content
large_stringlengths
0
6.46M
path
large_stringlengths
3
331
license_type
large_stringclasses
2 values
repo_name
large_stringlengths
5
125
language
large_stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.46M
extension
large_stringclasses
75 values
text
stringlengths
0
6.46M
testlist <- list(Beta = 0, CVLinf = 86341236051411296, FM = 1.53632495265886e-311, L50 = 0, L95 = 0, LenBins = c(2.0975686864138e+162, -2.68131210337361e-144, -1.11215735981244e+199, -4.48649879577108e+143, 1.6611802228813e+218, 900371.947279558, 1.07063092954708e+238, 2.88003257377011e-142, 1.29554141202795e-89, -1.87294312860528e-75, 3.04319010211815e+31, 191.463561345044, 1.58785813294449e+217, 1.90326589719466e-118, -3.75494418025505e-296, -2.63346094087863e+200, -5.15510035957975e+44, 2.59028521047075e+149, 1.60517426337473e+72, 1.74851929178852e+35, 1.32201752290843e-186, -1.29599553894715e-227, 3.20314220604904e+207, 584155875718587, 1.71017833066717e-283, -3.96505607598107e+51, 5.04440990041945e-163, -5.09127626480085e+268, 2.88137633290038e+175, 6.22724404181897e-256, 4.94195713773372e-295, 5.80049493946414e+160, -5612008.23597089, -2.68347267272935e-262, 1.28861520348431e-305, -5.05455182157157e-136, 4.44386438170367e+50, -2.07294901774837e+254, -3.56325845332496e+62, -1.38575911145229e-262, -1.19026551334786e-217, -3.54406233509625e-43, -4.15938611724176e-209, -3.06799941292011e-106, 1.78044357763692e+244, -1.24657398993838e+190, 1.14089212334828e-90, 136766.715673668, -1.47333345730049e-67, -2.92763930406321e+21 ), LenMids = c(-1.121210344879e+131, -1.121210344879e+131, NaN), Linf = 2.81991272491703e-308, MK = -2.08633459786369e-239, Ml = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Prob = structure(c(4.48157192325537e-103, 2.43305969276274e+59, 6.5730975202806e-96, 2.03987918888949e-104, 4.6187081097806e-39, 1.10811931066926e+139), .Dim = c(1L, 6L)), SL50 = 9.97941197291525e-316, SL95 = 2.12248160522076e-314, nage = 682962941L, nlen = 1623851345L, rLens = c(4.74956174024781e+199, -7.42049538387034e+278, -5.82966399158032e-71, -6.07988133887702e-34, 4.62037926128924e-295, -8.48833146280612e+43, 2.71954993859316e-126 )) result <- do.call(DLMtool::LBSPRgen,testlist) str(result)
/DLMtool/inst/testfiles/LBSPRgen/AFL_LBSPRgen/LBSPRgen_valgrind_files/1615837310-test.R
no_license
akhikolla/updatedatatype-list2
R
false
false
2,047
r
testlist <- list(Beta = 0, CVLinf = 86341236051411296, FM = 1.53632495265886e-311, L50 = 0, L95 = 0, LenBins = c(2.0975686864138e+162, -2.68131210337361e-144, -1.11215735981244e+199, -4.48649879577108e+143, 1.6611802228813e+218, 900371.947279558, 1.07063092954708e+238, 2.88003257377011e-142, 1.29554141202795e-89, -1.87294312860528e-75, 3.04319010211815e+31, 191.463561345044, 1.58785813294449e+217, 1.90326589719466e-118, -3.75494418025505e-296, -2.63346094087863e+200, -5.15510035957975e+44, 2.59028521047075e+149, 1.60517426337473e+72, 1.74851929178852e+35, 1.32201752290843e-186, -1.29599553894715e-227, 3.20314220604904e+207, 584155875718587, 1.71017833066717e-283, -3.96505607598107e+51, 5.04440990041945e-163, -5.09127626480085e+268, 2.88137633290038e+175, 6.22724404181897e-256, 4.94195713773372e-295, 5.80049493946414e+160, -5612008.23597089, -2.68347267272935e-262, 1.28861520348431e-305, -5.05455182157157e-136, 4.44386438170367e+50, -2.07294901774837e+254, -3.56325845332496e+62, -1.38575911145229e-262, -1.19026551334786e-217, -3.54406233509625e-43, -4.15938611724176e-209, -3.06799941292011e-106, 1.78044357763692e+244, -1.24657398993838e+190, 1.14089212334828e-90, 136766.715673668, -1.47333345730049e-67, -2.92763930406321e+21 ), LenMids = c(-1.121210344879e+131, -1.121210344879e+131, NaN), Linf = 2.81991272491703e-308, MK = -2.08633459786369e-239, Ml = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Prob = structure(c(4.48157192325537e-103, 2.43305969276274e+59, 6.5730975202806e-96, 2.03987918888949e-104, 4.6187081097806e-39, 1.10811931066926e+139), .Dim = c(1L, 6L)), SL50 = 9.97941197291525e-316, SL95 = 2.12248160522076e-314, nage = 682962941L, nlen = 1623851345L, rLens = c(4.74956174024781e+199, -7.42049538387034e+278, -5.82966399158032e-71, -6.07988133887702e-34, 4.62037926128924e-295, -8.48833146280612e+43, 2.71954993859316e-126 )) result <- do.call(DLMtool::LBSPRgen,testlist) str(result)
library(tidyverse) library(data.table) library(fgsea) library(msigdbr) library(DT) library(clusterProfiler) library(grid) library(org.Mmusculus.GRCm38p6.99.eg.db) ## RNAseq DEG functional analysis using clusterProfiler rm(list = ls()) source(file = "E:/Chris_UM/GitHub/omics_util/04_GO_enrichment/topGO_functions.R") source("E:/Chris_UM/GitHub/omics_util/02_RNAseq_scripts/s02_DESeq2_functions.R") ########################################################################### degResult <- "DKO_vs_WT" file_RNAseq_info <- here::here("data", "RNAseq_info.txt") diffDataPath <- here::here("analysis", "02_DESeq2_diff") outDir <- here::here("analysis", "02_DESeq2_diff", degResult) outPrefix <- paste(outDir, "/", degResult, sep = "") # file_msigDesc <- "E:/Chris_UM/Database/Human/GRCh38p12.gencode30/annotation_resources/msigDB_geneset_desc.tab" orgDb <- org.Mmusculus.GRCm38p6.99.eg.db keggOrg <- 'mmu' keggIdCol <- "NCBI" file_topGO <- "E:/Chris_UM/Database/Mouse/GRCm38.99/annotation_resources/geneid2go.Mmusculus.GRCm38p6.topGO.map" cutoff_qval <- 0.05 cutoff_lfc <- 0.585 cutoff_up <- cutoff_lfc cutoff_down <- -1 * cutoff_lfc col_lfc <- "log2FoldChange" ########################################################################### rnaseqInfo <- get_diff_info(degInfoFile = file_RNAseq_info, dataPath = diffDataPath) %>% dplyr::filter(comparison == degResult) degs <- suppressMessages(readr::read_tsv(file = rnaseqInfo$deg[1])) %>% dplyr::mutate(rankMetric = (-log10(pvalue) * sign(shrinkLog2FC))) %>% dplyr::arrange(desc(rankMetric)) %>% dplyr::filter(!is.na(rankMetric)) if(! keggIdCol %in% colnames(degs)){ keggInfo <- suppressMessages( AnnotationDbi::select(x = orgDb, keys = degs$geneId, keytype = "GID", columns = keggIdCol) ) %>% dplyr::filter(!is.na(!!sym(keggIdCol))) %>% dplyr::rename(geneId = ENSEMBL_VERSION) degs <- dplyr::left_join(x = degs, y = keggInfo, by = "geneId") } downDegs <- dplyr::filter(degs, padj <= cutoff_qval & !!sym(col_lfc) <= cutoff_down) %>% dplyr::mutate(category = "down") upDegs <- dplyr::filter(degs, padj <= cutoff_qval & !!sym(col_lfc) >= cutoff_up) %>% dplyr::mutate(category = "up") degData <- dplyr::bind_rows(upDegs, downDegs) contrast <- unique(upDegs$contrast) geneList <- dplyr::filter(degs, !is.na(NCBI)) %>% dplyr::select(NCBI, rankMetric) %>% tibble::deframe() ## replace +Inf and -Inf values with max and min geneList[is.infinite(geneList) & geneList > 0] <- max(geneList[is.finite(geneList)]) + 1 geneList[is.infinite(geneList) & geneList < 0] <- min(geneList[is.finite(geneList)]) - 1 # ########################################################################### # ## clusterProfiler: GO enrichment # ego_up <- enrichGO(gene = unique(upDegs$geneId), # OrgDb = orgDb, # ont = "BP", pAdjustMethod = "BH", # pvalueCutoff = 0.05, # qvalueCutoff = 0.05, # keyType = "ENSEMBL", # readable = FALSE) # # barplot(ego_up, showCategory=20) # emapplot(ego_up, pie_scale=1.5,layout="kk", ) # cnetplot(ego_up, showCategory = 10, node_label="category") # # ego_up <- simplify(x = ego_up) # # ego_down <- enrichGO(gene = unique(downDegs$geneId), # OrgDb = orgDb, # ont = "BP", pAdjustMethod = "BH", # pvalueCutoff = 0.05, # qvalueCutoff = 0.05, # keyType = "ENSEMBL", # readable = FALSE) # # ego_down <- simplify(x = ego_down) # # ego_res <- dplyr::bind_rows( # dplyr::mutate(.data = as.data.frame(ego_up), category = "up"), # dplyr::mutate(.data = as.data.frame(ego_down), category = "down") # ) %>% # dplyr::mutate(contrast = contrast) # # # readr::write_tsv(x = ego_res, path = paste(outPrefix, ".clusterProfiler.GO.tab", sep = "")) # # # ego_degs <- compareCluster(geneClusters = geneId ~ category, # fun = "enrichGO", data = degData, # OrgDb = orgDb, # ont = "BP", pAdjustMethod = "BH", # pvalueCutoff = 0.05, # qvalueCutoff = 0.05, # keyType = "ENSEMBL", # readable = FALSE) # # dotplot(ego_degs, # showCategory = 20) # emapplot(ego_degs) ## topGO GO enrichment topgo_up <- topGO_enrichment(goMapFile = file_topGO, genes = unique(upDegs$geneId), type = "BP", goNodeSize = 5) topgo_down <- topGO_enrichment(goMapFile = file_topGO, genes = unique(downDegs$geneId), type = "BP", goNodeSize = 5) topgo_res <- dplyr::bind_rows( dplyr::mutate(.data = as.data.frame(topgo_up), category = "up"), dplyr::mutate(.data = as.data.frame(topgo_down), category = "down") ) %>% dplyr::mutate(contrast = contrast) readr::write_tsv(x = topgo_res, path = paste(outPrefix, ".topGO.tab", sep = "")) ## top 10 GO term bar plot topgoPlotDf <- dplyr::group_by(topgo_res, category) %>% dplyr::arrange(weightedFisher, .by_group = TRUE) %>% dplyr::slice(1:10) %>% dplyr::ungroup() topgo_bar <- enrichment_bar(df = topgoPlotDf, title = paste(degResult, "\ntop 10 enriched GO terms in up and down DEGs")) png(filename = paste(outPrefix, ".topGO_bar.png", sep = ""), width = 2500, height = 2500, res = 250) topgo_bar dev.off() ########################################################################### # ## clusterProfiler: KEGG pathway enrichment # ekegg_up <- enrichKEGG(gene = na.omit(unique(upDegs$NCBI)), # organism = keggOrg, # pvalueCutoff = 0.05) # # ekegg_down <- enrichKEGG(gene = na.omit(unique(downDegs$NCBI)), # organism = keggOrg, # pvalueCutoff = 0.05) # # ekegg_res <- dplyr::bind_rows( # dplyr::mutate(.data = as.data.frame(ekegg_up), category = "up"), # dplyr::mutate(.data = as.data.frame(ekegg_down), category = "down") # ) %>% # dplyr::mutate(contrast = contrast) # # # readr::write_tsv(x = ekegg_res, path = paste(outPrefix, ".clusterProfiler.kegg.tab", sep = "")) # ## up and down DEG # cp_kegg <- compareCluster( # geneClusters = list(up = na.omit(unique(upDegs$NCBI)), # down = na.omit(unique(downDegs$NCBI))), # fun = "enrichKEGG", # organism = keggOrg # ) # # gg_cp_kegg <- dotplot(cp_kegg, showCategory = 100) + # labs(title = paste(analysisName, "KEGG pathway enrichment")) + # theme( # plot.title = element_text(hjust = 1) # ) # # # png(filename = paste(outPrefix, ".clusterProfiler.kegg.png", sep = ""), # width = 1500, height = 1500, res = 200) # # gg_cp_kegg # # dev.off() ## KEGGprofile::find_enriched_pathway keggp_up <- keggprofile_enrichment( genes = as.character(na.omit(unique(upDegs[[keggIdCol]]))), orgdb = orgDb, keytype = keggIdCol, keggIdCol = keggIdCol, keggOrg = keggOrg ) keggp_down <- keggprofile_enrichment( genes = as.character(na.omit(unique(downDegs[[keggIdCol]]))), orgdb = orgDb, keytype = keggIdCol, keggIdCol = keggIdCol, keggOrg = keggOrg ) keggp_res <- dplyr::bind_rows( dplyr::mutate(.data = as.data.frame(keggp_up), category = "up"), dplyr::mutate(.data = as.data.frame(keggp_down), category = "down") ) %>% dplyr::mutate(contrast = contrast) readr::write_tsv(x = keggp_res, path = paste(outPrefix, ".keggProfile.tab", sep = "")) ## top 10 KEGG pathway bar plot keggPlotDf <- dplyr::group_by(keggp_res, category) %>% dplyr::arrange(pvalue, .by_group = TRUE) %>% dplyr::slice(1:10) %>% dplyr::ungroup() kegg_bar <- enrichment_bar( df = keggPlotDf, title = paste(degResult, "\ntop 10 enriched KEGG pathways in up and down DEGs"), pvalCol = "pvalue", termCol = "Pathway_Name", colorCol = "category", countCol = "Significant" ) png(filename = paste(outPrefix, ".KEGG_bar.png", sep = ""), width = 2500, height = 2500, res = 250) kegg_bar dev.off() ########################################################################### # ## GSEA # msigdbr_show_species() # msig_df <- msigdbr(species = "Homo sapiens") %>% # dplyr::filter(gs_cat %in% c("H", "C2", "C5")) %>% # dplyr::filter(! gs_subcat %in% c("MF", "CC")) # # # , category = c("H", "C2", "C5") # msig_list <- split(x = msig_df$entrez_gene, f = msig_df$gs_name) # # length(intersect(names(geneList), unique(msig_df$entrez_gene))) # # vn <- VennDiagram::venn.diagram( # x = list(geneList = names(geneList), msig = unique(msig_df$entrez_gene)), # filename = NULL, # print.mode = c("raw", "percent"), # scaled = FALSE # ) # dev.off() # grid.draw(vn) # # msigDescDf <- suppressMessages(readr::read_tsv(file = file_msigDesc)) # msigDesc <- split(x = msigDescDf$DESCRIPTION_BRIEF, f = msigDescDf$STANDARD_NAME) # # egsea <- GSEA(geneList = geneList, # nPerm = 10000, # pvalueCutoff = 0.1, # minGSSize = 10, maxGSSize = Inf, # TERM2GENE = dplyr::select(msig_df, gs_name, entrez_gene)) # # egseaDf <- as_tibble(egsea) %>% # dplyr::left_join(y = msigDescDf, by = c("ID" = "STANDARD_NAME")) %>% # dplyr::mutate(contrast = contrast) %>% # dplyr::select(ID, contrast, everything(), -Description) # # readr::write_tsv(x = egseaDf, # path = paste(outPrefix, ".clusterProfiler.GSEA.tab", sep = "")) # ## plotting specific genesets # genesetSub <- c("GO_CELL_CYCLE", # "GO_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS", # "GO_DNA_REPLICATION") # # plotList <- list() # # pdf(file = paste(outPrefix, ".clusterProfiler.GSEA_enrichmentPlot.pdf", sep = ""), # width = 10, height = 8, onefile = TRUE) # # for (setId in genesetSub) { # # if(setId %in% egsea$ID){ # pt <- enrichplot::gseaplot2(egsea, geneSetID = setId) # wrap_100 <- wrap_format(120) # # plotSubTitle <- paste( # "p-value = ", sprintf(fmt = "%.2E", egseaDf$pvalue[which(egseaDf$ID == setId)]), # "; q-value = ", sprintf(fmt = "%.2E", egseaDf$qvalues[which(egseaDf$ID == setId)]), # "\n", wrap_100(x = msigDesc[[setId]]), # sep = "") # # pt <- pt + # labs( # title = paste(setId, ": ", contrast, sep = ""), # subtitle = plotSubTitle # ) + # theme_bw() + # theme(panel.grid = element_blank(), # panel.border = element_blank()) # # plotList[[setId]] <- pt # # plot(pt) # # } # # } # # dev.off() # ########################################################################### # ## GSEA enrichment using fgsea # gseaRes <- fgsea(pathways = msig_list, stats = geneList, nperm = 10000) # # gseaRes <- dplyr::filter(gseaRes, pval < 0.05) %>% # dplyr::left_join(y = msigDescDf, by = c("pathway" = "STANDARD_NAME")) %>% # dplyr::mutate(contrast = contrast) # # topPathways <- gseaRes[head(order(pval), n=15)][order(NES), pathway] # plotGseaTable(msig_list[topPathways], geneList, # gseaRes, gseaParam=0.5) # # pt2 <- plotEnrichment(pathway = msig_list[[setId]], # stats = geneList) + # labs( # title = paste(setId, ":", contrast), # subtitle = wrap_100(x = msigDesc[[setId]]), # x = "Rank in ordered dataset", # y = "Enrichment Score") + # theme_bw() + # theme(panel.grid = element_blank(), # axis.text = element_text(size = 12), # axis.title = element_text(size = 14, face = "bold")) ########################################################################### excelOut <- paste(outPrefix, ".enrichment.xlsx", sep = "") unlink(excelOut, recursive = FALSE, force = FALSE) exc = loadWorkbook(excelOut , create = TRUE) xlcFreeMemory() wrkSheet <- "topGO" createSheet(exc, name = wrkSheet) createFreezePane(exc, sheet = wrkSheet, 2, 2) writeWorksheet(object = exc, data = topgo_res, sheet = wrkSheet) setAutoFilter(object = exc, sheet = wrkSheet, reference = aref(topLeft = "A1", dimension = dim(topgo_res))) wrkSheet <- "keggProfile" createSheet(exc, name = wrkSheet) createFreezePane(exc, sheet = wrkSheet, 2, 2) writeWorksheet(object = exc, data = keggp_res, sheet = wrkSheet) setAutoFilter(object = exc, sheet = wrkSheet, reference = aref(topLeft = "A1", dimension = dim(keggp_res))) setColumnWidth(object = exc, sheet = 1:2, column = 1, width = -1) setColumnWidth(object = exc, sheet = 1:2, column = 2, width = c(13000)) # wrkSheet <- "GSEA" # createSheet(exc, name = wrkSheet) # createFreezePane(exc, sheet = wrkSheet, 2, 2) # writeWorksheet(object = exc, data = egseaDf, sheet = wrkSheet) # setAutoFilter(object = exc, sheet = wrkSheet, # reference = aref(topLeft = "A1", dimension = dim(egseaDf))) # setColumnWidth(object = exc, sheet = 3, column = 1, width = c(13000)) # wrkSheet <- "clusterProfiler_GO" # createSheet(exc, name = wrkSheet) # createFreezePane(exc, sheet = wrkSheet, 2, 2) # writeWorksheet(object = exc, data = ego_res, sheet = wrkSheet) # setAutoFilter(object = exc, sheet = wrkSheet, # reference = aref(topLeft = "A1", dimension = dim(ego_res))) # # wrkSheet <- "clusterProfiler_KEGG" # createSheet(exc, name = wrkSheet) # createFreezePane(exc, sheet = wrkSheet, 2, 2) # writeWorksheet(object = exc, data = ekegg_res, sheet = wrkSheet) # setAutoFilter(object = exc, sheet = wrkSheet, # reference = aref(topLeft = "A1", dimension = dim(ekegg_res))) xlcFreeMemory() saveWorkbook(exc)
/scripts/03_RNAseq_functional_enrichment.R
no_license
lakhanp1/38_ZhuBO_RNAseq4_DKO
R
false
false
13,584
r
library(tidyverse) library(data.table) library(fgsea) library(msigdbr) library(DT) library(clusterProfiler) library(grid) library(org.Mmusculus.GRCm38p6.99.eg.db) ## RNAseq DEG functional analysis using clusterProfiler rm(list = ls()) source(file = "E:/Chris_UM/GitHub/omics_util/04_GO_enrichment/topGO_functions.R") source("E:/Chris_UM/GitHub/omics_util/02_RNAseq_scripts/s02_DESeq2_functions.R") ########################################################################### degResult <- "DKO_vs_WT" file_RNAseq_info <- here::here("data", "RNAseq_info.txt") diffDataPath <- here::here("analysis", "02_DESeq2_diff") outDir <- here::here("analysis", "02_DESeq2_diff", degResult) outPrefix <- paste(outDir, "/", degResult, sep = "") # file_msigDesc <- "E:/Chris_UM/Database/Human/GRCh38p12.gencode30/annotation_resources/msigDB_geneset_desc.tab" orgDb <- org.Mmusculus.GRCm38p6.99.eg.db keggOrg <- 'mmu' keggIdCol <- "NCBI" file_topGO <- "E:/Chris_UM/Database/Mouse/GRCm38.99/annotation_resources/geneid2go.Mmusculus.GRCm38p6.topGO.map" cutoff_qval <- 0.05 cutoff_lfc <- 0.585 cutoff_up <- cutoff_lfc cutoff_down <- -1 * cutoff_lfc col_lfc <- "log2FoldChange" ########################################################################### rnaseqInfo <- get_diff_info(degInfoFile = file_RNAseq_info, dataPath = diffDataPath) %>% dplyr::filter(comparison == degResult) degs <- suppressMessages(readr::read_tsv(file = rnaseqInfo$deg[1])) %>% dplyr::mutate(rankMetric = (-log10(pvalue) * sign(shrinkLog2FC))) %>% dplyr::arrange(desc(rankMetric)) %>% dplyr::filter(!is.na(rankMetric)) if(! keggIdCol %in% colnames(degs)){ keggInfo <- suppressMessages( AnnotationDbi::select(x = orgDb, keys = degs$geneId, keytype = "GID", columns = keggIdCol) ) %>% dplyr::filter(!is.na(!!sym(keggIdCol))) %>% dplyr::rename(geneId = ENSEMBL_VERSION) degs <- dplyr::left_join(x = degs, y = keggInfo, by = "geneId") } downDegs <- dplyr::filter(degs, padj <= cutoff_qval & !!sym(col_lfc) <= cutoff_down) %>% dplyr::mutate(category = "down") upDegs <- dplyr::filter(degs, padj <= cutoff_qval & !!sym(col_lfc) >= cutoff_up) %>% dplyr::mutate(category = "up") degData <- dplyr::bind_rows(upDegs, downDegs) contrast <- unique(upDegs$contrast) geneList <- dplyr::filter(degs, !is.na(NCBI)) %>% dplyr::select(NCBI, rankMetric) %>% tibble::deframe() ## replace +Inf and -Inf values with max and min geneList[is.infinite(geneList) & geneList > 0] <- max(geneList[is.finite(geneList)]) + 1 geneList[is.infinite(geneList) & geneList < 0] <- min(geneList[is.finite(geneList)]) - 1 # ########################################################################### # ## clusterProfiler: GO enrichment # ego_up <- enrichGO(gene = unique(upDegs$geneId), # OrgDb = orgDb, # ont = "BP", pAdjustMethod = "BH", # pvalueCutoff = 0.05, # qvalueCutoff = 0.05, # keyType = "ENSEMBL", # readable = FALSE) # # barplot(ego_up, showCategory=20) # emapplot(ego_up, pie_scale=1.5,layout="kk", ) # cnetplot(ego_up, showCategory = 10, node_label="category") # # ego_up <- simplify(x = ego_up) # # ego_down <- enrichGO(gene = unique(downDegs$geneId), # OrgDb = orgDb, # ont = "BP", pAdjustMethod = "BH", # pvalueCutoff = 0.05, # qvalueCutoff = 0.05, # keyType = "ENSEMBL", # readable = FALSE) # # ego_down <- simplify(x = ego_down) # # ego_res <- dplyr::bind_rows( # dplyr::mutate(.data = as.data.frame(ego_up), category = "up"), # dplyr::mutate(.data = as.data.frame(ego_down), category = "down") # ) %>% # dplyr::mutate(contrast = contrast) # # # readr::write_tsv(x = ego_res, path = paste(outPrefix, ".clusterProfiler.GO.tab", sep = "")) # # # ego_degs <- compareCluster(geneClusters = geneId ~ category, # fun = "enrichGO", data = degData, # OrgDb = orgDb, # ont = "BP", pAdjustMethod = "BH", # pvalueCutoff = 0.05, # qvalueCutoff = 0.05, # keyType = "ENSEMBL", # readable = FALSE) # # dotplot(ego_degs, # showCategory = 20) # emapplot(ego_degs) ## topGO GO enrichment topgo_up <- topGO_enrichment(goMapFile = file_topGO, genes = unique(upDegs$geneId), type = "BP", goNodeSize = 5) topgo_down <- topGO_enrichment(goMapFile = file_topGO, genes = unique(downDegs$geneId), type = "BP", goNodeSize = 5) topgo_res <- dplyr::bind_rows( dplyr::mutate(.data = as.data.frame(topgo_up), category = "up"), dplyr::mutate(.data = as.data.frame(topgo_down), category = "down") ) %>% dplyr::mutate(contrast = contrast) readr::write_tsv(x = topgo_res, path = paste(outPrefix, ".topGO.tab", sep = "")) ## top 10 GO term bar plot topgoPlotDf <- dplyr::group_by(topgo_res, category) %>% dplyr::arrange(weightedFisher, .by_group = TRUE) %>% dplyr::slice(1:10) %>% dplyr::ungroup() topgo_bar <- enrichment_bar(df = topgoPlotDf, title = paste(degResult, "\ntop 10 enriched GO terms in up and down DEGs")) png(filename = paste(outPrefix, ".topGO_bar.png", sep = ""), width = 2500, height = 2500, res = 250) topgo_bar dev.off() ########################################################################### # ## clusterProfiler: KEGG pathway enrichment # ekegg_up <- enrichKEGG(gene = na.omit(unique(upDegs$NCBI)), # organism = keggOrg, # pvalueCutoff = 0.05) # # ekegg_down <- enrichKEGG(gene = na.omit(unique(downDegs$NCBI)), # organism = keggOrg, # pvalueCutoff = 0.05) # # ekegg_res <- dplyr::bind_rows( # dplyr::mutate(.data = as.data.frame(ekegg_up), category = "up"), # dplyr::mutate(.data = as.data.frame(ekegg_down), category = "down") # ) %>% # dplyr::mutate(contrast = contrast) # # # readr::write_tsv(x = ekegg_res, path = paste(outPrefix, ".clusterProfiler.kegg.tab", sep = "")) # ## up and down DEG # cp_kegg <- compareCluster( # geneClusters = list(up = na.omit(unique(upDegs$NCBI)), # down = na.omit(unique(downDegs$NCBI))), # fun = "enrichKEGG", # organism = keggOrg # ) # # gg_cp_kegg <- dotplot(cp_kegg, showCategory = 100) + # labs(title = paste(analysisName, "KEGG pathway enrichment")) + # theme( # plot.title = element_text(hjust = 1) # ) # # # png(filename = paste(outPrefix, ".clusterProfiler.kegg.png", sep = ""), # width = 1500, height = 1500, res = 200) # # gg_cp_kegg # # dev.off() ## KEGGprofile::find_enriched_pathway keggp_up <- keggprofile_enrichment( genes = as.character(na.omit(unique(upDegs[[keggIdCol]]))), orgdb = orgDb, keytype = keggIdCol, keggIdCol = keggIdCol, keggOrg = keggOrg ) keggp_down <- keggprofile_enrichment( genes = as.character(na.omit(unique(downDegs[[keggIdCol]]))), orgdb = orgDb, keytype = keggIdCol, keggIdCol = keggIdCol, keggOrg = keggOrg ) keggp_res <- dplyr::bind_rows( dplyr::mutate(.data = as.data.frame(keggp_up), category = "up"), dplyr::mutate(.data = as.data.frame(keggp_down), category = "down") ) %>% dplyr::mutate(contrast = contrast) readr::write_tsv(x = keggp_res, path = paste(outPrefix, ".keggProfile.tab", sep = "")) ## top 10 KEGG pathway bar plot keggPlotDf <- dplyr::group_by(keggp_res, category) %>% dplyr::arrange(pvalue, .by_group = TRUE) %>% dplyr::slice(1:10) %>% dplyr::ungroup() kegg_bar <- enrichment_bar( df = keggPlotDf, title = paste(degResult, "\ntop 10 enriched KEGG pathways in up and down DEGs"), pvalCol = "pvalue", termCol = "Pathway_Name", colorCol = "category", countCol = "Significant" ) png(filename = paste(outPrefix, ".KEGG_bar.png", sep = ""), width = 2500, height = 2500, res = 250) kegg_bar dev.off() ########################################################################### # ## GSEA # msigdbr_show_species() # msig_df <- msigdbr(species = "Homo sapiens") %>% # dplyr::filter(gs_cat %in% c("H", "C2", "C5")) %>% # dplyr::filter(! gs_subcat %in% c("MF", "CC")) # # # , category = c("H", "C2", "C5") # msig_list <- split(x = msig_df$entrez_gene, f = msig_df$gs_name) # # length(intersect(names(geneList), unique(msig_df$entrez_gene))) # # vn <- VennDiagram::venn.diagram( # x = list(geneList = names(geneList), msig = unique(msig_df$entrez_gene)), # filename = NULL, # print.mode = c("raw", "percent"), # scaled = FALSE # ) # dev.off() # grid.draw(vn) # # msigDescDf <- suppressMessages(readr::read_tsv(file = file_msigDesc)) # msigDesc <- split(x = msigDescDf$DESCRIPTION_BRIEF, f = msigDescDf$STANDARD_NAME) # # egsea <- GSEA(geneList = geneList, # nPerm = 10000, # pvalueCutoff = 0.1, # minGSSize = 10, maxGSSize = Inf, # TERM2GENE = dplyr::select(msig_df, gs_name, entrez_gene)) # # egseaDf <- as_tibble(egsea) %>% # dplyr::left_join(y = msigDescDf, by = c("ID" = "STANDARD_NAME")) %>% # dplyr::mutate(contrast = contrast) %>% # dplyr::select(ID, contrast, everything(), -Description) # # readr::write_tsv(x = egseaDf, # path = paste(outPrefix, ".clusterProfiler.GSEA.tab", sep = "")) # ## plotting specific genesets # genesetSub <- c("GO_CELL_CYCLE", # "GO_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS", # "GO_DNA_REPLICATION") # # plotList <- list() # # pdf(file = paste(outPrefix, ".clusterProfiler.GSEA_enrichmentPlot.pdf", sep = ""), # width = 10, height = 8, onefile = TRUE) # # for (setId in genesetSub) { # # if(setId %in% egsea$ID){ # pt <- enrichplot::gseaplot2(egsea, geneSetID = setId) # wrap_100 <- wrap_format(120) # # plotSubTitle <- paste( # "p-value = ", sprintf(fmt = "%.2E", egseaDf$pvalue[which(egseaDf$ID == setId)]), # "; q-value = ", sprintf(fmt = "%.2E", egseaDf$qvalues[which(egseaDf$ID == setId)]), # "\n", wrap_100(x = msigDesc[[setId]]), # sep = "") # # pt <- pt + # labs( # title = paste(setId, ": ", contrast, sep = ""), # subtitle = plotSubTitle # ) + # theme_bw() + # theme(panel.grid = element_blank(), # panel.border = element_blank()) # # plotList[[setId]] <- pt # # plot(pt) # # } # # } # # dev.off() # ########################################################################### # ## GSEA enrichment using fgsea # gseaRes <- fgsea(pathways = msig_list, stats = geneList, nperm = 10000) # # gseaRes <- dplyr::filter(gseaRes, pval < 0.05) %>% # dplyr::left_join(y = msigDescDf, by = c("pathway" = "STANDARD_NAME")) %>% # dplyr::mutate(contrast = contrast) # # topPathways <- gseaRes[head(order(pval), n=15)][order(NES), pathway] # plotGseaTable(msig_list[topPathways], geneList, # gseaRes, gseaParam=0.5) # # pt2 <- plotEnrichment(pathway = msig_list[[setId]], # stats = geneList) + # labs( # title = paste(setId, ":", contrast), # subtitle = wrap_100(x = msigDesc[[setId]]), # x = "Rank in ordered dataset", # y = "Enrichment Score") + # theme_bw() + # theme(panel.grid = element_blank(), # axis.text = element_text(size = 12), # axis.title = element_text(size = 14, face = "bold")) ########################################################################### excelOut <- paste(outPrefix, ".enrichment.xlsx", sep = "") unlink(excelOut, recursive = FALSE, force = FALSE) exc = loadWorkbook(excelOut , create = TRUE) xlcFreeMemory() wrkSheet <- "topGO" createSheet(exc, name = wrkSheet) createFreezePane(exc, sheet = wrkSheet, 2, 2) writeWorksheet(object = exc, data = topgo_res, sheet = wrkSheet) setAutoFilter(object = exc, sheet = wrkSheet, reference = aref(topLeft = "A1", dimension = dim(topgo_res))) wrkSheet <- "keggProfile" createSheet(exc, name = wrkSheet) createFreezePane(exc, sheet = wrkSheet, 2, 2) writeWorksheet(object = exc, data = keggp_res, sheet = wrkSheet) setAutoFilter(object = exc, sheet = wrkSheet, reference = aref(topLeft = "A1", dimension = dim(keggp_res))) setColumnWidth(object = exc, sheet = 1:2, column = 1, width = -1) setColumnWidth(object = exc, sheet = 1:2, column = 2, width = c(13000)) # wrkSheet <- "GSEA" # createSheet(exc, name = wrkSheet) # createFreezePane(exc, sheet = wrkSheet, 2, 2) # writeWorksheet(object = exc, data = egseaDf, sheet = wrkSheet) # setAutoFilter(object = exc, sheet = wrkSheet, # reference = aref(topLeft = "A1", dimension = dim(egseaDf))) # setColumnWidth(object = exc, sheet = 3, column = 1, width = c(13000)) # wrkSheet <- "clusterProfiler_GO" # createSheet(exc, name = wrkSheet) # createFreezePane(exc, sheet = wrkSheet, 2, 2) # writeWorksheet(object = exc, data = ego_res, sheet = wrkSheet) # setAutoFilter(object = exc, sheet = wrkSheet, # reference = aref(topLeft = "A1", dimension = dim(ego_res))) # # wrkSheet <- "clusterProfiler_KEGG" # createSheet(exc, name = wrkSheet) # createFreezePane(exc, sheet = wrkSheet, 2, 2) # writeWorksheet(object = exc, data = ekegg_res, sheet = wrkSheet) # setAutoFilter(object = exc, sheet = wrkSheet, # reference = aref(topLeft = "A1", dimension = dim(ekegg_res))) xlcFreeMemory() saveWorkbook(exc)
# This script produces statistical summaries and graphical results # from the output of ba_rand_test.R in the different regions and subregions library(tidyverse) cell_km2 <- 0.215 # MODIS raster cell area in km2 # Codes (used in file names) and names (to display in plots) for regions and subregions reg_codes <- c("northam", "eurasia", "westna", "eastna", "scand", "eurus", "wsib", "esib") reg_names <- c("North America", "Eurasia", "West North Am.", "East North Am.", "Scandinavia", "Eur. Russia", "West Siberia", "East Siberia") # Calculate summary statistics from randomization test -------------------- calc_stats <- function(reg_code) { rand_out <- readRDS(paste0("res_rand_multi_", reg_code, ".rds")) obs_out <- readRDS(paste0("res_obs_", reg_code, ".rds")) # Combine the distribution of # of years burned by cell from the # 200 randomizations (identified by "sim" ID column) into one data frame # and add 0s (when no cell with that burn count) with complete function burn_counts <- map_dfr(rand_out, ~ as.data.frame(.$tab), .id = "sim") %>% mutate(burn_counts = as.integer(as.character(burn_counts))) %>% complete(sim, burn_counts, fill = list(Freq = 0)) # Calculate the mean and 95% interval of cell frequencies # for each value of burn_counts (# of years with fire) across simulations burn_stats <- group_by(burn_counts, burn_counts) %>% summarize(mean = mean(Freq), lo = quantile(Freq, 0.025), hi = quantile(Freq, 0.975)) # Combine with distribution from original data burn_obs <- as.data.frame(obs_out$tab) %>% mutate(burn_counts = as.integer(as.character(burn_counts))) %>% rename(obs = Freq) burn_stats <- full_join(burn_stats, burn_obs) # Replace NAs with 0s (when a burn_counts value is absent from simulated or observed data) burn_stats <- replace_na(burn_stats, list(mean = 0, lo = 0, hi = 0, obs = 0)) # Calculate the distribution of time between fires for each randomization output # and combine in one data frame ret_counts <- map_dfr(rand_out, ~ as.data.frame(table(.$ret$dt)), .id = "sim") %>% mutate(Var1 = as.integer(as.character(Var1))) %>% complete(sim, Var1, fill = list(Freq = 0)) # Similar to above, get the mean and 95% interval for the cell frequencies for # each value of dt (years between fires) across simulations, then # combine with observed values in original data ret_stats <- rename(ret_counts, dt = Var1) %>% group_by(dt) %>% summarize(mean = mean(Freq), lo = quantile(Freq, 0.025), hi = quantile(Freq, 0.975)) ret_obs <- as.data.frame(table(obs_out$ret$dt)) %>% mutate(Var1 = as.integer(as.character(Var1))) %>% rename(dt = Var1, obs = Freq) ret_stats <- full_join(ret_stats, ret_obs) ret_stats <- replace_na(ret_stats, list(mean = 0, lo = 0, hi = 0, obs = 0)) # Return output as a list and save to disk stats_out <- lst(burn_stats, ret_stats) saveRDS(stats_out, paste0("res_stats_", reg_code, ".rds")) stats_out } # Apply function above to all subregions and combine results into list #res <- map(reg_codes, calc_stats) %>% # setNames(reg_names) # or get from disk res <- map(paste0("res_stats_", reg_codes, ".rds"), readRDS) %>% setNames(reg_names) # Years with fire --------------------------------------------------------- # The number of cells with 0 fires in burn_stats table includes cells that are # as located in water or outside boreal biomes, need to count them from mask # and subtract numbers from table mask_dir <- "data/cell_masks" count_na <- function(reg_code) { rast <- raster(file.path(mask_dir, paste0("cells_na025_", reg_code, ".tif"))) cellStats(rast == 0, sum) } reg_na_counts <- map_dbl(reg_codes, count_na) for (i in seq_along(res)) { for (j in c("mean", "lo", "hi", "obs")) { res[[i]]$burn_stats[1, j] <- res[[i]]$burn_stats[1, j] - reg_na_counts[i] } } # Combine all the burn_stats tables from all regions into one data frame burn_stats <- map_df(res, "burn_stats", .id = "region") # Sum counts for cells with 4+ fires into same category burn_stats2 <- burn_stats %>% mutate(burn_counts = ifelse(burn_counts > 4, 4, burn_counts)) %>% group_by(region, burn_counts) %>% summarize_all(.funs = "sum") # Manually add row of 0s for 4+ fires category in Scandinavia burn_stats2 <- rbind(burn_stats2, data.frame(region = "Scandinavia", burn_counts = 4, mean = 0, lo = 0, hi = 0, obs = 0)) # Convert numbers of cells to area in km2 burn_stats2 <- mutate(burn_stats2, mean = mean * cell_km2, lo = lo * cell_km2, hi = hi * cell_km2, obs = obs * cell_km2) # Pivot data in burn_stats2 to put observed and simulated (lo/mean/hi) statistics # side to side (for results presentation, redundant values need to be removed in some columns) burn_tab <- pivot_longer(burn_stats2, cols = c("hi", "mean", "lo"), names_to = "stat", values_to = "area") %>% ungroup() %>% nest_by(region, burn_counts, obs) %>% pivot_wider(names_from = "burn_counts", values_from = c("obs", "data")) %>% unnest() # Bias in total fire area (relative difference between mean of simulations and observation) # The is negative and due to fires being "pushed out" of study area by random translation group_by(burn_stats, region) %>% summarize(bias = sum(burn_counts * mean) / sum(burn_counts * obs) - 1) # Return times ------------------------------------------------------------ # Combine all the ret_stats tables from all regions into one data frame, # convert cell counts to areas in km2 ret_stats <- map_df(res, "ret_stats", .id = "region") ret_stats2 <- mutate(ret_stats, mean = mean * cell_km2, lo = lo * cell_km2, hi = hi * cell_km2, obs = obs * cell_km2) ret_stats2$region <- factor(ret_stats2$region, levels = reg_names) # Produce graph of simulated vs. observed distribution of years between fires by region ggplot(ret_stats2, aes(x = dt, y = mean)) + geom_pointrange(aes(ymin = lo, ymax = hi), fatten = 2) + geom_point(aes(y = obs), color = "red") + geom_line(aes(y = obs), color = "red") + labs(x = "Time between fires", y = "Area (sq. km)") + facet_wrap(~ region, ncol = 2, scale = "free_y") + theme_bw() + theme(strip.background = element_blank(), strip.text = element_text(face = "bold")) # Map of study area ------------------------------------------------------- library(raster) library(stars) library(sf) library(spData) data(world) na_mask <- read_stars(file.path(mask_dir, "cells_na025_northam.tif"), proxy = TRUE) eu_mask <- read_stars(file.path(mask_dir, "cells_na025_eurasia.tif"), proxy = TRUE) bbox = st_bbox(na_mask) ggplot(world) + labs(x = "", y = "") + geom_stars(data = na_mask, downsample = 10) + geom_stars(data = eu_mask, downsample = 10) + geom_sf(fill = NA) + coord_sf(crs = st_crs(na_mask), ylim = c(5000000, 8000000)) + scale_fill_gradient(low = "white", high = "darkgreen") + theme_minimal() + theme(legend.position = "none")
/ba_process_output.R
no_license
pmarchand1/fire-recurrence-modis
R
false
false
7,248
r
# This script produces statistical summaries and graphical results # from the output of ba_rand_test.R in the different regions and subregions library(tidyverse) cell_km2 <- 0.215 # MODIS raster cell area in km2 # Codes (used in file names) and names (to display in plots) for regions and subregions reg_codes <- c("northam", "eurasia", "westna", "eastna", "scand", "eurus", "wsib", "esib") reg_names <- c("North America", "Eurasia", "West North Am.", "East North Am.", "Scandinavia", "Eur. Russia", "West Siberia", "East Siberia") # Calculate summary statistics from randomization test -------------------- calc_stats <- function(reg_code) { rand_out <- readRDS(paste0("res_rand_multi_", reg_code, ".rds")) obs_out <- readRDS(paste0("res_obs_", reg_code, ".rds")) # Combine the distribution of # of years burned by cell from the # 200 randomizations (identified by "sim" ID column) into one data frame # and add 0s (when no cell with that burn count) with complete function burn_counts <- map_dfr(rand_out, ~ as.data.frame(.$tab), .id = "sim") %>% mutate(burn_counts = as.integer(as.character(burn_counts))) %>% complete(sim, burn_counts, fill = list(Freq = 0)) # Calculate the mean and 95% interval of cell frequencies # for each value of burn_counts (# of years with fire) across simulations burn_stats <- group_by(burn_counts, burn_counts) %>% summarize(mean = mean(Freq), lo = quantile(Freq, 0.025), hi = quantile(Freq, 0.975)) # Combine with distribution from original data burn_obs <- as.data.frame(obs_out$tab) %>% mutate(burn_counts = as.integer(as.character(burn_counts))) %>% rename(obs = Freq) burn_stats <- full_join(burn_stats, burn_obs) # Replace NAs with 0s (when a burn_counts value is absent from simulated or observed data) burn_stats <- replace_na(burn_stats, list(mean = 0, lo = 0, hi = 0, obs = 0)) # Calculate the distribution of time between fires for each randomization output # and combine in one data frame ret_counts <- map_dfr(rand_out, ~ as.data.frame(table(.$ret$dt)), .id = "sim") %>% mutate(Var1 = as.integer(as.character(Var1))) %>% complete(sim, Var1, fill = list(Freq = 0)) # Similar to above, get the mean and 95% interval for the cell frequencies for # each value of dt (years between fires) across simulations, then # combine with observed values in original data ret_stats <- rename(ret_counts, dt = Var1) %>% group_by(dt) %>% summarize(mean = mean(Freq), lo = quantile(Freq, 0.025), hi = quantile(Freq, 0.975)) ret_obs <- as.data.frame(table(obs_out$ret$dt)) %>% mutate(Var1 = as.integer(as.character(Var1))) %>% rename(dt = Var1, obs = Freq) ret_stats <- full_join(ret_stats, ret_obs) ret_stats <- replace_na(ret_stats, list(mean = 0, lo = 0, hi = 0, obs = 0)) # Return output as a list and save to disk stats_out <- lst(burn_stats, ret_stats) saveRDS(stats_out, paste0("res_stats_", reg_code, ".rds")) stats_out } # Apply function above to all subregions and combine results into list #res <- map(reg_codes, calc_stats) %>% # setNames(reg_names) # or get from disk res <- map(paste0("res_stats_", reg_codes, ".rds"), readRDS) %>% setNames(reg_names) # Years with fire --------------------------------------------------------- # The number of cells with 0 fires in burn_stats table includes cells that are # as located in water or outside boreal biomes, need to count them from mask # and subtract numbers from table mask_dir <- "data/cell_masks" count_na <- function(reg_code) { rast <- raster(file.path(mask_dir, paste0("cells_na025_", reg_code, ".tif"))) cellStats(rast == 0, sum) } reg_na_counts <- map_dbl(reg_codes, count_na) for (i in seq_along(res)) { for (j in c("mean", "lo", "hi", "obs")) { res[[i]]$burn_stats[1, j] <- res[[i]]$burn_stats[1, j] - reg_na_counts[i] } } # Combine all the burn_stats tables from all regions into one data frame burn_stats <- map_df(res, "burn_stats", .id = "region") # Sum counts for cells with 4+ fires into same category burn_stats2 <- burn_stats %>% mutate(burn_counts = ifelse(burn_counts > 4, 4, burn_counts)) %>% group_by(region, burn_counts) %>% summarize_all(.funs = "sum") # Manually add row of 0s for 4+ fires category in Scandinavia burn_stats2 <- rbind(burn_stats2, data.frame(region = "Scandinavia", burn_counts = 4, mean = 0, lo = 0, hi = 0, obs = 0)) # Convert numbers of cells to area in km2 burn_stats2 <- mutate(burn_stats2, mean = mean * cell_km2, lo = lo * cell_km2, hi = hi * cell_km2, obs = obs * cell_km2) # Pivot data in burn_stats2 to put observed and simulated (lo/mean/hi) statistics # side to side (for results presentation, redundant values need to be removed in some columns) burn_tab <- pivot_longer(burn_stats2, cols = c("hi", "mean", "lo"), names_to = "stat", values_to = "area") %>% ungroup() %>% nest_by(region, burn_counts, obs) %>% pivot_wider(names_from = "burn_counts", values_from = c("obs", "data")) %>% unnest() # Bias in total fire area (relative difference between mean of simulations and observation) # The is negative and due to fires being "pushed out" of study area by random translation group_by(burn_stats, region) %>% summarize(bias = sum(burn_counts * mean) / sum(burn_counts * obs) - 1) # Return times ------------------------------------------------------------ # Combine all the ret_stats tables from all regions into one data frame, # convert cell counts to areas in km2 ret_stats <- map_df(res, "ret_stats", .id = "region") ret_stats2 <- mutate(ret_stats, mean = mean * cell_km2, lo = lo * cell_km2, hi = hi * cell_km2, obs = obs * cell_km2) ret_stats2$region <- factor(ret_stats2$region, levels = reg_names) # Produce graph of simulated vs. observed distribution of years between fires by region ggplot(ret_stats2, aes(x = dt, y = mean)) + geom_pointrange(aes(ymin = lo, ymax = hi), fatten = 2) + geom_point(aes(y = obs), color = "red") + geom_line(aes(y = obs), color = "red") + labs(x = "Time between fires", y = "Area (sq. km)") + facet_wrap(~ region, ncol = 2, scale = "free_y") + theme_bw() + theme(strip.background = element_blank(), strip.text = element_text(face = "bold")) # Map of study area ------------------------------------------------------- library(raster) library(stars) library(sf) library(spData) data(world) na_mask <- read_stars(file.path(mask_dir, "cells_na025_northam.tif"), proxy = TRUE) eu_mask <- read_stars(file.path(mask_dir, "cells_na025_eurasia.tif"), proxy = TRUE) bbox = st_bbox(na_mask) ggplot(world) + labs(x = "", y = "") + geom_stars(data = na_mask, downsample = 10) + geom_stars(data = eu_mask, downsample = 10) + geom_sf(fill = NA) + coord_sf(crs = st_crs(na_mask), ylim = c(5000000, 8000000)) + scale_fill_gradient(low = "white", high = "darkgreen") + theme_minimal() + theme(legend.position = "none")
shinyServer( function(input, output) { # forming dataframe fo radar plot radar.data <- reactive({ rbind(r.data, nriData.wide[nriData.wide$Country==input$country1, dims], nriData.wide[nriData.wide$Country==input$country2, dims] ) }) # preparing radarplot output$radarPlot <- renderPlot({ radarchart(radar.data()[,-1], axistype=1, seg=7, centerzero=T, vlabels=dims.lab, caxislabels=0:7, axislabcol=1, calcex=0.8, vlcex=0.9, plty=1, pcol=c(2,4), cglcol="darkgrey") legend("topright", lty="solid", col = c(2,4), pch=16, cex=1, legend = radar.data()[3:4,1], bty="n") }) # table with values # this is because I don't know how to diplay values on the plot output$table <- renderTable({radar.data()[3:4,]}) # function preparing data to download output$download <- downloadHandler( filename = function() { 'NRIsimpleData.csv' }, content = function(file) { write.csv(nriData.wide[,dims.download], file, row.names = FALSE) } ) } )
/server.R
no_license
tomowc/ddp_proj_app
R
false
false
1,282
r
shinyServer( function(input, output) { # forming dataframe fo radar plot radar.data <- reactive({ rbind(r.data, nriData.wide[nriData.wide$Country==input$country1, dims], nriData.wide[nriData.wide$Country==input$country2, dims] ) }) # preparing radarplot output$radarPlot <- renderPlot({ radarchart(radar.data()[,-1], axistype=1, seg=7, centerzero=T, vlabels=dims.lab, caxislabels=0:7, axislabcol=1, calcex=0.8, vlcex=0.9, plty=1, pcol=c(2,4), cglcol="darkgrey") legend("topright", lty="solid", col = c(2,4), pch=16, cex=1, legend = radar.data()[3:4,1], bty="n") }) # table with values # this is because I don't know how to diplay values on the plot output$table <- renderTable({radar.data()[3:4,]}) # function preparing data to download output$download <- downloadHandler( filename = function() { 'NRIsimpleData.csv' }, content = function(file) { write.csv(nriData.wide[,dims.download], file, row.names = FALSE) } ) } )
#3 #일리노이주와 미시건주 오하이오주의 전체 인구는 크게 차이가 없는 반면 일리노이 주의 아시아인 수가 월등히 높다. #mean(midwest$percollege)== 18.27274 #mean(midwest[midwest$percasian>1,]$percollege) == 29.87688 #mean(midwest[midwest$percasian>2,]$percollege) == 35.01751 #mean(midwest[midwest$percasian>3,]$percollege) == 38.84174 #mean(midwest[midwest$percasian>4,]$percollege) == 44.04773 #정확한 상관관계 파악은 어려우나 특정 지역의 asian 인구비율이 높을수록 대학진학률이 높아진다는 것을 확인할 수 있다. midwest = as.data.frame(ggplot2::midwest) st = aggregate(data=midwest, poptotal~state, sum) at = aggregate(data=midwest, popasian~state, sum) tableapps = cbind(st,at[,2]) colnames(tableapps)[3]='asian' tableapps hist(tableapps$asian) #4 colnames(midwest)[5]='total' colnames(midwest)[10]='asian' #5 ta = sum(midwest$asian) midwest$asianpct = midwest$asian / ta hist(midwest$asianpct) #6 apps = aggregate(data=midwest, asian~state, sum) barplot(apps$asian, names.arg=apps$state, main="주별 아시아인 인구분포") Illinois = midwest[midwest$state=='IL',] barplot(Illinois$asian, names.arg=Illinois$county, main="일리노이주의 카운티별 아시아인 인구분포") #7 apavg = mean(midwest$asianpct) midwest$asianrate = ifelse(midwest$asianpct > apavg,'lg','sm') #8 qplot(midwest$asianrate)
/R/midwest데이터.R
no_license
better331132/helloR
R
false
false
1,404
r
#3 #일리노이주와 미시건주 오하이오주의 전체 인구는 크게 차이가 없는 반면 일리노이 주의 아시아인 수가 월등히 높다. #mean(midwest$percollege)== 18.27274 #mean(midwest[midwest$percasian>1,]$percollege) == 29.87688 #mean(midwest[midwest$percasian>2,]$percollege) == 35.01751 #mean(midwest[midwest$percasian>3,]$percollege) == 38.84174 #mean(midwest[midwest$percasian>4,]$percollege) == 44.04773 #정확한 상관관계 파악은 어려우나 특정 지역의 asian 인구비율이 높을수록 대학진학률이 높아진다는 것을 확인할 수 있다. midwest = as.data.frame(ggplot2::midwest) st = aggregate(data=midwest, poptotal~state, sum) at = aggregate(data=midwest, popasian~state, sum) tableapps = cbind(st,at[,2]) colnames(tableapps)[3]='asian' tableapps hist(tableapps$asian) #4 colnames(midwest)[5]='total' colnames(midwest)[10]='asian' #5 ta = sum(midwest$asian) midwest$asianpct = midwest$asian / ta hist(midwest$asianpct) #6 apps = aggregate(data=midwest, asian~state, sum) barplot(apps$asian, names.arg=apps$state, main="주별 아시아인 인구분포") Illinois = midwest[midwest$state=='IL',] barplot(Illinois$asian, names.arg=Illinois$county, main="일리노이주의 카운티별 아시아인 인구분포") #7 apavg = mean(midwest$asianpct) midwest$asianrate = ifelse(midwest$asianpct > apavg,'lg','sm') #8 qplot(midwest$asianrate)
.Random.seed <- c(403L, 432L, -678628990L, -398879292L, -1175936006L, -1927840090L, 71575548L, 116701410L, 973048916L, -1634865779L, 413940365L, 626374877L, 688513227L, -158508683L, 80827441L, 376549021L, -198417317L, -601753194L, 1399586916L, 1828546730L, 864239660L, -427201396L, -2085029066L, -1447676248L, 297026322L, 274436715L, 1570852439L, 713321715L, 1119744301L, -746630965L, 1458399651L, -946188469L, -1158865623L, 1264151460L, 738548702L, 1626031552L, 702213062L, 1269439554L, -1213388584L, 664600934L, -893940864L, 1114981001L, 1604605673L, 1950682481L, -512296665L, -2058492583L, -646003579L, -1597660015L, -1043364697L, 839734130L, -1312895440L, -1307176714L, 1449368072L, -1653838744L, -887775358L, -1976264692L, -121651394L, 2139912247L, 1185569955L, -1323091161L, 1125807513L, 2013584207L, 2036168343L, 139071L, -1956296395L, 831987440L, 92544410L, -1016487700L, -1849779566L, -21018226L, -1668500556L, 1459394650L, 747166668L, 951348533L, 920377013L, -899739179L, 1501075843L, 277385965L, -1039263191L, 1113072517L, -567437373L, 2027522350L, 1886004748L, -774479726L, 512471156L, -503412492L, -681766434L, -1224206336L, 1821028010L, -2072261053L, -1854695505L, 727208283L, 347105941L, -1929454701L, 1130402779L, 672193683L, -452938351L, 1911258956L, 775003990L, 9710984L, -1801397794L, 289601674L, 1638323472L, -432850274L, 1173086200L, -478964495L, -1496725487L, -456969719L, -1332195297L, -1558593423L, 2069917501L, 248194873L, 1421978031L, 912716106L, -1317845896L, 902349438L, 1160934516L, 1242284070L, 1725657337L, 1368664303L, 842831784L, -386904873L, -433032338L, 2114352002L, 105472177L, -1280577707L, 1750320208L, -306698936L, 192454119L, 692843292L, -882672157L, -1743281499L, 1382387670L, -2097202952L, -354870617L, 225711393L, 1322358498L, 76310285L, -141122240L, -1107844312L, 703727731L, -1935727969L, -397122122L, 1560418874L, 1421401353L, -1735857958L, 424580397L, 734131187L, 249024008L, -1634955718L, 146049413L, -140860989L, -481659604L, 89074323L, 1759469186L, -1162794370L, 1475037437L, -955315223L, -1321315140L, -1804122524L, -806842957L, -1562747392L, 799140047L, -1643377103L, 814462426L, 1092725356L, -1297108845L, -1828040203L, 913582694L, -52432135L, -1860348876L, 1366604660L, -1247156305L, -242516157L, 763576786L, 1767801510L, 1561136389L, -364249458L, -901295575L, 1336685823L, 1463710812L, 641802542L, -868406751L, 1118233847L, -1635437264L, -924337761L, -299095994L, 1951974138L, -648053767L, -137244035L, -1479183880L, -1732755296L, -775287265L, -1914750044L, 1944451259L, 372759405L, 1723378334L, -1323804368L, 1915256015L, 1204473241L, -1221254022L, 1366246581L, -1149451464L, -105900800L, 1892985563L, -154435897L, -257054162L, 908561122L, -486026671L, -1690688414L, 1690895077L, -1249609973L, 1331646096L, -708390846L, 382377997L, 39964363L, -1051645420L, 980477787L, 445975290L, -293132490L, -1056638587L, -909720335L, -2139485308L, -1230070724L, -1243231413L, -1843137336L, 1613120807L, -598167552L, -609296512L, -1480274249L, -1808484402L, 2135344181L, 775080344L, -557330412L, -595116833L, 435091232L, -787742264L, 1125892787L, 239611654L, -1652636241L, 807172076L, -810246070L, -1849051843L, -799852728L, -1822061624L, 1040420411L, 889143290L, -382725479L, 869541460L, 2011101960L, 1562599423L, 390909136L, 1161581032L, 239177303L, 1319218202L, -987235097L, 626939904L, -322864966L, 1197834065L, -908030920L, 2140407224L, 889325815L, 945651798L, -1114520171L, -373042544L, 1181368284L, -703499177L, -524689344L, 832113672L, 1182454835L, 1660662662L, 900538375L, 72518932L, 1966896322L, 110281149L, -1342923856L, 792213728L, -314844109L, -1287859302L, -574840991L, 770307956L, 608662888L, 349791799L, -610456752L, 1265937800L, 1700416109L, -688226935L, 151721097L, 2029903722L, -1119366995L, -1273897883L, 1335704149L, -1500444983L, 513178415L, -1784653697L, -1694558843L, -335749632L, 421812201L, -899984659L, -1274153033L, -1781825729L, 1238029485L, -1927832735L, 1136185445L, 1670668906L, 905611273L, -773901147L, 1444205193L, -1029084187L, 817354943L, -1623631593L, 388422909L, -1165302336L, 1047356745L, 537047057L, -1846419133L, 1966065171L, -2033240803L, 2087000985L, 983271465L, -1646984222L, -140342835L, -159009323L, 1687391061L, -1920837175L, 1182575943L, 1834243967L, -1540677747L, 1734748736L, -1071236151L, 713181165L, -1131342849L, 344330599L, -381008811L, -2014390359L, -944201995L, -722125990L, -507420807L, -1405385875L, -1582773687L, -1549038411L, -1135856449L, 333733103L, 1648203097L, 1485895102L, -2021911790L, -40994934L, -483275243L, 1903867747L, -867676632L, 644998820L, 1258905385L, -127843720L, -1151059726L, 448064906L, -816933377L, -1532752979L, -160987154L, -1154897554L, 1776799049L, -328215714L, 1098349362L, -678580130L, -2090834127L, -264884913L, -545945504L, -294614572L, 807014733L, -1844186688L, 539268030L, -1090604606L, -483543717L, 144771897L, 2100690134L, 1428280718L, 195447097L, -524964586L, -228524582L, 701745946L, 683013277L, -159546005L, 205630712L, -964223788L, 1812774441L, -125987168L, 1303924594L, 1257882810L, 1686273823L, 1694510285L, 1311178358L, -1127972370L, 90012081L, 886298462L, 834184050L, 1121679998L, -460872119L, 845419815L, -484934616L, 418420492L, -1543418979L, -2083489904L, -1410648402L, -831603526L, -133287813L, 643503785L, -67902282L, 602653222L, 13156761L, 865489550L, 152993090L, -127776278L, 530094181L, 830765747L, -1106803176L, 683272036L, -1991481767L, -1055438936L, 1745008562L, 957075114L, 967219183L, 453545389L, 1186946590L, 432626894L, 6356857L, -1648509234L, -1195374174L, -54104834L, 77884465L, -89230097L, -591712272L, -448787420L, 963286509L, -56883120L, 51888414L, -1024170958L, 533154859L, 2075959577L, 665635046L, -1762715618L, 871984329L, -695231706L, -1815508310L, -1252808214L, 426529965L, -1211069925L, 1549021624L, -967019004L, -804573719L, -1187570672L, 1317399042L, 675211306L, 1940022463L, 897706493L, 70692742L, -415387234L, 924396193L, -369242530L, 835053266L, 1984702350L, -1194891959L, -1442213561L, 1191111032L, 1251454940L, 242515597L, 201797296L, -151132994L, -869086134L, -627086949L, -2044710183L, 1318180790L, -1307105514L, 1239598233L, 1234137566L, -1997800014L, -449526486L, -972994347L, 248669859L, -210071128L, 1097405252L, -1957824151L, 1090040152L, -720479822L, -1714844982L, -221397345L, -530302195L, -1207755314L, -1021582994L, -773060887L, 686423870L, -1237840686L, -670378050L, 1219487633L, 857223599L, 1466433696L, -1935077132L, -826237171L, 1379193984L, -1734752354L, 333728290L, -2108234789L, 1661987737L, -713629002L, -1679360466L, -1338465383L, -1781762026L, 1449067674L, -1334981958L, -1413483971L, 1927969483L, -1024618472L, -1922546316L, -777811831L, 1140279200L, 1618307026L, -1792983654L, 1334028479L, -653892051L, 1147136118L, -480364690L, -1347321231L, 886469982L, 856743474L, 1603984062L, -410732727L, 857493415L, 503043720L, 1223948364L, -1835141123L, 868392464L, 539237742L, -1392244870L, 369408507L, 1728478313L, 982060790L, -1232615258L, -526812935L, 1712374446L, 128581026L, -686588566L, -79365595L, 1101727475L, -51486824L, 705124964L, 109274073L, -1915654776L, -1053346478L, -920834934L, -1986103345L, -374215379L, 1590133438L, -1528927250L, -30913767L, 560498606L, -1053516478L, 1232090046L, 301750321L, -203888337L, -2069774736L, 101380740L, 1331122509L, -1442643312L, 268086238L, 1393707538L, -1516209237L, -653047847L, 1680624582L, 459832446L, -1410861207L, -1548072858L, -737907926L, -1420347538L, 1890420475L, -10567480L, 881331219L, 1604721722L, 1776082929L, -699339963L, -1513254737L, -899122822L, -2011056899L, -481726974L, -1635874615L, 1471273956L, -1329496411L, -213739313L, 1535947971L, -1654339982L, -1236623129L, 1353997100L, 1327616427L, 622599674L, -1329658787L, -761604883L, 1958464763L, -459034366L, -1141222495L, 1971681710L, 158871233L, 379301460L, 597639365L, 576925095L, -20491749L, -727623746L, -2089862189L, -1315474016L, -1884262125L, -1326506806L, -1537245087L, 1107282365L, 1774183919L, -1303256726L, -169533331L, 508469090L, -547045999L, -1640342044L, 262754557L, 890653887L, 2011475699L, -128819822L, 1727898671L, 412415764L, -1030977565L, 2101494498L, -862733602L, -1119278516L, 1932980173L)
/GDAtools/R/GDAtools-internal.R
no_license
ingted/R-Examples
R
false
false
8,244
r
