT_snn', algorithm = 3, resolution = 0.2) # ATAC-seq DefaultAssay(object) <- "ATAC" object <- RunTFIDF(object, method = 3) object <- FindTopFeatures(object, min.cutoff = 'q75') object <- RunSVD(object) object <- RunUMAP(object, reduction = 'lsi', dims = 2:n.lsi, assay = 'ATAC', reduction.name = "umap.atac", reduction.key = "atacUMAP_") object <- FindNeighbors(object, reduction = 'lsi', dims = 2:n.lsi, assay = 'ATAC') object <- FindClusters(object, graph.name = 'ATAC_snn', algorithm = 3, resolution = 0.2) # Weighted nearest neighbor (WNN) analysis using both modalities object <- FindMultiModalNeighbors(object, reduction.list = list("pca", "lsi"), dims.list = list(1:n.pc, 2:n.lsi), modality.weight.name = 'RNA.weight') object <- RunUMAP(object, nn.name = "weighted.nn", reduction.name = "wnn.umap", reduction.key = "wnnUMAP_") object <- FindClusters(object, graph.name = "wsnn", algorithm = 3, verbose = FALSE, resolution = 0.2) object <- FindMultiModalNeighbors(object, reduction.list = list("harmony.pca", "harmony.lsi"), dims.list = list(1:n.pc, 2:n.lsi), modality.weight.name = 'RNA.weight.harmony', knn.graph.name = 'wknn.harmony', snn.graph.name = 'wsnn.harmony', weighted.nn.name = 'weighted.nn.harmony') DefaultAssay(object) <- 'SCT' return(object) } pbmc = preprocess(obj_all) rm(obj_all); gc() ######## Cell types annotation ######## ## WNN-derived celltype <- rep(NA, length = ncol(pbmc)) Idents(pbmc) <- pbmc$wsnn_res.0.2 celltype[which(Idents(pbmc) %in% c(11))] <- 'RG' celltype[which(Idents(pbmc) %in% c('5_3'))] <- 'IPC' celltype[which(Idents(pbmc) %in% c(8))] <- 'IN-MGE' celltype[which(Idents(pbmc) %in% c(10))] <- 'IN-CGE' celltype[which(Idents(pbmc) %in% c(3))] <- 'IN-fetal' celltype[which(Idents(pbmc) %in% c(0,14))] <- 'EN-fetal-late' celltype[which(Idents(pbmc) %in% c(6,12))] <- 'EN' celltype[which(Idents(pbmc) %in% c('5_0','5_1','5_2','5_4'))] <- 'EN-fetal-early' celltype[which(Idents(pbmc) %in% c(4,9,15))] <- 'Astrocytes' celltype[which(Idents(pbmc) %in% c(1,21,22))] <- 'Oligodendrocytes' celltype[which(Idents(pbmc) %in% c(2,19))] <- 'OPC' celltype[which(Idents(pbmc) %in% c(7,13,17,23))] <- 'Microglia' celltype[which(Idents(pbmc) %in% c(16))] <- 'Endothelial' celltype[which(Idents(pbmc) %in% c(18))] <- 'Pericytes' celltype[which(Idents(pbmc) %in% c(20))] <- 'VSMC' pbmc$celltype = celltype ## RNA-derived celltype <- rep(NA, length = ncol(pbmc)) Idents(pbmc) <- pbmc$SCT_snn_res.0.2.subcluster celltype[which(Idents(pbmc) %in% c('12_0','12_1','12_3'))] <- 'RG' celltype[which(Idents(pbmc) %in% c('12_2'))] <- 'IPC' celltype[which(Idents(pbmc) %in% c(9))] <- 'IN-MGE' celltype[which(Idents(pbmc) %in% c(10))] <- 'IN-CGE' celltype[which(Idents(pbmc) %in% c(6))] <- 'IN-fetal' celltype[which(Idents(pbmc) %in% c(8))] <- 'EN-fetal-early' celltype[which(Idents(pbmc) %in% c(0,11))] <- 'EN-fetal-late' celltype[which(Idents(pbmc) %in% c(4))] <- 'EN' celltype[which(Idents(pbmc) %in% c(5,7,16))] <- 'Astrocytes' celltype[which(Idents(pbmc) %in% c(1,17))] <- 'Oligodendrocytes' celltype[which(Idents(pbmc) %in% c(2,15))] <- 'OPC' celltype[which(Idents(pbmc) %in% c(3,18))] <- 'Microglia' celltype[which(Idents(pbmc) %in% c(14))] <- 'Endothelial' celltype[which(Idents(pbmc) %in% c('13_0','13_1','13_4'))] <- 'Pericytes' celltype[which(Idents(pbmc) %in% c('13_2', '13_3'))] <- 'VSMC' celltype <- factor(celltype, levels = c('RG', 'IPC', 'EN-fetal-early', 'EN-fetal-late', 'EN', 'IN-fetal', 'IN-MGE', 'IN-CGE', 'OPC', 'Astrocytes', 'Oligodendrocytes','Microglia', 'Endothelial', 'Pericytes', 'VSMC'), ordered = T) pbmc$celltype.rna <- celltype ## ATAC-derived celltype <- rep(NA, length = ncol(pbmc)) Idents(pbmc) <- pbmc$ATAC_snn_res.0.2.subcluster celltype[which(Idents(pbmc) %in% c('5_1'))] <- 'RG' celltype[which(Idents(pbmc) %in% c('5_3'))] <- 'IPC' celltype[which(Idents(pbmc) %in% c(4))] <- 'IN' celltype[which(Idents(pbmc) %in% c(7))] <- 'IN-fetal' celltype[which(Idents(pbmc) %in% c(0))] <- 'EN-fetal-late' celltype[which(Idents(pbmc) %in% c(8,10))] <- 'EN' celltype[which(Idents(pbmc) %in% c('5_0','5_2','5_4'))] <- 'EN-fetal-early' celltype[which(Idents(pbmc) %in% c(1,11))] <- 'Astrocytes' celltype[which(Idents(pbmc) %in% c(2,12))] <- 'Oligodendrocytes' celltype[which(Idents(pbmc) %in% c(3))] <- 'OPC' celltype[which(Idents(pbmc) %in% c(6))] <- 'Microglia' celltype[which(Idents(pbmc) %in% c(9))] <- 'Endothelial' celltype <- factor(celltype, levels = c('RG', 'IPC', 'EN-fetal-early', 'EN-fetal-late', 'EN', 'IN-fetal', 'IN', 'OPC', 'Astrocytes', 'Oligodendrocytes','Microglia', 'Endothelial'), ordered = T) pbmc$celltype.atac <- celltype ######## Additional processing ######## ## Re-call peaks for each annotated cell type using MACS2 peaks <- CallPeaks(pbmc, assay = 'ATAC', macs2.path = '/home/kaiyi/anaconda3/bin/macs2', group.by = 'celltype', outdir = 'MACS2_output', fragment.tempdir = 'MACS2_output', cleanup = FALSE) # Remove peaks on nonstandard chromosomes and in genomic blacklist regions peaks <- keepStandardChromosomes(peaks, pruning.mode = 'coarse') peaks <- subsetByOverlaps(x = peaks, ranges = blacklist_hg38_unified, invert = TRUE) # Quantify counts in each peak DefaultAssay(pbmc) <- 'ATAC' frags <- Fragments(pbmc) macs_count <- FeatureMatrix( fragments = frags, features = peaks, cells = colnames(pbmc) ) # Create a new assay using the MACS2 peak set and add it to the Seurat object annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v86) seqlevelsStyle(annotations) <- "UCSC" genome(annotations) <- "hg38" pbmc[['peaks']] <- CreateChromatinAssay( counts = macs_count, sep = c(":", "-"), genome = 'hg38', fragments = frags, annotation = annotations ) DefaultAssay(pbmc) <- 'peaks' pbmc <- RunTFIDF(pbmc, method = 3) pbmc <- FindTopFeatures(pbmc, min.cutoff = 'q75') ## Create a gene activity matrix gene.activities <- GeneActivity(pbmc) pbmc[['GeneActivity']] <- CreateAssayObject(counts = gene.activities) pbmc <- NormalizeData(pbmc, assay = 'GeneActivity') ## Add developmental stages information ageGroup <- rep('early fetal', length = ncol(pbmc)) sampleID <- pbmc$orig.ident ageGroup[which(sampleID %in% c('4', '8'))] <- 'late fetal' ageGroup[which(sampleID %in% c('4413', '4422'))] <- 'infancy' ageGroup[which(sampleID %in% c('6032', '5977'))] <- 'childhood' ageGroup[which(sampleID %in% c('6007', '5936'))] <- 'adolescence' ageGroup[which(sampleID %in% c('150666', '150656'))] <- 'adulthood' ageGroup <- factor(ageGroup, levels = c('early fetal', 'late fetal', 'infancy', 'childhood', 'adolescence', 'adulthood'), ordered = T) pbmc$age.group = ageGroup obj_all_processed <- pbmc save(obj_all_processed, file = '../data_processed/obj_all_processed_v3.rda')
/preprocessing.R
permissive
xbendl/singlecell-multiomics-developmental-human-brain
R
false
false
9,098
r
library(Signac) library(Seurat) library(ggplot2) library(harmony) library(dplyr) options(future.globals.maxSize = 50000 * 1024^2) load('../data_processed/obj_all.rda') ######## Quality control to filter cells ######## ## Filter cells # RNA-seq: nCount_RNA, percent.mt # ATAC-seq: nCount_ATAC, nucleosome_signal, TSS.enrichment pbmc <- subset(x = obj_all, subset = nCount_RNA > 2e2 & nCount_RNA < 5e4 & nCount_ATAC > 2e2 & nCount_ATAC < 1e5 & percent.mt < 5 & nucleosome_signal < 3 & TSS.enrichment > 1) ######## Precessing and Clustering ######## preprocess <- function(object, n.pc = 30, n.lsi = 10){ ## Filter peaks/genes which are detected in < 10 cells tmp <- Matrix::rowSums(object[['RNA']]@counts > 0) object[['RNA']] <- subset(object[['RNA']], features = names(which(tmp >= 10))) tmp <- Matrix::rowSums(object[['ATAC']]@counts > 0) object[['ATAC']] <- subset(object[['ATAC']], features = names(which(tmp >= 10))) ## Normalization, dimensional reduction, and clustering on RNA-seq and ATAC-seq separately # RNA-seq DefaultAssay(object) <- 'RNA' object <- SCTransform(object) object <- RunPCA(object) object <- RunUMAP(object, reduction = 'pca', dims = 1:n.pc, assay = 'SCT', reduction.name = 'umap.rna', reduction.key = 'rnaUMAP_') object <- FindNeighbors(object, reduction = 'pca', dims = 1:n.pc, assay = 'SCT') object <- FindClusters(object, graph.name = 'SCT_snn', algorithm = 3, resolution = 0.2) # ATAC-seq DefaultAssay(object) <- "ATAC" object <- RunTFIDF(object, method = 3) object <- FindTopFeatures(object, min.cutoff = 'q75') object <- RunSVD(object) object <- RunUMAP(object, reduction = 'lsi', dims = 2:n.lsi, assay = 'ATAC', reduction.name = "umap.atac", reduction.key = "atacUMAP_") object <- FindNeighbors(object, reduction = 'lsi', dims = 2:n.lsi, assay = 'ATAC') object <- FindClusters(object, graph.name = 'ATAC_snn', algorithm = 3, resolution = 0.2) # Weighted nearest neighbor (WNN) analysis using both modalities object <- FindMultiModalNeighbors(object, reduction.list = list("pca", "lsi"), dims.list = list(1:n.pc, 2:n.lsi), modality.weight.name = 'RNA.weight') object <- RunUMAP(object, nn.name = "weighted.nn", reduction.name = "wnn.umap", reduction.key = "wnnUMAP_") object <- FindClusters(object, graph.name = "wsnn", algorithm = 3, verbose = FALSE, resolution = 0.2) object <- FindMultiModalNeighbors(object, reduction.list = list("harmony.pca", "harmony.lsi"), dims.list = list(1:n.pc, 2:n.lsi), modality.weight.name = 'RNA.weight.harmony', knn.graph.name = 'wknn.harmony', snn.graph.name = 'wsnn.harmony', weighted.nn.name = 'weighted.nn.harmony') DefaultAssay(object) <- 'SCT' return(object) } pbmc = preprocess(obj_all) rm(obj_all); gc() ######## Cell types annotation ######## ## WNN-derived celltype <- rep(NA, length = ncol(pbmc)) Idents(pbmc) <- pbmc$wsnn_res.0.2 celltype[which(Idents(pbmc) %in% c(11))] <- 'RG' celltype[which(Idents(pbmc) %in% c('5_3'))] <- 'IPC' celltype[which(Idents(pbmc) %in% c(8))] <- 'IN-MGE' celltype[which(Idents(pbmc) %in% c(10))] <- 'IN-CGE' celltype[which(Idents(pbmc) %in% c(3))] <- 'IN-fetal' celltype[which(Idents(pbmc) %in% c(0,14))] <- 'EN-fetal-late' celltype[which(Idents(pbmc) %in% c(6,12))] <- 'EN' celltype[which(Idents(pbmc) %in% c('5_0','5_1','5_2','5_4'))] <- 'EN-fetal-early' celltype[which(Idents(pbmc) %in% c(4,9,15))] <- 'Astrocytes' celltype[which(Idents(pbmc) %in% c(1,21,22))] <- 'Oligodendrocytes' celltype[which(Idents(pbmc) %in% c(2,19))] <- 'OPC' celltype[which(Idents(pbmc) %in% c(7,13,17,23))] <- 'Microglia' celltype[which(Idents(pbmc) %in% c(16))] <- 'Endothelial' celltype[which(Idents(pbmc) %in% c(18))] <- 'Pericytes' celltype[which(Idents(pbmc) %in% c(20))] <- 'VSMC' pbmc$celltype = celltype ## RNA-derived celltype <- rep(NA, length = ncol(pbmc)) Idents(pbmc) <- pbmc$SCT_snn_res.0.2.subcluster celltype[which(Idents(pbmc) %in% c('12_0','12_1','12_3'))] <- 'RG' celltype[which(Idents(pbmc) %in% c('12_2'))] <- 'IPC' celltype[which(Idents(pbmc) %in% c(9))] <- 'IN-MGE' celltype[which(Idents(pbmc) %in% c(10))] <- 'IN-CGE' celltype[which(Idents(pbmc) %in% c(6))] <- 'IN-fetal' celltype[which(Idents(pbmc) %in% c(8))] <- 'EN-fetal-early' celltype[which(Idents(pbmc) %in% c(0,11))] <- 'EN-fetal-late' celltype[which(Idents(pbmc) %in% c(4))] <- 'EN' celltype[which(Idents(pbmc) %in% c(5,7,16))] <- 'Astrocytes' celltype[which(Idents(pbmc) %in% c(1,17))] <- 'Oligodendrocytes' celltype[which(Idents(pbmc) %in% c(2,15))] <- 'OPC' celltype[which(Idents(pbmc) %in% c(3,18))] <- 'Microglia' celltype[which(Idents(pbmc) %in% c(14))] <- 'Endothelial' celltype[which(Idents(pbmc) %in% c('13_0','13_1','13_4'))] <- 'Pericytes' celltype[which(Idents(pbmc) %in% c('13_2', '13_3'))] <- 'VSMC' celltype <- factor(celltype, levels = c('RG', 'IPC', 'EN-fetal-early', 'EN-fetal-late', 'EN', 'IN-fetal', 'IN-MGE', 'IN-CGE', 'OPC', 'Astrocytes', 'Oligodendrocytes','Microglia', 'Endothelial', 'Pericytes', 'VSMC'), ordered = T) pbmc$celltype.rna <- celltype ## ATAC-derived celltype <- rep(NA, length = ncol(pbmc)) Idents(pbmc) <- pbmc$ATAC_snn_res.0.2.subcluster celltype[which(Idents(pbmc) %in% c('5_1'))] <- 'RG' celltype[which(Idents(pbmc) %in% c('5_3'))] <- 'IPC' celltype[which(Idents(pbmc) %in% c(4))] <- 'IN' celltype[which(Idents(pbmc) %in% c(7))] <- 'IN-fetal' celltype[which(Idents(pbmc) %in% c(0))] <- 'EN-fetal-late' celltype[which(Idents(pbmc) %in% c(8,10))] <- 'EN' celltype[which(Idents(pbmc) %in% c('5_0','5_2','5_4'))] <- 'EN-fetal-early' celltype[which(Idents(pbmc) %in% c(1,11))] <- 'Astrocytes' celltype[which(Idents(pbmc) %in% c(2,12))] <- 'Oligodendrocytes' celltype[which(Idents(pbmc) %in% c(3))] <- 'OPC' celltype[which(Idents(pbmc) %in% c(6))] <- 'Microglia' celltype[which(Idents(pbmc) %in% c(9))] <- 'Endothelial' celltype <- factor(celltype, levels = c('RG', 'IPC', 'EN-fetal-early', 'EN-fetal-late', 'EN', 'IN-fetal', 'IN', 'OPC', 'Astrocytes', 'Oligodendrocytes','Microglia', 'Endothelial'), ordered = T) pbmc$celltype.atac <- celltype ######## Additional processing ######## ## Re-call peaks for each annotated cell type using MACS2 peaks <- CallPeaks(pbmc, assay = 'ATAC', macs2.path = '/home/kaiyi/anaconda3/bin/macs2', group.by = 'celltype', outdir = 'MACS2_output', fragment.tempdir = 'MACS2_output', cleanup = FALSE) # Remove peaks on nonstandard chromosomes and in genomic blacklist regions peaks <- keepStandardChromosomes(peaks, pruning.mode = 'coarse') peaks <- subsetByOverlaps(x = peaks, ranges = blacklist_hg38_unified, invert = TRUE) # Quantify counts in each peak DefaultAssay(pbmc) <- 'ATAC' frags <- Fragments(pbmc) macs_count <- FeatureMatrix( fragments = frags, features = peaks, cells = colnames(pbmc) ) # Create a new assay using the MACS2 peak set and add it to the Seurat object annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v86) seqlevelsStyle(annotations) <- "UCSC" genome(annotations) <- "hg38" pbmc[['peaks']] <- CreateChromatinAssay( counts = macs_count, sep = c(":", "-"), genome = 'hg38', fragments = frags, annotation = annotations ) DefaultAssay(pbmc) <- 'peaks' pbmc <- RunTFIDF(pbmc, method = 3) pbmc <- FindTopFeatures(pbmc, min.cutoff = 'q75') ## Create a gene activity matrix gene.activities <- GeneActivity(pbmc) pbmc[['GeneActivity']] <- CreateAssayObject(counts = gene.activities) pbmc <- NormalizeData(pbmc, assay = 'GeneActivity') ## Add developmental stages information ageGroup <- rep('early fetal', length = ncol(pbmc)) sampleID <- pbmc$orig.ident ageGroup[which(sampleID %in% c('4', '8'))] <- 'late fetal' ageGroup[which(sampleID %in% c('4413', '4422'))] <- 'infancy' ageGroup[which(sampleID %in% c('6032', '5977'))] <- 'childhood' ageGroup[which(sampleID %in% c('6007', '5936'))] <- 'adolescence' ageGroup[which(sampleID %in% c('150666', '150656'))] <- 'adulthood' ageGroup <- factor(ageGroup, levels = c('early fetal', 'late fetal', 'infancy', 'childhood', 'adolescence', 'adulthood'), ordered = T) pbmc$age.group = ageGroup obj_all_processed <- pbmc save(obj_all_processed, file = '../data_processed/obj_all_processed_v3.rda')
library(data.table) library(ggplot2) library(fts) library(Rmisc) library(lubridate) library(gtools) library(dplyr) library(zoo) setwd("D://codes//Rfile//investment theory and practice//") files <- list.files(".//factor_daily//return//") factor.data <- NULL for (file in files){ path <- paste0(".//factor_daily//return//",file) factors <- fread(path) factor.data <- rbind(factor.data,factors) } factor.data[,month:= as.numeric(substr(gsub("-","",as.character(trade_date)),1,6))] # 多因子组合回测 (样本内)----------------------------------------------------------------- # 判断vol.managed是否产生正显著的alpha # 127/255的组合会产生正alpha #factor.list <- unique(factor.data$name) total.result <- NULL factor.list <- c("turnover","pb","dv_ttm","tol_mv","tol_skew","ivol","dROA","dROE","ROE","ROA") for (n.comb in 1:10){ factor.group <- combinations(length(factor.list),n.comb,factor.list) result <- NULL for (i in 1:nrow(factor.group)){ factor_to_test <- as.vector(factor.group[i,]) long_short_dt <- factor.data[(decile == 1)&(month>200301)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,vol := frollapply(ret,22,var)] test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) c <- sd(test_dt$ret)/sd(test_dt$wret) test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) vol.managed.sharpe <- sqrt(240)*mean(test_dt$wret)/sd(test_dt$wret) raw.sharpe <- sqrt(240)*mean(test_dt$ret)/sd(test_dt$ret) # monthly return # ao <- test_dt[,.(vol.cum.Mret = cumprod(1+wret),raw.cum.Mret = cumprod(1+ret)),by=month] # ao <- ao[,.(vol.Mret = tail(vol.cum.Mret-1,1),raw.Mret = tail(raw.cum.Mret-1,1)),by=month] # model <- summary(lm(ao$vol.Mret~ao$raw.Mret)) model <- summary(lm(test_dt$wret~test_dt$ret)) t <- model$coefficients[1,3] p <- model$coefficients[1,4] #rows <- c(factor_to_test,vol.managed.sharpe,row.sharpe,t,p) rows <- data.table("var1" = factor_to_test[1], "var2" = factor_to_test[2], "var3" = factor_to_test[3], "var4" = factor_to_test[4], "var5" = factor_to_test[5], "var6" = factor_to_test[6], "var7" = factor_to_test[7], "var8" = factor_to_test[8], "var9" = factor_to_test[9], "var10" = factor_to_test[10], "vol.sharpe" = vol.managed.sharpe, "raw.sharpe" = raw.sharpe, "t" = t, "p" = p) result <- rbind(result,rows) } total.result <- rbind(total.result,result) } ao <- total.result[(p<0.1)&(t>0),] ao1 <- total.result[(p<0.05)&(t>0),] ao2 <- total.result[(p<0.01)&(t>0),] ao3 <- total.result[(p<0.001)&(t>0),] ao4 <- total.result[(vol.sharpe>raw.sharpe),] # out of sample ----------------------------------------------------------- total.result <- NULL factor.list <- c("turnover","pb","dv_ttm","tol_mv","tol_skew","ivol","dROA","dROE","ROE","ROA") for (n.comb in 1:10){ factor.group <- combinations(length(factor.list),n.comb,factor.list) result <- NULL for (i in 1:nrow(factor.group)){ factor_to_test <- as.vector(factor.group[i,]) long_short_dt <- factor.data[(decile == 1)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] test_dt[,vol := frollapply(ret,22,var)] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) test_dt[,cc:=frollapply(ret,960,sd)/frollapply(wret,960,sd)] cc_dt <- test_dt[,.(c = cc[1]),by=month] test_dt <- cc_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$wret * test_dt$c test_dt <- na.omit(test_dt) test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) vol.managed.return <- 240 * mean(test_dt$wret) raw.return <- 240 * mean(test_dt$ret) vol.managed.sigma <- sqrt(240) * sd(test_dt$wret) raw.sigma <- sqrt(240) * sd(test_dt$ret) vol.managed.sharpe <- sqrt(240)*mean(test_dt$wret)/sd(test_dt$wret) raw.sharpe <- sqrt(240)*mean(test_dt$ret)/sd(test_dt$ret) #monthly return # ao <- test_dt[,.(vol.cum.Mret = cumprod(1+wret),raw.cum.Mret = cumprod(1+ret)),by=month] # ao <- ao[,.