.Random.seed <- c(403L, 432L, -678628990L, -398879292L, -1175936006L, -1927840090L, 71575548L, 116701410L, 973048916L, -1634865779L, 413940365L, 626374877L, 688513227L, -158508683L, 80827441L, 376549021L, -198417317L, -601753194L, 1399586916L, 1828546730L, 864239660L, -427201396L, -2085029066L, -1447676248L, 297026322L, 274436715L, 1570852439L, 713321715L, 1119744301L, -746630965L, 1458399651L, -946188469L, -1158865623L, 1264151460L, 738548702L, 1626031552L, 702213062L, 1269439554L, -1213388584L, 664600934L, -893940864L, 1114981001L, 1604605673L, 1950682481L, -512296665L, -2058492583L, -646003579L, -1597660015L, -1043364697L, 839734130L, -1312895440L, -1307176714L, 1449368072L, -1653838744L, -887775358L, -1976264692L, -121651394L, 2139912247L, 1185569955L, -1323091161L, 1125807513L, 2013584207L, 2036168343L, 139071L, -1956296395L, 831987440L, 92544410L, -1016487700L, -1849779566L, -21018226L, -1668500556L, 1459394650L, 747166668L, 951348533L, 920377013L, -899739179L, 1501075843L, 277385965L, -1039263191L, 1113072517L, -567437373L, 2027522350L, 1886004748L, -774479726L, 512471156L, -503412492L, -681766434L, -1224206336L, 1821028010L, -2072261053L, -1854695505L, 727208283L, 347105941L, -1929454701L, 1130402779L, 672193683L, -452938351L, 1911258956L, 775003990L, 9710984L, -1801397794L, 289601674L, 1638323472L, -432850274L, 1173086200L, -478964495L, -1496725487L, -456969719L, -1332195297L, -1558593423L, 2069917501L, 248194873L, 1421978031L, 912716106L, -1317845896L, 902349438L, 1160934516L, 1242284070L, 1725657337L, 1368664303L, 842831784L, -386904873L, -433032338L, 2114352002L, 105472177L, -1280577707L, 1750320208L, -306698936L, 192454119L, 692843292L, -882672157L, -1743281499L, 1382387670L, -2097202952L, -354870617L, 225711393L, 1322358498L, 76310285L, -141122240L, -1107844312L, 703727731L, -1935727969L, -397122122L, 1560418874L, 1421401353L, -1735857958L, 424580397L, 734131187L, 249024008L, -1634955718L, 146049413L, -140860989L, -481659604L, 89074323L, 1759469186L, -1162794370L, 1475037437L, -955315223L, -1321315140L, -1804122524L, -806842957L, -1562747392L, 799140047L, -1643377103L, 814462426L, 1092725356L, -1297108845L, -1828040203L, 913582694L, -52432135L, -1860348876L, 1366604660L, -1247156305L, -242516157L, 763576786L, 1767801510L, 1561136389L, -364249458L, -901295575L, 1336685823L, 1463710812L, 641802542L, -868406751L, 1118233847L, -1635437264L, -924337761L, -299095994L, 1951974138L, -648053767L, -137244035L, -1479183880L, -1732755296L, -775287265L, -1914750044L, 1944451259L, 372759405L, 1723378334L, -1323804368L, 1915256015L, 1204473241L, -1221254022L, 1366246581L, -1149451464L, -105900800L, 1892985563L, -154435897L, -257054162L, 908561122L, -486026671L, -1690688414L, 1690895077L, -1249609973L, 1331646096L, -708390846L, 382377997L, 39964363L, -1051645420L, 980477787L, 445975290L, -293132490L, -1056638587L, -909720335L, -2139485308L, -1230070724L, -1243231413L, -1843137336L, 1613120807L, -598167552L, -609296512L, -1480274249L, -1808484402L, 2135344181L, 775080344L, -557330412L, -595116833L, 435091232L, -787742264L, 1125892787L, 239611654L, -1652636241L, 807172076L, -810246070L, -1849051843L, -799852728L, -1822061624L, 1040420411L, 889143290L, -382725479L, 869541460L, 2011101960L, 1562599423L, 390909136L, 1161581032L, 239177303L, 1319218202L, -987235097L, 626939904L, -322864966L, 1197834065L, -908030920L, 2140407224L, 889325815L, 945651798L, -1114520171L, -373042544L, 1181368284L, -703499177L, -524689344L, 832113672L, 1182454835L, 1660662662L, 900538375L, 72518932L, 1966896322L, 110281149L, -1342923856L, 792213728L, -314844109L, -1287859302L, -574840991L, 770307956L, 608662888L, 349791799L, -610456752L, 1265937800L, 1700416109L, -688226935L, 151721097L, 2029903722L, -1119366995L, -1273897883L, 1335704149L, -1500444983L, 513178415L, -1784653697L, -1694558843L, -335749632L, 421812201L, -899984659L, -1274153033L, -1781825729L, 1238029485L, -1927832735L, 1136185445L, 1670668906L, 905611273L, -773901147L, 1444205193L, -1029084187L, 817354943L, -1623631593L, 388422909L, -1165302336L, 1047356745L, 537047057L, -1846419133L, 1966065171L, -2033240803L, 2087000985L, 983271465L, -1646984222L, -140342835L, -159009323L, 1687391061L, -1920837175L, 1182575943L, 1834243967L, -1540677747L, 1734748736L, -1071236151L, 713181165L, -1131342849L, 344330599L, -381008811L, -2014390359L, -944201995L, -722125990L, -507420807L, -1405385875L, -1582773687L, -1549038411L, -1135856449L, 333733103L, 1648203097L, 1485895102L, -2021911790L, -40994934L, -483275243L, 1903867747L, -867676632L, 644998820L, 1258905385L, -127843720L, -1151059726L, 448064906L, -816933377L, -1532752979L, -160987154L, -1154897554L, 1776799049L, -328215714L, 1098349362L, -678580130L, -2090834127L, -264884913L, -545945504L, -294614572L, 807014733L, -1844186688L, 539268030L, -1090604606L, -483543717L, 144771897L, 2100690134L, 1428280718L, 195447097L, -524964586L, -228524582L, 701745946L, 683013277L, -159546005L, 205630712L, -964223788L, 1812774441L, -125987168L, 1303924594L, 1257882810L, 1686273823L, 1694510285L, 1311178358L, -1127972370L, 90012081L, 886298462L, 834184050L, 1121679998L, -460872119L, 845419815L, -484934616L, 418420492L, -1543418979L, -2083489904L, -1410648402L, -831603526L, -133287813L, 643503785L, -67902282L, 602653222L, 13156761L, 865489550L, 152993090L, -127776278L, 530094181L, 830765747L, -1106803176L, 683272036L, -1991481767L, -1055438936L, 1745008562L, 957075114L, 967219183L, 453545389L, 1186946590L, 432626894L, 6356857L, -1648509234L, -1195374174L, -54104834L, 77884465L, -89230097L, -591712272L, -448787420L, 963286509L, -56883120L, 51888414L, -1024170958L, 533154859L, 2075959577L, 665635046L, -1762715618L, 871984329L, -695231706L, -1815508310L, -1252808214L, 426529965L, -1211069925L, 1549021624L, -967019004L, -804573719L, -1187570672L, 1317399042L, 675211306L, 1940022463L, 897706493L, 70692742L, -415387234L, 924396193L, -369242530L, 835053266L, 1984702350L, -1194891959L, -1442213561L, 1191111032L, 1251454940L, 242515597L, 201797296L, -151132994L, -869086134L, -627086949L, -2044710183L, 1318180790L, -1307105514L, 1239598233L, 1234137566L, -1997800014L, -449526486L, -972994347L, 248669859L, -210071128L, 1097405252L, -1957824151L, 1090040152L, -720479822L, -1714844982L, -221397345L, -530302195L, -1207755314L, -1021582994L, -773060887L, 686423870L, -1237840686L, -670378050L, 1219487633L, 857223599L, 1466433696L, -1935077132L, -826237171L, 1379193984L, -1734752354L, 333728290L, -2108234789L, 1661987737L, -713629002L, -1679360466L, -1338465383L, -1781762026L, 1449067674L, -1334981958L, -1413483971L, 1927969483L, -1024618472L, -1922546316L, -777811831L, 1140279200L, 1618307026L, -1792983654L, 1334028479L, -653892051L, 1147136118L, -480364690L, -1347321231L, 886469982L, 856743474L, 1603984062L, -410732727L, 857493415L, 503043720L, 1223948364L, -1835141123L, 868392464L, 539237742L, -1392244870L, 369408507L, 1728478313L, 982060790L, -1232615258L, -526812935L, 1712374446L, 128581026L, -686588566L, -79365595L, 1101727475L, -51486824L, 705124964L, 109274073L, -1915654776L, -1053346478L, -920834934L, -1986103345L, -374215379L, 1590133438L, -1528927250L, -30913767L, 560498606L, -1053516478L, 1232090046L, 301750321L, -203888337L, -2069774736L, 101380740L, 1331122509L, -1442643312L, 268086238L, 1393707538L, -1516209237L, -653047847L, 1680624582L, 459832446L, -1410861207L, -1548072858L, -737907926L, -1420347538L, 1890420475L, -10567480L, 881331219L, 1604721722L, 1776082929L, -699339963L, -1513254737L, -899122822L, -2011056899L, -481726974L, -1635874615L, 1471273956L, -1329496411L, -213739313L, 1535947971L, -1654339982L, -1236623129L, 1353997100L, 1327616427L, 622599674L, -1329658787L, -761604883L, 1958464763L, -459034366L, -1141222495L, 1971681710L, 158871233L, 379301460L, 597639365L, 576925095L, -20491749L, -727623746L, -2089862189L, -1315474016L, -1884262125L, -1326506806L, -1537245087L, 1107282365L, 1774183919L, -1303256726L, -169533331L, 508469090L, -547045999L, -1640342044L, 262754557L, 890653887L, 2011475699L, -128819822L, 1727898671L, 412415764L, -1030977565L, 2101494498L, -862733602L, -1119278516L, 1932980173L)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/format_data.R \name{fmt_url} \alias{fmt_url} \title{Format URLs to generate links} \usage{ fmt_url( data, columns = everything(), rows = everything(), label = NULL, as_button = FALSE, color = "auto", show_underline = "auto", button_fill = "auto", button_width = "auto", button_outline = "auto" ) } \arguments{ \item{data}{\emph{The gt table data object} \verb{obj:<gt_tbl>} // \strong{required} This is the \strong{gt} table object that is commonly created through use of the \code{\link[=gt]{gt()}} function.} \item{columns}{\emph{Columns to target} \verb{<column-targeting expression>} // \emph{default:} \code{everything()} Can either be a series of column names provided in \code{\link[=c]{c()}}, a vector of column indices, or a select helper function. Examples of select helper functions include \code{\link[=starts_with]{starts_with()}}, \code{\link[=ends_with]{ends_with()}}, \code{\link[=contains]{contains()}}, \code{\link[=matches]{matches()}}, \code{\link[=one_of]{one_of()}}, \code{\link[=num_range]{num_range()}}, and \code{\link[=everything]{everything()}}.} \item{rows}{\emph{Rows to target} \verb{<row-targeting expression>} // \emph{default:} \code{everything()} In conjunction with \code{columns}, we can specify which of their rows should undergo formatting. The default \code{\link[=everything]{everything()}} results in all rows in \code{columns} being formatted. Alternatively, we can supply a vector of row captions within \code{\link[=c]{c()}}, a vector of row indices, or a select helper function. Examples of select helper functions include \code{\link[=starts_with]{starts_with()}}, \code{\link[=ends_with]{ends_with()}}, \code{\link[=contains]{contains()}}, \code{\link[=matches]{matches()}}, \code{\link[=one_of]{one_of()}}, \code{\link[=num_range]{num_range()}}, and \code{\link[=everything]{everything()}}. We can also use expressions to filter down to the rows we need (e.g., \verb{[colname_1] > 100 & [colname_2] < 50}).} \item{label}{\emph{Link label} \verb{scalar<character>} // \emph{default:} \code{NULL} (\code{optional}) The visible 'label' to use for the link. If \code{NULL} (the default) the URL will serve as the label. There are two non-\code{NULL} options: (1) a static text can be used for the label by providing a string, and (2) a function can be provided to fashion a label from every URL.} \item{as_button}{\emph{Style link as a button} \verb{scalar<logical>} // \emph{default:} \code{FALSE} An option to style the link as a button. By default, this is \code{FALSE}. If this option is chosen then the \code{button_fill} argument becomes usable.} \item{color}{\emph{Link color} \verb{scalar<character>} // \emph{default:} \code{"auto"} The color used for the resulting link and its underline. This is \code{"auto"} by default; this allows \strong{gt} to choose an appropriate color based on various factors (such as the background \code{button_fill} when \code{as_button} is \code{TRUE}).} \item{show_underline}{\emph{Show the link underline} \verb{scalar<character>|scalar<logical>} // \emph{default:} \code{"auto"} Should the link be decorated with an underline? By default this is \code{"auto"} which means that \strong{gt} will choose \code{TRUE} when \code{as_button = FALSE} and \code{FALSE} in the other case. The link underline will be the same color as that set in the \code{color} option.} \item{button_fill, button_width, button_outline}{\emph{Button options} \verb{scalar<character>} // \emph{default:} \code{"auto"} Options for styling a link-as-button (and only applies if \code{as_button = TRUE}). All of these options are by default set to \code{"auto"}, allowing \strong{gt} to choose appropriate fill, width, and outline values.} } \value{ An object of class \code{gt_tbl}. } \description{ Should cells contain URLs, the \code{fmt_url()} function can be used to make them navigable links. This should be expressly used on columns that contain \emph{only} URL text (i.e., no URLs as part of a larger block of text). Should you have such a column of data, there are options for how the links should be styled. They can be of the conventional style (with underlines and text coloring that sets it apart from other text), or, they can appear to be button-like (with a surrounding box that can be filled with a color of your choosing). URLs in data cells are detected in two ways. The first is using the simple Markdown notation for URLs of the form: \verb{[label](URL)}. The second assumes that the text is the URL. In the latter case the URL is also used as the label but there is the option to use the \code{label} argument to modify that text. } \section{Compatibility of formatting function with data values}{ The \code{fmt_url()} formatting function is compatible with body cells that are of the \code{"character"} or \code{"factor"} types. Any other types of body cells are ignored during formatting. This is to say that cells of incompatible data types may be targeted, but there will be no attempt to format them. } \section{Targeting cells with \code{columns} and \code{rows}}{ Targeting of values is done through \code{columns} and additionally by \code{rows} (if nothing is provided for \code{rows} then entire columns are selected). The \code{columns} argument allows us to target a subset of cells contained in the resolved columns. We say resolved because aside from declaring column names in \code{c()} (with bare column names or names in quotes) we can use \strong{tidyselect}-style expressions. This can be as basic as supplying a select helper like \code{starts_with()}, or, providing a more complex incantation like \code{where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)} which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any \code{NA}s from consideration). By default all columns and rows are selected (with the \code{everything()} defaults). Cell values that are incompatible with a given formatting function will be skipped over, like \code{character} values and numeric \verb{fmt_*()} functions. So it's safe to select all columns with a particular formatting function (only those values that can be formatted will be formatted), but, you may not want that. One strategy is to format the bulk of cell values with one formatting function and then constrain the columns for later passes with other types of formatting (the last formatting done to a cell is what you get in the final output). Once the columns are targeted, we may also target the \code{rows} within those columns. This can be done in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used much like column names in the \code{columns}-targeting scenario. We can use simpler \strong{tidyselect}-style expressions (the select helpers should work well here) and we can use quoted row identifiers in \code{c()}. It's also possible to use row indices (e.g., \code{c(3, 5, 6)}) though these index values must correspond to the row numbers of the input data (the indices won't necessarily match those of rearranged rows if row groups are present). One more type of expression is possible, an expression that takes column values (can involve any of the available columns in the table) and returns a logical vector. This is nice if you want to base formatting on values in the column or another column, or, you'd like to use a more complex predicate expression. } \section{Compatibility of arguments with the \code{from_column()} helper function}{ The \code{\link[=from_column]{from_column()}} helper function can be used with certain arguments of \code{fmt_url()} to obtain varying parameter values from a specified column within the table. This means that each row could be formatted a little bit differently. These arguments provide support for \code{\link[=from_column]{from_column()}}: \itemize{ \item \code{label} \item \code{as_button} \item \code{color} \item \code{show_underline} \item \code{button_fill} \item \code{button_width} \item \code{button_outline} } Please note that for each of the aforementioned arguments, a \code{\link[=from_column]{from_column()}} call needs to reference a column that has data of the correct type (this is different for each argument). Additional columns for parameter values can be generated with the \code{\link[=cols_add]{cols_add()}} function (if not already present). Columns that contain parameter data can also be hidden from final display with \code{\link[=cols_hide]{cols_hide()}}. Finally, there is no limitation to how many arguments the \code{\link[=from_column]{from_column()}} helper is applied so long as the arguments belong to this closed set. } \section{Examples}{ Using a portion of the \code{\link{towny}} dataset, let's create a \strong{gt} table. We can use the \code{fmt_url()} function on the \code{website} column to generate navigable links to websites. By default the links are underlined and the color will be chosen for you (it's dark cyan). \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::filter(csd_type == "city") |> dplyr::arrange(desc(population_2021)) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> gt() |> tab_header( title = md("The 10 Largest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url(columns = website) |> cols_label( name = "Name", website = "Site", population_2021 = "Population" ) }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_1.png" alt="This image of a table was generated from the first code example in the `fmt_url()` help file." style="width:100\%;"> }} Let's try something else. We can set a static text label for the link with the \code{label} argument (and we'll use the word \code{"site"} for this). The link underline is removable with \code{show_underline = FALSE}. With this change, it seems sensible to merge the link to the \code{"name"} column and enclose the link text in parentheses (the \code{\link[=cols_merge]{cols_merge()}} function handles all that). \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::filter(csd_type == "city") |> dplyr::arrange(desc(population_2021)) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> gt() |> tab_header( title = md("The 10 Largest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url( columns = website, label = "site", show_underline = FALSE ) |> cols_merge( columns = c(name, website), pattern = "\{1\} (\{2\})" ) |> cols_label( name = "Name", population_2021 = "Population" ) }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_2.png" alt="This image of a table was generated from the second code example in the `fmt_url()` help file." style="width:100\%;"> }} The \code{fmt_url()} function allows for the styling of links as 'buttons'. This is as easy as setting \code{as_button = TRUE}. Doing that unlocks the ability to set a \code{button_fill} color. This color can automatically selected by \strong{gt} (this is the default) but here we're using \code{"steelblue"}. The \code{label} argument also accepts a function! We can choose to adapt the label text from the URLs by eliminating any leading \code{"https://"} or \code{"www."} parts. \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::filter(csd_type == "city") |> dplyr::arrange(desc(population_2021)) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> dplyr::mutate(ranking = dplyr::row_number()) |> gt(rowname_col = "ranking") |> tab_header( title = md("The 10 Largest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url( columns = website, label = function(x) gsub("https://|www.", "", x), as_button = TRUE, button_fill = "steelblue", button_width = px(150) ) |> cols_move_to_end(columns = website) |> cols_align(align = "center", columns = website) |> cols_width( ranking ~ px(40), website ~ px(200) ) |> tab_options(column_labels.hidden = TRUE) |> tab_style( style = cell_text(weight = "bold"), locations = cells_stub() ) \%>\% opt_vertical_padding(scale = 0.75) }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_3.png" alt="This image of a table was generated from the third code example in the `fmt_url()` help file." style="width:100\%;"> }} It's perhaps inevitable that you'll come across missing values in your column of URLs. The \code{fmt_url()} function will preserve input \code{NA} values, allowing you to handle them with \code{\link[=sub_missing]{sub_missing()}}. Here's an example of that. \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::arrange(population_2021) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> gt() |> tab_header( title = md("The 10 Smallest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url(columns = website) |> cols_label( name = "Name", website = "Site", population_2021 = "Population" ) |> sub_missing() }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_4.png" alt="This image of a table was generated from the fourth code example in the `fmt_url()` help file." style="width:100\%;"> }} } \section{Function ID}{ 3-19 } \section{Function Introduced}{ \code{v0.9.0} (Mar 31, 2023) } \seealso{ Other data formatting functions: \code{\link{data_color}()}, \code{\link{fmt_auto}()}, \code{\link{fmt_bins}()}, \code{\link{fmt_bytes}()}, \code{\link{fmt_currency}()}, \code{\link{fmt_datetime}()}, \code{\link{fmt_date}()}, \code{\link{fmt_duration}()}, \code{\link{fmt_engineering}()}, \code{\link{fmt_flag}()}, \code{\link{fmt_fraction}()}, \code{\link{fmt_icon}()}, \code{\link{fmt_image}()}, \code{\link{fmt_index}()}, \code{\link{fmt_integer}()}, \code{\link{fmt_markdown}()}, \code{\link{fmt_number}()}, \code{\link{fmt_partsper}()}, \code{\link{fmt_passthrough}()}, \code{\link{fmt_percent}()}, \code{\link{fmt_roman}()}, \code{\link{fmt_scientific}()}, \code{\link{fmt_spelled_num}()}, \code{\link{fmt_time}()}, \code{\link{fmt_units}()}, \code{\link{fmt}()}, \code{\link{sub_large_vals}()}, \code{\link{sub_missing}()}, \code{\link{sub_small_vals}()}, \code{\link{sub_values}()}, \code{\link{sub_zero}()} } \concept{data formatting functions}
/man/fmt_url.Rd
permissive
rstudio/gt
R
false
true
14,997
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/format_data.R \name{fmt_url} \alias{fmt_url} \title{Format URLs to generate links} \usage{ fmt_url( data, columns = everything(), rows = everything(), label = NULL, as_button = FALSE, color = "auto", show_underline = "auto", button_fill = "auto", button_width = "auto", button_outline = "auto" ) } \arguments{ \item{data}{\emph{The gt table data object} \verb{obj:<gt_tbl>} // \strong{required} This is the \strong{gt} table object that is commonly created through use of the \code{\link[=gt]{gt()}} function.} \item{columns}{\emph{Columns to target} \verb{<column-targeting expression>} // \emph{default:} \code{everything()} Can either be a series of column names provided in \code{\link[=c]{c()}}, a vector of column indices, or a select helper function. Examples of select helper functions include \code{\link[=starts_with]{starts_with()}}, \code{\link[=ends_with]{ends_with()}}, \code{\link[=contains]{contains()}}, \code{\link[=matches]{matches()}}, \code{\link[=one_of]{one_of()}}, \code{\link[=num_range]{num_range()}}, and \code{\link[=everything]{everything()}}.} \item{rows}{\emph{Rows to target} \verb{<row-targeting expression>} // \emph{default:} \code{everything()} In conjunction with \code{columns}, we can specify which of their rows should undergo formatting. The default \code{\link[=everything]{everything()}} results in all rows in \code{columns} being formatted. Alternatively, we can supply a vector of row captions within \code{\link[=c]{c()}}, a vector of row indices, or a select helper function. Examples of select helper functions include \code{\link[=starts_with]{starts_with()}}, \code{\link[=ends_with]{ends_with()}}, \code{\link[=contains]{contains()}}, \code{\link[=matches]{matches()}}, \code{\link[=one_of]{one_of()}}, \code{\link[=num_range]{num_range()}}, and \code{\link[=everything]{everything()}}. We can also use expressions to filter down to the rows we need (e.g., \verb{[colname_1] > 100 & [colname_2] < 50}).} \item{label}{\emph{Link label} \verb{scalar<character>} // \emph{default:} \code{NULL} (\code{optional}) The visible 'label' to use for the link. If \code{NULL} (the default) the URL will serve as the label. There are two non-\code{NULL} options: (1) a static text can be used for the label by providing a string, and (2) a function can be provided to fashion a label from every URL.} \item{as_button}{\emph{Style link as a button} \verb{scalar<logical>} // \emph{default:} \code{FALSE} An option to style the link as a button. By default, this is \code{FALSE}. If this option is chosen then the \code{button_fill} argument becomes usable.} \item{color}{\emph{Link color} \verb{scalar<character>} // \emph{default:} \code{"auto"} The color used for the resulting link and its underline. This is \code{"auto"} by default; this allows \strong{gt} to choose an appropriate color based on various factors (such as the background \code{button_fill} when \code{as_button} is \code{TRUE}).} \item{show_underline}{\emph{Show the link underline} \verb{scalar<character>|scalar<logical>} // \emph{default:} \code{"auto"} Should the link be decorated with an underline? By default this is \code{"auto"} which means that \strong{gt} will choose \code{TRUE} when \code{as_button = FALSE} and \code{FALSE} in the other case. The link underline will be the same color as that set in the \code{color} option.} \item{button_fill, button_width, button_outline}{\emph{Button options} \verb{scalar<character>} // \emph{default:} \code{"auto"} Options for styling a link-as-button (and only applies if \code{as_button = TRUE}). All of these options are by default set to \code{"auto"}, allowing \strong{gt} to choose appropriate fill, width, and outline values.} } \value{ An object of class \code{gt_tbl}. } \description{ Should cells contain URLs, the \code{fmt_url()} function can be used to make them navigable links. This should be expressly used on columns that contain \emph{only} URL text (i.e., no URLs as part of a larger block of text). Should you have such a column of data, there are options for how the links should be styled. They can be of the conventional style (with underlines and text coloring that sets it apart from other text), or, they can appear to be button-like (with a surrounding box that can be filled with a color of your choosing). URLs in data cells are detected in two ways. The first is using the simple Markdown notation for URLs of the form: \verb{[label](URL)}. The second assumes that the text is the URL. In the latter case the URL is also used as the label but there is the option to use the \code{label} argument to modify that text. } \section{Compatibility of formatting function with data values}{ The \code{fmt_url()} formatting function is compatible with body cells that are of the \code{"character"} or \code{"factor"} types. Any other types of body cells are ignored during formatting. This is to say that cells of incompatible data types may be targeted, but there will be no attempt to format them. } \section{Targeting cells with \code{columns} and \code{rows}}{ Targeting of values is done through \code{columns} and additionally by \code{rows} (if nothing is provided for \code{rows} then entire columns are selected). The \code{columns} argument allows us to target a subset of cells contained in the resolved columns. We say resolved because aside from declaring column names in \code{c()} (with bare column names or names in quotes) we can use \strong{tidyselect}-style expressions. This can be as basic as supplying a select helper like \code{starts_with()}, or, providing a more complex incantation like \code{where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)} which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any \code{NA}s from consideration). By default all columns and rows are selected (with the \code{everything()} defaults). Cell values that are incompatible with a given formatting function will be skipped over, like \code{character} values and numeric \verb{fmt_*()} functions. So it's safe to select all columns with a particular formatting function (only those values that can be formatted will be formatted), but, you may not want that. One strategy is to format the bulk of cell values with one formatting function and then constrain the columns for later passes with other types of formatting (the last formatting done to a cell is what you get in the final output). Once the columns are targeted, we may also target the \code{rows} within those columns. This can be done in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used much like column names in the \code{columns}-targeting scenario. We can use simpler \strong{tidyselect}-style expressions (the select helpers should work well here) and we can use quoted row identifiers in \code{c()}. It's also possible to use row indices (e.g., \code{c(3, 5, 6)}) though these index values must correspond to the row numbers of the input data (the indices won't necessarily match those of rearranged rows if row groups are present). One more type of expression is possible, an expression that takes column values (can involve any of the available columns in the table) and returns a logical vector. This is nice if you want to base formatting on values in the column or another column, or, you'd like to use a more complex predicate expression. } \section{Compatibility of arguments with the \code{from_column()} helper function}{ The \code{\link[=from_column]{from_column()}} helper function can be used with certain arguments of \code{fmt_url()} to obtain varying parameter values from a specified column within the table. This means that each row could be formatted a little bit differently. These arguments provide support for \code{\link[=from_column]{from_column()}}: \itemize{ \item \code{label} \item \code{as_button} \item \code{color} \item \code{show_underline} \item \code{button_fill} \item \code{button_width} \item \code{button_outline} } Please note that for each of the aforementioned arguments, a \code{\link[=from_column]{from_column()}} call needs to reference a column that has data of the correct type (this is different for each argument). Additional columns for parameter values can be generated with the \code{\link[=cols_add]{cols_add()}} function (if not already present). Columns that contain parameter data can also be hidden from final display with \code{\link[=cols_hide]{cols_hide()}}. Finally, there is no limitation to how many arguments the \code{\link[=from_column]{from_column()}} helper is applied so long as the arguments belong to this closed set. } \section{Examples}{ Using a portion of the \code{\link{towny}} dataset, let's create a \strong{gt} table. We can use the \code{fmt_url()} function on the \code{website} column to generate navigable links to websites. By default the links are underlined and the color will be chosen for you (it's dark cyan). \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::filter(csd_type == "city") |> dplyr::arrange(desc(population_2021)) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> gt() |> tab_header( title = md("The 10 Largest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url(columns = website) |> cols_label( name = "Name", website = "Site", population_2021 = "Population" ) }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_1.png" alt="This image of a table was generated from the first code example in the `fmt_url()` help file." style="width:100\%;"> }} Let's try something else. We can set a static text label for the link with the \code{label} argument (and we'll use the word \code{"site"} for this). The link underline is removable with \code{show_underline = FALSE}. With this change, it seems sensible to merge the link to the \code{"name"} column and enclose the link text in parentheses (the \code{\link[=cols_merge]{cols_merge()}} function handles all that). \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::filter(csd_type == "city") |> dplyr::arrange(desc(population_2021)) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> gt() |> tab_header( title = md("The 10 Largest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url( columns = website, label = "site", show_underline = FALSE ) |> cols_merge( columns = c(name, website), pattern = "\{1\} (\{2\})" ) |> cols_label( name = "Name", population_2021 = "Population" ) }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_2.png" alt="This image of a table was generated from the second code example in the `fmt_url()` help file." style="width:100\%;"> }} The \code{fmt_url()} function allows for the styling of links as 'buttons'. This is as easy as setting \code{as_button = TRUE}. Doing that unlocks the ability to set a \code{button_fill} color. This color can automatically selected by \strong{gt} (this is the default) but here we're using \code{"steelblue"}. The \code{label} argument also accepts a function! We can choose to adapt the label text from the URLs by eliminating any leading \code{"https://"} or \code{"www."} parts. \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::filter(csd_type == "city") |> dplyr::arrange(desc(population_2021)) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> dplyr::mutate(ranking = dplyr::row_number()) |> gt(rowname_col = "ranking") |> tab_header( title = md("The 10 Largest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url( columns = website, label = function(x) gsub("https://|www.", "", x), as_button = TRUE, button_fill = "steelblue", button_width = px(150) ) |> cols_move_to_end(columns = website) |> cols_align(align = "center", columns = website) |> cols_width( ranking ~ px(40), website ~ px(200) ) |> tab_options(column_labels.hidden = TRUE) |> tab_style( style = cell_text(weight = "bold"), locations = cells_stub() ) \%>\% opt_vertical_padding(scale = 0.75) }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_3.png" alt="This image of a table was generated from the third code example in the `fmt_url()` help file." style="width:100\%;"> }} It's perhaps inevitable that you'll come across missing values in your column of URLs. The \code{fmt_url()} function will preserve input \code{NA} values, allowing you to handle them with \code{\link[=sub_missing]{sub_missing()}}. Here's an example of that. \if{html}{\out{<div class="sourceCode r">}}\preformatted{towny |> dplyr::arrange(population_2021) |> dplyr::select(name, website, population_2021) |> dplyr::slice_head(n = 10) |> gt() |> tab_header( title = md("The 10 Smallest Municipalities in `towny`"), subtitle = "Population values taken from the 2021 census." ) |> fmt_integer() |> fmt_url(columns = website) |> cols_label( name = "Name", website = "Site", population_2021 = "Population" ) |> sub_missing() }\if{html}{\out{</div>}} \if{html}{\out{ <img src="https://raw.githubusercontent.com/rstudio/gt/master/images/man_fmt_url_4.png" alt="This image of a table was generated from the fourth code example in the `fmt_url()` help file." style="width:100\%;"> }} } \section{Function ID}{ 3-19 } \section{Function Introduced}{ \code{v0.9.0} (Mar 31, 2023) } \seealso{ Other data formatting functions: \code{\link{data_color}()}, \code{\link{fmt_auto}()}, \code{\link{fmt_bins}()}, \code{\link{fmt_bytes}()}, \code{\link{fmt_currency}()}, \code{\link{fmt_datetime}()}, \code{\link{fmt_date}()}, \code{\link{fmt_duration}()}, \code{\link{fmt_engineering}()}, \code{\link{fmt_flag}()}, \code{\link{fmt_fraction}()}, \code{\link{fmt_icon}()}, \code{\link{fmt_image}()}, \code{\link{fmt_index}()}, \code{\link{fmt_integer}()}, \code{\link{fmt_markdown}()}, \code{\link{fmt_number}()}, \code{\link{fmt_partsper}()}, \code{\link{fmt_passthrough}()}, \code{\link{fmt_percent}()}, \code{\link{fmt_roman}()}, \code{\link{fmt_scientific}()}, \code{\link{fmt_spelled_num}()}, \code{\link{fmt_time}()}, \code{\link{fmt_units}()}, \code{\link{fmt}()}, \code{\link{sub_large_vals}()}, \code{\link{sub_missing}()}, \code{\link{sub_small_vals}()}, \code{\link{sub_values}()}, \code{\link{sub_zero}()} } \concept{data formatting functions}
data.replace <- function(datavector, to, from) { datavector[datavector %in% from] <- to datavector }
/scripts/data-replace.R
no_license
philsf-biostat/analise_dados_ACD_2017
R
false
false
105
r
data.replace <- function(datavector, to, from) { datavector[datavector %in% from] <- to datavector }
\name{augm} \alias{augm} \docType{data} \title{\eqn{2^{(7-3)}}{2^{(7-3)}} arsenic removal experiment augmented with mirror image} \description{ Data from the \eqn{2^{(7-3)}} arsenic removal experiment augmented with mirror image in chapter 6 of Design and Analysis of Experiments with R } \usage{data(augm)} \format{ A data frame with 8 observations on the following 8 variables. \describe{ \item{\code{A}}{a factor with levels \code{-1} \code{1} } \item{\code{B}}{a factor with levels \code{-1} \code{1} } \item{\code{C}}{a factor with levels \code{-1} \code{1} } \item{\code{fold}}{a factor with levels \code{original} \code{mirror} } \item{\code{D}}{a factor with levels \code{-1} \code{1} } \item{\code{E}}{a factor with levels \code{-1} \code{1} } \item{\code{F}}{a factor with levels \code{-1} \code{1} } \item{\code{G}}{a factor with levels \code{-1} \code{1} } \item{\code{y}}{a numeric vector} } } \source{ Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall } \examples{ data(augm) } \keyword{datasets}
/man/augm.Rd
no_license
cran/daewr
R
false
false
1,098
rd
\name{augm} \alias{augm} \docType{data} \title{\eqn{2^{(7-3)}}{2^{(7-3)}} arsenic removal experiment augmented with mirror image} \description{ Data from the \eqn{2^{(7-3)}} arsenic removal experiment augmented with mirror image in chapter 6 of Design and Analysis of Experiments with R } \usage{data(augm)} \format{ A data frame with 8 observations on the following 8 variables. \describe{ \item{\code{A}}{a factor with levels \code{-1} \code{1} } \item{\code{B}}{a factor with levels \code{-1} \code{1} } \item{\code{C}}{a factor with levels \code{-1} \code{1} } \item{\code{fold}}{a factor with levels \code{original} \code{mirror} } \item{\code{D}}{a factor with levels \code{-1} \code{1} } \item{\code{E}}{a factor with levels \code{-1} \code{1} } \item{\code{F}}{a factor with levels \code{-1} \code{1} } \item{\code{G}}{a factor with levels \code{-1} \code{1} } \item{\code{y}}{a numeric vector} } } \source{ Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall } \examples{ data(augm) } \keyword{datasets}
#read the file myFile <- "household_power_consumption.txt" #read header's names myHeader <- read.csv(myFile, sep=";", skip=0, nrows=1) #read data, skip unnecessary rows myData <- read.csv(myFile, sep=";", skip=66637, nrows=2880, na.strings="?", colClasses = c("character","character","numeric","numeric","numeric","numeric","numeric","numeric","numeric")) names(myData)<-names(myHeader) #new column creation in datetime format myData$DateTime = paste(myData$Date, myData$Time) myData$DateTime = strptime(myData$DateTime, "%d/%m/%Y %H:%M:%S") #prepare png file png(file = "plot3.png") #plot plot(myData$DateTime,y = myData$Sub_metering_1,type='l', xlab = "", ylab = "Energy sub metering") #add info lines(myData$DateTime,y =myData$Sub_metering_2, col = "red") lines(myData$DateTime,y =myData$Sub_metering_3, col = "blue") legend("topright", pch = "_", col = c("black", "red", "blue"), legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), cex=1.2,lwd = 2) #dev.copy(png, file = "plot3.png") dev.off()
/plot3.R
no_license
txevas/ExData_Plotting1
R
false
false
1,014
r
#read the file myFile <- "household_power_consumption.txt" #read header's names myHeader <- read.csv(myFile, sep=";", skip=0, nrows=1) #read data, skip unnecessary rows myData <- read.csv(myFile, sep=";", skip=66637, nrows=2880, na.strings="?", colClasses = c("character","character","numeric","numeric","numeric","numeric","numeric","numeric","numeric")) names(myData)<-names(myHeader) #new column creation in datetime format myData$DateTime = paste(myData$Date, myData$Time) myData$DateTime = strptime(myData$DateTime, "%d/%m/%Y %H:%M:%S") #prepare png file png(file = "plot3.png") #plot plot(myData$DateTime,y = myData$Sub_metering_1,type='l', xlab = "", ylab = "Energy sub metering") #add info lines(myData$DateTime,y =myData$Sub_metering_2, col = "red") lines(myData$DateTime,y =myData$Sub_metering_3, col = "blue") legend("topright", pch = "_", col = c("black", "red", "blue"), legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), cex=1.2,lwd = 2) #dev.copy(png, file = "plot3.png") dev.off()
rm(list = ls()) data <- read.csv("~/ProgrammingAssignment2/ProgrammingAssignment2/assignment/ExData_Plotting1/household_power_consumption.txt", sep=";",stringsAsFactors=F,comment.char="") neededData <- subset(data, Date %in% c("1/2/2007","2/2/2007")) neededData$Date <- as.Date(neededData$Date, format="%d/%m/%Y") datetime <- as.POSIXct(paste(neededData$Date, neededData$Time)) Global_active_power<- as.numeric(neededData$Global_active_power) with(neededData, { plot(as.numeric(Sub_metering_1)~datetime, type="l", ylab="Global Active Power (kilowatts)", xlab="") lines(as.numeric(Sub_metering_2)~datetime,col='Red') lines(as.numeric(Sub_metering_3)~datetime,col='Blue') }) legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) dev.copy(png, file="plot3.png", height=480, width=480) dev.off()
/Plot3.R
no_license
MohitsSingh/ExData_Plotting1
R
false
false
905
r
rm(list = ls()) data <- read.csv("~/ProgrammingAssignment2/ProgrammingAssignment2/assignment/ExData_Plotting1/household_power_consumption.txt", sep=";",stringsAsFactors=F,comment.char="") neededData <- subset(data, Date %in% c("1/2/2007","2/2/2007")) neededData$Date <- as.Date(neededData$Date, format="%d/%m/%Y") datetime <- as.POSIXct(paste(neededData$Date, neededData$Time)) Global_active_power<- as.numeric(neededData$Global_active_power) with(neededData, { plot(as.numeric(Sub_metering_1)~datetime, type="l", ylab="Global Active Power (kilowatts)", xlab="") lines(as.numeric(Sub_metering_2)~datetime,col='Red') lines(as.numeric(Sub_metering_3)~datetime,col='Blue') }) legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) dev.copy(png, file="plot3.png", height=480, width=480) dev.off()
### Explaining the Student t-test ## Let's look at our data: anastasia <- c(65, 74, 73, 83, 76, 65, 86, 70, 80, 55, 78, 78, 90, 77, 68) bernadette <- c(72, 66, 71, 66, 76, 69, 79, 73, 62, 69, 68, 60, 73, 68, 67, 74, 56, 74) mean(anastasia) # 74.5 sd(anastasia) # 9.0 nA<-length(anastasia) # 15 nA mean(bernadette) # 69.1 sd(bernadette) # 5.8 nB <- length(bernadette) # 18 nB # plot the data: d <- data.frame(values = c(anastasia, bernadette), group = c(rep("anastasia",15), rep("bernadette", 18)) ) d ggplot(d, aes(x = group, y = values, fill = group)) + geom_boxplot(alpha=.3) + geom_jitter(width=.1, size=2) + theme_classic() + scale_fill_manual(values = c("firebrick", "dodgerblue")) # what's the difference in means? mean(anastasia) - mean(bernadette) # 5.48 # anastasia students have on average 5.48 higher scores. ## But how meaningful is this difference? #### Student's t-test approach: ## we're going to work out how usual/unusual our one observed sample mean difference is. # we need to construct the sampling distribution of differences in sample means. # we hypothesise that its mean is 0 (no difference between groups) # we have to work out the standard deviation of the sampling dist.... # If we assume equal variances between the population of group A and B, we can calculate the # standard deviation of this sampling distribution as # the pooled estimate of the common standard devation * sqrt(1/n1 + 1/n2) ## step 1: calculate the pooled SD between the two samples... # from first principles, calculating deviations from each group mean difA2 <- (anastasia - mean(anastasia))^2 difB2 <- (bernadette - mean(bernadette))^2 sumsq <- sum(difA2) + sum(difB2) n <- nA + nB #33 sd.pool <- sqrt(sumsq/(n-2)) sd.pool # 7.41 this is the estimated pooled s.d. sd(anastasia) #8.999 sd(bernadette) #5.775 ## step 2: use the pooled SD to calculate the S.D. of the Sampling Dist. sedm <- sd.pool * sqrt( (1/nA) + (1/nB)) sedm # this is the Standard Deviation of the Sampling Distribution of differences in sample means ### We can now visualize this theoretical Sampling Distribution: ## Plotting our Sampling Distribution of Differences in Sample Means # Don't worry about the gross loooking code... just using it to make the plot: m <- 0 # mean v <- sedm^2 # variance, sedm squared df <- 31 vals <- rt(n=500000, df=df)*sqrt(v * (df-2)/df) + m df1 <- data.frame(val = vals) ggplot(df1, aes(x=val)) + geom_histogram(aes(y = ..density..), color='black', fill='purple', alpha=.3)+ theme_classic()+ geom_density(alpha = 0.7, fill = "white") + geom_vline(xintercept = 5.48, lwd=1, color="red") + geom_vline(xintercept = 0, lwd=1,lty=2, color='black')+ xlab("Difference in Sample Means") + ylab("") + ggtitle("Sampling Distribution of Differences in Sample Means") ## Step 3... Calculate our observed t. # the observed value of t, is how (un)expected our observed sample difference in means is... # essentially we say how many SDs is our one observed sample mean difference from the mean? tobs <- (mean(anastasia) - mean(bernadette)) / sedm tobs # t = 2.1154 ## Calculate the p-value # we are concerned with knowning how much of the t distribution is greater than our observed t. pt(tobs, df=n-2) # 0.9787353 - this is the proportion to the left. 1 - pt(tobs, df=n-2) # 0.0213 # this is the one-tailed p-value (1 - pt(tobs, df=n-2)) * 2 # p = 0.04253 # the two-tailed p-value ### Let's check with R's function: t.test(anastasia, bernadette, var.equal = T) # yes! t=2.1154, df=31, p=0.04253 #### We can visualize this sampling distribution in terms of t: ### make a t-distribution t <- seq(-3,3,by=.01) Density <- dt(t, df=31) df <- data.frame(t,Density) ggplot(df, aes(x=t,y=Density))+ theme_classic()+ geom_line(intercept=0, color='firebrick',lwd=1) + geom_vline(xintercept=0, lty=2, color='black', lwd=1)+ geom_vline(xintercept=2.12, color='red',lwd=1 )
/statistics/two_sample_ttest_theory.R
no_license
depocen/PSY317L
R
false
false
4,064
r
### Explaining the Student t-test ## Let's look at our data: anastasia <- c(65, 74, 73, 83, 76, 65, 86, 70, 80, 55, 78, 78, 90, 77, 68) bernadette <- c(72, 66, 71, 66, 76, 69, 79, 73, 62, 69, 68, 60, 73, 68, 67, 74, 56, 74) mean(anastasia) # 74.5 sd(anastasia) # 9.0 nA<-length(anastasia) # 15 nA mean(bernadette) # 69.1 sd(bernadette) # 5.8 nB <- length(bernadette) # 18 nB # plot the data: d <- data.frame(values = c(anastasia, bernadette), group = c(rep("anastasia",15), rep("bernadette", 18)) ) d ggplot(d, aes(x = group, y = values, fill = group)) + geom_boxplot(alpha=.3) + geom_jitter(width=.1, size=2) + theme_classic() + scale_fill_manual(values = c("firebrick", "dodgerblue")) # what's the difference in means? mean(anastasia) - mean(bernadette) # 5.48 # anastasia students have on average 5.48 higher scores. ## But how meaningful is this difference? #### Student's t-test approach: ## we're going to work out how usual/unusual our one observed sample mean difference is. # we need to construct the sampling distribution of differences in sample means. # we hypothesise that its mean is 0 (no difference between groups) # we have to work out the standard deviation of the sampling dist.... # If we assume equal variances between the population of group A and B, we can calculate the # standard deviation of this sampling distribution as # the pooled estimate of the common standard devation * sqrt(1/n1 + 1/n2) ## step 1: calculate the pooled SD between the two samples... # from first principles, calculating deviations from each group mean difA2 <- (anastasia - mean(anastasia))^2 difB2 <- (bernadette - mean(bernadette))^2 sumsq <- sum(difA2) + sum(difB2) n <- nA + nB #33 sd.pool <- sqrt(sumsq/(n-2)) sd.pool # 7.41 this is the estimated pooled s.d. sd(anastasia) #8.999 sd(bernadette) #5.775 ## step 2: use the pooled SD to calculate the S.D. of the Sampling Dist. sedm <- sd.pool * sqrt( (1/nA) + (1/nB)) sedm # this is the Standard Deviation of the Sampling Distribution of differences in sample means ### We can now visualize this theoretical Sampling Distribution: ## Plotting our Sampling Distribution of Differences in Sample Means # Don't worry about the gross loooking code... just using it to make the plot: m <- 0 # mean v <- sedm^2 # variance, sedm squared df <- 31 vals <- rt(n=500000, df=df)*sqrt(v * (df-2)/df) + m df1 <- data.frame(val = vals) ggplot(df1, aes(x=val)) + geom_histogram(aes(y = ..density..), color='black', fill='purple', alpha=.3)+ theme_classic()+ geom_density(alpha = 0.7, fill = "white") + geom_vline(xintercept = 5.48, lwd=1, color="red") + geom_vline(xintercept = 0, lwd=1,lty=2, color='black')+ xlab("Difference in Sample Means") + ylab("") + ggtitle("Sampling Distribution of Differences in Sample Means") ## Step 3... Calculate our observed t. # the observed value of t, is how (un)expected our observed sample difference in means is... # essentially we say how many SDs is our one observed sample mean difference from the mean? tobs <- (mean(anastasia) - mean(bernadette)) / sedm tobs # t = 2.1154 ## Calculate the p-value # we are concerned with knowning how much of the t distribution is greater than our observed t. pt(tobs, df=n-2) # 0.9787353 - this is the proportion to the left. 1 - pt(tobs, df=n-2) # 0.0213 # this is the one-tailed p-value (1 - pt(tobs, df=n-2)) * 2 # p = 0.04253 # the two-tailed p-value ### Let's check with R's function: t.test(anastasia, bernadette, var.equal = T) # yes! t=2.1154, df=31, p=0.04253 #### We can visualize this sampling distribution in terms of t: ### make a t-distribution t <- seq(-3,3,by=.01) Density <- dt(t, df=31) df <- data.frame(t,Density) ggplot(df, aes(x=t,y=Density))+ theme_classic()+ geom_line(intercept=0, color='firebrick',lwd=1) + geom_vline(xintercept=0, lty=2, color='black', lwd=1)+ geom_vline(xintercept=2.12, color='red',lwd=1 )
#' Import Canadian Snow Data from .dly file #' @param fileLoc File path to .dly data #' @param progress boolean spesifing if you want progress of code to be printed out #' @return nicely organized dataframe of snow data #' @export importDLY<-function(fileLoc,progress=FALSE){ SnowDataUpdated <- read.delim(file = fileLoc, header=FALSE, stringsAsFactors=FALSE) SnowDataUpdated<-SnowDataUpdated$V1 monthlymat<-matrix("",nrow = 31,ncol = 6) accumulatedmat<-c() FinalOutput<-c() monthlymat[,6]=as.character(1:31) len<-length(SnowDataUpdated) for(i in 1:len){ curstr<-SnowDataUpdated[i] if(str_length(curstr)==77){ if(i>1){ FinalOutput<-rbind(FinalOutput,cbind(id,Name,Lat,Lon,Elev,Sdate,Edate,Nobs,accumulatedmat)) accumulatedmat<-c() if(progress){ print(paste(i,"of",len,"is complete.")) } } id=.Internal(substr(curstr,1L,7L)) Name=.Internal(substr(curstr,9L,38L)) Lat=.Internal(substr(curstr,40L,45L)) Lon=.Internal(substr(curstr,47L,53L)) Elev=.Internal(substr(curstr,55L,58L)) Sdate=.Internal(substr(curstr,60L,65L)) Edate=.Internal(substr(curstr,67L,72L)) Nobs=.Internal(substr(curstr,74L,77L)) } else{ monthlymat[,1]=.Internal(substr(curstr,9L,12L)) monthlymat[,2]=.Internal(substr(curstr,13L,14L)) for(j in 1:31){ cur<-as.integer((j-1)*10) monthlymat[j,3]<-.Internal(substr(curstr,cur+16L,cur+18L)) monthlymat[j,4]<-.Internal(substr(curstr,cur+20L,cur+22L)) monthlymat[j,5]<-.Internal(substr(curstr,cur+24L,cur+24L)) } accumulatedmat<-rbind(accumulatedmat,monthlymat) } } data.frame(id=FinalOutput[,1],Name=FinalOutput[,2],Lat=as.numeric(FinalOutput[,3]),Lon=as.numeric(FinalOutput[,4]),Elev=as.numeric(FinalOutput[,5]),Sdate=as.numeric(FinalOutput[,6]),Edate=as.numeric(FinalOutput[,7]),Nobs=as.numeric(FinalOutput[,8]),Year=as.numeric(FinalOutput[,9]),Month=as.numeric(FinalOutput[,10]),SnowDepth=as.numeric(FinalOutput[,11]),QualityFlag=as.numeric(FinalOutput[,12]),ClimateFlag=FinalOutput[,13]) }
/R/importDLY.R
no_license
joej1997/importDLY
R
false
false
2,151
r
#' Import Canadian Snow Data from .dly file #' @param fileLoc File path to .dly data #' @param progress boolean spesifing if you want progress of code to be printed out #' @return nicely organized dataframe of snow data #' @export importDLY<-function(fileLoc,progress=FALSE){ SnowDataUpdated <- read.delim(file = fileLoc, header=FALSE, stringsAsFactors=FALSE) SnowDataUpdated<-SnowDataUpdated$V1 monthlymat<-matrix("",nrow = 31,ncol = 6) accumulatedmat<-c() FinalOutput<-c() monthlymat[,6]=as.character(1:31) len<-length(SnowDataUpdated) for(i in 1:len){ curstr<-SnowDataUpdated[i] if(str_length(curstr)==77){ if(i>1){ FinalOutput<-rbind(FinalOutput,cbind(id,Name,Lat,Lon,Elev,Sdate,Edate,Nobs,accumulatedmat)) accumulatedmat<-c() if(progress){ print(paste(i,"of",len,"is complete.")) } } id=.Internal(substr(curstr,1L,7L)) Name=.Internal(substr(curstr,9L,38L)) Lat=.Internal(substr(curstr,40L,45L)) Lon=.Internal(substr(curstr,47L,53L)) Elev=.Internal(substr(curstr,55L,58L)) Sdate=.Internal(substr(curstr,60L,65L)) Edate=.Internal(substr(curstr,67L,72L)) Nobs=.Internal(substr(curstr,74L,77L)) } else{ monthlymat[,1]=.Internal(substr(curstr,9L,12L)) monthlymat[,2]=.Internal(substr(curstr,13L,14L)) for(j in 1:31){ cur<-as.integer((j-1)*10) monthlymat[j,3]<-.Internal(substr(curstr,cur+16L,cur+18L)) monthlymat[j,4]<-.Internal(substr(curstr,cur+20L,cur+22L)) monthlymat[j,5]<-.Internal(substr(curstr,cur+24L,cur+24L)) } accumulatedmat<-rbind(accumulatedmat,monthlymat) } } data.frame(id=FinalOutput[,1],Name=FinalOutput[,2],Lat=as.numeric(FinalOutput[,3]),Lon=as.numeric(FinalOutput[,4]),Elev=as.numeric(FinalOutput[,5]),Sdate=as.numeric(FinalOutput[,6]),Edate=as.numeric(FinalOutput[,7]),Nobs=as.numeric(FinalOutput[,8]),Year=as.numeric(FinalOutput[,9]),Month=as.numeric(FinalOutput[,10]),SnowDepth=as.numeric(FinalOutput[,11]),QualityFlag=as.numeric(FinalOutput[,12]),ClimateFlag=FinalOutput[,13]) }
################################################ # Center a matrix (genes as columns, samples as rows) SampleCenterMean <- function(mat){ # Ensure data is matrix if(!is.matrix(mat)){ stop("Data must be matrix") } # Ensure data is numeric if(!is.numeric(mat)){ stop("Data must be numeric") } # Iterate over columns mat_out <- mat for(n in 1:nrow(mat)){ # Center mat_out[n,] <- (mat[n,] - mean(mat[n,], na.rm=T)) } # Output data mat_out }
/functions/SampleCenterMean.R
permissive
steepale/20200915_metabolomics-pass1a
R
false
false
586
r
################################################ # Center a matrix (genes as columns, samples as rows) SampleCenterMean <- function(mat){ # Ensure data is matrix if(!is.matrix(mat)){ stop("Data must be matrix") } # Ensure data is numeric if(!is.numeric(mat)){ stop("Data must be numeric") } # Iterate over columns mat_out <- mat for(n in 1:nrow(mat)){ # Center mat_out[n,] <- (mat[n,] - mean(mat[n,], na.rm=T)) } # Output data mat_out }
# ------------------------------------------------------------------------------ # H2O GBM for Santander Product Recommendations # Generate level one data using H2O Random Grid Search # ------------------------------------------------------------------------------ # Core model parameters n_seed <- 1234 n_trees_max <- 500 # with early stopping, usually <300 trees n_rate <- 0.05 # fixed n_folds <- 5 # CV fold n_grid_models <- 5 # max no. of random grid search models n_score_interval <- 5 n_stop_round <- 10 stop_metric <- "logloss" # H2O's R Package suppressPackageStartupMessages(library(h2o)) # h2o_3.10.2.1 suppressPackageStartupMessages(library(data.table)) # data.table_1.10.1 # Data in gz files gz_train <- "./data/d_train.csv.gz" gz_valid <- "./data/d_valid.csv.gz" gz_test <- "./data/d_test.csv.gz" csv_train <- "./data/d_train.csv" csv_valid <- "./data/d_valid.csv" csv_test <- "./data/d_test.csv" # ------------------------------------------------------------------------------ # Import Data into H2O # ------------------------------------------------------------------------------ # Start H2O clusters h2o.init(nthreads = -1) # h2o.no_progress() # disable progress bar # Data created with data_prep.R h_train <- h2o.importFile(gz_train) h_valid <- h2o.importFile(gz_valid) h_test <- h2o.importFile(gz_test) # Check size # dim(h_train) # 405809 x 158 # dim(h_valid) # 35843 x 158 # dim(h_test) # 929615 x 158 # ------------------------------------------------------------------------------ # Convert data types # ------------------------------------------------------------------------------ # Convert some columns to categorical h_train$indrel_1mes <- as.factor(h_train$indrel_1mes) # Customer type h_train$cod_prov <- as.factor(h_train$cod_prov) # Province code (customer's address) h_train$dato_month <- as.factor(h_train$dato_month) h_train$alta_month <- as.factor(h_train$alta_month) h_train$alta_year <- as.factor(h_train$alta_year) # Convert some columns to categorical h_valid$indrel_1mes <- as.factor(h_valid$indrel_1mes) # Customer type h_valid$cod_prov <- as.factor(h_valid$cod_prov) # Province code (customer's address) h_valid$dato_month <- as.factor(h_valid$dato_month) h_valid$alta_month <- as.factor(h_valid$alta_month) h_valid$alta_year <- as.factor(h_valid$alta_year) # Convert some columns to categorical h_test$indrel_1mes <- as.factor(h_test$indrel_1mes) # Customer type h_test$cod_prov <- as.factor(h_test$cod_prov) # Province code (customer's address) h_test$dato_month <- as.factor(h_test$dato_month) h_test$alta_month <- as.factor(h_test$alta_month) h_test$alta_year <- as.factor(h_test$alta_year) # ------------------------------------------------------------------------------ # Define features # ------------------------------------------------------------------------------ col_ignore <- c("fecha_dato", "ncodpers", "fecha_alta", "cod_prov", "ult_fec_cli_1t", "added_products", "last_year", "last_month", "alta_year_month", "dato_year_month", "cv_fold") features <- setdiff(colnames(h_train), col_ignore) # all features print(features) # ------------------------------------------------------------------------------ # Using H2O random grid search to generate level one data # ------------------------------------------------------------------------------ search_criteria <- list(strategy = "RandomDiscrete", max_models = n_grid_models, seed = n_seed) params_gbm <- list(max_depth = seq(3, 5, 1), sample_rate = seq(0.5, 0.9, 0.1), col_sample_rate = seq(0.5, 0.9, 0.1)) # H2O GBM Grid grid_gbm <- h2o.grid( # Grid search parameters algorithm = "gbm", grid_id = "grid_gbm", hyper_params = params_gbm, search_criteria = search_criteria, # Core model parameters training_frame = h_train, x = features, y = "added_products", learn_rate = n_rate, ntrees = n_trees_max, seed = n_seed, nfolds = n_folds, keep_cross_validation_predictions = TRUE, fold_assignment = "Stratified", # using Stratified instead of Modulo as I am not using # h2oEnsemble::h2o.stack() for stacking # Early stopping parameters score_tree_interval = n_score_interval, stopping_metric = stop_metric, stopping_tolerance = 0.01, stopping_rounds = n_stop_round ) # ------------------------------------------------------------------------------ # Extract models and data # ------------------------------------------------------------------------------ # Extract all models gbm_models <- lapply(grid_gbm@model_ids, function(model_id) h2o.getModel(model_id)) # Extract Level One Data for (n in 1:n_folds) { # Display cat("[Extracting Data] ... CV Model", n, "...\n") # Extract predictions (L1 data) L1_train_temp <- h2o.cross_validation_holdout_predictions(gbm_models[[n]]) L1_valid_temp <- h2o.predict(gbm_models[[n]], h_valid) L1_test_temp <- h2o.predict(gbm_models[[n]], h_test) # Trim L1_train_temp <- as.data.frame(L1_train_temp)[-1] L1_valid_temp <- as.data.frame(L1_valid_temp)[-1] L1_test_temp <- as.data.frame(L1_test_temp)[-1] # Update colnames (to include model number) colnames(L1_train_temp) <- paste0("L1_m", n, "_", colnames(L1_train_temp)) colnames(L1_valid_temp) <- paste0("L1_m", n, "_", colnames(L1_valid_temp)) colnames(L1_test_temp) <- paste0("L1_m", n, "_", colnames(L1_test_temp)) if (n == 1) { L1_train <- L1_train_temp L1_valid <- L1_valid_temp L1_test <- L1_test_temp } else { L1_train <- cbind(L1_train, L1_train_temp) L1_valid <- cbind(L1_valid, L1_valid_temp) L1_test <- cbind(L1_test, L1_test_temp) } # Clean up rm(L1_train_temp, L1_valid_temp, L1_test_temp) gc() } # Adding target to L1_train and L1_valid (for stacking in next stage) y_train <- as.data.frame(h_train$added_products) y_valid <- as.data.frame(h_valid$added_products) L1_train <- cbind(L1_train, y_train) L1_valid <- cbind(L1_valid, y_valid) # ------------------------------------------------------------------------------ # Evaluate Random Grid Search Models # ------------------------------------------------------------------------------ d_eval <- c() for (n in 1:n_folds) { # Extract model model <- gbm_models[[n]] # Evaluate performance on validation set perf_valid <- h2o.performance(model, newdata = h_valid) # Create results summary data frame d_eval_temp <- data.frame(model_id = model@model_id, algo = model@algorithm, learn_rate = model@parameters$learn_rate, n_trees = model@parameters$ntrees, max_depth = model@parameters$max_depth, row_samp = model@parameters$sample_rate, col_samp = model@parameters$col_sample_rate, seed = model@parameters$seed, n_cv_fold = n_folds, logloss_train = model@model$training_metrics@metrics$logloss, logloss_cv = model@model$cross_validation_metrics@metrics$logloss, logloss_valid = perf_valid@metrics$logloss) # Stack d_eval <- rbind(d_eval, d_eval_temp) rm(d_eval_temp) } # Print out cat("\n\n=============== Summary of Metrics: =============== \n") print(d_eval) # =============== Summary of Metrics: =============== # model_id algo learn_rate n_trees max_depth row_samp col_samp seed # 1 grid_gbm_model_0 gbm 0.05 198 4 0.7 0.9 1234 # 2 grid_gbm_model_4 gbm 0.05 194 4 0.6 0.6 1234 # 3 grid_gbm_model_2 gbm 0.05 193 4 0.6 0.9 1234 # 4 grid_gbm_model_1 gbm 0.05 240 3 0.9 0.7 1234 # 5 grid_gbm_model_3 gbm 0.05 241 3 0.7 0.8 1234 # n_cv_fold logloss_train logloss_cv logloss_valid # 1 5 0.9502685 0.9934115 0.9464101 # 2 5 0.9522171 0.9938626 0.9448556 # 3 5 0.9566952 0.9980570 0.9685286 # 4 5 0.9734655 0.9994102 0.9443164 # 5 5 0.9742857 1.0013029 0.9458400 # ------------------------------------------------------------------------------ # Saving files # ------------------------------------------------------------------------------ # Save H2O models for (n in 1:n_folds) { h2o.saveModel(gbm_models[[n]], path = "./output/h2o_gbm_L1_run2/", force = TRUE) } # Write evaluaton results to disk fwrite(d_eval, file = "./output/h2o_gbm_L1_run2/L1_eval.csv") # Round it L1_train[, -ncol(L1_train)] <- round(L1_train[, -ncol(L1_train)], 4) L1_valid[, -ncol(L1_valid)] <- round(L1_valid[, -ncol(L1_valid)], 4) L1_test <- round(L1_test, 4) # Write L1 data to disk options(digits = 18) fwrite(L1_train, file = "./output/h2o_gbm_L1_run2/L1_train.csv") fwrite(L1_valid, file = "./output/h2o_gbm_L1_run2/L1_valid.csv") fwrite(L1_test, file = "./output/h2o_gbm_L1_run2/L1_test.csv") # Gzip L1 data system("gzip -9 -v ./output/h2o_gbm_L1_run2/L1_train.csv") system("gzip -9 -v ./output/h2o_gbm_L1_run2/L1_valid.csv") system("gzip -9 -v ./output/h2o_gbm_L1_run2/L1_test.csv") # ------------------------------------------------------------------------------ # Print System Info # ------------------------------------------------------------------------------ print(sessionInfo()) print(Sys.info()) # R version 3.2.3 (2015-12-10) # Platform: aarch64-unknown-linux-gnu (64-bit) # Running under: Ubuntu 16.04.1 LTS # # locale: # [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C # [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 # [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 # [7] LC_PAPER=en_US.UTF-8 LC_NAME=C # [9] LC_ADDRESS=C LC_TELEPHONE=C # [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C # # attached base packages: # [1] methods stats graphics grDevices utils datasets base # # other attached packages: # [1] data.table_1.10.0 h2o_3.10.2.1 # # loaded via a namespace (and not attached): # [1] tools_3.2.3 RCurl_1.95-4.8 jsonlite_1.2 bitops_1.0-6 # sysname # "Linux" # release # "4.4.0-38-generic" # version # "#57-Ubuntu SMP Wed Sep 7 10:19:14 UTC 2016" # nodename # "joe.local.lan" # machine # "aarch64" # login # "root" # user # "root" # effective_user # "root"
/B_analysts_sources_github/woobe/kaggle_santander_product/h2o_gbm_L1.R
no_license
Irbis3/crantasticScrapper
R
false
false
11,125
r
# ------------------------------------------------------------------------------ # H2O GBM for Santander Product Recommendations # Generate level one data using H2O Random Grid Search # ------------------------------------------------------------------------------ # Core model parameters n_seed <- 1234 n_trees_max <- 500 # with early stopping, usually <300 trees n_rate <- 0.05 # fixed n_folds <- 5 # CV fold n_grid_models <- 5 # max no. of random grid search models n_score_interval <- 5 n_stop_round <- 10 stop_metric <- "logloss" # H2O's R Package suppressPackageStartupMessages(library(h2o)) # h2o_3.10.2.1 suppressPackageStartupMessages(library(data.table)) # data.table_1.10.1 # Data in gz files gz_train <- "./data/d_train.csv.gz" gz_valid <- "./data/d_valid.csv.gz" gz_test <- "./data/d_test.csv.gz" csv_train <- "./data/d_train.csv" csv_valid <- "./data/d_valid.csv" csv_test <- "./data/d_test.csv" # ------------------------------------------------------------------------------ # Import Data into H2O # ------------------------------------------------------------------------------ # Start H2O clusters h2o.init(nthreads = -1) # h2o.no_progress() # disable progress bar # Data created with data_prep.R h_train <- h2o.importFile(gz_train) h_valid <- h2o.importFile(gz_valid) h_test <- h2o.importFile(gz_test) # Check size # dim(h_train) # 405809 x 158 # dim(h_valid) # 35843 x 158 # dim(h_test) # 929615 x 158 # ------------------------------------------------------------------------------ # Convert data types # ------------------------------------------------------------------------------ # Convert some columns to categorical h_train$indrel_1mes <- as.factor(h_train$indrel_1mes) # Customer type h_train$cod_prov <- as.factor(h_train$cod_prov) # Province code (customer's address) h_train$dato_month <- as.factor(h_train$dato_month) h_train$alta_month <- as.factor(h_train$alta_month) h_train$alta_year <- as.factor(h_train$alta_year) # Convert some columns to categorical h_valid$indrel_1mes <- as.factor(h_valid$indrel_1mes) # Customer type h_valid$cod_prov <- as.factor(h_valid$cod_prov) # Province code (customer's address) h_valid$dato_month <- as.factor(h_valid$dato_month) h_valid$alta_month <- as.factor(h_valid$alta_month) h_valid$alta_year <- as.factor(h_valid$alta_year) # Convert some columns to categorical h_test$indrel_1mes <- as.factor(h_test$indrel_1mes) # Customer type h_test$cod_prov <- as.factor(h_test$cod_prov) # Province code (customer's address) h_test$dato_month <- as.factor(h_test$dato_month) h_test$alta_month <- as.factor(h_test$alta_month) h_test$alta_year <- as.factor(h_test$alta_year) # ------------------------------------------------------------------------------ # Define features # ------------------------------------------------------------------------------ col_ignore <- c("fecha_dato", "ncodpers", "fecha_alta", "cod_prov", "ult_fec_cli_1t", "added_products", "last_year", "last_month", "alta_year_month", "dato_year_month", "cv_fold") features <- setdiff(colnames(h_train), col_ignore) # all features print(features) # ------------------------------------------------------------------------------ # Using H2O random grid search to generate level one data # ------------------------------------------------------------------------------ search_criteria <- list(strategy = "RandomDiscrete", max_models = n_grid_models, seed = n_seed) params_gbm <- list(max_depth = seq(3, 5, 1), sample_rate = seq(0.5, 0.9, 0.1), col_sample_rate = seq(0.5, 0.9, 0.1)) # H2O GBM Grid grid_gbm <- h2o.grid( # Grid search parameters algorithm = "gbm", grid_id = "grid_gbm", hyper_params = params_gbm, search_criteria = search_criteria, # Core model parameters training_frame = h_train, x = features, y = "added_products", learn_rate = n_rate, ntrees = n_trees_max, seed = n_seed, nfolds = n_folds, keep_cross_validation_predictions = TRUE, fold_assignment = "Stratified", # using Stratified instead of Modulo as I am not using # h2oEnsemble::h2o.stack() for stacking # Early stopping parameters score_tree_interval = n_score_interval, stopping_metric = stop_metric, stopping_tolerance = 0.01, stopping_rounds = n_stop_round ) # ------------------------------------------------------------------------------ # Extract models and data # ------------------------------------------------------------------------------ # Extract all models gbm_models <- lapply(grid_gbm@model_ids, function(model_id) h2o.getModel(model_id)) # Extract Level One Data for (n in 1:n_folds) { # Display cat("[Extracting Data] ... CV Model", n, "...\n") # Extract predictions (L1 data) L1_train_temp <- h2o.cross_validation_holdout_predictions(gbm_models[[n]]) L1_valid_temp <- h2o.predict(gbm_models[[n]], h_valid) L1_test_temp <- h2o.predict(gbm_models[[n]], h_test) # Trim L1_train_temp <- as.data.frame(L1_train_temp)[-1] L1_valid_temp <- as.data.frame(L1_valid_temp)[-1] L1_test_temp <- as.data.frame(L1_test_temp)[-1] # Update colnames (to include model number) colnames(L1_train_temp) <- paste0("L1_m", n, "_", colnames(L1_train_temp)) colnames(L1_valid_temp) <- paste0("L1_m", n, "_", colnames(L1_valid_temp)) colnames(L1_test_temp) <- paste0("L1_m", n, "_", colnames(L1_test_temp)) if (n == 1) { L1_train <- L1_train_temp L1_valid <- L1_valid_temp L1_test <- L1_test_temp } else { L1_train <- cbind(L1_train, L1_train_temp) L1_valid <- cbind(L1_valid, L1_valid_temp) L1_test <- cbind(L1_test, L1_test_temp) } # Clean up rm(L1_train_temp, L1_valid_temp, L1_test_temp) gc() } # Adding target to L1_train and L1_valid (for stacking in next stage) y_train <- as.data.frame(h_train$added_products) y_valid <- as.data.frame(h_valid$added_products) L1_train <- cbind(L1_train, y_train) L1_valid <- cbind(L1_valid, y_valid) # ------------------------------------------------------------------------------ # Evaluate Random Grid Search Models # ------------------------------------------------------------------------------ d_eval <- c() for (n in 1:n_folds) { # Extract model model <- gbm_models[[n]] # Evaluate performance on validation set perf_valid <- h2o.performance(model, newdata = h_valid) # Create results summary data frame d_eval_temp <- data.frame(model_id = model@model_id, algo = model@algorithm, learn_rate = model@parameters$learn_rate, n_trees = model@parameters$ntrees, max_depth = model@parameters$max_depth, row_samp = model@parameters$sample_rate, col_samp = model@parameters$col_sample_rate, seed = model@parameters$seed, n_cv_fold = n_folds, logloss_train = model@model$training_metrics@metrics$logloss, logloss_cv = model@model$cross_validation_metrics@metrics$logloss, logloss_valid = perf_valid@metrics$logloss) # Stack d_eval <- rbind(d_eval, d_eval_temp) rm(d_eval_temp) } # Print out cat("\n\n=============== Summary of Metrics: =============== \n") print(d_eval) # =============== Summary of Metrics: =============== # model_id algo learn_rate n_trees max_depth row_samp col_samp seed # 1 grid_gbm_model_0 gbm 0.05 198 4 0.7 0.9 1234 # 2 grid_gbm_model_4 gbm 0.05 194 4 0.6 0.6 1234 # 3 grid_gbm_model_2 gbm 0.05 193 4 0.6 0.9 1234 # 4 grid_gbm_model_1 gbm 0.05 240 3 0.9 0.7 1234 # 5 grid_gbm_model_3 gbm 0.05 241 3 0.7 0.8 1234 # n_cv_fold logloss_train logloss_cv logloss_valid # 1 5 0.9502685 0.9934115 0.9464101 # 2 5 0.9522171 0.9938626 0.9448556 # 3 5 0.9566952 0.9980570 0.9685286 # 4 5 0.9734655 0.9994102 0.9443164 # 5 5 0.9742857 1.0013029 0.9458400 # ------------------------------------------------------------------------------ # Saving files # ------------------------------------------------------------------------------ # Save H2O models for (n in 1:n_folds) { h2o.saveModel(gbm_models[[n]], path = "./output/h2o_gbm_L1_run2/", force = TRUE) } # Write evaluaton results to disk fwrite(d_eval, file = "./output/h2o_gbm_L1_run2/L1_eval.csv") # Round it L1_train[, -ncol(L1_train)] <- round(L1_train[, -ncol(L1_train)], 4) L1_valid[, -ncol(L1_valid)] <- round(L1_valid[, -ncol(L1_valid)], 4) L1_test <- round(L1_test, 4) # Write L1 data to disk options(digits = 18) fwrite(L1_train, file = "./output/h2o_gbm_L1_run2/L1_train.csv") fwrite(L1_valid, file = "./output/h2o_gbm_L1_run2/L1_valid.csv") fwrite(L1_test, file = "./output/h2o_gbm_L1_run2/L1_test.csv") # Gzip L1 data system("gzip -9 -v ./output/h2o_gbm_L1_run2/L1_train.csv") system("gzip -9 -v ./output/h2o_gbm_L1_run2/L1_valid.csv") system("gzip -9 -v ./output/h2o_gbm_L1_run2/L1_test.csv") # ------------------------------------------------------------------------------ # Print System Info # ------------------------------------------------------------------------------ print(sessionInfo()) print(Sys.info()) # R version 3.2.3 (2015-12-10) # Platform: aarch64-unknown-linux-gnu (64-bit) # Running under: Ubuntu 16.04.1 LTS # # locale: # [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C # [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 # [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 # [7] LC_PAPER=en_US.UTF-8 LC_NAME=C # [9] LC_ADDRESS=C LC_TELEPHONE=C # [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C # # attached base packages: # [1] methods stats graphics grDevices utils datasets base # # other attached packages: # [1] data.table_1.10.0 h2o_3.10.2.1 # # loaded via a namespace (and not attached): # [1] tools_3.2.3 RCurl_1.95-4.8 jsonlite_1.2 bitops_1.0-6 # sysname # "Linux" # release # "4.4.0-38-generic" # version # "#57-Ubuntu SMP Wed Sep 7 10:19:14 UTC 2016" # nodename # "joe.local.lan" # machine # "aarch64" # login # "root" # user # "root" # effective_user # "root"
#****************************************************************************************************** # Applied generalized linear model - FS # Viviana Amati # Social Network Labs # Department of Humanities, Social and Political Sciences # ETH Zurich # 24 March 2020 # This script provides the code for applying binary logistic regression models # The commented output is in the lecture notes. #****************************************************************************************************** #----------------------------------------------------------------------------------------------------- # Setting directory and loading packages #----------------------------------------------------------------------------------------------------- setwd("~/Data/github/AGLM/Course_Material") library(ggplot2) library(tidyr) library(car) # Importing the data and check admission <- read.csv("admission.csv",header=TRUE) head(admission) summary(admission) # Recoding the variable rank as a factor admission$rank <- factor(admission$rank,levels=1:4,labels=1:4) summary(admission) #----------------------------------------------------------------------------------------------------- # Some descriptive statistics #----------------------------------------------------------------------------------------------------- # Histograms showing the distribution of the variables histData <- gather(admission, key=key, value=value) histData$value <- as.integer(histData$value) plot1= ggplot(histData, aes(value)) + geom_histogram(bins = 10, color= "black", fill="grey70") + facet_wrap(~key, scales = "free_x", nrow = 2, ncol = 2) + theme_bw() plot1 # Scatter matrix panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) { usr <- par("usr") on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r <- cor(x, y, use="pairwise.complete.obs") txt <- format(c(r, 0.123456789), digits = digits)[1] txt <- paste0(prefix, txt) text(0.5, 0.5, txt) } pairs(admission, lower.panel = panel.cor, pch = 18) # Proportions of admitted by gpa, gre and rank gpaCat <- cut(admission$gpa,c(seq(4,6,0.2)), labels=FALSE) prop.admit.gpa <- tapply(admission$admit,gpaCat,mean) greCat <- cut(admission$gre,c(seq(260,960,50)), labels=FALSE) prop.admit.gre <- tapply(admission$admit,greCat,mean) prop.admit.rank <-tapply(admission$admit,admission$rank,mean) plot(prop.admit.rank,pch=19,xlab="rank") par(mfrow=c(2,2)) plot(seq(4.1,6,0.2),prop.admit.gpa,pch=19,xlab="gpa") plot(seq(275,935,50), prop.admit.gre,pch=19,xlab="gre") plot(prop.admit.rank,pch=19,xlab="rank") #----------------------------------------------------------------------------------------------------- # Model estimation #----------------------------------------------------------------------------------------------------- # The code below estimates a logistic regression model using the # glm (generalized linear model) function. # This function is used to fit generalized linear models and requires the specification # of the # - dependent and explanatory variables using the usual formula # dependent variable ~ explanatory variables separated by + # - description of the error distribution using the "family" argument # For the logistic model family = binomial(link = "logit") mod1 <- glm(admit~gre+gpa+rank, family=binomial(link = "logit"), data=admission[,1:4]) # When a model includes all the other variables in the data frame # we can avoid to list all the variables by using mod1 <- glm(admit~.,family="binomial",data=admission) # The default link function for the binomial family is the logit. Therefore, we can omit # (link = "logit") from the formula above and use the upper commas. #----------------------------------------------------------------------------------------------------- # Model diagnostics #----------------------------------------------------------------------------------------------------- # Standard way not too helpful par(mfrow=c(2,2)) plot(mod1, pch=19,cex=0.1) # A better way to visualize the diagnostics # Linearity residualPlots(mod1, type = "deviance", pch=20, smooth=list(col="red")) # Outliers, leverage, Cook's distance influenceIndexPlot(mod1,vars=c("Studentized", "hat", "Cook"), id=list(n=c(4))) outlierTest(mod1) # Testing outliers CookThreshold <- 5/400*qchisq(0.05,1,lower.tail=FALSE) # Cook?s distance threshold for GLM CookThreshold # Are 198 and 156 really influential? mod2 <-update(mod1,subset=-c(198)) compareCoefs(mod1,mod2) mod3 <-update(mod1,subset=-c(156)) compareCoefs(mod1,mod3) #----------------------------------------------------------------------------------------------------- # Parameter interpretation #----------------------------------------------------------------------------------------------------- # The commented code shows how the p-values of the Wald test are computed # Wald test for testing the association between admit and each explanatory variable: # H_0: beta_j=0 vs. H_1: beta_j != 0 # names(summary(mod1)) # summary(mod1)$coefficients # beta.est <- summary(mod1)$coefficients[,1] # se.est <- summary(mod1)$coefficients[,2] # z.values <- beta.est/se.est # p.values <- 2*pnorm(abs(z.values),lower.tail=FALSE) # data.frame(beta.est,se.est,z.values,p.values) summary(mod1) # Odds ratios and Wald CIs results <- cbind(coefs=mod1$coefficients, OR = exp(coef(mod1)), exp(confint.default(mod1))) exp(summary(mod1)$coefficients[,1]-qnorm(0.975)*summary(mod1)$coefficients[,2]) exp(summary(mod1)$coefficients[,1]+qnorm(0.975)*summary(mod1)$coefficients[,2]) # Odds ratios and profile-likelihood CIs results <- cbind(coefs=mod1$coefficients, OR = exp(coef(mod1)), exp(confint(mod1))) results # Percentage change 100*(exp(coef(mod1))-1) # Predicted probabilities source("multiplot.R") # Predicted probabilities for the variable gpa data.gpa <- with(admission, data.frame(gre = mean(gre), gpa = rep(seq(from = 4, to = 6, length.out=200),4), rank = factor(rep(1:4, each = 200)))) predict.gpa <- cbind(data.gpa, predict(mod1, newdata=data.gpa, type = "response", se = TRUE)) predict.gpa <- within(predict.gpa, PredictedProb <- plogis(fit)) head(predict.gpa) p.gpa <- ggplot(predict.gpa, aes(x = gpa, y = PredictedProb)) + geom_line(aes(colour = rank), size = 1)+theme_bw() # Predicted probabilities for the variable gre data.gre <- with(admission, data.frame(gpa = mean(gpa), gre = rep(seq(from = 260, to = 960, length.out=700),4), rank = factor(rep(1:4, each = 700)))) predict.gre <- cbind(data.gre, predict(mod1, newdata=data.gre, type = "response", se = TRUE)) predict.gre <- within(predict.gre, PredictedProb <- plogis(fit)) head(predict.gre) p.gre <- ggplot(predict.gre, aes(x = gre, y = PredictedProb)) + geom_line(aes(colour = rank), size = 1)+theme_bw() # Predicted probabilities for the variable rank data.rank <- with(admission, data.frame(gpa=mean(gpa), gre = mean(gre), rank = factor(1:4))) predict.rank <- cbind(data.rank, predict(mod1, newdata = data.rank, type = "response")) colnames(predict.rank)[4] <- "PredictedProb" p.rank <- ggplot(predict.rank, aes(x = rank, y = PredictedProb)) + geom_point(aes(colour = rank))+theme_bw() multiplot(p.gpa, p.gre,p.rank, cols = 1) #----------------------------------------------------------------------------------------------------- # Hypothesis testing #----------------------------------------------------------------------------------------------------- # More than one parameter: # Model fit (overall test): H_0: beta_1=...=beta_p=0 mod.empty <- glm(admit~1,family="binomial",data=admission) anova(mod.empty,mod1,test="Chisq") # Computing the test by hand # G.value <- with(mod1, null.deviance - deviance) # G.value # df.G <- with(mod1, df.null - df.residual) # df.G # pvalue.G <- pchisq(G.value,df.G,lower.tail=FALSE) # pvalue.G # quantile.G <- qchisq(0.05,df.G) # quantile.G # Subset of parameters # E.g. H_0 = beta_{r2}=beta_{r3}=beta_{r4} mod.red <- glm(admit~gre+gpa, family="binomial", data=admission) anova(mod.red,mod1,test="Chisq") # By hand # G.value <- mod.red$deviance - mod1$deviance # G.value # df.G <- with(mod1, df.null - df.residual)-with(mod.red, df.null - df.residual) # df.G # pvalue.G <- pchisq(G.value,df.G,lower.tail=FALSE) # pvalue.G # quantile.G <- qchisq(0.05,df.G) # quantile.G #----------------------------------------------------------------------------------------------------- # Model selection #----------------------------------------------------------------------------------------------------- # Forward selection: start from the model with only the intercept: mod.fin <- step(mod.empty, direction="forward", scope=formula(mod1)) mod.fin summary(mod.fin) #----------------------------------------------------------------------------------------------------- # Probit model #----------------------------------------------------------------------------------------------------- mod2 <- glm(admit~gre+gpa+rank,family=binomial(link = "probit"),data=admission[,1:4]) summary(mod2) #----------------------------------------------------------------------------------------------------- # Grouped data #----------------------------------------------------------------------------------------------------- titanic <- read.csv("titanic.csv",header=TRUE) modTitanic <- glm(cbind(Survived,Died)~.,data=titanic,family="binomial") summary(modTitanic) w
/Course_Material/BinaryDataModel.R
no_license
japolak/ETH-AGLM
R
false
false
9,459
r
#****************************************************************************************************** # Applied generalized linear model - FS # Viviana Amati # Social Network Labs # Department of Humanities, Social and Political Sciences # ETH Zurich # 24 March 2020 # This script provides the code for applying binary logistic regression models # The commented output is in the lecture notes. #****************************************************************************************************** #----------------------------------------------------------------------------------------------------- # Setting directory and loading packages #----------------------------------------------------------------------------------------------------- setwd("~/Data/github/AGLM/Course_Material") library(ggplot2) library(tidyr) library(car) # Importing the data and check admission <- read.csv("admission.csv",header=TRUE) head(admission) summary(admission) # Recoding the variable rank as a factor admission$rank <- factor(admission$rank,levels=1:4,labels=1:4) summary(admission) #----------------------------------------------------------------------------------------------------- # Some descriptive statistics #----------------------------------------------------------------------------------------------------- # Histograms showing the distribution of the variables histData <- gather(admission, key=key, value=value) histData$value <- as.integer(histData$value) plot1= ggplot(histData, aes(value)) + geom_histogram(bins = 10, color= "black", fill="grey70") + facet_wrap(~key, scales = "free_x", nrow = 2, ncol = 2) + theme_bw() plot1 # Scatter matrix panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) { usr <- par("usr") on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r <- cor(x, y, use="pairwise.complete.obs") txt <- format(c(r, 0.123456789), digits = digits)[1] txt <- paste0(prefix, txt) text(0.5, 0.5, txt) } pairs(admission, lower.panel = panel.cor, pch = 18) # Proportions of admitted by gpa, gre and rank gpaCat <- cut(admission$gpa,c(seq(4,6,0.2)), labels=FALSE) prop.admit.gpa <- tapply(admission$admit,gpaCat,mean) greCat <- cut(admission$gre,c(seq(260,960,50)), labels=FALSE) prop.admit.gre <- tapply(admission$admit,greCat,mean) prop.admit.rank <-tapply(admission$admit,admission$rank,mean) plot(prop.admit.rank,pch=19,xlab="rank") par(mfrow=c(2,2)) plot(seq(4.1,6,0.2),prop.admit.gpa,pch=19,xlab="gpa") plot(seq(275,935,50), prop.admit.gre,pch=19,xlab="gre") plot(prop.admit.rank,pch=19,xlab="rank") #----------------------------------------------------------------------------------------------------- # Model estimation #----------------------------------------------------------------------------------------------------- # The code below estimates a logistic regression model using the # glm (generalized linear model) function. # This function is used to fit generalized linear models and requires the specification # of the # - dependent and explanatory variables using the usual formula # dependent variable ~ explanatory variables separated by + # - description of the error distribution using the "family" argument # For the logistic model family = binomial(link = "logit") mod1 <- glm(admit~gre+gpa+rank, family=binomial(link = "logit"), data=admission[,1:4]) # When a model includes all the other variables in the data frame # we can avoid to list all the variables by using mod1 <- glm(admit~.,family="binomial",data=admission) # The default link function for the binomial family is the logit. Therefore, we can omit # (link = "logit") from the formula above and use the upper commas. #----------------------------------------------------------------------------------------------------- # Model diagnostics #----------------------------------------------------------------------------------------------------- # Standard way not too helpful par(mfrow=c(2,2)) plot(mod1, pch=19,cex=0.1) # A better way to visualize the diagnostics # Linearity residualPlots(mod1, type = "deviance", pch=20, smooth=list(col="red")) # Outliers, leverage, Cook's distance influenceIndexPlot(mod1,vars=c("Studentized", "hat", "Cook"), id=list(n=c(4))) outlierTest(mod1) # Testing outliers CookThreshold <- 5/400*qchisq(0.05,1,lower.tail=FALSE) # Cook?s distance threshold for GLM CookThreshold # Are 198 and 156 really influential? mod2 <-update(mod1,subset=-c(198)) compareCoefs(mod1,mod2) mod3 <-update(mod1,subset=-c(156)) compareCoefs(mod1,mod3) #----------------------------------------------------------------------------------------------------- # Parameter interpretation #----------------------------------------------------------------------------------------------------- # The commented code shows how the p-values of the Wald test are computed # Wald test for testing the association between admit and each explanatory variable: # H_0: beta_j=0 vs. H_1: beta_j != 0 # names(summary(mod1)) # summary(mod1)$coefficients # beta.est <- summary(mod1)$coefficients[,1] # se.est <- summary(mod1)$coefficients[,2] # z.values <- beta.est/se.est # p.values <- 2*pnorm(abs(z.values),lower.tail=FALSE) # data.frame(beta.est,se.est,z.values,p.values) summary(mod1) # Odds ratios and Wald CIs results <- cbind(coefs=mod1$coefficients, OR = exp(coef(mod1)), exp(confint.default(mod1))) exp(summary(mod1)$coefficients[,1]-qnorm(0.975)*summary(mod1)$coefficients[,2]) exp(summary(mod1)$coefficients[,1]+qnorm(0.975)*summary(mod1)$coefficients[,2]) # Odds ratios and profile-likelihood CIs results <- cbind(coefs=mod1$coefficients, OR = exp(coef(mod1)), exp(confint(mod1))) results # Percentage change 100*(exp(coef(mod1))-1) # Predicted probabilities source("multiplot.R") # Predicted probabilities for the variable gpa data.gpa <- with(admission, data.frame(gre = mean(gre), gpa = rep(seq(from = 4, to = 6, length.out=200),4), rank = factor(rep(1:4, each = 200)))) predict.gpa <- cbind(data.gpa, predict(mod1, newdata=data.gpa, type = "response", se = TRUE)) predict.gpa <- within(predict.gpa, PredictedProb <- plogis(fit)) head(predict.gpa) p.gpa <- ggplot(predict.gpa, aes(x = gpa, y = PredictedProb)) + geom_line(aes(colour = rank), size = 1)+theme_bw() # Predicted probabilities for the variable gre data.gre <- with(admission, data.frame(gpa = mean(gpa), gre = rep(seq(from = 260, to = 960, length.out=700),4), rank = factor(rep(1:4, each = 700)))) predict.gre <- cbind(data.gre, predict(mod1, newdata=data.gre, type = "response", se = TRUE)) predict.gre <- within(predict.gre, PredictedProb <- plogis(fit)) head(predict.gre) p.gre <- ggplot(predict.gre, aes(x = gre, y = PredictedProb)) + geom_line(aes(colour = rank), size = 1)+theme_bw() # Predicted probabilities for the variable rank data.rank <- with(admission, data.frame(gpa=mean(gpa), gre = mean(gre), rank = factor(1:4))) predict.rank <- cbind(data.rank, predict(mod1, newdata = data.rank, type = "response")) colnames(predict.rank)[4] <- "PredictedProb" p.rank <- ggplot(predict.rank, aes(x = rank, y = PredictedProb)) + geom_point(aes(colour = rank))+theme_bw() multiplot(p.gpa, p.gre,p.rank, cols = 1) #----------------------------------------------------------------------------------------------------- # Hypothesis testing #----------------------------------------------------------------------------------------------------- # More than one parameter: # Model fit (overall test): H_0: beta_1=...=beta_p=0 mod.empty <- glm(admit~1,family="binomial",data=admission) anova(mod.empty,mod1,test="Chisq") # Computing the test by hand # G.value <- with(mod1, null.deviance - deviance) # G.value # df.G <- with(mod1, df.null - df.residual) # df.G # pvalue.G <- pchisq(G.value,df.G,lower.tail=FALSE) # pvalue.G # quantile.G <- qchisq(0.05,df.G) # quantile.G # Subset of parameters # E.g. H_0 = beta_{r2}=beta_{r3}=beta_{r4} mod.red <- glm(admit~gre+gpa, family="binomial", data=admission) anova(mod.red,mod1,test="Chisq") # By hand # G.value <- mod.red$deviance - mod1$deviance # G.value # df.G <- with(mod1, df.null - df.residual)-with(mod.red, df.null - df.residual) # df.G # pvalue.G <- pchisq(G.value,df.G,lower.tail=FALSE) # pvalue.G # quantile.G <- qchisq(0.05,df.G) # quantile.G #----------------------------------------------------------------------------------------------------- # Model selection #----------------------------------------------------------------------------------------------------- # Forward selection: start from the model with only the intercept: mod.fin <- step(mod.empty, direction="forward", scope=formula(mod1)) mod.fin summary(mod.fin) #----------------------------------------------------------------------------------------------------- # Probit model #----------------------------------------------------------------------------------------------------- mod2 <- glm(admit~gre+gpa+rank,family=binomial(link = "probit"),data=admission[,1:4]) summary(mod2) #----------------------------------------------------------------------------------------------------- # Grouped data #----------------------------------------------------------------------------------------------------- titanic <- read.csv("titanic.csv",header=TRUE) modTitanic <- glm(cbind(Survived,Died)~.,data=titanic,family="binomial") summary(modTitanic) w
path_scaling <- paste0(path_sub, "scaling/") dir.create(path_scaling, recursive = T) # convert data and variance into 3d arrays x <- array(NA, dim = c(nrow(coord_df), length(date_list), length(var_list)), dimnames = list( as.character(1:nrow(coord_df)), as.character(date_list), var_list ) ) for (j in 1:length(date_list)) { # date for (v in 1:length(var_list)) { # covariate if (var_list[v] %in% c("pheno", "temp", "prcp")) { ts_date <- ts %>% filter(date == date_list[j]) if (nrow(ts_date) > 0) { x[, j, v] <- ts_date[var_list[v]] %>% unlist() %>% as.numeric() } else { x[, j, v] <- rep(NA, nrow(coord_df)) } } else if (var_list[v] == "doy") { x[, j, v] <- rep(sin(as.numeric(format(date_list[j], "%j")) * 2 * pi), nrow(coord_df)) } } print(date_list[j]) } Sigma <- array(NA, dim = c(nrow(coord_df), length(date_list), length(var_list)), dimnames = list( as.character(1:nrow(coord_df)), as.character(date_list), var_list ) ) for (j in 1:length(date_list)) { # date for (v in 1:length(var_list)) { # covariate if (var_list[v] %in% c("pheno")) { ts_date <- ts %>% filter(date == date_list[j]) if (nrow(ts_date) > 0) { Sigma[, j, v] <- (ts_date[paste0(var_list[v], "_sd")] %>% unlist() %>% as.numeric())^2 } else { Sigma[, j, v] <- rep(NA, nrow(coord_df)) } } else { Sigma[, j, v] <- rep(0, nrow(coord_df)) } } print(date_list[j]) } # scale data to be roughly between 0 and 1 df_upper_lower <- vector(mode = "list") for (j in 1:length(var_list)) { if (var_list[j] %in% c("pheno")) { # scale by each site df_upper_lower[[j]] <- data.frame(x[, , j, drop = F]) %>% mutate(site = row_number()) %>% gather(key = "date", value = "value", -site) %>% drop_na() %>% group_by(site) %>% dplyr::summarize( lower = quantile(value, 0.025), upper = quantile(value, 0.975) ) %>% mutate(range = upper - lower) } else { # scale for all sites all_upper_lower <- data.frame(x[, , j, drop = F]) %>% mutate(site = row_number()) %>% gather(key = "date", value = "value", -site) %>% drop_na() %>% dplyr::summarize( lower = quantile(value, 0), upper = quantile(value, 1) ) %>% mutate(range = upper - lower) df_upper_lower[[j]] <- data.frame(x[, , j, drop = F]) %>% mutate(site = row_number()) %>% gather(key = "date", value = "value", -site) %>% drop_na() %>% distinct(site) %>% mutate( lower = all_upper_lower$lower, upper = all_upper_lower$upper, range = all_upper_lower$range ) } lower <- matrix(df_upper_lower[[j]]$lower) %*% matrix(1, nrow = 1, ncol = ncol(x[, , j, drop = F])) range <- matrix(df_upper_lower[[j]]$range) %*% matrix(1, nrow = 1, ncol = ncol(x[, , j, drop = F])) x[, , j] <- (x[, , j] - lower) / range - 0.5 } for (j in 1:length(var_list)) { Sigma[, , j] <- Sigma[, , j, drop = F] / (df_upper_lower[[j]]$range)^2 } for (j in 1:length(var_list)) { write_csv(df_upper_lower[[j]], paste0(path_scaling, j, ".csv")) print(j) } # linear interpolation for (j in 1:length(var_list)) { for (i in 1:nrow(coord_df)) { min_id <- min(which(!is.na(x[i, , j]))) max_id <- max(which(!is.na(x[i, , j]))) x[i, min_id:max_id, j] <- zoo::na.approx(object = x[i, min_id:max_id, j], x = as.Date(names(x[i, min_id:max_id, j])), maxgap = 14) } } for (j in 1:length(var_list)) { for (i in 1:nrow(coord_df)) { min_id <- min(which(!is.na(Sigma[i, , j]))) max_id <- max(which(!is.na(Sigma[i, , j]))) Sigma[i, min_id:max_id, j] <- zoo::na.approx(object = Sigma[i, min_id:max_id, j], x = as.Date(names(Sigma[i, min_id:max_id, j])), maxgap = 14) } } x_raw <- x Simga_raw <- Sigma # whittaker smoothing for (j in 1:length(var_list)) { for (i in 1:nrow(coord_df)) { max_id <- 0 done <- F while (!done) { min_id <- min(which(!is.na(x[i, (max_id + 1):length(date_list), j]))) + (max_id) if (min_id == Inf) { done <- T } else { max_id <- min(which(is.na(x[i, min_id:length(date_list), j]))) - 1 + (min_id - 1) if (max_id == Inf) { max_id <- length(date_list) done <- T } x[i, min_id:max_id, j] <- ptw::whit1(x[i, min_id:max_id, j], 5) } } } }
/simulations/code/steps/21 preprocess data.R
permissive
zhulabgroup/song-2023-landsc-ecol
R
false
false
4,432
r
path_scaling <- paste0(path_sub, "scaling/") dir.create(path_scaling, recursive = T) # convert data and variance into 3d arrays x <- array(NA, dim = c(nrow(coord_df), length(date_list), length(var_list)), dimnames = list( as.character(1:nrow(coord_df)), as.character(date_list), var_list ) ) for (j in 1:length(date_list)) { # date for (v in 1:length(var_list)) { # covariate if (var_list[v] %in% c("pheno", "temp", "prcp")) { ts_date <- ts %>% filter(date == date_list[j]) if (nrow(ts_date) > 0) { x[, j, v] <- ts_date[var_list[v]] %>% unlist() %>% as.numeric() } else { x[, j, v] <- rep(NA, nrow(coord_df)) } } else if (var_list[v] == "doy") { x[, j, v] <- rep(sin(as.numeric(format(date_list[j], "%j")) * 2 * pi), nrow(coord_df)) } } print(date_list[j]) } Sigma <- array(NA, dim = c(nrow(coord_df), length(date_list), length(var_list)), dimnames = list( as.character(1:nrow(coord_df)), as.character(date_list), var_list ) ) for (j in 1:length(date_list)) { # date for (v in 1:length(var_list)) { # covariate if (var_list[v] %in% c("pheno")) { ts_date <- ts %>% filter(date == date_list[j]) if (nrow(ts_date) > 0) { Sigma[, j, v] <- (ts_date[paste0(var_list[v], "_sd")] %>% unlist() %>% as.numeric())^2 } else { Sigma[, j, v] <- rep(NA, nrow(coord_df)) } } else { Sigma[, j, v] <- rep(0, nrow(coord_df)) } } print(date_list[j]) } # scale data to be roughly between 0 and 1 df_upper_lower <- vector(mode = "list") for (j in 1:length(var_list)) { if (var_list[j] %in% c("pheno")) { # scale by each site df_upper_lower[[j]] <- data.frame(x[, , j, drop = F]) %>% mutate(site = row_number()) %>% gather(key = "date", value = "value", -site) %>% drop_na() %>% group_by(site) %>% dplyr::summarize( lower = quantile(value, 0.025), upper = quantile(value, 0.975) ) %>% mutate(range = upper - lower) } else { # scale for all sites all_upper_lower <- data.frame(x[, , j, drop = F]) %>% mutate(site = row_number()) %>% gather(key = "date", value = "value", -site) %>% drop_na() %>% dplyr::summarize( lower = quantile(value, 0), upper = quantile(value, 1) ) %>% mutate(range = upper - lower) df_upper_lower[[j]] <- data.frame(x[, , j, drop = F]) %>% mutate(site = row_number()) %>% gather(key = "date", value = "value", -site) %>% drop_na() %>% distinct(site) %>% mutate( lower = all_upper_lower$lower, upper = all_upper_lower$upper, range = all_upper_lower$range ) } lower <- matrix(df_upper_lower[[j]]$lower) %*% matrix(1, nrow = 1, ncol = ncol(x[, , j, drop = F])) range <- matrix(df_upper_lower[[j]]$range) %*% matrix(1, nrow = 1, ncol = ncol(x[, , j, drop = F])) x[, , j] <- (x[, , j] - lower) / range - 0.5 } for (j in 1:length(var_list)) { Sigma[, , j] <- Sigma[, , j, drop = F] / (df_upper_lower[[j]]$range)^2 } for (j in 1:length(var_list)) { write_csv(df_upper_lower[[j]], paste0(path_scaling, j, ".csv")) print(j) } # linear interpolation for (j in 1:length(var_list)) { for (i in 1:nrow(coord_df)) { min_id <- min(which(!is.na(x[i, , j]))) max_id <- max(which(!is.na(x[i, , j]))) x[i, min_id:max_id, j] <- zoo::na.approx(object = x[i, min_id:max_id, j], x = as.Date(names(x[i, min_id:max_id, j])), maxgap = 14) } } for (j in 1:length(var_list)) { for (i in 1:nrow(coord_df)) { min_id <- min(which(!is.na(Sigma[i, , j]))) max_id <- max(which(!is.na(Sigma[i, , j]))) Sigma[i, min_id:max_id, j] <- zoo::na.approx(object = Sigma[i, min_id:max_id, j], x = as.Date(names(Sigma[i, min_id:max_id, j])), maxgap = 14) } } x_raw <- x Simga_raw <- Sigma # whittaker smoothing for (j in 1:length(var_list)) { for (i in 1:nrow(coord_df)) { max_id <- 0 done <- F while (!done) { min_id <- min(which(!is.na(x[i, (max_id + 1):length(date_list), j]))) + (max_id) if (min_id == Inf) { done <- T } else { max_id <- min(which(is.na(x[i, min_id:length(date_list), j]))) - 1 + (min_id - 1) if (max_id == Inf) { max_id <- length(date_list) done <- T } x[i, min_id:max_id, j] <- ptw::whit1(x[i, min_id:max_id, j], 5) } } } }
\name{mr_union} \alias{mr_union} \alias{mr_intersect} \alias{mr_diff} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Set operations on multiple-response objects } \description{ These functions take union, intersection, and difference of two multiple-response objects. An observation has a level in the union if it has that level in either input. It has the level in the intersection if it has the level in both inputs. It has the level in the difference if it has the level in \code{x} and not in \code{y} } \usage{ mr_union(x, y) mr_intersect(x, y) mr_diff(x, y) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x,y}{Objects of class \code{mr}} } \value{ Object of class \code{mr} } \examples{ data(usethnicity) race<-as.mr(strsplit(as.character(usethnicity$Q5),"")) race<-mr_drop(race,c(" ","F","G","H")) race <- mr_recode(race, AmIndian="A",Asian="B", Black="C", Pacific="D", White="E") mtable(race) hispanic<-as.mr(usethnicity$Q4==1, "Hispanic") ethnicity<-mr_union(race, hispanic) mtable(ethnicity) ethnicity[101:120] } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{manip}% use one of RShowDoc("KEYWORDS")
/man/mr_union.Rd
no_license
mabafaba/rimu
R
false
false
1,231
rd
\name{mr_union} \alias{mr_union} \alias{mr_intersect} \alias{mr_diff} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Set operations on multiple-response objects } \description{ These functions take union, intersection, and difference of two multiple-response objects. An observation has a level in the union if it has that level in either input. It has the level in the intersection if it has the level in both inputs. It has the level in the difference if it has the level in \code{x} and not in \code{y} } \usage{ mr_union(x, y) mr_intersect(x, y) mr_diff(x, y) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x,y}{Objects of class \code{mr}} } \value{ Object of class \code{mr} } \examples{ data(usethnicity) race<-as.mr(strsplit(as.character(usethnicity$Q5),"")) race<-mr_drop(race,c(" ","F","G","H")) race <- mr_recode(race, AmIndian="A",Asian="B", Black="C", Pacific="D", White="E") mtable(race) hispanic<-as.mr(usethnicity$Q4==1, "Hispanic") ethnicity<-mr_union(race, hispanic) mtable(ethnicity) ethnicity[101:120] } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{manip}% use one of RShowDoc("KEYWORDS")
# Getting dataset all_data <- read.table("~/Data/household_power_consumption.txt", header = T, sep=";", quote="\"", na.strings="?", stringsAsFactors=FALSE) all_data$Date <- as.Date(all_data$Date, format="%d/%m/%Y") # Subsetting the data data <- subset(all_data, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) # Converting dates datetime <- paste(as.Date(data$Date), data$Time) data$Datetime <- as.POSIXct(datetime) # Plot 3 with(data, { plot(Sub_metering_1~Datetime, type="l", ylab="Global Active Power (kilowatts)", xlab="") lines(Sub_metering_2~Datetime,col='Red') lines(Sub_metering_3~Datetime,col='Blue') }) legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) # Saving to file dev.copy(png, file="plot3.png", height=480, width=480) dev.off()
/Course Project 1/plot3.R
no_license
sturekm/Exploratory-Data-Analysis
R
false
false
877
r
# Getting dataset all_data <- read.table("~/Data/household_power_consumption.txt", header = T, sep=";", quote="\"", na.strings="?", stringsAsFactors=FALSE) all_data$Date <- as.Date(all_data$Date, format="%d/%m/%Y") # Subsetting the data data <- subset(all_data, subset=(Date >= "2007-02-01" & Date <= "2007-02-02")) # Converting dates datetime <- paste(as.Date(data$Date), data$Time) data$Datetime <- as.POSIXct(datetime) # Plot 3 with(data, { plot(Sub_metering_1~Datetime, type="l", ylab="Global Active Power (kilowatts)", xlab="") lines(Sub_metering_2~Datetime,col='Red') lines(Sub_metering_3~Datetime,col='Blue') }) legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) # Saving to file dev.copy(png, file="plot3.png", height=480, width=480) dev.off()
# web crwaling library(httr) library(rvest) library(readr) library(dplyr) otp_url = "http://marketdata.krx.co.kr/contents/COM/GenerateOTP.jspx?name=fileDown&filetype=csv&url=MKD/13/1302/13020401/mkd13020401&market_gubun=ALL&gubun=1&isu_cdnm=A005930%2F%EC%82%BC%EC%84%B1%EC%A0%84%EC%9E%90&isu_cd=KR7005930003&isu_nm=%EC%82%BC%EC%84%B1%EC%A0%84%EC%9E%90&isu_srt_cd=A005930&schdate=20200410&fromdate=20200403&todate=20200410&pagePath=%2Fcontents%2FMKD%2F13%2F1302%2F13020401%2FMKD13020401.jsp" payload = list( name = 'fileDown', filetype = 'csv', url = "MKD/13/1302/13020401/mkd13020401", market_gubun = "ALL", gubun = '1', schdate = "20200412", pagePath = "/contents/MKD/13/1302/13020401/MKD13020401.jsp") otp = POST(url = otp_url, query = payload) %>% read_html() %>% html_text() url = "http://file.krx.co.kr/download.jspx" data = POST(url = url, query = list(code = otp), add_headers(referer = otp_url)) %>% read_html() %>% html_text() %>% read_csv() csv = data %>% select(종목코드, 종목명) write.csv(csv, 'code.csv', row.names = F)
/code_webcrwaling.R
no_license
ParkChanhyeock/Stock
R
false
false
1,126
r
# web crwaling library(httr) library(rvest) library(readr) library(dplyr) otp_url = "http://marketdata.krx.co.kr/contents/COM/GenerateOTP.jspx?name=fileDown&filetype=csv&url=MKD/13/1302/13020401/mkd13020401&market_gubun=ALL&gubun=1&isu_cdnm=A005930%2F%EC%82%BC%EC%84%B1%EC%A0%84%EC%9E%90&isu_cd=KR7005930003&isu_nm=%EC%82%BC%EC%84%B1%EC%A0%84%EC%9E%90&isu_srt_cd=A005930&schdate=20200410&fromdate=20200403&todate=20200410&pagePath=%2Fcontents%2FMKD%2F13%2F1302%2F13020401%2FMKD13020401.jsp" payload = list( name = 'fileDown', filetype = 'csv', url = "MKD/13/1302/13020401/mkd13020401", market_gubun = "ALL", gubun = '1', schdate = "20200412", pagePath = "/contents/MKD/13/1302/13020401/MKD13020401.jsp") otp = POST(url = otp_url, query = payload) %>% read_html() %>% html_text() url = "http://file.krx.co.kr/download.jspx" data = POST(url = url, query = list(code = otp), add_headers(referer = otp_url)) %>% read_html() %>% html_text() %>% read_csv() csv = data %>% select(종목코드, 종목명) write.csv(csv, 'code.csv', row.names = F)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/apple_mobility_data.R \name{apple_mobility_data} \alias{apple_mobility_data} \title{Access Apple mobility data} \usage{ apple_mobility_data(agree_to_terms = TRUE, max_tries = 3, message_url = FALSE) } \arguments{ \item{agree_to_terms}{logical, when TRUE, implies that the user has agreed to Apple's terms of use. See references and note.} \item{max_tries}{integer, the number of tries to attempt downloading} \item{message_url}{logical, output a message with the URL for the day since Apple changes it daily.} } \description{ From Apple's website: "Learn about COVID‑19 mobility trends in countries/regions and cities. Reports are published daily and reflect requests for directions in Apple Maps. Privacy is one of our core values, so Maps doesn’t associate your data with your Apple ID, and Apple doesn’t keep a history of where you’ve been." } \details{ The CSV file and charts on this site show a relative volume of directions requests per country/region or city compared to a baseline volume on January 13th, 2020. We define our day as midnight-to-midnight, Pacific time. Cities represent usage in greater metropolitan areas and are stably defined during this period. In many countries/regions and cities, relative volume has increased since January 13th, consistent with normal, seasonal usage of Apple Maps. Day of week effects are important to normalize as you use this data. Data that is sent from users’ devices to the Maps service is associated with random, rotating identifiers so Apple doesn’t have a profile of your movements and searches. Apple Maps has no demographic information about our users, so we can’t make any statements about the representativeness of our usage against the overall population. These data are available from a URL that changes daily. The parent page is the place to check to see what is going on if there are problems. } \note{ Apple requires that all users agree to their terms of use. See \url{https://www.apple.com/covid19/mobility}. } \examples{ res = apple_mobility_data() colnames(res) head(res) table(res$transportation_type) require(ggplot2) pl = res \%>\% dplyr::filter(region \%in\% c('Russia','New York City','Italy')) \%>\% ggplot(aes(x=date)) + geom_line(aes(y=mobility_index,color=transportation_type)) + scale_x_date(date_breaks = '1 week', date_labels='\%b-\%d') + facet_grid(rows=vars(region)) + ggtitle('Changes in Apple Mobility Index over time') pl regs_of_interest = c('Seattle', 'New York City', 'Chicago', 'Italy', 'Russia', 'UK', 'Brazil') res \%>\% dplyr::filter(region \%in\% regs_of_interest) \%>\% ggplot(aes(x=date, y=region, fill=mobility_index)) + geom_tile() + facet_grid(rows=vars(transportation_type)) + ggtitle('Changes in Apple Mobility Index over time') if(require(viridis)) { res \%>\% dplyr::filter(region \%in\% regs_of_interest) \%>\% ggplot(aes(x=date, y=region, fill=mobility_index)) + geom_tile() + facet_grid(rows=vars(transportation_type)) + scale_fill_viridis() + ggtitle('Changes in Apple Mobility Index over time') } if(require(plotly)) { ggplotly(pl) } } \references{ \itemize{ \item \url{https://www.apple.com/covid19/mobility} } } \seealso{ Other data-import: \code{\link{acaps_government_measures_data}()}, \code{\link{beoutbreakprepared_data}()}, \code{\link{cdc_aggregated_projections}()}, \code{\link{cdc_excess_deaths}()}, \code{\link{cdc_social_vulnerability_index}()}, \code{\link{coronadatascraper_data}()}, \code{\link{coronanet_government_response_data}()}, \code{\link{cov_glue_lineage_data}()}, \code{\link{cov_glue_newick_data}()}, \code{\link{cov_glue_snp_lineage}()}, \code{\link{covidtracker_data}()}, \code{\link{descartes_mobility_data}()}, \code{\link{ecdc_data}()}, \code{\link{economist_excess_deaths}()}, \code{\link{eu_data_cache_data}()}, \code{\link{financial_times_excess_deaths}()}, \code{\link{google_mobility_data}()}, \code{\link{government_policy_timeline}()}, \code{\link{healthdata_mobility_data}()}, \code{\link{healthdata_projections_data}()}, \code{\link{healthdata_testing_data}()}, \code{\link{jhu_data}()}, \code{\link{jhu_us_data}()}, \code{\link{kff_icu_beds}()}, \code{\link{nytimes_county_data}()}, \code{\link{oecd_unemployment_data}()}, \code{\link{owid_data}()}, \code{\link{param_estimates_published}()}, \code{\link{test_and_trace_data}()}, \code{\link{us_county_geo_details}()}, \code{\link{us_county_health_rankings}()}, \code{\link{us_healthcare_capacity}()}, \code{\link{us_hospital_details}()}, \code{\link{us_state_distancing_policy}()}, \code{\link{usa_facts_data}()}, \code{\link{who_cases}()} Other mobility: \code{\link{descartes_mobility_data}()}, \code{\link{google_mobility_data}()}, \code{\link{healthdata_mobility_data}()} } \author{ Sean Davis \href{mailto:seandavi@gmail.com}{seandavi@gmail.com} } \concept{data-import} \concept{mobility}
/man/apple_mobility_data.Rd
permissive
kartechbabu/sars2pack
R
false
true
5,084
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/apple_mobility_data.R \name{apple_mobility_data} \alias{apple_mobility_data} \title{Access Apple mobility data} \usage{ apple_mobility_data(agree_to_terms = TRUE, max_tries = 3, message_url = FALSE) } \arguments{ \item{agree_to_terms}{logical, when TRUE, implies that the user has agreed to Apple's terms of use. See references and note.} \item{max_tries}{integer, the number of tries to attempt downloading} \item{message_url}{logical, output a message with the URL for the day since Apple changes it daily.} } \description{ From Apple's website: "Learn about COVID‑19 mobility trends in countries/regions and cities. Reports are published daily and reflect requests for directions in Apple Maps. Privacy is one of our core values, so Maps doesn’t associate your data with your Apple ID, and Apple doesn’t keep a history of where you’ve been." } \details{ The CSV file and charts on this site show a relative volume of directions requests per country/region or city compared to a baseline volume on January 13th, 2020. We define our day as midnight-to-midnight, Pacific time. Cities represent usage in greater metropolitan areas and are stably defined during this period. In many countries/regions and cities, relative volume has increased since January 13th, consistent with normal, seasonal usage of Apple Maps. Day of week effects are important to normalize as you use this data. Data that is sent from users’ devices to the Maps service is associated with random, rotating identifiers so Apple doesn’t have a profile of your movements and searches. Apple Maps has no demographic information about our users, so we can’t make any statements about the representativeness of our usage against the overall population. These data are available from a URL that changes daily. The parent page is the place to check to see what is going on if there are problems. } \note{ Apple requires that all users agree to their terms of use. See \url{https://www.apple.com/covid19/mobility}. } \examples{ res = apple_mobility_data() colnames(res) head(res) table(res$transportation_type) require(ggplot2) pl = res \%>\% dplyr::filter(region \%in\% c('Russia','New York City','Italy')) \%>\% ggplot(aes(x=date)) + geom_line(aes(y=mobility_index,color=transportation_type)) + scale_x_date(date_breaks = '1 week', date_labels='\%b-\%d') + facet_grid(rows=vars(region)) + ggtitle('Changes in Apple Mobility Index over time') pl regs_of_interest = c('Seattle', 'New York City', 'Chicago', 'Italy', 'Russia', 'UK', 'Brazil') res \%>\% dplyr::filter(region \%in\% regs_of_interest) \%>\% ggplot(aes(x=date, y=region, fill=mobility_index)) + geom_tile() + facet_grid(rows=vars(transportation_type)) + ggtitle('Changes in Apple Mobility Index over time') if(require(viridis)) { res \%>\% dplyr::filter(region \%in\% regs_of_interest) \%>\% ggplot(aes(x=date, y=region, fill=mobility_index)) + geom_tile() + facet_grid(rows=vars(transportation_type)) + scale_fill_viridis() + ggtitle('Changes in Apple Mobility Index over time') } if(require(plotly)) { ggplotly(pl) } } \references{ \itemize{ \item \url{https://www.apple.com/covid19/mobility} } } \seealso{ Other data-import: \code{\link{acaps_government_measures_data}()}, \code{\link{beoutbreakprepared_data}()}, \code{\link{cdc_aggregated_projections}()}, \code{\link{cdc_excess_deaths}()}, \code{\link{cdc_social_vulnerability_index}()}, \code{\link{coronadatascraper_data}()}, \code{\link{coronanet_government_response_data}()}, \code{\link{cov_glue_lineage_data}()}, \code{\link{cov_glue_newick_data}()}, \code{\link{cov_glue_snp_lineage}()}, \code{\link{covidtracker_data}()}, \code{\link{descartes_mobility_data}()}, \code{\link{ecdc_data}()}, \code{\link{economist_excess_deaths}()}, \code{\link{eu_data_cache_data}()}, \code{\link{financial_times_excess_deaths}()}, \code{\link{google_mobility_data}()}, \code{\link{government_policy_timeline}()}, \code{\link{healthdata_mobility_data}()}, \code{\link{healthdata_projections_data}()}, \code{\link{healthdata_testing_data}()}, \code{\link{jhu_data}()}, \code{\link{jhu_us_data}()}, \code{\link{kff_icu_beds}()}, \code{\link{nytimes_county_data}()}, \code{\link{oecd_unemployment_data}()}, \code{\link{owid_data}()}, \code{\link{param_estimates_published}()}, \code{\link{test_and_trace_data}()}, \code{\link{us_county_geo_details}()}, \code{\link{us_county_health_rankings}()}, \code{\link{us_healthcare_capacity}()}, \code{\link{us_hospital_details}()}, \code{\link{us_state_distancing_policy}()}, \code{\link{usa_facts_data}()}, \code{\link{who_cases}()} Other mobility: \code{\link{descartes_mobility_data}()}, \code{\link{google_mobility_data}()}, \code{\link{healthdata_mobility_data}()} } \author{ Sean Davis \href{mailto:seandavi@gmail.com}{seandavi@gmail.com} } \concept{data-import} \concept{mobility}
/R-Portable/tests/utf8-regex.R
permissive
ksasso/Electron_ShinyApp_Deployment
R
false
false
8,104
r
setwd(normalizePath(dirname(R.utils::commandArgs(asValues=TRUE)$"f"))) source('../findNSourceUtils.R') test.rdocapply.golden <- function(H2Oserver) { irisPath = system.file("extdata", "iris.csv", package="h2oRClient") iris.hex = h2o.importFile(H2Oserver, path = irisPath, key = "iris.hex") summary(apply(iris.hex, 1, sum)) testEnd() } doTest("R Doc Apply", test.rdocapply.golden)
/R/tests/testdir_docexamples/runit_Rdoc_apply.R
permissive
svaithianatha/h2o
R
false
false
387
r
setwd(normalizePath(dirname(R.utils::commandArgs(asValues=TRUE)$"f"))) source('../findNSourceUtils.R') test.rdocapply.golden <- function(H2Oserver) { irisPath = system.file("extdata", "iris.csv", package="h2oRClient") iris.hex = h2o.importFile(H2Oserver, path = irisPath, key = "iris.hex") summary(apply(iris.hex, 1, sum)) testEnd() } doTest("R Doc Apply", test.rdocapply.golden)
makeCacheMatrix <- function(x = matrix()){ inv <- NULL set <- function(y){ x <<- y inv <<- NULL } get <<- function() {x} setInverse <- function(inverse) {inv <<- inverse} getInverse <- function() {inv} list(set = set, get = get, setInverse = setInverse, getInverse = getInverse) } cachemean <- function(x, ...) { inv <- x$getmean() if(!is.null(inv)) { message("getting cached data") return(inv) } mat <- x$get() inv <- solve(mat, ...) x$setInverse(inv) inv }
/makeCacheMatrix.R
no_license
priti-27/week-3
R
false
false
541
r
makeCacheMatrix <- function(x = matrix()){ inv <- NULL set <- function(y){ x <<- y inv <<- NULL } get <<- function() {x} setInverse <- function(inverse) {inv <<- inverse} getInverse <- function() {inv} list(set = set, get = get, setInverse = setInverse, getInverse = getInverse) } cachemean <- function(x, ...) { inv <- x$getmean() if(!is.null(inv)) { message("getting cached data") return(inv) } mat <- x$get() inv <- solve(mat, ...) x$setInverse(inv) inv }
# read in data myurl = "https://liangfgithub.github.io/MovieData/" movies = readLines(paste0(myurl, 'movies.dat?raw=true')) movies = strsplit(movies, split = "::", fixed = TRUE, useBytes = TRUE) movies = matrix(unlist(movies), ncol = 3, byrow = TRUE) movies = data.frame(movies, stringsAsFactors = FALSE) colnames(movies) = c('MovieID', 'Title', 'Genres') movies$MovieID = as.integer(movies$MovieID) movies$Title = iconv(movies$Title, "latin1", "UTF-8") small_image_url = "https://liangfgithub.github.io/MovieImages/" movies$image_url = sapply(movies$MovieID, function(x) paste0(small_image_url, x, '.jpg?raw=true')) image = sapply(movies$MovieID, function(x) paste0(small_image_url, x, '.jpg?raw=true')) myurl = "https://liangfgithub.github.io/MovieData/" ratings = read.csv(paste0(myurl, 'ratings.dat?raw=true'), sep = ':', colClasses = c('integer', 'NULL'), header = FALSE) colnames(ratings) = c('UserID', 'MovieID', 'Rating', 'Timestamp') # filter ratings_per_movie > 500 and ratings_per_user >100 to get ratings_new popMovie = ratings %>% group_by(MovieID) %>% summarize(ratings_per_movie = n(), ave_ratings = mean(Rating)) %>% inner_join(movies, by = 'MovieID') %>% filter(ratings_per_movie > 500) popID = popMovie %>% select(MovieID) popImage = sapply(popID, function(x) paste0(small_image_url, x, '.jpg?raw=true'))
/MovieRecommender/functions/sample.R
no_license
chien314/Movie_Recommender_in_R
R
false
false
1,468
r
# read in data myurl = "https://liangfgithub.github.io/MovieData/" movies = readLines(paste0(myurl, 'movies.dat?raw=true')) movies = strsplit(movies, split = "::", fixed = TRUE, useBytes = TRUE) movies = matrix(unlist(movies), ncol = 3, byrow = TRUE) movies = data.frame(movies, stringsAsFactors = FALSE) colnames(movies) = c('MovieID', 'Title', 'Genres') movies$MovieID = as.integer(movies$MovieID) movies$Title = iconv(movies$Title, "latin1", "UTF-8") small_image_url = "https://liangfgithub.github.io/MovieImages/" movies$image_url = sapply(movies$MovieID, function(x) paste0(small_image_url, x, '.jpg?raw=true')) image = sapply(movies$MovieID, function(x) paste0(small_image_url, x, '.jpg?raw=true')) myurl = "https://liangfgithub.github.io/MovieData/" ratings = read.csv(paste0(myurl, 'ratings.dat?raw=true'), sep = ':', colClasses = c('integer', 'NULL'), header = FALSE) colnames(ratings) = c('UserID', 'MovieID', 'Rating', 'Timestamp') # filter ratings_per_movie > 500 and ratings_per_user >100 to get ratings_new popMovie = ratings %>% group_by(MovieID) %>% summarize(ratings_per_movie = n(), ave_ratings = mean(Rating)) %>% inner_join(movies, by = 'MovieID') %>% filter(ratings_per_movie > 500) popID = popMovie %>% select(MovieID) popImage = sapply(popID, function(x) paste0(small_image_url, x, '.jpg?raw=true'))
filter_df_by_apt <- function(.df, .apt){ df <- .df %>% filter(APT_ICAO == .apt) %>% filter(YEAR >= min_year) # ensure only 5 years of data } # pick_apt_name <- function(.df, .apt){ name <- .df %>% filter(APT_ICAO == .apt) name <- name$APT_NAME[1] } # pick_state_name <- function(.df, .apt){ state <- .df %>% filter(APT_ICAO == .apt) state <- state$STATE_NAME[1] } # pick_apt_iata <- function(.df, .apt){ iata <- .df %>% filter(APT_ICAO == .apt) iata <- iata$APT_IATA[1] } # landing_page_indicators <- function(.df=db_df, .atfm=atfm_df, .apt){ inds <- .df %>% filter(APT_ICAO == .apt) ind_tfc_2019 <- inds %>% select(APT_ICAO, YEAR, NB_NM_TOT) %>% filter(YEAR == 2019) %>% group_by(APT_ICAO, YEAR) %>% summarise(NB_NM_TOT = sum(NB_NM_TOT, na.rm = TRUE)) %>% ungroup() ind_txot_2019 <- inds %>% filter(YEAR == 2019) %>% group_by(APT_ICAO, YEAR) %>% summarise( ADD_TAXI_OUT_TIME_MIN = sum(ADD_TAXI_OUT_TIME_MIN, na.rm = TRUE) ,NB_TAXI_OUT_FL = sum(NB_TAXI_OUT_FL, na.rm = TRUE) )%>% ungroup() %>% mutate(AVG_ADD_TXOT = round(ADD_TAXI_OUT_TIME_MIN / NB_TAXI_OUT_FL,2) ) %>% select(AVG_ADD_TXOT) ind_asma_2019 <- inds %>% filter(YEAR == 2019) %>% group_by(APT_ICAO, YEAR) %>% summarise( ADD_ASMA_TIME_MIN = sum(ADD_ASMA_TIME_MIN, na.rm = TRUE) ,NB_ASMA_FL = sum(NB_ASMA_FL, na.rm = TRUE) )%>% ungroup() %>% mutate(AVG_ADD_ASMA = round(ADD_ASMA_TIME_MIN / NB_ASMA_FL,2) ) %>% select(AVG_ADD_ASMA) ind_atfm_2019 <- .atfm %>% filter(APT_ICAO == .apt, YEAR == 2019) %>% select(FLT_ARR_1, DLY_APT_ARR_1) %>% summarise( FLT_ARR_1 = sum(FLT_ARR_1, na.rm = TRUE) ,DLY_APT_ARR_1 = sum(DLY_APT_ARR_1, na.rm = TRUE)) %>% mutate(AVG_ARR_ATFM = round(DLY_APT_ARR_1 / FLT_ARR_1,2) ) %>% select(AVG_ARR_ATFM) out <- ind_tfc_2019 %>% bind_cols(ind_txot_2019, ind_asma_2019, ind_atfm_2019) } # latest_month_indicators <- function(.df=db_df, .atfm=atfm_df, .apt){ inds <- .df %>% filter(APT_ICAO == .apt) mth_name <- c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") ind_tfc_lm <- inds %>% select(APT_ICAO, YEAR, MONTH_NUM, NB_NM_TOT) %>% na.omit() %>% filter(YEAR == max(YEAR)) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% mutate( MONTH = mth_name[MONTH_NUM] , TFC = paste0(NB_NM_TOT," (", MONTH, " ", YEAR,")") ) %>% select(APT_ICAO, TFC) ind_txot_lm <- inds %>% select(APT_ICAO, YEAR, MONTH_NUM, ADD_TAXI_OUT_TIME_MIN, NB_TAXI_OUT_FL) %>% na.omit() %>% filter(YEAR == max(YEAR) ) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% mutate(AVG_ADD_TXOT = round(ADD_TAXI_OUT_TIME_MIN / NB_TAXI_OUT_FL,2) ,AVG_ADD_TXOT= paste0(AVG_ADD_TXOT," (", mth_name[MONTH_NUM], " ", YEAR,")") ) %>% select(AVG_ADD_TXOT) ind_asma_lm <- inds %>% select(APT_ICAO, YEAR, MONTH_NUM, ADD_ASMA_TIME_MIN, NB_ASMA_FL) %>% na.omit() %>% filter(YEAR == max(YEAR) ) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% mutate( AVG_ADD_ASMA = round(ADD_ASMA_TIME_MIN / NB_ASMA_FL, 2) ,AVG_ADD_ASMA = paste0(AVG_ADD_ASMA," (", mth_name[MONTH_NUM], " ", YEAR,")") ) %>% select(AVG_ADD_ASMA) ind_atfm_lm <- .atfm %>% filter(APT_ICAO == .apt) %>% select(YEAR, MONTH_NUM, FLT_ARR_1, DLY_APT_ARR_1) %>% filter(YEAR == max(YEAR)) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% na.omit() %>% group_by(YEAR, MONTH_NUM) %>% summarise( FLT_ARR_1 = sum(FLT_ARR_1, na.rm = TRUE) ,DLY_APT_ARR_1 = sum(DLY_APT_ARR_1, na.rm = TRUE)) %>% mutate( AVG_ARR_ATFM = round(DLY_APT_ARR_1 / FLT_ARR_1, 2) ,AVG_ARR_ATFM = paste0(AVG_ARR_ATFM," (", mth_name[MONTH_NUM], " ", YEAR,")")) %>% select(AVG_ARR_ATFM) inds_lm <- ind_tfc_lm %>% bind_cols(ind_txot_lm, ind_asma_lm, ind_atfm_lm) } # trim_covid <- function(.df, .apt){ df <- .df %>% filter(APT_ICAO == .apt) %>% select(DAY, FLTS_2020, FLTS_2019, MOV_AVG_WK) } # pack_thru <- function(.df, .apt){ df <- .df %>% dplyr::filter(APT_ICAO == .apt) %>% dplyr::mutate( # DATE = lubridate::dmy(DAY, tz="UTC") DATE = DAY ,YEAR = year(DATE), MONTH_NUM = month(DATE) , WEEKDAY = lubridate::wday(DATE, label=TRUE)) %>% dplyr::filter(YEAR == max(YEAR)) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% dplyr::select(APT_ICAO, YEAR, MONTH_NUM, DATE, WEEKDAY, TIME, ROLLING_HOUR_MVT, PHASE) %>% dplyr::group_by(YEAR, MONTH_NUM, TIME, PHASE) %>% summarise(ROLLING_HOUR_MVT = mean(ROLLING_HOUR_MVT)) %>% dplyr::ungroup() } prepare_params <- function(apt_icao) { list( #------ start params ------------------------- icao = apt_icao ,iata = pick_apt_iata( db_df , .apt = apt_icao) # merge iata code with other source ,name = pick_apt_name( tfc_df, .apt = apt_icao) ,state = pick_state_name( tfc_df, .apt = apt_icao) ,config= filter_df_by_apt(config_df,.apt = apt_icao) ,ldgsum= landing_page_indicators(db_df, atfm_df, .apt = apt_icao) ,latest= latest_month_indicators(db_df, atfm_df, .apt = apt_icao) ,covid = trim_covid( covid_df, .apt = apt_icao) ,tfc = filter_df_by_apt(tfc_df, .apt = apt_icao) ,thru = pack_thru( thru_df, .apt = apt_icao) ,atfm = filter_df_by_apt(atfm_df, .apt = apt_icao) ,slot = filter_df_by_apt(slot_df, .apt = apt_icao) ,asma = filter_df_by_apt(asma_df, .apt = apt_icao) ,txot = filter_df_by_apt(txot_df, .apt = apt_icao) ,txit = filter_df_by_apt(txit_df, .apt = apt_icao) ,pddly = filter_df_by_apt(pddly_df, .apt = apt_icao) ,turn = filter_df_by_apt(turn_df, .apt = apt_icao) # ,punc = filter_df_by_apt(punc_df, .apt = apt_icao) ) #----------------- end params --------------------------- }
/R/utils.R
no_license
rainer-rq-koelle/pru-apt-dashboards
R
false
false
5,929
r
filter_df_by_apt <- function(.df, .apt){ df <- .df %>% filter(APT_ICAO == .apt) %>% filter(YEAR >= min_year) # ensure only 5 years of data } # pick_apt_name <- function(.df, .apt){ name <- .df %>% filter(APT_ICAO == .apt) name <- name$APT_NAME[1] } # pick_state_name <- function(.df, .apt){ state <- .df %>% filter(APT_ICAO == .apt) state <- state$STATE_NAME[1] } # pick_apt_iata <- function(.df, .apt){ iata <- .df %>% filter(APT_ICAO == .apt) iata <- iata$APT_IATA[1] } # landing_page_indicators <- function(.df=db_df, .atfm=atfm_df, .apt){ inds <- .df %>% filter(APT_ICAO == .apt) ind_tfc_2019 <- inds %>% select(APT_ICAO, YEAR, NB_NM_TOT) %>% filter(YEAR == 2019) %>% group_by(APT_ICAO, YEAR) %>% summarise(NB_NM_TOT = sum(NB_NM_TOT, na.rm = TRUE)) %>% ungroup() ind_txot_2019 <- inds %>% filter(YEAR == 2019) %>% group_by(APT_ICAO, YEAR) %>% summarise( ADD_TAXI_OUT_TIME_MIN = sum(ADD_TAXI_OUT_TIME_MIN, na.rm = TRUE) ,NB_TAXI_OUT_FL = sum(NB_TAXI_OUT_FL, na.rm = TRUE) )%>% ungroup() %>% mutate(AVG_ADD_TXOT = round(ADD_TAXI_OUT_TIME_MIN / NB_TAXI_OUT_FL,2) ) %>% select(AVG_ADD_TXOT) ind_asma_2019 <- inds %>% filter(YEAR == 2019) %>% group_by(APT_ICAO, YEAR) %>% summarise( ADD_ASMA_TIME_MIN = sum(ADD_ASMA_TIME_MIN, na.rm = TRUE) ,NB_ASMA_FL = sum(NB_ASMA_FL, na.rm = TRUE) )%>% ungroup() %>% mutate(AVG_ADD_ASMA = round(ADD_ASMA_TIME_MIN / NB_ASMA_FL,2) ) %>% select(AVG_ADD_ASMA) ind_atfm_2019 <- .atfm %>% filter(APT_ICAO == .apt, YEAR == 2019) %>% select(FLT_ARR_1, DLY_APT_ARR_1) %>% summarise( FLT_ARR_1 = sum(FLT_ARR_1, na.rm = TRUE) ,DLY_APT_ARR_1 = sum(DLY_APT_ARR_1, na.rm = TRUE)) %>% mutate(AVG_ARR_ATFM = round(DLY_APT_ARR_1 / FLT_ARR_1,2) ) %>% select(AVG_ARR_ATFM) out <- ind_tfc_2019 %>% bind_cols(ind_txot_2019, ind_asma_2019, ind_atfm_2019) } # latest_month_indicators <- function(.df=db_df, .atfm=atfm_df, .apt){ inds <- .df %>% filter(APT_ICAO == .apt) mth_name <- c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") ind_tfc_lm <- inds %>% select(APT_ICAO, YEAR, MONTH_NUM, NB_NM_TOT) %>% na.omit() %>% filter(YEAR == max(YEAR)) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% mutate( MONTH = mth_name[MONTH_NUM] , TFC = paste0(NB_NM_TOT," (", MONTH, " ", YEAR,")") ) %>% select(APT_ICAO, TFC) ind_txot_lm <- inds %>% select(APT_ICAO, YEAR, MONTH_NUM, ADD_TAXI_OUT_TIME_MIN, NB_TAXI_OUT_FL) %>% na.omit() %>% filter(YEAR == max(YEAR) ) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% mutate(AVG_ADD_TXOT = round(ADD_TAXI_OUT_TIME_MIN / NB_TAXI_OUT_FL,2) ,AVG_ADD_TXOT= paste0(AVG_ADD_TXOT," (", mth_name[MONTH_NUM], " ", YEAR,")") ) %>% select(AVG_ADD_TXOT) ind_asma_lm <- inds %>% select(APT_ICAO, YEAR, MONTH_NUM, ADD_ASMA_TIME_MIN, NB_ASMA_FL) %>% na.omit() %>% filter(YEAR == max(YEAR) ) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% mutate( AVG_ADD_ASMA = round(ADD_ASMA_TIME_MIN / NB_ASMA_FL, 2) ,AVG_ADD_ASMA = paste0(AVG_ADD_ASMA," (", mth_name[MONTH_NUM], " ", YEAR,")") ) %>% select(AVG_ADD_ASMA) ind_atfm_lm <- .atfm %>% filter(APT_ICAO == .apt) %>% select(YEAR, MONTH_NUM, FLT_ARR_1, DLY_APT_ARR_1) %>% filter(YEAR == max(YEAR)) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% na.omit() %>% group_by(YEAR, MONTH_NUM) %>% summarise( FLT_ARR_1 = sum(FLT_ARR_1, na.rm = TRUE) ,DLY_APT_ARR_1 = sum(DLY_APT_ARR_1, na.rm = TRUE)) %>% mutate( AVG_ARR_ATFM = round(DLY_APT_ARR_1 / FLT_ARR_1, 2) ,AVG_ARR_ATFM = paste0(AVG_ARR_ATFM," (", mth_name[MONTH_NUM], " ", YEAR,")")) %>% select(AVG_ARR_ATFM) inds_lm <- ind_tfc_lm %>% bind_cols(ind_txot_lm, ind_asma_lm, ind_atfm_lm) } # trim_covid <- function(.df, .apt){ df <- .df %>% filter(APT_ICAO == .apt) %>% select(DAY, FLTS_2020, FLTS_2019, MOV_AVG_WK) } # pack_thru <- function(.df, .apt){ df <- .df %>% dplyr::filter(APT_ICAO == .apt) %>% dplyr::mutate( # DATE = lubridate::dmy(DAY, tz="UTC") DATE = DAY ,YEAR = year(DATE), MONTH_NUM = month(DATE) , WEEKDAY = lubridate::wday(DATE, label=TRUE)) %>% dplyr::filter(YEAR == max(YEAR)) %>% filter(MONTH_NUM == max(MONTH_NUM)) %>% dplyr::select(APT_ICAO, YEAR, MONTH_NUM, DATE, WEEKDAY, TIME, ROLLING_HOUR_MVT, PHASE) %>% dplyr::group_by(YEAR, MONTH_NUM, TIME, PHASE) %>% summarise(ROLLING_HOUR_MVT = mean(ROLLING_HOUR_MVT)) %>% dplyr::ungroup() } prepare_params <- function(apt_icao) { list( #------ start params ------------------------- icao = apt_icao ,iata = pick_apt_iata( db_df , .apt = apt_icao) # merge iata code with other source ,name = pick_apt_name( tfc_df, .apt = apt_icao) ,state = pick_state_name( tfc_df, .apt = apt_icao) ,config= filter_df_by_apt(config_df,.apt = apt_icao) ,ldgsum= landing_page_indicators(db_df, atfm_df, .apt = apt_icao) ,latest= latest_month_indicators(db_df, atfm_df, .apt = apt_icao) ,covid = trim_covid( covid_df, .apt = apt_icao) ,tfc = filter_df_by_apt(tfc_df, .apt = apt_icao) ,thru = pack_thru( thru_df, .apt = apt_icao) ,atfm = filter_df_by_apt(atfm_df, .apt = apt_icao) ,slot = filter_df_by_apt(slot_df, .apt = apt_icao) ,asma = filter_df_by_apt(asma_df, .apt = apt_icao) ,txot = filter_df_by_apt(txot_df, .apt = apt_icao) ,txit = filter_df_by_apt(txit_df, .apt = apt_icao) ,pddly = filter_df_by_apt(pddly_df, .apt = apt_icao) ,turn = filter_df_by_apt(turn_df, .apt = apt_icao) # ,punc = filter_df_by_apt(punc_df, .apt = apt_icao) ) #----------------- end params --------------------------- }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/documentation.R \docType{data} \name{cola.original} \alias{cola.original} \title{Cola Original} \format{A \code{\link{data.frame}}.} \usage{ cola.original } \description{ A data file from a survey of the Australian cola market in 2007. } \keyword{datasets}
/man/cola.original.Rd
no_license
gkalnytskyi/flipExampleData
R
false
true
336
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/documentation.R \docType{data} \name{cola.original} \alias{cola.original} \title{Cola Original} \format{A \code{\link{data.frame}}.} \usage{ cola.original } \description{ A data file from a survey of the Australian cola market in 2007. } \keyword{datasets}