(vol.Mret = tail(vol.cum.Mret-1,1),raw.Mret = tail(raw.cum.Mret-1,1)),by=month] # model <- summary(lm(ao$vol.Mret~ao$raw.Mret)) model <- summary(lm(test_dt$wret~test_dt$ret)) t <- model$coefficients[1,3] p <- model$coefficients[1,4] #rows <- c(factor_to_test,vol.managed.sharpe,row.sharpe,t,p) rows <- data.table("var1" = factor_to_test[1], "var2" = factor_to_test[2], "var3" = factor_to_test[3], "var4" = factor_to_test[4], "var5" = factor_to_test[5], "var6" = factor_to_test[6], "var7" = factor_to_test[7], "var8" = factor_to_test[8], "var9" = factor_to_test[9], "var10" = factor_to_test[10], "vol.return" = vol.managed.return, "raw.return" = raw.return, "vol.sigma" = vol.managed.sigma, "raw.sigma" = raw.sigma, "vol.sharpe" = vol.managed.sharpe, "raw.sharpe" = raw.sharpe, "t" = t, "p" = p) result <- rbind(result,rows) } total.result <- rbind(total.result,result) } ao <- total.result[(p<0.1)&(t>0),] ao1 <- total.result[(p<0.05)&(t>0),] ao2 <- total.result[(p<0.01)&(t>0),] ao3 <- total.result[(p<0.001)&(t>0),] ao4 <- total.result[(vol.sharpe>raw.sharpe),] #excess_sharpe <- mean(total.result$vol.sharpe - total.result$raw.sharpe) #excess_return <- mean(total.result$vol.return - total.result$raw.return) #describe <- fwrite(total.result,"c://users//coolgan//desktop//total_result.csv") t.test(total.result$vol.sigma - total.result$raw.sigma) ao <- total.result$vol.return - total.result$raw.return length(ao[(ao)>0]) # in-sample visualization ----------------------------------------------------------- factor_to_test <- c("turnover") long_short_dt <- factor.data[(decile == 1)&(month>200501)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,vol := frollapply(ret,22,var)] test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) c <- sd(test_dt$ret)/sd(test_dt$wret) test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) long_short_dt <- test_dt long_short_dt$trade_date <- ymd(long_short_dt$trade_date) p_list <- list() # net value curve p_list[[1]] <- ggplot()+ geom_line(data = long_short_dt,aes(x = trade_date,y = wcum.ret,color="vol managed"))+ geom_line(data = long_short_dt,aes(x = trade_date,y = cum.ret,color="buy and hold"))+ ggtitle("Cumulative Performance")+ theme(plot.title = element_text(hjust = 0.5), legend.position = c(0.9,0.3), legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red","buy and hold"="blue"))+ xlab("")+ylab("Cumulative return")+ scale_y_log10() # one-year rolling average return p_list[[2]] <- ggplot()+ geom_line(data = long_short_dt[,roll_wret:=frollmean(wret,240)] %>% na.omit(),aes(x = trade_date,y = roll_wret,color = "vol managed"))+ geom_line(data = long_short_dt[,roll_ret:=frollmean(ret,240)] %>% na.omit(),aes(x = trade_date,y = roll_ret,color = "buy and hold"))+ ggtitle("One-Year Rolling Average Returns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = c(0.4,0.15), legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), # 线条宽度 legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red","buy and hold"="blue"))+ xlab("")+ylab("Average Return") # maxdrawdown curve temp <- fts(index = long_short_dt$trade_date,data = long_short_dt[,.(wcum.ret,cum.ret)]) temp$wcum.drawdown <- (temp$wcum.ret - expanding.max(temp$wcum.ret))/expanding.max(temp$wcum.ret) temp$cum.drawdown <- (temp$cum.ret - expanding.max(temp$cum.ret))/expanding.max(temp$cum.ret) temp2 <- as.data.table(temp) p_list[[3]] <- ggplot()+ geom_line(data = temp2,aes(x = asofdate,y = wcum.drawdown,color="vol managed"))+ geom_line(data = temp2,aes(x = asofdate,y = cum.drawdown,color = "buy and hold"))+ ggtitle("Drawdowns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = c(0.8,0.15), legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red","buy and hold"="blue"))+ xlab("")+ylab("Drawdowns") multiplot(plotlist = p_list[1:3], layout = matrix(c(1,1,2,3), nrow = 2, byrow = T)) View(temp) # out-of-sample visualization --------------------------------------------- ao4[vol.sharpe==max(vol.sharpe)] factor_to_test <- c("tol_mv","ROE","tol_skew","turnover") long_short_dt <- factor.data[(decile == 1)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] test_dt[,vol := frollapply(ret,22,var)] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) test_dt[,cc:=frollapply(ret,240,sd)/frollapply(wret,240,sd)] cc_dt <- test_dt[,.(c = cc[1]),by=month] test_dt <- cc_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$wret * test_dt$c test_dt <- na.omit(test_dt) # c <- sd(test_dt$ret)/sd(test_dt$wret) # test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) long_short_dt <- test_dt long_short_dt$trade_date <- ymd(long_short_dt$trade_date) index <- fread("index_daily.csv") index <- index[,':='(trade_date=ymd(index$trade_date), pct_chg = pct_chg/100)][,c("trade_date","pct_chg")] long_short_dt <- index[long_short_dt,on=c("trade_date")] long_short_dt$bench.cumret <- cumprod(long_short_dt$pct_chg+1) #240*mean(long_short_dt$wret)/(sqrt(240)*sd(long_short_dt$wret)) p_list <- list() # net value curve p_list[[1]] <- ggplot()+ geom_line(data = long_short_dt,aes(x = trade_date,y = wcum.ret,color="vol managed"))+ geom_line(data = long_short_dt,aes(x = trade_date,y = cum.ret,color="buy and hold"))+ geom_line(data = long_short_dt,aes(x = trade_date,y = bench.cumret,color="benchmark"))+ ggtitle("Cumulative Performance")+ theme(plot.title = element_text(hjust = 0.5), legend.position = "bottom", legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red", "buy and hold"="blue", "benchmark"="black"))+ xlab("")+ylab("Cumulative return")#+ scale_y_log10() # one-year rolling average return p_list[[2]] <- ggplot()+ geom_line(data = long_short_dt[,roll_wret:=frollmean(wret,240)] %>% na.omit(),aes(x = trade_date,y = roll_wret,color = "vol managed"))+ geom_line(data = long_short_dt[,roll_ret:=frollmean(ret,240)] %>% na.omit(),aes(x = trade_date,y = roll_ret,color = "buy and hold"))+ geom_line(data = long_short_dt[,roll_ret:=frollmean(pct_chg,240)] %>% na.omit(),aes(x = trade_date,y = roll_ret,color = "benchmark"))+ ggtitle("One-Year Rolling Average Returns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = "none")+ #legend.title = element_blank(), #legend.background = element_rect(fill = "transparent"), # 线条宽度 #legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red", "buy and hold"="blue", "benchmark"="black"))+ xlab("")+ylab("Average Return") # maxdrawdown curve temp <- fts(index = long_short_dt$trade_date,data = long_short_dt[,.(wcum.ret,cum.ret,bench.cumret)]) temp$wcum.drawdown <- (temp$wcum.ret - expanding.max(temp$wcum.ret))/expanding.max(temp$wcum.ret) temp$cum.drawdown <- (temp$cum.ret - expanding.max(temp$cum.ret))/expanding.max(temp$cum.ret) temp$bench.drawdown <- (temp$bench.cumret - expanding.max(temp$bench.cumret))/expanding.max(temp$bench.cumret) temp2 <- as.data.table(temp) p_list[[3]] <- ggplot()+ geom_line(data = temp2,aes(x = asofdate,y = wcum.drawdown,color="vol managed"))+ geom_line(data = temp2,aes(x = asofdate,y = cum.drawdown,color = "buy and hold"))+ geom_line(data = temp2,aes(x = asofdate,y = bench.drawdown,color = "benchmark"))+ ggtitle("Drawdowns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = "none")+ #legend.title = element_blank(), #legend.background = element_rect(fill = "transparent"), #legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red", "buy and hold"="blue", "benchmark" = "black"))+ xlab("")+ylab("Drawdowns") multiplot(plotlist = p_list[1:3], layout = matrix(c(1,1,2,3), nrow = 2, byrow = T)) # sharpe histogram ggplot(data=melt(total.result[,c("vol.sharpe","raw.sharpe")]),aes(x=value))+ geom_histogram(aes(color = variable,fill = variable),alpha=0.4)+ scale_color_manual(values = c("#e9ecef", "#e9ecef"))+ scale_fill_manual(values = c("red", "blue"))+ xlab("sharpe ratio")+ylab("frequency")+ theme(legend.position = "bottom", legend.title = element_blank()) ggplot()+ geom_histogram(data = total.result[,d.sharpe:=vol.sharpe-raw.sharpe], aes(x=d.sharpe),fill="red", color="#e9ecef",alpha=0.8)+ xlab("Difference of sharpe ratio")+ylab("frequency") # return histogram ggplot(data=melt(total.result[,c("vol.return","raw.return")]),aes(x=value))+ geom_histogram(aes(color = variable,fill = variable),alpha=0.4)+ scale_color_manual(values = c("#e9ecef", "#e9ecef"))+ scale_fill_manual(values = c("red", "blue"))+ xlab("return")+ylab("frequency")+ theme(legend.position = "bottom", legend.title = element_blank()) ggplot()+ geom_histogram(data = total.result[,d.return:=vol.return-raw.return], aes(x=d.return),fill="red", color="#e9ecef",alpha=0.8)+ xlab("Difference of return")+ylab("frequency") # sigma histogram ggplot(data=melt(total.result[,c("vol.sigma","raw.sigma")]),aes(x=value))+ geom_histogram(aes(color = variable,fill = variable),alpha=0.4)+ scale_color_manual(values = c("#e9ecef", "#e9ecef"))+ scale_fill_manual(values = c("red", "blue"))+ xlab("sigma")+ylab("frequency")+ theme(legend.position = "bottom", legend.title = element_blank()) ggplot()+ geom_histogram(data = total.result[,d.sigma:=vol.sigma-raw.sigma], aes(x=d.sigma),fill="red", color="#e9ecef",alpha=0.8)+ xlab("Difference of sigma")+ylab("frequency") # c time series ggplot()+ geom_line(data = unique(test_dt[,month:=ymd(month,truncated = 1)][,.(month,c)]), aes(x = month,y = c)) fwrite(total.result,"./simulation_result/t_180.csv") # further discussion ------------------------------------------------------ simu_result <- data.table(win_length = c(30,60,90,150,180,240,270,300,360,390,420,450,480,720,960,1200,2400), win_ratio = c(480,595,708,902,1017,1017,1019,1012,839,367,420,167,283,0,0,0,0), excess_sharpe = c(-0.003535527,0.003213709,0.005967851, 0.02625643,0.1284329,0.1194,0.1229948,0.09944962, 0.01896007,-0.01205235,-0.008979446,-0.02769992,-0.01759528, -0.1536956,-0.28415,-0.2488994,-0.1833913), excess_return = c(0.0198818,0.02240382,0.02683424,0.02906138, 0.06561102,0.0685,0.06833286,0.06559085,0.0305349, 0.01940536,0.01530657,0.00762139,0.01106782,-0.04177113, -0.08740466,-0.0741429,-0.0417174 )) ggplot()+ geom_line(data = simu_result[win_length<=1200],aes(x = win_length,y = win_ratio/1023),colour="blue",size=0.6)+ geom_point(data = simu_result[win_length<=1200],aes(x = win_length,y = win_ratio/1023),colour="blue",size=2.3)+ xlab("训练窗口长度(天)")+ylab("胜率")+scale_y_continuous(labels = scales::percent)+ theme_set(theme_bw()) #theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank()) ggplot()+ geom_line(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_sharpe),colour="blue",size=0.6)+ geom_point(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_sharpe),colour="blue",size=2.3)+ xlab("训练窗口长度(天)")+ylab("平均超额夏普")+scale_y_continuous(labels = scales::percent)+ theme_set(theme_bw()) ggplot()+ geom_line(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_return),colour="blue",size=0.6)+ geom_point(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_return),colour="blue",size=2.3)+ xlab("训练窗口长度(天)")+ylab("平均超额年化收益")+scale_y_continuous(labels = scales::percent)+ theme_set(theme_bw()) ggplot()+ geom_line(data = simu_result,aes(x = win_length,y = win_ratio)) # try betaplus 100 index -------------------------------------------------- factor.data <- fread("C://users//coolgan//desktop//betaplus-1000-indexdaily-1.csv") factor.data$trade_date <- as.Date(factor.data$trade_date,format="%Y/%m/%d") factor.ret <- as.data.table(lapply(factor.data[,2:9],diff))/na.omit(lag(factor.data[,2:9],1)) factor.ret$trade_date <- factor.data$trade_date[2:nrow(factor.data)] factor.list <- colnames(factor.ret)[1:length(colnames(factor.ret))-1] total.result <- NULL for (n.comb in 1:8){ factor.group <- combinations(length(factor.list),n.comb,factor.list) result <- NULL for (i in 1:nrow(factor.group)){ factor_to_test <- as.vector(factor.group[i,]) test_dt <- factor.ret[,c("trade_date",factor_to_test),with=F] test_dt$mv <- rowMeans(factor.ret[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,vol:=frollapply(ret,22,var)] test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) c <- sd(test_dt$ret)/sd(test_dt$wret) test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) vol.managed.sharpe <- sqrt(240)*mean(test_dt$wret)/sd(test_dt$wret) raw.sharpe <- sqrt(240)*mean(test_dt$ret)/sd(test_dt$ret) model <- summary(lm(test_dt$wret~test_dt$ret)) t <- model$coefficients[1,3] p <- model$coefficients[1,4] #rows <- c(factor_to_test,vol.managed.sharpe,row.sharpe,t,p) rows <- data.table("var1" = factor_to_test[1], "var2" = factor_to_test[2], "var3" = factor_to_test[3], "var4" = factor_to_test[4], "var5" = factor_to_test[5], "var6" = factor_to_test[6], "var7" = factor_to_test[7], "var8" = factor_to_test[8], "var9" = factor_to_test[9], "var10" = factor_to_test[10], "vol.sharpe" = vol.managed.sharpe, "raw.sharpe" = raw.sharpe, "t" = t, "p" = p) result <- rbind(result,rows) } total.result <- rbind(total.result,result) } ao <- total.result[(p<0.1)&(vol.managed.sharpe>raw.sharpe)] # total <- NULL ret_dt <- factor.data[(decile==10)&(name=="ROE")] temp <- fts(index = ymd(ret_dt$trade_date),data = ret_dt[,.(cum.ret,ret)]) temp$cum.drawdown <- (temp$cum.ret - expanding.max(temp$cum.ret))/expanding.max(temp$cum.ret) result.analysis <- ret_dt[,.(name="dv_ttm", annual_mean_ret = 240*mean(ret), annual_sd_ret = sqrt(240)*sd(ret), t_ret = t.test(ret,mu=0)$statistic, max.drawdown = max(-temp$cum.drawdown), # max.drawdown = maxdrawdown(ret)$maxdrawdown, # max.drawdown_from = .SD[ maxdrawdown(.SD[,ret])$from,date], # max.drawdown_to = .SD[ maxdrawdown(.SD[,ret])$to,date], win_ratio = length(.SD[ret>0,ret])/nrow(.SD)),by=c("decile")] %>% setorder(decile) result.analysis$sharpe <- (result.analysis$annual_mean_ret)/(result.analysis$annual_sd_ret) total <- rbind(total,result.analysis) fwrite(total,"c://users//coolgan//desktop//long_description.csv")
/Volatility-Managed Portfolios Sometimes it Works/codes/vol-timing.R
no_license
coolgan/Quantitative-Finance
R
false
false
24,009
r
library(data.table) library(ggplot2) library(fts) library(Rmisc) library(lubridate) library(gtools) library(dplyr) library(zoo) setwd("D://codes//Rfile//investment theory and practice//") files <- list.files(".//factor_daily//return//") factor.data <- NULL for (file in files){ path <- paste0(".//factor_daily//return//",file) factors <- fread(path) factor.data <- rbind(factor.data,factors) } factor.data[,month:= as.numeric(substr(gsub("-","",as.character(trade_date)),1,6))] # 多因子组合回测 (样本内)----------------------------------------------------------------- # 判断vol.managed是否产生正显著的alpha # 127/255的组合会产生正alpha #factor.list <- unique(factor.data$name) total.result <- NULL factor.list <- c("turnover","pb","dv_ttm","tol_mv","tol_skew","ivol","dROA","dROE","ROE","ROA") for (n.comb in 1:10){ factor.group <- combinations(length(factor.list),n.comb,factor.list) result <- NULL for (i in 1:nrow(factor.group)){ factor_to_test <- as.vector(factor.group[i,]) long_short_dt <- factor.data[(decile == 1)&(month>200301)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,vol := frollapply(ret,22,var)] test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) c <- sd(test_dt$ret)/sd(test_dt$wret) test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) vol.managed.sharpe <- sqrt(240)*mean(test_dt$wret)/sd(test_dt$wret) raw.sharpe <- sqrt(240)*mean(test_dt$ret)/sd(test_dt$ret) # monthly return # ao <- test_dt[,.(vol.cum.Mret = cumprod(1+wret),raw.cum.Mret = cumprod(1+ret)),by=month] # ao <- ao[,.(vol.Mret = tail(vol.cum.Mret-1,1),raw.Mret = tail(raw.cum.Mret-1,1)),by=month] # model <- summary(lm(ao$vol.Mret~ao$raw.Mret)) model <- summary(lm(test_dt$wret~test_dt$ret)) t <- model$coefficients[1,3] p <- model$coefficients[1,4] #rows <- c(factor_to_test,vol.managed.sharpe,row.sharpe,t,p) rows <- data.table("var1" = factor_to_test[1], "var2" = factor_to_test[2], "var3" = factor_to_test[3], "var4" = factor_to_test[4], "var5" = factor_to_test[5], "var6" = factor_to_test[6], "var7" = factor_to_test[7], "var8" = factor_to_test[8], "var9" = factor_to_test[9], "var10" = factor_to_test[10], "vol.sharpe" = vol.managed.sharpe, "raw.sharpe" = raw.sharpe, "t" = t, "p" = p) result <- rbind(result,rows) } total.result <- rbind(total.result,result) } ao <- total.result[(p<0.1)&(t>0),] ao1 <- total.result[(p<0.05)&(t>0),] ao2 <- total.result[(p<0.01)&(t>0),] ao3 <- total.result[(p<0.001)&(t>0),] ao4 <- total.result[(vol.sharpe>raw.sharpe),] # out of sample ----------------------------------------------------------- total.result <- NULL factor.list <- c("turnover","pb","dv_ttm","tol_mv","tol_skew","ivol","dROA","dROE","ROE","ROA") for (n.comb in 1:10){ factor.group <- combinations(length(factor.list),n.comb,factor.list) result <- NULL for (i in 1:nrow(factor.group)){ factor_to_test <- as.vector(factor.group[i,]) long_short_dt <- factor.data[(decile == 1)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] test_dt[,vol := frollapply(ret,22,var)] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) test_dt[,cc:=frollapply(ret,960,sd)/frollapply(wret,960,sd)] cc_dt <- test_dt[,.(c = cc[1]),by=month] test_dt <- cc_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$wret * test_dt$c test_dt <- na.omit(test_dt) test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) vol.managed.return <- 240 * mean(test_dt$wret) raw.return <- 240 * mean(test_dt$ret) vol.managed.sigma <- sqrt(240) * sd(test_dt$wret) raw.sigma <- sqrt(240) * sd(test_dt$ret) vol.managed.sharpe <- sqrt(240)*mean(test_dt$wret)/sd(test_dt$wret) raw.sharpe <- sqrt(240)*mean(test_dt$ret)/sd(test_dt$ret) #monthly return # ao <- test_dt[,.(vol.cum.Mret = cumprod(1+wret),raw.cum.Mret = cumprod(1+ret)),by=month] # ao <- ao[,.(vol.Mret = tail(vol.cum.Mret-1,1),raw.Mret = tail(raw.cum.Mret-1,1)),by=month] # model <- summary(lm(ao$vol.Mret~ao$raw.Mret)) model <- summary(lm(test_dt$wret~test_dt$ret)) t <- model$coefficients[1,3] p <- model$coefficients[1,4] #rows <- c(factor_to_test,vol.managed.sharpe,row.sharpe,t,p) rows <- data.table("var1" = factor_to_test[1], "var2" = factor_to_test[2], "var3" = factor_to_test[3], "var4" = factor_to_test[4], "var5" = factor_to_test[5], "var6" = factor_to_test[6], "var7" = factor_to_test[7], "var8" = factor_to_test[8], "var9" = factor_to_test[9], "var10" = factor_to_test[10], "vol.return" = vol.managed.return, "raw.return" = raw.return, "vol.sigma" = vol.managed.sigma, "raw.sigma" = raw.sigma, "vol.sharpe" = vol.managed.sharpe, "raw.sharpe" = raw.sharpe, "t" = t, "p" = p) result <- rbind(result,rows) } total.result <- rbind(total.result,result) } ao <- total.result[(p<0.1)&(t>0),] ao1 <- total.result[(p<0.05)&(t>0),] ao2 <- total.result[(p<0.01)&(t>0),] ao3 <- total.result[(p<0.001)&(t>0),] ao4 <- total.result[(vol.sharpe>raw.sharpe),] #excess_sharpe <- mean(total.result$vol.sharpe - total.result$raw.sharpe) #excess_return <- mean(total.result$vol.return - total.result$raw.return) #describe <- fwrite(total.result,"c://users//coolgan//desktop//total_result.csv") t.test(total.result$vol.sigma - total.result$raw.sigma) ao <- total.result$vol.return - total.result$raw.return length(ao[(ao)>0]) # in-sample visualization ----------------------------------------------------------- factor_to_test <- c("turnover") long_short_dt <- factor.data[(decile == 1)&(month>200501)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,vol := frollapply(ret,22,var)] test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) c <- sd(test_dt$ret)/sd(test_dt$wret) test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) long_short_dt <- test_dt long_short_dt$trade_date <- ymd(long_short_dt$trade_date) p_list <- list() # net value curve p_list[[1]] <- ggplot()+ geom_line(data = long_short_dt,aes(x = trade_date,y = wcum.ret,color="vol managed"))+ geom_line(data = long_short_dt,aes(x = trade_date,y = cum.ret,color="buy and hold"))+ ggtitle("Cumulative Performance")+ theme(plot.title = element_text(hjust = 0.5), legend.position = c(0.9,0.3), legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red","buy and hold"="blue"))+ xlab("")+ylab("Cumulative return")+ scale_y_log10() # one-year rolling average return p_list[[2]] <- ggplot()+ geom_line(data = long_short_dt[,roll_wret:=frollmean(wret,240)] %>% na.omit(),aes(x = trade_date,y = roll_wret,color = "vol managed"))+ geom_line(data = long_short_dt[,roll_ret:=frollmean(ret,240)] %>% na.omit(),aes(x = trade_date,y = roll_ret,color = "buy and hold"))+ ggtitle("One-Year Rolling Average Returns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = c(0.4,0.15), legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), # 线条宽度 legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red","buy and hold"="blue"))+ xlab("")+ylab("Average Return") # maxdrawdown curve temp <- fts(index = long_short_dt$trade_date,data = long_short_dt[,.