/funciones.R
no_license
dcsolano10/cancer
R
false
false
58,574
r
# still need to insert factor name in error message; look for which .BlankStop = function() { stop("\n") return(invisible(NULL)) } .FactorNotFactor = function(which=NULL) { stop("The factor is not stored as a factor.\nTry using as.factor() on a copy of the data.frame.") return(invisible(NULL)) } .GroupNotFactor = function() { stop("The group variable is not a factor.\nTry using as.factor() on a copy of the data.frame.") return(invisible(NULL)) } .MissingFolder = function() { stop("Specified folder does not exist.\n") return(invisible(NULL)) } .MissingMethod = function() { stop("Specified method is not yet available.\n") return(invisible(NULL)) } .NoBrailleRFolder= function() { stop("No permanent MyBrailleR folder was found.\n Use `SetupBrailleR()` to fix this problem.") return(invisible(NULL)) } .NoResponse = function() { stop("You must specify either the Response or the ResponseName.") return(invisible(NULL)) } .NotADataFrame = function() { stop("The named dataset is not a data.frame.") return(invisible(NULL)) } .NotAProperFileName = function() { stop('file must be a character string or connection') return(invisible(NULL)) } .NotViewable = function() { stop("The named data is not a data.frame, matrix, or vector so cannot be viewed.") return(invisible(NULL)) } .NoYNeeds2X = function() { stop("If y is not supplied, x must have two numeric columns") return(invisible(NULL)) } .PredictorNotNumeric = function() { stop("The predictor variable is not numeric.") return(invisible(NULL)) } .ResponseNotNumeric = function() { stop("The response variable is not numeric.") return(invisible(NULL)) } .ResponseNotAVector = function() { stop("Input response is not a vector.") return(invisible(NULL)) } .XOrYNotNumeric = function(which="y") { stop("The x or y variable is not numeric.") return(invisible(NULL)) }
/R/Stop.R
no_license
ajrgodfrey/BrailleR
R
false
false
1,968
r
# still need to insert factor name in error message; look for which .BlankStop = function() { stop("\n") return(invisible(NULL)) } .FactorNotFactor = function(which=NULL) { stop("The factor is not stored as a factor.\nTry using as.factor() on a copy of the data.frame.") return(invisible(NULL)) } .GroupNotFactor = function() { stop("The group variable is not a factor.\nTry using as.factor() on a copy of the data.frame.") return(invisible(NULL)) } .MissingFolder = function() { stop("Specified folder does not exist.\n") return(invisible(NULL)) } .MissingMethod = function() { stop("Specified method is not yet available.\n") return(invisible(NULL)) } .NoBrailleRFolder= function() { stop("No permanent MyBrailleR folder was found.\n Use `SetupBrailleR()` to fix this problem.") return(invisible(NULL)) } .NoResponse = function() { stop("You must specify either the Response or the ResponseName.") return(invisible(NULL)) } .NotADataFrame = function() { stop("The named dataset is not a data.frame.") return(invisible(NULL)) } .NotAProperFileName = function() { stop('file must be a character string or connection') return(invisible(NULL)) } .NotViewable = function() { stop("The named data is not a data.frame, matrix, or vector so cannot be viewed.") return(invisible(NULL)) } .NoYNeeds2X = function() { stop("If y is not supplied, x must have two numeric columns") return(invisible(NULL)) } .PredictorNotNumeric = function() { stop("The predictor variable is not numeric.") return(invisible(NULL)) } .ResponseNotNumeric = function() { stop("The response variable is not numeric.") return(invisible(NULL)) } .ResponseNotAVector = function() { stop("Input response is not a vector.") return(invisible(NULL)) } .XOrYNotNumeric = function(which="y") { stop("The x or y variable is not numeric.") return(invisible(NULL)) }
power.consumption.all <- read.csv2( "household_power_consumption.txt", #"household_power_consumption_subset.txt", colClasses = c("character", "character", "character", "character", "character", "character", "character", "character", "character") ) #head(power.consumption.all) power.consumption <- power.consumption.all[power.consumption.all$Date == '1/2/2007' | power.consumption.all$Date == '2/2/2007', ] power.consumption$DateTime <- apply(power.consumption, 1, function(row) paste(row[1], row[2], sep = " ")) power.consumption$DateTime <- as.POSIXct(power.consumption$DateTime, format="%d/%m/%Y %H:%M:%S") power.consumption$Global_active_power <- as.numeric(power.consumption$Global_active_power) power.consumption$Global_reactive_power <- as.numeric(power.consumption$Global_reactive_power) power.consumption$Voltage <- as.numeric(power.consumption$Voltage) power.consumption$Global_intensity <- as.numeric(power.consumption$Global_intensity) power.consumption$Sub_metering_1 <- as.numeric(power.consumption$Sub_metering_1) power.consumption$Sub_metering_2 <- as.numeric(power.consumption$Sub_metering_2) power.consumption$Sub_metering_3 <- as.numeric(power.consumption$Sub_metering_3) #nrow(power.consumption) #head(power.consumption) par(mfrow = c(2, 2)) with(power.consumption, plot(DateTime, Global_active_power, xlab = "", ylab = "Global Active Power (kilowatts)", type = "l")) with(power.consumption, plot(DateTime, Voltage, xlab = "datetime", ylab = "Voltage", type = "l")) with(power.consumption, plot(DateTime, Sub_metering_1, xlab = "", ylab = "Energy sub metering", type = "l")) lines(power.consumption$DateTime, power.consumption$Sub_metering_2, col = "red") lines(power.consumption$DateTime, power.consumption$Sub_metering_3, col = "blue") legend("topright", lty = c(1, 1, 1), col = c("black", "red", "blue"), legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), cex = 0.75, bty = "n") with(power.consumption, plot(DateTime, Global_reactive_power, xlab = "datetime", type = "l")) dev.copy(png, "plot4.png") dev.off()
/plot4.R
no_license
swapnildipankar/ExData_Plotting1
R
false
false
2,145
r
power.consumption.all <- read.csv2( "household_power_consumption.txt", #"household_power_consumption_subset.txt", colClasses = c("character", "character", "character", "character", "character", "character", "character", "character", "character") ) #head(power.consumption.all) power.consumption <- power.consumption.all[power.consumption.all$Date == '1/2/2007' | power.consumption.all$Date == '2/2/2007', ] power.consumption$DateTime <- apply(power.consumption, 1, function(row) paste(row[1], row[2], sep = " ")) power.consumption$DateTime <- as.POSIXct(power.consumption$DateTime, format="%d/%m/%Y %H:%M:%S") power.consumption$Global_active_power <- as.numeric(power.consumption$Global_active_power) power.consumption$Global_reactive_power <- as.numeric(power.consumption$Global_reactive_power) power.consumption$Voltage <- as.numeric(power.consumption$Voltage) power.consumption$Global_intensity <- as.numeric(power.consumption$Global_intensity) power.consumption$Sub_metering_1 <- as.numeric(power.consumption$Sub_metering_1) power.consumption$Sub_metering_2 <- as.numeric(power.consumption$Sub_metering_2) power.consumption$Sub_metering_3 <- as.numeric(power.consumption$Sub_metering_3) #nrow(power.consumption) #head(power.consumption) par(mfrow = c(2, 2)) with(power.consumption, plot(DateTime, Global_active_power, xlab = "", ylab = "Global Active Power (kilowatts)", type = "l")) with(power.consumption, plot(DateTime, Voltage, xlab = "datetime", ylab = "Voltage", type = "l")) with(power.consumption, plot(DateTime, Sub_metering_1, xlab = "", ylab = "Energy sub metering", type = "l")) lines(power.consumption$DateTime, power.consumption$Sub_metering_2, col = "red") lines(power.consumption$DateTime, power.consumption$Sub_metering_3, col = "blue") legend("topright", lty = c(1, 1, 1), col = c("black", "red", "blue"), legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), cex = 0.75, bty = "n") with(power.consumption, plot(DateTime, Global_reactive_power, xlab = "datetime", type = "l")) dev.copy(png, "plot4.png") dev.off()
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/get_geo_dist.R \name{get.geo.dist} \alias{get.geo.dist} \title{Compute the geodesic distance between two coordinate locations} \usage{ get.geo.dist(long1, lat1, long2, lat2, units = "m") } \arguments{ \item{long1}{Numerical argument -- the longitude of the first coordinate location} \item{lat1}{Numerical argument -- the latitude of the first coordinate location} \item{long2}{Numerical argument -- the longitude of the second coordinate location} \item{lat2}{Numerical argument -- the latitude of the second coordinate location} \item{units}{The geodesic distance will be computed in terms of these units -- Defaults to km} } \value{ Returns the geodesic distance between two coordinate locations } \description{ This "helper" function is used in crop.sample.area() }
/man/get.geo.dist.Rd
no_license
jBernardADFG/cpuesim
R
false
true
852
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/get_geo_dist.R \name{get.geo.dist} \alias{get.geo.dist} \title{Compute the geodesic distance between two coordinate locations} \usage{ get.geo.dist(long1, lat1, long2, lat2, units = "m") } \arguments{ \item{long1}{Numerical argument -- the longitude of the first coordinate location} \item{lat1}{Numerical argument -- the latitude of the first coordinate location} \item{long2}{Numerical argument -- the longitude of the second coordinate location} \item{lat2}{Numerical argument -- the latitude of the second coordinate location} \item{units}{The geodesic distance will be computed in terms of these units -- Defaults to km} } \value{ Returns the geodesic distance between two coordinate locations } \description{ This "helper" function is used in crop.sample.area() }
suppressPackageStartupMessages(library(float)) set.seed(1234) tol = 1e-6 x = crossprod(matrix(stats::rnorm(30), 10)) xs = fl(x) y = 1:3 ys = fl(y) z = cbind(y, rev(y)) zs = fl(z) test = dbl(backsolve(xs, ys, upper.tri=FALSE)) truth = backsolve(x, y, upper.tri=FALSE) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, ys)) truth = backsolve(x, y) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, ys, k=2)) truth = backsolve(x, y, k=2) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, zs)) truth = backsolve(x, z) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, zs, k=2)) truth = backsolve(x, z, k=2) stopifnot(all.equal(test, truth, tol=tol))
/tests/backsolve.r
permissive
wrathematics/float
R
false
false
726
r
suppressPackageStartupMessages(library(float)) set.seed(1234) tol = 1e-6 x = crossprod(matrix(stats::rnorm(30), 10)) xs = fl(x) y = 1:3 ys = fl(y) z = cbind(y, rev(y)) zs = fl(z) test = dbl(backsolve(xs, ys, upper.tri=FALSE)) truth = backsolve(x, y, upper.tri=FALSE) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, ys)) truth = backsolve(x, y) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, ys, k=2)) truth = backsolve(x, y, k=2) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, zs)) truth = backsolve(x, z) stopifnot(all.equal(test, truth, tol=tol)) test = dbl(backsolve(xs, zs, k=2)) truth = backsolve(x, z, k=2) stopifnot(all.equal(test, truth, tol=tol))
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/colors.R \name{values2colors} \alias{values2colors} \title{values to colors} \usage{ values2colors(v, n = 100, zlim, col = heat.colors, na.col = "gray50", ...) } \arguments{ \item{v}{the values} \item{n}{number of colors} \item{zlim}{limits} \item{color}{function, e.g. heat.colors, gray.colors} } \description{ values to colors }
/man/values2colors.Rd
no_license
antiphon/sphere
R
false
true
414
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/colors.R \name{values2colors} \alias{values2colors} \title{values to colors} \usage{ values2colors(v, n = 100, zlim, col = heat.colors, na.col = "gray50", ...) } \arguments{ \item{v}{the values} \item{n}{number of colors} \item{zlim}{limits} \item{color}{function, e.g. heat.colors, gray.colors} } \description{ values to colors }
#' Calculate the delta_delta_ct model #' #' Uses the \eqn{C_T} values and a reference gene and a group to calculate the delta #' delta \eqn{C_T} model to estimate the normalized relative expression of target #' genes. #' #' @param df A data.frame of \eqn{C_T} values with genes in the columns and samples #' in rows rows #' @param group_var A character vector of a grouping variable. The length of #' this variable should equal the number of rows of df #' @param reference_gene A character string of the column name of a control gene #' @param reference_group A character string of the control group in group_var #' @param mode A character string of; 'separate_tube' (default) or 'same_tube'. #' This is to indicate whether the different genes were run in separate or the #' same PCR tube #' @param plot A logical (default is FALSE) #' @param ... Arguments passed to customize plot #' #' @return A data.frame of 8 columns: #' \itemize{ #' \item group The unique entries in group_var #' \item gene The column names of df. reference_gene is dropped #' \item normalized The \eqn{C_T} value (or the average \eqn{C_T} value) of target genes #' after subtracting that of the reference_gene #' \item calibrated The normalized average \eqn{C_T} value of target genes after #' subtracting that of the reference_group #' \item relative_expression The expression of target genes normalized by #' a reference_gene and calibrated by a reference_group #' \item error The standard deviation of the relative_expression #' \item lower The lower interval of the relative_expression #' \item upper The upper interval of the relative_expression #' } #' When \code{plot} is TRUE, returns a bar graph of the relative expression of #' the genes in the column and the groups in the column group. Error bars are #' drawn using the columns lower and upper. When more one gene are plotted the #' default in dodge bars. When the argument facet is TRUE a separate panel is #' drawn for each gene. #' #' @details The comparative \eqn{C_T} methods assume that the cDNA templates of the #' gene/s of interest as well as the control/reference gene have similar #' amplification efficiency. And that this amplification efficiency is near #' perfect. Meaning, at a certain threshold during the linear portion of the #' PCR reaction, the amount of the gene of the interest and the control double #' each cycle. Another assumptions is that, the expression difference between #' two genes or two samples can be captured by subtracting one (gene or #' sample of interest) from another (reference). This final assumption #' requires also that these references don't change with the treatment or #' the course in question. #' #' @examples #' ## locate and read raw ct data #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # add grouping variable #' group_var <- rep(c('brain', 'kidney'), each = 6) #' #' # calculate all values and errors in one step #' pcr_ddct(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain') #' #' # return a plot #' pcr_ddct(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' plot = TRUE) #' #' @importFrom magrittr %>% #' @importFrom tidyr gather #' @importFrom dplyr mutate full_join #' #' @export pcr_ddct <- function(df, group_var, reference_gene, reference_group, mode = 'separate_tube', plot = FALSE, ...) { # calculate the delta_ct if(mode == 'separate_tube') { # calculate average ct and normalize ave <- .pcr_average(df, group_var = group_var) dct <- .pcr_normalize(ave, reference_gene = reference_gene) } else if(mode == 'same_tube') { # normalize and average normalized ct values dct <- .pcr_normalize(df, reference_gene = reference_gene) dct <- .pcr_average(dct, group_var = group_var) } # retain the normalized ct delta_ct <- gather(dct, gene, normalized, -group) # calculate the delta_delta_ct ddct <- .pcr_calibrate(dct, reference_group = reference_group, tidy = TRUE) # calculate the relative expression norm_rel <- mutate(ddct, relative_expression = 2 ^ calibrated) if(mode == 'separate_tube') { # calculate the error from ct values sds <- .pcr_sd(df, group_var = group_var) error <- .pcr_error(sds, reference_gene = reference_gene, tidy = TRUE) } else if(mode == 'same_tube') { # calculate error from normalized ct values dct <- .pcr_normalize(df, reference_gene = reference_gene) error <- .pcr_sd(dct, group_var = group_var, tidy = TRUE) } # merge data.frames and calculate intervals res <- full_join(delta_ct, ddct) %>% full_join(norm_rel) %>% full_join(error) %>% mutate(lower = 2 ^ -(calibrated + error), upper = 2 ^ -(calibrated - error)) # return # return plot when plot == TRUE if(plot == TRUE) { gg <- .pcr_plot_analyze(res, method = 'delta_delta_ct', ...) return(gg) } else { return(res) } } #' Calculate the delta_ct model #' #' Uses the \eqn{C_T} values and a reference group to calculate the delta \eqn{C_T} #' model to estimate the relative fold change of a gene between groups #' #' @inheritParams pcr_ddct #' #' @return A data.frame of 7 columns #' \itemize{ #' \item group The unique entries in group_var #' \item gene The column names of df #' \item calibrated The average \eqn{C_T} value of target genes after #' subtracting that of the reference_group #' \item fold_change The fold change of genes relative to a reference_group #' \item error The standard deviation of the fold_change #' \item lower The lower interval of the fold_change #' \item upper The upper interval of the fold_change #' } #' When \code{plot} is TRUE, returns a bar graph of the fold change of #' the genes in the column and the groups in the column group. Error bars are #' drawn using the columns lower and upper. When more one gene are plotted the #' default in dodge bars. When the argument facet is TRUE a separate panel is #' drawn for each gene. #' #' @details This method is a variation of the double delta \eqn{C_T} model, #' \code{\link{pcr_ddct}}. It can be used to calculate the fold change #' of in one sample relative to the others. For example, it can be used to #' compare and choosing a control/reference genes. #' #' @references Livak, Kenneth J, and Thomas D Schmittgen. 2001. “Analysis of #' Relative Gene Expression Data Using Real-Time Quantitative PCR and the #' Double Delta CT Method.” Methods 25 (4). ELSEVIER. #' doi:10.1006/meth.2001.1262. #' #' @examples #' # locate and read file #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # make a data.frame of two identical columns #' pcr_hk <- data.frame( #' GAPDH1 = ct1$GAPDH, #' GAPDH2 = ct1$GAPDH #' ) #' #' # add grouping variable #' group_var <- rep(c('brain', 'kidney'), each = 6) #' #' # calculate caliberation #' pcr_dct(pcr_hk, #' group_var = group_var, #' reference_group = 'brain') #' #' # returns a plot #' pcr_dct(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' plot = TRUE) #' #' # returns a plot with facets #' pcr_dct(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' plot = TRUE, #' facet = TRUE) #' #' @importFrom magrittr %>% #' @importFrom tidyr gather #' @importFrom dplyr mutate full_join #' #' @export pcr_dct <- function(df, group_var, reference_gene, reference_group, mode = 'separate_tube', plot = FALSE, ...) { if(mode == 'separate_tube') { # average ct and calibrate to a reference group ave <- .pcr_average(df, group_var = group_var) dct <- .pcr_calibrate(ave, reference_group = reference_group) } else if(mode == 'same_tube') { # calibrate ct and average dct <- .pcr_calibrate(df, reference_group = reference_group) dct <- .pcr_average(dct, group_var = group_var) } # retain calibrated values # calculate the fold change calib <- gather(dct, gene, calibrated, -group) %>% mutate(fold_change = 2 ^ -calibrated) if(mode == 'separate_tube') { # calculate the standard deviation from ct values sds <- .pcr_sd(df, group_var = group_var, tidy = TRUE) } else if(mode == 'same_tube') { # calibrate ct values to a reference group # calculated sd from calibrated values dct <- .pcr_calibrate(df, reference_group = reference_group) sds <- .pcr_sd(dct, group_var = group_var, tidy = TRUE) } # join data frame and calculate intervals res <- full_join(calib, sds) %>% mutate(lower = 2 ^ -(calibrated + error), upper = 2 ^ -(calibrated - error)) # return # return plot when plot == TRUE if(plot == TRUE) { gg <- .pcr_plot_analyze(res, method = 'delta_ct', ...) return(gg) } else { return(res) } } #' Calculate the standard curve model #' #' Uses the \eqn{C_T} values and a reference gene and a group, in addition to the #' intercept and slope of each gene form a serial dilution experiment, to calculate #' the standard curve model and estimate the normalized relative expression of the #' target genes. #' #' @inheritParams pcr_ddct #' @param intercept A numeric vector of intercept and length equals the number of genes #' @param slope A numeric vector of slopes length equals the number of genes #' #' @return A data.frame of 7 columns #' \itemize{ #' \item group The unique entries in group_var #' \item gene The column names of df #' \item normalized The normalized expression of target genes relative to a reference_gene #' \item calibrated The calibrated expression of target genes relative to a reference_group #' \item error The standard deviation of normalized relative expression #' \item lower The lower interval of the normalized relative expression #' \item upper The upper interval of the normalized relative expression #' } #' When \code{plot} is TRUE, returns a bar graph of the calibrated expression #' of the genes in the column and the groups in the column group. Error bars #' are drawn using the columns lower and upper. When more one gene are plotted #' the default in dodge bars. When the argument facet is TRUE a separate #' panel is drawn for each gene. #' #' @details this model doesn't assume perfect amplification but rather actively #' use the amplification in calculating the relative expression. So when the #' amplification efficiency of all genes are 100\% both methods should give #' similar results. The standard curve method is applied using two steps. #' First, serial dilutions of the mRNAs from the samples of interest are used #' as input to the PCR reaction. The linear trend of the log input amount and #' the resulting \eqn{C_T} values for each gene are used to calculate an intercept #' and a slope. Secondly, these intercepts and slopes are used to calculate the #' amounts of mRNA of the genes of interest and the control/reference in the #' samples of interest and the control sample/reference. These amounts are #' finally used to calculate the relative expression. #' #' @references Livak, Kenneth J, and Thomas D Schmittgen. 2001. “Analysis of #' Relative Gene Expression Data Using Real-Time Quantitative PCR and the #' Double Delta CT Method.” Methods 25 (4). ELSEVIER. #' doi:10.1006/meth.2001.1262. #' #' @examples #' # locate and read file #' fl <- system.file('extdata', 'ct3.csv', package = 'pcr') #' ct3 <- readr::read_csv(fl) #' #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # make a vector of RNA amounts #' amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3) #' #' # calculate curve #' standard_curve <- pcr_assess(ct3, amount = amount, method = 'standard_curve') #' intercept <- standard_curve$intercept #' slope <- standard_curve$slope #' #' # make grouping variable #' group <- rep(c('brain', 'kidney'), each = 6) #' #' # apply the standard curve method #' pcr_curve(ct1, #' group_var = group, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope) #' #' # returns a plot #' pcr_curve(ct1, #' group_var = group, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope, #' plot = TRUE) #' #' @importFrom magrittr %>% #' @importFrom tidyr gather #' @importFrom dplyr full_join mutate #' #' @export pcr_curve <- function(df, group_var, reference_gene, reference_group, mode = 'separate_tube', intercept, slope, plot = FALSE, ...) { # calculate the amount of rna in samples amounts <- .pcr_amount(df, intercept = intercept, slope = slope) if(mode == 'separate_tube') { # average amounts and normalize by a reference_gene ave <- .pcr_average(amounts, group_var = group_var) norm <- .pcr_normalize(ave, reference_gene = reference_gene, mode = 'divide') } else if(mode == 'same_tube') { # normalize amounts and average norm <- .pcr_normalize(amounts, reference_gene = reference_gene, mode = 'divide') norm <- .pcr_average(norm, group_var = group_var) } # retain normalized amounts normalized <- gather(norm, gene, normalized, -group) # calibrate to a reference_group calib <- .pcr_calibrate(norm, reference_group = reference_group, mode = 'divide', tidy = TRUE) if(mode == 'separate_tube') { # calculate cv from amounts cv <- .pcr_cv(amounts, group_var = group_var) error <- .pcr_error(cv, reference_gene = reference_gene, tidy = TRUE) } else if(mode == 'same_tube') { # calculate cv from normalized amounts norm <- .pcr_normalize(amounts, reference_gene = reference_gene, mode = 'divide') error <- .pcr_cv(norm, group_var = group_var, tidy = TRUE) } # join data.frames and calculate intervals res <- full_join(normalized, calib) %>% full_join(error) %>% mutate(lower = calibrated - error, upper = calibrated + error, error = error * normalized) # return # return plot when plot == TRUE if(plot == TRUE) { gg <- .pcr_plot_analyze(res, method = 'relative_curve', ...) return(gg) } else { return(res) } } #' Apply qPCR analysis methods #' #' A unified interface to invoke different analysis methods of qPCR data. #' #' @inheritParams pcr_ddct #' @inheritParams pcr_curve #' @param method A character string; 'delta_delta_ct' default, 'delta_ct' or #' 'relative_curve' for invoking a certain analysis model #' @param ... Arguments passed to the methods #' #' @return A data.frame by default, when \code{plot} is TRUE returns a plot. #' For details; \link{pcr_ddct}, \link{pcr_dct} and \link{pcr_curve}. #' #' @details The different analysis methods can be invoked using the #' argument method with 'delta_delta_ct' default, 'delta_ct' or #' 'relative_curve' for the double delta \eqn{C_T}, delta ct or the standard curve #' model respectively. Alternatively, the same methods can be applied by using #' the corresponding functions directly: \link{pcr_ddct}, \link{pcr_dct} or #' \link{pcr_curve} #' #' @references Livak, Kenneth J, and Thomas D Schmittgen. 2001. “Analysis of #' Relative Gene Expression Data Using Real-Time Quantitative PCR and the #' Double Delta CT Method.” Methods 25 (4). ELSEVIER. #' doi:10.1006/meth.2001.1262. #' #' @examples #' # applying the delta delta ct method #' ## locate and read raw ct data #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # add grouping variable #' group_var <- rep(c('brain', 'kidney'), each = 6) #' #' # calculate all values and errors in one step #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' method = 'delta_delta_ct') #' #' # return a plot #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' method = 'delta_delta_ct', #' plot = TRUE) #' #' # applying the delta ct method #' # make a data.frame of two identical columns #' pcr_hk <- data.frame( #' GAPDH1 = ct1$GAPDH, #' GAPDH2 = ct1$GAPDH #' ) #' #' # calculate fold change #' pcr_analyze(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' method = 'delta_ct') #' #' # return a plot #' pcr_analyze(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' method = 'delta_ct', #' plot = TRUE) #' #' # applying the standard curve method #' # locate and read file #' fl <- system.file('extdata', 'ct3.csv', package = 'pcr') #' ct3 <- readr::read_csv(fl) #' #' # make a vector of RNA amounts #' amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3) #' #' # calculate curve #' standard_curve <- pcr_assess(ct3, amount = amount, method = 'standard_curve') #' intercept <- standard_curve$intercept #' slope <- standard_curve$slope #' #' # apply the standard curve method #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope, #' method = 'relative_curve') #' #' # return a plot #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope, #' method = 'relative_curve', #' plot = TRUE) #' #' @export pcr_analyze <- function(df, method = 'delta_delta_ct', ...) { switch(method, 'delta_delta_ct' = pcr_ddct(df, ...), 'delta_ct' = pcr_dct(df, ...), 'relative_curve' = pcr_curve(df, ...)) }
/R/analyses_fun.R
no_license
felix28dls/ddCt_QPCR_Analysis
R
false
false
18,281
r
#' Calculate the delta_delta_ct model #' #' Uses the \eqn{C_T} values and a reference gene and a group to calculate the delta #' delta \eqn{C_T} model to estimate the normalized relative expression of target #' genes. #' #' @param df A data.frame of \eqn{C_T} values with genes in the columns and samples #' in rows rows #' @param group_var A character vector of a grouping variable. The length of #' this variable should equal the number of rows of df #' @param reference_gene A character string of the column name of a control gene #' @param reference_group A character string of the control group in group_var #' @param mode A character string of; 'separate_tube' (default) or 'same_tube'. #' This is to indicate whether the different genes were run in separate or the #' same PCR tube #' @param plot A logical (default is FALSE) #' @param ... Arguments passed to customize plot #' #' @return A data.frame of 8 columns: #' \itemize{ #' \item group The unique entries in group_var #' \item gene The column names of df. reference_gene is dropped #' \item normalized The \eqn{C_T} value (or the average \eqn{C_T} value) of target genes #' after subtracting that of the reference_gene #' \item calibrated The normalized average \eqn{C_T} value of target genes after #' subtracting that of the reference_group #' \item relative_expression The expression of target genes normalized by #' a reference_gene and calibrated by a reference_group #' \item error The standard deviation of the relative_expression #' \item lower The lower interval of the relative_expression #' \item upper The upper interval of the relative_expression #' } #' When \code{plot} is TRUE, returns a bar graph of the relative expression of #' the genes in the column and the groups in the column group. Error bars are #' drawn using the columns lower and upper. When more one gene are plotted the #' default in dodge bars. When the argument facet is TRUE a separate panel is #' drawn for each gene. #' #' @details The comparative \eqn{C_T} methods assume that the cDNA templates of the #' gene/s of interest as well as the control/reference gene have similar #' amplification efficiency. And that this amplification efficiency is near #' perfect. Meaning, at a certain threshold during the linear portion of the #' PCR reaction, the amount of the gene of the interest and the control double #' each cycle. Another assumptions is that, the expression difference between #' two genes or two samples can be captured by subtracting one (gene or #' sample of interest) from another (reference). This final assumption #' requires also that these references don't change with the treatment or #' the course in question. #' #' @examples #' ## locate and read raw ct data #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # add grouping variable #' group_var <- rep(c('brain', 'kidney'), each = 6) #' #' # calculate all values and errors in one step #' pcr_ddct(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain') #' #' # return a plot #' pcr_ddct(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' plot = TRUE) #' #' @importFrom magrittr %>% #' @importFrom tidyr gather #' @importFrom dplyr mutate full_join #' #' @export pcr_ddct <- function(df, group_var, reference_gene, reference_group, mode = 'separate_tube', plot = FALSE, ...) { # calculate the delta_ct if(mode == 'separate_tube') { # calculate average ct and normalize ave <- .pcr_average(df, group_var = group_var) dct <- .pcr_normalize(ave, reference_gene = reference_gene) } else if(mode == 'same_tube') { # normalize and average normalized ct values dct <- .pcr_normalize(df, reference_gene = reference_gene) dct <- .pcr_average(dct, group_var = group_var) } # retain the normalized ct delta_ct <- gather(dct, gene, normalized, -group) # calculate the delta_delta_ct ddct <- .pcr_calibrate(dct, reference_group = reference_group, tidy = TRUE) # calculate the relative expression norm_rel <- mutate(ddct, relative_expression = 2 ^ calibrated) if(mode == 'separate_tube') { # calculate the error from ct values sds <- .pcr_sd(df, group_var = group_var) error <- .pcr_error(sds, reference_gene = reference_gene, tidy = TRUE) } else if(mode == 'same_tube') { # calculate error from normalized ct values dct <- .pcr_normalize(df, reference_gene = reference_gene) error <- .pcr_sd(dct, group_var = group_var, tidy = TRUE) } # merge data.frames and calculate intervals res <- full_join(delta_ct, ddct) %>% full_join(norm_rel) %>% full_join(error) %>% mutate(lower = 2 ^ -(calibrated + error), upper = 2 ^ -(calibrated - error)) # return # return plot when plot == TRUE if(plot == TRUE) { gg <- .pcr_plot_analyze(res, method = 'delta_delta_ct', ...) return(gg) } else { return(res) } } #' Calculate the delta_ct model #' #' Uses the \eqn{C_T} values and a reference group to calculate the delta \eqn{C_T} #' model to estimate the relative fold change of a gene between groups #' #' @inheritParams pcr_ddct #' #' @return A data.frame of 7 columns #' \itemize{ #' \item group The unique entries in group_var #' \item gene The column names of df #' \item calibrated The average \eqn{C_T} value of target genes after #' subtracting that of the reference_group #' \item fold_change The fold change of genes relative to a reference_group #' \item error The standard deviation of the fold_change #' \item lower The lower interval of the fold_change #' \item upper The upper interval of the fold_change #' } #' When \code{plot} is TRUE, returns a bar graph of the fold change of #' the genes in the column and the groups in the column group. Error bars are #' drawn using the columns lower and upper. When more one gene are plotted the #' default in dodge bars. When the argument facet is TRUE a separate panel is #' drawn for each gene. #' #' @details This method is a variation of the double delta \eqn{C_T} model, #' \code{\link{pcr_ddct}}. It can be used to calculate the fold change #' of in one sample relative to the others. For example, it can be used to #' compare and choosing a control/reference genes. #' #' @references Livak, Kenneth J, and Thomas D Schmittgen. 2001. “Analysis of #' Relative Gene Expression Data Using Real-Time Quantitative PCR and the #' Double Delta CT Method.” Methods 25 (4). ELSEVIER. #' doi:10.1006/meth.2001.1262. #' #' @examples #' # locate and read file #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # make a data.frame of two identical columns #' pcr_hk <- data.frame( #' GAPDH1 = ct1$GAPDH, #' GAPDH2 = ct1$GAPDH #' ) #' #' # add grouping variable #' group_var <- rep(c('brain', 'kidney'), each = 6) #' #' # calculate caliberation #' pcr_dct(pcr_hk, #' group_var = group_var, #' reference_group = 'brain') #' #' # returns a plot #' pcr_dct(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' plot = TRUE) #' #' # returns a plot with facets #' pcr_dct(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' plot = TRUE, #' facet = TRUE) #' #' @importFrom magrittr %>% #' @importFrom tidyr gather #' @importFrom dplyr mutate full_join #' #' @export pcr_dct <- function(df, group_var, reference_gene, reference_group, mode = 'separate_tube', plot = FALSE, ...) { if(mode == 'separate_tube') { # average ct and calibrate to a reference group ave <- .pcr_average(df, group_var = group_var) dct <- .pcr_calibrate(ave, reference_group = reference_group) } else if(mode == 'same_tube') { # calibrate ct and average dct <- .pcr_calibrate(df, reference_group = reference_group) dct <- .pcr_average(dct, group_var = group_var) } # retain calibrated values # calculate the fold change calib <- gather(dct, gene, calibrated, -group) %>% mutate(fold_change = 2 ^ -calibrated) if(mode == 'separate_tube') { # calculate the standard deviation from ct values sds <- .pcr_sd(df, group_var = group_var, tidy = TRUE) } else if(mode == 'same_tube') { # calibrate ct values to a reference group # calculated sd from calibrated values dct <- .pcr_calibrate(df, reference_group = reference_group) sds <- .pcr_sd(dct, group_var = group_var, tidy = TRUE) } # join data frame and calculate intervals res <- full_join(calib, sds) %>% mutate(lower = 2 ^ -(calibrated + error), upper = 2 ^ -(calibrated - error)) # return # return plot when plot == TRUE if(plot == TRUE) { gg <- .pcr_plot_analyze(res, method = 'delta_ct', ...) return(gg) } else { return(res) } } #' Calculate the standard curve model #' #' Uses the \eqn{C_T} values and a reference gene and a group, in addition to the #' intercept and slope of each gene form a serial dilution experiment, to calculate #' the standard curve model and estimate the normalized relative expression of the #' target genes. #' #' @inheritParams pcr_ddct #' @param intercept A numeric vector of intercept and length equals the number of genes #' @param slope A numeric vector of slopes length equals the number of genes #' #' @return A data.frame of 7 columns #' \itemize{ #' \item group The unique entries in group_var #' \item gene The column names of df #' \item normalized The normalized expression of target genes relative to a reference_gene #' \item calibrated The calibrated expression of target genes relative to a reference_group #' \item error The standard deviation of normalized relative expression #' \item lower The lower interval of the normalized relative expression #' \item upper The upper interval of the normalized relative expression #' } #' When \code{plot} is TRUE, returns a bar graph of the calibrated expression #' of the genes in the column and the groups in the column group. Error bars #' are drawn using the columns lower and upper. When more one gene are plotted #' the default in dodge bars. When the argument facet is TRUE a separate #' panel is drawn for each gene. #' #' @details this model doesn't assume perfect amplification but rather actively #' use the amplification in calculating the relative expression. So when the #' amplification efficiency of all genes are 100\% both methods should give #' similar results. The standard curve method is applied using two steps. #' First, serial dilutions of the mRNAs from the samples of interest are used #' as input to the PCR reaction. The linear trend of the log input amount and #' the resulting \eqn{C_T} values for each gene are used to calculate an intercept #' and a slope. Secondly, these intercepts and slopes are used to calculate the #' amounts of mRNA of the genes of interest and the control/reference in the #' samples of interest and the control sample/reference. These amounts are #' finally used to calculate the relative expression. #' #' @references Livak, Kenneth J, and Thomas D Schmittgen. 2001. “Analysis of #' Relative Gene Expression Data Using Real-Time Quantitative PCR and the #' Double Delta CT Method.” Methods 25 (4). ELSEVIER. #' doi:10.1006/meth.2001.1262. #' #' @examples #' # locate and read file #' fl <- system.file('extdata', 'ct3.csv', package = 'pcr') #' ct3 <- readr::read_csv(fl) #' #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # make a vector of RNA amounts #' amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3) #' #' # calculate curve #' standard_curve <- pcr_assess(ct3, amount = amount, method = 'standard_curve') #' intercept <- standard_curve$intercept #' slope <- standard_curve$slope #' #' # make grouping variable #' group <- rep(c('brain', 'kidney'), each = 6) #' #' # apply the standard curve method #' pcr_curve(ct1, #' group_var = group, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope) #' #' # returns a plot #' pcr_curve(ct1, #' group_var = group, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope, #' plot = TRUE) #' #' @importFrom magrittr %>% #' @importFrom tidyr gather #' @importFrom dplyr full_join mutate #' #' @export pcr_curve <- function(df, group_var, reference_gene, reference_group, mode = 'separate_tube', intercept, slope, plot = FALSE, ...) { # calculate the amount of rna in samples amounts <- .pcr_amount(df, intercept = intercept, slope = slope) if(mode == 'separate_tube') { # average amounts and normalize by a reference_gene ave <- .pcr_average(amounts, group_var = group_var) norm <- .pcr_normalize(ave, reference_gene = reference_gene, mode = 'divide') } else if(mode == 'same_tube') { # normalize amounts and average norm <- .pcr_normalize(amounts, reference_gene = reference_gene, mode = 'divide') norm <- .pcr_average(norm, group_var = group_var) } # retain normalized amounts normalized <- gather(norm, gene, normalized, -group) # calibrate to a reference_group calib <- .pcr_calibrate(norm, reference_group = reference_group, mode = 'divide', tidy = TRUE) if(mode == 'separate_tube') { # calculate cv from amounts cv <- .pcr_cv(amounts, group_var = group_var) error <- .pcr_error(cv, reference_gene = reference_gene, tidy = TRUE) } else if(mode == 'same_tube') { # calculate cv from normalized amounts norm <- .pcr_normalize(amounts, reference_gene = reference_gene, mode = 'divide') error <- .pcr_cv(norm, group_var = group_var, tidy = TRUE) } # join data.frames and calculate intervals res <- full_join(normalized, calib) %>% full_join(error) %>% mutate(lower = calibrated - error, upper = calibrated + error, error = error * normalized) # return # return plot when plot == TRUE if(plot == TRUE) { gg <- .pcr_plot_analyze(res, method = 'relative_curve', ...) return(gg) } else { return(res) } } #' Apply qPCR analysis methods #' #' A unified interface to invoke different analysis methods of qPCR data. #' #' @inheritParams pcr_ddct #' @inheritParams pcr_curve #' @param method A character string; 'delta_delta_ct' default, 'delta_ct' or #' 'relative_curve' for invoking a certain analysis model #' @param ... Arguments passed to the methods #' #' @return A data.frame by default, when \code{plot} is TRUE returns a plot. #' For details; \link{pcr_ddct}, \link{pcr_dct} and \link{pcr_curve}. #' #' @details The different analysis methods can be invoked using the #' argument method with 'delta_delta_ct' default, 'delta_ct' or #' 'relative_curve' for the double delta \eqn{C_T}, delta ct or the standard curve #' model respectively. Alternatively, the same methods can be applied by using #' the corresponding functions directly: \link{pcr_ddct}, \link{pcr_dct} or #' \link{pcr_curve} #' #' @references Livak, Kenneth J, and Thomas D Schmittgen. 2001. “Analysis of #' Relative Gene Expression Data Using Real-Time Quantitative PCR and the #' Double Delta CT Method.” Methods 25 (4). ELSEVIER. #' doi:10.1006/meth.2001.1262. #' #' @examples #' # applying the delta delta ct method #' ## locate and read raw ct data #' fl <- system.file('extdata', 'ct1.csv', package = 'pcr') #' ct1 <- readr::read_csv(fl) #' #' # add grouping variable #' group_var <- rep(c('brain', 'kidney'), each = 6) #' #' # calculate all values and errors in one step #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' method = 'delta_delta_ct') #' #' # return a plot #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' method = 'delta_delta_ct', #' plot = TRUE) #' #' # applying the delta ct method #' # make a data.frame of two identical columns #' pcr_hk <- data.frame( #' GAPDH1 = ct1$GAPDH, #' GAPDH2 = ct1$GAPDH #' ) #' #' # calculate fold change #' pcr_analyze(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' method = 'delta_ct') #' #' # return a plot #' pcr_analyze(pcr_hk, #' group_var = group_var, #' reference_group = 'brain', #' method = 'delta_ct', #' plot = TRUE) #' #' # applying the standard curve method #' # locate and read file #' fl <- system.file('extdata', 'ct3.csv', package = 'pcr') #' ct3 <- readr::read_csv(fl) #' #' # make a vector of RNA amounts #' amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3) #' #' # calculate curve #' standard_curve <- pcr_assess(ct3, amount = amount, method = 'standard_curve') #' intercept <- standard_curve$intercept #' slope <- standard_curve$slope #' #' # apply the standard curve method #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope, #' method = 'relative_curve') #' #' # return a plot #' pcr_analyze(ct1, #' group_var = group_var, #' reference_gene = 'GAPDH', #' reference_group = 'brain', #' intercept = intercept, #' slope = slope, #' method = 'relative_curve', #' plot = TRUE) #' #' @export pcr_analyze <- function(df, method = 'delta_delta_ct', ...) { switch(method, 'delta_delta_ct' = pcr_ddct(df, ...), 'delta_ct' = pcr_dct(df, ...), 'relative_curve' = pcr_curve(df, ...)) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/combi_3.R \name{gmdh.combi_3} \alias{gmdh.combi_3} \title{GMDH COMBI auxiliar functions} \usage{ gmdh.combi_3(X, y, G = 2) } \description{ Performs auxiliar tasks to predict.mia } \keyword{internal}
/man/gmdh.combi_3.Rd
no_license
perelom3/GMDHreg
R
false
true
277
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/combi_3.R \name{gmdh.combi_3} \alias{gmdh.combi_3} \title{GMDH COMBI auxiliar functions} \usage{ gmdh.combi_3(X, y, G = 2) } \description{ Performs auxiliar tasks to predict.mia } \keyword{internal}
## MS script to process account$billing.geo.code # add "hotspots" # us no us geos # standardize geos # group geos by city, state # map geos library(stringr) library(fields) library(mi) geo <- rawData$accounts geo <- as.data.frame(geo[, c(1,3,5)]) #c(1,3) table(str_length(geo[,2])) # add missing zero to four-digit US geos for (i in 1:19833){ if(str_length(geo[i, 2]) == 4){ geo[i,2] <- str_pad(geo[i,2], 5, "left", "0") print(geo[i,2]) } } table(str_length(geo[,2])) # trim +4 from nine-digit US geos for (i in 1:19833){ if(str_length(geo[i, 2]) == 10){ geo[i,2] <- str_split_fixed(geo[i,2], "-", 2)[1] print(geo[i,2]) } } table(str_length(geo[,2])) ## inspect geo$billing.zip.code[geo$billing.zip.code ==""] <- NA geo$billing.city[geo$billing.city ==""] <- NA mp.plot(geo, y.order = TRUE, x.order = F, clustered = FALSE, gray.scale = TRUE) ## tag 1 if originally NULL in billing.zip.code and billing.city; 0 otherwise geo$missing <- 0 geo$missing[is.na(geo$billing.zip.code)&is.na(geo$billing.city)] <- 1 table(geo$missing) # read in and process zip code directory zipDir <- read.csv('data/free-zipcode-database-Primary.csv',colClasses='character') # add missing zero to four-digit US geos for (i in 1:dim(zipDir)[[1]]){ if(str_length(zipDir[i, 1]) < 5){ zipDir[i,1] <- str_pad(zipDir[i,1], 5, "left", "0") } } table(str_length(zipDir[,1])) zipDir <- subset(zipDir, select = c(Zipcode,City,State,Lat,Long)) # keep only relevent fields # merge city, state info to geo geo <- merge(geo, zipDir, by.x="billing.zip.code", by.y="Zipcode",all.x=T) names(geo) # merge in hotspots from QGIS hot <- read.csv("data/hotspot.csv", as.is=T) hot <- hot[,c(4,16)] geo <- merge(geo, hot, by="account.id", all.x=T) # tag accounts with null billing.zip.codes as "CA" if billing.city is a California city geo[19751,3] <- NA #removed value with troublesome "/" caCity <- as.data.frame(table(subset(geo, State=="CA", select=City))) #list of CA cities noZip <- is.na(geo$billing.zip.code) # index of accounts with no billing.zip.code value df.noZip <- subset(geo, is.na(billing.zip.code)) ######## this is code I can't get to work ################## #geo$test <- "" # create temp column to test code. If it works, then update directly to geo$State #for (i in 1:973){ # geo$test[str_detect(as.character(geo[noZip,3]), ignore.case(as.character(caCity[i,1])))] <- "CA" # need to subset for missing #} #table(geo$test) # CA must be less than 2955 ########################################################### noZipIndices = which(noZip) for(j in noZipIndices){ for (i in 1:973){ city = str_trim(tolower(as.character(geo[j,3]))) cal = str_trim(tolower(as.character(caCity[i,1]))) if(!is.na(city) && !is.na(cal) && city == cal) { print(paste("Assigned ", j, " city ", city)) geo$State[j] <- "CA" # need to subset for missing break } } } table(geo$State) ####### # dump csv with geos for use as categorical predictors write.csv(geo, "data/geo.account.csv", row.names=F) # add distance from account to the 3 locations geo <- read.csv("data/geo.account.csv") # locations dBerkley <- c(37.867005,-122.261542) dSF <- c(37.7763272,-122.421545) dPeninsula <- c(37.4320436,-122.1661352) venues <- rbind(dBerkley, dSF, dPeninsula) venues <- venues[,c(2,1)] colnames(venues) = c("Long","Lat") locDist <- rdist.earth(geo[,c(8,7)], venues) geo <- cbind(geo,locDist) ## dump csv for use in data.r write.csv(geo, "data/geo.account.csv", row.names=F) ######## top predictors for mapping (uses main.gbm.r objects) ###### topPred = summary(gbm.orch) write.csv(topPred, "topPred.csv", row.names=F) # dump csv for mapping geo <- merge(geo, data$allSetAll, by="account.id", all.y=T) colnames(geo)[1] <- "accountID" colnames(geo)[2] <- "billingZipCode" write.csv(geo, "viz/topPred.csv", row.names=F) # dump locations for mapping venues <- venues[,c(2,1)] write.csv(venues, "viz/venues.csv", row.names=T) #need to add field name to row names manually #################################### ####### old code below ############ # add $is.us for US/non-us accounts ## inserted into data.r rawData$accounts$is.us = 1 # MS: tag foreign accounts by geo for (i in 1:dim(rawData$accounts)[1]){ if(str_detect(rawData$accounts[i, 3], "[A-Z]|[a-z]")){ rawData$accounts$is.us[i] <- 0 print(rawData$accounts[i, c(1,3,11)]) } } # dump csv with geos for geocoding geo.list <- as.data.frame(table(geo[,2])) names(geo.list) <- c("geo", "count") write.csv(geo.list, "data/billing.geo.csv", row.names=F) geo = read.csv('data/geo.account.csv',colClasses='character') rawData$geo <- geo data <- rawData catGeo <- c("State", "City") # categorical variables numGeo <- c("Lat", "Long") # numeric variables data$geoFactors = data$geo[, c("account.id", catGeo)] data$geoFactors[catGeo] = sapply(data$geoFactors[catGeo], as.factor) data$geoNum = data$geo[, c("account.id", numGeo)] data$accounts$geo.state = "" # MS: add state predictor states = data$geo[, c("account.id", "State")] data$accounts$geo.state = merge(data$accounts, states, by="account.id", all.x=T) # MS: pull in state from zip code merge
/geo.2.R
no_license
MatthewSchumwinger/towerProperty
R
false
false
5,153
r
## MS script to process account$billing.geo.code # add "hotspots" # us no us geos # standardize geos # group geos by city, state # map geos library(stringr) library(fields) library(mi) geo <- rawData$accounts geo <- as.data.frame(geo[, c(1,3,5)]) #c(1,3) table(str_length(geo[,2])) # add missing zero to four-digit US geos for (i in 1:19833){ if(str_length(geo[i, 2]) == 4){ geo[i,2] <- str_pad(geo[i,2], 5, "left", "0") print(geo[i,2]) } } table(str_length(geo[,2])) # trim +4 from nine-digit US geos for (i in 1:19833){ if(str_length(geo[i, 2]) == 10){ geo[i,2] <- str_split_fixed(geo[i,2], "-", 2)[1] print(geo[i,2]) } } table(str_length(geo[,2])) ## inspect geo$billing.zip.code[geo$billing.zip.code ==""] <- NA geo$billing.city[geo$billing.city ==""] <- NA mp.plot(geo, y.order = TRUE, x.order = F, clustered = FALSE, gray.scale = TRUE) ## tag 1 if originally NULL in billing.zip.code and billing.city; 0 otherwise geo$missing <- 0 geo$missing[is.na(geo$billing.zip.code)&is.na(geo$billing.city)] <- 1 table(geo$missing) # read in and process zip code directory zipDir <- read.csv('data/free-zipcode-database-Primary.csv',colClasses='character') # add missing zero to four-digit US geos for (i in 1:dim(zipDir)[[1]]){ if(str_length(zipDir[i, 1]) < 5){ zipDir[i,1] <- str_pad(zipDir[i,1], 5, "left", "0") } } table(str_length(zipDir[,1])) zipDir <- subset(zipDir, select = c(Zipcode,City,State,Lat,Long)) # keep only relevent fields # merge city, state info to geo geo <- merge(geo, zipDir, by.x="billing.zip.code", by.y="Zipcode",all.x=T) names(geo) # merge in hotspots from QGIS hot <- read.csv("data/hotspot.csv", as.is=T) hot <- hot[,c(4,16)] geo <- merge(geo, hot, by="account.id", all.x=T) # tag accounts with null billing.zip.codes as "CA" if billing.city is a California city geo[19751,3] <- NA #removed value with troublesome "/" caCity <- as.data.frame(table(subset(geo, State=="CA", select=City))) #list of CA cities noZip <- is.na(geo$billing.zip.code) # index of accounts with no billing.zip.code value df.noZip <- subset(geo, is.na(billing.zip.code)) ######## this is code I can't get to work ################## #geo$test <- "" # create temp column to test code. If it works, then update directly to geo$State #for (i in 1:973){ # geo$test[str_detect(as.character(geo[noZip,3]), ignore.case(as.character(caCity[i,1])))] <- "CA" # need to subset for missing #} #table(geo$test) # CA must be less than 2955 ########################################################### noZipIndices = which(noZip) for(j in noZipIndices){ for (i in 1:973){ city = str_trim(tolower(as.character(geo[j,3]))) cal = str_trim(tolower(as.character(caCity[i,1]))) if(!is.na(city) && !is.na(cal) && city == cal) { print(paste("Assigned ", j, " city ", city)) geo$State[j] <- "CA" # need to subset for missing break } } } table(geo$State) ####### # dump csv with geos for use as categorical predictors write.csv(geo, "data/geo.account.csv", row.names=F) # add distance from account to the 3 locations geo <- read.csv("data/geo.account.csv") # locations dBerkley <- c(37.867005,-122.261542) dSF <- c(37.7763272,-122.421545) dPeninsula <- c(37.4320436,-122.1661352) venues <- rbind(dBerkley, dSF, dPeninsula) venues <- venues[,c(2,1)] colnames(venues) = c("Long","Lat") locDist <- rdist.earth(geo[,c(8,7)], venues) geo <- cbind(geo,locDist) ## dump csv for use in data.r write.csv(geo, "data/geo.account.csv", row.names=F) ######## top predictors for mapping (uses main.gbm.r objects) ###### topPred = summary(gbm.orch) write.csv(topPred, "topPred.csv", row.names=F) # dump csv for mapping geo <- merge(geo, data$allSetAll, by="account.id", all.y=T) colnames(geo)[1] <- "accountID" colnames(geo)[2] <- "billingZipCode" write.csv(geo, "viz/topPred.csv", row.names=F) # dump locations for mapping venues <- venues[,c(2,1)] write.csv(venues, "viz/venues.csv", row.names=T) #need to add field name to row names manually #################################### ####### old code below ############ # add $is.us for US/non-us accounts ## inserted into data.r rawData$accounts$is.us = 1 # MS: tag foreign accounts by geo for (i in 1:dim(rawData$accounts)[1]){ if(str_detect(rawData$accounts[i, 3], "[A-Z]|[a-z]")){ rawData$accounts$is.us[i] <- 0 print(rawData$accounts[i, c(1,3,11)]) } } # dump csv with geos for geocoding geo.list <- as.data.frame(table(geo[,2])) names(geo.list) <- c("geo", "count") write.csv(geo.list, "data/billing.geo.csv", row.names=F) geo = read.csv('data/geo.account.csv',colClasses='character') rawData$geo <- geo data <- rawData catGeo <- c("State", "City") # categorical variables numGeo <- c("Lat", "Long") # numeric variables data$geoFactors = data$geo[, c("account.id", catGeo)] data$geoFactors[catGeo] = sapply(data$geoFactors[catGeo], as.factor) data$geoNum = data$geo[, c("account.id", numGeo)] data$accounts$geo.state = "" # MS: add state predictor states = data$geo[, c("account.id", "State")] data$accounts$geo.state = merge(data$accounts, states, by="account.id", all.x=T) # MS: pull in state from zip code merge
## Plot1.R script source("./load_dataset.R") ## # open png grDevice png(filename = "plot3.png", width = 480, height = 480, units = "px") plot(epc$Datetime, epc$Sub_metering_1, type = "l", col = "black", xlab = "", ylab = "Energy sub metering") lines(epc$Datetime, epc$Sub_metering_2, col = "red") lines(epc$Datetime, epc$Sub_metering_3, col = "blue") legend("topright", col = c("black", "red", "blue"), c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lwd = 1) dev.off()
/plot3.R
no_license
jahirul76/ExData_Plotting1
R
false
false
534
r
## Plot1.R script source("./load_dataset.R") ## # open png grDevice png(filename = "plot3.png", width = 480, height = 480, units = "px") plot(epc$Datetime, epc$Sub_metering_1, type = "l", col = "black", xlab = "", ylab = "Energy sub metering") lines(epc$Datetime, epc$Sub_metering_2, col = "red") lines(epc$Datetime, epc$Sub_metering_3, col = "blue") legend("topright", col = c("black", "red", "blue"), c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lwd = 1) dev.off()
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/probSign.R \name{probSign} \alias{probSign} \title{Compute probability of positive or negative sign from bootPairs output} \usage{ probSign(out, tau = 0.476) } \arguments{ \item{out}{{output from bootPairs with p-1 columns and n999 rows}} \item{tau}{{threshold to determine what value is too close to zero, default tau=0.476 is equivalent to 15 percent threshold for the unanimity index ui}} } \value{ sgn {When \code{mtx} has p columns, \code{sgn} reports pairwise p-1 signs representing (fixing the first column in each pair) the average sign after averaging the output of of \code{bootPairs(mtx)} (a n999 by p-1 matrix) each containing resampled `sum' values summarizing the weighted sums associated with all three criteria from the function \code{silentPairs(mtx)} applied to each bootstrap sample separately.} #' } \description{ If there are p columns of data, \code{probSign} produces a p-1 by 1 vector of probabilities of correct signs assuming that the mean of n999 values has the correct sign and assuming that m of the 'sum' index values inside the range [-tau, tau] are neither positive nor negative but indeterminate or ambiguous (being too close to zero). That is, the denominator of P(+1) or P(-1) is (n999-m) if m signs are too close to zero. } \examples{ \dontrun{ options(np.messages = FALSE) set.seed(34);x=sample(1:10);y=sample(2:11) bb=bootPairs(cbind(x,y),n999=29) probSign(bb,tau=0.476) #gives summary stats for n999 bootstrap sum computations bb=bootPairs(airquality,n999=999);options(np.messages=FALSE) probSign(bb,tau=0.476)#signs for n999 bootstrap sum computations data('EuroCrime') attach(EuroCrime) bb=bootPairs(cbind(crim,off),n999=29) #col.1= crim causes off #hence positive signs are more intuitively meaningful. #note that n999=29 is too small for real problems, chosen for quickness here. probSign(bb,tau=0.476)#signs for n999 bootstrap sum computations } } \references{ Vinod, H. D. `Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, \doi{10.1080/03610918.2015.1122048} Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19. Vinod, H. D. Causal Paths and Exogeneity Tests in {Generalcorr} Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: \url{https://www.ssrn.com/abstract=2982128} } \seealso{ See Also \code{\link{silentPairs}}. } \author{ Prof. H. D. Vinod, Economics Dept., Fordham University, NY } \concept{bootstrap} \concept{kernel regression} \concept{meboot} \concept{pairwise comparisons}
/man/probSign.Rd
no_license
cran/generalCorr
R
false
true
2,785
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/probSign.R \name{probSign} \alias{probSign} \title{Compute probability of positive or negative sign from bootPairs output} \usage{ probSign(out, tau = 0.476) } \arguments{ \item{out}{{output from bootPairs with p-1 columns and n999 rows}} \item{tau}{{threshold to determine what value is too close to zero, default tau=0.476 is equivalent to 15 percent threshold for the unanimity index ui}} } \value{ sgn {When \code{mtx} has p columns, \code{sgn} reports pairwise p-1 signs representing (fixing the first column in each pair) the average sign after averaging the output of of \code{bootPairs(mtx)} (a n999 by p-1 matrix) each containing resampled `sum' values summarizing the weighted sums associated with all three criteria from the function \code{silentPairs(mtx)} applied to each bootstrap sample separately.} #' } \description{ If there are p columns of data, \code{probSign} produces a p-1 by 1 vector of probabilities of correct signs assuming that the mean of n999 values has the correct sign and assuming that m of the 'sum' index values inside the range [-tau, tau] are neither positive nor negative but indeterminate or ambiguous (being too close to zero). That is, the denominator of P(+1) or P(-1) is (n999-m) if m signs are too close to zero. } \examples{ \dontrun{ options(np.messages = FALSE) set.seed(34);x=sample(1:10);y=sample(2:11) bb=bootPairs(cbind(x,y),n999=29) probSign(bb,tau=0.476) #gives summary stats for n999 bootstrap sum computations bb=bootPairs(airquality,n999=999);options(np.messages=FALSE) probSign(bb,tau=0.476)#signs for n999 bootstrap sum computations data('EuroCrime') attach(EuroCrime) bb=bootPairs(cbind(crim,off),n999=29) #col.1= crim causes off #hence positive signs are more intuitively meaningful. #note that n999=29 is too small for real problems, chosen for quickness here. probSign(bb,tau=0.476)#signs for n999 bootstrap sum computations } } \references{ Vinod, H. D. `Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, \doi{10.1080/03610918.2015.1122048} Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19. Vinod, H. D. Causal Paths and Exogeneity Tests in {Generalcorr} Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: \url{https://www.ssrn.com/abstract=2982128} } \seealso{ See Also \code{\link{silentPairs}}. } \author{ Prof. H. D. Vinod, Economics Dept., Fordham University, NY } \concept{bootstrap} \concept{kernel regression} \concept{meboot} \concept{pairwise comparisons}
tema_gg_blank <- function() { ggplot2::theme( rect = ggplot2::element_blank(), panel.grid = ggplot2::element_blank(), text = ggplot2::element_blank(), axis.ticks = ggplot2::element_blank() ) }
/R/utils_tema.R
no_license
nupec/ods6
R
false
false
212
r
tema_gg_blank <- function() { ggplot2::theme( rect = ggplot2::element_blank(), panel.grid = ggplot2::element_blank(), text = ggplot2::element_blank(), axis.ticks = ggplot2::element_blank() ) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/betaDist.R \name{betaDist} \alias{betaDist} \title{The Beta distribution} \usage{ betaDist(x, alpha, beta) } \arguments{ \item{x}{Double - A value within the intervall [0,1].} \item{alpha}{Double - A value greater than zero.} \item{beta}{Double - A value greater than zero.} } \value{ Double - The corresponding probability. } \description{ The beta distribution is a continuous propability distribution defined in the interval [0,1]. } \author{ J.C. Lemm, P.v.W. Crommelin }
/man/betaDist.Rd
no_license
PhilippVWC/myBayes
R
false
true
556