(wcum.ret,cum.ret)]) temp$wcum.drawdown <- (temp$wcum.ret - expanding.max(temp$wcum.ret))/expanding.max(temp$wcum.ret) temp$cum.drawdown <- (temp$cum.ret - expanding.max(temp$cum.ret))/expanding.max(temp$cum.ret) temp2 <- as.data.table(temp) p_list[[3]] <- ggplot()+ geom_line(data = temp2,aes(x = asofdate,y = wcum.drawdown,color="vol managed"))+ geom_line(data = temp2,aes(x = asofdate,y = cum.drawdown,color = "buy and hold"))+ ggtitle("Drawdowns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = c(0.8,0.15), legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red","buy and hold"="blue"))+ xlab("")+ylab("Drawdowns") multiplot(plotlist = p_list[1:3], layout = matrix(c(1,1,2,3), nrow = 2, byrow = T)) View(temp) # out-of-sample visualization --------------------------------------------- ao4[vol.sharpe==max(vol.sharpe)] factor_to_test <- c("tol_mv","ROE","tol_skew","turnover") long_short_dt <- factor.data[(decile == 1)] test_dt <- dcast(long_short_dt[name%in%factor_to_test,.(trade_date,name,ret)],trade_date~name) %>% na.omit() test_dt$mv <- rowMeans(test_dt[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] test_dt[,vol := frollapply(ret,22,var)] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) test_dt[,cc:=frollapply(ret,240,sd)/frollapply(wret,240,sd)] cc_dt <- test_dt[,.(c = cc[1]),by=month] test_dt <- cc_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$wret * test_dt$c test_dt <- na.omit(test_dt) # c <- sd(test_dt$ret)/sd(test_dt$wret) # test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) long_short_dt <- test_dt long_short_dt$trade_date <- ymd(long_short_dt$trade_date) index <- fread("index_daily.csv") index <- index[,':='(trade_date=ymd(index$trade_date), pct_chg = pct_chg/100)][,c("trade_date","pct_chg")] long_short_dt <- index[long_short_dt,on=c("trade_date")] long_short_dt$bench.cumret <- cumprod(long_short_dt$pct_chg+1) #240*mean(long_short_dt$wret)/(sqrt(240)*sd(long_short_dt$wret)) p_list <- list() # net value curve p_list[[1]] <- ggplot()+ geom_line(data = long_short_dt,aes(x = trade_date,y = wcum.ret,color="vol managed"))+ geom_line(data = long_short_dt,aes(x = trade_date,y = cum.ret,color="buy and hold"))+ geom_line(data = long_short_dt,aes(x = trade_date,y = bench.cumret,color="benchmark"))+ ggtitle("Cumulative Performance")+ theme(plot.title = element_text(hjust = 0.5), legend.position = "bottom", legend.title = element_blank(), legend.background = element_rect(fill = "transparent"), legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red", "buy and hold"="blue", "benchmark"="black"))+ xlab("")+ylab("Cumulative return")#+ scale_y_log10() # one-year rolling average return p_list[[2]] <- ggplot()+ geom_line(data = long_short_dt[,roll_wret:=frollmean(wret,240)] %>% na.omit(),aes(x = trade_date,y = roll_wret,color = "vol managed"))+ geom_line(data = long_short_dt[,roll_ret:=frollmean(ret,240)] %>% na.omit(),aes(x = trade_date,y = roll_ret,color = "buy and hold"))+ geom_line(data = long_short_dt[,roll_ret:=frollmean(pct_chg,240)] %>% na.omit(),aes(x = trade_date,y = roll_ret,color = "benchmark"))+ ggtitle("One-Year Rolling Average Returns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = "none")+ #legend.title = element_blank(), #legend.background = element_rect(fill = "transparent"), # 线条宽度 #legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red", "buy and hold"="blue", "benchmark"="black"))+ xlab("")+ylab("Average Return") # maxdrawdown curve temp <- fts(index = long_short_dt$trade_date,data = long_short_dt[,.(wcum.ret,cum.ret,bench.cumret)]) temp$wcum.drawdown <- (temp$wcum.ret - expanding.max(temp$wcum.ret))/expanding.max(temp$wcum.ret) temp$cum.drawdown <- (temp$cum.ret - expanding.max(temp$cum.ret))/expanding.max(temp$cum.ret) temp$bench.drawdown <- (temp$bench.cumret - expanding.max(temp$bench.cumret))/expanding.max(temp$bench.cumret) temp2 <- as.data.table(temp) p_list[[3]] <- ggplot()+ geom_line(data = temp2,aes(x = asofdate,y = wcum.drawdown,color="vol managed"))+ geom_line(data = temp2,aes(x = asofdate,y = cum.drawdown,color = "buy and hold"))+ geom_line(data = temp2,aes(x = asofdate,y = bench.drawdown,color = "benchmark"))+ ggtitle("Drawdowns")+ theme(plot.title = element_text(hjust = 0.5), legend.position = "none")+ #legend.title = element_blank(), #legend.background = element_rect(fill = "transparent"), #legend.key = element_rect(colour = "transparent", fill = "transparent"))+ scale_colour_manual("",values = c("vol managed" = "red", "buy and hold"="blue", "benchmark" = "black"))+ xlab("")+ylab("Drawdowns") multiplot(plotlist = p_list[1:3], layout = matrix(c(1,1,2,3), nrow = 2, byrow = T)) # sharpe histogram ggplot(data=melt(total.result[,c("vol.sharpe","raw.sharpe")]),aes(x=value))+ geom_histogram(aes(color = variable,fill = variable),alpha=0.4)+ scale_color_manual(values = c("#e9ecef", "#e9ecef"))+ scale_fill_manual(values = c("red", "blue"))+ xlab("sharpe ratio")+ylab("frequency")+ theme(legend.position = "bottom", legend.title = element_blank()) ggplot()+ geom_histogram(data = total.result[,d.sharpe:=vol.sharpe-raw.sharpe], aes(x=d.sharpe),fill="red", color="#e9ecef",alpha=0.8)+ xlab("Difference of sharpe ratio")+ylab("frequency") # return histogram ggplot(data=melt(total.result[,c("vol.return","raw.return")]),aes(x=value))+ geom_histogram(aes(color = variable,fill = variable),alpha=0.4)+ scale_color_manual(values = c("#e9ecef", "#e9ecef"))+ scale_fill_manual(values = c("red", "blue"))+ xlab("return")+ylab("frequency")+ theme(legend.position = "bottom", legend.title = element_blank()) ggplot()+ geom_histogram(data = total.result[,d.return:=vol.return-raw.return], aes(x=d.return),fill="red", color="#e9ecef",alpha=0.8)+ xlab("Difference of return")+ylab("frequency") # sigma histogram ggplot(data=melt(total.result[,c("vol.sigma","raw.sigma")]),aes(x=value))+ geom_histogram(aes(color = variable,fill = variable),alpha=0.4)+ scale_color_manual(values = c("#e9ecef", "#e9ecef"))+ scale_fill_manual(values = c("red", "blue"))+ xlab("sigma")+ylab("frequency")+ theme(legend.position = "bottom", legend.title = element_blank()) ggplot()+ geom_histogram(data = total.result[,d.sigma:=vol.sigma-raw.sigma], aes(x=d.sigma),fill="red", color="#e9ecef",alpha=0.8)+ xlab("Difference of sigma")+ylab("frequency") # c time series ggplot()+ geom_line(data = unique(test_dt[,month:=ymd(month,truncated = 1)][,.(month,c)]), aes(x = month,y = c)) fwrite(total.result,"./simulation_result/t_180.csv") # further discussion ------------------------------------------------------ simu_result <- data.table(win_length = c(30,60,90,150,180,240,270,300,360,390,420,450,480,720,960,1200,2400), win_ratio = c(480,595,708,902,1017,1017,1019,1012,839,367,420,167,283,0,0,0,0), excess_sharpe = c(-0.003535527,0.003213709,0.005967851, 0.02625643,0.1284329,0.1194,0.1229948,0.09944962, 0.01896007,-0.01205235,-0.008979446,-0.02769992,-0.01759528, -0.1536956,-0.28415,-0.2488994,-0.1833913), excess_return = c(0.0198818,0.02240382,0.02683424,0.02906138, 0.06561102,0.0685,0.06833286,0.06559085,0.0305349, 0.01940536,0.01530657,0.00762139,0.01106782,-0.04177113, -0.08740466,-0.0741429,-0.0417174 )) ggplot()+ geom_line(data = simu_result[win_length<=1200],aes(x = win_length,y = win_ratio/1023),colour="blue",size=0.6)+ geom_point(data = simu_result[win_length<=1200],aes(x = win_length,y = win_ratio/1023),colour="blue",size=2.3)+ xlab("训练窗口长度(天)")+ylab("胜率")+scale_y_continuous(labels = scales::percent)+ theme_set(theme_bw()) #theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank()) ggplot()+ geom_line(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_sharpe),colour="blue",size=0.6)+ geom_point(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_sharpe),colour="blue",size=2.3)+ xlab("训练窗口长度(天)")+ylab("平均超额夏普")+scale_y_continuous(labels = scales::percent)+ theme_set(theme_bw()) ggplot()+ geom_line(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_return),colour="blue",size=0.6)+ geom_point(data = simu_result[win_length<=1200],aes(x = win_length,y = excess_return),colour="blue",size=2.3)+ xlab("训练窗口长度(天)")+ylab("平均超额年化收益")+scale_y_continuous(labels = scales::percent)+ theme_set(theme_bw()) ggplot()+ geom_line(data = simu_result,aes(x = win_length,y = win_ratio)) # try betaplus 100 index -------------------------------------------------- factor.data <- fread("C://users//coolgan//desktop//betaplus-1000-indexdaily-1.csv") factor.data$trade_date <- as.Date(factor.data$trade_date,format="%Y/%m/%d") factor.ret <- as.data.table(lapply(factor.data[,2:9],diff))/na.omit(lag(factor.data[,2:9],1)) factor.ret$trade_date <- factor.data$trade_date[2:nrow(factor.data)] factor.list <- colnames(factor.ret)[1:length(colnames(factor.ret))-1] total.result <- NULL for (n.comb in 1:8){ factor.group <- combinations(length(factor.list),n.comb,factor.list) result <- NULL for (i in 1:nrow(factor.group)){ factor_to_test <- as.vector(factor.group[i,]) test_dt <- factor.ret[,c("trade_date",factor_to_test),with=F] test_dt$mv <- rowMeans(factor.ret[,factor_to_test,with=F]) test_dt <- test_dt[,c("trade_date","mv")] colnames(test_dt) <- c("trade_date","ret") test_dt[,vol:=frollapply(ret,22,var)] test_dt[,month := as.numeric(substr(gsub('-','',as.character(trade_date)),1,6))] vol_dt <- test_dt[,.(weights = 1/vol[1]),by=month] test_dt <- vol_dt[test_dt,on=c("month")] test_dt$wret <- test_dt$weights * test_dt$ret test_dt <- na.omit(test_dt) c <- sd(test_dt$ret)/sd(test_dt$wret) test_dt$wret <- test_dt$wret * c test_dt$cum.ret <- cumprod(1+test_dt$ret) test_dt$wcum.ret <- cumprod(1+test_dt$wret) vol.managed.sharpe <- sqrt(240)*mean(test_dt$wret)/sd(test_dt$wret) raw.sharpe <- sqrt(240)*mean(test_dt$ret)/sd(test_dt$ret) model <- summary(lm(test_dt$wret~test_dt$ret)) t <- model$coefficients[1,3] p <- model$coefficients[1,4] #rows <- c(factor_to_test,vol.managed.sharpe,row.sharpe,t,p) rows <- data.table("var1" = factor_to_test[1], "var2" = factor_to_test[2], "var3" = factor_to_test[3], "var4" = factor_to_test[4], "var5" = factor_to_test[5], "var6" = factor_to_test[6], "var7" = factor_to_test[7], "var8" = factor_to_test[8], "var9" = factor_to_test[9], "var10" = factor_to_test[10], "vol.sharpe" = vol.managed.sharpe, "raw.sharpe" = raw.sharpe, "t" = t, "p" = p) result <- rbind(result,rows) } total.result <- rbind(total.result,result) } ao <- total.result[(p<0.1)&(vol.managed.sharpe>raw.sharpe)] # total <- NULL ret_dt <- factor.data[(decile==10)&(name=="ROE")] temp <- fts(index = ymd(ret_dt$trade_date),data = ret_dt[,.(cum.ret,ret)]) temp$cum.drawdown <- (temp$cum.ret - expanding.max(temp$cum.ret))/expanding.max(temp$cum.ret) result.analysis <- ret_dt[,.(name="dv_ttm", annual_mean_ret = 240*mean(ret), annual_sd_ret = sqrt(240)*sd(ret), t_ret = t.test(ret,mu=0)$statistic, max.drawdown = max(-temp$cum.drawdown), # max.drawdown = maxdrawdown(ret)$maxdrawdown, # max.drawdown_from = .SD[ maxdrawdown(.SD[,ret])$from,date], # max.drawdown_to = .SD[ maxdrawdown(.SD[,ret])$to,date], win_ratio = length(.SD[ret>0,ret])/nrow(.SD)),by=c("decile")] %>% setorder(decile) result.analysis$sharpe <- (result.analysis$annual_mean_ret)/(result.analysis$annual_sd_ret) total <- rbind(total,result.analysis) fwrite(total,"c://users//coolgan//desktop//long_description.csv")
# Data Types # Vector # Lists # Matrices # Array # DataFrames & Factors my.var <- 432 is.vector(my.var) # Characters # Numeric and Integer # Logical # Complex
/R/dataTypes.R
no_license
thedatatot/rahul_kumar
R
false
false
166
r
# Data Types # Vector # Lists # Matrices # Array # DataFrames & Factors my.var <- 432 is.vector(my.var) # Characters # Numeric and Integer # Logical # Complex
source("main.R") # most 5 star reviewed companies top5StarCompanies = reviews %>% filter(stars == 5) %>% group_by(business_id) %>% summarise(Count = n()) %>% arrange(desc(Count)) %>% ungroup() %>% mutate(BusinessID = reorder(business_id,Count)) %>% head(10) top5StarCompanies = inner_join(top5StarCompanies, restuarants) top5StarCompanies %>% mutate(name = reorder(name,Count)) %>% ggplot(aes(x = name,y = Count)) + geom_bar(stat='identity',colour="white", fill = fillColor) + geom_text(aes(x = name, y = 1, label = paste0("(",Count,")",sep="")), hjust=0, vjust=.5, size = 4, colour = 'black', fontface = 'bold') + labs(x = 'Name of the Restuarant', y = 'Count', title = 'Name of the Restuarant and Count') + coord_flip() + theme_bw()
/src/5Star-Reviewed-Restaurants.R
no_license
HENRY-JERRY/mit-805-2020-yelp-project
R
false
false
806
r
source("main.R") # most 5 star reviewed companies top5StarCompanies = reviews %>% filter(stars == 5) %>% group_by(business_id) %>% summarise(Count = n()) %>% arrange(desc(Count)) %>% ungroup() %>% mutate(BusinessID = reorder(business_id,Count)) %>% head(10) top5StarCompanies = inner_join(top5StarCompanies, restuarants) top5StarCompanies %>% mutate(name = reorder(name,Count)) %>% ggplot(aes(x = name,y = Count)) + geom_bar(stat='identity',colour="white", fill = fillColor) + geom_text(aes(x = name, y = 1, label = paste0("(",Count,")",sep="")), hjust=0, vjust=.5, size = 4, colour = 'black', fontface = 'bold') + labs(x = 'Name of the Restuarant', y = 'Count', title = 'Name of the Restuarant and Count') + coord_flip() + theme_bw()
#' Budget manager #' #' This package is a personnal project to manage a budget #' #' @name budgetmanager #' #' @import magrittr #' NULL
/R/budgetmanager.R
no_license
denrou/budgetmanager
R
false
false
136
r
#' Budget manager #' #' This package is a personnal project to manage a budget #' #' @name budgetmanager #' #' @import magrittr #' NULL
traf <- read.csv("flow_occ.txt") nint <- nrow(traf) # number of 5-min intervals, 1740 ## Suppose starts on March 14th, 2003, Friday at midnight (we don't know the time) ## then ends at 1am on Thur, March 20th day <- rep(c("Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday"), each = 24*12, length.out = nint) time <- paste(rep(0:23, each = 12, length.out = nint), rep(c("00", "05", seq(10, 55, by = 5)), length.out = nint), sep = ":") ## reshape data traf <- data.frame(Occ = with(traf, c(Occ1, Occ2, Occ3)), Flow = with(traf, c(Flow1, Flow2, Flow3)), lane = rep(1:3, each = nint), day = rep(day, 3), time = rep(time, 3)) traf$Speed <- with(traf, Flow/Occ) save(traf, file = "flow_occ.RData")
/trafficJams/data-raw/flow_occ.R
no_license
debnolan/DynDocs
R
false
false
860
r
traf <- read.csv("flow_occ.txt") nint <- nrow(traf) # number of 5-min intervals, 1740 ## Suppose starts on March 14th, 2003, Friday at midnight (we don't know the time) ## then ends at 1am on Thur, March 20th day <- rep(c("Friday", "Saturday", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday"), each = 24*12, length.out = nint) time <- paste(rep(0:23, each = 12, length.out = nint), rep(c("00", "05", seq(10, 55, by = 5)), length.out = nint), sep = ":") ## reshape data traf <- data.frame(Occ = with(traf, c(Occ1, Occ2, Occ3)), Flow = with(traf, c(Flow1, Flow2, Flow3)), lane = rep(1:3, each = nint), day = rep(day, 3), time = rep(time, 3)) traf$Speed <- with(traf, Flow/Occ) save(traf, file = "flow_occ.RData")
context("junit") test_that("multiplication works", { expect_equal(1 * 2, 2) expect_equal(2 * 2, 3) expect_equal(3 * 2, 6) expect_equal(4 * 2, 6) }) test_that("summation works", { expect_equal(1 + 1, 2) expect_equal(2 + 2, 5) expect_equal(3 + 3, 6) expect_equal(4 + 4, 8) })
/tests/testthat/test-junit.R
no_license
yutannihilation/testthatJunitRporterTest
R
false
false
292
r
context("junit") test_that("multiplication works", { expect_equal(1 * 2, 2) expect_equal(2 * 2, 3) expect_equal(3 * 2, 6) expect_equal(4 * 2, 6) }) test_that("summation works", { expect_equal(1 + 1, 2) expect_equal(2 + 2, 5) expect_equal(3 + 3, 6) expect_equal(4 + 4, 8) })
context("ifan vs dfan") test_that("Can create FFTrees object with dfan", { object <- FFTrees(diagnosis ~., data = heartdisease, algorithm = "dfan") expect_is(object = object, class = "FFTrees") }) test_that("Different results with ifan and dfan", { trees_ifan <- FFTrees(diagnosis ~., data = heartdisease, algorithm = "ifan") trees_dfan <- FFTrees(diagnosis ~., data = heartdisease, algorithm = "dfan") expect_false(identical(trees_ifan$trees$definitions, trees_dfan$trees$definitions)) })
/tests/testthat/test-ifan_v_dfan.R
no_license
Barardo/FFTrees
R
false
false
631
r
context("ifan vs dfan") test_that("Can create FFTrees object with dfan", { object <- FFTrees(diagnosis ~., data = heartdisease, algorithm = "dfan") expect_is(object = object, class = "FFTrees") }) test_that("Different results with ifan and dfan", { trees_ifan <- FFTrees(diagnosis ~., data = heartdisease, algorithm = "ifan") trees_dfan <- FFTrees(diagnosis ~., data = heartdisease, algorithm = "dfan") expect_false(identical(trees_ifan$trees$definitions, trees_dfan$trees$definitions)) })
## ----eval=FALSE,include=FALSE------------------------------------------------- ## source("../../rnw2pdf.R") ## rnw2pdf("lecture-survival") ## rnw2pdf("lecture-survival",tangle=TRUE)
/lectures/survival/lecture-survival.R
no_license
rbchan/applied-popdy
R
false
false
185
r
## ----eval=FALSE,include=FALSE------------------------------------------------- ## source("../../rnw2pdf.R") ## rnw2pdf("lecture-survival") ## rnw2pdf("lecture-survival",tangle=TRUE)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/auth.R \name{orcid_auth} \alias{orcid_auth} \alias{rorcid-auth} \title{ORCID authorization} \usage{ orcid_auth(scope = "/authenticate", reauth = FALSE, redirect_uri = getOption("rorcid.redirect_uri")) } \arguments{ \item{scope}{(character) one or more scopes. default: \code{"/authenticate"}} \item{reauth}{(logical) Force re-authorization?} \item{redirect_uri}{(character) a redirect URI. optional} } \value{ a character string with the access token prefixed with "Bearer " } \description{ ORCID authorization } \details{ There are two ways to authorise with \pkg{rorcid}: \itemize{ \item Use a token as a result of a OAuth authentication process. The token is a alphanumeric UUID, e.g. \code{dc0a6b6b-b4d4-4276-bc89-78c1e9ede56e}. You can get this token by running \code{orcid_auth()}, then storing that key (the uuid alone, not the "Bearer " part) either as en environment variable in your \code{.Renviron} file in your home directory, or as an R option in your \code{.Rprofile} file. See \link{Startup} for more information. Either an environment variable or R option work. If we don't find either we do the next option. \item Interactively login with OAuth. This doesn't require any input on your part. We use a client id and client secret key to ping ORCID.org; at which point you log in with your username/password; then we get back a token (same as the above option). We don't know your username or password, only the token that we get back. We cache that token locally in a hidden file in whatever working directory you're in. If you delete that file, or run the code from a new working directory, then we re-authorize. } We recommend the former option. That is, get a token and store it as an environment variable. If both options above fail, we proceed without using authentication. ORCID does not require authentication at this point, but may in the future - this prepares you for when that happens :) } \section{ORCID OAuth Scopes}{ See \url{https://members.orcid.org/api/orcid-scopes} for more } \examples{ \dontrun{ x <- orcid_auth() orcid_auth(reauth = TRUE) #orcid_auth(scope = "/read-public", reauth = TRUE) } }
/man/orcid_auth.Rd