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/betaDist.R \name{betaDist} \alias{betaDist} \title{The Beta distribution} \usage{ betaDist(x, alpha, beta) } \arguments{ \item{x}{Double - A value within the intervall [0,1].} \item{alpha}{Double - A value greater than zero.} \item{beta}{Double - A value greater than zero.} } \value{ Double - The corresponding probability. } \description{ The beta distribution is a continuous propability distribution defined in the interval [0,1]. } \author{ J.C. Lemm, P.v.W. Crommelin }
### # QUESTÃO 1 ### install.packages("tidyverse") library(tidyverse) nomero <- function(name) { name = tolower(name) name = gsub(' ', '', name) total = 0 name = match(unlist(strsplit(name, split="")), letters) for (i in name) { total = total + i } return(total) } name = 'filipe zabala' nomero(name) ### # QUESTÃO 2 ### # AINDA NÃO FOI REVISADA #Utilize set.seed(m) e gere 10*m observações de uma normal de média m e desvio padrão s. #Faça o histograma e obtenha as principais medidas de posição dos valores simulados name = 'bruna priscila suzane' m = nomero(name) s<-m/4 set.seed(m) for (i in 1:10) { print(rnorm(m)) } m pnorm(m+s, mean = m, sd = s) n=10*m # Distribuição Normal ou gaussiana par(mfrow=c(2,2)) curve(dnorm(x),-s,s,add = F, col = 'orange')
/questao_1&2.R
no_license
brunaoliveira/t1_estatistica
R
false
false
806
r
### # QUESTÃO 1 ### install.packages("tidyverse") library(tidyverse) nomero <- function(name) { name = tolower(name) name = gsub(' ', '', name) total = 0 name = match(unlist(strsplit(name, split="")), letters) for (i in name) { total = total + i } return(total) } name = 'filipe zabala' nomero(name) ### # QUESTÃO 2 ### # AINDA NÃO FOI REVISADA #Utilize set.seed(m) e gere 10*m observações de uma normal de média m e desvio padrão s. #Faça o histograma e obtenha as principais medidas de posição dos valores simulados name = 'bruna priscila suzane' m = nomero(name) s<-m/4 set.seed(m) for (i in 1:10) { print(rnorm(m)) } m pnorm(m+s, mean = m, sd = s) n=10*m # Distribuição Normal ou gaussiana par(mfrow=c(2,2)) curve(dnorm(x),-s,s,add = F, col = 'orange')
############################################################################### ################################ Standardise ################################## ############################################################################### #' Use standard names and spellings #' #' @description Standardise the names of lineage groups, neuron compartments and transmitters. #' #' @param x a character vector to be standardised. #' @param invert return compartment numbers rather than names. #' #' @return a character vector #' @export #' @rdname standardise standard_transmitters <- function(x){ x[grepl("^Neurotrans|^neurotrans",x)] = "transmitter" x[grepl("^ACh|^Ach|^ach|^acet|^ChA|^CHa|^cholin|^ACH",x)] = "acetylcholine" x[grepl("^gaba|^GABA|^GAD",x)] = "GABA" x[grepl("^glut|^vGlut|^Vglut|^glutamate|^Glutamate|^GLUT",x)] = "glutamate" x[grepl("^5-HT|^5HT|^Dope|^dope|^Dopa|^dopa|^DOP",x)] = "dopamine" x[grepl("^Sero|^sero|^TH-|^SER",x)] = "serotonin" x[grepl("^Oct|^oct|^OCT",x)] = "octopamine" x[grepl("^Unknow|NA|unknow|^None|^none",x)] = "unknown" x[is.na(x)] = "unknown" x = tolower(x) x } #' @export #' @rdname standardise standard_statuses <- function(x, invert= FALSE){ x = tolower(x) standard_status <-function(z, invert = FALSE){ if(invert){ z[is.na(z)] = "u" z[z=="done"] = "d" z[z=="unassessed"] = "u" z[z=="incomplete"] = "i" z[z=="complete"] = "c" z[z=="adequate"] = "a" z[z=="merge_error"] = "m" z[z=="needs_extending"] = "e " z[z=="wrong_hemilineage"] = "w" z[z=="wrong_side"] = "s" z[z=="not_neuron"] = "n" z[z=="tiny"] = "t" }else{ z[is.na(z)] = "unassessed" z[z=="d"] = "done" z[z=="u"] = "unassessed" z[z=="i"] = "incomplete" z[z=="c"] = "complete" z[z=="a"] = "adequate" z[z=="m"] = "merge_error" z[z=="e"] = "needs_extending " z[z=="w"] = "wrong_hemilineage" z[z=="s"] = "wrong_side" z[z=="n"] = "not_neuron" z[z=="t"] = "tiny" } paste(sort(z),collapse="/",sep="/") } y = strsplit(x=x,split="/| / | /|/ ") z = sapply(y,standard_status) z } # u = not yet examined by a trusted human # i = incomplete [very small fragment] # c = complete [well fleshed out neuron, may even have most medium/small branches] # a = adequate [there is a cell body fibre, axon and dendrite] # m = noticable merge error [this neuron is merged to another] # e = needs extending [not quite adequate, but more than a tiny fragment] # w = wrong hemilineage [based on its soma position and cell body fibre, this neuron looks like it is not in the same hemilineage as others of this tab] # s = wrong side [soma is on the wrong hemisphere, given the name of this tab] # n = not a neuron [this segmentation is not a neuron, i.e. glia, erroneous] #' @export #' @rdname standardise standard_lineages <- function(x){ x[grepl("^ItoLee_l|^itolee_l|^ItoLee_L|^itolee_L",x)] = "ito_lee_lineage" x[grepl("^hartenstein_l|^Hartenstein_l|^Volker_l|^volker_l| ^hartenstein_L|^Hartenstein_L|^Volker_L|^volker_L",x)] = "hartenstein_lineage" x[grepl("^ItoLee_h|^itolee_h",x)] = "ito_lee_hemilineage" x[grepl("^hartenstein_h|^Hartenstein_h|^Volker_h|^volker_h| ^hartenstein_H|^Hartenstein_H|^Volker_h|^volker_H",x)] = "hartenstein_hemilineage" x[is.na(x)] = "unknown" x } #' @export #' @rdname standardise standard_compartments <- function(x, invert = FALSE){ x = tolower(x) if(invert){ x[x=="dendrite"] = 3 x[x=="axon"] = 2 x[x=="soma"] = 1 x[x=="primary.dendrite"] = 4 x[x=="primary.neurite"] = 7 }else{ x[x==0] = "unknown" x[x==3] = "dendrite" x[x==2] = "axon" x[x==1] = "soma" x[x==4] = "primary.dendrite" x[x==7] = "primary.neurite" } x } #' @export #' @rdname standardise standardise <- standardize <- function(x){ x <- standard_transmitters(x) x <- standard_lineages(x) x <- standard_compartments(x) x <- standard_statuses(x) x } # hidden standardise_quality <- function(x){ x = tolower(x) x[x=="e"] = "good" x[x=="o"] = "medium" x[x=="p"] = "poor" x[x=="t"] = "tract" x[x=="n"] = "none" x } #' @export #' @rdname standardise standard_workflow <- function(x, invert= FALSE){ x = tolower(x) standard_work <-function(z, invert = FALSE){ if(invert){ z[is.na(z)] = "t" z[z=="trace"] = "t" z[z=="inputs"] = "i" z[z=="outputs"] = "o" z[z=="match"] = "m" z[z=="find_line"] = "l" }else{ z[is.na(z)] = "trace" z[z=="t"] = "trace" z[z=="i"] = "inputs" z[z=="o"] = "outputs" z[z=="m"] = "match" z[z=="l"] = "find_line" } paste(sort(z),collapse="/",sep="/") } y = strsplit(x=x,split="/| / | /|/ ") z = sapply(y,standard_work) z }
/R/hemibrain_standardise.R
no_license
natverse/hemibrainr
R
false
false
4,816
r
############################################################################### ################################ Standardise ################################## ############################################################################### #' Use standard names and spellings #' #' @description Standardise the names of lineage groups, neuron compartments and transmitters. #' #' @param x a character vector to be standardised. #' @param invert return compartment numbers rather than names. #' #' @return a character vector #' @export #' @rdname standardise standard_transmitters <- function(x){ x[grepl("^Neurotrans|^neurotrans",x)] = "transmitter" x[grepl("^ACh|^Ach|^ach|^acet|^ChA|^CHa|^cholin|^ACH",x)] = "acetylcholine" x[grepl("^gaba|^GABA|^GAD",x)] = "GABA" x[grepl("^glut|^vGlut|^Vglut|^glutamate|^Glutamate|^GLUT",x)] = "glutamate" x[grepl("^5-HT|^5HT|^Dope|^dope|^Dopa|^dopa|^DOP",x)] = "dopamine" x[grepl("^Sero|^sero|^TH-|^SER",x)] = "serotonin" x[grepl("^Oct|^oct|^OCT",x)] = "octopamine" x[grepl("^Unknow|NA|unknow|^None|^none",x)] = "unknown" x[is.na(x)] = "unknown" x = tolower(x) x } #' @export #' @rdname standardise standard_statuses <- function(x, invert= FALSE){ x = tolower(x) standard_status <-function(z, invert = FALSE){ if(invert){ z[is.na(z)] = "u" z[z=="done"] = "d" z[z=="unassessed"] = "u" z[z=="incomplete"] = "i" z[z=="complete"] = "c" z[z=="adequate"] = "a" z[z=="merge_error"] = "m" z[z=="needs_extending"] = "e " z[z=="wrong_hemilineage"] = "w" z[z=="wrong_side"] = "s" z[z=="not_neuron"] = "n" z[z=="tiny"] = "t" }else{ z[is.na(z)] = "unassessed" z[z=="d"] = "done" z[z=="u"] = "unassessed" z[z=="i"] = "incomplete" z[z=="c"] = "complete" z[z=="a"] = "adequate" z[z=="m"] = "merge_error" z[z=="e"] = "needs_extending " z[z=="w"] = "wrong_hemilineage" z[z=="s"] = "wrong_side" z[z=="n"] = "not_neuron" z[z=="t"] = "tiny" } paste(sort(z),collapse="/",sep="/") } y = strsplit(x=x,split="/| / | /|/ ") z = sapply(y,standard_status) z } # u = not yet examined by a trusted human # i = incomplete [very small fragment] # c = complete [well fleshed out neuron, may even have most medium/small branches] # a = adequate [there is a cell body fibre, axon and dendrite] # m = noticable merge error [this neuron is merged to another] # e = needs extending [not quite adequate, but more than a tiny fragment] # w = wrong hemilineage [based on its soma position and cell body fibre, this neuron looks like it is not in the same hemilineage as others of this tab] # s = wrong side [soma is on the wrong hemisphere, given the name of this tab] # n = not a neuron [this segmentation is not a neuron, i.e. glia, erroneous] #' @export #' @rdname standardise standard_lineages <- function(x){ x[grepl("^ItoLee_l|^itolee_l|^ItoLee_L|^itolee_L",x)] = "ito_lee_lineage" x[grepl("^hartenstein_l|^Hartenstein_l|^Volker_l|^volker_l| ^hartenstein_L|^Hartenstein_L|^Volker_L|^volker_L",x)] = "hartenstein_lineage" x[grepl("^ItoLee_h|^itolee_h",x)] = "ito_lee_hemilineage" x[grepl("^hartenstein_h|^Hartenstein_h|^Volker_h|^volker_h| ^hartenstein_H|^Hartenstein_H|^Volker_h|^volker_H",x)] = "hartenstein_hemilineage" x[is.na(x)] = "unknown" x } #' @export #' @rdname standardise standard_compartments <- function(x, invert = FALSE){ x = tolower(x) if(invert){ x[x=="dendrite"] = 3 x[x=="axon"] = 2 x[x=="soma"] = 1 x[x=="primary.dendrite"] = 4 x[x=="primary.neurite"] = 7 }else{ x[x==0] = "unknown" x[x==3] = "dendrite" x[x==2] = "axon" x[x==1] = "soma" x[x==4] = "primary.dendrite" x[x==7] = "primary.neurite" } x } #' @export #' @rdname standardise standardise <- standardize <- function(x){ x <- standard_transmitters(x) x <- standard_lineages(x) x <- standard_compartments(x) x <- standard_statuses(x) x } # hidden standardise_quality <- function(x){ x = tolower(x) x[x=="e"] = "good" x[x=="o"] = "medium" x[x=="p"] = "poor" x[x=="t"] = "tract" x[x=="n"] = "none" x } #' @export #' @rdname standardise standard_workflow <- function(x, invert= FALSE){ x = tolower(x) standard_work <-function(z, invert = FALSE){ if(invert){ z[is.na(z)] = "t" z[z=="trace"] = "t" z[z=="inputs"] = "i" z[z=="outputs"] = "o" z[z=="match"] = "m" z[z=="find_line"] = "l" }else{ z[is.na(z)] = "trace" z[z=="t"] = "trace" z[z=="i"] = "inputs" z[z=="o"] = "outputs" z[z=="m"] = "match" z[z=="l"] = "find_line" } paste(sort(z),collapse="/",sep="/") } y = strsplit(x=x,split="/| / | /|/ ") z = sapply(y,standard_work) z }
####################################################################################################################### ############### Bean seed microbiome analysis for the rain out shelter experiment: OTU 97% ############################ ####################################################################################################################### # Date: August 18th 2021 # By : Ari Fina Bintarti # INSTALL PACKAGES install.packages(c('vegan', 'tidyverse')) install.packages('reshape') install.packages("ggpubr") install.packages("car") install.packages("agricolae") install.packages("multcompView") install.packages("gridExtra") install.packages("ggplot2") install.packages("sjmisc") install.packages("sjPlot") install.packages("MASS") install.packages("FSA") install.packages('mvtnorm', dep = TRUE) install.packages("rcompanion") install.packages("onewaytests") install.packages("PerformanceAnalytics") install.packages("gvlma") install.packages("userfriendlyscience") install.packages("ggpmisc") install.packages("fitdistrplus") install.packages('BiocManager') #install.packages("cowplot") install.packages("dplyr") install.packages("lme4") install.packages("nlme") install.packages("car") install.packages("multcomp") library(multcomp) library(car) library(BiocManager) library(vegan) library(dplyr) library(plyr) library(tidyverse) library(tidyr) #library(cowplot) library(ggplot2) library(reshape) library(ggpubr) library(car) library(agricolae) library(multcompView) library(grid) library(gridExtra) library(sjmisc) library(sjPlot) library(MASS) library(FSA) library(rcompanion) library(onewaytests) library(ggsignif) library(PerformanceAnalytics) library(gvlma) library(userfriendlyscience) library(ggpmisc) library(tibble) library(fitdistrplus) library(lme4) library(nlme) # SET THE WORKING DIRECTORY setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) # READ PROPORTION OF CHLOROPLAST AND MITOCHONDRIA #read the unfiltered otu table otu.unfil <- read.table(file = 'OTU_table_tax.txt', sep = '\t', header = TRUE,check.names = FALSE) otu.unfil tax.unfil <- otu.unfil[,'taxonomy'] tax.unfil #write.csv(tax.unfil, file = "tax.unfil.csv") dim(otu.unfil) #[1] 325 81 colnames(otu.unfil) otu.unfil <- otu.unfil[,-82] dim(otu.unfil)# otu= 325, otu table still has Mock, NC, and PC in the sample otu.unfil <- column_to_rownames(otu.unfil,var = "OTUID") sort(rowSums(otu.unfil, na.rm = FALSE, dims = 1), decreasing = F) #read taxonomy tax.unfil.ed = read.csv("tax.unfil.ed.csv", header=T) rownames(tax.unfil.ed) <- rownames(otu.unfil) dim(tax.unfil.ed) #[1] 325 7 otu.unfil <- rownames_to_column(otu.unfil,var = "OTUID") tax.unfil.ed <- rownames_to_column(tax.unfil.ed,var = "OTUID") otu.tax.unfiltered <- merge(otu.unfil, tax.unfil.ed, by="OTUID") View(otu.tax.unfiltered) colnames(otu.tax.unfiltered) #write.csv(otu.tax.unfiltered, file = "otu.tax.unfiltered.csv") #read the metadata ############################################################################################################################################################# #READ PROPORTION OF CHLOROPLAST AND MITOCHONDRIA OF EXPERIMENTAL SAMPLES #select only biological sample from otu table otu.bio.unfil <- otu.unfil[,1:65] #unselect Mock, NC, and PC from the otu table dim(otu.bio.unfil) colnames(otu.bio.unfil) otu.bio.unfil <- column_to_rownames(otu.bio.unfil, var = "OTUID") sort(rowSums(otu.bio.unfil, na.rm = FALSE, dims = 1), decreasing = F) # remove OTUs that do not present in biological sample otu.bio1.unfil <- otu.bio.unfil[which(rowSums(otu.bio.unfil) > 0),] dim(otu.bio1.unfil) # [1] 244 64, otu table before plant contaminant removal and normalization using metagenomeSeq package and before decontamination sort(rowSums(otu.bio1.unfil, na.rm = FALSE, dims = 1), decreasing = F) sum(otu.bio1.unfil) # load the otu table head(otu.bio1.unfil) otu.bio1.unfil <- rownames_to_column(otu.bio1.unfil, var = "OTUID") # merge the taxonomy with otu table head(tax.unfil.ed) #tax.unfil.ed <- rownames_to_column(tax.unfil.ed, var = "OTUID") otu.tax.unfil <- merge(otu.bio1.unfil, tax.unfil.ed, by="OTUID") dim(otu.tax.unfil) colnames(otu.tax.unfil) #select only the otu table and "Order" & "Family" #otu.tax.unfil.ed <- otu.tax.unfil[,c(1:48,52,53)] #colnames(otu.tax.unfil.ed) #edit the taxonomy colnames(otu.tax.unfil) otu.tax.unfil.ed <- otu.tax.unfil %>% mutate(Taxonomy = case_when(Order == "Chloroplast" ~ 'Chloroplast', Phylum == "Cyanobacteria"~ 'Chloroplast', Family == "Mitochondria" ~ 'Mitochondria', #Family == "Magnoliophyta" ~ 'Magnoliophyta', TRUE ~ 'Bacteria')) %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Phylum == "Cyanobacteria"~ 'Plant', Family == "Mitochondria" ~ 'Plant', #Family == "Magnoliophyta" ~ 'Plant', TRUE ~ 'Bacteria')) tail(otu.tax.unfil.ed) otu.tax.unfil.ed colnames(otu.tax.unfil.ed) otu.tax.unfil.ed1 <- otu.tax.unfil.ed[,c(1:66,75)] View(otu.tax.unfil.ed1) colnames(otu.tax.unfil.ed1) tail(otu.tax.unfil.ed1) long.dat <- gather(otu.tax.unfil.ed1, Sample, Read, 2:65, factor_key = T) long.dat ### 1. Plant contaminant proportion detach(package:plyr) df.unfil <- long.dat %>% group_by(Sample, Domain) %>% summarise(read.number = sum(Read)) df.unfil1 <- df.unfil %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #with(df.unfil1, sum(percent[Sample == "1001"])) library(ggbeeswarm) library(ggtext) plot.unfil.dom <- ggplot(df.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_violin(trim = F, scale="width") + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "A. Experimental Sample")+ ylab("Read Proportion (%)")+ theme(legend.position="none", axis.title.x = element_blank(), axis.text= element_text(size = 12), strip.text = element_text(size=12), plot.title = element_text(size = 14), axis.title.y = element_markdown(size=13), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ stat_summary(fun="median",geom="point", size=7, color="red", shape=95) plot.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_plant_proportion.eps", plot.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ### 2. Chloroplast and Mitochondria contaminant proportion df.unfil.tax <- long.dat %>% group_by(Sample, Taxonomy) %>% summarize(read.number = sum(Read)) df.unfil.tax1 <- df.unfil.tax %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) plot.unfil.tax <- ggplot(df.unfil.tax1, aes(x=Taxonomy, y=percent, fill=Taxonomy))+ geom_violin(trim = F, scale="width") + #geom_beeswarm(dodge.width = 1, alpha = 0.3)+ #scale_fill_manual(labels = c("A1","A2", "A3","B1","B2","B3","B4","B5","B6","C5","C6","C7"),values=c("#440154FF", "#482677FF","#3F4788FF","#238A8DFF","#1F968BFF","#20A386FF","#29AF7FF","#3CBC75F","#56C667FF","#B8DE29FF","#DCE318FF","#FDE725FF"))+ #scale_fill_viridis(discrete = T)+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ #geom_text(data=sum_rich_plant_new, aes(x=Plant,y=2+max.rich,label=Letter), vjust=0)+ labs(title = "B")+ ylab("Read Proportion (%)")+ theme(legend.position="none", #axis.text.x=element_blank(), #axis.ticks.x = element_blank(), axis.title.x = element_blank(), axis.text= element_text(size = 14), strip.text = element_text(size=18, face = 'bold'), plot.title = element_text(size = 14, face = 'bold'), #axis.title.y=element_text(size=13,face="bold"), axis.title.y = element_markdown(size=15,face="bold"), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ #plot.margin = unit(c(0, 0, 0, 0), "cm")) stat_summary(fun="median",geom="point", size=7, color="red", shape=95) #width=1, position=position_dodge(),show.legend = FALSE) plot.unfil.tax setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_chloromito_proportion.eps", plot.unfil.tax, device=cairo_ps, width = 7, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF NEGATIVE CONTROLS # otu table of the negative control colnames(otu.unfil) NC.unfiltered <- otu.unfil[,c(1,73:79)]#only negative control colnames(NC.unfiltered) NC.unfiltered <- column_to_rownames(NC.unfiltered,var="OTUID") sort(rowSums(NC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) NC1.unfiltered=NC.unfiltered[which(rowSums(NC.unfiltered) > 0),] sort(rowSums(NC1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) NC1.unfiltered <- rownames_to_column(NC1.unfiltered,var="OTUID") NC1.tax.unfiltered <- merge(NC1.unfiltered, tax.unfil.ed, by="OTUID") NC1.unfiltered <- column_to_rownames(NC1.unfiltered,var="OTUID") #write.csv(NC1.tax.unfiltered, file = "NC1.tax.unfiltered.csv") head(NC1.unfiltered) colnames(NC1.unfiltered) #edit the taxonomy colnames(NC1.tax.unfiltered) NC1.tax.unfil.ed <- NC1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(NC1.tax.unfil.ed) NC1.tax.unfil.ed1 <- NC1.tax.unfil.ed[,c(1:9)] colnames(NC1.tax.unfil.ed1) tail(NC1.tax.unfil.ed1) str(NC1.tax.unfil.ed1) library(tidyr) long.dat.nc.unfil <- gather(NC1.tax.unfil.ed1, Sample, Read, NC1r2:NC7r2, factor_key = T) long.dat.nc.unfil #detach(package:plyr) df.nc.unfil <- long.dat.nc.unfil %>% group_by(Sample, Domain) %>% summarise(read.number = sum(Read)) df.nc.unfil1 <- df.nc.unfil %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #with(df.nc.unfil1, sum(percent[Sample == "NC1r2"])) library(ggbeeswarm) library(ggtext) plot.nc.unfil.dom <- ggplot(df.nc.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_violin(trim = F, scale="width") + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "B. Negative Control")+ #ylab("Read Proportion (%)")+ theme(legend.position="none", axis.title = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_text(size = 13), #strip.text.x = element_text(size=18, face = 'bold'), plot.title = element_text(size = 14), #axis.title.y = element_markdown(size=15,face="bold"), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ stat_summary(fun="median",geom="point", size=10, color="red", shape=95) plot.nc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_nc_plant_proportion.eps", plot.nc.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF THE POSITIVE CONTROLS # otu table of the positive control colnames(otu.unfil) PC.unfiltered <- otu.unfil[,c(1,66:72)]#only positive control PC.unfiltered PC.unfiltered <- column_to_rownames(PC.unfiltered,var="OTUID") sort(rowSums(PC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) PC1.unfiltered <- PC.unfiltered[which(rowSums(PC.unfiltered) > 0),] sort(rowSums(PC1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) PC1.unfiltered <- rownames_to_column(PC1.unfiltered,var="OTUID") PC1.tax.unfiltered <- merge(PC1.unfiltered, tax.unfil.ed, by="OTUID") PC1.unfiltered <- column_to_rownames(PC1.unfiltered,var="OTUID") #write.csv(NC1.tax.unfiltered, file = "NC1.tax.unfiltered.csv") sum(PC1.unfiltered) dim(PC1.unfiltered) #edit the taxonomy colnames(PC1.tax.unfiltered) PC1.tax.unfil.ed <- PC1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(PC1.tax.unfil.ed) PC1.tax.unfil.ed1 <- PC1.tax.unfil.ed[,c(1:9)] colnames(PC1.tax.unfil.ed1) #library(tidyr) long.dat.pc.unfil <- gather(PC1.tax.unfil.ed1, Sample, Read, Mock1r2:Mock7r2, factor_key = T) long.dat.pc.unfil #detach(package:plyr) df.pc.unfil <- long.dat.pc.unfil %>% group_by(Sample, Domain) %>% summarise(read.number = sum(Read)) df.pc.unfil1 <- df.pc.unfil %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #library(ggbeeswarm) #library(ggtext) plot.pc.unfil.dom <- ggplot(df.pc.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_violin(trim = F, scale="width") + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "C. Positive Control")+ #ylab("Read Proportion (%)")+ theme(legend.position="none", axis.title = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_text(size = 13), #strip.text.x = element_text(size=18, face = 'bold'), plot.title = element_text(size = 14), #axis.title.y = element_markdown(size=15,face="bold"), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ stat_summary(fun="median",geom="point", size=10, color="red", shape=95) plot.pc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_pc_plant_proportion.eps", plot.pc.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF THE RTSF POSITIVE CONTROL # otu table of the RTSF Zymo colnames(otu.unfil) otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") zymo.unfiltered <- otu.unfil[,"ZymoMockDNAr2", drop=F] zymo.unfiltered #zymo.unfiltered <- column_to_rownames(zymo.unfiltered,var="OTUID") sort(rowSums(zymo.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) zymo.unfiltered zymo1.unfiltered <- subset(zymo.unfiltered,rowSums(zymo.unfiltered["ZymoMockDNAr2"]) > 0) zymo1.unfiltered sort(rowSums(zymo1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) zymo1.unfiltered <- rownames_to_column(zymo1.unfiltered,var="OTUID") zymo1.tax.unfiltered <- merge(zymo1.unfiltered, tax.unfil.ed, by="OTUID") zymo1.unfiltered <- column_to_rownames(zymo1.unfiltered,var="OTUID") #write.csv(zymo1.tax.unfiltered, file = "zymo1.tax.unfiltered.csv") sum(zymo1.unfiltered) dim(zymo1.unfiltered) #edit the taxonomy colnames(zymo1.tax.unfiltered) zymo1.tax.unfil.ed <- zymo1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(zymo1.tax.unfil.ed) zymo1.tax.unfil.ed1 <- zymo1.tax.unfil.ed[,c(1:3)] colnames(zymo1.tax.unfil.ed1) #library(tidyr) long.dat.zymo.unfil <- zymo1.tax.unfil.ed1 long.dat.zymo.unfil$Read <- long.dat.zymo.unfil$ZymoMockDNAr2 long.dat.zymo.unfil #detach(package:plyr) df.zymo.unfil <- long.dat.zymo.unfil %>% group_by(Domain) %>% summarise(read.number = sum(Read)) df.zymo.unfil1 <- df.zymo.unfil %>% #group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #library(ggbeeswarm) #library(ggtext) plot.zymo.unfil.dom <- ggplot(df.zymo.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_bar(stat='identity') + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ theme_bw()+ ylab("Read Proportion (%)")+ labs(title = "D. RTSF Positive Control")+ theme(legend.position="none", axis.title.y = element_markdown(size=13), axis.title.x = element_blank(), axis.text.y = element_text(size = 13), axis.text.x = element_text(size = 13), plot.title = element_text(size = 14), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) plot.zymo.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_zymo_plant_proportion.eps", plot.zymo.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF THE RTSF NEGATIVE CONTROL # otu table of the RTSF NC colnames(otu.unfil) #otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") RTNC.unfiltered <- otu.unfil[,"RTSFNTCr2", drop=F] RTNC.unfiltered sort(rowSums(RTNC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.unfiltered <- subset(RTNC.unfiltered,rowSums(RTNC.unfiltered["RTSFNTCr2"]) > 0) RTNC1.unfiltered sort(rowSums(RTNC1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.unfiltered <- rownames_to_column(RTNC1.unfiltered,var="OTUID") RTNC1.tax.unfiltered <- merge(RTNC1.unfiltered, tax.unfil.ed, by="OTUID") RTNC1.unfiltered <- column_to_rownames(RTNC1.unfiltered,var="OTUID") #write.csv(RTNC1.tax.unfiltered, file = "RTNC1.tax.unfiltered.csv") sum(RTNC1.unfiltered) dim(RTNC1.unfiltered) #edit the taxonomy colnames(RTNC1.tax.unfiltered) RTNC1.tax.unfil.ed <- RTNC1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(RTNC1.tax.unfil.ed) RTNC1.tax.unfil.ed1 <- RTNC1.tax.unfil.ed[,c(1:3)] colnames(RTNC1.tax.unfil.ed1) #library(tidyr) long.dat.rtnc.unfil <- RTNC1.tax.unfil.ed1 long.dat.rtnc.unfil$Read <- long.dat.rtnc.unfil$RTSFNTCr2 long.dat.rtnc.unfil #detach(package:plyr) df.rtnc.unfil <- long.dat.rtnc.unfil %>% group_by(Domain) %>% summarise(read.number = sum(Read)) df.rtnc.unfil1 <- df.rtnc.unfil %>% #group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #library(ggbeeswarm) #library(ggtext) plot.rtnc.unfil.dom <- ggplot(df.rtnc.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_bar(stat='identity') + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "E. RTSF Negative Control")+ theme(legend.position="none", axis.title = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_text(size = 13), plot.title = element_text(size = 14), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) plot.rtnc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_rtnc_plant_proportion.eps", plot.rtnc.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# # COMPILE ALL READ PROPORTION OF PLANT CONTAMINANTS FIGURES plot.unfil.dom plot.nc.unfil.dom plot.pc.unfil.dom plot.zymo.unfil.dom plot.rtnc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') library(ggpubr) PlantContProp <- ggarrange(plot.unfil.dom,plot.nc.unfil.dom,plot.pc.unfil.dom,plot.zymo.unfil.dom,plot.rtnc.unfil.dom, ncol = 3, nrow = 2) PlantContProp ggsave("20210604_rPlantContProp.eps", PlantContProp, device=cairo_ps, width = 10, height =7, units= "in", dpi = 600) ############################################################################################################################################################# # ANALYSIS OF READS AFTER CHLOROPLAST AND MITOCHONDRIA REMOVAL setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) otu <- read.table('OTU_table_tax_filt.txt', sep='\t', header=T, row.names = 1, check.names = FALSE) otu head(otu) colnames(otu) tax <- otu[,'taxonomy'] str(tax) #write.csv(tax, file = "tax.fil.csv") dim(otu) colnames(otu) otu <- otu[,-81] dim(otu) # [1] 298 79, otu table still has Mock, NC, and PC in the sample sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) otu <- rownames_to_column(otu, var = "OTUID") #read taxonomy tax.ed = read.csv("tax.fil.ed.csv", header=T) head(tax.ed) colnames(otu) otu <- column_to_rownames(otu, var = "OTUID") rownames(tax.ed) <- rownames(otu) dim(tax.ed) #read the metadata #select only biological sample from otu table colnames(otu) otu.bio <- otu[,1:64] #unselect Mock, NC, and PC from the otu table colnames(otu.bio) dim(otu.bio) #otu.bio <- column_to_rownames(otu.bio,var = "OTUID") sort(rowSums(otu.bio, na.rm = FALSE, dims = 1), decreasing = F) # remove OTUs that do not present in sample otu.bio1=otu.bio[which(rowSums(otu.bio) > 0),] dim(otu.bio1) # otu= 218, otu table before normalization using metagenomeSeq package and before decontamination sort(rowSums(otu.bio1, na.rm = FALSE, dims = 1), decreasing = F) # merge otu.bio1 with taxonomy to have match taxonomy table head(otu.bio1) #otu.bio1 <- rownames_to_column(otu.bio1,var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed,var = "OTUID") otu.bio1 <- rownames_to_column(otu.bio1,var = "OTUID") otu.bio1.tax <- merge(otu.bio1, tax.ed, by="OTUID") dim(otu.bio1.tax) # separate the sample # otu table otu.bac.fil <- otu.bio1.tax[,c(1:65)] head(otu.bac.fil) otu.bac.fil <- column_to_rownames(otu.bac.fil,var="OTUID") sum(otu.bac.fil) dim(otu.bac.fil) #otu table of the negative control NC <- otu[,c(72:78)]#only negative control NC #NC <- column_to_rownames(NC,var="OTUID") sort(rowSums(NC, na.rm = FALSE, dims = 1), decreasing = F) NC1=NC[which(rowSums(NC) > 0),] sort(rowSums(NC1, na.rm = FALSE, dims = 1), decreasing = F) NC1 NC1 <- rownames_to_column(NC1,var="OTUID") tax.ed NC1.tax <- merge(NC1, tax.ed, by="OTUID") #write.csv(NC1.tax, file = "NC1.tax.csv") dim(NC1) NC1 <- column_to_rownames(NC1,var="OTUID") sum(NC1) #otu table of the positive control colnames(otu) PC <- otu[,c(65:71)]#only positive control PC #PC <- column_to_rownames(PC,var="OTUID") sort(rowSums(PC, na.rm = FALSE, dims = 1), decreasing = F) PC1=PC[which(rowSums(PC) > 0),] sort(rowSums(PC1, na.rm = FALSE, dims = 1), decreasing = F) PC1 PC1 <- rownames_to_column(PC1,var="OTUID") tax.ed PC1.tax <- merge(PC1, tax.ed, by="OTUID") #write.csv(PC1.tax, file = "PC1.tax.csv") dim(PC1) PC1 <- column_to_rownames(PC1,var="OTUID") sum(PC1) # otu table of the RTSF Zymo colnames(otu) zymo.fil <- otu[,"ZymoMockDNAr2", drop=F] zymo.fil zymo.fil <- column_to_rownames(zymo.fil,var="OTUID") sort(rowSums(zymo.fil, na.rm = FALSE, dims = 1), decreasing = F) zymo.fil zymo1.fil <- subset(zymo.fil,rowSums(zymo.fil["ZymoMockDNAr2"]) > 0) zymo1.fil sort(rowSums(zymo1.fil, na.rm = FALSE, dims = 1), decreasing = F) zymo1.fil <- rownames_to_column(zymo1.fil,var="OTUID") zymo1.tax.fil <- merge(zymo1.fil, tax.ed, by="OTUID") zymo1.fil <- column_to_rownames(zymo1.fil,var="OTUID") #write.csv(zymo1.tax.fil, file = "zymo1.tax.fil.csv") sum(zymo1.fil) dim(zymo1.fil) # otu table of the RTSF NC colnames(otu) RTNC.fil <- otu[,"RTSFNTCr2", drop=F] RTNC.fil sort(rowSums(RTNC.fil, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.fil <- subset(RTNC.fil,rowSums(RTNC.fil["RTSFNTCr2"]) > 0) RTNC1.fil sort(rowSums(RTNC1.fil, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.fil <- rownames_to_column(RTNC1.fil,var="OTUID") RTNC1.tax.fil <- merge(RTNC1.fil, tax.ed, by="OTUID") RTNC1.fil <- column_to_rownames(RTNC1.fil,var="OTUID") #write.csv(RTNC1.tax.fil, file = "RTNC1.tax.fil.csv") sum(RTNC1.fil) dim(RTNC1.fil) ##################################################################################################################################### ###################################################################################################################################### ### Rarefaction curves ###### # using GlobalPatterns library(phyloseq) # 1. rarefaction curve for otu table after plant contaminant removal before microbial decontamination and normalization setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) otu <- read.table('OTU_table_tax_filt.txt', sep='\t', header=T, row.names = 1, check.names = FALSE) otu otu #otu table after plant contaminant removal colnames(otu) head(otu) otu <- otu[,-81] dim(otu) # [1] 298 79, otu table still has Mock, NC, and PC in the sample colnames(otu) sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) # change name of ZymoMockDNAr2 to RTSF_ZymoMockDNAr2 library(dplyr) is.data.frame(otu) R.utils::detachPackage("plyr") otu <- otu %>% dplyr::rename(RTSF_ZymoMockDNAr2=ZymoMockDNAr2) colnames(otu) # make phyloseq otu table and taxonomy otu.phyl = otu_table(otu, taxa_are_rows = TRUE) head(tax.ed) tax.ed <- column_to_rownames(tax.ed, var = "OTUID") tax.phyl = tax_table(as.matrix(tax.ed)) # make phyloseq map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object phyl.obj <- merge_phyloseq(otu.phyl,tax.phyl,map.phyl) phyl.obj otu_table(phyl.obj) #set seed set.seed(42) #rarefy the data # make sure to run ggrare function in the "generating_rarecurfe.r" file # data = phyloseq object of decontaminated non normalized otu table # run the ggrare function attached in the file "generating_rarecurve.r" p.rare <- ggrare(phyl.obj, step = 1, color = "sample_type", label = "sample_type", se = FALSE) #set up your own color palette #Palette <- c("#440154FF","#1F968BFF","#FDE725FF",) #names(Palette) <- levels(sample_data(phyl.obj)$sample_type) #Palette #plot the rarecurve #p <- ggrare(psdata, step = 1000, color = "SampleType", label = "Sample", se = FALSE) library(ggtext) rare <- p.rare + scale_color_manual(labels = c("Experimental Sample", "Negative Control", "Positive Control", "RTSF Negative Control", "RTSF Positive Control"), values = c("#88CCEE", "#CC6677", "#DDCC77", "#117733", "#332288"))+ theme_bw()+ scale_size_manual(values = 60)+ ylab("Number of OTUs")+ xlab("Number of Reads")+ labs(color='Sample Type:') + theme( strip.text.x = element_text(size=14, face='bold'), axis.text.x=element_text(size = 14), axis.text.y = element_text(size = 14), strip.text.y = element_text(size=18, face = 'bold'), plot.title = element_text(size =20 ,face='bold'), axis.title.y = element_text(size=15,face="bold"), axis.title.x = element_text(size=15,face="bold"), legend.position = "right", legend.title = element_text(size=15, face ="bold"), legend.text = element_text(size=14), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) plot(rare) setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604rarefactioncurve.pdf", rare, device= "pdf", width = 9, height = 7, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### bacterial taxa composition of all samples (after plant contaminant removal) # make phyloseq object otu #otu table after plant contaminant removal colnames(otu) sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) # make phyloseq otu table and taxonomy head(otu) colnames(otu) colnames(otu)[80] <- "RTSF_ZymoMockDNAr2" otu.phyl = otu_table(otu, taxa_are_rows = TRUE) head(tax.ed) tax.ed <- column_to_rownames(tax.ed, var = "OTUID") tax.phyl = tax_table(as.matrix(tax.ed)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) map$batch <- as.factor(map$batch) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object phyl.obj <- merge_phyloseq(otu.phyl,tax.phyl,map.phyl) phyl.obj # merge taxa by class # 1. class - Bacteria bac.cl <- tax_glom(phyl.obj, taxrank = "Class", NArm = F) bac.cl.ra <- transform_sample_counts(bac.cl, function(x) x/sum(x)) bac.cl.ra df.cl <- psmelt(bac.cl.ra) %>% group_by(batch,Sample, Class) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.cl$Class <- as.character(df.cl$Class) #df.cl$Class[df.cl$Mean < 0.1] <- "Other" # barplot of bacterial/archaeal composition across pods at Phylum level #library(rcartocolor) #display_carto_all(colorblind_friendly = TRUE) #my_colors = carto_pal(12, "Safe") #my_colors # New facet label names for plant variable #plant.labs <- c("Plant: A", "Plant: B", "Plant: C") #names(plant.labs) <- c("A", "B", "C") # Create the plot #install.packages("pals") library(pals) cl <- ggplot(data=df.cl, aes(x=Sample, y=Mean, fill=Class)) plot.cl <- cl + geom_bar(aes(), stat="identity", position="fill") + scale_fill_manual(values=as.vector(stepped(n=24))) + #scale_fill_manual(values=c('#e6194b', '#3cb44b', '#ffe119', '#4363d8', '#911eb4', '#46f0f0', '#f032e6', '#bcf60c','#f58231', '#fabebe', '#008080', '#e6beff', '#9a6324', '#fffac8', '#800000', '#aaffc3', '#808000', '#ffd8b1', '#000075', '#808080', 'lightslateblue', '#000000', 'tomato','hotpink2'))+ #scale_fill_manual(values=c("#44AA99", "#332288", "#117733","#CC6677","#DDCC77", "#88CCEE","#661100","#AA4499" ,"#888888"))+ theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ #labs(y= "Mean Relative Abundance", x="Plant")+ labs(y= "Mean Relative Abundance")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=12, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=13,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=1,bycol=TRUE)) plot.cl setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_class.eps", plot.cl, device = "eps", width = 9.5, height =6.5, units= "in", dpi = 600) # merge taxa by genus # 2. genus - Bacteria bac.gen <- tax_glom(phyl.obj, taxrank = "Genus", NArm = F) bac.gen.ra <- transform_sample_counts(bac.gen, function(x) x/sum(x)) bac.gen.ra #153 taxa df.gen <- psmelt(bac.gen.ra) %>% group_by(batch,Sample, Genus) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.gen$Genus <- as.character(df.gen$Genus) df.gen$Genus[df.gen$Mean < 0.03] <- "Other (less than 3%)" library(randomcoloR) set.seed(1) n <- 45 palette <- distinctColorPalette(n) col=palette gen <- ggplot(data=df.gen, aes(x=Sample, y=Mean, fill=Genus)) plot.gen <- gen + geom_bar(aes(), stat="identity", position="fill") + #scale_colour_viridis(discrete = T)+ #facet_grid(. ~ batch) + scale_fill_manual(name="Genus",values=col) + #scale_fill_manual(values=as.vector(stepped(n=24))) + #scale_fill_manual(name="Genus",values=as.vector(polychrome(n=36))) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=10, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=13,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=2,bycol=TRUE)) plot.gen plot.gen1 <- plot.gen + facet_wrap(~ batch, scales="free_x", nrow = 2)+ theme(strip.background =element_rect(fill="grey"))+ theme(strip.text = element_text(colour = 'black', size = 14, face = 'bold')) plot.gen1 setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_genus_all.eps", plot.gen1, device = "eps", width = 15, height = 8, units= "in", dpi = 600) # merge taxa by family # 2. Family - Bacteria bac.fam <- tax_glom(phyl.obj, taxrank = "Family", NArm = F) bac.fam.ra <- transform_sample_counts(bac.fam, function(x) x/sum(x)) bac.fam.ra #87 taxa df.fam <- psmelt(bac.fam.ra) %>% group_by(batch,Sample, Family) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.fam$Family <- as.character(df.fam$Family) df.fam$Family[df.fam$Mean < 0.01] <- "Other (less than 1%)" fam <- ggplot(data=df.fam, aes(x=Sample, y=Mean, fill=Family)) plot.fam <- fam + geom_bar(aes(), stat="identity", position="fill") + scale_fill_manual(name="Family",values=col) + #scale_fill_manual(name="Family",values=as.vector(polychrome(n=36))) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance", x="Sample Type")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=12, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=13,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=2,bycol=TRUE)) plot.fam setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_genus.eps", plot.gen, device = "eps", width = 13, height =7.5, units= "in", dpi = 600) ##################################################################################################################################### ##################################################################################################################################### ## 2. bacterial taxa found in the negative control # make phyloseq object # otu table of negative control only dim(NC) NC <- rownames_to_column(NC, var = "OTUID") head(NC) dim(RTNC.fil) head(RTNC.fil) RTNC.fil <- rownames_to_column(RTNC.fil, var = "OTUID") colnames(RTNC.fil) #colnames(RTNC.fil)[2] <- "RTSF_NC" ncrtnc <- merge(NC, RTNC.fil) head(ncrtnc) colnames(ncrtnc) ncrtnc <- column_to_rownames(ncrtnc, var = "OTUID") sort(rowSums(ncrtnc, na.rm = FALSE, dims = 1), decreasing = F) ncrtnc1 <- ncrtnc[which(rowSums(ncrtnc) > 0),] sort(rowSums(ncrtnc1, na.rm = FALSE, dims = 1), decreasing = F) # taxonomy negative control head(ncrtnc1) ncrtnc1 <- rownames_to_column(ncrtnc1, var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed, var = "OTUID") ncrtnc1.tax <- merge(ncrtnc1, tax.ed, by="OTUID") colnames(ncrtnc1.tax) tax.ncrtnc <- ncrtnc1.tax[,c(1,10:18)] head(tax.ncrtnc) # make phyloseq otu table and taxonomy ncrtnc1 <- column_to_rownames(ncrtnc1, var = "OTUID") ncrtnc.phyl = otu_table(ncrtnc1, taxa_are_rows = TRUE) tax.ncrtnc <- column_to_rownames(tax.ncrtnc, var = "OTUID") tax.ncrtnc.phyl = tax_table(as.matrix(tax.ncrtnc)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object ncrtnc.phyl.obj <- merge_phyloseq(ncrtnc.phyl,tax.ncrtnc.phyl,map.phyl) ncrtnc.phyl.obj # 1. genus - Bacteria ncrtnc.gen <- tax_glom(ncrtnc.phyl.obj, taxrank = "Genus.ed", NArm = F) ncrtnc.gen.ra <- transform_sample_counts(ncrtnc.gen, function(x) x/sum(x)) ncrtnc.gen.ra #61 taxa df.ncrtnc.gen <- psmelt(ncrtnc.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.ncrtnc.gen$Genus.ed <- as.character(df.ncrtnc.gen$Genus.ed) df.ncrtnc.gen$percent.mean <- df.ncrtnc.gen$Mean*100 ncrtnc.bubble.plot <- ggplot(data=df.ncrtnc.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", x ="Negative Controls", y="Taxa")+ theme(legend.key=element_blank(), axis.title = element_markdown(size=15,face="bold"), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, hjust = 1, angle=45), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") ncrtnc.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_NC_RTSFNC.bubble.plot.tiff", ncrtnc.bubble.plot, device = "tiff", width = 13.8, height =7.5, units= "in", dpi = 600) ## 3. bacterial taxa found in the positive control # make phyloseq object # otu table of positive control and RTSF_Zymo mock dim(PC) colnames(PC) PC <- rownames_to_column(PC, var = "OTUID") dim(zymo.fil) colnames(zymo.fil) zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") colnames(zymo.fil)[2] <- "RTSF_ZymoMockDNAr2" colnames(zymo.fil) #zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") PC.zymo <- merge(PC, zymo.fil) PC.zymo <- column_to_rownames(PC.zymo, var = "OTUID") sort(rowSums(PC.zymo, na.rm = FALSE, dims = 1), decreasing = F) PC.zymo1 <- PC.zymo[which(rowSums(PC.zymo) > 0),] sort(rowSums(PC.zymo1, na.rm = FALSE, dims = 1), decreasing = F) colnames(PC.zymo1) # taxonomy positive control head(PC.zymo1) PC.zymo1 <- rownames_to_column(PC.zymo1, var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed, var = "OTUID") PC.zymo1.tax <- merge(PC.zymo1, tax.ed, by="OTUID") colnames(PC.zymo1.tax) tax.PC.zymo <- PC.zymo1.tax[,c(1,10:18)] head(tax.PC.zymo) # make phyloseq otu table and taxonomy PC.zymo1 <- column_to_rownames(PC.zymo1, var = "OTUID") PC.zymo.phyl = otu_table(PC.zymo1, taxa_are_rows = TRUE) tax.PC.zymo <- column_to_rownames(tax.PC.zymo, var = "OTUID") tax.PC.zymo.phyl = tax_table(as.matrix(tax.PC.zymo)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") colnames(map) head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object PC.zymo.phyl.obj <- merge_phyloseq(PC.zymo.phyl,tax.PC.zymo.phyl,map.phyl) PC.zymo.phyl.obj #121 taxa # 1. genus - Bacteria PC.zymo.gen <- tax_glom(PC.zymo.phyl.obj, taxrank = "Genus.ed", NArm = F) PC.zymo.gen.ra <- transform_sample_counts(PC.zymo.gen, function(x) x/sum(x)) PC.zymo.gen.ra #61 taxa df.PC.zymo.gen <- psmelt(PC.zymo.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.PC.zymo.gen$Genus.ed <- as.character(df.PC.zymo.gen$Genus.ed) df.PC.zymo.gen$percent.mean <- df.PC.zymo.gen$Mean*100 PC.zymo.bubble.plot <- ggplot(data=df.PC.zymo.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", y="Taxa")+ theme(legend.key=element_blank(), axis.title.y = element_markdown(size=15,face="bold"), axis.title.x = element_blank(), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, angle=45, hjust = 1), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") PC.zymo.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_PC.zymo.bubble.plot.tiff", PC.zymo.bubble.plot, device = "tiff", width = 12.5, height =7, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### bacterial taxa composition of all samples (before plant contaminant removal and before microbial decontamination and normalization) # make phyloseq object setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) # unfiltered otu table otu.unfil colnames(otu.unfil) head(otu.unfil) colnames(otu.unfil)[80] <- "RTSF_ZymoMockDNAr2" otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") sort(rowSums(otu.unfil, na.rm = FALSE, dims = 1), decreasing = F) # make phyloseq otu table and taxonomy otu.unfil.phyl = otu_table(otu.unfil, taxa_are_rows = TRUE) head(tax.unfil.ed) tax.unfil.ed <- column_to_rownames(tax.unfil.ed, var = "OTUID") tax.unfil.phyl = tax_table(as.matrix(tax.unfil.ed)) # make phyloseq map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object phyl.unfil.obj <- merge_phyloseq(otu.unfil.phyl,tax.unfil.phyl,map.phyl) phyl.unfil.obj otu_table(phyl.unfil.obj) # merge taxa by class # 1. class - Bacteria bac.unfil.cl <- tax_glom(phyl.unfil.obj, taxrank = "Class", NArm = F) bac.unfil.cl.ra <- transform_sample_counts(bac.unfil.cl, function(x) x/sum(x)) bac.unfil.cl.ra #23 taxa otu_table(bac.unfil.cl.ra) df.unfil.cl <- psmelt(bac.unfil.cl.ra) %>% group_by(sample_type, Class) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.unfil.cl$Class <- as.character(df.unfil.cl$Class) #df.cl$Class[df.cl$Mean < 0.1] <- "Other" # Create the plot #install.packages("pals") library(pals) unfil.cl <- ggplot(data=df.unfil.cl, aes(x=sample_type, y=Mean, fill=Class)) plot.unfil.cl <- unfil.cl + geom_bar(aes(), stat="identity", position="fill") + scale_fill_manual(values=as.vector(stepped(n=24))) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance", x="Sample Type")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text=element_text(size=14), axis.title = element_markdown(size=15,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=1,bycol=TRUE)) plot.unfil.cl setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_class.unfiltered.eps", plot.unfil.cl, device = "eps", width = 9.5, height =6.5, units= "in", dpi = 600) # merge taxa by genus # 2. genus - Bacteria bac.unfil.gen <- tax_glom(phyl.unfil.obj, taxrank = "Genus.ed", NArm = F) bac.unfil.gen.ra <- transform_sample_counts(bac.unfil.gen, function(x) x/sum(x)) bac.unfil.gen.ra #209 taxa df.unfil.gen <- psmelt(bac.unfil.gen.ra) %>% group_by(batch, Sample, Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.unfil.gen$Genus.ed <- as.character(df.unfil.gen$Genus.ed) df.unfil.gen$Genus.ed[df.unfil.gen$Mean < 0.001] <- "Other (less than 0.1%)" library(randomcoloR) set.seed(1) n <- 50 palette <- distinctColorPalette(n) col=palette unfil.gen <- ggplot(data=df.unfil.gen, aes(x=Sample, y=Mean, fill=Genus.ed)) plot.unfil.gen <- unfil.gen + geom_bar(aes(), stat="identity", position="fill") + #scale_fill_manual(name="Genus", values=as.vector(stepped(n=24))) + scale_fill_manual(name="Genus",values=col) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance", x="Sample")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=10, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=15,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=2,bycol=TRUE)) plot.unfil.gen plot.unfil.gen1 <- plot.unfil.gen + facet_wrap(~ batch, scales="free_x", nrow = 2)+ theme(strip.background =element_rect(fill="grey"))+ theme(strip.text = element_text(colour = 'black', size = 14, face = 'bold')) plot.unfil.gen1 setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_genus_all_unfiltered.eps", plot.unfil.gen1, device = "eps", width = 15, height =8, units= "in", dpi = 600) ## make a bubble plot for all samples df.unfil.gen <- psmelt(bac.unfil.gen.ra) %>% group_by(batch, Sample, Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.unfil.gen$Genus.ed <- as.character(df.unfil.gen$Genus.ed) df.unfil.gen$Genus.ed[df.unfil.gen$Mean < 0.0001] <- "Other (less than 0.01%)" df.unfil.gen$percent.mean <- df.unfil.gen$Mean*100 unfil.gen.bubble.plot <- ggplot(data=df.unfil.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", x ="Sample", y="Taxa")+ theme(legend.key=element_blank(), axis.title = element_markdown(size=15,face="bold"), axis.text.x = element_text(colour = "black", size = 8, vjust = 0.5, hjust = 1, angle=90), axis.text.y = element_text(colour = "black", size = 10), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") unfil.gen.bubble.plot unfil.gen.bubble.plot1 <- unfil.gen.bubble.plot + facet_wrap(~ batch, scales="free_x", nrow = 1)+ theme(strip.background =element_rect(fill="grey"))+ theme(strip.text = element_text(colour = 'black', size = 14, face = 'bold')) unfil.gen.bubble.plot1 setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_unfil.gen.bubble.plot1.tiff", unfil.gen.bubble.plot1, device = "tiff", width = 23, height =10, units= "in", dpi = 600) ##################################################################################################################################### ##################################################################################################################################### ## 2. bacterial taxa found in the negative control before plant contamination # make phyloseq object # otu table of negative control only colnames(NC.unfiltered) head(NC.unfiltered) sort(rowSums(NC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) NC.unfiltered1 <- NC.unfiltered[which(rowSums(NC.unfiltered) > 0),] # taxonomy negative control head(NC.unfiltered1) NC.unfiltered1 <- rownames_to_column(NC.unfiltered1, var = "OTUID") head(tax.unfil.ed) tax.unfil.ed <- rownames_to_column(tax.ed, var = "OTUID") colnames(tax.unfil.ed) NC.unfiltered1.tax <- merge(NC.unfiltered1, tax.unfil.ed, by="OTUID") colnames(NC.unfiltered1.tax) tax.NC.unfiltered1 <- NC.unfiltered1.tax[,c(1,10:18)] head(tax.NC.unfiltered1) # make phyloseq otu table and taxonomy NC.unfiltered1 <- column_to_rownames(NC.unfiltered1, var = "OTUID") NC.unfiltered1.phyl = otu_table(NC.unfiltered1, taxa_are_rows = TRUE) tax.NC.unfiltered1 <- column_to_rownames(tax.NC.unfiltered1, var = "OTUID") tax.NC.unfiltered1.phyl = tax_table(as.matrix(tax.NC.unfiltered1)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object NC.unfiltered1.phyl.obj <- merge_phyloseq(NC.unfiltered1.phyl,tax.NC.unfiltered1.phyl,map.phyl) NC.unfiltered1.phyl.obj # 1. genus - Bacteria NC.unfiltered1.gen <- tax_glom(NC.unfiltered1.phyl.obj, taxrank = "Genus.ed", NArm = F) NC.unfiltered1.gen.ra <- transform_sample_counts(NC.unfiltered1.gen, function(x) x/sum(x)) NC.unfiltered1.gen.ra #52 taxa df.NC.unfiltered1.gen <- psmelt(NC.unfiltered1.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.NC.unfiltered1.gen$Genus.ed <- as.character(df.NC.unfiltered1.gen$Genus.ed) df.NC.unfiltered1.gen$percent.mean <- df.NC.unfiltered1.gen$Mean*100 NC.unfiltered1.bubble.plot <- ggplot(data=df.NC.unfiltered1.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", x ="Negative Controls", y="Taxa")+ theme(legend.key=element_blank(), axis.title = element_markdown(size=15,face="bold"), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, hjust = 1, angle=45), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") NC.unfiltered1.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_NC.unfiltered1.bubble.plot.tiff", NC.unfiltered1.bubble.plot, device = "tiff", width = 13.8, height =7.5, units= "in", dpi = 600) ## 3. bacterial taxa found in the positive control # make phyloseq object # otu table of positive control and RTSF_Zymo mock dim(PC) colnames(PC) PC <- rownames_to_column(PC, var = "OTUID") dim(zymo.fil) colnames(zymo.fil) zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") colnames(zymo.fil)[2] <- "RTSF_ZymoMockDNAr2" colnames(zymo.fil) #zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") PC.zymo <- merge(PC, zymo.fil) PC.zymo <- column_to_rownames(PC.zymo, var = "OTUID") sort(rowSums(PC.zymo, na.rm = FALSE, dims = 1), decreasing = F) PC.zymo1 <- PC.zymo[which(rowSums(PC.zymo) > 0),] sort(rowSums(PC.zymo1, na.rm = FALSE, dims = 1), decreasing = F) colnames(PC.zymo1) # taxonomy positive control head(PC.zymo1) PC.zymo1 <- rownames_to_column(PC.zymo1, var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed, var = "OTUID") PC.zymo1.tax <- merge(PC.zymo1, tax.ed, by="OTUID") colnames(PC.zymo1.tax) tax.PC.zymo <- PC.zymo1.tax[,c(1,10:18)] head(tax.PC.zymo) # make phyloseq otu table and taxonomy PC.zymo1 <- column_to_rownames(PC.zymo1, var = "OTUID") PC.zymo.phyl = otu_table(PC.zymo1, taxa_are_rows = TRUE) tax.PC.zymo <- column_to_rownames(tax.PC.zymo, var = "OTUID") tax.PC.zymo.phyl = tax_table(as.matrix(tax.PC.zymo)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") colnames(map) head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object PC.zymo.phyl.obj <- merge_phyloseq(PC.zymo.phyl,tax.PC.zymo.phyl,map.phyl) PC.zymo.phyl.obj #121 taxa # 1. genus - Bacteria PC.zymo.gen <- tax_glom(PC.zymo.phyl.obj, taxrank = "Genus.ed", NArm = F) PC.zymo.gen.ra <- transform_sample_counts(PC.zymo.gen, function(x) x/sum(x)) PC.zymo.gen.ra #61 taxa df.PC.zymo.gen <- psmelt(PC.zymo.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.PC.zymo.gen$Genus.ed <- as.character(df.PC.zymo.gen$Genus.ed) df.PC.zymo.gen$percent.mean <- df.PC.zymo.gen$Mean*100 PC.zymo.bubble.plot <- ggplot(data=df.PC.zymo.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", y="Taxa")+ theme(legend.key=element_blank(), axis.title.y = element_markdown(size=15,face="bold"), axis.title.x = element_blank(), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, angle=45, hjust = 1), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") PC.zymo.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_PC.zymo.bubble.plot.tiff", PC.zymo.bubble.plot, device = "tiff", width = 12.5, height =7, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### Shared taxa among all total samples (before plant contaminants removal) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') ## 1.calculate the occupancy of each OTUID across all samples # unfiltered otu # unfiltered otu table otu.unfil colnames(otu.unfil) head(otu.unfil) otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") sort(rowSums(otu.unfil, na.rm = FALSE, dims = 1), decreasing = F) # unfiltered taxonomy head(tax.unfil.ed) #tax.unfil.ed <- column_to_rownames(tax.unfil.ed, var = "OTUID") tax.unfil.ed <- rownames_to_column(tax.unfil.ed, var = "OTUID") # read map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id ##build a long data frame joining unfiltered otu table, map, and taxonomy longdf.unfil <- data.frame(OTUID=as.factor(rownames(otu.unfil)), otu.unfil, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.unfil.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(OTUID, sample_id) %>% summarise(n=sum(abun)) #df <- data.frame(OTUID=as.factor(rownames(otu.unfil)), otu.unfil, check.names = F) #colnames(df) #ldf <- gather(df,sample_id, abun, -OTUID) ##build the new table: OTUID as rownames and sample_id as colnames widedf.unfil <- as.data.frame(spread(longdf.unfil, OTUID, n, fill=0)) rownames(widedf.unfil) <- widedf.unfil[,1] widedf.unfil <- widedf.unfil[,-1] widedf.unfil <- t(widedf.unfil) ## calculate the occupancy of each OTUID across all samples widedf.unfil.PA <- 1*((widedf.unfil>0)==1) Occ.unfil <- rowSums(widedf.unfil.PA)/ncol(widedf.unfil.PA) df.Occ.unfil <- as.data.frame(Occ.unfil) df.Occ.unfil <- rownames_to_column(df.Occ.unfil, var = "OTUID") df.Occ.unfil.tax <- merge(df.Occ.unfil, tax.unfil.ed, by="OTUID") sort.df.Occ.unfil.tax <- df.Occ.unfil.tax[order(df.Occ.unfil.tax$Occ.unfil, decreasing = TRUE),] setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') #write.csv(sort.df.Occ.unfil.tax, file = "sort.df.Occ.unfil.tax_all.csv") ##calculate the mean relative abundance of each OTUID across all samples widedf.unfil.RA <- decostand(widedf.unfil, method="total", MARGIN=2) widedf.unfil.RA relabund.unfil <- rowSums(widedf.unfil.RA) df.relabund.unfil <- as.data.frame(relabund.unfil) df.relabund.unfil$meanRelAbund <- df.relabund.unfil$relabund.unfil/ncol(widedf.unfil.RA) df.relabund.unfil = rownames_to_column(df.relabund.unfil, var = "OTUID") sum(df.relabund.unfil$meanRelAbund) sort.relabund.unfil <- df.relabund.unfil[order(df.relabund.unfil$meanRelAbund, decreasing = TRUE),] ##merge OCC table and mean relative abundance table df.Occ.ra.unfil <- merge(df.Occ.unfil, df.relabund.unfil, by.x =c("OTUID"), by.y = c("OTUID")) df.Occ.ra.unfil.tax <- merge(df.Occ.ra.unfil, tax.unfil.ed, by="OTUID") sort.df.Occ.ra.unfil.tax <- df.Occ.ra.unfil.tax[order(df.Occ.ra.unfil.tax$Occ.unfil, decreasing = TRUE),] #select OTUID with occ more than and equal to 50 % Occ50.unfil <- subset(sort.df.Occ.ra.unfil.tax , sort.df.Occ.ra.unfil.tax$Occ.unfil>= 0.5) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') #write.csv(Occ50.unfil, file = "Occ50.unfil.csv") Occ50.unfil.ed <- read.csv("Occ50.unfil.ed.csv") ### Occupancy-mean relative abundance across all total samples before plant contaminants removal Occ50.unfil.plot <- ggplot(Occ50.unfil.ed,aes(x=fct_reorder(OTUID.genus, Occ.unfil, .desc=T), y=Occ.unfil))+ geom_bar(aes(), stat="identity")+ #coord_flip()+ #scale_fill_manual(values = palette)+ labs(y= "Occupancy", x="OTU.ID")+ theme_bw()+ coord_flip()+ theme(plot.title = element_text(size=16, face="bold"), axis.text=element_text(size=12, hjust = 0.5), axis.title=element_text(size=14,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), #legend.position = "right", legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) Occ50.unfil.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_Occ50.unfil.eps", Occ50.unfil.plot, device = "eps", width = 9, height =6.5, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### Shared taxa among samples (after plant contaminants removal) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') ## 1.calculate the occupancy of each OTUID across all samples # plant filtered otu otu colnames(otu) #otu <- column_to_rownames(otu, var = "OTUID") sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) # filtered taxonomy head(tax.ed) #tax.ed <- column_to_rownames(tax.ed, var = "OTUID") tax.ed <- rownames_to_column(tax.ed, var = "OTUID") # read map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id ##build a long data frame joining unfiltered otu table, map, and taxonomy longdf.fil <- data.frame(OTUID=as.factor(rownames(otu)), otu, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(OTUID, sample_id) %>% summarise(n=sum(abun)) ##build the new table: OTUID as rownames and sample_id as colnames widedf.fil <- as.data.frame(spread(longdf.fil, OTUID, n, fill=0)) rownames(widedf.fil) <- widedf.fil[,1] widedf.fil <- widedf.fil[,-1] widedf.fil <- t(widedf.fil) ## calculate the occupancy of each OTUID across all samples widedf.fil.PA <- 1*((widedf.fil>0)==1) Occ.fil <- rowSums(widedf.fil.PA)/ncol(widedf.fil.PA) df.Occ.fil <- as.data.frame(Occ.fil) df.Occ.fil <- rownames_to_column(df.Occ.fil, var = "OTUID") df.Occ.fil.tax <- merge(df.Occ.fil, tax.ed, by="OTUID") sort.df.Occ.fil.tax <- df.Occ.fil.tax[order(df.Occ.fil.tax$Occ.fil, decreasing = TRUE),] setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') write.csv(sort.df.Occ.fil.tax, file = "sort.df.Occ.fil.tax_all.csv") ##################################################################################################################################### ###################################################################################################################################### ## 2.calculate the occupancy of each OTUID across all biological samples and all negative controls before plant contaminants removal # subset otu only biological samples and negative controls colnames(otu.unfil) otu.bio.nc.unfil <- data.frame(otu.unfil[,c(1:64,72:78)], check.names = F) colnames(otu.bio.nc.unfil) ##build a long data frame joining unfiltered otu table, map, and taxonomy longdf.bio.nc.unfil <- data.frame(OTUID=as.factor(rownames(otu.bio.nc.unfil)), otu.bio.nc.unfil, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.unfil.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(OTUID, sample_id) %>% summarise(n=sum(abun)) ##build the new table: OTUID as rownames and sample_id as colnames widedf.bio.nc.unfil <- as.data.frame(spread(longdf.bio.nc.unfil, OTUID, n, fill=0)) rownames(widedf.bio.nc.unfil) <- widedf.bio.nc.unfil[,1] widedf.bio.nc.unfil <- widedf.bio.nc.unfil[,-1] widedf.bio.nc.unfil <- t(widedf.bio.nc.unfil) colnames(widedf.bio.nc.unfil) ## calculate the occupancy of each OTUID across all biological samples and all negative controls widedf.bio.nc.unfil.PA <- 1*((widedf.bio.nc.unfil>0)==1) Occ.bio.nc.unfil <- rowSums(widedf.bio.nc.unfil.PA)/ncol(widedf.bio.nc.unfil.PA) df.Occ.bio.nc.unfil <- as.data.frame(Occ.bio.nc.unfil) df.Occ.bio.nc.unfil <- rownames_to_column(df.Occ.bio.nc.unfil, var = "OTUID") df.Occ.bio.nc.unfil.tax <- merge(df.Occ.bio.nc.unfil, tax.unfil.ed, by="OTUID") sort.df.Occ.bio.nc.unfil.tax <- df.Occ.bio.nc.unfil.tax[order(df.Occ.bio.nc.unfil.tax$Occ.bio.nc.unfil, decreasing = TRUE),] View(sort.df.Occ.bio.nc.unfil.tax) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') write.csv(sort.df.Occ.bio.nc.unfil.tax, file = "sort.df.Occ.unfil.tax_BioNc.csv") ##################################################################################################################################### ###################################################################################################################################### ## calculate the occupancy of each OTUID across all biological samples and all negative controls after plant contaminants removal ## what taxa are shared among experimental samples and the negative controls # subset otu only biological samples and negative controls colnames(otu) otu.bio.nc.fil <- data.frame(otu[,c(1:64,72:78)], check.names = F) colnames(otu.bio.nc.fil) ##build a long data frame joining filtered otu table, map, and taxonomy longdf.bio.nc.fil2 <- data.frame(OTUID=as.factor(rownames(otu.bio.nc.fil)), otu.bio.nc.fil, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(Genus.ed,sample_id) %>% summarise(n=sum(abun)) ##build the new table: Genus as rownames and sample_id as colnames widedf.bio.nc.fil2 <- as.data.frame(spread(longdf.bio.nc.fil2, Genus.ed, n, fill=0)) rownames(widedf.bio.nc.fil2) <- widedf.bio.nc.fil2[,1] widedf.bio.nc.fil2 <- widedf.bio.nc.fil2[,-1] widedf.bio.nc.fil2 <- t(widedf.bio.nc.fil2) colnames(widedf.bio.nc.fil2) ## calculate the occupancy of each Genus across all biological samples and all negative controls widedf.bio.nc.fil.PA2 <- 1*((widedf.bio.nc.fil2>0)==1) Occ.bio.nc.fil2 <- rowSums(widedf.bio.nc.fil.PA2)/ncol(widedf.bio.nc.fil.PA2) df.Occ.bio.nc.fil2 <- as.data.frame(Occ.bio.nc.fil2) df.Occ.bio.nc.fil2 <- rownames_to_column(df.Occ.bio.nc.fil2, var = "Genus") sort.df.Occ.bio.nc.fil2 <- df.Occ.bio.nc.fil2[order(df.Occ.bio.nc.fil2$Occ.bio.nc.fil2, decreasing = TRUE),] ##calculate the mean relative abundance of each Genus across experimental samples and the negative controls widedf.bio.nc.fil2.RA <- decostand(widedf.bio.nc.fil2, method="total", MARGIN=2) widedf.bio.nc.fil2.RA relabund <- rowSums(widedf.bio.nc.fil2.RA) df.relabund <- as.data.frame(relabund) df.relabund$meanRelAbund <- df.relabund$relabund/ncol(widedf.bio.nc.fil2.RA) df.relabund = rownames_to_column(df.relabund, var = "Genus") sum(df.relabund$meanRelAbund) sort.relabund <- df.relabund[order(df.relabund$meanRelAbund, decreasing = TRUE),] ##merge OCC table and mean relative abundance table df.Occ.ra <- merge(df.Occ.bio.nc.fil2, df.relabund, by.x =c("Genus"), by.y = c("Genus")) sort.df.Occ.ra <- df.Occ.ra[order(df.Occ.ra$Occ.bio.nc.fil2, decreasing = TRUE),] #select Genus with occ more than and equal to 2 % Occ0.02 <- subset(sort.df.Occ.ra, sort.df.Occ.ra$Occ.bio.nc.fil2 >= 0.02) #Occ1.pf ##sort the mean relative abundance #sort_Occ1.pf <- Occ1.pf[order(Occ1.pf$meanRelAbund, decreasing = TRUE),] ### Occupancy-mean relative abundance across calculate the occupancy of each OTUID across all biological samples and all negative controls after plant contaminants removal Occ.bio.nc.fil.plot <- ggplot(Occ0.02,aes(x=fct_reorder(Genus, Occ.bio.nc.fil2, .desc=T), y=Occ.bio.nc.fil2))+ geom_bar(aes(), stat="identity")+ #coord_flip()+ #scale_fill_manual(values = palette)+ labs(y= "Occupancy", x="Genus")+ theme_bw()+ coord_flip()+ theme(plot.title = element_text(size=16, face="bold"), axis.text.x=element_text(size=10,vjust = 0.5, hjust = 1), axis.title=element_text(size=12,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), #legend.position = "right", legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) Occ.bio.nc.fil.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_expe_nc_0.02.eps", Occ.bio.nc.fil.plot, device = "eps", width = 5.5, height =6, units= "in", dpi = 600) ################################################################################################################## # Subset OTU that present only in the negative control(not present in the biological samples) colnames(widedf.bio.nc.unfil.PA) unique.nc.unfil <- as.data.frame(subset(widedf.bio.nc.unfil.PA, rowSums(widedf.bio.nc.unfil.PA[,1:64]) == 0)) colnames(unique.nc.unfil) unique.nc.unfil2 <- as.data.frame(subset(unique.nc.unfil, rowSums(unique.nc.unfil[,65:71]) > 0)) unique.nc.unfil2 <- rownames_to_column(unique.nc.unfil2, var = "OTUID") dim(unique.nc.unfil2) # 22 OTU present only in the negative control unique.nc.unfil.tax <- merge(unique.nc.unfil2, tax.unfil.ed, by="OTUID") dim(unique.nc.unfil.tax) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') write.csv(unique.nc.unfil.tax, file = "unique.nc.unfil.tax.csv") ##### chloroplast sequences distribution ###### # 20210604_16SV4_OTU97 # load unfiltered otu and tax table otu.tax.unfiltered colnames(otu.tax.unfiltered) # select otu chloroplast and mitochondria otu.tax.chlo <- otu.tax.unfiltered %>% filter(Order == "Chloroplast") dim(otu.tax.chlo) head(otu.tax.chlo) tail(otu.tax.chlo) colnames(otu.tax.chlo) # otu table chloroplast otu.chlo <- otu.tax.chlo[1:81] head(otu.chlo) dim(otu.chlo) # taxonomy table chloroplast tax.chlo <- otu.tax.chlo[,c(1,85:90)] head(tax.chlo) # occupancy otu.chlo <- column_to_rownames(otu.chlo, var = "OTUID") otu.chlo.PA <- 1*((otu.chlo>0)==1) sum(otu.chlo.PA) otu.chlo.PA <- otu.chlo.PA[rowSums(otu.chlo.PA)>0,] occ.chlo <- rowSums(otu.chlo.PA)/ncol(otu.chlo.PA) df.occ.chlo <- as.data.frame(occ.chlo) df.occ.chlo <- rownames_to_column(df.occ.chlo, var = "OTUID") dim(df.occ.chlo) # rel. abund. otu.rel.chlo <- decostand(otu.chlo, method="total", MARGIN=2) com_abund.chlo <- rowSums(otu.rel.chlo) df.com_abund.chlo <- as.data.frame(com_abund.chlo) head(df.com_abund.chlo) df.com_abund.chlo$relabund <- df.com_abund.chlo$com_abund.chlo/80 sum(df.com_abund.chlo$com_abund.chlo) sum(df.com_abund.chlo$relabund) df.com_abund.chlo$percentrelabund=df.com_abund.chlo$relabund*100 sum(df.com_abund.chlo$percentrelabund) df.com_abund.chlo <- rownames_to_column(df.com_abund.chlo, var = "OTUID") head(df.com_abund.chlo) dim(df.com_abund.chlo) ### all OTU with CumulativeRelAbund, percent CumulativeRelAbund!!!!!!!!!!! # merge occupancy table and mean relative abundance table df.occ.ra.chlo <- merge(df.occ.chlo, df.com_abund.chlo, by.x =c("OTUID"), by.y = c("OTUID")) # merge the occupancy and relabund tabel with the taxonomy df.occ.ra.chlo.tax <- merge(df.occ.ra.chlo, tax.chlo, by="OTUID") # re-order sort.occ.ra.chlo.tax <- df.occ.ra.chlo.tax[order(df.occ.ra.chlo.tax$relabund, decreasing = TRUE),] setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') #write.csv(sort.occ.ra.chlo.tax, file = "sort.occ.ra.chlo.tax.csv") sort.occ.ra.chlo.tax.ed <- read.csv("sort.occ.ra.chlo.tax.ed.csv") # plot ra library(forcats) library(dplyr) plot.ra.chlo <- ggplot(sort.occ.ra.chlo.tax.ed,aes(x=fct_reorder(OTUID.ed, percentrelabund, .desc=T), y=percentrelabund, fill=OTUID))+ geom_bar(aes(), stat="identity")+ coord_flip()+ scale_fill_manual(values=as.vector(stepped(n=24))) + labs(y= "Relative Abundance (%)", x="OTU ID")+ theme_bw()+ scale_y_continuous(expand = expansion(mult = c(0.01, .1)))+ theme(axis.text=element_text(size=12), axis.title.y = element_blank(), axis.title.x=element_text(size=14,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) plot.ra.chlo # plot occ plot.occ.chlo <- ggplot(sort.occ.ra.chlo.tax.ed,aes(x=fct_reorder(OTUID.ed, occ.chlo, .desc=T), y=occ.chlo, fill=OTUID))+ geom_bar(aes(), stat="identity")+ #coord_flip()+ scale_fill_manual(values=as.vector(stepped(n=24))) + labs(y= "Occupancy", x="OTU ID")+ theme_bw()+ scale_y_continuous(expand = expansion(mult = c(0.01, .1)))+ coord_flip()+ theme(axis.text=element_text(size=12, hjust = 0.5), axis.title=element_text(size=14,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), #legend.position = "right", legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) plot.occ.chlo library(patchwork) plot.occ.ra.chlo <- plot.occ.chlo | plot.ra.chlo plot.occ.ra.chlo setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("plot.occ.ra.chlo.png", plot.occ.ra.chlo, device = "png", width = 13, height =7, units= "in", dpi = 600) ################################################################################################################## ## Making plot for the DNA cocentration setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') dna.con = read.csv("dnaconc.csv", header=T) library(viridis) library(grid) dna.con$SampleID <- as.factor(dna.con$SampleID) dna.con$batch <- as.factor(dna.con$batch) #create list of dna. conc. plots dna.conc.plot <- lapply(split(dna.con,dna.con$batch), function(x){ #relevel factor partei by wert inside this subset x$SampleID <- factor(x$SampleID, levels=x$SampleID[order(x$DNA_conc_ng_per_ul,decreasing=F)]) #make the plot p <- ggplot(x, aes(x = SampleID, y = DNA_conc_ng_per_ul, fill = batch, width=0.75)) + geom_bar(stat = "identity") + scale_fill_discrete(drop=F)+ #to force all levels to be considered, and thus different colors theme(panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ theme(legend.position="none")+ labs(y="DNA concentration (ng/ul)", x="", title=unique(x$batch))+ coord_flip() }) setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') setEPS() postscript("dna_conct.eps", height = 7, width = 8) do.call(grid.arrange,(c(dna.conc.plot, ncol=3))) dev.off() graphics.off() setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210601_16SV4') ggsave("20210601_barplot_genus.unfiltered.eps", plot.unfil.gen, device = "eps", width = 12, height =7.5, units= "in", dpi = 600)