permissive
pkraker/rorcid
R
false
true
2,216
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/auth.R \name{orcid_auth} \alias{orcid_auth} \alias{rorcid-auth} \title{ORCID authorization} \usage{ orcid_auth(scope = "/authenticate", reauth = FALSE, redirect_uri = getOption("rorcid.redirect_uri")) } \arguments{ \item{scope}{(character) one or more scopes. default: \code{"/authenticate"}} \item{reauth}{(logical) Force re-authorization?} \item{redirect_uri}{(character) a redirect URI. optional} } \value{ a character string with the access token prefixed with "Bearer " } \description{ ORCID authorization } \details{ There are two ways to authorise with \pkg{rorcid}: \itemize{ \item Use a token as a result of a OAuth authentication process. The token is a alphanumeric UUID, e.g. \code{dc0a6b6b-b4d4-4276-bc89-78c1e9ede56e}. You can get this token by running \code{orcid_auth()}, then storing that key (the uuid alone, not the "Bearer " part) either as en environment variable in your \code{.Renviron} file in your home directory, or as an R option in your \code{.Rprofile} file. See \link{Startup} for more information. Either an environment variable or R option work. If we don't find either we do the next option. \item Interactively login with OAuth. This doesn't require any input on your part. We use a client id and client secret key to ping ORCID.org; at which point you log in with your username/password; then we get back a token (same as the above option). We don't know your username or password, only the token that we get back. We cache that token locally in a hidden file in whatever working directory you're in. If you delete that file, or run the code from a new working directory, then we re-authorize. } We recommend the former option. That is, get a token and store it as an environment variable. If both options above fail, we proceed without using authentication. ORCID does not require authentication at this point, but may in the future - this prepares you for when that happens :) } \section{ORCID OAuth Scopes}{ See \url{https://members.orcid.org/api/orcid-scopes} for more } \examples{ \dontrun{ x <- orcid_auth() orcid_auth(reauth = TRUE) #orcid_auth(scope = "/read-public", reauth = TRUE) } }
library(TOAST) library(peakRAM) # config = "n_100_DE_pattern_2_1_1_replicate_1" test_TOAST_TPM = function(config) { RDatafile = sprintf(file.path("../simulation", config, "simulation.RData")) load(RDatafile) # Will use: observed_TPM, rho_from_TPM, clinical_variables, adjusted_signature_gene_TPM (only for cell type names) colnames(rho_from_TPM) = colnames(adjusted_signature_gene_TPM) with_RIN = without_RIN = list() empty_pval_matrix = matrix(nrow=nrow(observed_TPM), ncol=ncol(rho_from_TPM)) rownames(empty_pval_matrix) = rownames(observed_TPM) colnames(empty_pval_matrix) = colnames(rho_from_TPM) with_RIN$pval_matrix = without_RIN$pval_matrix = empty_pval_matrix # Without RIN without_RIN_bench = peakRAM({ cell_types = colnames(rho_from_TPM) design = data.frame(group=gl(2, round(n/2))) design_out = makeDesign(design, rho_from_TPM) fitted_model = fitModel(design_out, observed_TPM) for (cell_type in cell_types) { res_table = csTest(fitted_model, coef = "group", cell_type = cell_type) without_RIN$pval_matrix[, cell_type] = res_table[rownames(observed_TPM), "p_value"] } }) without_RIN$Elapsed_Time_sec = without_RIN_bench$Elapsed_Time_sec without_RIN$Peak_RAM_Used_MiB = without_RIN_bench$Peak_RAM_Used_MiB # With RIN with_RIN_bench = peakRAM({ cell_types = colnames(rho_from_TPM) design = data.frame(RIN=clinical_variables, group=gl(2, round(n/2))) design_out = makeDesign(design, rho_from_TPM) fitted_model = fitModel(design_out, observed_TPM) for (cell_type in cell_types) { res_table = csTest(fitted_model, coef = "group", cell_type = cell_type) with_RIN$pval_matrix[, cell_type] = res_table[rownames(observed_TPM), "p_value"] } }) with_RIN$Elapsed_Time_sec = with_RIN_bench$Elapsed_Time_sec with_RIN$Peak_RAM_Used_MiB = with_RIN_bench$Peak_RAM_Used_MiB pdf(file.path("../simulation", config, "TOAST_TPM_pvalue_distribution.pdf"), height=8, width=10) par(mfrow=c(2,3)) hist(without_RIN$pval_matrix[1:2000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[1:2000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[1:2000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[2001:10000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[2001:10000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[2001:10000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[1:2000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[1:2000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[1:2000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[2001:10000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[2001:10000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[2001:10000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) dev.off() save(with_RIN, without_RIN, file=file.path("../simulation", config, "TOAST_TPM_res.RData")) }
/R/simulation_test_TOAST_TPM.R
permissive
Sun-lab/CARseq_pipelines
R
false
false
3,283
r
library(TOAST) library(peakRAM) # config = "n_100_DE_pattern_2_1_1_replicate_1" test_TOAST_TPM = function(config) { RDatafile = sprintf(file.path("../simulation", config, "simulation.RData")) load(RDatafile) # Will use: observed_TPM, rho_from_TPM, clinical_variables, adjusted_signature_gene_TPM (only for cell type names) colnames(rho_from_TPM) = colnames(adjusted_signature_gene_TPM) with_RIN = without_RIN = list() empty_pval_matrix = matrix(nrow=nrow(observed_TPM), ncol=ncol(rho_from_TPM)) rownames(empty_pval_matrix) = rownames(observed_TPM) colnames(empty_pval_matrix) = colnames(rho_from_TPM) with_RIN$pval_matrix = without_RIN$pval_matrix = empty_pval_matrix # Without RIN without_RIN_bench = peakRAM({ cell_types = colnames(rho_from_TPM) design = data.frame(group=gl(2, round(n/2))) design_out = makeDesign(design, rho_from_TPM) fitted_model = fitModel(design_out, observed_TPM) for (cell_type in cell_types) { res_table = csTest(fitted_model, coef = "group", cell_type = cell_type) without_RIN$pval_matrix[, cell_type] = res_table[rownames(observed_TPM), "p_value"] } }) without_RIN$Elapsed_Time_sec = without_RIN_bench$Elapsed_Time_sec without_RIN$Peak_RAM_Used_MiB = without_RIN_bench$Peak_RAM_Used_MiB # With RIN with_RIN_bench = peakRAM({ cell_types = colnames(rho_from_TPM) design = data.frame(RIN=clinical_variables, group=gl(2, round(n/2))) design_out = makeDesign(design, rho_from_TPM) fitted_model = fitModel(design_out, observed_TPM) for (cell_type in cell_types) { res_table = csTest(fitted_model, coef = "group", cell_type = cell_type) with_RIN$pval_matrix[, cell_type] = res_table[rownames(observed_TPM), "p_value"] } }) with_RIN$Elapsed_Time_sec = with_RIN_bench$Elapsed_Time_sec with_RIN$Peak_RAM_Used_MiB = with_RIN_bench$Peak_RAM_Used_MiB pdf(file.path("../simulation", config, "TOAST_TPM_pvalue_distribution.pdf"), height=8, width=10) par(mfrow=c(2,3)) hist(without_RIN$pval_matrix[1:2000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[1:2000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[1:2000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[2001:10000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[2001:10000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(without_RIN$pval_matrix[2001:10000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[1:2000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[1:2000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[1:2000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[2001:10000, 1], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[2001:10000, 2], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) hist(with_RIN$pval_matrix[2001:10000, 3], breaks=seq(0, 1, by = 0.05), xlim=c(0,1)) dev.off() save(with_RIN, without_RIN, file=file.path("../simulation", config, "TOAST_TPM_res.RData")) }
# -------------------------------------------------------- # ARGUMENTS: # data - a dataframe # respvar - a string; variable name of the response variable # env - a string; variable name of the environment variable # is.random - logical; indicates whether genotype/treatment is random or not; default value is FALSE (FIXED factor) # result - output of single environment analysis # # Author: Alaine Gulles # -------------------------------------------------------- graph.mea1s.diagplots <- function(data, respvar, is.random = FALSE, result) UseMethod("graph.mea1s.diagplots") graph.mea1s.diagplots.default <- function(data, respvar, is.random = FALSE, result) { #dir.create("plots") #create diag plots for (i in (1:length(respvar))) { xlabel = respvar[i] cc = rgb(0.3, 0.3, 0.7, 0.2) if (is.random) { filename1 = paste(getwd(),"/diagPlotsMea1s_",respvar[i], "_random.png",sep=""); } else filename1 = paste(getwd(),"/diagPlotsMea1s_",respvar[i], "_fixed.png",sep=""); residValues<-result$output[[i]]$residuals fittedValues<-result$output[[i]]$fitted.values if (!is.null(residValues) & (!is.null(fittedValues))) { png(filename = filename1); par(mfrow = c(2,2)) #par(mfrow = n2mfrow(length(respvar)*nlevels(data[,match(env, names(data))]))); #scatterplot of residuals against fitted values plot(result$output[[i]]$residuals~result$output[[i]]$fitted.values, xlab = "Predicted Values", pch = 15, cex = 0.7, col = cc, ylab = "Residuals", main = "Scatterplot of Residuals \nagainst Fitted Values"); #qqplot of residuals qqnorm(result$output[[i]]$residuals); qqline(result$output[[i]]$residuals, col=2, main=title,sub=xlabel) #freq dist of residuals hist(result$output[[i]]$residuals, main = "Histogram of Residuals", col = cc, xlab = "Residual", ylab = 'Frequency' ) #create blank plot #plot(seq(1:10)~seq(1:10), type="n", boxed = FALSE, axes=FALSE, xlab="", ylab="") plot(seq(1:10)~seq(1:10), type="n", bty = "n", axes=FALSE, xlab="", ylab="") if (is.random) { noteString <- paste("NOTE: Residuals plotted are taken from the model where genotype is random and response variable = ", respvar[i], ".", sep="") } else { noteString <- paste("NOTE: Residuals plotted are taken from the model where genotype is fixed and response variable = ", respvar[i], ".", sep="") } text(5,7,paste(strwrap(noteString,width=30), sep="", collapse="\n")) dev.off(); } } }
/R3.0.2 Package Creation/PBTools/R/graph_mea1s_diagplots.R
no_license
djnpisano/RScriptLibrary
R
false
false
2,559
r
# -------------------------------------------------------- # ARGUMENTS: # data - a dataframe # respvar - a string; variable name of the response variable # env - a string; variable name of the environment variable # is.random - logical; indicates whether genotype/treatment is random or not; default value is FALSE (FIXED factor) # result - output of single environment analysis # # Author: Alaine Gulles # -------------------------------------------------------- graph.mea1s.diagplots <- function(data, respvar, is.random = FALSE, result) UseMethod("graph.mea1s.diagplots") graph.mea1s.diagplots.default <- function(data, respvar, is.random = FALSE, result) { #dir.create("plots") #create diag plots for (i in (1:length(respvar))) { xlabel = respvar[i] cc = rgb(0.3, 0.3, 0.7, 0.2) if (is.random) { filename1 = paste(getwd(),"/diagPlotsMea1s_",respvar[i], "_random.png",sep=""); } else filename1 = paste(getwd(),"/diagPlotsMea1s_",respvar[i], "_fixed.png",sep=""); residValues<-result$output[[i]]$residuals fittedValues<-result$output[[i]]$fitted.values if (!is.null(residValues) & (!is.null(fittedValues))) { png(filename = filename1); par(mfrow = c(2,2)) #par(mfrow = n2mfrow(length(respvar)*nlevels(data[,match(env, names(data))]))); #scatterplot of residuals against fitted values plot(result$output[[i]]$residuals~result$output[[i]]$fitted.values, xlab = "Predicted Values", pch = 15, cex = 0.7, col = cc, ylab = "Residuals", main = "Scatterplot of Residuals \nagainst Fitted Values"); #qqplot of residuals qqnorm(result$output[[i]]$residuals); qqline(result$output[[i]]$residuals, col=2, main=title,sub=xlabel) #freq dist of residuals hist(result$output[[i]]$residuals, main = "Histogram of Residuals", col = cc, xlab = "Residual", ylab = 'Frequency' ) #create blank plot #plot(seq(1:10)~seq(1:10), type="n", boxed = FALSE, axes=FALSE, xlab="", ylab="") plot(seq(1:10)~seq(1:10), type="n", bty = "n", axes=FALSE, xlab="", ylab="") if (is.random) { noteString <- paste("NOTE: Residuals plotted are taken from the model where genotype is random and response variable = ", respvar[i], ".", sep="") } else { noteString <- paste("NOTE: Residuals plotted are taken from the model where genotype is fixed and response variable = ", respvar[i], ".", sep="") } text(5,7,paste(strwrap(noteString,width=30), sep="", collapse="\n")) dev.off(); } } }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wfm.R \name{docs} \alias{docs} \alias{docs<-} \title{Extract Document Names} \usage{ docs(wfm) docs(wfm) <- value } \arguments{ \item{wfm}{an object of type wfm} \item{value}{replacement if assignment} } \value{ A list of document names. } \description{ Extracts the document names from a wfm object. } \author{ Will Lowe } \seealso{ \code{\link{wfm}} }
/man/docs.Rd
no_license
markwestcott34/austin
R
false
true
435
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/wfm.R \name{docs} \alias{docs} \alias{docs<-} \title{Extract Document Names} \usage{ docs(wfm) docs(wfm) <- value } \arguments{ \item{wfm}{an object of type wfm} \item{value}{replacement if assignment} } \value{ A list of document names. } \description{ Extracts the document names from a wfm object. } \author{ Will Lowe } \seealso{ \code{\link{wfm}} }
#' Creates a dataframe with predictions from each model #' and real choices #' params tree dataframe compare_link_prediction <- function(df.tree, params.Gomez2013, params.Aragon2017){ # We can compare with barabasi becaus the choice is independent of the alpha parents <- df.tree$parent parents.users <- df.tree$parent.user users <- df.tree$user # Results container df.preds <- data.frame() # skip root and first post # Recall: t has already t posts before (because root t=0) # Thus, post at t has t posts to choose from. for(t in 2:length(parents)){ # Data common too all models b <- rep(0,t) lags <- t:1 popularities <- 1 + tabulate(parents[1:(t-1)], nbins=t) # we follow Gomez. root also starts with 1 grandparents <- c(FALSE, (df.tree$parent.user[1:(t-1)]==as.character(users[t]))) # root is always false chosen <- parents[t] # Gomez2013 model ####################### alpha <- params.Gomez2013$alpha beta <- params.Gomez2013$beta tau <- params.Gomez2013$tau b[1] <- beta probs.Gomez2013 <- alpha * popularities + b + tau^lags predicted.Gomez2013 <- which.max(probs.Gomez2013) like.Gomez2013 <- log(probs.Gomez2013[chosen]) - log(sum(probs.Gomez2013)) ranking.Gomez2013 <- rank(-probs.Gomez2013)[chosen] # Aragon2017 model ####################### # print(grandparents) # check grandparents grandparents <- c(FALSE, (df.tree$parent.user[1:(t-1)]==as.character(users[t]))) # root is always false potential_brother <- df.tree[which(df.tree$user[1:(t-1)] == users[t]),]$parent ## select the parent of the potential brother to set it to FALSE in the grandparents vector grandparents[potential_brother] <- FALSE # print(grandparents) alpha <- params.Aragon2017$alpha beta <- params.Aragon2017$beta tau <- params.Aragon2017$tau gamma <- params.Aragon2017$gamma b[1] <- beta probs.Aragon2017 <- alpha * popularities + gamma*grandparents + b + tau^lags predicted.Aragon2017 <- which.max(probs.Aragon2017) like.Aragon2017 <- log(probs.Aragon2017[chosen]) - log(sum(probs.Aragon2017)) ranking.Aragon2017 <- rank(-probs.Aragon2017)[chosen] # the rank of an element is its position in the sorted vector. # predicted: the most likely post # like: likelihood of the choosen post (the real observed one) # ranking: position in which the real choice was placed. Best is 1. Worst is current thread size df.preds <- rbindlist(list(df.preds, data.frame(predicted.Gomez2013 = predicted.Gomez2013, like.Gomez2013 = like.Gomez2013, ranking.Gomez2013 = ranking.Gomez2013, predicted.Aragon2017 = predicted.Aragon2017, like.Aragon2017 = like.Aragon2017, ranking.Aragon2017 = ranking.Aragon2017, tree.size = t, # thread= df.tree$thread[t], chosen = chosen, ## this is the real parent user = df.tree$user[t] ))) } df.preds }
/R/link_prediction.R
permissive
elaragon/generative-discussion-threads
R
false
false
3,312
r
#' Creates a dataframe with predictions from each model #' and real choices #' params tree dataframe compare_link_prediction <- function(df.tree, params.Gomez2013, params.Aragon2017){ # We can compare with barabasi becaus the choice is independent of the alpha parents <- df.tree$parent parents.users <- df.tree$parent.user users <- df.tree$user # Results container df.preds <- data.frame() # skip root and first post # Recall: t has already t posts before (because root t=0) # Thus, post at t has t posts to choose from. for(t in 2:length(parents)){ # Data common too all models b <- rep(0,t) lags <- t:1 popularities <- 1 + tabulate(parents[1:(t-1)], nbins=t) # we follow Gomez. root also starts with 1 grandparents <- c(FALSE, (df.tree$parent.user[1:(t-1)]==as.character(users[t]))) # root is always false chosen <- parents[t] # Gomez2013 model ####################### alpha <- params.Gomez2013$alpha beta <- params.Gomez2013$beta tau <- params.Gomez2013$tau b[1] <- beta probs.Gomez2013 <- alpha * popularities + b + tau^lags predicted.Gomez2013 <- which.max(probs.Gomez2013) like.Gomez2013 <- log(probs.Gomez2013[chosen]) - log(sum(probs.Gomez2013)) ranking.Gomez2013 <- rank(-probs.Gomez2013)[chosen] # Aragon2017 model ####################### # print(grandparents) # check grandparents grandparents <- c(FALSE, (df.tree$parent.user[1:(t-1)]==as.character(users[t]))) # root is always false potential_brother <- df.tree[which(df.tree$user[1:(t-1)] == users[t]),]$parent ## select the parent of the potential brother to set it to FALSE in the grandparents vector grandparents[potential_brother] <- FALSE # print(grandparents) alpha <- params.Aragon2017$alpha beta <- params.Aragon2017$beta tau <- params.Aragon2017$tau gamma <- params.Aragon2017$gamma b[1] <- beta probs.Aragon2017 <- alpha * popularities + gamma*grandparents + b + tau^lags predicted.Aragon2017 <- which.max(probs.Aragon2017) like.Aragon2017 <- log(probs.Aragon2017[chosen]) - log(sum(probs.Aragon2017)) ranking.Aragon2017 <- rank(-probs.Aragon2017)[chosen] # the rank of an element is its position in the sorted vector. # predicted: the most likely post # like: likelihood of the choosen post (the real observed one) # ranking: position in which the real choice was placed. Best is 1. Worst is current thread size df.preds <- rbindlist(list(df.preds, data.frame(predicted.Gomez2013 = predicted.Gomez2013, like.Gomez2013 = like.Gomez2013, ranking.Gomez2013 = ranking.Gomez2013, predicted.Aragon2017 = predicted.Aragon2017, like.Aragon2017 = like.Aragon2017, ranking.Aragon2017 = ranking.Aragon2017, tree.size = t, # thread= df.tree$thread[t], chosen = chosen, ## this is the real parent user = df.tree$user[t] ))) } df.preds }