/16SV4_OTU97/20210604_16SV4/20210604_16SV4_OTU97_Rainout.R
no_license
ShadeLab/PAPER_Bintarti_2021_Bean_Rainoutshelter
R
false
false
83,308
r
####################################################################################################################### ############### Bean seed microbiome analysis for the rain out shelter experiment: OTU 97% ############################ ####################################################################################################################### # Date: August 18th 2021 # By : Ari Fina Bintarti # INSTALL PACKAGES install.packages(c('vegan', 'tidyverse')) install.packages('reshape') install.packages("ggpubr") install.packages("car") install.packages("agricolae") install.packages("multcompView") install.packages("gridExtra") install.packages("ggplot2") install.packages("sjmisc") install.packages("sjPlot") install.packages("MASS") install.packages("FSA") install.packages('mvtnorm', dep = TRUE) install.packages("rcompanion") install.packages("onewaytests") install.packages("PerformanceAnalytics") install.packages("gvlma") install.packages("userfriendlyscience") install.packages("ggpmisc") install.packages("fitdistrplus") install.packages('BiocManager') #install.packages("cowplot") install.packages("dplyr") install.packages("lme4") install.packages("nlme") install.packages("car") install.packages("multcomp") library(multcomp) library(car) library(BiocManager) library(vegan) library(dplyr) library(plyr) library(tidyverse) library(tidyr) #library(cowplot) library(ggplot2) library(reshape) library(ggpubr) library(car) library(agricolae) library(multcompView) library(grid) library(gridExtra) library(sjmisc) library(sjPlot) library(MASS) library(FSA) library(rcompanion) library(onewaytests) library(ggsignif) library(PerformanceAnalytics) library(gvlma) library(userfriendlyscience) library(ggpmisc) library(tibble) library(fitdistrplus) library(lme4) library(nlme) # SET THE WORKING DIRECTORY setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) # READ PROPORTION OF CHLOROPLAST AND MITOCHONDRIA #read the unfiltered otu table otu.unfil <- read.table(file = 'OTU_table_tax.txt', sep = '\t', header = TRUE,check.names = FALSE) otu.unfil tax.unfil <- otu.unfil[,'taxonomy'] tax.unfil #write.csv(tax.unfil, file = "tax.unfil.csv") dim(otu.unfil) #[1] 325 81 colnames(otu.unfil) otu.unfil <- otu.unfil[,-82] dim(otu.unfil)# otu= 325, otu table still has Mock, NC, and PC in the sample otu.unfil <- column_to_rownames(otu.unfil,var = "OTUID") sort(rowSums(otu.unfil, na.rm = FALSE, dims = 1), decreasing = F) #read taxonomy tax.unfil.ed = read.csv("tax.unfil.ed.csv", header=T) rownames(tax.unfil.ed) <- rownames(otu.unfil) dim(tax.unfil.ed) #[1] 325 7 otu.unfil <- rownames_to_column(otu.unfil,var = "OTUID") tax.unfil.ed <- rownames_to_column(tax.unfil.ed,var = "OTUID") otu.tax.unfiltered <- merge(otu.unfil, tax.unfil.ed, by="OTUID") View(otu.tax.unfiltered) colnames(otu.tax.unfiltered) #write.csv(otu.tax.unfiltered, file = "otu.tax.unfiltered.csv") #read the metadata ############################################################################################################################################################# #READ PROPORTION OF CHLOROPLAST AND MITOCHONDRIA OF EXPERIMENTAL SAMPLES #select only biological sample from otu table otu.bio.unfil <- otu.unfil[,1:65] #unselect Mock, NC, and PC from the otu table dim(otu.bio.unfil) colnames(otu.bio.unfil) otu.bio.unfil <- column_to_rownames(otu.bio.unfil, var = "OTUID") sort(rowSums(otu.bio.unfil, na.rm = FALSE, dims = 1), decreasing = F) # remove OTUs that do not present in biological sample otu.bio1.unfil <- otu.bio.unfil[which(rowSums(otu.bio.unfil) > 0),] dim(otu.bio1.unfil) # [1] 244 64, otu table before plant contaminant removal and normalization using metagenomeSeq package and before decontamination sort(rowSums(otu.bio1.unfil, na.rm = FALSE, dims = 1), decreasing = F) sum(otu.bio1.unfil) # load the otu table head(otu.bio1.unfil) otu.bio1.unfil <- rownames_to_column(otu.bio1.unfil, var = "OTUID") # merge the taxonomy with otu table head(tax.unfil.ed) #tax.unfil.ed <- rownames_to_column(tax.unfil.ed, var = "OTUID") otu.tax.unfil <- merge(otu.bio1.unfil, tax.unfil.ed, by="OTUID") dim(otu.tax.unfil) colnames(otu.tax.unfil) #select only the otu table and "Order" & "Family" #otu.tax.unfil.ed <- otu.tax.unfil[,c(1:48,52,53)] #colnames(otu.tax.unfil.ed) #edit the taxonomy colnames(otu.tax.unfil) otu.tax.unfil.ed <- otu.tax.unfil %>% mutate(Taxonomy = case_when(Order == "Chloroplast" ~ 'Chloroplast', Phylum == "Cyanobacteria"~ 'Chloroplast', Family == "Mitochondria" ~ 'Mitochondria', #Family == "Magnoliophyta" ~ 'Magnoliophyta', TRUE ~ 'Bacteria')) %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Phylum == "Cyanobacteria"~ 'Plant', Family == "Mitochondria" ~ 'Plant', #Family == "Magnoliophyta" ~ 'Plant', TRUE ~ 'Bacteria')) tail(otu.tax.unfil.ed) otu.tax.unfil.ed colnames(otu.tax.unfil.ed) otu.tax.unfil.ed1 <- otu.tax.unfil.ed[,c(1:66,75)] View(otu.tax.unfil.ed1) colnames(otu.tax.unfil.ed1) tail(otu.tax.unfil.ed1) long.dat <- gather(otu.tax.unfil.ed1, Sample, Read, 2:65, factor_key = T) long.dat ### 1. Plant contaminant proportion detach(package:plyr) df.unfil <- long.dat %>% group_by(Sample, Domain) %>% summarise(read.number = sum(Read)) df.unfil1 <- df.unfil %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #with(df.unfil1, sum(percent[Sample == "1001"])) library(ggbeeswarm) library(ggtext) plot.unfil.dom <- ggplot(df.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_violin(trim = F, scale="width") + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "A. Experimental Sample")+ ylab("Read Proportion (%)")+ theme(legend.position="none", axis.title.x = element_blank(), axis.text= element_text(size = 12), strip.text = element_text(size=12), plot.title = element_text(size = 14), axis.title.y = element_markdown(size=13), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ stat_summary(fun="median",geom="point", size=7, color="red", shape=95) plot.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_plant_proportion.eps", plot.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ### 2. Chloroplast and Mitochondria contaminant proportion df.unfil.tax <- long.dat %>% group_by(Sample, Taxonomy) %>% summarize(read.number = sum(Read)) df.unfil.tax1 <- df.unfil.tax %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) plot.unfil.tax <- ggplot(df.unfil.tax1, aes(x=Taxonomy, y=percent, fill=Taxonomy))+ geom_violin(trim = F, scale="width") + #geom_beeswarm(dodge.width = 1, alpha = 0.3)+ #scale_fill_manual(labels = c("A1","A2", "A3","B1","B2","B3","B4","B5","B6","C5","C6","C7"),values=c("#440154FF", "#482677FF","#3F4788FF","#238A8DFF","#1F968BFF","#20A386FF","#29AF7FF","#3CBC75F","#56C667FF","#B8DE29FF","#DCE318FF","#FDE725FF"))+ #scale_fill_viridis(discrete = T)+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ #geom_text(data=sum_rich_plant_new, aes(x=Plant,y=2+max.rich,label=Letter), vjust=0)+ labs(title = "B")+ ylab("Read Proportion (%)")+ theme(legend.position="none", #axis.text.x=element_blank(), #axis.ticks.x = element_blank(), axis.title.x = element_blank(), axis.text= element_text(size = 14), strip.text = element_text(size=18, face = 'bold'), plot.title = element_text(size = 14, face = 'bold'), #axis.title.y=element_text(size=13,face="bold"), axis.title.y = element_markdown(size=15,face="bold"), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ #plot.margin = unit(c(0, 0, 0, 0), "cm")) stat_summary(fun="median",geom="point", size=7, color="red", shape=95) #width=1, position=position_dodge(),show.legend = FALSE) plot.unfil.tax setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_chloromito_proportion.eps", plot.unfil.tax, device=cairo_ps, width = 7, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF NEGATIVE CONTROLS # otu table of the negative control colnames(otu.unfil) NC.unfiltered <- otu.unfil[,c(1,73:79)]#only negative control colnames(NC.unfiltered) NC.unfiltered <- column_to_rownames(NC.unfiltered,var="OTUID") sort(rowSums(NC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) NC1.unfiltered=NC.unfiltered[which(rowSums(NC.unfiltered) > 0),] sort(rowSums(NC1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) NC1.unfiltered <- rownames_to_column(NC1.unfiltered,var="OTUID") NC1.tax.unfiltered <- merge(NC1.unfiltered, tax.unfil.ed, by="OTUID") NC1.unfiltered <- column_to_rownames(NC1.unfiltered,var="OTUID") #write.csv(NC1.tax.unfiltered, file = "NC1.tax.unfiltered.csv") head(NC1.unfiltered) colnames(NC1.unfiltered) #edit the taxonomy colnames(NC1.tax.unfiltered) NC1.tax.unfil.ed <- NC1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(NC1.tax.unfil.ed) NC1.tax.unfil.ed1 <- NC1.tax.unfil.ed[,c(1:9)] colnames(NC1.tax.unfil.ed1) tail(NC1.tax.unfil.ed1) str(NC1.tax.unfil.ed1) library(tidyr) long.dat.nc.unfil <- gather(NC1.tax.unfil.ed1, Sample, Read, NC1r2:NC7r2, factor_key = T) long.dat.nc.unfil #detach(package:plyr) df.nc.unfil <- long.dat.nc.unfil %>% group_by(Sample, Domain) %>% summarise(read.number = sum(Read)) df.nc.unfil1 <- df.nc.unfil %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #with(df.nc.unfil1, sum(percent[Sample == "NC1r2"])) library(ggbeeswarm) library(ggtext) plot.nc.unfil.dom <- ggplot(df.nc.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_violin(trim = F, scale="width") + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "B. Negative Control")+ #ylab("Read Proportion (%)")+ theme(legend.position="none", axis.title = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_text(size = 13), #strip.text.x = element_text(size=18, face = 'bold'), plot.title = element_text(size = 14), #axis.title.y = element_markdown(size=15,face="bold"), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ stat_summary(fun="median",geom="point", size=10, color="red", shape=95) plot.nc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_nc_plant_proportion.eps", plot.nc.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF THE POSITIVE CONTROLS # otu table of the positive control colnames(otu.unfil) PC.unfiltered <- otu.unfil[,c(1,66:72)]#only positive control PC.unfiltered PC.unfiltered <- column_to_rownames(PC.unfiltered,var="OTUID") sort(rowSums(PC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) PC1.unfiltered <- PC.unfiltered[which(rowSums(PC.unfiltered) > 0),] sort(rowSums(PC1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) PC1.unfiltered <- rownames_to_column(PC1.unfiltered,var="OTUID") PC1.tax.unfiltered <- merge(PC1.unfiltered, tax.unfil.ed, by="OTUID") PC1.unfiltered <- column_to_rownames(PC1.unfiltered,var="OTUID") #write.csv(NC1.tax.unfiltered, file = "NC1.tax.unfiltered.csv") sum(PC1.unfiltered) dim(PC1.unfiltered) #edit the taxonomy colnames(PC1.tax.unfiltered) PC1.tax.unfil.ed <- PC1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(PC1.tax.unfil.ed) PC1.tax.unfil.ed1 <- PC1.tax.unfil.ed[,c(1:9)] colnames(PC1.tax.unfil.ed1) #library(tidyr) long.dat.pc.unfil <- gather(PC1.tax.unfil.ed1, Sample, Read, Mock1r2:Mock7r2, factor_key = T) long.dat.pc.unfil #detach(package:plyr) df.pc.unfil <- long.dat.pc.unfil %>% group_by(Sample, Domain) %>% summarise(read.number = sum(Read)) df.pc.unfil1 <- df.pc.unfil %>% group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #library(ggbeeswarm) #library(ggtext) plot.pc.unfil.dom <- ggplot(df.pc.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_violin(trim = F, scale="width") + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ geom_jitter(position = position_jitter(width = 0.1, height = 0, seed=13), alpha=0.3)+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "C. Positive Control")+ #ylab("Read Proportion (%)")+ theme(legend.position="none", axis.title = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_text(size = 13), #strip.text.x = element_text(size=18, face = 'bold'), plot.title = element_text(size = 14), #axis.title.y = element_markdown(size=15,face="bold"), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ stat_summary(fun="median",geom="point", size=10, color="red", shape=95) plot.pc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_pc_plant_proportion.eps", plot.pc.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF THE RTSF POSITIVE CONTROL # otu table of the RTSF Zymo colnames(otu.unfil) otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") zymo.unfiltered <- otu.unfil[,"ZymoMockDNAr2", drop=F] zymo.unfiltered #zymo.unfiltered <- column_to_rownames(zymo.unfiltered,var="OTUID") sort(rowSums(zymo.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) zymo.unfiltered zymo1.unfiltered <- subset(zymo.unfiltered,rowSums(zymo.unfiltered["ZymoMockDNAr2"]) > 0) zymo1.unfiltered sort(rowSums(zymo1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) zymo1.unfiltered <- rownames_to_column(zymo1.unfiltered,var="OTUID") zymo1.tax.unfiltered <- merge(zymo1.unfiltered, tax.unfil.ed, by="OTUID") zymo1.unfiltered <- column_to_rownames(zymo1.unfiltered,var="OTUID") #write.csv(zymo1.tax.unfiltered, file = "zymo1.tax.unfiltered.csv") sum(zymo1.unfiltered) dim(zymo1.unfiltered) #edit the taxonomy colnames(zymo1.tax.unfiltered) zymo1.tax.unfil.ed <- zymo1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(zymo1.tax.unfil.ed) zymo1.tax.unfil.ed1 <- zymo1.tax.unfil.ed[,c(1:3)] colnames(zymo1.tax.unfil.ed1) #library(tidyr) long.dat.zymo.unfil <- zymo1.tax.unfil.ed1 long.dat.zymo.unfil$Read <- long.dat.zymo.unfil$ZymoMockDNAr2 long.dat.zymo.unfil #detach(package:plyr) df.zymo.unfil <- long.dat.zymo.unfil %>% group_by(Domain) %>% summarise(read.number = sum(Read)) df.zymo.unfil1 <- df.zymo.unfil %>% #group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #library(ggbeeswarm) #library(ggtext) plot.zymo.unfil.dom <- ggplot(df.zymo.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_bar(stat='identity') + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ theme_bw()+ ylab("Read Proportion (%)")+ labs(title = "D. RTSF Positive Control")+ theme(legend.position="none", axis.title.y = element_markdown(size=13), axis.title.x = element_blank(), axis.text.y = element_text(size = 13), axis.text.x = element_text(size = 13), plot.title = element_text(size = 14), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) plot.zymo.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_zymo_plant_proportion.eps", plot.zymo.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# #READ PROPORTION OF PLANT CONTAMINANTS OF THE RTSF NEGATIVE CONTROL # otu table of the RTSF NC colnames(otu.unfil) #otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") RTNC.unfiltered <- otu.unfil[,"RTSFNTCr2", drop=F] RTNC.unfiltered sort(rowSums(RTNC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.unfiltered <- subset(RTNC.unfiltered,rowSums(RTNC.unfiltered["RTSFNTCr2"]) > 0) RTNC1.unfiltered sort(rowSums(RTNC1.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.unfiltered <- rownames_to_column(RTNC1.unfiltered,var="OTUID") RTNC1.tax.unfiltered <- merge(RTNC1.unfiltered, tax.unfil.ed, by="OTUID") RTNC1.unfiltered <- column_to_rownames(RTNC1.unfiltered,var="OTUID") #write.csv(RTNC1.tax.unfiltered, file = "RTNC1.tax.unfiltered.csv") sum(RTNC1.unfiltered) dim(RTNC1.unfiltered) #edit the taxonomy colnames(RTNC1.tax.unfiltered) RTNC1.tax.unfil.ed <- RTNC1.tax.unfiltered %>% mutate(Domain = case_when(Order == "Chloroplast" ~ 'Plant', Family == "Mitochondria" ~ 'Plant', TRUE ~ 'Bacteria')) colnames(RTNC1.tax.unfil.ed) RTNC1.tax.unfil.ed1 <- RTNC1.tax.unfil.ed[,c(1:3)] colnames(RTNC1.tax.unfil.ed1) #library(tidyr) long.dat.rtnc.unfil <- RTNC1.tax.unfil.ed1 long.dat.rtnc.unfil$Read <- long.dat.rtnc.unfil$RTSFNTCr2 long.dat.rtnc.unfil #detach(package:plyr) df.rtnc.unfil <- long.dat.rtnc.unfil %>% group_by(Domain) %>% summarise(read.number = sum(Read)) df.rtnc.unfil1 <- df.rtnc.unfil %>% #group_by(Sample) %>% mutate(percent= prop.table(read.number) * 100) #library(ggbeeswarm) #library(ggtext) plot.rtnc.unfil.dom <- ggplot(df.rtnc.unfil1, aes(x=Domain, y=percent, fill=Domain))+ geom_bar(stat='identity') + scale_fill_manual(labels = c("Bacteria","Plant"),values=c("#CC79A7", "#009E73"))+ theme_bw()+ #expand_limits(x = 0, y = 0)+ labs(title = "E. RTSF Negative Control")+ theme(legend.position="none", axis.title = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_text(size = 13), plot.title = element_text(size = 14), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) plot.rtnc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_rtnc_plant_proportion.eps", plot.rtnc.unfil.dom, device=cairo_ps, width = 5, height =5, units= "in", dpi = 600) ############################################################################################################################################################# # COMPILE ALL READ PROPORTION OF PLANT CONTAMINANTS FIGURES plot.unfil.dom plot.nc.unfil.dom plot.pc.unfil.dom plot.zymo.unfil.dom plot.rtnc.unfil.dom setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') library(ggpubr) PlantContProp <- ggarrange(plot.unfil.dom,plot.nc.unfil.dom,plot.pc.unfil.dom,plot.zymo.unfil.dom,plot.rtnc.unfil.dom, ncol = 3, nrow = 2) PlantContProp ggsave("20210604_rPlantContProp.eps", PlantContProp, device=cairo_ps, width = 10, height =7, units= "in", dpi = 600) ############################################################################################################################################################# # ANALYSIS OF READS AFTER CHLOROPLAST AND MITOCHONDRIA REMOVAL setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) otu <- read.table('OTU_table_tax_filt.txt', sep='\t', header=T, row.names = 1, check.names = FALSE) otu head(otu) colnames(otu) tax <- otu[,'taxonomy'] str(tax) #write.csv(tax, file = "tax.fil.csv") dim(otu) colnames(otu) otu <- otu[,-81] dim(otu) # [1] 298 79, otu table still has Mock, NC, and PC in the sample sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) otu <- rownames_to_column(otu, var = "OTUID") #read taxonomy tax.ed = read.csv("tax.fil.ed.csv", header=T) head(tax.ed) colnames(otu) otu <- column_to_rownames(otu, var = "OTUID") rownames(tax.ed) <- rownames(otu) dim(tax.ed) #read the metadata #select only biological sample from otu table colnames(otu) otu.bio <- otu[,1:64] #unselect Mock, NC, and PC from the otu table colnames(otu.bio) dim(otu.bio) #otu.bio <- column_to_rownames(otu.bio,var = "OTUID") sort(rowSums(otu.bio, na.rm = FALSE, dims = 1), decreasing = F) # remove OTUs that do not present in sample otu.bio1=otu.bio[which(rowSums(otu.bio) > 0),] dim(otu.bio1) # otu= 218, otu table before normalization using metagenomeSeq package and before decontamination sort(rowSums(otu.bio1, na.rm = FALSE, dims = 1), decreasing = F) # merge otu.bio1 with taxonomy to have match taxonomy table head(otu.bio1) #otu.bio1 <- rownames_to_column(otu.bio1,var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed,var = "OTUID") otu.bio1 <- rownames_to_column(otu.bio1,var = "OTUID") otu.bio1.tax <- merge(otu.bio1, tax.ed, by="OTUID") dim(otu.bio1.tax) # separate the sample # otu table otu.bac.fil <- otu.bio1.tax[,c(1:65)] head(otu.bac.fil) otu.bac.fil <- column_to_rownames(otu.bac.fil,var="OTUID") sum(otu.bac.fil) dim(otu.bac.fil) #otu table of the negative control NC <- otu[,c(72:78)]#only negative control NC #NC <- column_to_rownames(NC,var="OTUID") sort(rowSums(NC, na.rm = FALSE, dims = 1), decreasing = F) NC1=NC[which(rowSums(NC) > 0),] sort(rowSums(NC1, na.rm = FALSE, dims = 1), decreasing = F) NC1 NC1 <- rownames_to_column(NC1,var="OTUID") tax.ed NC1.tax <- merge(NC1, tax.ed, by="OTUID") #write.csv(NC1.tax, file = "NC1.tax.csv") dim(NC1) NC1 <- column_to_rownames(NC1,var="OTUID") sum(NC1) #otu table of the positive control colnames(otu) PC <- otu[,c(65:71)]#only positive control PC #PC <- column_to_rownames(PC,var="OTUID") sort(rowSums(PC, na.rm = FALSE, dims = 1), decreasing = F) PC1=PC[which(rowSums(PC) > 0),] sort(rowSums(PC1, na.rm = FALSE, dims = 1), decreasing = F) PC1 PC1 <- rownames_to_column(PC1,var="OTUID") tax.ed PC1.tax <- merge(PC1, tax.ed, by="OTUID") #write.csv(PC1.tax, file = "PC1.tax.csv") dim(PC1) PC1 <- column_to_rownames(PC1,var="OTUID") sum(PC1) # otu table of the RTSF Zymo colnames(otu) zymo.fil <- otu[,"ZymoMockDNAr2", drop=F] zymo.fil zymo.fil <- column_to_rownames(zymo.fil,var="OTUID") sort(rowSums(zymo.fil, na.rm = FALSE, dims = 1), decreasing = F) zymo.fil zymo1.fil <- subset(zymo.fil,rowSums(zymo.fil["ZymoMockDNAr2"]) > 0) zymo1.fil sort(rowSums(zymo1.fil, na.rm = FALSE, dims = 1), decreasing = F) zymo1.fil <- rownames_to_column(zymo1.fil,var="OTUID") zymo1.tax.fil <- merge(zymo1.fil, tax.ed, by="OTUID") zymo1.fil <- column_to_rownames(zymo1.fil,var="OTUID") #write.csv(zymo1.tax.fil, file = "zymo1.tax.fil.csv") sum(zymo1.fil) dim(zymo1.fil) # otu table of the RTSF NC colnames(otu) RTNC.fil <- otu[,"RTSFNTCr2", drop=F] RTNC.fil sort(rowSums(RTNC.fil, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.fil <- subset(RTNC.fil,rowSums(RTNC.fil["RTSFNTCr2"]) > 0) RTNC1.fil sort(rowSums(RTNC1.fil, na.rm = FALSE, dims = 1), decreasing = F) RTNC1.fil <- rownames_to_column(RTNC1.fil,var="OTUID") RTNC1.tax.fil <- merge(RTNC1.fil, tax.ed, by="OTUID") RTNC1.fil <- column_to_rownames(RTNC1.fil,var="OTUID") #write.csv(RTNC1.tax.fil, file = "RTNC1.tax.fil.csv") sum(RTNC1.fil) dim(RTNC1.fil) ##################################################################################################################################### ###################################################################################################################################### ### Rarefaction curves ###### # using GlobalPatterns library(phyloseq) # 1. rarefaction curve for otu table after plant contaminant removal before microbial decontamination and normalization setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) otu <- read.table('OTU_table_tax_filt.txt', sep='\t', header=T, row.names = 1, check.names = FALSE) otu otu #otu table after plant contaminant removal colnames(otu) head(otu) otu <- otu[,-81] dim(otu) # [1] 298 79, otu table still has Mock, NC, and PC in the sample colnames(otu) sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) # change name of ZymoMockDNAr2 to RTSF_ZymoMockDNAr2 library(dplyr) is.data.frame(otu) R.utils::detachPackage("plyr") otu <- otu %>% dplyr::rename(RTSF_ZymoMockDNAr2=ZymoMockDNAr2) colnames(otu) # make phyloseq otu table and taxonomy otu.phyl = otu_table(otu, taxa_are_rows = TRUE) head(tax.ed) tax.ed <- column_to_rownames(tax.ed, var = "OTUID") tax.phyl = tax_table(as.matrix(tax.ed)) # make phyloseq map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object phyl.obj <- merge_phyloseq(otu.phyl,tax.phyl,map.phyl) phyl.obj otu_table(phyl.obj) #set seed set.seed(42) #rarefy the data # make sure to run ggrare function in the "generating_rarecurfe.r" file # data = phyloseq object of decontaminated non normalized otu table # run the ggrare function attached in the file "generating_rarecurve.r" p.rare <- ggrare(phyl.obj, step = 1, color = "sample_type", label = "sample_type", se = FALSE) #set up your own color palette #Palette <- c("#440154FF","#1F968BFF","#FDE725FF",) #names(Palette) <- levels(sample_data(phyl.obj)$sample_type) #Palette #plot the rarecurve #p <- ggrare(psdata, step = 1000, color = "SampleType", label = "Sample", se = FALSE) library(ggtext) rare <- p.rare + scale_color_manual(labels = c("Experimental Sample", "Negative Control", "Positive Control", "RTSF Negative Control", "RTSF Positive Control"), values = c("#88CCEE", "#CC6677", "#DDCC77", "#117733", "#332288"))+ theme_bw()+ scale_size_manual(values = 60)+ ylab("Number of OTUs")+ xlab("Number of Reads")+ labs(color='Sample Type:') + theme( strip.text.x = element_text(size=14, face='bold'), axis.text.x=element_text(size = 14), axis.text.y = element_text(size = 14), strip.text.y = element_text(size=18, face = 'bold'), plot.title = element_text(size =20 ,face='bold'), axis.title.y = element_text(size=15,face="bold"), axis.title.x = element_text(size=15,face="bold"), legend.position = "right", legend.title = element_text(size=15, face ="bold"), legend.text = element_text(size=14), plot.background = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) plot(rare) setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604rarefactioncurve.pdf", rare, device= "pdf", width = 9, height = 7, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### bacterial taxa composition of all samples (after plant contaminant removal) # make phyloseq object otu #otu table after plant contaminant removal colnames(otu) sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) # make phyloseq otu table and taxonomy head(otu) colnames(otu) colnames(otu)[80] <- "RTSF_ZymoMockDNAr2" otu.phyl = otu_table(otu, taxa_are_rows = TRUE) head(tax.ed) tax.ed <- column_to_rownames(tax.ed, var = "OTUID") tax.phyl = tax_table(as.matrix(tax.ed)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) map$batch <- as.factor(map$batch) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object phyl.obj <- merge_phyloseq(otu.phyl,tax.phyl,map.phyl) phyl.obj # merge taxa by class # 1. class - Bacteria bac.cl <- tax_glom(phyl.obj, taxrank = "Class", NArm = F) bac.cl.ra <- transform_sample_counts(bac.cl, function(x) x/sum(x)) bac.cl.ra df.cl <- psmelt(bac.cl.ra) %>% group_by(batch,Sample, Class) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.cl$Class <- as.character(df.cl$Class) #df.cl$Class[df.cl$Mean < 0.1] <- "Other" # barplot of bacterial/archaeal composition across pods at Phylum level #library(rcartocolor) #display_carto_all(colorblind_friendly = TRUE) #my_colors = carto_pal(12, "Safe") #my_colors # New facet label names for plant variable #plant.labs <- c("Plant: A", "Plant: B", "Plant: C") #names(plant.labs) <- c("A", "B", "C") # Create the plot #install.packages("pals") library(pals) cl <- ggplot(data=df.cl, aes(x=Sample, y=Mean, fill=Class)) plot.cl <- cl + geom_bar(aes(), stat="identity", position="fill") + scale_fill_manual(values=as.vector(stepped(n=24))) + #scale_fill_manual(values=c('#e6194b', '#3cb44b', '#ffe119', '#4363d8', '#911eb4', '#46f0f0', '#f032e6', '#bcf60c','#f58231', '#fabebe', '#008080', '#e6beff', '#9a6324', '#fffac8', '#800000', '#aaffc3', '#808000', '#ffd8b1', '#000075', '#808080', 'lightslateblue', '#000000', 'tomato','hotpink2'))+ #scale_fill_manual(values=c("#44AA99", "#332288", "#117733","#CC6677","#DDCC77", "#88CCEE","#661100","#AA4499" ,"#888888"))+ theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ #labs(y= "Mean Relative Abundance", x="Plant")+ labs(y= "Mean Relative Abundance")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=12, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=13,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=1,bycol=TRUE)) plot.cl setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_class.eps", plot.cl, device = "eps", width = 9.5, height =6.5, units= "in", dpi = 600) # merge taxa by genus # 2. genus - Bacteria bac.gen <- tax_glom(phyl.obj, taxrank = "Genus", NArm = F) bac.gen.ra <- transform_sample_counts(bac.gen, function(x) x/sum(x)) bac.gen.ra #153 taxa df.gen <- psmelt(bac.gen.ra) %>% group_by(batch,Sample, Genus) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.gen$Genus <- as.character(df.gen$Genus) df.gen$Genus[df.gen$Mean < 0.03] <- "Other (less than 3%)" library(randomcoloR) set.seed(1) n <- 45 palette <- distinctColorPalette(n) col=palette gen <- ggplot(data=df.gen, aes(x=Sample, y=Mean, fill=Genus)) plot.gen <- gen + geom_bar(aes(), stat="identity", position="fill") + #scale_colour_viridis(discrete = T)+ #facet_grid(. ~ batch) + scale_fill_manual(name="Genus",values=col) + #scale_fill_manual(values=as.vector(stepped(n=24))) + #scale_fill_manual(name="Genus",values=as.vector(polychrome(n=36))) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=10, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=13,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=2,bycol=TRUE)) plot.gen plot.gen1 <- plot.gen + facet_wrap(~ batch, scales="free_x", nrow = 2)+ theme(strip.background =element_rect(fill="grey"))+ theme(strip.text = element_text(colour = 'black', size = 14, face = 'bold')) plot.gen1 setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_genus_all.eps", plot.gen1, device = "eps", width = 15, height = 8, units= "in", dpi = 600) # merge taxa by family # 2. Family - Bacteria bac.fam <- tax_glom(phyl.obj, taxrank = "Family", NArm = F) bac.fam.ra <- transform_sample_counts(bac.fam, function(x) x/sum(x)) bac.fam.ra #87 taxa df.fam <- psmelt(bac.fam.ra) %>% group_by(batch,Sample, Family) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.fam$Family <- as.character(df.fam$Family) df.fam$Family[df.fam$Mean < 0.01] <- "Other (less than 1%)" fam <- ggplot(data=df.fam, aes(x=Sample, y=Mean, fill=Family)) plot.fam <- fam + geom_bar(aes(), stat="identity", position="fill") + scale_fill_manual(name="Family",values=col) + #scale_fill_manual(name="Family",values=as.vector(polychrome(n=36))) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance", x="Sample Type")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=12, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=13,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=2,bycol=TRUE)) plot.fam setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_genus.eps", plot.gen, device = "eps", width = 13, height =7.5, units= "in", dpi = 600) ##################################################################################################################################### ##################################################################################################################################### ## 2. bacterial taxa found in the negative control # make phyloseq object # otu table of negative control only dim(NC) NC <- rownames_to_column(NC, var = "OTUID") head(NC) dim(RTNC.fil) head(RTNC.fil) RTNC.fil <- rownames_to_column(RTNC.fil, var = "OTUID") colnames(RTNC.fil) #colnames(RTNC.fil)[2] <- "RTSF_NC" ncrtnc <- merge(NC, RTNC.fil) head(ncrtnc) colnames(ncrtnc) ncrtnc <- column_to_rownames(ncrtnc, var = "OTUID") sort(rowSums(ncrtnc, na.rm = FALSE, dims = 1), decreasing = F) ncrtnc1 <- ncrtnc[which(rowSums(ncrtnc) > 0),] sort(rowSums(ncrtnc1, na.rm = FALSE, dims = 1), decreasing = F) # taxonomy negative control head(ncrtnc1) ncrtnc1 <- rownames_to_column(ncrtnc1, var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed, var = "OTUID") ncrtnc1.tax <- merge(ncrtnc1, tax.ed, by="OTUID") colnames(ncrtnc1.tax) tax.ncrtnc <- ncrtnc1.tax[,c(1,10:18)] head(tax.ncrtnc) # make phyloseq otu table and taxonomy ncrtnc1 <- column_to_rownames(ncrtnc1, var = "OTUID") ncrtnc.phyl = otu_table(ncrtnc1, taxa_are_rows = TRUE) tax.ncrtnc <- column_to_rownames(tax.ncrtnc, var = "OTUID") tax.ncrtnc.phyl = tax_table(as.matrix(tax.ncrtnc)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object ncrtnc.phyl.obj <- merge_phyloseq(ncrtnc.phyl,tax.ncrtnc.phyl,map.phyl) ncrtnc.phyl.obj # 1. genus - Bacteria ncrtnc.gen <- tax_glom(ncrtnc.phyl.obj, taxrank = "Genus.ed", NArm = F) ncrtnc.gen.ra <- transform_sample_counts(ncrtnc.gen, function(x) x/sum(x)) ncrtnc.gen.ra #61 taxa df.ncrtnc.gen <- psmelt(ncrtnc.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.ncrtnc.gen$Genus.ed <- as.character(df.ncrtnc.gen$Genus.ed) df.ncrtnc.gen$percent.mean <- df.ncrtnc.gen$Mean*100 ncrtnc.bubble.plot <- ggplot(data=df.ncrtnc.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", x ="Negative Controls", y="Taxa")+ theme(legend.key=element_blank(), axis.title = element_markdown(size=15,face="bold"), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, hjust = 1, angle=45), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") ncrtnc.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_NC_RTSFNC.bubble.plot.tiff", ncrtnc.bubble.plot, device = "tiff", width = 13.8, height =7.5, units= "in", dpi = 600) ## 3. bacterial taxa found in the positive control # make phyloseq object # otu table of positive control and RTSF_Zymo mock dim(PC) colnames(PC) PC <- rownames_to_column(PC, var = "OTUID") dim(zymo.fil) colnames(zymo.fil) zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") colnames(zymo.fil)[2] <- "RTSF_ZymoMockDNAr2" colnames(zymo.fil) #zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") PC.zymo <- merge(PC, zymo.fil) PC.zymo <- column_to_rownames(PC.zymo, var = "OTUID") sort(rowSums(PC.zymo, na.rm = FALSE, dims = 1), decreasing = F) PC.zymo1 <- PC.zymo[which(rowSums(PC.zymo) > 0),] sort(rowSums(PC.zymo1, na.rm = FALSE, dims = 1), decreasing = F) colnames(PC.zymo1) # taxonomy positive control head(PC.zymo1) PC.zymo1 <- rownames_to_column(PC.zymo1, var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed, var = "OTUID") PC.zymo1.tax <- merge(PC.zymo1, tax.ed, by="OTUID") colnames(PC.zymo1.tax) tax.PC.zymo <- PC.zymo1.tax[,c(1,10:18)] head(tax.PC.zymo) # make phyloseq otu table and taxonomy PC.zymo1 <- column_to_rownames(PC.zymo1, var = "OTUID") PC.zymo.phyl = otu_table(PC.zymo1, taxa_are_rows = TRUE) tax.PC.zymo <- column_to_rownames(tax.PC.zymo, var = "OTUID") tax.PC.zymo.phyl = tax_table(as.matrix(tax.PC.zymo)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") colnames(map) head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object PC.zymo.phyl.obj <- merge_phyloseq(PC.zymo.phyl,tax.PC.zymo.phyl,map.phyl) PC.zymo.phyl.obj #121 taxa # 1. genus - Bacteria PC.zymo.gen <- tax_glom(PC.zymo.phyl.obj, taxrank = "Genus.ed", NArm = F) PC.zymo.gen.ra <- transform_sample_counts(PC.zymo.gen, function(x) x/sum(x)) PC.zymo.gen.ra #61 taxa df.PC.zymo.gen <- psmelt(PC.zymo.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.PC.zymo.gen$Genus.ed <- as.character(df.PC.zymo.gen$Genus.ed) df.PC.zymo.gen$percent.mean <- df.PC.zymo.gen$Mean*100 PC.zymo.bubble.plot <- ggplot(data=df.PC.zymo.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", y="Taxa")+ theme(legend.key=element_blank(), axis.title.y = element_markdown(size=15,face="bold"), axis.title.x = element_blank(), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, angle=45, hjust = 1), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") PC.zymo.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_PC.zymo.bubble.plot.tiff", PC.zymo.bubble.plot, device = "tiff", width = 12.5, height =7, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### bacterial taxa composition of all samples (before plant contaminant removal and before microbial decontamination and normalization) # make phyloseq object setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') wd <- print(getwd()) # unfiltered otu table otu.unfil colnames(otu.unfil) head(otu.unfil) colnames(otu.unfil)[80] <- "RTSF_ZymoMockDNAr2" otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") sort(rowSums(otu.unfil, na.rm = FALSE, dims = 1), decreasing = F) # make phyloseq otu table and taxonomy otu.unfil.phyl = otu_table(otu.unfil, taxa_are_rows = TRUE) head(tax.unfil.ed) tax.unfil.ed <- column_to_rownames(tax.unfil.ed, var = "OTUID") tax.unfil.phyl = tax_table(as.matrix(tax.unfil.ed)) # make phyloseq map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object phyl.unfil.obj <- merge_phyloseq(otu.unfil.phyl,tax.unfil.phyl,map.phyl) phyl.unfil.obj otu_table(phyl.unfil.obj) # merge taxa by class # 1. class - Bacteria bac.unfil.cl <- tax_glom(phyl.unfil.obj, taxrank = "Class", NArm = F) bac.unfil.cl.ra <- transform_sample_counts(bac.unfil.cl, function(x) x/sum(x)) bac.unfil.cl.ra #23 taxa otu_table(bac.unfil.cl.ra) df.unfil.cl <- psmelt(bac.unfil.cl.ra) %>% group_by(sample_type, Class) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.unfil.cl$Class <- as.character(df.unfil.cl$Class) #df.cl$Class[df.cl$Mean < 0.1] <- "Other" # Create the plot #install.packages("pals") library(pals) unfil.cl <- ggplot(data=df.unfil.cl, aes(x=sample_type, y=Mean, fill=Class)) plot.unfil.cl <- unfil.cl + geom_bar(aes(), stat="identity", position="fill") + scale_fill_manual(values=as.vector(stepped(n=24))) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance", x="Sample Type")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text=element_text(size=14), axis.title = element_markdown(size=15,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=1,bycol=TRUE)) plot.unfil.cl setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_class.unfiltered.eps", plot.unfil.cl, device = "eps", width = 9.5, height =6.5, units= "in", dpi = 600) # merge taxa by genus # 2. genus - Bacteria bac.unfil.gen <- tax_glom(phyl.unfil.obj, taxrank = "Genus.ed", NArm = F) bac.unfil.gen.ra <- transform_sample_counts(bac.unfil.gen, function(x) x/sum(x)) bac.unfil.gen.ra #209 taxa df.unfil.gen <- psmelt(bac.unfil.gen.ra) %>% group_by(batch, Sample, Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.unfil.gen$Genus.ed <- as.character(df.unfil.gen$Genus.ed) df.unfil.gen$Genus.ed[df.unfil.gen$Mean < 0.001] <- "Other (less than 0.1%)" library(randomcoloR) set.seed(1) n <- 50 palette <- distinctColorPalette(n) col=palette unfil.gen <- ggplot(data=df.unfil.gen, aes(x=Sample, y=Mean, fill=Genus.ed)) plot.unfil.gen <- unfil.gen + geom_bar(aes(), stat="identity", position="fill") + #scale_fill_manual(name="Genus", values=as.vector(stepped(n=24))) + scale_fill_manual(name="Genus",values=col) + theme(legend.position="right") + guides(fill=guide_legend(nrow=5))+ labs(y= "Mean Relative Abundance", x="Sample")+ theme(plot.title = element_text(size = 20, face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.y=element_text(size=12), axis.text.x = element_text(size=10, vjust = 0.5, hjust = 1, angle=90), axis.title = element_markdown(size=15,face="bold"), legend.text=element_text(size = 10), legend.title = element_text(size=11, face = "bold"), panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ guides(fill=guide_legend(ncol=2,bycol=TRUE)) plot.unfil.gen plot.unfil.gen1 <- plot.unfil.gen + facet_wrap(~ batch, scales="free_x", nrow = 2)+ theme(strip.background =element_rect(fill="grey"))+ theme(strip.text = element_text(colour = 'black', size = 14, face = 'bold')) plot.unfil.gen1 setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_barplot_genus_all_unfiltered.eps", plot.unfil.gen1, device = "eps", width = 15, height =8, units= "in", dpi = 600) ## make a bubble plot for all samples df.unfil.gen <- psmelt(bac.unfil.gen.ra) %>% group_by(batch, Sample, Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.unfil.gen$Genus.ed <- as.character(df.unfil.gen$Genus.ed) df.unfil.gen$Genus.ed[df.unfil.gen$Mean < 0.0001] <- "Other (less than 0.01%)" df.unfil.gen$percent.mean <- df.unfil.gen$Mean*100 unfil.gen.bubble.plot <- ggplot(data=df.unfil.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", x ="Sample", y="Taxa")+ theme(legend.key=element_blank(), axis.title = element_markdown(size=15,face="bold"), axis.text.x = element_text(colour = "black", size = 8, vjust = 0.5, hjust = 1, angle=90), axis.text.y = element_text(colour = "black", size = 10), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") unfil.gen.bubble.plot unfil.gen.bubble.plot1 <- unfil.gen.bubble.plot + facet_wrap(~ batch, scales="free_x", nrow = 1)+ theme(strip.background =element_rect(fill="grey"))+ theme(strip.text = element_text(colour = 'black', size = 14, face = 'bold')) unfil.gen.bubble.plot1 setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_unfil.gen.bubble.plot1.tiff", unfil.gen.bubble.plot1, device = "tiff", width = 23, height =10, units= "in", dpi = 600) ##################################################################################################################################### ##################################################################################################################################### ## 2. bacterial taxa found in the negative control before plant contamination # make phyloseq object # otu table of negative control only colnames(NC.unfiltered) head(NC.unfiltered) sort(rowSums(NC.unfiltered, na.rm = FALSE, dims = 1), decreasing = F) NC.unfiltered1 <- NC.unfiltered[which(rowSums(NC.unfiltered) > 0),] # taxonomy negative control head(NC.unfiltered1) NC.unfiltered1 <- rownames_to_column(NC.unfiltered1, var = "OTUID") head(tax.unfil.ed) tax.unfil.ed <- rownames_to_column(tax.ed, var = "OTUID") colnames(tax.unfil.ed) NC.unfiltered1.tax <- merge(NC.unfiltered1, tax.unfil.ed, by="OTUID") colnames(NC.unfiltered1.tax) tax.NC.unfiltered1 <- NC.unfiltered1.tax[,c(1,10:18)] head(tax.NC.unfiltered1) # make phyloseq otu table and taxonomy NC.unfiltered1 <- column_to_rownames(NC.unfiltered1, var = "OTUID") NC.unfiltered1.phyl = otu_table(NC.unfiltered1, taxa_are_rows = TRUE) tax.NC.unfiltered1 <- column_to_rownames(tax.NC.unfiltered1, var = "OTUID") tax.NC.unfiltered1.phyl = tax_table(as.matrix(tax.NC.unfiltered1)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object NC.unfiltered1.phyl.obj <- merge_phyloseq(NC.unfiltered1.phyl,tax.NC.unfiltered1.phyl,map.phyl) NC.unfiltered1.phyl.obj # 1. genus - Bacteria NC.unfiltered1.gen <- tax_glom(NC.unfiltered1.phyl.obj, taxrank = "Genus.ed", NArm = F) NC.unfiltered1.gen.ra <- transform_sample_counts(NC.unfiltered1.gen, function(x) x/sum(x)) NC.unfiltered1.gen.ra #52 taxa df.NC.unfiltered1.gen <- psmelt(NC.unfiltered1.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.NC.unfiltered1.gen$Genus.ed <- as.character(df.NC.unfiltered1.gen$Genus.ed) df.NC.unfiltered1.gen$percent.mean <- df.NC.unfiltered1.gen$Mean*100 NC.unfiltered1.bubble.plot <- ggplot(data=df.NC.unfiltered1.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", x ="Negative Controls", y="Taxa")+ theme(legend.key=element_blank(), axis.title = element_markdown(size=15,face="bold"), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, hjust = 1, angle=45), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") NC.unfiltered1.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_NC.unfiltered1.bubble.plot.tiff", NC.unfiltered1.bubble.plot, device = "tiff", width = 13.8, height =7.5, units= "in", dpi = 600) ## 3. bacterial taxa found in the positive control # make phyloseq object # otu table of positive control and RTSF_Zymo mock dim(PC) colnames(PC) PC <- rownames_to_column(PC, var = "OTUID") dim(zymo.fil) colnames(zymo.fil) zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") colnames(zymo.fil)[2] <- "RTSF_ZymoMockDNAr2" colnames(zymo.fil) #zymo.fil <- rownames_to_column(zymo.fil, var = "OTUID") PC.zymo <- merge(PC, zymo.fil) PC.zymo <- column_to_rownames(PC.zymo, var = "OTUID") sort(rowSums(PC.zymo, na.rm = FALSE, dims = 1), decreasing = F) PC.zymo1 <- PC.zymo[which(rowSums(PC.zymo) > 0),] sort(rowSums(PC.zymo1, na.rm = FALSE, dims = 1), decreasing = F) colnames(PC.zymo1) # taxonomy positive control head(PC.zymo1) PC.zymo1 <- rownames_to_column(PC.zymo1, var = "OTUID") head(tax.ed) tax.ed <- rownames_to_column(tax.ed, var = "OTUID") PC.zymo1.tax <- merge(PC.zymo1, tax.ed, by="OTUID") colnames(PC.zymo1.tax) tax.PC.zymo <- PC.zymo1.tax[,c(1,10:18)] head(tax.PC.zymo) # make phyloseq otu table and taxonomy PC.zymo1 <- column_to_rownames(PC.zymo1, var = "OTUID") PC.zymo.phyl = otu_table(PC.zymo1, taxa_are_rows = TRUE) tax.PC.zymo <- column_to_rownames(tax.PC.zymo, var = "OTUID") tax.PC.zymo.phyl = tax_table(as.matrix(tax.PC.zymo)) # make phyloseq map setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') map <- read.csv("metadata_part.csv") colnames(map) head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id map.phyl <- sample_data(map) # make phyloseq object PC.zymo.phyl.obj <- merge_phyloseq(PC.zymo.phyl,tax.PC.zymo.phyl,map.phyl) PC.zymo.phyl.obj #121 taxa # 1. genus - Bacteria PC.zymo.gen <- tax_glom(PC.zymo.phyl.obj, taxrank = "Genus.ed", NArm = F) PC.zymo.gen.ra <- transform_sample_counts(PC.zymo.gen, function(x) x/sum(x)) PC.zymo.gen.ra #61 taxa df.PC.zymo.gen <- psmelt(PC.zymo.gen.ra) %>% group_by(Sample,Genus.ed) %>% summarize(Mean = mean(Abundance)) %>% arrange(-Mean) df.PC.zymo.gen$Genus.ed <- as.character(df.PC.zymo.gen$Genus.ed) df.PC.zymo.gen$percent.mean <- df.PC.zymo.gen$Mean*100 PC.zymo.bubble.plot <- ggplot(data=df.PC.zymo.gen, aes(x=Sample, y=Genus.ed)) + geom_point(aes(size=percent.mean), alpha = 0.75, shape = 21) + scale_size_continuous(limits = c(0.0000000000000000000001, 100), range = c(1,10), breaks = c(0.1,1,10,50)) + labs(size = "Mean Relative Abundance (%)", y="Taxa")+ theme(legend.key=element_blank(), axis.title.y = element_markdown(size=15,face="bold"), axis.title.x = element_blank(), axis.text.x = element_text(colour = "black", size = 12, face = "bold", vjust = 0.95, angle=45, hjust = 1), axis.text.y = element_text(colour = "black", face = "bold", size = 11), legend.text = element_text(size = 10, face ="bold", colour ="black"), legend.title = element_text(size = 12, face = "bold"), panel.border = element_rect(colour = "black", fill = NA, size = 1.2), legend.position = "right") + scale_fill_manual(values = colours, guide = "none") PC.zymo.bubble.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_PC.zymo.bubble.plot.tiff", PC.zymo.bubble.plot, device = "tiff", width = 12.5, height =7, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### Shared taxa among all total samples (before plant contaminants removal) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') ## 1.calculate the occupancy of each OTUID across all samples # unfiltered otu # unfiltered otu table otu.unfil colnames(otu.unfil) head(otu.unfil) otu.unfil <- column_to_rownames(otu.unfil, var = "OTUID") sort(rowSums(otu.unfil, na.rm = FALSE, dims = 1), decreasing = F) # unfiltered taxonomy head(tax.unfil.ed) #tax.unfil.ed <- column_to_rownames(tax.unfil.ed, var = "OTUID") tax.unfil.ed <- rownames_to_column(tax.unfil.ed, var = "OTUID") # read map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id ##build a long data frame joining unfiltered otu table, map, and taxonomy longdf.unfil <- data.frame(OTUID=as.factor(rownames(otu.unfil)), otu.unfil, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.unfil.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(OTUID, sample_id) %>% summarise(n=sum(abun)) #df <- data.frame(OTUID=as.factor(rownames(otu.unfil)), otu.unfil, check.names = F) #colnames(df) #ldf <- gather(df,sample_id, abun, -OTUID) ##build the new table: OTUID as rownames and sample_id as colnames widedf.unfil <- as.data.frame(spread(longdf.unfil, OTUID, n, fill=0)) rownames(widedf.unfil) <- widedf.unfil[,1] widedf.unfil <- widedf.unfil[,-1] widedf.unfil <- t(widedf.unfil) ## calculate the occupancy of each OTUID across all samples widedf.unfil.PA <- 1*((widedf.unfil>0)==1) Occ.unfil <- rowSums(widedf.unfil.PA)/ncol(widedf.unfil.PA) df.Occ.unfil <- as.data.frame(Occ.unfil) df.Occ.unfil <- rownames_to_column(df.Occ.unfil, var = "OTUID") df.Occ.unfil.tax <- merge(df.Occ.unfil, tax.unfil.ed, by="OTUID") sort.df.Occ.unfil.tax <- df.Occ.unfil.tax[order(df.Occ.unfil.tax$Occ.unfil, decreasing = TRUE),] setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') #write.csv(sort.df.Occ.unfil.tax, file = "sort.df.Occ.unfil.tax_all.csv") ##calculate the mean relative abundance of each OTUID across all samples widedf.unfil.RA <- decostand(widedf.unfil, method="total", MARGIN=2) widedf.unfil.RA relabund.unfil <- rowSums(widedf.unfil.RA) df.relabund.unfil <- as.data.frame(relabund.unfil) df.relabund.unfil$meanRelAbund <- df.relabund.unfil$relabund.unfil/ncol(widedf.unfil.RA) df.relabund.unfil = rownames_to_column(df.relabund.unfil, var = "OTUID") sum(df.relabund.unfil$meanRelAbund) sort.relabund.unfil <- df.relabund.unfil[order(df.relabund.unfil$meanRelAbund, decreasing = TRUE),] ##merge OCC table and mean relative abundance table df.Occ.ra.unfil <- merge(df.Occ.unfil, df.relabund.unfil, by.x =c("OTUID"), by.y = c("OTUID")) df.Occ.ra.unfil.tax <- merge(df.Occ.ra.unfil, tax.unfil.ed, by="OTUID") sort.df.Occ.ra.unfil.tax <- df.Occ.ra.unfil.tax[order(df.Occ.ra.unfil.tax$Occ.unfil, decreasing = TRUE),] #select OTUID with occ more than and equal to 50 % Occ50.unfil <- subset(sort.df.Occ.ra.unfil.tax , sort.df.Occ.ra.unfil.tax$Occ.unfil>= 0.5) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') #write.csv(Occ50.unfil, file = "Occ50.unfil.csv") Occ50.unfil.ed <- read.csv("Occ50.unfil.ed.csv") ### Occupancy-mean relative abundance across all total samples before plant contaminants removal Occ50.unfil.plot <- ggplot(Occ50.unfil.ed,aes(x=fct_reorder(OTUID.genus, Occ.unfil, .desc=T), y=Occ.unfil))+ geom_bar(aes(), stat="identity")+ #coord_flip()+ #scale_fill_manual(values = palette)+ labs(y= "Occupancy", x="OTU.ID")+ theme_bw()+ coord_flip()+ theme(plot.title = element_text(size=16, face="bold"), axis.text=element_text(size=12, hjust = 0.5), axis.title=element_text(size=14,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), #legend.position = "right", legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) Occ50.unfil.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_Occ50.unfil.eps", Occ50.unfil.plot, device = "eps", width = 9, height =6.5, units= "in", dpi = 600) ##################################################################################################################################### ###################################################################################################################################### ### Shared taxa among samples (after plant contaminants removal) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') ## 1.calculate the occupancy of each OTUID across all samples # plant filtered otu otu colnames(otu) #otu <- column_to_rownames(otu, var = "OTUID") sort(rowSums(otu, na.rm = FALSE, dims = 1), decreasing = F) # filtered taxonomy head(tax.ed) #tax.ed <- column_to_rownames(tax.ed, var = "OTUID") tax.ed <- rownames_to_column(tax.ed, var = "OTUID") # read map map <- read.csv("metadata_part.csv") head(map) map$sample_id <- as.factor(map$sample_id) rownames(map) <- map$sample_id ##build a long data frame joining unfiltered otu table, map, and taxonomy longdf.fil <- data.frame(OTUID=as.factor(rownames(otu)), otu, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(OTUID, sample_id) %>% summarise(n=sum(abun)) ##build the new table: OTUID as rownames and sample_id as colnames widedf.fil <- as.data.frame(spread(longdf.fil, OTUID, n, fill=0)) rownames(widedf.fil) <- widedf.fil[,1] widedf.fil <- widedf.fil[,-1] widedf.fil <- t(widedf.fil) ## calculate the occupancy of each OTUID across all samples widedf.fil.PA <- 1*((widedf.fil>0)==1) Occ.fil <- rowSums(widedf.fil.PA)/ncol(widedf.fil.PA) df.Occ.fil <- as.data.frame(Occ.fil) df.Occ.fil <- rownames_to_column(df.Occ.fil, var = "OTUID") df.Occ.fil.tax <- merge(df.Occ.fil, tax.ed, by="OTUID") sort.df.Occ.fil.tax <- df.Occ.fil.tax[order(df.Occ.fil.tax$Occ.fil, decreasing = TRUE),] setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') write.csv(sort.df.Occ.fil.tax, file = "sort.df.Occ.fil.tax_all.csv") ##################################################################################################################################### ###################################################################################################################################### ## 2.calculate the occupancy of each OTUID across all biological samples and all negative controls before plant contaminants removal # subset otu only biological samples and negative controls colnames(otu.unfil) otu.bio.nc.unfil <- data.frame(otu.unfil[,c(1:64,72:78)], check.names = F) colnames(otu.bio.nc.unfil) ##build a long data frame joining unfiltered otu table, map, and taxonomy longdf.bio.nc.unfil <- data.frame(OTUID=as.factor(rownames(otu.bio.nc.unfil)), otu.bio.nc.unfil, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.unfil.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(OTUID, sample_id) %>% summarise(n=sum(abun)) ##build the new table: OTUID as rownames and sample_id as colnames widedf.bio.nc.unfil <- as.data.frame(spread(longdf.bio.nc.unfil, OTUID, n, fill=0)) rownames(widedf.bio.nc.unfil) <- widedf.bio.nc.unfil[,1] widedf.bio.nc.unfil <- widedf.bio.nc.unfil[,-1] widedf.bio.nc.unfil <- t(widedf.bio.nc.unfil) colnames(widedf.bio.nc.unfil) ## calculate the occupancy of each OTUID across all biological samples and all negative controls widedf.bio.nc.unfil.PA <- 1*((widedf.bio.nc.unfil>0)==1) Occ.bio.nc.unfil <- rowSums(widedf.bio.nc.unfil.PA)/ncol(widedf.bio.nc.unfil.PA) df.Occ.bio.nc.unfil <- as.data.frame(Occ.bio.nc.unfil) df.Occ.bio.nc.unfil <- rownames_to_column(df.Occ.bio.nc.unfil, var = "OTUID") df.Occ.bio.nc.unfil.tax <- merge(df.Occ.bio.nc.unfil, tax.unfil.ed, by="OTUID") sort.df.Occ.bio.nc.unfil.tax <- df.Occ.bio.nc.unfil.tax[order(df.Occ.bio.nc.unfil.tax$Occ.bio.nc.unfil, decreasing = TRUE),] View(sort.df.Occ.bio.nc.unfil.tax) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') write.csv(sort.df.Occ.bio.nc.unfil.tax, file = "sort.df.Occ.unfil.tax_BioNc.csv") ##################################################################################################################################### ###################################################################################################################################### ## calculate the occupancy of each OTUID across all biological samples and all negative controls after plant contaminants removal ## what taxa are shared among experimental samples and the negative controls # subset otu only biological samples and negative controls colnames(otu) otu.bio.nc.fil <- data.frame(otu[,c(1:64,72:78)], check.names = F) colnames(otu.bio.nc.fil) ##build a long data frame joining filtered otu table, map, and taxonomy longdf.bio.nc.fil2 <- data.frame(OTUID=as.factor(rownames(otu.bio.nc.fil)), otu.bio.nc.fil, check.names = F) %>% gather(sample_id, abun, -OTUID) %>% #keep same column nameing as in mapping file, calling counts as "abun" (abundance) left_join(map) %>% #will add the info form mapping file (grouped by the 'sample_id' column) left_join(tax.ed) %>% #adding the taxonomy info (grouped by the 'OTUID' column) group_by(Genus.ed,sample_id) %>% summarise(n=sum(abun)) ##build the new table: Genus as rownames and sample_id as colnames widedf.bio.nc.fil2 <- as.data.frame(spread(longdf.bio.nc.fil2, Genus.ed, n, fill=0)) rownames(widedf.bio.nc.fil2) <- widedf.bio.nc.fil2[,1] widedf.bio.nc.fil2 <- widedf.bio.nc.fil2[,-1] widedf.bio.nc.fil2 <- t(widedf.bio.nc.fil2) colnames(widedf.bio.nc.fil2) ## calculate the occupancy of each Genus across all biological samples and all negative controls widedf.bio.nc.fil.PA2 <- 1*((widedf.bio.nc.fil2>0)==1) Occ.bio.nc.fil2 <- rowSums(widedf.bio.nc.fil.PA2)/ncol(widedf.bio.nc.fil.PA2) df.Occ.bio.nc.fil2 <- as.data.frame(Occ.bio.nc.fil2) df.Occ.bio.nc.fil2 <- rownames_to_column(df.Occ.bio.nc.fil2, var = "Genus") sort.df.Occ.bio.nc.fil2 <- df.Occ.bio.nc.fil2[order(df.Occ.bio.nc.fil2$Occ.bio.nc.fil2, decreasing = TRUE),] ##calculate the mean relative abundance of each Genus across experimental samples and the negative controls widedf.bio.nc.fil2.RA <- decostand(widedf.bio.nc.fil2, method="total", MARGIN=2) widedf.bio.nc.fil2.RA relabund <- rowSums(widedf.bio.nc.fil2.RA) df.relabund <- as.data.frame(relabund) df.relabund$meanRelAbund <- df.relabund$relabund/ncol(widedf.bio.nc.fil2.RA) df.relabund = rownames_to_column(df.relabund, var = "Genus") sum(df.relabund$meanRelAbund) sort.relabund <- df.relabund[order(df.relabund$meanRelAbund, decreasing = TRUE),] ##merge OCC table and mean relative abundance table df.Occ.ra <- merge(df.Occ.bio.nc.fil2, df.relabund, by.x =c("Genus"), by.y = c("Genus")) sort.df.Occ.ra <- df.Occ.ra[order(df.Occ.ra$Occ.bio.nc.fil2, decreasing = TRUE),] #select Genus with occ more than and equal to 2 % Occ0.02 <- subset(sort.df.Occ.ra, sort.df.Occ.ra$Occ.bio.nc.fil2 >= 0.02) #Occ1.pf ##sort the mean relative abundance #sort_Occ1.pf <- Occ1.pf[order(Occ1.pf$meanRelAbund, decreasing = TRUE),] ### Occupancy-mean relative abundance across calculate the occupancy of each OTUID across all biological samples and all negative controls after plant contaminants removal Occ.bio.nc.fil.plot <- ggplot(Occ0.02,aes(x=fct_reorder(Genus, Occ.bio.nc.fil2, .desc=T), y=Occ.bio.nc.fil2))+ geom_bar(aes(), stat="identity")+ #coord_flip()+ #scale_fill_manual(values = palette)+ labs(y= "Occupancy", x="Genus")+ theme_bw()+ coord_flip()+ theme(plot.title = element_text(size=16, face="bold"), axis.text.x=element_text(size=10,vjust = 0.5, hjust = 1), axis.title=element_text(size=12,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), #legend.position = "right", legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) Occ.bio.nc.fil.plot setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("20210604_expe_nc_0.02.eps", Occ.bio.nc.fil.plot, device = "eps", width = 5.5, height =6, units= "in", dpi = 600) ################################################################################################################## # Subset OTU that present only in the negative control(not present in the biological samples) colnames(widedf.bio.nc.unfil.PA) unique.nc.unfil <- as.data.frame(subset(widedf.bio.nc.unfil.PA, rowSums(widedf.bio.nc.unfil.PA[,1:64]) == 0)) colnames(unique.nc.unfil) unique.nc.unfil2 <- as.data.frame(subset(unique.nc.unfil, rowSums(unique.nc.unfil[,65:71]) > 0)) unique.nc.unfil2 <- rownames_to_column(unique.nc.unfil2, var = "OTUID") dim(unique.nc.unfil2) # 22 OTU present only in the negative control unique.nc.unfil.tax <- merge(unique.nc.unfil2, tax.unfil.ed, by="OTUID") dim(unique.nc.unfil.tax) setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') write.csv(unique.nc.unfil.tax, file = "unique.nc.unfil.tax.csv") ##### chloroplast sequences distribution ###### # 20210604_16SV4_OTU97 # load unfiltered otu and tax table otu.tax.unfiltered colnames(otu.tax.unfiltered) # select otu chloroplast and mitochondria otu.tax.chlo <- otu.tax.unfiltered %>% filter(Order == "Chloroplast") dim(otu.tax.chlo) head(otu.tax.chlo) tail(otu.tax.chlo) colnames(otu.tax.chlo) # otu table chloroplast otu.chlo <- otu.tax.chlo[1:81] head(otu.chlo) dim(otu.chlo) # taxonomy table chloroplast tax.chlo <- otu.tax.chlo[,c(1,85:90)] head(tax.chlo) # occupancy otu.chlo <- column_to_rownames(otu.chlo, var = "OTUID") otu.chlo.PA <- 1*((otu.chlo>0)==1) sum(otu.chlo.PA) otu.chlo.PA <- otu.chlo.PA[rowSums(otu.chlo.PA)>0,] occ.chlo <- rowSums(otu.chlo.PA)/ncol(otu.chlo.PA) df.occ.chlo <- as.data.frame(occ.chlo) df.occ.chlo <- rownames_to_column(df.occ.chlo, var = "OTUID") dim(df.occ.chlo) # rel. abund. otu.rel.chlo <- decostand(otu.chlo, method="total", MARGIN=2) com_abund.chlo <- rowSums(otu.rel.chlo) df.com_abund.chlo <- as.data.frame(com_abund.chlo) head(df.com_abund.chlo) df.com_abund.chlo$relabund <- df.com_abund.chlo$com_abund.chlo/80 sum(df.com_abund.chlo$com_abund.chlo) sum(df.com_abund.chlo$relabund) df.com_abund.chlo$percentrelabund=df.com_abund.chlo$relabund*100 sum(df.com_abund.chlo$percentrelabund) df.com_abund.chlo <- rownames_to_column(df.com_abund.chlo, var = "OTUID") head(df.com_abund.chlo) dim(df.com_abund.chlo) ### all OTU with CumulativeRelAbund, percent CumulativeRelAbund!!!!!!!!!!! # merge occupancy table and mean relative abundance table df.occ.ra.chlo <- merge(df.occ.chlo, df.com_abund.chlo, by.x =c("OTUID"), by.y = c("OTUID")) # merge the occupancy and relabund tabel with the taxonomy df.occ.ra.chlo.tax <- merge(df.occ.ra.chlo, tax.chlo, by="OTUID") # re-order sort.occ.ra.chlo.tax <- df.occ.ra.chlo.tax[order(df.occ.ra.chlo.tax$relabund, decreasing = TRUE),] setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') #write.csv(sort.occ.ra.chlo.tax, file = "sort.occ.ra.chlo.tax.csv") sort.occ.ra.chlo.tax.ed <- read.csv("sort.occ.ra.chlo.tax.ed.csv") # plot ra library(forcats) library(dplyr) plot.ra.chlo <- ggplot(sort.occ.ra.chlo.tax.ed,aes(x=fct_reorder(OTUID.ed, percentrelabund, .desc=T), y=percentrelabund, fill=OTUID))+ geom_bar(aes(), stat="identity")+ coord_flip()+ scale_fill_manual(values=as.vector(stepped(n=24))) + labs(y= "Relative Abundance (%)", x="OTU ID")+ theme_bw()+ scale_y_continuous(expand = expansion(mult = c(0.01, .1)))+ theme(axis.text=element_text(size=12), axis.title.y = element_blank(), axis.title.x=element_text(size=14,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) plot.ra.chlo # plot occ plot.occ.chlo <- ggplot(sort.occ.ra.chlo.tax.ed,aes(x=fct_reorder(OTUID.ed, occ.chlo, .desc=T), y=occ.chlo, fill=OTUID))+ geom_bar(aes(), stat="identity")+ #coord_flip()+ scale_fill_manual(values=as.vector(stepped(n=24))) + labs(y= "Occupancy", x="OTU ID")+ theme_bw()+ scale_y_continuous(expand = expansion(mult = c(0.01, .1)))+ coord_flip()+ theme(axis.text=element_text(size=12, hjust = 0.5), axis.title=element_text(size=14,face="bold"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), #legend.position = "right", legend.position = "none", panel.background = element_blank(), panel.grid = element_blank(), panel.border = element_blank(), axis.line.x = element_line(colour = "black"), axis.line.y = element_line(colour = "black"), plot.margin = unit(c(0.2,0.2,0.2,0.2), "lines")) plot.occ.chlo library(patchwork) plot.occ.ra.chlo <- plot.occ.chlo | plot.ra.chlo plot.occ.ra.chlo setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') ggsave("plot.occ.ra.chlo.png", plot.occ.ra.chlo, device = "png", width = 13, height =7, units= "in", dpi = 600) ################################################################################################################## ## Making plot for the DNA cocentration setwd('/Users/arifinabintarti/Documents/PAPER/PAPER_Bintarti_2021_Bean_Rainoutshelter/16SV4_OTU97/20210604_16SV4') dna.con = read.csv("dnaconc.csv", header=T) library(viridis) library(grid) dna.con$SampleID <- as.factor(dna.con$SampleID) dna.con$batch <- as.factor(dna.con$batch) #create list of dna. conc. plots dna.conc.plot <- lapply(split(dna.con,dna.con$batch), function(x){ #relevel factor partei by wert inside this subset x$SampleID <- factor(x$SampleID, levels=x$SampleID[order(x$DNA_conc_ng_per_ul,decreasing=F)]) #make the plot p <- ggplot(x, aes(x = SampleID, y = DNA_conc_ng_per_ul, fill = batch, width=0.75)) + geom_bar(stat = "identity") + scale_fill_discrete(drop=F)+ #to force all levels to be considered, and thus different colors theme(panel.grid = element_blank(), panel.background = element_blank(), panel.border = element_rect(colour = "black", fill = NA,size = 0.2))+ theme(legend.position="none")+ labs(y="DNA concentration (ng/ul)", x="", title=unique(x$batch))+ coord_flip() }) setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210604_16SV4') setEPS() postscript("dna_conct.eps", height = 7, width = 8) do.call(grid.arrange,(c(dna.conc.plot, ncol=3))) dev.off() graphics.off() setwd('/Users/arifinabintarti/Documents/Research/Seeds_microbiome/Rainoutshelter/16SV4_OTU97/20210601_16SV4') ggsave("20210601_barplot_genus.unfiltered.eps", plot.unfil.gen, device = "eps", width = 12, height =7.5, units= "in", dpi = 600)