#' Extract multiple subclades from a phylogeny based on node numbers #' #' Given a tree and a vector or list of nodes, this function extracts subclades and #' returns a list of smaller trees. #' #' @param tree An ape-style phylogenetic tree. #' @param nodes A named list or vector of node numbers that subtend the clade in question #' to extract. Can extract and create single species trees with appropriate branch length. #' The input vector or list must have names! #' @param root.edge Default is 0, meaning that no stem is left below the node from which #' the subclade is extracted. If root.edge is 1, then a root edge (stem) is also included #' with the extracted clade. #' #' @details Given a named list or vector of node numbers that subtend one or more clades, #' extracts those clades and returns a list of trees. The nodes provided must have names, #' though the tree itself does not need to have named nodes. This is because the output #' trees are provided with these names, which are used in further downstream analyses. #' If the node provided relates to a tip, then the tree that is returned contains the #' stem length from the ancestor of that species to the tip in question. #' #' @return A named list of trees. #' #' @export #' #' @importFrom ape extract.clade #' #' @references Mast et al. 2015. Paraphyly changes understanding of timing and tempo of #' diversification in subtribe Hakeinae (Proteaceae), a giant Australian plant radiation. #' American Journal of Botany. #' #' @examples #' #load a molecular tree up #' data(bird.families) #' #' #define a named vector of node numbers, including a root #' temp <- c() #' temp[1] <- length(bird.families$tip.label) + 1 #' names(temp) <- "root" #' #' #create a data frame of all taxa from the phylogeny, and make up clade memberships #' #for each. note that the names on this data frame differ from "groupings" in other #' #functions #' dummy.frame <- data.frame(species=bird.families$tip.label, #' clade=c(rep("nonPasserine", 95), rep("suboscine", 9), rep("basalOscine", 13), #' rep("oscine", 20))) #' #' #use the function getMRCAs() to determine the nodes subtending these named clades #' nodes <- getMRCAs(bird.families, dummy.frame) #' #unlist the results and append to the root node defined above #' nodes <- append(temp, nodes) #' #' #use the function. note the effect of including a root edge or not. also note that #' #because non-passerines are not monophyletic, the "subtree" corresponding to that #' #"clade" is the whole tree #' temp1 <- extractClade(bird.families, nodes) #' temp2 <- extractClade(bird.families, nodes, root.edge=1) #' plot(temp1$oscine, root.edge=TRUE) #' plot(temp2$oscine, root.edge=TRUE) extractClade <- function(tree, nodes, root.edge=0) { #this function can sometimes be provided with lists of notes nodes <- unlist(nodes) #set up a blank list to save results into trees <- list() for(i in 1:length(nodes)) { #check whether the node relates to a tip or an internal node if(nodes[i] <= length(tree$tip.label)) { #if so, call your singleSpeciesTree function tip <- tree$tip.label[nodes[i]] trees[[i]] <- singleSpeciesTree(tree, tip) } else { trees[[i]] <- extract.clade(phy=tree, node=nodes[i], root.edge=root.edge) } } names(trees) <- names(nodes) trees }
/R/extractClade.R
no_license
jesusNPL/addTaxa
R
false
false
3,302
r
#' Extract multiple subclades from a phylogeny based on node numbers #' #' Given a tree and a vector or list of nodes, this function extracts subclades and #' returns a list of smaller trees. #' #' @param tree An ape-style phylogenetic tree. #' @param nodes A named list or vector of node numbers that subtend the clade in question #' to extract. Can extract and create single species trees with appropriate branch length. #' The input vector or list must have names! #' @param root.edge Default is 0, meaning that no stem is left below the node from which #' the subclade is extracted. If root.edge is 1, then a root edge (stem) is also included #' with the extracted clade. #' #' @details Given a named list or vector of node numbers that subtend one or more clades, #' extracts those clades and returns a list of trees. The nodes provided must have names, #' though the tree itself does not need to have named nodes. This is because the output #' trees are provided with these names, which are used in further downstream analyses. #' If the node provided relates to a tip, then the tree that is returned contains the #' stem length from the ancestor of that species to the tip in question. #' #' @return A named list of trees. #' #' @export #' #' @importFrom ape extract.clade #' #' @references Mast et al. 2015. Paraphyly changes understanding of timing and tempo of #' diversification in subtribe Hakeinae (Proteaceae), a giant Australian plant radiation. #' American Journal of Botany. #' #' @examples #' #load a molecular tree up #' data(bird.families) #' #' #define a named vector of node numbers, including a root #' temp <- c() #' temp[1] <- length(bird.families$tip.label) + 1 #' names(temp) <- "root" #' #' #create a data frame of all taxa from the phylogeny, and make up clade memberships #' #for each. note that the names on this data frame differ from "groupings" in other #' #functions #' dummy.frame <- data.frame(species=bird.families$tip.label, #' clade=c(rep("nonPasserine", 95), rep("suboscine", 9), rep("basalOscine", 13), #' rep("oscine", 20))) #' #' #use the function getMRCAs() to determine the nodes subtending these named clades #' nodes <- getMRCAs(bird.families, dummy.frame) #' #unlist the results and append to the root node defined above #' nodes <- append(temp, nodes) #' #' #use the function. note the effect of including a root edge or not. also note that #' #because non-passerines are not monophyletic, the "subtree" corresponding to that #' #"clade" is the whole tree #' temp1 <- extractClade(bird.families, nodes) #' temp2 <- extractClade(bird.families, nodes, root.edge=1) #' plot(temp1$oscine, root.edge=TRUE) #' plot(temp2$oscine, root.edge=TRUE) extractClade <- function(tree, nodes, root.edge=0) { #this function can sometimes be provided with lists of notes nodes <- unlist(nodes) #set up a blank list to save results into trees <- list() for(i in 1:length(nodes)) { #check whether the node relates to a tip or an internal node if(nodes[i] <= length(tree$tip.label)) { #if so, call your singleSpeciesTree function tip <- tree$tip.label[nodes[i]] trees[[i]] <- singleSpeciesTree(tree, tip) } else { trees[[i]] <- extract.clade(phy=tree, node=nodes[i], root.edge=root.edge) } } names(trees) <- names(nodes) trees }
library(shiny) library(shinydashboard) library(data.table) library(ggplot2) data = data.table(group = rep(c(1, 3, 6), each = 10), x = rep(1:10, times = 3), value = rnorm(30)) sidebar <- dashboardSidebar( uiOutput("Sidebar") ) body <- dashboardBody( uiOutput("TABUI") ) # Put them together into a dashboardPage ui <- dashboardPage( dashboardHeader(title = "test tabbed inputs"), sidebar, body, skin = 'green' ) server <- function(input, output) { ntabs <- 3 tabnames <- paste0("tab", 1:ntabs) # "tab1", "tab2", ... checkboxnames <- paste0(tabnames, 'group') # "tab1group", "tab2group", ... plotnames <- paste0("plot", 1:ntabs) # "plot1", "plot2", ... output$Sidebar <- renderUI({ Menus <- vector("list", ntabs) for(i in 1:ntabs){ Menus[[i]] <- menuItem(tabnames[i], tabName = tabnames[i], icon = icon("dashboard"), selected = i==1) } do.call(function(...) sidebarMenu(id = 'sidebarMenu', ...), Menus) }) output$TABUI <- renderUI({ Tabs <- vector("list", ntabs) for(i in 1:ntabs){ Tabs[[i]] <- tabItem(tabName = tabnames[i], fluidRow( box(title = "Controls", checkboxGroupInput(checkboxnames[i], 'group:', c(1, 3, 6), selected = 6, inline = TRUE), width = 4), box(plotOutput(paste0("plot",i)), width = 8) ) ) } do.call(tabItems, Tabs) }) RV <- reactiveValues() observe({ selection <- input[[paste0(input$sidebarMenu, 'group')]] RV$plotData <- data[group %in% selection] }) for(i in 1:ntabs){ output[[plotnames[i]]] <- renderPlot({ plotData <- RV$plotData p <- ggplot(plotData, aes(x = x, y = value, colour = factor(group))) + geom_line() + geom_point() print(p) }) } } shinyApp(ui, server)
/R/shiny-examples/08_dynamic-tabs/app5.R
no_license
michellymenezes/ladybird-umbrella
R
false
false
1,926
r
library(shiny) library(shinydashboard) library(data.table) library(ggplot2) data = data.table(group = rep(c(1, 3, 6), each = 10), x = rep(1:10, times = 3), value = rnorm(30)) sidebar <- dashboardSidebar( uiOutput("Sidebar") ) body <- dashboardBody( uiOutput("TABUI") ) # Put them together into a dashboardPage ui <- dashboardPage( dashboardHeader(title = "test tabbed inputs"), sidebar, body, skin = 'green' ) server <- function(input, output) { ntabs <- 3 tabnames <- paste0("tab", 1:ntabs) # "tab1", "tab2", ... checkboxnames <- paste0(tabnames, 'group') # "tab1group", "tab2group", ... plotnames <- paste0("plot", 1:ntabs) # "plot1", "plot2", ... output$Sidebar <- renderUI({ Menus <- vector("list", ntabs) for(i in 1:ntabs){ Menus[[i]] <- menuItem(tabnames[i], tabName = tabnames[i], icon = icon("dashboard"), selected = i==1) } do.call(function(...) sidebarMenu(id = 'sidebarMenu', ...), Menus) }) output$TABUI <- renderUI({ Tabs <- vector("list", ntabs) for(i in 1:ntabs){ Tabs[[i]] <- tabItem(tabName = tabnames[i], fluidRow( box(title = "Controls", checkboxGroupInput(checkboxnames[i], 'group:', c(1, 3, 6), selected = 6, inline = TRUE), width = 4), box(plotOutput(paste0("plot",i)), width = 8) ) ) } do.call(tabItems, Tabs) }) RV <- reactiveValues() observe({ selection <- input[[paste0(input$sidebarMenu, 'group')]] RV$plotData <- data[group %in% selection] }) for(i in 1:ntabs){ output[[plotnames[i]]] <- renderPlot({ plotData <- RV$plotData p <- ggplot(plotData, aes(x = x, y = value, colour = factor(group))) + geom_line() + geom_point() print(p) }) } } shinyApp(ui, server)
# testSource # Load the library require(RCurl) # Provide the web address of the file: fileURL <- getURL('https://raw.githubusercontent.com/SCBI-MigBirds/MigBirds/master/data/exampleBirdData.csv') # Read in the data: birdCounts <- read.csv(text = fileURL) birdCounts
/testSource.R
no_license
SCBI-MigBirds/scbi-migbirds.github.io
R
false
false
274
r
# testSource # Load the library require(RCurl) # Provide the web address of the file: fileURL <- getURL('https://raw.githubusercontent.com/SCBI-MigBirds/MigBirds/master/data/exampleBirdData.csv') # Read in the data: birdCounts <- read.csv(text = fileURL) birdCounts
# @title .onAttach # @description Load required data into gloval enviroment # @keywords internal .onAttach<- function (libname, pkgname){ packageStartupMessage(paste0( " ==============================================================\n", " \n", " CAMPARI analysis tools \n", " \n", " \n", " ---------------------------------------- \n", " Analysing time series. \n", " Version: ", utils::packageVersion("CampaRi"), "\n", " ==============================================================\n")) } # .onLoad <- function(libname, pkgname) { # op <- options() # op.CampaRi <- list( # CampaRi.data_management = "R" # ) # toset <- !(names(op.CampaRi) %in% names(op)) # if(any(toset)) options(op.CampaRi[toset]) # # .setting_up_netcdf() # # if(getOption("CampaRi.data_management")=='netcdf'){ # # nc_lib_dir <- "/usr/include/" # # makevars_file <- paste0('MY_PKG_LIBS= -lnetcdff -I', nc_lib_dir, ' # # MY_PKG_FFLAGS= -fbacktrace -fbounds-check -fcheck-array-temporaries -g # # mypackage_FFLAGS = $(FPICFLAGS) $(SHLIB_FFLAGS) $(FFLAGS) # # all: $(SHLIB) # # main_clu_adjl_mst.o: main_clu_adjl_mst.f90 # # $(FC) $(mypackage_FFLAGS) $(MY_PKG_FFLAGS) -c main_clu_adjl_mst.f90 -o main_clu_adjl_mst.o $(MY_PKG_LIBS) # # # # utilities_netcdf.o: utilities_netcdf.f90 # # $(FC) $(mypackage_FFLAGS) $(MY_PKG_FFLAGS) -c utilities_netcdf.f90 -o utilities_netcdf.o $(MY_PKG_LIBS) # # # # PKG_LIBS= -lnetcdff -I', nc_lib_dir, ' # # ') # # cat(makevars_file, file = paste0(".R/Makevars")) # # } # invisible() #no output from this function # } # short hand for length .lt <- function(x) return(length(x)) # check for single integer value .isSingleInteger <- function(x) { if(!is.numeric(x) || x%%1 != 0 || (is.null(dim(x)) && length(x) != 1) || (!is.null(dim(x)))) return(FALSE) else return(TRUE) } # check for single element (e.g. character) .isSingleElement <- function(x) { if((is.null(dim(x)) && length(x) != 1) || (!is.null(dim(x)))) return(FALSE) else return(TRUE) } .isSingleNumeric <- function(x) return(.isSingleElement(x) && is.numeric(x)) .isSingleChar <- function(x) return(.isSingleElement(x) && is.character(x)) # This routine is able to print a loading bar within a loop to know the work done .print_consecutio <- function(itering, total_to_iter, tot_to_print = 10, other_to_print = "", timeit = T, time_first = NULL){ state_to_print <- floor(((itering*1.0)/total_to_iter)*tot_to_print) white_not_to_print <- tot_to_print - state_to_print if(timeit && is.null(time_first)) stop("If you want to time me you need to give me the starting of time (time_first).") if(state_to_print%%1 == 0){ if(timeit){ time_spent <- proc.time() - time_first time_spent <- time_spent["elapsed"] time_spent <- round(as.numeric(time_spent), digits = 0) if(time_spent>120) time_needed <- paste0("(needs: ", round((time_spent*1.0/itering)*total_to_iter, digits = 0)," s)") else time_needed <- "" if(time_spent != 0) time_spent <- paste0(" Time spent: ", time_spent , " s") else time_spent <- "" other_to_print <- paste(time_spent, time_needed, other_to_print) } string_to_print <- "\r|" if(state_to_print != 0){ for(eq in 1:state_to_print) string_to_print <- paste0(string_to_print, "=") } if(state_to_print != tot_to_print){ for(emp in 1:white_not_to_print) string_to_print <- paste0(string_to_print, " ") } string_to_print <- paste0(string_to_print,"| ", floor((state_to_print*100)/tot_to_print), "% ", other_to_print) cat(string_to_print, sep = "") } } # check for install_campari() .get_os <- function(){ sysinf <- Sys.info() if (!is.null(sysinf)){ os <- sysinf['sysname'] if (os == 'Darwin') os <- "osx" } else { ## mystery machine os <- .Platform$OS.type if (grepl("^darwin", R.version$os)) os <- "osx" if (grepl("linux-gnu", R.version$os)) os <- "linux" } tolower(os) } # binary search for true-false. It is 100 times faster than %in% .BiSearch <- function(table, key, start.idx = 1, end.idx = length(table), tol = .Machine$double.eps ^ 0.5, check = TRUE) { # Takes sorted (in ascending order) vectors if (check) stopifnot(is.vector(table), is.numeric(table)) m <- as.integer(ceiling((end.idx + start.idx) / 2)) # Midpoint if (table[m] > key + tol) { if (start.idx == end.idx) return(FALSE) Recall(table, key, start.idx = start.idx, end.idx = m - 1L, tol = tol, check = FALSE) } else if (table[m] < key - tol) { if (start.idx == end.idx) return(FALSE) Recall(table, key, start.idx = m + 1L, end.idx = end.idx, tol = tol, check = FALSE) } else return(TRUE) } # normalize .normalize <- function(x, xmax = NULL, xmin = NULL) { # not equivalent of scale(x, center = F) # if(.isSingleElement(x)) return(1) if(is.null(xmax)) xmax <- max(x) if(is.null(xmin)) xmin <- min(x) if(xmin == xmax) return(x/xmax) else return((x*1.0 - xmin)/(xmax - xmin)) } # cutting the 0s .cut0 <- function(x) { x[x<0] <- 0; x } # fitting a quadratic model .denaturate <- function(yyy, xxx, polydeg = 7, plotit = FALSE){ # yyy <- kin.pl # xxx <- seq(lpi) q.mod <- lm(yyy ~ poly(xxx, polydeg, raw=TRUE)) new_yyy <- .normalize(yyy - stats::predict(q.mod)) if(plotit){ plot(xxx, yyy, type = 'l', ylim = c(0,1)) abline(lm(yyy ~ xxx), col = 'darkblue') # linear lines(xxx, stats::predict(q.mod), col = "darkgreen", lwd = 2) lines(xxx, new_yyy, col = "red", lwd = 3) } return(new_yyy) } # checking function for output command (intern or not, i.e. talkative or not) .check_cmd.out <- function(cmd.out, intern = FALSE){ if(intern) { return(!is.null(attr(cmd.out, which = 'status'))) }else{ if(!.isSingleInteger(cmd.out)) stop('Something went wrong. The command output is not an integer even if intern is FALSE.') return(cmd.out > 0) } } # simple double separator creator; something like the following. # > a <- .get_adjusted_separator(' a ', 11) # > cat(a$sep1, '\n', a$sep2, sep = '') # ~~~~ a ~~~~ # ~~~~~~~~~~~ .get_adjusted_separators <- function(tit, length_it = 68){ if(length_it%%2) length_it <- length_it + 1 # simple check on the lengths if(.lt(tit) > length_it) stop('Please insert correctly the final length. It was too short in comparison to the title length.') if(nchar(tit)%%2 != 0) nchar_sep <- length_it - 1 else nchar_sep <- length_it half_it <- (nchar_sep - nchar(tit))/2 stp1 <- "" for(u in 1:half_it) stp1 <- paste0(stp1, "~") stp1 <- paste0(stp1, tit, stp1) stp2 <- "" for(u in 1:nchar_sep) stp2 <- paste0(stp2, "~") stp2 <- paste0(stp2) return(list('sep1' = stp1, 'sep2' = stp2)) } # create annotation vector from barrier vector # not used at the moment .vec_from_barriers <- function(bar.vec, label.vec = NULL, reorder.index = FALSE){ # , end.point = NULL (I can put it inside the bar.vec) # bar.vec must be the position on the PI!!! not the lengths of stretches stopifnot(all(bar.vec > 1)) # sorting sorted.bar.vec <- sort(bar.vec, index.return=TRUE) # should I consider also the indexing? I don't think so bar.vec <- sorted.bar.vec$x if(reorder.index){ if(!is.null(label.vec)) label.vec <- label.vec[sorted.bar.vec$ix] else label.vec <- sorted.bar.vec$ix } # if not defined define the label vector if(is.null(label.vec)) label.vec <- 1:length(bar.vec) stopifnot(all(1:length(label.vec) == sort(label.vec))) # no gaps allowed stopifnot(length(label.vec) == length(bar.vec)) # generate the diff bector bar.vec.diff <- c(bar.vec[1], diff(bar.vec)) stopifnot(sum(bar.vec.diff) == bar.vec[length(bar.vec)]) # check the right summing up! # final loop return(unlist(sapply(1:length(label.vec), function(x) rep(label.vec[x], bar.vec.diff[x])))) } # symmetrize matrix - fcocina .symm <- function(x) return((x+t(x))/2) # trace of a matrix .tr <- function(x) return(sum(diag(x)))
/R/misc.R
no_license
clangi/CampaRi
R
false
false
8,170
r