# Analysis # Load libraries ----- library(openair) library(ggplot2) library(reshape2) library(readr) # Load the data ------------- filepath <- '~/data/ODIN_SD/2017-traffic-AK' load(paste0(filepath,'/odin_traffic_data.RData')) # Merge the datasets raw.odin.data <- merge(ODIN.100,ODIN.101,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.102,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.103,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.106,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.107,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.108,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.109,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.110,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.114,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.115,by='date',all=TRUE) # Homogenise a time bases all.odin.data <- timeAverage(raw.odin.data,avg.time = '1 min') # Separate the data into chunks per metric pm10.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"PM10.")])] write_csv(pm10.odin,paste0(filepath,'/pm10.csv')) pm2.5.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"PM2.5")])] write_csv(pm2.5.odin,paste0(filepath,'/pm2.5.csv')) Temperature.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"Tempera")])] write_csv(Temperature.odin,paste0(filepath,'/Temperature.csv')) RH.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"RH")])] write_csv(RH.odin,paste0(filepath,'/RH.csv')) odin.data.1hr <- timeAverage(all.odin.data,avg.time = '1 hour') long.odin.data <- melt(odin.data,id.vars = 'date') long.odin.data.1hr <- melt(odin.data.1hr,id.vars = 'date') # 1 minute data ---- # PM1 data long.pm1 <- long.odin.data[startsWith(as.character(long.odin.data$variable),"PM1."),] # PM2.5 data long.pm2.5 <- long.odin.data[startsWith(as.character(long.odin.data$variable),"PM2.5"),] # PM10 data long.pm10 <- long.odin.data[startsWith(as.character(long.odin.data$variable),"PM10"),] long.pm1$log_value <- log(long.pm1$value) long.pm2.5$log_value <- log(long.pm2.5$value) long.pm10$log_value <- log(long.pm10$value) ggplot(long.pm10, aes(x=variable, value)) + geom_boxplot(position=position_dodge(1)) + ylab("Daily PM10") + xlab("") ggplot(long.pm10, aes(x=date,y=value,colour=variable)) + geom_line() # 1 hour data ---- # PM1 data long.pm1.1hr <- long.odin.data.1hr[startsWith(as.character(long.odin.data.1hr$variable),"PM1."),] # PM2.5 data long.pm2.5.1hr <- long.odin.data.1hr[startsWith(as.character(long.odin.data.1hr$variable),"PM2.5"),] # PM10 data long.pm10.1hr <- long.odin.data.1hr[startsWith(as.character(long.odin.data.1hr$variable),"PM10"),] long.pm1.1hr$log_value <- log(long.pm1.1hr$value) long.pm2.5.1hr$log_value <- log(long.pm2.5.1hr$value) long.pm10.1hr$log_value <- log(long.pm10.1hr$value) ggplot(long.pm2.5.1hr, aes(x=variable, value)) + geom_boxplot(position=position_dodge(1)) ggplot(long.pm10.1hr, aes(x=date,y=value,colour=variable)) + geom_line() # Time Variation plots ---------------- timeVariation(all.odin.data,pollutant = c('PM2.5.101','PM2.5.100','PM2.5.110','PM2.5.103','PM2.5.108')) timeVariation(all.odin.data,pollutant = c('PM2.5.101','PM2.5.110','PM2.5.114'))
/analysis.R
permissive
guolivar/poet-auckland
R
false
false
3,394
r
# Analysis # Load libraries ----- library(openair) library(ggplot2) library(reshape2) library(readr) # Load the data ------------- filepath <- '~/data/ODIN_SD/2017-traffic-AK' load(paste0(filepath,'/odin_traffic_data.RData')) # Merge the datasets raw.odin.data <- merge(ODIN.100,ODIN.101,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.102,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.103,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.106,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.107,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.108,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.109,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.110,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.114,by='date',all=TRUE) raw.odin.data <- merge(raw.odin.data,ODIN.115,by='date',all=TRUE) # Homogenise a time bases all.odin.data <- timeAverage(raw.odin.data,avg.time = '1 min') # Separate the data into chunks per metric pm10.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"PM10.")])] write_csv(pm10.odin,paste0(filepath,'/pm10.csv')) pm2.5.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"PM2.5")])] write_csv(pm2.5.odin,paste0(filepath,'/pm2.5.csv')) Temperature.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"Tempera")])] write_csv(Temperature.odin,paste0(filepath,'/Temperature.csv')) RH.odin <- all.odin.data[,c('date',names(all.odin.data)[startsWith(names(all.odin.data),"RH")])] write_csv(RH.odin,paste0(filepath,'/RH.csv')) odin.data.1hr <- timeAverage(all.odin.data,avg.time = '1 hour') long.odin.data <- melt(odin.data,id.vars = 'date') long.odin.data.1hr <- melt(odin.data.1hr,id.vars = 'date') # 1 minute data ---- # PM1 data long.pm1 <- long.odin.data[startsWith(as.character(long.odin.data$variable),"PM1."),] # PM2.5 data long.pm2.5 <- long.odin.data[startsWith(as.character(long.odin.data$variable),"PM2.5"),] # PM10 data long.pm10 <- long.odin.data[startsWith(as.character(long.odin.data$variable),"PM10"),] long.pm1$log_value <- log(long.pm1$value) long.pm2.5$log_value <- log(long.pm2.5$value) long.pm10$log_value <- log(long.pm10$value) ggplot(long.pm10, aes(x=variable, value)) + geom_boxplot(position=position_dodge(1)) + ylab("Daily PM10") + xlab("") ggplot(long.pm10, aes(x=date,y=value,colour=variable)) + geom_line() # 1 hour data ---- # PM1 data long.pm1.1hr <- long.odin.data.1hr[startsWith(as.character(long.odin.data.1hr$variable),"PM1."),] # PM2.5 data long.pm2.5.1hr <- long.odin.data.1hr[startsWith(as.character(long.odin.data.1hr$variable),"PM2.5"),] # PM10 data long.pm10.1hr <- long.odin.data.1hr[startsWith(as.character(long.odin.data.1hr$variable),"PM10"),] long.pm1.1hr$log_value <- log(long.pm1.1hr$value) long.pm2.5.1hr$log_value <- log(long.pm2.5.1hr$value) long.pm10.1hr$log_value <- log(long.pm10.1hr$value) ggplot(long.pm2.5.1hr, aes(x=variable, value)) + geom_boxplot(position=position_dodge(1)) ggplot(long.pm10.1hr, aes(x=date,y=value,colour=variable)) + geom_line() # Time Variation plots ---------------- timeVariation(all.odin.data,pollutant = c('PM2.5.101','PM2.5.100','PM2.5.110','PM2.5.103','PM2.5.108')) timeVariation(all.odin.data,pollutant = c('PM2.5.101','PM2.5.110','PM2.5.114'))
#' Check the new time series #' #' \code{check_time_series} examines the first value in the Time column #' for each event. If they are equal, it will return a single value. The returned #' value should be equal to 0 minus the offset. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{create_time_series}}. #' @return The value(s) of Time (in milliseconds) at which events begin relative #' to the onset of the auditory stimulus. #' @examples #' \dontrun{ #' library(VWPre) #' # Check the starting Time column... #' check_time_series(dat) #' } check_time_series = function(data = data) { event_start_table = data %>% summarise(ftime = min(Time)) print(unique(event_start_table$ftime)) } #' Check the number of samples in each bin #' #' \code{check_samples_per_bin} determines the number of samples in each #' bin produced by \code{\link{bin_prop}}. #' This function is helpful for determining the obligatory parameter input to #' \code{\link{transform_to_elogit}}. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{bin_prop}}. #' @return A printed summary of the number of samples in each bin. #' @examples #' \dontrun{ #' library(VWPre) #' # Determine the number of samples per bin... #' check_samples_per_bin(dat) #' } check_samples_per_bin <- function (data = data) { samples <- max(data$IA_0_C) rate <- abs(data$Time[2] - data$Time[1]) print(paste("There are", samples, "samples in each bin.")) print(paste("One data point every", rate, "millisecond(s)")) } #' Determine the sampling rate present in the data #' #' \code{check_samplingrate} determines the sampling rate in the data. #' This function is helpful for determining the obligatory parameter input to #' \code{\link{bin_prop}}. If different sampling rates were used, the #' function adds a sampling rate column, which can be used to subset the #' data for further processing. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{select_recorded_eye}}. #' @param ReturnData A logical indicating whether to return a data table containing #' a new column called SamplingRate #' @return A printed summary and/or a data table object #' @examples #' \dontrun{ #' library(VWPre) #' # Determine the sampling rate... #' check_samplingrate(dat) #' } check_samplingrate <- function(data = data, ReturnData = FALSE) { ReturnData <- ReturnData tmp <- data %>% group_by(Event) %>% mutate(., SamplingRate = 1000 / (Time[2] - Time[1])) print(paste("Sampling rate(s) present in the data are:", unique(tmp$SamplingRate), "Hz.")) if (length(unique(tmp$SamplingRate)) > 1) { warning("There are multiple sampling rates present in the data. Please use the ReturnData parameter to include a sampling rate column in the dataset. This can be used to subset by sampling rate before proceeding with the remaining preprocessing operations.") } if (ReturnData == TRUE) { return(tmp) } } #' Determine downsampling options based on current sampling rate #' #' \code{ds_options} determines the possible rates to which #' the current sampling rate can downsampled. It then prints the #' options in both bin size (milliseconds) and corresponding #' sampling rate (Hertz). #' #' @export #' @import dplyr #' @import lazyeval #' #' @param SamplingRate A positive integer indicating the sampling rate (in Hertz) #' used to record the gaze data, which can be determined with the function #' \code{\link{check_samplingrate}}. #' @return A printed summary of options (bin size and rate) for downsampling. #' @examples #' \dontrun{ #' library(VWPre) #' # Determine downsampling options... #' ds_options(SamplingRate = 1000) #' } ds_options <- function(SamplingRate=SamplingRate) { SamplingRate = SamplingRate for (x in 1:100) { if (x %% (1000/SamplingRate) == 0) { if ((1000/x) %% 1 == 0) { print(paste("Bin size:", x, "ms;", "Downsampled rate:", 1000/x, "Hz")) } } } } #' Check which eyes were recorded during the experiment #' #' \code{check_eye_recording} quickly checks if the dataset contains gaze data #' in both the Right and Left interest area columns. It prints a summary and #' suggests which setting to use for the \code{Recording} parameter in the #' function \code{\link{select_recorded_eye}}. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{create_time_series}}. #' @return Text feedback and instruction. #' @examples #' \dontrun{ #' library(VWPre) #' # Create a unified columns for the gaze data... #' check_eye_recording(dat) #' } check_eye_recording <- function(data = data) { if (sum(data$LEFT_INTEREST_AREA_ID) > 0 & sum(data$RIGHT_INTEREST_AREA_ID) > 0) { print("The dataset contains recordings for both eyes. If any participants had both eyes tracked, set the Recording parameter in select_recorded_eye() to 'LandR'. If participants had either the left OR the right eye tracked, set the Recording parameter in select_recorded_eye() to 'LorR'.") } else if (sum(data$LEFT_INTEREST_AREA_ID) > 0 & sum(data$RIGHT_INTEREST_AREA_ID) == 0) { print("The dataset contains recordings for ONLY the left eye. Set the Recording parameter in select_recorded_eye() to 'L'.") } else if (sum(data$LEFT_INTEREST_AREA_ID) == 0 & sum(data$RIGHT_INTEREST_AREA_ID) > 0) { print("The dataset contains recordings for ONLY the right eye. Set the Recording parameter in select_recorded_eye() to 'R'.") } } #' Rename default column names for interest areas. #' #' \code{rename_columns} will replace the default numerical coding of the #' interest area columns with more meaningful user-specified names. For example, #' IA_1_C and IA_1_P could be converted to IA_Target_C and IA_Target_P. Again, #' this will work for upto 8 interest areas. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by either \code{\link{bin_prop}}. #' \code{\link{transform_to_elogit}}, or \code{\link{create_binomial}}. #' @param Labels A named character vector specifying the interest areas and the #' desired names to be inserted in place of the numerical labelling. #' @examples #' \dontrun{ #' library(VWPre) #' # For renaming default interest area columns #' dat2 <- rename_columns(dat, Labels = c(IA1="Target", IA2="Rhyme", #' IA3="OnsetComp", IA4="Distractor")) #' } rename_columns <- function(data = data, Labels = Labels) { Labels <- Labels tmp <- data if (length(names(Labels))>8) { stop("You have more than 8 interest areas.") } else { print(paste("Renaming", length(names(Labels)), "interest areas.", sep = " ")) } Labels <- c("0" = "outside", Labels) NoIA <- length(names(Labels)) for (x in 1:NoIA) { Labels[[x]] <- paste("_",Labels[[x]],"_", sep = "") names(Labels)[x] <- paste("_",x-1,"_", sep = "") tmp<-setNames(tmp, gsub(names(Labels)[x],Labels[[x]],names(tmp))) } return(tmp) }
/VWPre/R/utilities.R
no_license
ingted/R-Examples
R
false
false
7,426
r
#' Check the new time series #' #' \code{check_time_series} examines the first value in the Time column #' for each event. If they are equal, it will return a single value. The returned #' value should be equal to 0 minus the offset. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{create_time_series}}. #' @return The value(s) of Time (in milliseconds) at which events begin relative #' to the onset of the auditory stimulus. #' @examples #' \dontrun{ #' library(VWPre) #' # Check the starting Time column... #' check_time_series(dat) #' } check_time_series = function(data = data) { event_start_table = data %>% summarise(ftime = min(Time)) print(unique(event_start_table$ftime)) } #' Check the number of samples in each bin #' #' \code{check_samples_per_bin} determines the number of samples in each #' bin produced by \code{\link{bin_prop}}. #' This function is helpful for determining the obligatory parameter input to #' \code{\link{transform_to_elogit}}. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{bin_prop}}. #' @return A printed summary of the number of samples in each bin. #' @examples #' \dontrun{ #' library(VWPre) #' # Determine the number of samples per bin... #' check_samples_per_bin(dat) #' } check_samples_per_bin <- function (data = data) { samples <- max(data$IA_0_C) rate <- abs(data$Time[2] - data$Time[1]) print(paste("There are", samples, "samples in each bin.")) print(paste("One data point every", rate, "millisecond(s)")) } #' Determine the sampling rate present in the data #' #' \code{check_samplingrate} determines the sampling rate in the data. #' This function is helpful for determining the obligatory parameter input to #' \code{\link{bin_prop}}. If different sampling rates were used, the #' function adds a sampling rate column, which can be used to subset the #' data for further processing. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{select_recorded_eye}}. #' @param ReturnData A logical indicating whether to return a data table containing #' a new column called SamplingRate #' @return A printed summary and/or a data table object #' @examples #' \dontrun{ #' library(VWPre) #' # Determine the sampling rate... #' check_samplingrate(dat) #' } check_samplingrate <- function(data = data, ReturnData = FALSE) { ReturnData <- ReturnData tmp <- data %>% group_by(Event) %>% mutate(., SamplingRate = 1000 / (Time[2] - Time[1])) print(paste("Sampling rate(s) present in the data are:", unique(tmp$SamplingRate), "Hz.")) if (length(unique(tmp$SamplingRate)) > 1) { warning("There are multiple sampling rates present in the data. Please use the ReturnData parameter to include a sampling rate column in the dataset. This can be used to subset by sampling rate before proceeding with the remaining preprocessing operations.") } if (ReturnData == TRUE) { return(tmp) } } #' Determine downsampling options based on current sampling rate #' #' \code{ds_options} determines the possible rates to which #' the current sampling rate can downsampled. It then prints the #' options in both bin size (milliseconds) and corresponding #' sampling rate (Hertz). #' #' @export #' @import dplyr #' @import lazyeval #' #' @param SamplingRate A positive integer indicating the sampling rate (in Hertz) #' used to record the gaze data, which can be determined with the function #' \code{\link{check_samplingrate}}. #' @return A printed summary of options (bin size and rate) for downsampling. #' @examples #' \dontrun{ #' library(VWPre) #' # Determine downsampling options... #' ds_options(SamplingRate = 1000) #' } ds_options <- function(SamplingRate=SamplingRate) { SamplingRate = SamplingRate for (x in 1:100) { if (x %% (1000/SamplingRate) == 0) { if ((1000/x) %% 1 == 0) { print(paste("Bin size:", x, "ms;", "Downsampled rate:", 1000/x, "Hz")) } } } } #' Check which eyes were recorded during the experiment #' #' \code{check_eye_recording} quickly checks if the dataset contains gaze data #' in both the Right and Left interest area columns. It prints a summary and #' suggests which setting to use for the \code{Recording} parameter in the #' function \code{\link{select_recorded_eye}}. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by \code{\link{create_time_series}}. #' @return Text feedback and instruction. #' @examples #' \dontrun{ #' library(VWPre) #' # Create a unified columns for the gaze data... #' check_eye_recording(dat) #' } check_eye_recording <- function(data = data) { if (sum(data$LEFT_INTEREST_AREA_ID) > 0 & sum(data$RIGHT_INTEREST_AREA_ID) > 0) { print("The dataset contains recordings for both eyes. If any participants had both eyes tracked, set the Recording parameter in select_recorded_eye() to 'LandR'. If participants had either the left OR the right eye tracked, set the Recording parameter in select_recorded_eye() to 'LorR'.") } else if (sum(data$LEFT_INTEREST_AREA_ID) > 0 & sum(data$RIGHT_INTEREST_AREA_ID) == 0) { print("The dataset contains recordings for ONLY the left eye. Set the Recording parameter in select_recorded_eye() to 'L'.") } else if (sum(data$LEFT_INTEREST_AREA_ID) == 0 & sum(data$RIGHT_INTEREST_AREA_ID) > 0) { print("The dataset contains recordings for ONLY the right eye. Set the Recording parameter in select_recorded_eye() to 'R'.") } } #' Rename default column names for interest areas. #' #' \code{rename_columns} will replace the default numerical coding of the #' interest area columns with more meaningful user-specified names. For example, #' IA_1_C and IA_1_P could be converted to IA_Target_C and IA_Target_P. Again, #' this will work for upto 8 interest areas. #' #' @export #' @import dplyr #' @import tidyr #' @import lazyeval #' #' @param data A data table object output by either \code{\link{bin_prop}}. #' \code{\link{transform_to_elogit}}, or \code{\link{create_binomial}}. #' @param Labels A named character vector specifying the interest areas and the #' desired names to be inserted in place of the numerical labelling. #' @examples #' \dontrun{ #' library(VWPre) #' # For renaming default interest area columns #' dat2 <- rename_columns(dat, Labels = c(IA1="Target", IA2="Rhyme", #' IA3="OnsetComp", IA4="Distractor")) #' } rename_columns <- function(data = data, Labels = Labels) { Labels <- Labels tmp <- data if (length(names(Labels))>8) { stop("You have more than 8 interest areas.") } else { print(paste("Renaming", length(names(Labels)), "interest areas.", sep = " ")) } Labels <- c("0" = "outside", Labels) NoIA <- length(names(Labels)) for (x in 1:NoIA) { Labels[[x]] <- paste("_",Labels[[x]],"_", sep = "") names(Labels)[x] <- paste("_",x-1,"_", sep = "") tmp<-setNames(tmp, gsub(names(Labels)[x],Labels[[x]],names(tmp))) } return(tmp) }
#!/usr/bin/env Rscript source("functions.R") context("Dual Regression") # This script will example the ALFF output # from the complete CPAC # to the partial quick pack run base.0 <- "/home2/data/Projects/ABIDE_Initiative/CPAC/test_qp/All_Output/pipeline_MerrittIsland/0051466_session_1" base.1 <- "/home2/data/Projects/ABIDE_Initiative/CPAC/test_qp/DR_Output/pipeline_nofilt_global/0051466_session_1" ### # DR Z Stack 2 Standard ### # So first I want to know the REHO output dr.0 <- file.path(base.0, "dr_tempreg_maps_z_stack_to_standard/_scan_rest_1_rest/_csf_threshold_0.96/_gm_threshold_0.7/_wm_threshold_0.96/_compcor_ncomponents_5_selector_pc10.linear1.wm0.global1.motion1.quadratic1.gm0.compcor1.csf0/_spatial_map_PNAS_Smith09_rsn10/temp_reg_map_z_wimt.nii.gz") # Then I want to know the QP REHO output dr.1 <- file.path(base.1, "dr_tempreg_maps_z_stack_to_standard/_scan_rest_1_rest/_scan_rest_1_rest/_spatial_map_PNAS_Smith09_rsn10/_scan_rest_1_rest/_scan_rest_1_rest/_scan_rest_1_rest/temp_reg_map_z_wimt.nii.gz") # Finally, I should read them in and compare them compare_3D_brains("DR Z Stack 2 Standard", dr.0, dr.1)
/scripts/tests/quickpack/compare_50_dr.R
no_license
fitrialif/abide-1
R
false
false
1,140
r
#!/usr/bin/env Rscript source("functions.R") context("Dual Regression") # This script will example the ALFF output # from the complete CPAC # to the partial quick pack run base.0 <- "/home2/data/Projects/ABIDE_Initiative/CPAC/test_qp/All_Output/pipeline_MerrittIsland/0051466_session_1" base.1 <- "/home2/data/Projects/ABIDE_Initiative/CPAC/test_qp/DR_Output/pipeline_nofilt_global/0051466_session_1" ### # DR Z Stack 2 Standard ### # So first I want to know the REHO output dr.0 <- file.path(base.0, "dr_tempreg_maps_z_stack_to_standard/_scan_rest_1_rest/_csf_threshold_0.96/_gm_threshold_0.7/_wm_threshold_0.96/_compcor_ncomponents_5_selector_pc10.linear1.wm0.global1.motion1.quadratic1.gm0.compcor1.csf0/_spatial_map_PNAS_Smith09_rsn10/temp_reg_map_z_wimt.nii.gz") # Then I want to know the QP REHO output dr.1 <- file.path(base.1, "dr_tempreg_maps_z_stack_to_standard/_scan_rest_1_rest/_scan_rest_1_rest/_spatial_map_PNAS_Smith09_rsn10/_scan_rest_1_rest/_scan_rest_1_rest/_scan_rest_1_rest/temp_reg_map_z_wimt.nii.gz") # Finally, I should read them in and compare them compare_3D_brains("DR Z Stack 2 Standard", dr.0, dr.1)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pred_funs.R \name{LPDS} \alias{LPDS} \title{Calculate the Log Predictive Density Score for a fitted TVP model} \usage{ LPDS(mod, data_test) } \arguments{ \item{mod}{an object of class \code{shrinkTVP}, containing the fitted model for which the LPDS should be calculated.} \item{data_test}{a data frame with one row, containing the one-step ahead covariates and response. The names of the covariates and the response have to match the names used during model estimation in the call to \code{shrinkTVP}.} } \value{ A real number equaling the calculated LPDS. } \description{ \code{LPDS} calculates the one-step ahead Log Predictive Density Score (LPDS) of a fitted TVP model resulting from a call to \code{shrinkTVP} For details on the approximation of the one-step ahead predictive density used, see the vignette. } \examples{ \donttest{ # Simulate data set.seed(123) sim <- simTVP(theta = c(0.2, 0, 0), beta_mean = c(1.5, -0.3, 0)) data <- sim$data # Estimate model res <- shrinkTVP(y ~ x1 + x2, data = data[1:199, ]) # Calculate LPDS LPDS(res, data[200,]) } } \seealso{ Other prediction functions: \code{\link{eval_pred_dens}()}, \code{\link{fitted.shrinkTVP}()}, \code{\link{forecast_shrinkTVP}()}, \code{\link{predict.shrinkTVP}()}, \code{\link{residuals.shrinkTVP}()} } \author{ Peter Knaus \email{peter.knaus@wu.ac.at} } \concept{prediction functions}
/man/LPDS.Rd
no_license
cran/shrinkTVP
R
false
true
1,440
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pred_funs.R \name{LPDS} \alias{LPDS} \title{Calculate the Log Predictive Density Score for a fitted TVP model} \usage{ LPDS(mod, data_test) } \arguments{ \item{mod}{an object of class \code{shrinkTVP}, containing the fitted model for which the LPDS should be calculated.} \item{data_test}{a data frame with one row, containing the one-step ahead covariates and response. The names of the covariates and the response have to match the names used during model estimation in the call to \code{shrinkTVP}.} } \value{ A real number equaling the calculated LPDS. } \description{ \code{LPDS} calculates the one-step ahead Log Predictive Density Score (LPDS) of a fitted TVP model resulting from a call to \code{shrinkTVP} For details on the approximation of the one-step ahead predictive density used, see the vignette. } \examples{ \donttest{ # Simulate data set.seed(123) sim <- simTVP(theta = c(0.2, 0, 0), beta_mean = c(1.5, -0.3, 0)) data <- sim$data # Estimate model res <- shrinkTVP(y ~ x1 + x2, data = data[1:199, ]) # Calculate LPDS LPDS(res, data[200,]) } } \seealso{ Other prediction functions: \code{\link{eval_pred_dens}()}, \code{\link{fitted.shrinkTVP}()}, \code{\link{forecast_shrinkTVP}()}, \code{\link{predict.shrinkTVP}()}, \code{\link{residuals.shrinkTVP}()} } \author{ Peter Knaus \email{peter.knaus@wu.ac.at} } \concept{prediction functions}
#' Ratio of maximum to minimum #' #' @export #' @param x numeric vector. #' @return \code{max(x) / min(x)} #' max_over_min <- function(x) { stopifnot(is.numeric(x)) max(x) / min(x) }
/R/max_over_min.R
no_license
jgabry/RHhelpers
R
false
false
187
r
#' Ratio of maximum to minimum #' #' @export #' @param x numeric vector. #' @return \code{max(x) / min(x)} #' max_over_min <- function(x) { stopifnot(is.numeric(x)) max(x) / min(x) }
library("stringr") library ("RCurl") library ("XML") new_results <- '/government/announcements?keywords=&announcement_filter_option=press-releases&topics[]=all&departments[]=all&world_locations[]=all& from_date=&to_date=01%2F07%2F2018' signatures = system.file("CurlSSL", cainfo = "cacert.pem", package = "RCurl") all_links <- character() while(length(new_results) > 0){ new_results <- str_c("https://www.gov.uk/", new_results) results <- getURL(new_results, cainfo = signatures) results_tree <- htmlParse(results) all_links <- c(all_links, xpathSApply(results_tree, "//li[@id]//a", xmlGetAttr, "href")) new_results <- xpathSApply(results_tree, "//nav[@id='show-more-documents']//li[@class='next']//a", xmlGetAttr, "href") } for(i in 1:length(all_links)){ url <- str_c("https://www.gov.uk", all_links[i]) tmp <- getURL(url, cainfo = signatures) write(tmp, str_c("Press_Releases/", i, ".html")) } tmp <- readLines("Press_Releases/1.html") tmp <- str_c(tmp, collapse = "") tmp <- htmlParse(tmp) release <- xpathSApply(tmp, "//div[@class='block-4']", xmlValue) organisation <- xpathSApply(tmp, "//a[@class='organisation-link']", xmlValue) publication <- xpathSApply(tmp, "//div[@class='block-5']//time[@class='date']", xmlValue) library(tm) release_corpus <- Corpus(VectorSource(release)) meta(release_corpus[[1]], "organisation") <- organisation[1] meta(release_corpus[[1]], "publication") <- publication meta(release_corpus[[1]]) n <- 1 for(i in 2:length(list.files("Press_Releases/"))){ tmp <- readLines(str_c("Press_Releases/", i, ".html")) tmp <- str_c(tmp, collapse = "") tmp <- htmlParse(tmp) release <- xpathSApply(tmp,"//div[@class='block-4']", xmlValue) organisation <- xpathSApply(tmp, "//a[@class='organisation-link']", xmlValue) publication <- xpathSApply(tmp, "//div[@class='block-5']//time[@class='date']", xmlValue) if (length(release)!=0 & (organisation == 'Department for Business, Innovation & Skills' | organisation == 'Ministry of Defence' | organisation == 'Foreign & Commonwealth Office')) { n <- n + 1 tmp_corpus <- Corpus(VectorSource(release)) release_corpus <- c(release_corpus, tmp_corpus) meta(release_corpus[[n]], "organisation") <- organisation[1] cat("n=",n) } } meta_data<- data.frame() for (i in 1:NROW(release_corpus)) { meta_data [i, "organisation"] <- meta(release_corpus[[i]], "organisation") meta_data [i, "num"] <- i } table(as.character(meta_data[, "organisation"])) release_corpus <- tm_map(release_corpus, content_transformer(removeNumbers)) release_corpus <- tm_map(release_corpus, content_transformer(str_replace_all), pattern = "[[:punct:]]", replacement = " ") release_corpus[[1]]$content release_corpus <- tm_map(release_corpus, content_transformer(removeWords), words = stopwords("en")) release_corpus <- tm_map(release_corpus, content_transformer(tolower)) release_corpus <- tm_map(release_corpus, stemDocument, language = "english") tdm <- TermDocumentMatrix(release_corpus) dtm <- DocumentTermMatrix(release_corpus) dtm <- removeSparseTerms(dtm, 1-(10/length(release_corpus))) library(RTextTools) org_labels<-meta_data[, "organisation"] N <- length(org_labels) container <- create_container( dtm, labels = org_labels, trainSize = 1:350, testSize = 351:N, virgin = FALSE ) svm_model <- train_model(container, "SVM") tree_model <- train_model(container, "TREE") maxent_model <- train_model(container, "MAXENT") svm_out <- classify_model(container, svm_model) tree_out <- classify_model(container, tree_model) maxent_out <- classify_model(container, maxent_model) labels_out <- data.frame( correct_label = org_labels[351:N], svm = as.character(svm_out[,1]), tree = as.character(tree_out[,1]), maxent = as.character(maxent_out[,1]), stringsAsFactors = F) table(labels_out[,1] == labels_out[,2]) table(labels_out[,1] == labels_out[,3]) table(labels_out[,1] == labels_out[,4])
/lab5/text_mining.R
no_license
max-kalganov/internet_data_analysis
R
false
false
4,135
r
library("stringr") library ("RCurl") library ("XML") new_results <- '/government/announcements?keywords=&announcement_filter_option=press-releases&topics[]=all&departments[]=all&world_locations[]=all& from_date=&to_date=01%2F07%2F2018' signatures = system.file("CurlSSL", cainfo = "cacert.pem", package = "RCurl") all_links <- character() while(length(new_results) > 0){ new_results <- str_c("https://www.gov.uk/", new_results) results <- getURL(new_results, cainfo = signatures) results_tree <- htmlParse(results) all_links <- c(all_links, xpathSApply(results_tree, "//li[@id]//a", xmlGetAttr, "href")) new_results <- xpathSApply(results_tree, "//nav[@id='show-more-documents']//li[@class='next']//a", xmlGetAttr, "href") } for(i in 1:length(all_links)){ url <- str_c("https://www.gov.uk", all_links[i]) tmp <- getURL(url, cainfo = signatures) write(tmp, str_c("Press_Releases/", i, ".html")) } tmp <- readLines("Press_Releases/1.html") tmp <- str_c(tmp, collapse = "") tmp <- htmlParse(tmp) release <- xpathSApply(tmp, "//div[@class='block-4']", xmlValue) organisation <- xpathSApply(tmp, "//a[@class='organisation-link']", xmlValue) publication <- xpathSApply(tmp, "//div[@class='block-5']//time[@class='date']", xmlValue) library(tm) release_corpus <- Corpus(VectorSource(release)) meta(release_corpus[[1]], "organisation") <- organisation[1] meta(release_corpus[[1]], "publication") <- publication meta(release_corpus[[1]]) n <- 1 for(i in 2:length(list.files("Press_Releases/"))){ tmp <- readLines(str_c("Press_Releases/", i, ".html")) tmp <- str_c(tmp, collapse = "") tmp <- htmlParse(tmp) release <- xpathSApply(tmp,"//div[@class='block-4']", xmlValue) organisation <- xpathSApply(tmp, "//a[@class='organisation-link']", xmlValue) publication <- xpathSApply(tmp, "//div[@class='block-5']//time[@class='date']", xmlValue) if (length(release)!=0 & (organisation == 'Department for Business, Innovation & Skills' | organisation == 'Ministry of Defence' | organisation == 'Foreign & Commonwealth Office')) { n <- n + 1 tmp_corpus <- Corpus(VectorSource(release)) release_corpus <- c(release_corpus, tmp_corpus) meta(release_corpus[[n]], "organisation") <- organisation[1] cat("n=",n) } } meta_data<- data.frame() for (i in 1:NROW(release_corpus)) { meta_data [i, "organisation"] <- meta(release_corpus[[i]], "organisation") meta_data [i, "num"] <- i } table(as.character(meta_data[, "organisation"])) release_corpus <- tm_map(release_corpus, content_transformer(removeNumbers)) release_corpus <- tm_map(release_corpus, content_transformer(str_replace_all), pattern = "[[:punct:]]", replacement = " ") release_corpus[[1]]$content release_corpus <- tm_map(release_corpus, content_transformer(removeWords), words = stopwords("en")) release_corpus <- tm_map(release_corpus, content_transformer(tolower)) release_corpus <- tm_map(release_corpus, stemDocument, language = "english") tdm <- TermDocumentMatrix(release_corpus) dtm <- DocumentTermMatrix(release_corpus) dtm <- removeSparseTerms(dtm, 1-(10/length(release_corpus))) library(RTextTools) org_labels<-meta_data[, "organisation"] N <- length(org_labels) container <- create_container( dtm, labels = org_labels, trainSize = 1:350, testSize = 351:N, virgin = FALSE ) svm_model <- train_model(container, "SVM") tree_model <- train_model(container, "TREE") maxent_model <- train_model(container, "MAXENT") svm_out <- classify_model(container, svm_model) tree_out <- classify_model(container, tree_model) maxent_out <- classify_model(container, maxent_model) labels_out <- data.frame( correct_label = org_labels[351:N], svm = as.character(svm_out[,1]), tree = as.character(tree_out[,1]), maxent = as.character(maxent_out[,1]), stringsAsFactors = F) table(labels_out[,1] == labels_out[,2]) table(labels_out[,1] == labels_out[,3]) table(labels_out[,1] == labels_out[,4])
## code to prepare `garden_spending` dataset library(googlesheets4) library(tidyverse) gs4_deauth() garden_spending <- read_sheet("https://docs.google.com/spreadsheets/d/1dPVHwZgR9BxpigbHLnA0U99TtVHHQtUzNB9UR0wvb7o/edit?usp=sharing", col_types = "ccccnn") usethis::use_data(garden_spending, overwrite = TRUE)
/data-raw/clean_garden_spending.R
no_license
mariorollojr/gardenR
R
false
false
342
r
## code to prepare `garden_spending` dataset library(googlesheets4) library(tidyverse) gs4_deauth() garden_spending <- read_sheet("https://docs.google.com/spreadsheets/d/1dPVHwZgR9BxpigbHLnA0U99TtVHHQtUzNB9UR0wvb7o/edit?usp=sharing", col_types = "ccccnn") usethis::use_data(garden_spending, overwrite = TRUE)
# Hello, world! # # This is an example function named 'hello' # which prints 'Hello, world!'. # # You can learn more about package authoring with RStudio at: # # http://r-pkgs.had.co.nz/ # # Some useful keyboard shortcuts for package authoring: # # Build and Reload Package: 'Cmd + Shift + B' # Check Package: 'Cmd + Shift + E' # Test Package: 'Cmd + Shift + T' hello <- function() { print("Hello, fruitcakes!") }
/R/hello.R
no_license
wcrump/crumpTest
R
false
false
451
r
# Hello, world! # # This is an example function named 'hello' # which prints 'Hello, world!'. # # You can learn more about package authoring with RStudio at: # # http://r-pkgs.had.co.nz/ # # Some useful keyboard shortcuts for package authoring: # # Build and Reload Package: 'Cmd + Shift + B' # Check Package: 'Cmd + Shift + E' # Test Package: 'Cmd + Shift + T' hello <- function() { print("Hello, fruitcakes!") }
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/dirs-files.R \name{copy_dirs} \alias{copy_dirs} \title{Copy directories recursively, creating a new directory if not already there} \usage{ copy_dirs(from, to) } \arguments{ \item{string}{} } \value{ string } \description{ copy_dirs } \examples{ \dontrun{ } }
/man/copy_dirs.Rd
no_license
jpmarindiaz/utter
R
false
false
347
rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/dirs-files.R \name{copy_dirs} \alias{copy_dirs} \title{Copy directories recursively, creating a new directory if not already there} \usage{ copy_dirs(from, to) } \arguments{ \item{string}{} } \value{ string } \description{ copy_dirs } \examples{ \dontrun{ } }
/distrib_energy_price/src/regression.R
no_license
juananguita10/adi-energy-cost-analysis
R
false
false
3,918
r
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/burst_tj.R \name{group_labels} \alias{group_labels} \alias{group_labels.sftrack} \alias{group_labels.sftraj} \alias{group_labels.c_grouping} \title{Shows grouping labels created from the s_group and the c_grouping} \usage{ group_labels(x) \method{group_labels}{sftrack}(x) \method{group_labels}{sftraj}(x) \method{group_labels}{c_grouping}(x) } \arguments{ \item{x}{a sftrack or grouping object} } \description{ Shows grouping labels created from the s_group and the c_grouping }
/man/group_labels.Rd
permissive
jmsigner/sftrack
R
false
true
561
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/burst_tj.R \name{group_labels} \alias{group_labels} \alias{group_labels.sftrack} \alias{group_labels.sftraj} \alias{group_labels.c_grouping} \title{Shows grouping labels created from the s_group and the c_grouping} \usage{ group_labels(x) \method{group_labels}{sftrack}(x) \method{group_labels}{sftraj}(x) \method{group_labels}{c_grouping}(x) } \arguments{ \item{x}{a sftrack or grouping object} } \description{ Shows grouping labels created from the s_group and the c_grouping }
predict.knnTree <- function(object, test, train, verbose = FALSE, ...) { # # predict.knnTree: get prediction from "test" on model in "object" # # Arguments: object: object of class "knnTree" # test: Data on which to make predictions # train: Data from which model was built (required) # verbose: Level of verbosity. # # Extract the tree (which is the first entry in "object") and deduce its size. # my.tree <- object[[1]] size <- sum(my.tree$frame[, 1] == "<leaf>") # # # If the tree has size one, call predict on the second object, re-classifiy the # resulting classifications, and return them. # if(size == 1) { thing <- object[[2]] class <- predict(thing, test, train, theyre.the.same = FALSE, return.classifications = TRUE)$class if(is.factor(train[, 1])) class <- factor(class, levels = levels(train[, 1]), labels = levels(train[, 1])) return(class) } # # # Create a vector of classifications. Then go through the leaves, calling # predict on each one. # if(is.factor(train[, 1])) class <- factor(rep("", nrow(test)), levels = levels( train[, 1]), labels = levels(train[, 1])) else class <- character(nrow(test)) leaf.locations <- my.tree$frame[, 1] == "<leaf>" where <- (1:nrow(my.tree$frame))[leaf.locations] leaf.number <- dimnames(my.tree$frame)[[1]][leaf.locations] new.leaves <- predict(my.tree, test, type = "where") for(i in 1:length(where)) { new.ind <- new.leaves == where[i] if(sum(new.ind) == 0) next old.ind <- my.tree$where == where[i] thing <- object[[leaf.number[i]]] predict.out <- predict(thing, test[new.ind, ], train[ old.ind, ], theyre.the.same = FALSE, return.classifications = TRUE) class[new.ind] <- predict.out$classifications if(verbose) cat(i, ": Leaf", leaf.number[i], "(where =", where[i], ") has size", sum(new.ind), ", rate", signif( predict.out$rate, 4), "\n") # } if(is.factor(train[, 1])) class <- factor(class, levels = levels(train[, 1]), labels = levels(train[, 1])) return(class) }
/R/predict.knnTree.R
no_license
cran/knnTree
R
false
false
2,054
r
predict.knnTree <- function(object, test, train, verbose = FALSE, ...) { # # predict.knnTree: get prediction from "test" on model in "object" # # Arguments: object: object of class "knnTree" # test: Data on which to make predictions # train: Data from which model was built (required) # verbose: Level of verbosity. # # Extract the tree (which is the first entry in "object") and deduce its size. # my.tree <- object[[1]] size <- sum(my.tree$frame[, 1] == "<leaf>") # # # If the tree has size one, call predict on the second object, re-classifiy the # resulting classifications, and return them. # if(size == 1) { thing <- object[[2]] class <- predict(thing, test, train, theyre.the.same = FALSE, return.classifications = TRUE)$class if(is.factor(train[, 1])) class <- factor(class, levels = levels(train[, 1]), labels = levels(train[, 1])) return(class) } # # # Create a vector of classifications. Then go through the leaves, calling # predict on each one. # if(is.factor(train[, 1])) class <- factor(rep("", nrow(test)), levels = levels( train[, 1]), labels = levels(train[, 1])) else class <- character(nrow(test)) leaf.locations <- my.tree$frame[, 1] == "<leaf>" where <- (1:nrow(my.tree$frame))[leaf.locations] leaf.number <- dimnames(my.tree$frame)[[1]][leaf.locations] new.leaves <- predict(my.tree, test, type = "where") for(i in 1:length(where)) { new.ind <- new.leaves == where[i] if(sum(new.ind) == 0) next old.ind <- my.tree$where == where[i] thing <- object[[leaf.number[i]]] predict.out <- predict(thing, test[new.ind, ], train[ old.ind, ], theyre.the.same = FALSE, return.classifications = TRUE) class[new.ind] <- predict.out$classifications if(verbose) cat(i, ": Leaf", leaf.number[i], "(where =", where[i], ") has size", sum(new.ind), ", rate", signif( predict.out$rate, 4), "\n") # } if(is.factor(train[, 1])) class <- factor(class, levels = levels(train[, 1]), labels = levels(train[, 1])) return(class) }
# tepCCA ----- #' @title A \code{TExPosition}-type version of Canonical Correlation #' Analysis (CCA).\emph{Temporary Version (11-04-2019)}. #' #' @description \code{tepCCA}: #' A \code{TExPosition}-type version of Canonical Correlation #' Analysis (CCA). \emph{Temporary Version. #' This version will soon be revised to take into account #' the new \code{GSVD}-package from Derek Beaton}. #' \emph{Note: This is a temporary version}. #' #' @param DATA1 an \eqn{N*I} matrix of quantitative data. #' @param DATA2 an \eqn{N*J} matrix of quantitative data. #' @param center1 when \code{TRUE} (default) \code{DATA1} #' will be centered. #' @param center2 when \code{TRUE} (default) \code{DATA2} #' will be centered. #' @param scale1 when \code{TRUE} (default) \code{DATA1} #' will be normalized. Depends upon \code{ExPosition} #' function \code{expo.scale} whose description is: #' boolean, text, or (numeric) vector. #'If boolean or vector, #'it works just like \code{scale}. #'The following text options are available: #' \code{'z'}: z-score normalization, #' \code{'sd'}: standard deviation normalization, #' \code{'rms'}: root mean square normalization, #' \code{'ss1'}: sum of squares #' (of columns) equals 1 #' (i.e., column vector of length of 1). #' @param scale2 when \code{TRUE} (default) \code{DATA2} #' will be normalized #' (same options as for \code{scale1}). #' @param DESIGN a design matrix #' to indicate if the rows comprise several groups. #' @param make_design_nominal #' a boolean. If \code{TRUE} (default), #' DESIGN is a vector that indicates groups #' (and will be dummy-coded). #' If \code{FALSE}, \code{DESIGN} is a dummy-coded matrix. #' @param graphs #' a boolean. If \code{TRUE}, #' graphs and plots are provided #' (via \code{TExPosition::tepGraphs}). #' @param k number of components to return. #' @author Vincent Guillemot, Derek Beaton, Hervé Abdi #' @return #' See \code{ExPosition::epGPCA} (and also \code{ExPosition::corePCA}) #' for details on what is returned. #' In addition to the values returned: #' \code{tepCCA} returns #' #' \code{lx}: #' the latent variables for \code{DATA1}, and #' \code{ly}: #' the latent variables for \code{DATA2}' #' #' \code{data1.norm}: the #' center and scale information for \code{DATA1}. and #' \code{data2.norm}: the #' center and scale information for \code{DATA2}. #' @references #' Abdi H., Eslami, A., Guillemot, V., & Beaton D. (2018). #' Canonical correlation analysis (CCA). #' In R. Alhajj and J. Rokne (Eds.), #' \emph{Encyclopedia of Social Networks and Mining (2nd Edition)}. #' New York: Springer Verlag. #' @importFrom ExPosition epGPCA #' @import TExPosition # #' @importFrom TExPosition tepGraphs #' @export #' @examples #' \dontrun{ #' # *** Some example here at some point ***} tepCCA <- function (DATA1, DATA2, center1 = TRUE, scale1 = "SS1", center2 = TRUE, scale2 = "SS1", DESIGN = NULL, make_design_nominal = TRUE, graphs = TRUE, k = 0) { if (nrow(DATA1) != nrow(DATA2)) { stop("DATA1 and DATA2 must have the same number of rows.") } # Internal function ---- tepOutputHandler <- function (res = NULL, tepPlotInfo = NULL) { if (!is.null(res) && !is.null(tepPlotInfo)) { final.output <- list(TExPosition.Data = res, Plotting.Data = tepPlotInfo) class(final.output) <- c("texpoOutput", "list") return(final.output) } else if (!is.null(res) && is.null(tepPlotInfo)) { return(res) } else { print("Unknown inputs. tepOutputHandler must exit.") return(0) } print("It is unknown how this was executed. tepOutputHandler must exit.") return(0) } #___________________________________________________________________ main <- paste("CCA: ", deparse(substitute(DATA1)), " & ", deparse(substitute(DATA2)), sep = "") DESIGN <- texpoDesignCheck(DATA1, DESIGN, make_design_nominal = make_design_nominal) DESIGN <- texpoDesignCheck(DATA2, DESIGN, make_design_nominal = FALSE) DATA1 <- as.matrix(DATA1) DATA2 <- as.matrix(DATA2) DATA1 <- expo.scale(DATA1, scale = scale1, center = center1) DATA2 <- expo.scale(DATA2, scale = scale2, center = center2) R <- t(DATA1) %*% DATA2 # M <- t(DATA1) %*% DATA1 # M <- cor(DATA1) W <- t(DATA2) %*% DATA2 # W <- cor(DATA2) Mm1 <- matrix.exponent(M, power = -1) Wm1 <- matrix.exponent(W, power = -1) res <- epGPCA2(DATA = R, k = k, graphs = FALSE, masses = Mm1, weights = Wm1, scale = FALSE, center = FALSE) res <- res$ExPosition.Data res$center <- NULL res$scale <- NULL res$W1 <- res$M res$W2 <- res$W res$M <- res$W <- NULL res$data1.norm <- list(center = attributes(DATA1)$`scaled:center`, scale = attributes(DATA1)$`scaled:scale`) res$data2.norm <- list(center = attributes(DATA2)$`scaled:center`, scale = attributes(DATA2)$`scaled:scale`) res$lx <- ExPosition::supplementalProjection(DATA1, res$fi, Dv = res$pdq$Dv)$f.out res$ly <- ExPosition::supplementalProjection(DATA2, res$fj, Dv = res$pdq$Dv)$f.out class(res) <- c("tepPLS", "list") # tepPlotInfo <- TExPosition::tepGraphs(res = res, DESIGN = DESIGN, main = main, graphs = graphs) # return(tepOutputHandler(res = res, tepPlotInfo = tepPlotInfo)) }
/R/tepCCA.R
no_license
weiwei-wch/data4PCCAR
R
false
false
5,620
r
# tepCCA ----- #' @title A \code{TExPosition}-type version of Canonical Correlation #' Analysis (CCA).\emph{Temporary Version (11-04-2019)}. #' #' @description \code{tepCCA}: #' A \code{TExPosition}-type version of Canonical Correlation #' Analysis (CCA). \emph{Temporary Version. #' This version will soon be revised to take into account #' the new \code{GSVD}-package from Derek Beaton}. #' \emph{Note: This is a temporary version}. #' #' @param DATA1 an \eqn{N*I} matrix of quantitative data. #' @param DATA2 an \eqn{N*J} matrix of quantitative data. #' @param center1 when \code{TRUE} (default) \code{DATA1} #' will be centered. #' @param center2 when \code{TRUE} (default) \code{DATA2} #' will be centered. #' @param scale1 when \code{TRUE} (default) \code{DATA1} #' will be normalized. Depends upon \code{ExPosition} #' function \code{expo.scale} whose description is: #' boolean, text, or (numeric) vector. #'If boolean or vector, #'it works just like \code{scale}. #'The following text options are available: #' \code{'z'}: z-score normalization, #' \code{'sd'}: standard deviation normalization, #' \code{'rms'}: root mean square normalization, #' \code{'ss1'}: sum of squares #' (of columns) equals 1 #' (i.e., column vector of length of 1). #' @param scale2 when \code{TRUE} (default) \code{DATA2} #' will be normalized #' (same options as for \code{scale1}). #' @param DESIGN a design matrix #' to indicate if the rows comprise several groups. #' @param make_design_nominal #' a boolean. If \code{TRUE} (default), #' DESIGN is a vector that indicates groups #' (and will be dummy-coded). #' If \code{FALSE}, \code{DESIGN} is a dummy-coded matrix. #' @param graphs #' a boolean. If \code{TRUE}, #' graphs and plots are provided #' (via \code{TExPosition::tepGraphs}). #' @param k number of components to return. #' @author Vincent Guillemot, Derek Beaton, Hervé Abdi #' @return #' See \code{ExPosition::epGPCA} (and also \code{ExPosition::corePCA}) #' for details on what is returned. #' In addition to the values returned: #' \code{tepCCA} returns #' #' \code{lx}: #' the latent variables for \code{DATA1}, and #' \code{ly}: #' the latent variables for \code{DATA2}' #' #' \code{data1.norm}: the #' center and scale information for \code{DATA1}. and #' \code{data2.norm}: the #' center and scale information for \code{DATA2}. #' @references #' Abdi H., Eslami, A., Guillemot, V., & Beaton D. (2018). #' Canonical correlation analysis (CCA). #' In R. Alhajj and J. Rokne (Eds.), #' \emph{Encyclopedia of Social Networks and Mining (2nd Edition)}. #' New York: Springer Verlag. #' @importFrom ExPosition epGPCA #' @import TExPosition # #' @importFrom TExPosition tepGraphs #' @export #' @examples #' \dontrun{ #' # *** Some example here at some point ***} tepCCA <- function (DATA1, DATA2, center1 = TRUE, scale1 = "SS1", center2 = TRUE, scale2 = "SS1", DESIGN = NULL, make_design_nominal = TRUE, graphs = TRUE, k = 0) { if (nrow(DATA1) != nrow(DATA2)) { stop("DATA1 and DATA2 must have the same number of rows.") } # Internal function ---- tepOutputHandler <- function (res = NULL, tepPlotInfo = NULL) { if (!is.null(res) && !is.null(tepPlotInfo)) { final.output <- list(TExPosition.Data = res, Plotting.Data = tepPlotInfo) class(final.output) <- c("texpoOutput", "list") return(final.output) } else if (!is.null(res) && is.null(tepPlotInfo)) { return(res) } else { print("Unknown inputs. tepOutputHandler must exit.") return(0) } print("It is unknown how this was executed. tepOutputHandler must exit.") return(0) } #___________________________________________________________________ main <- paste("CCA: ", deparse(substitute(DATA1)), " & ", deparse(substitute(DATA2)), sep = "") DESIGN <- texpoDesignCheck(DATA1, DESIGN, make_design_nominal = make_design_nominal) DESIGN <- texpoDesignCheck(DATA2, DESIGN, make_design_nominal = FALSE) DATA1 <- as.matrix(DATA1) DATA2 <- as.matrix(DATA2) DATA1 <- expo.scale(DATA1, scale = scale1, center = center1) DATA2 <- expo.scale(DATA2, scale = scale2, center = center2) R <- t(DATA1) %*% DATA2 # M <- t(DATA1) %*% DATA1 # M <- cor(DATA1) W <- t(DATA2) %*% DATA2 # W <- cor(DATA2) Mm1 <- matrix.exponent(M, power = -1) Wm1 <- matrix.exponent(W, power = -1) res <- epGPCA2(DATA = R, k = k, graphs = FALSE, masses = Mm1, weights = Wm1, scale = FALSE, center = FALSE) res <- res$ExPosition.Data res$center <- NULL res$scale <- NULL res$W1 <- res$M res$W2 <- res$W res$M <- res$W <- NULL res$data1.norm <- list(center = attributes(DATA1)$`scaled:center`, scale = attributes(DATA1)$`scaled:scale`) res$data2.norm <- list(center = attributes(DATA2)$`scaled:center`, scale = attributes(DATA2)$`scaled:scale`) res$lx <- ExPosition::supplementalProjection(DATA1, res$fi, Dv = res$pdq$Dv)$f.out res$ly <- ExPosition::supplementalProjection(DATA2, res$fj, Dv = res$pdq$Dv)$f.out class(res) <- c("tepPLS", "list") # tepPlotInfo <- TExPosition::tepGraphs(res = res, DESIGN = DESIGN, main = main, graphs = graphs) # return(tepOutputHandler(res = res, tepPlotInfo = tepPlotInfo)) }
library(GeneSurvey) ################################################################# ################################################################# baseDir <- getBaseDir() zipFile <- getZipDir() if ((!is.null(baseDir))&&(!is.null(zipFile))) { initGeneReport("-Xmx4800m") foo <- getMirs_List_Mir(theZipFile=zipFile) (4446==length(foo))&& ("hsa-let-7a-1"==foo[1]) } else { message("No test data. Skip test.") TRUE }
/tests/getMirs_List_Mir.R
no_license
minghao2016/GeneSurvey
R
false
false
433
r
library(GeneSurvey) ################################################################# ################################################################# baseDir <- getBaseDir() zipFile <- getZipDir() if ((!is.null(baseDir))&&(!is.null(zipFile))) { initGeneReport("-Xmx4800m") foo <- getMirs_List_Mir(theZipFile=zipFile) (4446==length(foo))&& ("hsa-let-7a-1"==foo[1]) } else { message("No test data. Skip test.") TRUE }
data = read.table("household_power_consumption.txt", header = TRUE, sep = ";", stringsAsFactors=FALSE) subset_data = data[data$Date %in% c("1/2/2007","2/2/2007") ,] day = strptime(paste(subset_data$Date, subset_data$Time, sep=" "), "%d/%m/%Y %H:%M:%S") gap = as.numeric(subset_data$Global_active_power) png(filename = "plot2.png", width = 480, height = 480) plot(day, gap,type = "l", ylab = "Global Active Power(kilowatts)", xlab = "") dev.off()
/plot2.R
no_license
spoorthyparne/ExData_Plotting1
R
false
false
446
r
data = read.table("household_power_consumption.txt", header = TRUE, sep = ";", stringsAsFactors=FALSE) subset_data = data[data$Date %in% c("1/2/2007","2/2/2007") ,] day = strptime(paste(subset_data$Date, subset_data$Time, sep=" "), "%d/%m/%Y %H:%M:%S") gap = as.numeric(subset_data$Global_active_power) png(filename = "plot2.png", width = 480, height = 480) plot(day, gap,type = "l", ylab = "Global Active Power(kilowatts)", xlab = "") dev.off()