# @title .onAttach # @description Load required data into gloval enviroment # @keywords internal .onAttach<- function (libname, pkgname){ packageStartupMessage(paste0( " ==============================================================\n", " \n", " CAMPARI analysis tools \n", " \n", " \n", " ---------------------------------------- \n", " Analysing time series. \n", " Version: ", utils::packageVersion("CampaRi"), "\n", " ==============================================================\n")) } # .onLoad <- function(libname, pkgname) { # op <- options() # op.CampaRi <- list( # CampaRi.data_management = "R" # ) # toset <- !(names(op.CampaRi) %in% names(op)) # if(any(toset)) options(op.CampaRi[toset]) # # .setting_up_netcdf() # # if(getOption("CampaRi.data_management")=='netcdf'){ # # nc_lib_dir <- "/usr/include/" # # makevars_file <- paste0('MY_PKG_LIBS= -lnetcdff -I', nc_lib_dir, ' # # MY_PKG_FFLAGS= -fbacktrace -fbounds-check -fcheck-array-temporaries -g # # mypackage_FFLAGS = $(FPICFLAGS) $(SHLIB_FFLAGS) $(FFLAGS) # # all: $(SHLIB) # # main_clu_adjl_mst.o: main_clu_adjl_mst.f90 # # $(FC) $(mypackage_FFLAGS) $(MY_PKG_FFLAGS) -c main_clu_adjl_mst.f90 -o main_clu_adjl_mst.o $(MY_PKG_LIBS) # # # # utilities_netcdf.o: utilities_netcdf.f90 # # $(FC) $(mypackage_FFLAGS) $(MY_PKG_FFLAGS) -c utilities_netcdf.f90 -o utilities_netcdf.o $(MY_PKG_LIBS) # # # # PKG_LIBS= -lnetcdff -I', nc_lib_dir, ' # # ') # # cat(makevars_file, file = paste0(".R/Makevars")) # # } # invisible() #no output from this function # } # short hand for length .lt <- function(x) return(length(x)) # check for single integer value .isSingleInteger <- function(x) { if(!is.numeric(x) || x%%1 != 0 || (is.null(dim(x)) && length(x) != 1) || (!is.null(dim(x)))) return(FALSE) else return(TRUE) } # check for single element (e.g. character) .isSingleElement <- function(x) { if((is.null(dim(x)) && length(x) != 1) || (!is.null(dim(x)))) return(FALSE) else return(TRUE) } .isSingleNumeric <- function(x) return(.isSingleElement(x) && is.numeric(x)) .isSingleChar <- function(x) return(.isSingleElement(x) && is.character(x)) # This routine is able to print a loading bar within a loop to know the work done .print_consecutio <- function(itering, total_to_iter, tot_to_print = 10, other_to_print = "", timeit = T, time_first = NULL){ state_to_print <- floor(((itering*1.0)/total_to_iter)*tot_to_print) white_not_to_print <- tot_to_print - state_to_print if(timeit && is.null(time_first)) stop("If you want to time me you need to give me the starting of time (time_first).") if(state_to_print%%1 == 0){ if(timeit){ time_spent <- proc.time() - time_first time_spent <- time_spent["elapsed"] time_spent <- round(as.numeric(time_spent), digits = 0) if(time_spent>120) time_needed <- paste0("(needs: ", round((time_spent*1.0/itering)*total_to_iter, digits = 0)," s)") else time_needed <- "" if(time_spent != 0) time_spent <- paste0(" Time spent: ", time_spent , " s") else time_spent <- "" other_to_print <- paste(time_spent, time_needed, other_to_print) } string_to_print <- "\r|" if(state_to_print != 0){ for(eq in 1:state_to_print) string_to_print <- paste0(string_to_print, "=") } if(state_to_print != tot_to_print){ for(emp in 1:white_not_to_print) string_to_print <- paste0(string_to_print, " ") } string_to_print <- paste0(string_to_print,"| ", floor((state_to_print*100)/tot_to_print), "% ", other_to_print) cat(string_to_print, sep = "") } } # check for install_campari() .get_os <- function(){ sysinf <- Sys.info() if (!is.null(sysinf)){ os <- sysinf['sysname'] if (os == 'Darwin') os <- "osx" } else { ## mystery machine os <- .Platform$OS.type if (grepl("^darwin", R.version$os)) os <- "osx" if (grepl("linux-gnu", R.version$os)) os <- "linux" } tolower(os) } # binary search for true-false. It is 100 times faster than %in% .BiSearch <- function(table, key, start.idx = 1, end.idx = length(table), tol = .Machine$double.eps ^ 0.5, check = TRUE) { # Takes sorted (in ascending order) vectors if (check) stopifnot(is.vector(table), is.numeric(table)) m <- as.integer(ceiling((end.idx + start.idx) / 2)) # Midpoint if (table[m] > key + tol) { if (start.idx == end.idx) return(FALSE) Recall(table, key, start.idx = start.idx, end.idx = m - 1L, tol = tol, check = FALSE) } else if (table[m] < key - tol) { if (start.idx == end.idx) return(FALSE) Recall(table, key, start.idx = m + 1L, end.idx = end.idx, tol = tol, check = FALSE) } else return(TRUE) } # normalize .normalize <- function(x, xmax = NULL, xmin = NULL) { # not equivalent of scale(x, center = F) # if(.isSingleElement(x)) return(1) if(is.null(xmax)) xmax <- max(x) if(is.null(xmin)) xmin <- min(x) if(xmin == xmax) return(x/xmax) else return((x*1.0 - xmin)/(xmax - xmin)) } # cutting the 0s .cut0 <- function(x) { x[x<0] <- 0; x } # fitting a quadratic model .denaturate <- function(yyy, xxx, polydeg = 7, plotit = FALSE){ # yyy <- kin.pl # xxx <- seq(lpi) q.mod <- lm(yyy ~ poly(xxx, polydeg, raw=TRUE)) new_yyy <- .normalize(yyy - stats::predict(q.mod)) if(plotit){ plot(xxx, yyy, type = 'l', ylim = c(0,1)) abline(lm(yyy ~ xxx), col = 'darkblue') # linear lines(xxx, stats::predict(q.mod), col = "darkgreen", lwd = 2) lines(xxx, new_yyy, col = "red", lwd = 3) } return(new_yyy) } # checking function for output command (intern or not, i.e. talkative or not) .check_cmd.out <- function(cmd.out, intern = FALSE){ if(intern) { return(!is.null(attr(cmd.out, which = 'status'))) }else{ if(!.isSingleInteger(cmd.out)) stop('Something went wrong. The command output is not an integer even if intern is FALSE.') return(cmd.out > 0) } } # simple double separator creator; something like the following. # > a <- .get_adjusted_separator(' a ', 11) # > cat(a$sep1, '\n', a$sep2, sep = '') # ~~~~ a ~~~~ # ~~~~~~~~~~~ .get_adjusted_separators <- function(tit, length_it = 68){ if(length_it%%2) length_it <- length_it + 1 # simple check on the lengths if(.lt(tit) > length_it) stop('Please insert correctly the final length. It was too short in comparison to the title length.') if(nchar(tit)%%2 != 0) nchar_sep <- length_it - 1 else nchar_sep <- length_it half_it <- (nchar_sep - nchar(tit))/2 stp1 <- "" for(u in 1:half_it) stp1 <- paste0(stp1, "~") stp1 <- paste0(stp1, tit, stp1) stp2 <- "" for(u in 1:nchar_sep) stp2 <- paste0(stp2, "~") stp2 <- paste0(stp2) return(list('sep1' = stp1, 'sep2' = stp2)) } # create annotation vector from barrier vector # not used at the moment .vec_from_barriers <- function(bar.vec, label.vec = NULL, reorder.index = FALSE){ # , end.point = NULL (I can put it inside the bar.vec) # bar.vec must be the position on the PI!!! not the lengths of stretches stopifnot(all(bar.vec > 1)) # sorting sorted.bar.vec <- sort(bar.vec, index.return=TRUE) # should I consider also the indexing? I don't think so bar.vec <- sorted.bar.vec$x if(reorder.index){ if(!is.null(label.vec)) label.vec <- label.vec[sorted.bar.vec$ix] else label.vec <- sorted.bar.vec$ix } # if not defined define the label vector if(is.null(label.vec)) label.vec <- 1:length(bar.vec) stopifnot(all(1:length(label.vec) == sort(label.vec))) # no gaps allowed stopifnot(length(label.vec) == length(bar.vec)) # generate the diff bector bar.vec.diff <- c(bar.vec[1], diff(bar.vec)) stopifnot(sum(bar.vec.diff) == bar.vec[length(bar.vec)]) # check the right summing up! # final loop return(unlist(sapply(1:length(label.vec), function(x) rep(label.vec[x], bar.vec.diff[x])))) } # symmetrize matrix - fcocina .symm <- function(x) return((x+t(x))/2) # trace of a matrix .tr <- function(x) return(sum(diag(x)))
###Script for task 04 ###Author: April Armes ###Group: IMAAS library(ggplot2)#loads ggplot 2 diamonds # calls diamonds dataset nrow(diamonds)#tells you how many rows diamonds dataset has -> a lot. set.seed(1410) #makes the results the same for everyone dsmall <- diamonds[sample(nrow(diamonds), 100), ] #creates a vector called dsmall that only contains 100 "random" rows of diamonds ###use dsmall for all plots ggplot(dsmall,aes (x, y, color = z)) + geom_point() + facet_wrap(~cut) #creates a scatterplot from the diamonds dataset columns x vs y colored by z facetted by cut ggplot(dsmall, aes (price, carat, color =cut)) + geom_point()+ geom_smooth(method = "lm", se=FALSE) #creates a scaterplot from the diamonds dataset with columns x=price, y=carat, colored by cut and smoothed using the lm method - linear model/line of best fit ggplot(dsmall, aes (carat, color= clarity)) + geom_density()+facet_wrap(~clarity)#doesn't look like the example, but a density plot of carat facetted and colored but clarity ggplot(dsmall, aes (cut,price)) + geom_boxplot()# a box plot of the dataset diamonds with x=cut and y = price" ggplot(dsmall, aes (x, y, color="red"))+ geom_point()+ geom_smooth(method="lm", color = "blue", linetype=2)+labs(x="x, in mm", y="y, in mm")# creates a scatterplot of x over y, designates that the points should be red, a best fit line should be blue and dashed #now how do I print? click run #ugly plot contest library(jpeg)#loads jpeg library img<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/steen.jpg", native = TRUE)#pulls image from file plot(img) res<-dim(img)[1:2]#assigns resolution to image plot(1,1,xlim=c(1,res[1]),ylim=c(1,res[2]),asp=1,type="n",xaxs="i",yaxs="i",xaxt="n",yaxt="n",xlab="",ylab="",bty="n")#???? rasterImage(img, 1,1,res[1],res[2])#profit #ugly plot contest forrealdo ###load jped and grid libraries library(jpeg) library(grid) library(ggplot2) ###call image img<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/steen.jpg", native = TRUE) ###place image into vector called img img<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/steen.jpg", native = TRUE) #grab image g <- rasterGrob(img, interpolate=TRUE) ###use diamonds dataset, set seed to make the same for everyone set.seed(1410) #makes the results the same for everyone dsmall <- diamonds[sample(nrow(diamonds), 100), ] ggplot(dsmall, aes(carat, price,color="red"))+ geom_point(color="red") + theme_dark()#creates a plot on dsmall data set where the points are red and the background of the graph is grey +theme(panel.grid.major = element_line(colour = "orange"))#makes organge gridlines on graph +annotation_custom(g, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf)#puts image into graph +stat_identity()#need this to maintain data points and puts them on top of image +geom_jitter()#adds random variation to the location of each data point +geom_smooth(span =0.1, se=FALSE, color="blue", linetype=2)#smoothes plot with a blue dashed wiggly line + theme(plot.background = element_rect(fill = "green"))#makes the background behing the plot green + theme(panel.grid.minor = element_line(colour = "red", linetype = "dotted"))#creates small red dotted gridlines + theme(panel.grid.major = element_line(size = 2))#makes the organge gridlines thick + theme(legend.position = "none")#deletes legend ###You must delete all the comments for this to work properly, stops reading after first # ###see below - different image ###alt ugly plot library(jpeg) library(grid) library(ggplot2) jpg<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/armes.jpg", native = TRUE) p<-g <- rasterGrob(jpg, interpolate=TRUE) set.seed(1410) #makes the results the same for everyone dsmall <- diamonds[sample(nrow(diamonds), 100), ] ggplot(dsmall, aes(carat, price,color="red"))+ geom_point(color="red") + theme_dark()+theme(panel.grid.major = element_line(colour = "orange"))+annotation_custom(p, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf)+ stat_identity()+geom_jitter()+geom_smooth(span =0.1, se=FALSE, color="blue", linetype=2)+ theme(plot.background = element_rect(fill = "green"))+ theme(panel.grid.minor = element_line(colour = "red", linetype = "dotted"))+ theme(panel.grid.major = element_line(size = 2))+ theme(legend.position = "none")
/R/Task_4.R
no_license
Nuapril/GEOL_590
R
false
false
4,234
r
###Script for task 04 ###Author: April Armes ###Group: IMAAS library(ggplot2)#loads ggplot 2 diamonds # calls diamonds dataset nrow(diamonds)#tells you how many rows diamonds dataset has -> a lot. set.seed(1410) #makes the results the same for everyone dsmall <- diamonds[sample(nrow(diamonds), 100), ] #creates a vector called dsmall that only contains 100 "random" rows of diamonds ###use dsmall for all plots ggplot(dsmall,aes (x, y, color = z)) + geom_point() + facet_wrap(~cut) #creates a scatterplot from the diamonds dataset columns x vs y colored by z facetted by cut ggplot(dsmall, aes (price, carat, color =cut)) + geom_point()+ geom_smooth(method = "lm", se=FALSE) #creates a scaterplot from the diamonds dataset with columns x=price, y=carat, colored by cut and smoothed using the lm method - linear model/line of best fit ggplot(dsmall, aes (carat, color= clarity)) + geom_density()+facet_wrap(~clarity)#doesn't look like the example, but a density plot of carat facetted and colored but clarity ggplot(dsmall, aes (cut,price)) + geom_boxplot()# a box plot of the dataset diamonds with x=cut and y = price" ggplot(dsmall, aes (x, y, color="red"))+ geom_point()+ geom_smooth(method="lm", color = "blue", linetype=2)+labs(x="x, in mm", y="y, in mm")# creates a scatterplot of x over y, designates that the points should be red, a best fit line should be blue and dashed #now how do I print? click run #ugly plot contest library(jpeg)#loads jpeg library img<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/steen.jpg", native = TRUE)#pulls image from file plot(img) res<-dim(img)[1:2]#assigns resolution to image plot(1,1,xlim=c(1,res[1]),ylim=c(1,res[2]),asp=1,type="n",xaxs="i",yaxs="i",xaxt="n",yaxt="n",xlab="",ylab="",bty="n")#???? rasterImage(img, 1,1,res[1],res[2])#profit #ugly plot contest forrealdo ###load jped and grid libraries library(jpeg) library(grid) library(ggplot2) ###call image img<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/steen.jpg", native = TRUE) ###place image into vector called img img<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/steen.jpg", native = TRUE) #grab image g <- rasterGrob(img, interpolate=TRUE) ###use diamonds dataset, set seed to make the same for everyone set.seed(1410) #makes the results the same for everyone dsmall <- diamonds[sample(nrow(diamonds), 100), ] ggplot(dsmall, aes(carat, price,color="red"))+ geom_point(color="red") + theme_dark()#creates a plot on dsmall data set where the points are red and the background of the graph is grey +theme(panel.grid.major = element_line(colour = "orange"))#makes organge gridlines on graph +annotation_custom(g, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf)#puts image into graph +stat_identity()#need this to maintain data points and puts them on top of image +geom_jitter()#adds random variation to the location of each data point +geom_smooth(span =0.1, se=FALSE, color="blue", linetype=2)#smoothes plot with a blue dashed wiggly line + theme(plot.background = element_rect(fill = "green"))#makes the background behing the plot green + theme(panel.grid.minor = element_line(colour = "red", linetype = "dotted"))#creates small red dotted gridlines + theme(panel.grid.major = element_line(size = 2))#makes the organge gridlines thick + theme(legend.position = "none")#deletes legend ###You must delete all the comments for this to work properly, stops reading after first # ###see below - different image ###alt ugly plot library(jpeg) library(grid) library(ggplot2) jpg<-readJPEG("c:/Users/April/Documents/GEOL_590/misc/armes.jpg", native = TRUE) p<-g <- rasterGrob(jpg, interpolate=TRUE) set.seed(1410) #makes the results the same for everyone dsmall <- diamonds[sample(nrow(diamonds), 100), ] ggplot(dsmall, aes(carat, price,color="red"))+ geom_point(color="red") + theme_dark()+theme(panel.grid.major = element_line(colour = "orange"))+annotation_custom(p, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf)+ stat_identity()+geom_jitter()+geom_smooth(span =0.1, se=FALSE, color="blue", linetype=2)+ theme(plot.background = element_rect(fill = "green"))+ theme(panel.grid.minor = element_line(colour = "red", linetype = "dotted"))+ theme(panel.grid.major = element_line(size = 2))+ theme(legend.position = "none")
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/Transition_functions.r \name{cjs_gamma} \alias{cjs_gamma} \alias{ms2_gamma} \alias{ms_gamma} \title{HMM Transition matrix functions} \usage{ cjs_gamma(pars, m, F, T) } \arguments{ \item{pars}{list of real parameter values for each type of parameter} \item{m}{number of states} \item{F}{initial occasion vector} \item{T}{number of occasions} } \value{ array of id and occasion-specific transition matrices - Gamma in Zucchini and MacDonald (2009) } \description{ Functions that compute the transition matrix for various models. Currently only CJS and MS models are included. } \author{ Jeff Laake <jeff.laake@noaa.gov> } \references{ Zucchini, W. and I.L. MacDonald. 2009. Hidden Markov Models for Time Series: An Introduction using R. Chapman and Hall, Boca Raton, FL. 275p. }
/marked/man/cjs_gamma.Rd
no_license
bmcclintock/marked
R
false
false
900
rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/Transition_functions.r \name{cjs_gamma} \alias{cjs_gamma} \alias{ms2_gamma} \alias{ms_gamma} \title{HMM Transition matrix functions} \usage{ cjs_gamma(pars, m, F, T) } \arguments{ \item{pars}{list of real parameter values for each type of parameter} \item{m}{number of states} \item{F}{initial occasion vector} \item{T}{number of occasions} } \value{ array of id and occasion-specific transition matrices - Gamma in Zucchini and MacDonald (2009) } \description{ Functions that compute the transition matrix for various models. Currently only CJS and MS models are included. } \author{ Jeff Laake <jeff.laake@noaa.gov> } \references{ Zucchini, W. and I.L. MacDonald. 2009. Hidden Markov Models for Time Series: An Introduction using R. Chapman and Hall, Boca Raton, FL. 275p. }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gutenberg_richter_densities.R \name{qGR} \alias{qGR} \title{Inverse cumulative distribution function for Gutenberg Richter distribution} \usage{ qGR(p, b, mw_min) } \arguments{ \item{p}{vector of probabilities} \item{b}{Gutenberg-Richter b value} \item{mw_min}{Minimum mw} } \value{ vector with probability(mw < q | mw >= mw_min) } \description{ Note corresponding functions pGR, qGR, dGR, rGR. See ?rGR for an extended example of fitting with maximum likelihood. } \examples{ # Compute the 90th percentile Mw Mw_90 = qGR(0.9, b=0.8, mw_min=6.0) }
/R/rptha/man/qGR.Rd
permissive
GeoscienceAustralia/ptha
R
false
true
628
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gutenberg_richter_densities.R \name{qGR} \alias{qGR} \title{Inverse cumulative distribution function for Gutenberg Richter distribution} \usage{ qGR(p, b, mw_min) } \arguments{ \item{p}{vector of probabilities} \item{b}{Gutenberg-Richter b value} \item{mw_min}{Minimum mw} } \value{ vector with probability(mw < q | mw >= mw_min) } \description{ Note corresponding functions pGR, qGR, dGR, rGR. See ?rGR for an extended example of fitting with maximum likelihood. } \examples{ # Compute the 90th percentile Mw Mw_90 = qGR(0.9, b=0.8, mw_min=6.0) }
## The functions are used to calculate and cache the inverse of a matrix ## The following function creates a list containing functions to set and ## get the values of a matrix and its inverse makeCacheMatrix <- function(x = matrix()) { inv <- NULL set <- function(y) { x <<- y inv <- NULL } get <- function() x setinverse <- function(inverse) inv <<- inverse getinverse <- function() inv list(set = set, get = get, setinverse = setinverse, getinverse = getinverse) } ## The following function calculates the inverse of the vector created ## with the above function cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' inv <- x$getinverse() if(!is.null(inv)) { message("getting cached data") return(inv) } data <- x$get() inv <- solve(data, ...) x$setinverse(inv) inv }
/cachematrix.R
no_license
luciawrq/ProgrammingAssignment2
R
false
false
963
r
## The functions are used to calculate and cache the inverse of a matrix ## The following function creates a list containing functions to set and ## get the values of a matrix and its inverse makeCacheMatrix <- function(x = matrix()) { inv <- NULL set <- function(y) { x <<- y inv <- NULL } get <- function() x setinverse <- function(inverse) inv <<- inverse getinverse <- function() inv list(set = set, get = get, setinverse = setinverse, getinverse = getinverse) } ## The following function calculates the inverse of the vector created ## with the above function cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' inv <- x$getinverse() if(!is.null(inv)) { message("getting cached data") return(inv) } data <- x$get() inv <- solve(data, ...) x$setinverse(inv) inv }
source("Project1Lib.R") fn_Plot4 <- function(x) { fname <- "plot4.png" cat("Creating",fname, "\n") # attach(hpc) par(mfrow=c(2,2)) plot(hpc$DateTime, hpc$Global_active_power, type="l", ylab="Global Active Power", xlab="") plot(DateTime, Voltage, type="l", ylab="Voltage",xlab="datetime") # yrange<-range(c(hpc$Sub_metering_1,hpc$Sub_metering_2,hpc$Sub_metering_3)) plot(hpc$DateTime, hpc$Sub_metering_1, type="l", xlab="", ylim=yrange, ylab="Energy sub metering") lines(hpc$DateTime,hpc$Sub_metering_2, col="red") lines(hpc$DateTime,hpc$Sub_metering_3, col="blue") legend("topright",bty="n",cex=.75,lty=c(1,1,1),col=c("black","red","blue"),c("Sub_metering_1 ","Sub_metering_2 ","Sub_metering_3 ")) # plot(DateTime, Global_reactive_power, type="l", xlab="datetime") dev.copy(png,fname, width=480, height=480) dev.off() } if (exists("hpc") && is.data.frame(get("hpc"))) { fn_Plot4() } else { hpc <- fn_GetData() }
/plot4.R
no_license
nate43026/ExData_Plotting1
R
false
false
962
r
source("Project1Lib.R") fn_Plot4 <- function(x) { fname <- "plot4.png" cat("Creating",fname, "\n") # attach(hpc) par(mfrow=c(2,2)) plot(hpc$DateTime, hpc$Global_active_power, type="l", ylab="Global Active Power", xlab="") plot(DateTime, Voltage, type="l", ylab="Voltage",xlab="datetime") # yrange<-range(c(hpc$Sub_metering_1,hpc$Sub_metering_2,hpc$Sub_metering_3)) plot(hpc$DateTime, hpc$Sub_metering_1, type="l", xlab="", ylim=yrange, ylab="Energy sub metering") lines(hpc$DateTime,hpc$Sub_metering_2, col="red") lines(hpc$DateTime,hpc$Sub_metering_3, col="blue") legend("topright",bty="n",cex=.75,lty=c(1,1,1),col=c("black","red","blue"),c("Sub_metering_1 ","Sub_metering_2 ","Sub_metering_3 ")) # plot(DateTime, Global_reactive_power, type="l", xlab="datetime") dev.copy(png,fname, width=480, height=480) dev.off() } if (exists("hpc") && is.data.frame(get("hpc"))) { fn_Plot4() } else { hpc <- fn_GetData() }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DataOrganization.R \name{NumberPermsAnySize} \alias{NumberPermsAnySize} \title{Total Number of Permutations of all sizes} \usage{ NumberPermsAnySize(n, min = 1) } \arguments{ \item{n}{The total number of choices} \item{min}{The total number of choices} } \description{ Calculates the number of permutatons for a total number of objects when it is possible to select any number of them (with no repeats). This is useful for calculateing how many scoring possibilities for a click and drag ordering item. Also allows for specifying a minimum number. Such as for items of the form: Select at least 5 most important things to do, and order them by priority. } \examples{ NumberPermsAnySize(10,6) } \keyword{permutation}
/man/NumberPermsAnySize.Rd
no_license
alexbrodersen/teis
R
false
true
796
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DataOrganization.R \name{NumberPermsAnySize} \alias{NumberPermsAnySize} \title{Total Number of Permutations of all sizes} \usage{ NumberPermsAnySize(n, min = 1) } \arguments{ \item{n}{The total number of choices} \item{min}{The total number of choices} } \description{ Calculates the number of permutatons for a total number of objects when it is possible to select any number of them (with no repeats). This is useful for calculateing how many scoring possibilities for a click and drag ordering item. Also allows for specifying a minimum number. Such as for items of the form: Select at least 5 most important things to do, and order them by priority. } \examples{ NumberPermsAnySize(10,6) } \keyword{permutation}
library(datafsm) context("Main evolve_model function") test_that("evolve_model() returns correct type of object", { cdata <- data.frame(period = 1:5, outcome = c(1,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1)) result <- evolve_model(cdata, cv=FALSE) expect_is(result, "ga_fsm") }) test_that("evolve_model() returns warnings and errors", { cdata <- as.matrix(data.frame(period = 1:5, outcome = c(1,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1))) expect_warning(evolve_model(cdata, cv=FALSE), "did not supply a data.frame") cdata <- data.frame(period = 1:5, outcome = c(NA,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1)) expect_error(evolve_model(cdata, cv=FALSE), "missing") cdata <- data.frame(period = 1:5, outcome = c(1,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1), joe.decision1 = c(0,0,0,1,1), jack.decision1 = c(0,0,0,1,1) ) expect_warning(evolve_model(cdata, cv=FALSE), "predictor", all=FALSE) cdata <- data.frame(period = 1:5, outcome = c(1,1,1,1,1), my.decision1 = c(1,0,1,3,1), other.decision1 = c(0,0,0,1,1)) expect_error(evolve_model(cdata, cv=FALSE), "unique") cdata <- data.frame(period = 1:5, my.decision1 = c(1,0,1,3,1), other.decision1 = c(0,0,0,1,1)) expect_error(evolve_model(cdata, cv=FALSE), regexp = "predictor") })
/tests/testthat/test_mainfunc.R
permissive
jdblischak/datafsm
R
false
false
1,556
r
library(datafsm) context("Main evolve_model function") test_that("evolve_model() returns correct type of object", { cdata <- data.frame(period = 1:5, outcome = c(1,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1)) result <- evolve_model(cdata, cv=FALSE) expect_is(result, "ga_fsm") }) test_that("evolve_model() returns warnings and errors", { cdata <- as.matrix(data.frame(period = 1:5, outcome = c(1,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1))) expect_warning(evolve_model(cdata, cv=FALSE), "did not supply a data.frame") cdata <- data.frame(period = 1:5, outcome = c(NA,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1)) expect_error(evolve_model(cdata, cv=FALSE), "missing") cdata <- data.frame(period = 1:5, outcome = c(1,2,1,1,1), my.decision1 = c(1,0,1,1,1), other.decision1 = c(0,0,0,1,1), joe.decision1 = c(0,0,0,1,1), jack.decision1 = c(0,0,0,1,1) ) expect_warning(evolve_model(cdata, cv=FALSE), "predictor", all=FALSE) cdata <- data.frame(period = 1:5, outcome = c(1,1,1,1,1), my.decision1 = c(1,0,1,3,1), other.decision1 = c(0,0,0,1,1)) expect_error(evolve_model(cdata, cv=FALSE), "unique") cdata <- data.frame(period = 1:5, my.decision1 = c(1,0,1,3,1), other.decision1 = c(0,0,0,1,1)) expect_error(evolve_model(cdata, cv=FALSE), regexp = "predictor") })
gcv_function <- function(alpha,gamma2,beta) { f = (alpha^2)/(gamma2 + alpha^2); ### length(f); ### length(beta); if(length(f)>length(beta)) { f=f[1:length(beta)]; } else { if(length(beta)>length(f)) { iend = length(beta) beta=beta[(iend-length(f)+1):iend]; } } g = (Mnorm(f*beta)^2)/(sum(f))^2; return(g) }
/R/gcv_function.R
no_license
cran/PEIP
R
false
false
430
r
gcv_function <- function(alpha,gamma2,beta) { f = (alpha^2)/(gamma2 + alpha^2); ### length(f); ### length(beta); if(length(f)>length(beta)) { f=f[1:length(beta)]; } else { if(length(beta)>length(f)) { iend = length(beta) beta=beta[(iend-length(f)+1):iend]; } } g = (Mnorm(f*beta)^2)/(sum(f))^2; return(g) }
########################################################################################################################## ## Loop BKMR model through 100 seeds ## 11/18/2019 ########################################################################################################################## #install.packages("bkmr") #install.packages("tidyverse") ## load required libraries # Location for HPC! library(truncnorm, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(bkmr, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(tidyverse) library(dotCall64, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(spam, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(maps, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(fields, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") ########################################################################################################################## ## Data Manipulation ########################################################################################################################## ## read in data and only consider complete data ## this drops 327 individuals, but BKMR does not handle missing data nhanes = na.omit(read_csv("Data/studypop.csv")) ## center/scale continous covariates and create indicators for categorical covariates nhanes$age_z = scale(nhanes$age_cent) ## center and scale age nhanes$agez_sq = nhanes$age_z^2 ## square this age variable nhanes$bmicat2 = as.numeric(nhanes$bmi_cat3 == 2) ## 25 <= BMI < 30 nhanes$bmicat3 = as.numeric(nhanes$bmi_cat3 == 3) ## BMI >= 30 (BMI < 25 is the reference) nhanes$educat1 = as.numeric(nhanes$edu_cat == 1) ## no high school diploma nhanes$educat3 = as.numeric(nhanes$edu_cat == 3) ## some college or AA degree nhanes$educat4 = as.numeric(nhanes$edu_cat == 4) ## college grad or above (reference is high schol grad/GED or equivalent) nhanes$otherhispanic = as.numeric(nhanes$race_cat == 1) ## other Hispanic or other race - including multi-racial nhanes$mexamerican = as.numeric(nhanes$race_cat == 2) ## Mexican American nhanes$black = as.numeric(nhanes$race_cat == 3) ## non-Hispanic Black (non-Hispanic White as reference group) nhanes$wbcc_z = scale(nhanes$LBXWBCSI) nhanes$lymphocytes_z = scale(nhanes$LBXLYPCT) nhanes$monocytes_z = scale(nhanes$LBXMOPCT) nhanes$neutrophils_z = scale(nhanes$LBXNEPCT) nhanes$eosinophils_z = scale(nhanes$LBXEOPCT) nhanes$basophils_z = scale(nhanes$LBXBAPCT) nhanes$lncotinine_z = scale(nhanes$ln_lbxcot) ## to access smoking status, scaled ln cotinine levels ## our y variable - ln transformed and scaled mean telomere length lnLTL_z = scale(log(nhanes$TELOMEAN)) ## our Z matrix mixture = with(nhanes, cbind(LBX074LA, LBX099LA, LBX118LA, LBX138LA, LBX153LA, LBX170LA, LBX180LA, LBX187LA, LBX194LA, LBXHXCLA, LBXPCBLA, LBXD03LA, LBXD05LA, LBXD07LA, LBXF03LA, LBXF04LA, LBXF05LA, LBXF08LA)) lnmixture = apply(mixture, 2, log) lnmixture_z = scale(lnmixture) colnames(lnmixture_z) = c(paste0("PCB",c(74, 99, 118, 138, 153, 170, 180, 187, 194, 169, 126)), paste0("Dioxin",1:3), paste0("Furan",1:4)) ## our X matrix covariates = with(nhanes, cbind(age_z, agez_sq, male, bmicat2, bmicat3, educat1, educat3, educat4, otherhispanic, mexamerican, black, wbcc_z, lymphocytes_z, monocytes_z, neutrophils_z, eosinophils_z, basophils_z, lncotinine_z)) ############################################################################################################################ ## Above code does not change ## Next begin looping over seeds ############################################################################################################################ ### create knots matrix for Gaussian predictive process (to speed up BKMR with large datasets) #set.seed(1506744763) # use better seed now set.seed(10) knots100 <- fields::cover.design(lnmixture_z, nd = 100)$design ########################################################################################################################## ## Fit Model ########################################################################################################################## ### Group VS Fit with all Exposures using GPP and 100 Knots ##### fit BKMR models WITH Gaussian predictive process using 100 knots ## Loop Over Seeds fit_seed <- function(seed) { set.seed(seed) print(format(Sys.time(), "%c")) fit_bkmr_seed <- kmbayes( y = lnLTL_z, Z = lnmixture_z, X = covariates, iter = 100000, verbose = FALSE, varsel = TRUE, groups = c(rep(1, times = 2), 2, rep(1, times = 6), rep(3, times = 2), rep(2, times = 7)), knots = knots100) } ## read job number from system environment ## This only works if run on cluster!! job_num = as.integer(Sys.getenv("SGE_TASK_ID")) ## set seed, create sample, export -- this can help double check that code is ## reproducibly simulating examples repeat_model_25 <- tibble(seed = job_num) %>% mutate(fits = list(fit_seed(seed))) ########################################################################################################################## ## Posterior Inclusion Probabilities (PIPs) ########################################################################################################################## get_pips <- function(model) { all_pips = ExtractPIPs(model) all_pips } repeat_model_25 <- repeat_model_25 %>% mutate(pips = list(get_pips(repeat_model_25$fits[[1]]))) ########################################################################################################################## ## Data Visualization ########################################################################################################################## get_data_viz <- function(fit) { ### change this for each model you fit and then rerun the code from here to the bottom modeltoplot <- fit ## name of model object Z <- lnmixture_z ## Z matrix to match what was used in model ### values to keep after burnin/thin sel <- seq(50001, 100000,by = 50) #### Univariable and Bivariable Exposure-Response Functions #### create dataframes for ggplot (this takes a little while to run) pred.resp.univar <- PredictorResponseUnivar(fit = modeltoplot, sel = sel, method = "approx") risks.overall <- OverallRiskSummaries(fit = modeltoplot, qs = seq(0.25, 0.75, by = 0.05), q.fixed = 0.5, method = "approx", sel = sel) list(pred.resp.univar = pred.resp.univar, risks.overall = risks.overall) } repeat_model_25 <- repeat_model_25 %>% mutate(plot_dat = list(get_data_viz(repeat_model_25$fits[[1]]))) # Keep fits to assess 4 null seeds #repeat_model_25 <- repeat_model_25 %>% select(-fits) save(repeat_model_25, file = paste0("bkmr_", job_num, "_model_loop.RDA"))
/BKMR/HPC/bkmr_loop_model_25.R
no_license
yanellinunez/Commentary-to-mixture-methods-paper
R
false
false
7,118
r
########################################################################################################################## ## Loop BKMR model through 100 seeds ## 11/18/2019 ########################################################################################################################## #install.packages("bkmr") #install.packages("tidyverse") ## load required libraries # Location for HPC! library(truncnorm, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(bkmr, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(tidyverse) library(dotCall64, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(spam, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(maps, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") library(fields, lib.loc = "/ifs/home/msph/ehs/eag2186/local/hpc/") ########################################################################################################################## ## Data Manipulation ########################################################################################################################## ## read in data and only consider complete data ## this drops 327 individuals, but BKMR does not handle missing data nhanes = na.omit(read_csv("Data/studypop.csv")) ## center/scale continous covariates and create indicators for categorical covariates nhanes$age_z = scale(nhanes$age_cent) ## center and scale age nhanes$agez_sq = nhanes$age_z^2 ## square this age variable nhanes$bmicat2 = as.numeric(nhanes$bmi_cat3 == 2) ## 25 <= BMI < 30 nhanes$bmicat3 = as.numeric(nhanes$bmi_cat3 == 3) ## BMI >= 30 (BMI < 25 is the reference) nhanes$educat1 = as.numeric(nhanes$edu_cat == 1) ## no high school diploma nhanes$educat3 = as.numeric(nhanes$edu_cat == 3) ## some college or AA degree nhanes$educat4 = as.numeric(nhanes$edu_cat == 4) ## college grad or above (reference is high schol grad/GED or equivalent) nhanes$otherhispanic = as.numeric(nhanes$race_cat == 1) ## other Hispanic or other race - including multi-racial nhanes$mexamerican = as.numeric(nhanes$race_cat == 2) ## Mexican American nhanes$black = as.numeric(nhanes$race_cat == 3) ## non-Hispanic Black (non-Hispanic White as reference group) nhanes$wbcc_z = scale(nhanes$LBXWBCSI) nhanes$lymphocytes_z = scale(nhanes$LBXLYPCT) nhanes$monocytes_z = scale(nhanes$LBXMOPCT) nhanes$neutrophils_z = scale(nhanes$LBXNEPCT) nhanes$eosinophils_z = scale(nhanes$LBXEOPCT) nhanes$basophils_z = scale(nhanes$LBXBAPCT) nhanes$lncotinine_z = scale(nhanes$ln_lbxcot) ## to access smoking status, scaled ln cotinine levels ## our y variable - ln transformed and scaled mean telomere length lnLTL_z = scale(log(nhanes$TELOMEAN)) ## our Z matrix mixture = with(nhanes, cbind(LBX074LA, LBX099LA, LBX118LA, LBX138LA, LBX153LA, LBX170LA, LBX180LA, LBX187LA, LBX194LA, LBXHXCLA, LBXPCBLA, LBXD03LA, LBXD05LA, LBXD07LA, LBXF03LA, LBXF04LA, LBXF05LA, LBXF08LA)) lnmixture = apply(mixture, 2, log) lnmixture_z = scale(lnmixture) colnames(lnmixture_z) = c(paste0("PCB",c(74, 99, 118, 138, 153, 170, 180, 187, 194, 169, 126)), paste0("Dioxin",1:3), paste0("Furan",1:4)) ## our X matrix covariates = with(nhanes, cbind(age_z, agez_sq, male, bmicat2, bmicat3, educat1, educat3, educat4, otherhispanic, mexamerican, black, wbcc_z, lymphocytes_z, monocytes_z, neutrophils_z, eosinophils_z, basophils_z, lncotinine_z)) ############################################################################################################################ ## Above code does not change ## Next begin looping over seeds ############################################################################################################################ ### create knots matrix for Gaussian predictive process (to speed up BKMR with large datasets) #set.seed(1506744763) # use better seed now set.seed(10) knots100 <- fields::cover.design(lnmixture_z, nd = 100)$design ########################################################################################################################## ## Fit Model ########################################################################################################################## ### Group VS Fit with all Exposures using GPP and 100 Knots ##### fit BKMR models WITH Gaussian predictive process using 100 knots ## Loop Over Seeds fit_seed <- function(seed) { set.seed(seed) print(format(Sys.time(), "%c")) fit_bkmr_seed <- kmbayes( y = lnLTL_z, Z = lnmixture_z, X = covariates, iter = 100000, verbose = FALSE, varsel = TRUE, groups = c(rep(1, times = 2), 2, rep(1, times = 6), rep(3, times = 2), rep(2, times = 7)), knots = knots100) } ## read job number from system environment ## This only works if run on cluster!! job_num = as.integer(Sys.getenv("SGE_TASK_ID")) ## set seed, create sample, export -- this can help double check that code is ## reproducibly simulating examples repeat_model_25 <- tibble(seed = job_num) %>% mutate(fits = list(fit_seed(seed))) ########################################################################################################################## ## Posterior Inclusion Probabilities (PIPs) ########################################################################################################################## get_pips <- function(model) { all_pips = ExtractPIPs(model) all_pips } repeat_model_25 <- repeat_model_25 %>% mutate(pips = list(get_pips(repeat_model_25$fits[[1]]))) ########################################################################################################################## ## Data Visualization ########################################################################################################################## get_data_viz <- function(fit) { ### change this for each model you fit and then rerun the code from here to the bottom modeltoplot <- fit ## name of model object Z <- lnmixture_z ## Z matrix to match what was used in model ### values to keep after burnin/thin sel <- seq(50001, 100000,by = 50) #### Univariable and Bivariable Exposure-Response Functions #### create dataframes for ggplot (this takes a little while to run) pred.resp.univar <- PredictorResponseUnivar(fit = modeltoplot, sel = sel, method = "approx") risks.overall <- OverallRiskSummaries(fit = modeltoplot, qs = seq(0.25, 0.75, by = 0.05), q.fixed = 0.5, method = "approx", sel = sel) list(pred.resp.univar = pred.resp.univar, risks.overall = risks.overall) } repeat_model_25 <- repeat_model_25 %>% mutate(plot_dat = list(get_data_viz(repeat_model_25$fits[[1]]))) # Keep fits to assess 4 null seeds #repeat_model_25 <- repeat_model_25 %>% select(-fits) save(repeat_model_25, file = paste0("bkmr_", job_num, "_model_loop.RDA"))
#' @name windfarmGA #' @description The initiating function of an optimization run which will #' interactively check user-inputs. If all inputs are correct, an optimization #' will be started. #' #' @export #' #' @param dns The data source name (interpretation varies by driver — for some #' drivers, dsn is a file name, but may also be a folder) #' @param layer The layer name #' #' @seealso \code{\link{genetic_algorithm}} #' @family Genetic Algorithm Functions #' #' @inherit genetic_algorithm details return params title windfarmGA <- function(dns, layer, Polygon1, GridMethod, Projection, sourceCCL, sourceCCLRoughness, vdirspe, Rotor = 30, fcrR = 5, n = 10, topograp = FALSE, iteration = 20, referenceHeight = 50, RotorHeight = 50, SurfaceRoughness = 0.14, Proportionality = 1, mutr = 0.008, elitism = TRUE, nelit = 7, selstate = "FIX", crossPart1 = "EQU", trimForce = TRUE, weibull, weibullsrc, Parallel, numCluster, verbose = FALSE, plotit = FALSE) { ## Plotting Settings ######### opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(mfrow = c(1,2), ask = FALSE) ######## Check Polygon ######## ## Check if Polygon given is correctly if (!missing(Polygon1)) { if (!missing(Projection)) { Polygon1 <- isSpatial(Polygon1, Projection) } else { Polygon1 <- isSpatial(Polygon1) } plot(Polygon1, col = "red", main = "Original Input Shapefile", axes =TRUE) title(sub = st_crs(Polygon1)$input, line = 1) readline(prompt = "\nHit <ENTER> if this is your Polygon") } ## Load Polygon from a Source File. Just if dns and layer are not missing. if (!missing(dns) & !missing(layer)) { # Input the Source of the desired Polygon Polygon1 <- sf::st_read(dsn = dns, layer = layer) plot(Polygon1, col = "red", main = "Original Input Shapefile", axes =TRUE) title(sub = paste("CRS:", st_crs(Polygon1)$input), line = 1) readline(prompt = "\nHit <ENTER> if this is your Polygon") } PROJ6 <- utils::compareVersion(sf::sf_extSoftVersion()[[3]], "6") > 0 ## Project the Polygon to LAEA if it is not already. if (missing(Projection)) { cat("No Projection is given. Take Lambert Azimuthal Equal Area Projection (EPSG:3035).\n") if (PROJ6) { Projection <- 3035 } else { Projection <- "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=m +no_defs" } } else { Projection <- Projection } if (is.na(st_crs(Polygon1))) { cat("Polygon is not projected. The spatial reference WGS 84 (EPSG:4326) is assumed.\n") if (PROJ6) { st_crs(Polygon1) <- 4326 } else { Projection <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs " } } if (PROJ6) { if (!isTRUE(all.equal(st_crs(Polygon1), st_crs(Projection)))) { Polygon1 <- sf::st_transform(Polygon1, st_crs(Projection)) } } else { if (as.character(raster::crs(Polygon1)) != Projection) { Polygon1 <- sf::st_transform(Polygon1, st_crs(Projection)) } } plot(Polygon1, col = "red", main = "Projected Input Shapefile", axes =TRUE) title(sub = paste("CRS:", st_crs(Polygon1)$input), line = 1) readline(prompt = "\nHit <ENTER> if this is your Polygon") ######## CHECK Crossover and Selection Params ######## ## Check if Crossover Method is chosen correctly. if (missing(crossPart1)) {crossPart1 <- readinteger()} if (crossPart1 != "EQU" & crossPart1 != "RAN") { crossPart1 <- readinteger() } ## Check if Selection Method is chosen correctly. if (missing(selstate)) {selstate <- readintegerSel()} if (selstate != "FIX" & selstate != "VAR") { selstate <- readintegerSel() } ######## Check Wind Data ############ ## Check if Input Wind data is given correctly. if (missing(vdirspe)) { stop("\n##### No wind data.frame is given. \nThis input is required for an optimization run") } plot.new() plot_windrose(data = vdirspe, spd = vdirspe[, 'ws'], dir = vdirspe[, 'wd']) readline(prompt = "\nPress <ENTER> if the windrose looks correct?") ######## Check Numeric and logical Inputs ############ ## Check if Rotor,fcrR,n,iteration,RotorHeight, ## SurfaceRoughness,Proportionality,mutr,nelit are numeric ChekNumer <- is.numeric(c(Rotor, n, fcrR, iteration, referenceHeight, RotorHeight, SurfaceRoughness, Proportionality, mutr, nelit)) if (ChekNumer == FALSE) { cat("################### GA WARNING MESSAGE ###################") stop("\n##### A required numeric input is not numeric.\n See documentation.") } ## Check if topograp,elitism,trimForce are logical ChekLogic <- is.logical(c(topograp, elitism, trimForce)) if (ChekLogic == FALSE) { cat("################### GA WARNING MESSAGE ###################") stop("\n##### A required logical input is not logical.\n See documentation.") } ######## Check Gridding Params ############ ## Check if Grid with given inputs is correctly if (missing(GridMethod)) { GridMethod <- "Rectangular" } GridMethod <- toupper(GridMethod) ## Decide if the space division should be rectangular or in hexagons. if (GridMethod == "HEXAGON" | GridMethod == "H") { Grid <- hexa_area(shape = Polygon1, size = (Rotor * fcrR), plotGrid = TRUE) } else { Grid <- grid_area(shape = Polygon1, size = (Rotor * fcrR), prop = Proportionality, plotGrid = TRUE) } cat("\nIs the grid spacing appropriate?\n") # InputDaccor <- readline(prompt = "Hit 'ENTER' if the the grid is corrent and 'n' if you like to change some inputs.") cat("Type 'ENTER' if the the grid is corrent and 'n' if you like to change some inputs.") InputDaccor <- readLines(n = 1, con = getOption("windfarmGA.connection")) InputDaccor <- tolower(InputDaccor) if (InputDaccor == "n") { cat("################### GA WARNING MESSAGE ###################\n") stop("\n##### The grid spacing is not as required. \n", "Adjust the rotor radius (Rotor), the fraction of the radius (fcrR) or the spatial reference system (Projection).\n", "You can also use the function `grid_area` / `hexa_area` first, to see the resulting grid.\n" ) } ######## Check Topographic Model and Weibull Params ######## if (missing(topograp)) { topograp <- FALSE } if (missing(weibull)) { weibull <- FALSE } if (weibull) { if (!missing(weibullsrc)) { if (!class(weibullsrc) == "list") { cat(paste("\nweibullsrc class: \n1 - ", class(weibullsrc), "\n")) stop("\n'weibullsrc' must be a list with two rasters. List item 1 should be the shape parameter (k) raster and list item 2 should be the scale parameter (a) raster of a weibull distribution.") } if (!class(weibullsrc[[1]])[1] == "RasterLayer" | !class(weibullsrc[[2]])[1] == "RasterLayer" ) { cat(paste("\nlist item classes: \n1 - ", class(weibullsrc[[1]]), "\n2 - ", class(weibullsrc[[2]])), "\n") stop("\nOne of the given list items is not a raster.") } } } ######## Check Parallel Params ######## if (missing(Parallel)) { Parallel <- FALSE } if (missing(numCluster)) { numCluster <- 2 } if (Parallel == TRUE) { # numPossClus <- as.integer(Sys.getenv("NUMBER_OF_PROCESSORS")) numPossClus <- parallel::detectCores() if (numCluster > numPossClus) { cat("\nNumber of clusters is bigger than the amount of available cores. Reduce to max.") numCluster <- numPossClus } } ######## RUN GENETIC ALGORITHM ############## cat("Run Algorithm:\n") result <- genetic_algorithm(Polygon1 = Polygon1, GridMethod = GridMethod, Rotor = Rotor, n = n, fcrR = fcrR, iteration = iteration, vdirspe = vdirspe, topograp = topograp, referenceHeight = referenceHeight, RotorHeight = RotorHeight, SurfaceRoughness = SurfaceRoughness, Proportionality = Proportionality, mutr = mutr, elitism = elitism, nelit = nelit, selstate = selstate, crossPart1 = crossPart1, trimForce = trimForce, Projection = Projection, sourceCCL = sourceCCL, sourceCCLRoughness = sourceCCLRoughness, weibull = weibull, weibullsrc = weibullsrc, Parallel = Parallel, numCluster = numCluster, verbose = verbose, plotit = plotit) invisible(result) }
/R/windfarmGA.R
no_license
allenfieldin/windfarmGA
R
false
false
8,756
r
#' @name windfarmGA #' @description The initiating function of an optimization run which will #' interactively check user-inputs. If all inputs are correct, an optimization #' will be started. #' #' @export #' #' @param dns The data source name (interpretation varies by driver — for some #' drivers, dsn is a file name, but may also be a folder) #' @param layer The layer name #' #' @seealso \code{\link{genetic_algorithm}} #' @family Genetic Algorithm Functions #' #' @inherit genetic_algorithm details return params title windfarmGA <- function(dns, layer, Polygon1, GridMethod, Projection, sourceCCL, sourceCCLRoughness, vdirspe, Rotor = 30, fcrR = 5, n = 10, topograp = FALSE, iteration = 20, referenceHeight = 50, RotorHeight = 50, SurfaceRoughness = 0.14, Proportionality = 1, mutr = 0.008, elitism = TRUE, nelit = 7, selstate = "FIX", crossPart1 = "EQU", trimForce = TRUE, weibull, weibullsrc, Parallel, numCluster, verbose = FALSE, plotit = FALSE) { ## Plotting Settings ######### opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(mfrow = c(1,2), ask = FALSE) ######## Check Polygon ######## ## Check if Polygon given is correctly if (!missing(Polygon1)) { if (!missing(Projection)) { Polygon1 <- isSpatial(Polygon1, Projection) } else { Polygon1 <- isSpatial(Polygon1) } plot(Polygon1, col = "red", main = "Original Input Shapefile", axes =TRUE) title(sub = st_crs(Polygon1)$input, line = 1) readline(prompt = "\nHit <ENTER> if this is your Polygon") } ## Load Polygon from a Source File. Just if dns and layer are not missing. if (!missing(dns) & !missing(layer)) { # Input the Source of the desired Polygon Polygon1 <- sf::st_read(dsn = dns, layer = layer) plot(Polygon1, col = "red", main = "Original Input Shapefile", axes =TRUE) title(sub = paste("CRS:", st_crs(Polygon1)$input), line = 1) readline(prompt = "\nHit <ENTER> if this is your Polygon") } PROJ6 <- utils::compareVersion(sf::sf_extSoftVersion()[[3]], "6") > 0 ## Project the Polygon to LAEA if it is not already. if (missing(Projection)) { cat("No Projection is given. Take Lambert Azimuthal Equal Area Projection (EPSG:3035).\n") if (PROJ6) { Projection <- 3035 } else { Projection <- "+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=m +no_defs" } } else { Projection <- Projection } if (is.na(st_crs(Polygon1))) { cat("Polygon is not projected. The spatial reference WGS 84 (EPSG:4326) is assumed.\n") if (PROJ6) { st_crs(Polygon1) <- 4326 } else { Projection <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs " } } if (PROJ6) { if (!isTRUE(all.equal(st_crs(Polygon1), st_crs(Projection)))) { Polygon1 <- sf::st_transform(Polygon1, st_crs(Projection)) } } else { if (as.character(raster::crs(Polygon1)) != Projection) { Polygon1 <- sf::st_transform(Polygon1, st_crs(Projection)) } } plot(Polygon1, col = "red", main = "Projected Input Shapefile", axes =TRUE) title(sub = paste("CRS:", st_crs(Polygon1)$input), line = 1) readline(prompt = "\nHit <ENTER> if this is your Polygon") ######## CHECK Crossover and Selection Params ######## ## Check if Crossover Method is chosen correctly. if (missing(crossPart1)) {crossPart1 <- readinteger()} if (crossPart1 != "EQU" & crossPart1 != "RAN") { crossPart1 <- readinteger() } ## Check if Selection Method is chosen correctly. if (missing(selstate)) {selstate <- readintegerSel()} if (selstate != "FIX" & selstate != "VAR") { selstate <- readintegerSel() } ######## Check Wind Data ############ ## Check if Input Wind data is given correctly. if (missing(vdirspe)) { stop("\n##### No wind data.frame is given. \nThis input is required for an optimization run") } plot.new() plot_windrose(data = vdirspe, spd = vdirspe[, 'ws'], dir = vdirspe[, 'wd']) readline(prompt = "\nPress <ENTER> if the windrose looks correct?") ######## Check Numeric and logical Inputs ############ ## Check if Rotor,fcrR,n,iteration,RotorHeight, ## SurfaceRoughness,Proportionality,mutr,nelit are numeric ChekNumer <- is.numeric(c(Rotor, n, fcrR, iteration, referenceHeight, RotorHeight, SurfaceRoughness, Proportionality, mutr, nelit)) if (ChekNumer == FALSE) { cat("################### GA WARNING MESSAGE ###################") stop("\n##### A required numeric input is not numeric.\n See documentation.") } ## Check if topograp,elitism,trimForce are logical ChekLogic <- is.logical(c(topograp, elitism, trimForce)) if (ChekLogic == FALSE) { cat("################### GA WARNING MESSAGE ###################") stop("\n##### A required logical input is not logical.\n See documentation.") } ######## Check Gridding Params ############ ## Check if Grid with given inputs is correctly if (missing(GridMethod)) { GridMethod <- "Rectangular" } GridMethod <- toupper(GridMethod) ## Decide if the space division should be rectangular or in hexagons. if (GridMethod == "HEXAGON" | GridMethod == "H") { Grid <- hexa_area(shape = Polygon1, size = (Rotor * fcrR), plotGrid = TRUE) } else { Grid <- grid_area(shape = Polygon1, size = (Rotor * fcrR), prop = Proportionality, plotGrid = TRUE) } cat("\nIs the grid spacing appropriate?\n") # InputDaccor <- readline(prompt = "Hit 'ENTER' if the the grid is corrent and 'n' if you like to change some inputs.") cat("Type 'ENTER' if the the grid is corrent and 'n' if you like to change some inputs.") InputDaccor <- readLines(n = 1, con = getOption("windfarmGA.connection")) InputDaccor <- tolower(InputDaccor) if (InputDaccor == "n") { cat("################### GA WARNING MESSAGE ###################\n") stop("\n##### The grid spacing is not as required. \n", "Adjust the rotor radius (Rotor), the fraction of the radius (fcrR) or the spatial reference system (Projection).\n", "You can also use the function `grid_area` / `hexa_area` first, to see the resulting grid.\n" ) } ######## Check Topographic Model and Weibull Params ######## if (missing(topograp)) { topograp <- FALSE } if (missing(weibull)) { weibull <- FALSE } if (weibull) { if (!missing(weibullsrc)) { if (!class(weibullsrc) == "list") { cat(paste("\nweibullsrc class: \n1 - ", class(weibullsrc), "\n")) stop("\n'weibullsrc' must be a list with two rasters. List item 1 should be the shape parameter (k) raster and list item 2 should be the scale parameter (a) raster of a weibull distribution.") } if (!class(weibullsrc[[1]])[1] == "RasterLayer" | !class(weibullsrc[[2]])[1] == "RasterLayer" ) { cat(paste("\nlist item classes: \n1 - ", class(weibullsrc[[1]]), "\n2 - ", class(weibullsrc[[2]])), "\n") stop("\nOne of the given list items is not a raster.") } } } ######## Check Parallel Params ######## if (missing(Parallel)) { Parallel <- FALSE } if (missing(numCluster)) { numCluster <- 2 } if (Parallel == TRUE) { # numPossClus <- as.integer(Sys.getenv("NUMBER_OF_PROCESSORS")) numPossClus <- parallel::detectCores() if (numCluster > numPossClus) { cat("\nNumber of clusters is bigger than the amount of available cores. Reduce to max.") numCluster <- numPossClus } } ######## RUN GENETIC ALGORITHM ############## cat("Run Algorithm:\n") result <- genetic_algorithm(Polygon1 = Polygon1, GridMethod = GridMethod, Rotor = Rotor, n = n, fcrR = fcrR, iteration = iteration, vdirspe = vdirspe, topograp = topograp, referenceHeight = referenceHeight, RotorHeight = RotorHeight, SurfaceRoughness = SurfaceRoughness, Proportionality = Proportionality, mutr = mutr, elitism = elitism, nelit = nelit, selstate = selstate, crossPart1 = crossPart1, trimForce = trimForce, Projection = Projection, sourceCCL = sourceCCL, sourceCCLRoughness = sourceCCLRoughness, weibull = weibull, weibullsrc = weibullsrc, Parallel = Parallel, numCluster = numCluster, verbose = verbose, plotit = plotit) invisible(result) }
source('global.R') fluidPage( #tab title title="time2pub", #titlePanel(h2("Journal-Specific Fast-Track time2pub Visualization",align='center')), mainPanel(width=12, # tags$style(type="text/css", # ".shiny-output-error { visibility: hidden; }", # ".shiny-output-error:before { visibility: hidden; }" # ), fixedRow( column(2,br(),a(href='https://www.time2pub.com/',img(src='logo.jpg',height='75px',width='150px'))), column(8,offset=0,br(),titlePanel(h3("Journal-Specific Fast-Track time2pub Visualization",align='center'))) ), br(), fluidRow( column(1,br(),br(),br(),br(),br(),br(),br(),br(), radioButtons('y','',choices=c('Covid','Pre-Covid'),selected='Covid',inline=F), style='padding:0px;margin-right:-1em'), column(5, #div(align='left',uiOutput('searchUI')), div(align='left',selectInput('search',label=NULL,choices=c('All Journals',sort(unique(summarizedData$Journal))),selected='All Journals',multiple=FALSE)), #div(align='left',style='margin-bottom=-3em',selectInput('search',label=NULL,choices=c('All Journals',sort(unique(summarizedData$Journal))),selected='All Journals',multiple=FALSE)), div(plotlyOutput(outputId='mainPlot',width='100%'),style='margin-left:-2em;margin-top:-1em'), div(align = "center", style='margin-top:-2em',br(),radioButtons('x','',choices=c('Covid','Non-Covid'),selected='Non-Covid',inline=T)) ), column(6,br(),br(),br(), div(plotOutput(outputId='densityPlot',width='100%'),style='margin-left:2em;') ) ), fluidRow( br(),h4('PubMed Entry Navigation',style='margin-left:1em;') ), tabsetPanel( tabPanel('COVID',br(),dataTableOutput("table")), tabPanel('Non-COVID',br(),dataTableOutput('nonCovidTable')), tabPanel('Pre-COVID',br(),dataTableOutput('preCovidTable')) ), br(),br(),br(),br() # br(),br(), # HTML(paste(h3('Covid Papers'))),br(), # fluidRow( # dataTableOutput("table") # ), # br(),br(), # HTML(paste(h3('Non-Covid Papers'))),br(), # fluidRow( # dataTableOutput('nonCovidTable') # ), # br(),br() ) )
/ui.R
permissive
joshuamwang/time2pub
R
false
false
2,291
r
source('global.R') fluidPage( #tab title title="time2pub", #titlePanel(h2("Journal-Specific Fast-Track time2pub Visualization",align='center')), mainPanel(width=12, # tags$style(type="text/css", # ".shiny-output-error { visibility: hidden; }", # ".shiny-output-error:before { visibility: hidden; }" # ), fixedRow( column(2,br(),a(href='https://www.time2pub.com/',img(src='logo.jpg',height='75px',width='150px'))), column(8,offset=0,br(),titlePanel(h3("Journal-Specific Fast-Track time2pub Visualization",align='center'))) ), br(), fluidRow( column(1,br(),br(),br(),br(),br(),br(),br(),br(), radioButtons('y','',choices=c('Covid','Pre-Covid'),selected='Covid',inline=F), style='padding:0px;margin-right:-1em'), column(5, #div(align='left',uiOutput('searchUI')), div(align='left',selectInput('search',label=NULL,choices=c('All Journals',sort(unique(summarizedData$Journal))),selected='All Journals',multiple=FALSE)), #div(align='left',style='margin-bottom=-3em',selectInput('search',label=NULL,choices=c('All Journals',sort(unique(summarizedData$Journal))),selected='All Journals',multiple=FALSE)), div(plotlyOutput(outputId='mainPlot',width='100%'),style='margin-left:-2em;margin-top:-1em'), div(align = "center", style='margin-top:-2em',br(),radioButtons('x','',choices=c('Covid','Non-Covid'),selected='Non-Covid',inline=T)) ), column(6,br(),br(),br(), div(plotOutput(outputId='densityPlot',width='100%'),style='margin-left:2em;') ) ), fluidRow( br(),h4('PubMed Entry Navigation',style='margin-left:1em;') ), tabsetPanel( tabPanel('COVID',br(),dataTableOutput("table")), tabPanel('Non-COVID',br(),dataTableOutput('nonCovidTable')), tabPanel('Pre-COVID',br(),dataTableOutput('preCovidTable')) ), br(),br(),br(),br() # br(),br(), # HTML(paste(h3('Covid Papers'))),br(), # fluidRow( # dataTableOutput("table") # ), # br(),br(), # HTML(paste(h3('Non-Covid Papers'))),br(), # fluidRow( # dataTableOutput('nonCovidTable') # ), # br(),br() ) )