######## # 1D dynamic densities ######## # Simulate the data: 100 time points with 10 obsv each nx <- 10 total <- nx*100 x <- c() times <- c() sd <- 13 xx <- seq(-120,120,length=100) dd <- c() for(i in 1:10) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 80, sd)*r + rnorm(nx, -80, sd)*(1-r) ) times <- c(times, rep(i-1,nx)) dd <- rbind(dd, dnorm(xx, 80, sd)/2 + dnorm(xx, -80, sd)/2) } for(i in 1:40) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 80-2*i, sd+i/4)*r + rnorm(nx, -80+2*i, sd+i/4)*(1-r) ) times <- c(times, rep(10+i-1,nx)) dd <- rbind(dd, dnorm(xx, 80-2*i, sd+i/4)/2 + dnorm(xx, -80+2*i, sd+i/4)/2) } for(i in 1:40) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 2*i, sd+(40-i)/4)*r + rnorm(nx, -2*i, sd+(40-i)/4)*(1-r) ) times <- c(times, rep(50+i-1,nx)) dd <- rbind(dd, dnorm(xx, 2*i, sd+(40-i)/4)/2 + dnorm(xx, -2*i, sd+(40-i)/4)/2) } for(i in 1:10) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 80, sd)*r + rnorm(nx, -80, sd)*(1-r) ) times <- c(times, rep(90+i-1,nx)) dd <- rbind(dd, dnorm(xx, 80, sd)/2 + dnorm(xx, -80, sd)/2) } alpha <- 4 params <- c(0, #gamma .2, #kappa 3, #nu 3, #gam0 50 #psi0 ) N <- 50 # very small number of particles! You'll notice markov error in repeated runs # independent DP for each time l0 <- mix(x, alpha=alpha, g0params=params, times=times, rho=0, cat=0, N=N, niter=0, read=0, print=1) # BAR stick-breaking with rho=1/2 l1 <- mix(x, alpha=alpha, g0params=params, times=times, rho=0.5, cat=0, N=N, niter=0, read=0, print=1) # Plot the Bayes factor for rho=.5 vs independence bf <- l1$logprob-l0$logprob par(mai=c(.7,.7,0.4,0.4), mfrow=c(1,1)) plot(c(-100:(total+100)), rep(0,total+201), type="l", col=grey(.5), xlim=c(10,total+10), ylim=range(bf), xlab="", ylab="", main="", cex.axis=.8) mtext("Log Bayes Factor", side=2, font=3, cex=1.1, line=2.3) lines(bf, col=6) text(x=total+20, y=bf[total], label="0.5", cex=.8, font=3) mtext("Observation", side=1, font=3, cex=1.1, line=-1.25, outer=TRUE) # Extract mean pdfs and compare the filtered densities dens <- function(prt) { pdf <- rep(0,100) for(j in 1:nrow(prt)) { pdf <- pdf + prt$p[j]*dt( (xx-prt[j,]$a.1)/sqrt(prt[j,]$B.1), df = prt$c[j] )/sqrt( prt[j,]$B.1 ) } return(pdf) } prts1 <- vector(mode="list", length=0) prts0 <- vector(mode="list", length=0) for(t in 1:99){ prt <- vector(mode="list", length=N) for(i in 1:N) prt[[i]] <- particle(i, l0, t, 0) prts0 <- cbind(prts0, prt) for(i in 1:N) prt[[i]] <- particle(i, l1, t, 0.5) prts1 <- cbind(prts1, prt) } post0 <- lapply(prts0,dens) post1 <- lapply(prts1,dens) pdfs0 <- array( unlist(post0), dim=c(100,N,99) ) pdfs1 <- array( unlist(post1), dim=c(100,N,99) ) mf0 <- apply(pdfs0, c(1,3), mean) mf1 <- apply(pdfs1, c(1,3), mean) rl <- readline("press RETURN to continue: ") # plot cols <- rainbow(99) par(mfrow=c(1,3)) pmat <- persp(x=xx, y=1:100, z=t(dd), theta=20, phi=40, expand=.6, ticktype="detailed", r=100, tcl=.1, xlab="x", ylab="time", zlab="", border=0, col=0, zlim=range(dd)) text(trans3d(x=-115, y=0, z=.025, pmat=pmat), label="f(x)", cex=1, font=3) mtext("Filtered AR Fit", side=3, font=3) for(i in 99:1){ lines(trans3d(x=xx, y=i, z=mf1[,i], pmat=pmat), col=cols[i]) } pmat <- persp(x=xx, y=1:100, z=t(dd), theta=20, phi=40, expand=.6, ticktype="detailed", r=100, xlab="x", ylab="time", zlab="", border=NA, col=matrix(rep(cols,99), ncol=99, byrow=TRUE), zlim=range(dd) ) text(trans3d(x=-115, y=0, z=.025, pmat=pmat), label="f(x)", cex=1, font=3) mtext("The Truth", side=3, font=3) pmat <- persp(x=xx, y=1:100, z=t(dd), theta=20, phi=40, expand=.6, ticktype="detailed", r=100, xlab="x", ylab="time", zlab="", border=0, col=0, zlim=range(dd)) text(trans3d(x=-115, y=0, z=.025, pmat=pmat), label="f(x)", font=3) for(i in 99:1){ lines(trans3d(x=xx, y=i, z=mf0[,i], pmat=pmat), col=cols[i]) } mtext("Independent Fit", side=3, font=3)
/Bmix/demo/bar1D.R
no_license
ingted/R-Examples
R
false
false
4,039
r
######## # 1D dynamic densities ######## # Simulate the data: 100 time points with 10 obsv each nx <- 10 total <- nx*100 x <- c() times <- c() sd <- 13 xx <- seq(-120,120,length=100) dd <- c() for(i in 1:10) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 80, sd)*r + rnorm(nx, -80, sd)*(1-r) ) times <- c(times, rep(i-1,nx)) dd <- rbind(dd, dnorm(xx, 80, sd)/2 + dnorm(xx, -80, sd)/2) } for(i in 1:40) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 80-2*i, sd+i/4)*r + rnorm(nx, -80+2*i, sd+i/4)*(1-r) ) times <- c(times, rep(10+i-1,nx)) dd <- rbind(dd, dnorm(xx, 80-2*i, sd+i/4)/2 + dnorm(xx, -80+2*i, sd+i/4)/2) } for(i in 1:40) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 2*i, sd+(40-i)/4)*r + rnorm(nx, -2*i, sd+(40-i)/4)*(1-r) ) times <- c(times, rep(50+i-1,nx)) dd <- rbind(dd, dnorm(xx, 2*i, sd+(40-i)/4)/2 + dnorm(xx, -2*i, sd+(40-i)/4)/2) } for(i in 1:10) { r <- rbinom(nx, 1, 0.5) x <- c(x, rnorm(nx, 80, sd)*r + rnorm(nx, -80, sd)*(1-r) ) times <- c(times, rep(90+i-1,nx)) dd <- rbind(dd, dnorm(xx, 80, sd)/2 + dnorm(xx, -80, sd)/2) } alpha <- 4 params <- c(0, #gamma .2, #kappa 3, #nu 3, #gam0 50 #psi0 ) N <- 50 # very small number of particles! You'll notice markov error in repeated runs # independent DP for each time l0 <- mix(x, alpha=alpha, g0params=params, times=times, rho=0, cat=0, N=N, niter=0, read=0, print=1) # BAR stick-breaking with rho=1/2 l1 <- mix(x, alpha=alpha, g0params=params, times=times, rho=0.5, cat=0, N=N, niter=0, read=0, print=1) # Plot the Bayes factor for rho=.5 vs independence bf <- l1$logprob-l0$logprob par(mai=c(.7,.7,0.4,0.4), mfrow=c(1,1)) plot(c(-100:(total+100)), rep(0,total+201), type="l", col=grey(.5), xlim=c(10,total+10), ylim=range(bf), xlab="", ylab="", main="", cex.axis=.8) mtext("Log Bayes Factor", side=2, font=3, cex=1.1, line=2.3) lines(bf, col=6) text(x=total+20, y=bf[total], label="0.5", cex=.8, font=3) mtext("Observation", side=1, font=3, cex=1.1, line=-1.25, outer=TRUE) # Extract mean pdfs and compare the filtered densities dens <- function(prt) { pdf <- rep(0,100) for(j in 1:nrow(prt)) { pdf <- pdf + prt$p[j]*dt( (xx-prt[j,]$a.1)/sqrt(prt[j,]$B.1), df = prt$c[j] )/sqrt( prt[j,]$B.1 ) } return(pdf) } prts1 <- vector(mode="list", length=0) prts0 <- vector(mode="list", length=0) for(t in 1:99){ prt <- vector(mode="list", length=N) for(i in 1:N) prt[[i]] <- particle(i, l0, t, 0) prts0 <- cbind(prts0, prt) for(i in 1:N) prt[[i]] <- particle(i, l1, t, 0.5) prts1 <- cbind(prts1, prt) } post0 <- lapply(prts0,dens) post1 <- lapply(prts1,dens) pdfs0 <- array( unlist(post0), dim=c(100,N,99) ) pdfs1 <- array( unlist(post1), dim=c(100,N,99) ) mf0 <- apply(pdfs0, c(1,3), mean) mf1 <- apply(pdfs1, c(1,3), mean) rl <- readline("press RETURN to continue: ") # plot cols <- rainbow(99) par(mfrow=c(1,3)) pmat <- persp(x=xx, y=1:100, z=t(dd), theta=20, phi=40, expand=.6, ticktype="detailed", r=100, tcl=.1, xlab="x", ylab="time", zlab="", border=0, col=0, zlim=range(dd)) text(trans3d(x=-115, y=0, z=.025, pmat=pmat), label="f(x)", cex=1, font=3) mtext("Filtered AR Fit", side=3, font=3) for(i in 99:1){ lines(trans3d(x=xx, y=i, z=mf1[,i], pmat=pmat), col=cols[i]) } pmat <- persp(x=xx, y=1:100, z=t(dd), theta=20, phi=40, expand=.6, ticktype="detailed", r=100, xlab="x", ylab="time", zlab="", border=NA, col=matrix(rep(cols,99), ncol=99, byrow=TRUE), zlim=range(dd) ) text(trans3d(x=-115, y=0, z=.025, pmat=pmat), label="f(x)", cex=1, font=3) mtext("The Truth", side=3, font=3) pmat <- persp(x=xx, y=1:100, z=t(dd), theta=20, phi=40, expand=.6, ticktype="detailed", r=100, xlab="x", ylab="time", zlab="", border=0, col=0, zlim=range(dd)) text(trans3d(x=-115, y=0, z=.025, pmat=pmat), label="f(x)", font=3) for(i in 99:1){ lines(trans3d(x=xx, y=i, z=mf0[,i], pmat=pmat), col=cols[i]) } mtext("Independent Fit", side=3, font=3)
#Script R args <- commandArgs(trailingOnly = TRUE) col_to_use_min=as.numeric(args[1]) col_to_use_max=as.numeric(args[2]) # Threshold of detection: thres=0.05 #Expression data <- read.delim("Expression.txt") rownames(data)=data[,1] data=data[,-1] colnames(data)=gsub("DC", "TT06DC." , colnames(data)) rownames(data)=gsub("\\|T.*","",rownames(data) ) #Phenotype matrix: pheno=read.table("phenotypage_all_fusa.csv" , header=T , sep=";" ) # Keep only the selected phenotypes: pheno=pheno[ , c(1,c(col_to_use_min:col_to_use_max)[c(col_to_use_min:col_to_use_max) < ncol(pheno)] )] #numeric pheno[,-1]=apply(pheno[,-1],2,as.numeric) # put geno name as rowname rownames(pheno)=pheno$geno pheno=pheno[,-1] # delete columns with only NA which(apply( pheno , 2 , function(x) all(is.na(x)) )==TRUE) pheno=pheno[ , ! apply( pheno , 2 , function(x) all(is.na(x)) ) ] # Library library(DESeq2) # A function that compute the DEgenes related to a phenotypic trait get_DE_genes_from_pheno=function( trait ){ # TMP On ne prend que les n premières lignes de data don=data don<-head(data,n=100) # sum_expe contains the trait of interest sum_expe=data.frame(geno=rownames(pheno),trait=pheno[,trait] ) sum_expe=na.omit(sum_expe) # in the expression matrix, I keep only individuals genotyped for the marker don=don[ , which(colnames(don)%in%sum_expe[,1]) ] # reorder sum_expe sum_expe=sum_expe[match(colnames(don),sum_expe[,1] ), ] rownames(sum_expe)=sum_expe[,1] # Call DeSeq2 dds <- DESeqDataSetFromMatrix(don, sum_expe, formula( ~ trait) ) dds <- DESeq(dds, test = c("Wald") ) res <- results(dds) return(res) # close function } # Apply the function to all columns bilan=data.frame(matrix(0,0,7)) colnames(bilan)=c("baseMean","log2FoldChange","lfcSE","stat","pvalue","padj","carac") for(i in 1:ncol(pheno)){ print(colnames(pheno)[i]) print(i) DE_genes=get_DE_genes_from_pheno(colnames(pheno)[i]) DE_genes$carac=colnames(pheno)[i] res_sig=as.data.frame( DE_genes[ which(DE_genes$padj<thres) , ] ) bilan=rbind(bilan, res_sig) } bilan=data.frame(gene=rownames(bilan), bilan) # Write the result name=paste("resultat_DE_pheno_",col_to_use_min,"_to_",col_to_use_max, sep="") write.table(bilan, file=name, quote=F, row.names=F, col.names=T)
/6_Expression/Find_related_genes_DESeq2.R
no_license
holtzy/Resistance-to-fusarium
R
false
false
2,288
r
#Script R args <- commandArgs(trailingOnly = TRUE) col_to_use_min=as.numeric(args[1]) col_to_use_max=as.numeric(args[2]) # Threshold of detection: thres=0.05 #Expression data <- read.delim("Expression.txt") rownames(data)=data[,1] data=data[,-1] colnames(data)=gsub("DC", "TT06DC." , colnames(data)) rownames(data)=gsub("\\|T.*","",rownames(data) ) #Phenotype matrix: pheno=read.table("phenotypage_all_fusa.csv" , header=T , sep=";" ) # Keep only the selected phenotypes: pheno=pheno[ , c(1,c(col_to_use_min:col_to_use_max)[c(col_to_use_min:col_to_use_max) < ncol(pheno)] )] #numeric pheno[,-1]=apply(pheno[,-1],2,as.numeric) # put geno name as rowname rownames(pheno)=pheno$geno pheno=pheno[,-1] # delete columns with only NA which(apply( pheno , 2 , function(x) all(is.na(x)) )==TRUE) pheno=pheno[ , ! apply( pheno , 2 , function(x) all(is.na(x)) ) ] # Library library(DESeq2) # A function that compute the DEgenes related to a phenotypic trait get_DE_genes_from_pheno=function( trait ){ # TMP On ne prend que les n premières lignes de data don=data don<-head(data,n=100) # sum_expe contains the trait of interest sum_expe=data.frame(geno=rownames(pheno),trait=pheno[,trait] ) sum_expe=na.omit(sum_expe) # in the expression matrix, I keep only individuals genotyped for the marker don=don[ , which(colnames(don)%in%sum_expe[,1]) ] # reorder sum_expe sum_expe=sum_expe[match(colnames(don),sum_expe[,1] ), ] rownames(sum_expe)=sum_expe[,1] # Call DeSeq2 dds <- DESeqDataSetFromMatrix(don, sum_expe, formula( ~ trait) ) dds <- DESeq(dds, test = c("Wald") ) res <- results(dds) return(res) # close function } # Apply the function to all columns bilan=data.frame(matrix(0,0,7)) colnames(bilan)=c("baseMean","log2FoldChange","lfcSE","stat","pvalue","padj","carac") for(i in 1:ncol(pheno)){ print(colnames(pheno)[i]) print(i) DE_genes=get_DE_genes_from_pheno(colnames(pheno)[i]) DE_genes$carac=colnames(pheno)[i] res_sig=as.data.frame( DE_genes[ which(DE_genes$padj<thres) , ] ) bilan=rbind(bilan, res_sig) } bilan=data.frame(gene=rownames(bilan), bilan) # Write the result name=paste("resultat_DE_pheno_",col_to_use_min,"_to_",col_to_use_max, sep="") write.table(bilan, file=name, quote=F, row.names=F, col.names=T)
# devtools::use_data(defaults, noiseThresholdsDict, BaNaRatios, notesDict, internal = TRUE, overwrite = TRUE) #' Manual counts of syllables in 260 sounds #' #' A vector of the number of syllables in the corpus of 260 human non-linguistic emotional vocalizations from Anikin & Persson (2017). The corpus can be downloaded from http://cogsci.se/personal/results/01_anikin-persson_2016_naturalistics-non-linguistic-vocalizations/01_anikin-persson_2016_naturalistic-non-linguistic-vocalizations.html "segmentManual" #' Manual pitch estimation in 260 sounds #' #' A vector of manually verified pitch values per sound in the corpus of 590 human non-linguistic emotional vocalizations from Anikin & Persson (2017). The corpus can be downloaded from http://cogsci.se/personal/results/01_anikin-persson_2016_naturalistics-non-linguistic-vocalizations/01_anikin-persson_2016_naturalistic-non-linguistic-vocalizations.html "pitchManual" #' Conversion table from Hz to semitones above C0 to musical notation #' #' A dataframe of 132 rows and 2 columns: "note" and "freq" (Hz) #' #' @examples #' # To recompile: #' notes = c('C', 'C\U266F', 'D', 'D\U266F', 'E', 'F', 'F\U266F', 'G', 'G\U266F', 'A', 'B\U266D', 'B') #' nOct = 11 #' notes_all = paste0(notes, rep(0:(nOct - 1), each = 12)) #' # 440 / 32 = 13.75 # A-1, and C0 is 3 semitones higher: 16.3516 Hz exactly. #' c0 = 13.75 * 2 ^ (3 / 12) #' notes_freq = round (c0 * 2^(0:(12 * nOct - 1) / 12), 1) "notesDict"
/R/data.R
no_license
danstowell/soundgen
R
false
false
1,460
r
# devtools::use_data(defaults, noiseThresholdsDict, BaNaRatios, notesDict, internal = TRUE, overwrite = TRUE) #' Manual counts of syllables in 260 sounds #' #' A vector of the number of syllables in the corpus of 260 human non-linguistic emotional vocalizations from Anikin & Persson (2017). The corpus can be downloaded from http://cogsci.se/personal/results/01_anikin-persson_2016_naturalistics-non-linguistic-vocalizations/01_anikin-persson_2016_naturalistic-non-linguistic-vocalizations.html "segmentManual" #' Manual pitch estimation in 260 sounds #' #' A vector of manually verified pitch values per sound in the corpus of 590 human non-linguistic emotional vocalizations from Anikin & Persson (2017). The corpus can be downloaded from http://cogsci.se/personal/results/01_anikin-persson_2016_naturalistics-non-linguistic-vocalizations/01_anikin-persson_2016_naturalistic-non-linguistic-vocalizations.html "pitchManual" #' Conversion table from Hz to semitones above C0 to musical notation #' #' A dataframe of 132 rows and 2 columns: "note" and "freq" (Hz) #' #' @examples #' # To recompile: #' notes = c('C', 'C\U266F', 'D', 'D\U266F', 'E', 'F', 'F\U266F', 'G', 'G\U266F', 'A', 'B\U266D', 'B') #' nOct = 11 #' notes_all = paste0(notes, rep(0:(nOct - 1), each = 12)) #' # 440 / 32 = 13.75 # A-1, and C0 is 3 semitones higher: 16.3516 Hz exactly. #' c0 = 13.75 * 2 ^ (3 / 12) #' notes_freq = round (c0 * 2^(0:(12 * nOct - 1) / 12), 1) "notesDict"
#!/usr/bin/env Rscript ### libraries library(gdsfmt) library(SNPRelate) library(data.table) library(ggplot2) library(foreach) library(lattice) library(tidyr) library(SeqArray) library(tidyverse) ### Load genofile genofile <- seqOpen("/scratch/kbb7sh/Daphnia/MappingDecember2019/MapDec19PulexOnlyB_filtsnps10bpindels_snps_filter_pass_lowGQmiss.seq.gds") ### Load superclone file sc <- fread("Superclones201617182019pulexonlyD82016problematic_20200122") ### Add in pond and year info temp <- unlist(strsplit(sc$clone, split="_")) mat <- matrix(temp, ncol=4, byrow=TRUE) matdat <- as.data.table(mat) sc$population <- matdat$V3 sc$year <- matdat$V2 ### Pull out D82018 individuals D82018clones <- sc[population=="D8" & year=="2018"] D82018clonesids <- D82018clones$clone #Add in 2 Bs Bs <- sc[clone=="May_2017_D8_515" | clone=="April_2017_D8_125"] D82018clonesandBs <- rbind(D82018clones, Bs) D82018clonesandBsids <- D82018clonesandBs$clone seqSetFilter(genofile, sample.id=D82018clonesandBsids) ### Load filtered but not LD pruned snpset load("snpsvarpulexpresentinhalf_20200121.Rdata") seqSetFilter(genofile, variant.id=snpsvarpulexpresentinhalf) ### Pull out SNPs on scaffold Scaffold_7757_HRSCAF_8726 between 8660157 - 8710157, results in 1530 SNPs. snpsvarPulex <- data.table(variant.ids = seqGetData(genofile, "variant.id"), chr = seqGetData(genofile, "chromosome"), pos = seqGetData(genofile, "position"), dp = seqGetData(genofile, "annotation/info/DP")) snpsvarPulex7757 <- snpsvarPulex[chr=="Scaffold_7757_HRSCAF_8726" & pos > 8660156 & pos < 8710158] snpsvarPulex7757ids <- snpsvarPulex7757$variant.ids seqSetFilter(genofile, variant.id=snpsvarPulex7757ids) ### Pull out genotypes het <- t(seqGetData(genofile, "$dosage")) het <- as.data.table(het) colnames(het) <- c(seqGetData(genofile, "sample.id")) het$variant.ids <- seqGetData(genofile, "variant.id") setkey(het, variant.ids) setkey(snpsvarPulex7757, variant.ids) mhetABfixed <- merge(snpsvarPulex7757, het) mhetABfixedlong <- melt(mhetABfixed, measure.vars=D82018clonesandBsids, variable.name="clone", value.name="dosage") #Remove NAs mhetABfixedlong <- mhetABfixedlong[dosage!="NA"] dosagecountsABfixed <- mhetABfixedlong[, .N, by=list(clone, dosage)] #Transform to wide format dosagecountsABfixedwide <- dcast(dosagecountsABfixed, clone ~ dosage, value.var="N") colnames(dosagecountsABfixedwide) <- c("clone", "dos0", "dos1", "dos2") dosagecountsABfixedwide[is.na(dos0),dos0:=0] dosagecountsABfixedwide[is.na(dos1),dos1:=0] dosagecountsABfixedwide[is.na(dos2),dos2:=0] setkey(dosagecountsABfixedwide, clone) setkey(D82018clonesandBs, clone) mdosagecountsABfixedwide <- merge(D82018clonesandBs, dosagecountsABfixedwide) mdosagecountsABfixedwide$total <- mdosagecountsABfixedwide$dos0+mdosagecountsABfixedwide$dos1+ mdosagecountsABfixedwide$dos2 mdosagecountsABfixedwide$prophet <- mdosagecountsABfixedwide$dos1/mdosagecountsABfixedwide$total setkey(mdosagecountsABfixedwide, SC, prophet) mdosagecountsABfixedwide$sex <- ifelse(mdosagecountsABfixedwide$clone=="April17_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male4" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male5", "male", ifelse(mdosagecountsABfixedwide$SC=="A", "A", ifelse( mdosagecountsABfixedwide$SC=="B", "B", "female" ))) ggplot(data=mdosagecountsABfixedwide, aes(x=prophet, fill=sex)) + geom_histogram() dp <- t((seqGetData(genofile, "annotation/format/DP"))$data) dp <- as.data.table(dp) colnames(dp) <- c(seqGetData(genofile, "sample.id")) dp$variant.ids <- seqGetData(genofile, "variant.id") dplong <- melt(dp, measure.vars=D82018clonesandBsids, variable.name="clone", value.name="dp") dplong.ag <- dplong[,list(medrd = median(dp, na.rm=TRUE)), list(clone) ] setkey(mdosagecountsABfixedwide, clone) setkey(dplong.ag, clone) m <- merge(mdosagecountsABfixedwide, dplong.ag) mhighRD <- m[medrd > 3] setkey(mhighRD, sex, SC) ggplot(data=mhighRD, aes(x=prophet, fill=sex)) + geom_histogram() ### So this didn't really work... Bs are more heterozygous than As overall in this region... Need to focus more on SNPs of interest. ### What if we pull out SNPs that are heterozygous in A but homozygous in B. setkey(mhetABfixedlong, clone) setkey(sc, clone) m <- merge(sc, mhetABfixedlong) dosagecountsABfixed <- m[, .N, by=list(SC, variant.ids, dosage)] dosagecountsABfixedA<- dosagecountsABfixed[SC=="A"] dosagecountsABfixedAsub <- data.table(variant.ids=dosagecountsABfixedA$variant.ids, dosage=dosagecountsABfixedA$dosage, N=dosagecountsABfixedA$N) dosagecountsABfixedAsubwide <- dcast(dosagecountsABfixedAsub, variant.ids ~ dosage, value.var="N") colnames(dosagecountsABfixedAsubwide) <- c("variant.ids", "dos0A", "dos1A", "dos2A") dosagecountsABfixedAsubwide[is.na(dos0A),dos0A:=0] dosagecountsABfixedAsubwide[is.na(dos1A),dos1A:=0] dosagecountsABfixedAsubwide[is.na(dos2A),dos2A:=0] dosagecountsABfixedAsubwide$totalA <- dosagecountsABfixedAsubwide$dos0A + dosagecountsABfixedAsubwide$dos1A + dosagecountsABfixedAsubwide$dos2A dosagecountsABfixedB<- dosagecountsABfixed[SC=="B"] dosagecountsABfixedBsub <- data.table(variant.ids=dosagecountsABfixedB$variant.ids, dosage=dosagecountsABfixedB$dosage, N=dosagecountsABfixedB$N) dosagecountsABfixedBsubwide <- dcast(dosagecountsABfixedBsub, variant.ids ~ dosage, value.var="N") colnames(dosagecountsABfixedBsubwide) <- c("variant.ids", "dos1B", "dos2B") dosagecountsABfixedBsubwide$dos0B <- c(0) dosagecountsABfixedBsubwide[is.na(dos0B),dos0B:=0] dosagecountsABfixedBsubwide[is.na(dos1B),dos1B:=0] dosagecountsABfixedBsubwide[is.na(dos2B),dos2B:=0] dosagecountsABfixedBsubwide$totalB <- dosagecountsABfixedBsubwide$dos0B + dosagecountsABfixedBsubwide$dos1B + dosagecountsABfixedBsubwide$dos2B setkey(dosagecountsABfixedAsubwide, variant.ids) setkey(dosagecountsABfixedBsubwide, variant.ids) mAB <- merge(dosagecountsABfixedAsubwide, dosagecountsABfixedBsubwide) AhetBhom <- mAB[dos1A==totalA & dos2B==totalB] AhetBhomids <- AhetBhom$variant.ids seqSetFilter(genofile, variant.id=AhetBhomids) ### Pull out genotypes het <- t(seqGetData(genofile, "$dosage")) het <- as.data.table(het) colnames(het) <- c(seqGetData(genofile, "sample.id")) het$variant.ids <- seqGetData(genofile, "variant.id") setkey(het, variant.ids) setkey(snpsvarPulex7757, variant.ids) mhetABfixed <- merge(snpsvarPulex7757, het) mhetABfixedlong <- melt(mhetABfixed, measure.vars=D82018clonesandBsids, variable.name="clone", value.name="dosage") #Remove NAs mhetABfixedlong <- mhetABfixedlong[dosage!="NA"] dosagecountsABfixed <- mhetABfixedlong[, .N, by=list(clone, dosage)] #Transform to wide format dosagecountsABfixedwide <- dcast(dosagecountsABfixed, clone ~ dosage, value.var="N") colnames(dosagecountsABfixedwide) <- c("clone", "dos0", "dos1", "dos2") dosagecountsABfixedwide[is.na(dos0),dos0:=0] dosagecountsABfixedwide[is.na(dos1),dos1:=0] dosagecountsABfixedwide[is.na(dos2),dos2:=0] setkey(dosagecountsABfixedwide, clone) setkey(D82018clonesandBs, clone) mdosagecountsABfixedwide <- merge(D82018clonesandBs, dosagecountsABfixedwide) mdosagecountsABfixedwide$total <- mdosagecountsABfixedwide$dos0+mdosagecountsABfixedwide$dos1+ mdosagecountsABfixedwide$dos2 mdosagecountsABfixedwide$prophet <- mdosagecountsABfixedwide$dos1/mdosagecountsABfixedwide$total setkey(mdosagecountsABfixedwide, SC, prophet) mdosagecountsABfixedwide$sex <- ifelse(mdosagecountsABfixedwide$clone=="April17_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male4" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male5", "male", ifelse(mdosagecountsABfixedwide$SC=="A", "A", ifelse( mdosagecountsABfixedwide$SC=="B", "B", "female" ))) ggplot(data=mdosagecountsABfixedwide, aes(x=prophet, fill=sex)) + geom_histogram()
/December2019/Checkmales7757region
no_license
kbkubow/DaphniaPulex20162017Sequencing
R
false
false
9,716
#!/usr/bin/env Rscript ### libraries library(gdsfmt) library(SNPRelate) library(data.table) library(ggplot2) library(foreach) library(lattice) library(tidyr) library(SeqArray) library(tidyverse) ### Load genofile genofile <- seqOpen("/scratch/kbb7sh/Daphnia/MappingDecember2019/MapDec19PulexOnlyB_filtsnps10bpindels_snps_filter_pass_lowGQmiss.seq.gds") ### Load superclone file sc <- fread("Superclones201617182019pulexonlyD82016problematic_20200122") ### Add in pond and year info temp <- unlist(strsplit(sc$clone, split="_")) mat <- matrix(temp, ncol=4, byrow=TRUE) matdat <- as.data.table(mat) sc$population <- matdat$V3 sc$year <- matdat$V2 ### Pull out D82018 individuals D82018clones <- sc[population=="D8" & year=="2018"] D82018clonesids <- D82018clones$clone #Add in 2 Bs Bs <- sc[clone=="May_2017_D8_515" | clone=="April_2017_D8_125"] D82018clonesandBs <- rbind(D82018clones, Bs) D82018clonesandBsids <- D82018clonesandBs$clone seqSetFilter(genofile, sample.id=D82018clonesandBsids) ### Load filtered but not LD pruned snpset load("snpsvarpulexpresentinhalf_20200121.Rdata") seqSetFilter(genofile, variant.id=snpsvarpulexpresentinhalf) ### Pull out SNPs on scaffold Scaffold_7757_HRSCAF_8726 between 8660157 - 8710157, results in 1530 SNPs. snpsvarPulex <- data.table(variant.ids = seqGetData(genofile, "variant.id"), chr = seqGetData(genofile, "chromosome"), pos = seqGetData(genofile, "position"), dp = seqGetData(genofile, "annotation/info/DP")) snpsvarPulex7757 <- snpsvarPulex[chr=="Scaffold_7757_HRSCAF_8726" & pos > 8660156 & pos < 8710158] snpsvarPulex7757ids <- snpsvarPulex7757$variant.ids seqSetFilter(genofile, variant.id=snpsvarPulex7757ids) ### Pull out genotypes het <- t(seqGetData(genofile, "$dosage")) het <- as.data.table(het) colnames(het) <- c(seqGetData(genofile, "sample.id")) het$variant.ids <- seqGetData(genofile, "variant.id") setkey(het, variant.ids) setkey(snpsvarPulex7757, variant.ids) mhetABfixed <- merge(snpsvarPulex7757, het) mhetABfixedlong <- melt(mhetABfixed, measure.vars=D82018clonesandBsids, variable.name="clone", value.name="dosage") #Remove NAs mhetABfixedlong <- mhetABfixedlong[dosage!="NA"] dosagecountsABfixed <- mhetABfixedlong[, .N, by=list(clone, dosage)] #Transform to wide format dosagecountsABfixedwide <- dcast(dosagecountsABfixed, clone ~ dosage, value.var="N") colnames(dosagecountsABfixedwide) <- c("clone", "dos0", "dos1", "dos2") dosagecountsABfixedwide[is.na(dos0),dos0:=0] dosagecountsABfixedwide[is.na(dos1),dos1:=0] dosagecountsABfixedwide[is.na(dos2),dos2:=0] setkey(dosagecountsABfixedwide, clone) setkey(D82018clonesandBs, clone) mdosagecountsABfixedwide <- merge(D82018clonesandBs, dosagecountsABfixedwide) mdosagecountsABfixedwide$total <- mdosagecountsABfixedwide$dos0+mdosagecountsABfixedwide$dos1+ mdosagecountsABfixedwide$dos2 mdosagecountsABfixedwide$prophet <- mdosagecountsABfixedwide$dos1/mdosagecountsABfixedwide$total setkey(mdosagecountsABfixedwide, SC, prophet) mdosagecountsABfixedwide$sex <- ifelse(mdosagecountsABfixedwide$clone=="April17_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male4" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male5", "male", ifelse(mdosagecountsABfixedwide$SC=="A", "A", ifelse( mdosagecountsABfixedwide$SC=="B", "B", "female" ))) ggplot(data=mdosagecountsABfixedwide, aes(x=prophet, fill=sex)) + geom_histogram() dp <- t((seqGetData(genofile, "annotation/format/DP"))$data) dp <- as.data.table(dp) colnames(dp) <- c(seqGetData(genofile, "sample.id")) dp$variant.ids <- seqGetData(genofile, "variant.id") dplong <- melt(dp, measure.vars=D82018clonesandBsids, variable.name="clone", value.name="dp") dplong.ag <- dplong[,list(medrd = median(dp, na.rm=TRUE)), list(clone) ] setkey(mdosagecountsABfixedwide, clone) setkey(dplong.ag, clone) m <- merge(mdosagecountsABfixedwide, dplong.ag) mhighRD <- m[medrd > 3] setkey(mhighRD, sex, SC) ggplot(data=mhighRD, aes(x=prophet, fill=sex)) + geom_histogram() ### So this didn't really work... Bs are more heterozygous than As overall in this region... Need to focus more on SNPs of interest. ### What if we pull out SNPs that are heterozygous in A but homozygous in B. setkey(mhetABfixedlong, clone) setkey(sc, clone) m <- merge(sc, mhetABfixedlong) dosagecountsABfixed <- m[, .N, by=list(SC, variant.ids, dosage)] dosagecountsABfixedA<- dosagecountsABfixed[SC=="A"] dosagecountsABfixedAsub <- data.table(variant.ids=dosagecountsABfixedA$variant.ids, dosage=dosagecountsABfixedA$dosage, N=dosagecountsABfixedA$N) dosagecountsABfixedAsubwide <- dcast(dosagecountsABfixedAsub, variant.ids ~ dosage, value.var="N") colnames(dosagecountsABfixedAsubwide) <- c("variant.ids", "dos0A", "dos1A", "dos2A") dosagecountsABfixedAsubwide[is.na(dos0A),dos0A:=0] dosagecountsABfixedAsubwide[is.na(dos1A),dos1A:=0] dosagecountsABfixedAsubwide[is.na(dos2A),dos2A:=0] dosagecountsABfixedAsubwide$totalA <- dosagecountsABfixedAsubwide$dos0A + dosagecountsABfixedAsubwide$dos1A + dosagecountsABfixedAsubwide$dos2A dosagecountsABfixedB<- dosagecountsABfixed[SC=="B"] dosagecountsABfixedBsub <- data.table(variant.ids=dosagecountsABfixedB$variant.ids, dosage=dosagecountsABfixedB$dosage, N=dosagecountsABfixedB$N) dosagecountsABfixedBsubwide <- dcast(dosagecountsABfixedBsub, variant.ids ~ dosage, value.var="N") colnames(dosagecountsABfixedBsubwide) <- c("variant.ids", "dos1B", "dos2B") dosagecountsABfixedBsubwide$dos0B <- c(0) dosagecountsABfixedBsubwide[is.na(dos0B),dos0B:=0] dosagecountsABfixedBsubwide[is.na(dos1B),dos1B:=0] dosagecountsABfixedBsubwide[is.na(dos2B),dos2B:=0] dosagecountsABfixedBsubwide$totalB <- dosagecountsABfixedBsubwide$dos0B + dosagecountsABfixedBsubwide$dos1B + dosagecountsABfixedBsubwide$dos2B setkey(dosagecountsABfixedAsubwide, variant.ids) setkey(dosagecountsABfixedBsubwide, variant.ids) mAB <- merge(dosagecountsABfixedAsubwide, dosagecountsABfixedBsubwide) AhetBhom <- mAB[dos1A==totalA & dos2B==totalB] AhetBhomids <- AhetBhom$variant.ids seqSetFilter(genofile, variant.id=AhetBhomids) ### Pull out genotypes het <- t(seqGetData(genofile, "$dosage")) het <- as.data.table(het) colnames(het) <- c(seqGetData(genofile, "sample.id")) het$variant.ids <- seqGetData(genofile, "variant.id") setkey(het, variant.ids) setkey(snpsvarPulex7757, variant.ids) mhetABfixed <- merge(snpsvarPulex7757, het) mhetABfixedlong <- melt(mhetABfixed, measure.vars=D82018clonesandBsids, variable.name="clone", value.name="dosage") #Remove NAs mhetABfixedlong <- mhetABfixedlong[dosage!="NA"] dosagecountsABfixed <- mhetABfixedlong[, .N, by=list(clone, dosage)] #Transform to wide format dosagecountsABfixedwide <- dcast(dosagecountsABfixed, clone ~ dosage, value.var="N") colnames(dosagecountsABfixedwide) <- c("clone", "dos0", "dos1", "dos2") dosagecountsABfixedwide[is.na(dos0),dos0:=0] dosagecountsABfixedwide[is.na(dos1),dos1:=0] dosagecountsABfixedwide[is.na(dos2),dos2:=0] setkey(dosagecountsABfixedwide, clone) setkey(D82018clonesandBs, clone) mdosagecountsABfixedwide <- merge(D82018clonesandBs, dosagecountsABfixedwide) mdosagecountsABfixedwide$total <- mdosagecountsABfixedwide$dos0+mdosagecountsABfixedwide$dos1+ mdosagecountsABfixedwide$dos2 mdosagecountsABfixedwide$prophet <- mdosagecountsABfixedwide$dos1/mdosagecountsABfixedwide$total setkey(mdosagecountsABfixedwide, SC, prophet) mdosagecountsABfixedwide$sex <- ifelse(mdosagecountsABfixedwide$clone=="April17_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male1" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="March20_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male2" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male3" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male4" | mdosagecountsABfixedwide$clone=="April17_2018_D8_Male5", "male", ifelse(mdosagecountsABfixedwide$SC=="A", "A", ifelse( mdosagecountsABfixedwide$SC=="B", "B", "female" ))) ggplot(data=mdosagecountsABfixedwide, aes(x=prophet, fill=sex)) + geom_histogram()
library(embed) library(dplyr) library(testthat) library(modeldata)
/tests/testthat/test_helpers.R
no_license
konradsemsch/embed-1
R
false
false
67
r
library(embed) library(dplyr) library(testthat) library(modeldata)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MetaAnalysisForFamiliesOfExperimentsSR.R \name{transformZrtoHgapprox} \alias{transformZrtoHgapprox} \title{transformZrtoHgapprox} \usage{ transformZrtoHgapprox(Zr) } \arguments{ \item{Zr}{A vector of normalised point bi-serial values} } \value{ approx. value of Hedges' g } \description{ This function provides an approximate transformation from Zr to Hedges g when the number of observations in the treatment and control group are unknown. It is also used to allow the forest plots to display Hedge's g when they are based on r. It is necessary because the transformation function in the forest plot function does not allow any parameters other than effect size used. The function assumes that Nc=Nt and gives the same results as transformZrtoHg when Nc=Nt. } \examples{ transformZrtoHgapprox(c(0.4, 0.2)) # [1] 0.8215047 0.4026720 } \author{ Barbara Kitchenham and Lech Madeyski }
/man/transformZrtoHgapprox.Rd
no_license
cran/reproducer
R
false
true
961
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MetaAnalysisForFamiliesOfExperimentsSR.R \name{transformZrtoHgapprox} \alias{transformZrtoHgapprox} \title{transformZrtoHgapprox} \usage{ transformZrtoHgapprox(Zr) } \arguments{ \item{Zr}{A vector of normalised point bi-serial values} } \value{ approx. value of Hedges' g } \description{ This function provides an approximate transformation from Zr to Hedges g when the number of observations in the treatment and control group are unknown. It is also used to allow the forest plots to display Hedge's g when they are based on r. It is necessary because the transformation function in the forest plot function does not allow any parameters other than effect size used. The function assumes that Nc=Nt and gives the same results as transformZrtoHg when Nc=Nt. } \examples{ transformZrtoHgapprox(c(0.4, 0.2)) # [1] 0.8215047 0.4026720 } \author{ Barbara Kitchenham and Lech Madeyski }
## Code is for ProgrammingAssignment2 of the Coursera R programming course. ## makeCacheMatrix: This function creates a special "matrix" object that can ## cache its inverse. makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setSolve <- function(solve) m <<- solve getSolve <- function() m list( set = set, get = get, setSolve = setSolve, getSolve = getSolve ) } ## cacheSolve: This function computes the inverse of the special "matrix" ## returned by makeCacheMatrix above. If the inverse has already been ## calculated (and the matrix has not changed), then cacheSolve should retrieve ## the inverse from the cache. cacheSolve <- function(x, ...) { m <- x$getSolve() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setSolve(m) m }
/cachematrix.R
no_license
shortd/ProgrammingAssignment2
R
false
false
1,108
r
## Code is for ProgrammingAssignment2 of the Coursera R programming course. ## makeCacheMatrix: This function creates a special "matrix" object that can ## cache its inverse. makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setSolve <- function(solve) m <<- solve getSolve <- function() m list( set = set, get = get, setSolve = setSolve, getSolve = getSolve ) } ## cacheSolve: This function computes the inverse of the special "matrix" ## returned by makeCacheMatrix above. If the inverse has already been ## calculated (and the matrix has not changed), then cacheSolve should retrieve ## the inverse from the cache. cacheSolve <- function(x, ...) { m <- x$getSolve() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setSolve(m) m }
source("~/r-workspace/dec-functions.r") heights20<-read.table(mfn22(pvalues[9],TRUE),header=T) heights5<-read.table(mfn22(pvalues[3],TRUE),header=T) prc20<-pca(heights20) prc5<-pca(heights5) opt20s<-"PC1+1:PC1-1:PC4+1:PC4-1:PC2+1:PC2-1" opt5s<-"PC1+1:PC1-1:PC3+1:PC3-1:PC5+1:PC5-1:PC7+1:PC7-1" opt20<-strsplit(opt20s,":")[[1]] opt5<-strsplit(ot5s,":")[[1]] reg20<-qPeakP(prc20$eigenVectors,opt20s) reg5<-qPeakP(prc5$eigenVectors,opt5s) HSC5<-addColnames(cbind(reg5[,"PC3+1"]&reg5[,"PC7+1"], reg5[,"PC3-1"]&reg5[,"PC7-1"])|(reg5[,"PC3-1"]&reg5[,"PC7+1"])|(reg5[,"PC3+1"]&reg5[,"PC7-1"]),c("HSC","NotHSC")) Other5<-addColnames(cbind(reg5[,"PC3+1"]&reg5[,"PC5+1"], reg5[,"PC3-1"]&reg5[,"PC5-1"])|(reg5[,"PC3-1"]&reg5[,"PC5+1"])|(reg5[,"PC3+1"]&reg5[,"PC5-1"]),c("Other","NotOther")) bed20<-ifZeroShift(read.table("~/thesis-november/22x22-pvalue=20.matrix",header=T)[,1:3]) bed5<-ifZeroShift(read.table("~/thesis-november/22x22-pvalue=5.matrix",header=T)[,1:3]) #fasta20<-getSeq(BSgenome.Hsapiens.UCSC.hg19,bed20$chro,start=bed20$start+150,width=300) #fasta5<-getSeq(BSgenome.Hsapiens.UCSC.hg19,bed5$chro,start=bed5$start+150,width=300) #fasta5<-read motifFiles<-c(motifFileNames(opt20,pairSwitch(opt20),rep(20,6),rep(8,6)), motifFileNames(opt20,pairSwitch(opt20),rep(20,6),rep(6,6)), motifFileNames(opt5,pairSwitch(opt5),rep(5,8),rep(8,8)), motifFileNames(opt5,pairSwitch(opt5),rep(5,8),rep(6,8)), motifFileNames(c("HSC","Other"),c("NotHSC","NotOther"),rep(5,2),rep(6,2)), motifFileNames(c("HSC","Other"),c("NotHSC","NotOther"),rep(5,2),rep(8,2)) )
/variables/dec-variables.r
no_license
alexjgriffith/r-workspace
R
false
false
1,608
r
source("~/r-workspace/dec-functions.r") heights20<-read.table(mfn22(pvalues[9],TRUE),header=T) heights5<-read.table(mfn22(pvalues[3],TRUE),header=T) prc20<-pca(heights20) prc5<-pca(heights5) opt20s<-"PC1+1:PC1-1:PC4+1:PC4-1:PC2+1:PC2-1" opt5s<-"PC1+1:PC1-1:PC3+1:PC3-1:PC5+1:PC5-1:PC7+1:PC7-1" opt20<-strsplit(opt20s,":")[[1]] opt5<-strsplit(ot5s,":")[[1]] reg20<-qPeakP(prc20$eigenVectors,opt20s) reg5<-qPeakP(prc5$eigenVectors,opt5s) HSC5<-addColnames(cbind(reg5[,"PC3+1"]&reg5[,"PC7+1"], reg5[,"PC3-1"]&reg5[,"PC7-1"])|(reg5[,"PC3-1"]&reg5[,"PC7+1"])|(reg5[,"PC3+1"]&reg5[,"PC7-1"]),c("HSC","NotHSC")) Other5<-addColnames(cbind(reg5[,"PC3+1"]&reg5[,"PC5+1"], reg5[,"PC3-1"]&reg5[,"PC5-1"])|(reg5[,"PC3-1"]&reg5[,"PC5+1"])|(reg5[,"PC3+1"]&reg5[,"PC5-1"]),c("Other","NotOther")) bed20<-ifZeroShift(read.table("~/thesis-november/22x22-pvalue=20.matrix",header=T)[,1:3]) bed5<-ifZeroShift(read.table("~/thesis-november/22x22-pvalue=5.matrix",header=T)[,1:3]) #fasta20<-getSeq(BSgenome.Hsapiens.UCSC.hg19,bed20$chro,start=bed20$start+150,width=300) #fasta5<-getSeq(BSgenome.Hsapiens.UCSC.hg19,bed5$chro,start=bed5$start+150,width=300) #fasta5<-read motifFiles<-c(motifFileNames(opt20,pairSwitch(opt20),rep(20,6),rep(8,6)), motifFileNames(opt20,pairSwitch(opt20),rep(20,6),rep(6,6)), motifFileNames(opt5,pairSwitch(opt5),rep(5,8),rep(8,8)), motifFileNames(opt5,pairSwitch(opt5),rep(5,8),rep(6,8)), motifFileNames(c("HSC","Other"),c("NotHSC","NotOther"),rep(5,2),rep(6,2)), motifFileNames(c("HSC","Other"),c("NotHSC","NotOther"),rep(5,2),rep(8,2)) )
testlist <- list(A = structure(c(2.32784507011897e-308, 9.53818252170339e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L)), B = structure(0, .Dim = c(1L, 1L))) result <- do.call(multivariance:::match_rows,testlist) str(result)
/multivariance/inst/testfiles/match_rows/AFL_match_rows/match_rows_valgrind_files/1613107463-test.R
no_license
akhikolla/updatedatatype-list3
R
false
false
344
r
testlist <- list(A = structure(c(2.32784507011897e-308, 9.53818252170339e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L)), B = structure(0, .Dim = c(1L, 1L))) result <- do.call(multivariance:::match_rows,testlist) str(result)
library(R2Cuba) library(MASS) n <- 100 p <- 1 ht <- n^(-1/3) hx <- rep(ht, p) m = 10 theta <- c(0.5, 0.5, 0.5, 2, 2, 2, -0.5, -0.6, -0.7) q <- length(theta) - 3 mA <- matrix(NA, m, m) mb <- matrix(NA, q, m) vg <- seq(0.5, 1.5, length.out = m) vq <- dunif(vg, 0.5, 1.5) n <- 100 cn <- 50 p <- 1 ij <- as.matrix(expand.grid(1 : m, 1 : m)) hzd1 <- function(kappa1, alpha1, beta1, t, x, g){ exp((trans1(t, alpha1)-t(beta1) %*% x-log(g))/kappa1^2) * 1/t * 1/kappa1^2 } hzd2 <- function(kappa2, alpha2, beta2, t, x, g){ exp((trans2(t, alpha2)-t(beta2) %*% x-log(g))/kappa2^2) * 1/t * 1/kappa2^2 } hzd3 <- function(kappa3, alpha3, beta3, t, x, g){ exp((trans3(t, alpha3)-t(beta3) %*% x-log(g))/kappa3^2) * 1/t * 1/kappa3^2 } surv1 <- function(kappa1, alpha1, beta1, t, x, g){ exp(- exp( (trans1(t, alpha1) - log(g) - t(beta1) %*% x) / kappa1 ^2)) } surv2 <- function(kappa2, alpha2, beta2, t, x, g){ exp(- exp( (trans2(t, alpha2) - log(g) - t(beta2) %*% x) / kappa2 ^2)) } surv3 <- function(kappa3, alpha3, beta3, t, x, g){ exp(- exp( (trans3(t, alpha3) - log(g) - t(beta3) %*% x) / kappa3 ^2)) } trans1 <- function(t, alpha1= 1){ log(t) } trans2 <- function(t, alpha2= 1){ log(t) } trans3 <- function(t, alpha3=1){ log(t) } lkhd.exp <- expression((( ((log(y1)-b1x -log(g))/kappa1^2) + log( 1/y1) + log( 1/kappa1^2)) * d1 + ( ((log(y1)-b2x-log(g))/kappa2^2) + log(1/y1) +log( 1/kappa2^2)) * (1-d1) + (((log(y2)-b3x-log(g))/kappa3^2) + log( 1/y2) + log( 1/kappa3^2)) * d1 + (- exp( (log(y1) - log(g) - b1x) / kappa1^2)) + (- exp( (log(y1) - log(g) - b2x) / kappa2^2)) + ((- exp( (log(y2) - log(g) - b3x) / kappa3^2)) -(- exp( (log(y1) - log(g) - b3x) / kappa3^2))) * d1 - ((- exp( (log(v) - log(g) -b1x) / kappa1^2)) + (- exp( (log(v) - log(g) - b2x) / kappa2^2))) + log(1 / (1 - vt11)) + log(1/ (1 - vt12)) )) lkhd.exp <- expression((( ((log(y1)-b1x -log(g))/kappa1^2) + log( 1/y1) + log( 1/kappa1^2)) * d1 + ( ((log(y1)-b2x-log(g))/kappa2^2) + log(1/y1) +log( 1/kappa2^2)) * (1-d1) + (((log(y2)-b3x-log(g))/kappa3^2) + log( 1/y2) + log( 1/kappa3^2)) * d1 + (- exp( (log(y1) - log(g) - b1x) / kappa1^2)) + (- exp( (log(y1) - log(g) - b2x) / kappa2^2)) + ((- exp( (log(y2) - log(g) - b3x) / kappa3^2)) -(- exp( (log(y1) - log(g) - b3x) / kappa3^2))) * d1 + log(1 / (1 - vt11)) + log(1/ (1 - vt12)) )) #eval(deriv(lkhd.exp, c("b1x", "b2x", "b3x", "alpha1", "alpha2", "alpha3"))) dlike <- deriv(lkhd.exp, c("b1x", "b2x", "b3x", "kappa1", "kappa2", "kappa3")) score <- function(vt, theta, x, g, v= 1e-5){ vt1 <- vt vt11 <- vt1[, 1] vt12 <- vt1[, 2] vt <- -log(1 - vt) kappa1 <- abs(theta[1]) kappa2 <- abs(theta[2]) kappa3 <- abs(theta[3]) beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] b1x <- t(beta1)%*%x b2x <- t(beta2)%*%x b3x <- t(beta3)%*%x d1 <- as.numeric(vt[, 1] < vt[, 2]) y1 <- pmin(vt[, 1], vt[, 2]) y2 <- vt[, 2] derivlike <- attributes(eval(dlike))$gradient derivlike[is.nan(derivlike)] <- 0 #browser() score <- cbind( derivlike[, 4: ncol(derivlike)], derivlike[, 1] %*% diag(x, p, p), derivlike[, 2] %*% diag(x, p, p), derivlike[, 3] %*% diag(x, p, p)) } singlescore <- function(vt, theta, x, g, v= 1e-5){ vt1 <- vt vt11 <- vt1[1] vt12 <- vt1[2] vt <- -log(1 - vt) kappa1 <- abs(theta[1]) kappa2 <- abs(theta[2]) kappa3 <- abs(theta[3]) alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] b1x <- t(beta1)%*%x b2x <- t(beta2)%*%x b3x <- t(beta3)%*%x d1 <- as.numeric(vt[1] < vt[2]) y1 <- pmin(vt[1], vt[2]) y2 <- vt[2] derivlike <- attributes(eval(dlike))$gradient derivlike[is.nan(derivlike)] <- 0 #browser() score <- c(derivlike[4: length(derivlike)], derivlike[1] * (x), derivlike[2] * x, derivlike[3] * x ) } likelihood <- function(vt, x, g, theta, v=1e-5){ vt1 <- vt vt <- -log(1 - vt) kappa1 <- abs(theta[1]) kappa2 <- abs(theta[2]) kappa3 <- abs(theta[3]) alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] t1 <- vt[, 1] t2 <- vt[, 2] d1 <- as.numeric(t1 < t2) y2 <- t2 y1 <- pmin(t1, t2) # likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / surv3(kappa3, alpha3, beta3, y1, x, g) )^(d1)/(surv1(kappa1, alpha1, beta1, v, x, g) *surv2(kappa2, alpha2, beta2, v, x, g)) * apply(1 / (1 - vt1), 1, prod) likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / (surv3(kappa3, alpha3, beta3, y1, x, g) + 1e-200) )^(d1) * apply(1 / (1 - vt1), 1, prod) # if(sum(is.nan(likelihood)) > 0) # browser() likelihood[is.nan(likelihood)] <- 0 return(likelihood) } singlelikelihood <- function(vt, x, g, theta, v=1e-5){ vt1 <- vt vt <- -log(1 - vt) kappa1 <- theta[1] kappa2 <- theta[2] kappa3 <- theta[3] alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] t1 <- vt[1] t2 <- vt[2] d1 <- as.numeric(t1 < t2) y2 <- t2 y1 <- pmin(t1, t2) #likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / surv3(kappa3, alpha3, beta3, y1, x, g)+ 1e-200 )^(d1)/(surv1(kappa1, alpha1, beta1, v, x, g) *surv2(kappa2, alpha2, beta2, v, x, g)) * prod(1 / (1 - vt1)) likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / (surv3(kappa3, alpha3, beta3, y1, x, g)+ 1e-200) )^(d1) * prod(1 / (1 - vt1)) likelihood[is.nan(likelihood)] <- 0 return(likelihood) } Amatx <- function(ij, vg, vq, theta, x, v = 0){ #print("A") i <- ij[1] j <- ij[2] dm <- function(k, vg, vt, x, theta, v){ likelihood(vt, x, vg[k], theta, v)* vq[k] } A <- function(vt){ likelihood(vt, x, vg[j], theta, v)* vq[j] * likelihood(vt, x, vg[i], theta, v)/ (apply((sapply(1 : m, dm, vg, vt, x, theta, v)), 1, sum) + 1e-200) } #Aij <- mean(A(vtg))#mean(apply(vt, 1, A), na.rm = T) #mA[i, j] <<- Aij Aij <- my2d(A, mgrid, 1) mA[i, j] <<- Aij return(NULL) } bmatx <- function(i, vg, vq, theta, x, v=1e-5){ # print("b") num <- function(k, vg, vt, x, theta, v= v){ score( vt, theta, x, vg[k], v) * vq[k] } dm <- function(k, vg, vt, x, theta, v= v){ likelihood(vt, x, vg[k], theta, v)* vq[k] } b <- function(vt){ Reduce('+', lapply(1 :m, num, vg, vt, x, theta, v))/(matrix(rep(apply(sapply(1 : m, dm, vg, vt, x, theta, v), 1, sum), q), ncol = q) + 1e-200) * matrix(rep(likelihood(vt, x, vg[i], theta, v), q), ncol = q) } #bi <- apply(b(vtg), 2, mean) bi <- my2d(b, mgrid, q)#vegas (2, length(theta) -3, b, lower = c(0.01, 0.01), upper = c(0.99, 0.99), abs.tol = 0.01)$value if(sum(is.nan(bi)) > 0){ browser() } bi[is.nan(bi)] <- 0 mb[, i] <<- bi return(NULL) } singleAmatx <- function(ij, vg, vq, theta, x, v = 0){ #print("A") i <- ij[1] j <- ij[2] dm <- function(k, vg, vt, x, theta, v){ singlelikelihood(vt, x, vg[k], theta, v)* vq[k] } A <- function(vt){ singlelikelihood(vt, x, vg[j], theta, v)* vq[j] * singlelikelihood(vt, x, vg[i], theta, v)/ sum(sapply(1 : m, dm, vg, vt, x, theta, v)) } #Aij <- area* mean(A(vtg))#mean(apply(vt, 1, A), na.rm = T) #mA[i, j] <<- Aij Aij <- vegas (2, 1, A, lower = c(0.01, 0.01), upper = c(0.99, 0.99), abs.tol = 0.01)$value mA[i, j] <<- Aij return(NULL) } singlebmatx <- function(i, vg, vq, theta, x, v=1e-5){ # print("b") num <- function(k, vg, vt, x, theta, v= v){ singlescore( vt, theta, x, vg[k], v) * vq[k] } dm <- function(k, vg, vt, x, theta, v= v){ singlelikelihood(vt, x, vg[k], theta, v)* vq[k] } b <- function(vt){ Reduce('+', lapply(1 :m, num, vg, vt, x, theta, v))/sum(sapply(1 : m, dm, vg, vt, x, theta, v)) * singlelikelihood(vt, x, vg[i], theta, v) } #bi <- area * apply(b(vtg), 2, mean) bi <- vegas (2, length(theta) -3, b, lower = c(0.01, 0.01), upper = c(0.99, 0.99), abs.tol = 0.01)$value mb[, i] <<- bi return(NULL) } projscore <- function(vg, vq, theta, vt, x, a, v= 0){ num <- function(k, vg, vt, x, theta, v){ (singlescore(vt, theta, x, vg[k], v) - a[, k]) * singlelikelihood(vt, x, vg[k], theta, v) * vq[k] } dm <- function(k, vg, vt, x, theta, v){ singlelikelihood(vt, x, vg[k], theta, v)* vq[k] } apply(sapply(1 :m, num, vg, vt, x, theta, v), 1, sum)/sum(sapply(1 : m, dm, vg, vt, x, theta, v)) } creata <- function(i, theta, cmptresp, p, mx, cmptv){ apply(ij, 1, Amatx, vg, vq, theta, mx[i, ], v = cmptv[i]) lapply(1 :m, bmatx, vg, vq, theta, mx[i,], v= cmptv[i]) invA <- try(ginv(mA)) if(class(invA) == "try-error"){ browser() } a <- t(invA %*% t(mb)) } completescore <- function(i, theta, cmptresp, cn, p, ma, cmptcovm, cmptv){ ## apply(ij, 1, Amatx, vg, vq, theta, cmptcovm[i, ], v = cmptv[i]) ## lapply(1 :m, bmatx, vg, vq, theta, cmptcovm[i,], v= cmptv[i]) ## invA <- try(ginv(mA)) ## if(class(invA) == "try-error"){ ## browser() ## } ## a <- t(invA %*% t(mb)) a <- ma[[which(apply(mx, 1, identical, cmptcovm[i, ]))]] pjscore <- projscore(vg, vq, theta, cmptresp[i,c("y1", "y2")], cmptcovm[i, ], a, v = cmptv[i]) if(is.nan(sum(pjscore))){ browser() } pjscore } missingscore <- function(i, theta, missresp, cmptresp, mn, cn, p, misscovm, cmptcovm, cmptscore, missv ){ if(missresp[i, "d1"] == 1 & missresp[i, "d2"] == 0){ cn <- missresp[i, "y2"] y1 <- missresp[i, "y1"] x <- misscovm[i, ] ix <- cmptresp[, "y2"] >= cn & cmptresp[, "y1"] < cn if(sum(ix) > 0) missscore <- sum(cmptscore[ix,, drop = F ]* kert(y1, cmptresp[ix, "y1"], ht) * kerx(x, cmptcovm[ix, ], hx)) / (sum( kert(y1, cmptresp[ix, "y1"], ht) * kerx(x, cmptcovm[ix, ], hx)) + 0.0001) else missscore <- rep(0, q) }else if(missresp[i, "d1"] == 0 & missresp[i, "d2"] == 0) { cn <- missresp[i, "y2"] y1 <- missresp[i, "y1"] x <- misscovm[i, ] ix <- cmptresp[, "y1"] >= cn if(sum(ix) > 0) missscore <- apply(cmptscore[ix, , drop = F]* kerx(x, cmptcovm[ix, ], ht), 2, sum) / sum( kerx(x, cmptcovm[ix, ], hx) + 0.0001) else missscore <- rep(0, q) } return(missscore) } estm1 <- function(theta, resp, covm, n, p, mv = rep(1e-5, n)){ colnames(resp) <- c("y1", "d1", "y2", "d2") cmptix <- resp[, "d2"] == 1 covm <- matrix(covm, n, p) cn <- sum(cmptix) missix <- resp[, "d2"] == 0 mn <- sum(missix) cmptresp <- resp[cmptix, ] cmptcovm <- covm[cmptix, , drop = F] cmptv <- mv[cmptix] missresp <- resp[missix, ] misscovm <- covm[missix, , drop = F] missv <- mv[missix] cmptscore <- do.call(rbind, lapply(1 : cn,completescore, theta, cmptresp, cn, p, cmptcovm, cmptv)) #browser() missscore <- do.call(rbind, lapply(1 : mn, missingscore, theta, missresp, cmptresp, mn, cn, p, misscovm, cmptcovm, cmptscore, missv)) #browser() score <- sum((apply(rbind(cmptscore, missscore), 2, sum) )^2) } estm <- function(theta, resp, covm, n, p, mv = rep(1e-5, n)){ print(theta) colnames(resp) <- c("y1", "d1", "y2", "d2") cmptix <- resp[, "d2"] == 1 covm <- matrix(covm, n, p) cn <- sum(cmptix) missix <- resp[, "d2"] == 0 mn <- sum(missix) cmptresp <- resp[cmptix, ] cmptcovm <- covm[cmptix, , drop = F] cmptv <- mv[cmptix] missresp <- resp[missix, ] misscovm <- covm[missix, , drop = F] missv <- mv[missix] ma <- lapply(1 : length(mx), creata, theta, cmptresp, p, mx, cmptv) cmptscore <- do.call(rbind, lapply(1 : cn,completescore, theta, cmptresp, cn, p, ma, cmptcovm, cmptv)) #browser() if(mn > 0){ missscore <- do.call(rbind, lapply(1 : mn, missingscore, theta, missresp, cmptresp, mn, cn, p, misscovm, cmptcovm, cmptscore, missv)) #browser() score <- apply(rbind(cmptscore, missscore), 2, sum) }else{ score <- apply((cmptscore), 2, sum) } score <- c(score[1:3], 0, 0, 0, score[4:length(score)]) /n } simuRsk <- function(i, n, p, theta, cen1, cen2 ,covm = NULL){ if(is.null(covm)){ covm <- matrix(rbinom(1, 1, 0.5), 1, p) } kappa1 <- theta[1] ^ 2 kappa2 <- theta[2] ^ 2 kappa3 <- theta[3] ^ 2 alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] x <- covm g <- runif(1, 0.5, 1.5) lb1 <- exp((- t(beta1)%*%x - log(g))/kappa1) lb2 <- exp((- t(beta2)%*%x - log(g))/kappa2) lb3 <- exp((- t(beta3)%*%x - log(g))/kappa3) a1 <- 1/kappa1 a2 <- 1/kappa2 a3 <- 1/kappa3 p1g2 <- lb2 /(lb1 + lb2) r <- rbinom(1, 1, p1g2) c <- runif(1, cen1, cen2) if(r == 1){ u <- runif(1) t2 <- (- log(1- u) / (lb1 + lb2))^(1/a2) t1 = t2 + 3 }else{ u <- runif(1) t1 <- (- log(1- u) / (lb1 + lb2))^(1/a1) u <- runif(1) t2 <- (-log((1 - u) * exp(-lb3 * t1 ^ a3)) / lb3) ^ (1/a3) } y2 = min(t2, c) y1 = min(t1, y2) d1 <- as.numeric(t1 < y2) d2 <- as.numeric(y2 < c) simdata <- cbind(y1, d1, y2, d2) colnames(simdata) <- c("y1", "d1", "y2", "d2") return(c(simdata, covm, g)) } kert <- function(t1, vt2, h){ dnorm((t1 - vt2)/h) } kerx <- function(x1, vx2, h){ vx2 <- matrix(vx2, ncol = p) x1 <- matrix(rep(x1, nrow(vx2)), ncol = p, byrow = T) h <- matrix(rep(h, nrow(vx2)), ncol = p, byrow = T) apply(dnorm((vx2 - x1)/h), 1, prod) } #a <- solve(mA) %*% mb set.seed(2013) survData <- do.call(rbind, lapply(1:n, simuRsk, n, p, theta, 10000, 300000)) resp <- cbind(1 - exp(-survData[, 1]), survData[, 2], 1 - exp(-survData[, 3]), survData[, 4]) colnames(resp) <- c("y1", "d1", "y2", "d2") covm <- survData[, 5] estm2 <- function(...){ estm(...)^2 } rt <- c(max(resp[, 1]), max(resp[, 3])) area <- prod(rt) set.seed(2014) vta <- runif(100000, 0, 1) vtb <- runif(100000, 0, 1) vtg <- cbind(vta, vtb) findint <- function(vv){ set.seed(2014) va <- vv[1] vb <- vv[2] #vc <- vv[3] #vd <- vv[4] vt <- cbind(runif(10000, va, 1), runif(10000, vb, 1)) res <- try(sum(abs(apply(score(vt, theta, covm[1], vg[1]) / (dunif(vt[,1], va, 1) * dunif(vt[, 2], vb, 1)), 2, mean) - d$integral))) if(is.nan(res)){ browser() } return(res) } ng <- 32 cx <- gaussLegendre(ng, 0.01, 0.99) x <- cx$x wx <- cx$w cy <- gaussLegendre(ng, 0.01, 0.99) y <- cy$x wy <- cy$w mgrid <- meshgrid(x, y) my2d <- function (f, mgrid, nf, ...) { fun <- match.fun(f) f <- function(vt) fun(vt, ...) mZ <- as.matrix(f(cbind(as.vector(mgrid$X), as.vector(mgrid$Y))), ncol = nf) temp <- function(i){ Z <- matrix(mZ[, i], ng, ng) Q <- c( wx %*% Z %*% as.matrix(wy)) } Q <- sapply(1 : nf, temp) return(Q) } #dfsane(c(rep(0.5, 6), rep(-0.5, 3)), estm, method = 2, control = list(tol = 1.e-5, noimp = 100 ), quiet = FALSE, resp, covm, n, p, rep(min(resp[, 1] /2), n)) mx <- matrix(c(0, 1), ncol = p) #multiroot(estm, c(rep(1, 6), rep(-0.5, 3)), maxiter = 100, rtol = 1e-6, atol = 1e-8, ctol = 1e-8,useFortran = TRUE, positive = FALSE,jacfunc = NULL, jactype = "fullint", verbose = FALSE, bandup = 1, banddown = 1,resp, covm, n, p) theta<- c(0.08241974, -0.06403001, 0.21495395, 0.50000000, 0.50000000, 0.50000000, -0.44144138, -0.50645970, -0.85097759) Z<- rnorm(1000, 0, 1) p <- rbinom(1000, 1, pnorm(Z, 0, 1)) g <- rgamma(1000, 1, 1/0.5) * p + (2 + rgamma(1000, 1, 1/6)) * (1 - p) plot(density(g), main = "")
/accleft/accleft.r
no_license
homebovine/harvard
R
false
false
17,232
r
library(R2Cuba) library(MASS) n <- 100 p <- 1 ht <- n^(-1/3) hx <- rep(ht, p) m = 10 theta <- c(0.5, 0.5, 0.5, 2, 2, 2, -0.5, -0.6, -0.7) q <- length(theta) - 3 mA <- matrix(NA, m, m) mb <- matrix(NA, q, m) vg <- seq(0.5, 1.5, length.out = m) vq <- dunif(vg, 0.5, 1.5) n <- 100 cn <- 50 p <- 1 ij <- as.matrix(expand.grid(1 : m, 1 : m)) hzd1 <- function(kappa1, alpha1, beta1, t, x, g){ exp((trans1(t, alpha1)-t(beta1) %*% x-log(g))/kappa1^2) * 1/t * 1/kappa1^2 } hzd2 <- function(kappa2, alpha2, beta2, t, x, g){ exp((trans2(t, alpha2)-t(beta2) %*% x-log(g))/kappa2^2) * 1/t * 1/kappa2^2 } hzd3 <- function(kappa3, alpha3, beta3, t, x, g){ exp((trans3(t, alpha3)-t(beta3) %*% x-log(g))/kappa3^2) * 1/t * 1/kappa3^2 } surv1 <- function(kappa1, alpha1, beta1, t, x, g){ exp(- exp( (trans1(t, alpha1) - log(g) - t(beta1) %*% x) / kappa1 ^2)) } surv2 <- function(kappa2, alpha2, beta2, t, x, g){ exp(- exp( (trans2(t, alpha2) - log(g) - t(beta2) %*% x) / kappa2 ^2)) } surv3 <- function(kappa3, alpha3, beta3, t, x, g){ exp(- exp( (trans3(t, alpha3) - log(g) - t(beta3) %*% x) / kappa3 ^2)) } trans1 <- function(t, alpha1= 1){ log(t) } trans2 <- function(t, alpha2= 1){ log(t) } trans3 <- function(t, alpha3=1){ log(t) } lkhd.exp <- expression((( ((log(y1)-b1x -log(g))/kappa1^2) + log( 1/y1) + log( 1/kappa1^2)) * d1 + ( ((log(y1)-b2x-log(g))/kappa2^2) + log(1/y1) +log( 1/kappa2^2)) * (1-d1) + (((log(y2)-b3x-log(g))/kappa3^2) + log( 1/y2) + log( 1/kappa3^2)) * d1 + (- exp( (log(y1) - log(g) - b1x) / kappa1^2)) + (- exp( (log(y1) - log(g) - b2x) / kappa2^2)) + ((- exp( (log(y2) - log(g) - b3x) / kappa3^2)) -(- exp( (log(y1) - log(g) - b3x) / kappa3^2))) * d1 - ((- exp( (log(v) - log(g) -b1x) / kappa1^2)) + (- exp( (log(v) - log(g) - b2x) / kappa2^2))) + log(1 / (1 - vt11)) + log(1/ (1 - vt12)) )) lkhd.exp <- expression((( ((log(y1)-b1x -log(g))/kappa1^2) + log( 1/y1) + log( 1/kappa1^2)) * d1 + ( ((log(y1)-b2x-log(g))/kappa2^2) + log(1/y1) +log( 1/kappa2^2)) * (1-d1) + (((log(y2)-b3x-log(g))/kappa3^2) + log( 1/y2) + log( 1/kappa3^2)) * d1 + (- exp( (log(y1) - log(g) - b1x) / kappa1^2)) + (- exp( (log(y1) - log(g) - b2x) / kappa2^2)) + ((- exp( (log(y2) - log(g) - b3x) / kappa3^2)) -(- exp( (log(y1) - log(g) - b3x) / kappa3^2))) * d1 + log(1 / (1 - vt11)) + log(1/ (1 - vt12)) )) #eval(deriv(lkhd.exp, c("b1x", "b2x", "b3x", "alpha1", "alpha2", "alpha3"))) dlike <- deriv(lkhd.exp, c("b1x", "b2x", "b3x", "kappa1", "kappa2", "kappa3")) score <- function(vt, theta, x, g, v= 1e-5){ vt1 <- vt vt11 <- vt1[, 1] vt12 <- vt1[, 2] vt <- -log(1 - vt) kappa1 <- abs(theta[1]) kappa2 <- abs(theta[2]) kappa3 <- abs(theta[3]) beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] b1x <- t(beta1)%*%x b2x <- t(beta2)%*%x b3x <- t(beta3)%*%x d1 <- as.numeric(vt[, 1] < vt[, 2]) y1 <- pmin(vt[, 1], vt[, 2]) y2 <- vt[, 2] derivlike <- attributes(eval(dlike))$gradient derivlike[is.nan(derivlike)] <- 0 #browser() score <- cbind( derivlike[, 4: ncol(derivlike)], derivlike[, 1] %*% diag(x, p, p), derivlike[, 2] %*% diag(x, p, p), derivlike[, 3] %*% diag(x, p, p)) } singlescore <- function(vt, theta, x, g, v= 1e-5){ vt1 <- vt vt11 <- vt1[1] vt12 <- vt1[2] vt <- -log(1 - vt) kappa1 <- abs(theta[1]) kappa2 <- abs(theta[2]) kappa3 <- abs(theta[3]) alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] b1x <- t(beta1)%*%x b2x <- t(beta2)%*%x b3x <- t(beta3)%*%x d1 <- as.numeric(vt[1] < vt[2]) y1 <- pmin(vt[1], vt[2]) y2 <- vt[2] derivlike <- attributes(eval(dlike))$gradient derivlike[is.nan(derivlike)] <- 0 #browser() score <- c(derivlike[4: length(derivlike)], derivlike[1] * (x), derivlike[2] * x, derivlike[3] * x ) } likelihood <- function(vt, x, g, theta, v=1e-5){ vt1 <- vt vt <- -log(1 - vt) kappa1 <- abs(theta[1]) kappa2 <- abs(theta[2]) kappa3 <- abs(theta[3]) alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] t1 <- vt[, 1] t2 <- vt[, 2] d1 <- as.numeric(t1 < t2) y2 <- t2 y1 <- pmin(t1, t2) # likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / surv3(kappa3, alpha3, beta3, y1, x, g) )^(d1)/(surv1(kappa1, alpha1, beta1, v, x, g) *surv2(kappa2, alpha2, beta2, v, x, g)) * apply(1 / (1 - vt1), 1, prod) likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / (surv3(kappa3, alpha3, beta3, y1, x, g) + 1e-200) )^(d1) * apply(1 / (1 - vt1), 1, prod) # if(sum(is.nan(likelihood)) > 0) # browser() likelihood[is.nan(likelihood)] <- 0 return(likelihood) } singlelikelihood <- function(vt, x, g, theta, v=1e-5){ vt1 <- vt vt <- -log(1 - vt) kappa1 <- theta[1] kappa2 <- theta[2] kappa3 <- theta[3] alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] t1 <- vt[1] t2 <- vt[2] d1 <- as.numeric(t1 < t2) y2 <- t2 y1 <- pmin(t1, t2) #likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / surv3(kappa3, alpha3, beta3, y1, x, g)+ 1e-200 )^(d1)/(surv1(kappa1, alpha1, beta1, v, x, g) *surv2(kappa2, alpha2, beta2, v, x, g)) * prod(1 / (1 - vt1)) likelihood <- hzd1(kappa1, alpha1, beta1, y1, x, g)^(d1) * hzd2(kappa2, alpha2, beta2, y1, x, g)^(1-d1) * hzd3(kappa3, alpha3, beta3, y2, x, g)^d1 * surv1(kappa1, alpha1, beta1, y1, x, g) * surv2(kappa2, alpha2, beta2, y1, x, g) * (surv3(kappa3, alpha3, beta3, y2, x, g) / (surv3(kappa3, alpha3, beta3, y1, x, g)+ 1e-200) )^(d1) * prod(1 / (1 - vt1)) likelihood[is.nan(likelihood)] <- 0 return(likelihood) } Amatx <- function(ij, vg, vq, theta, x, v = 0){ #print("A") i <- ij[1] j <- ij[2] dm <- function(k, vg, vt, x, theta, v){ likelihood(vt, x, vg[k], theta, v)* vq[k] } A <- function(vt){ likelihood(vt, x, vg[j], theta, v)* vq[j] * likelihood(vt, x, vg[i], theta, v)/ (apply((sapply(1 : m, dm, vg, vt, x, theta, v)), 1, sum) + 1e-200) } #Aij <- mean(A(vtg))#mean(apply(vt, 1, A), na.rm = T) #mA[i, j] <<- Aij Aij <- my2d(A, mgrid, 1) mA[i, j] <<- Aij return(NULL) } bmatx <- function(i, vg, vq, theta, x, v=1e-5){ # print("b") num <- function(k, vg, vt, x, theta, v= v){ score( vt, theta, x, vg[k], v) * vq[k] } dm <- function(k, vg, vt, x, theta, v= v){ likelihood(vt, x, vg[k], theta, v)* vq[k] } b <- function(vt){ Reduce('+', lapply(1 :m, num, vg, vt, x, theta, v))/(matrix(rep(apply(sapply(1 : m, dm, vg, vt, x, theta, v), 1, sum), q), ncol = q) + 1e-200) * matrix(rep(likelihood(vt, x, vg[i], theta, v), q), ncol = q) } #bi <- apply(b(vtg), 2, mean) bi <- my2d(b, mgrid, q)#vegas (2, length(theta) -3, b, lower = c(0.01, 0.01), upper = c(0.99, 0.99), abs.tol = 0.01)$value if(sum(is.nan(bi)) > 0){ browser() } bi[is.nan(bi)] <- 0 mb[, i] <<- bi return(NULL) } singleAmatx <- function(ij, vg, vq, theta, x, v = 0){ #print("A") i <- ij[1] j <- ij[2] dm <- function(k, vg, vt, x, theta, v){ singlelikelihood(vt, x, vg[k], theta, v)* vq[k] } A <- function(vt){ singlelikelihood(vt, x, vg[j], theta, v)* vq[j] * singlelikelihood(vt, x, vg[i], theta, v)/ sum(sapply(1 : m, dm, vg, vt, x, theta, v)) } #Aij <- area* mean(A(vtg))#mean(apply(vt, 1, A), na.rm = T) #mA[i, j] <<- Aij Aij <- vegas (2, 1, A, lower = c(0.01, 0.01), upper = c(0.99, 0.99), abs.tol = 0.01)$value mA[i, j] <<- Aij return(NULL) } singlebmatx <- function(i, vg, vq, theta, x, v=1e-5){ # print("b") num <- function(k, vg, vt, x, theta, v= v){ singlescore( vt, theta, x, vg[k], v) * vq[k] } dm <- function(k, vg, vt, x, theta, v= v){ singlelikelihood(vt, x, vg[k], theta, v)* vq[k] } b <- function(vt){ Reduce('+', lapply(1 :m, num, vg, vt, x, theta, v))/sum(sapply(1 : m, dm, vg, vt, x, theta, v)) * singlelikelihood(vt, x, vg[i], theta, v) } #bi <- area * apply(b(vtg), 2, mean) bi <- vegas (2, length(theta) -3, b, lower = c(0.01, 0.01), upper = c(0.99, 0.99), abs.tol = 0.01)$value mb[, i] <<- bi return(NULL) } projscore <- function(vg, vq, theta, vt, x, a, v= 0){ num <- function(k, vg, vt, x, theta, v){ (singlescore(vt, theta, x, vg[k], v) - a[, k]) * singlelikelihood(vt, x, vg[k], theta, v) * vq[k] } dm <- function(k, vg, vt, x, theta, v){ singlelikelihood(vt, x, vg[k], theta, v)* vq[k] } apply(sapply(1 :m, num, vg, vt, x, theta, v), 1, sum)/sum(sapply(1 : m, dm, vg, vt, x, theta, v)) } creata <- function(i, theta, cmptresp, p, mx, cmptv){ apply(ij, 1, Amatx, vg, vq, theta, mx[i, ], v = cmptv[i]) lapply(1 :m, bmatx, vg, vq, theta, mx[i,], v= cmptv[i]) invA <- try(ginv(mA)) if(class(invA) == "try-error"){ browser() } a <- t(invA %*% t(mb)) } completescore <- function(i, theta, cmptresp, cn, p, ma, cmptcovm, cmptv){ ## apply(ij, 1, Amatx, vg, vq, theta, cmptcovm[i, ], v = cmptv[i]) ## lapply(1 :m, bmatx, vg, vq, theta, cmptcovm[i,], v= cmptv[i]) ## invA <- try(ginv(mA)) ## if(class(invA) == "try-error"){ ## browser() ## } ## a <- t(invA %*% t(mb)) a <- ma[[which(apply(mx, 1, identical, cmptcovm[i, ]))]] pjscore <- projscore(vg, vq, theta, cmptresp[i,c("y1", "y2")], cmptcovm[i, ], a, v = cmptv[i]) if(is.nan(sum(pjscore))){ browser() } pjscore } missingscore <- function(i, theta, missresp, cmptresp, mn, cn, p, misscovm, cmptcovm, cmptscore, missv ){ if(missresp[i, "d1"] == 1 & missresp[i, "d2"] == 0){ cn <- missresp[i, "y2"] y1 <- missresp[i, "y1"] x <- misscovm[i, ] ix <- cmptresp[, "y2"] >= cn & cmptresp[, "y1"] < cn if(sum(ix) > 0) missscore <- sum(cmptscore[ix,, drop = F ]* kert(y1, cmptresp[ix, "y1"], ht) * kerx(x, cmptcovm[ix, ], hx)) / (sum( kert(y1, cmptresp[ix, "y1"], ht) * kerx(x, cmptcovm[ix, ], hx)) + 0.0001) else missscore <- rep(0, q) }else if(missresp[i, "d1"] == 0 & missresp[i, "d2"] == 0) { cn <- missresp[i, "y2"] y1 <- missresp[i, "y1"] x <- misscovm[i, ] ix <- cmptresp[, "y1"] >= cn if(sum(ix) > 0) missscore <- apply(cmptscore[ix, , drop = F]* kerx(x, cmptcovm[ix, ], ht), 2, sum) / sum( kerx(x, cmptcovm[ix, ], hx) + 0.0001) else missscore <- rep(0, q) } return(missscore) } estm1 <- function(theta, resp, covm, n, p, mv = rep(1e-5, n)){ colnames(resp) <- c("y1", "d1", "y2", "d2") cmptix <- resp[, "d2"] == 1 covm <- matrix(covm, n, p) cn <- sum(cmptix) missix <- resp[, "d2"] == 0 mn <- sum(missix) cmptresp <- resp[cmptix, ] cmptcovm <- covm[cmptix, , drop = F] cmptv <- mv[cmptix] missresp <- resp[missix, ] misscovm <- covm[missix, , drop = F] missv <- mv[missix] cmptscore <- do.call(rbind, lapply(1 : cn,completescore, theta, cmptresp, cn, p, cmptcovm, cmptv)) #browser() missscore <- do.call(rbind, lapply(1 : mn, missingscore, theta, missresp, cmptresp, mn, cn, p, misscovm, cmptcovm, cmptscore, missv)) #browser() score <- sum((apply(rbind(cmptscore, missscore), 2, sum) )^2) } estm <- function(theta, resp, covm, n, p, mv = rep(1e-5, n)){ print(theta) colnames(resp) <- c("y1", "d1", "y2", "d2") cmptix <- resp[, "d2"] == 1 covm <- matrix(covm, n, p) cn <- sum(cmptix) missix <- resp[, "d2"] == 0 mn <- sum(missix) cmptresp <- resp[cmptix, ] cmptcovm <- covm[cmptix, , drop = F] cmptv <- mv[cmptix] missresp <- resp[missix, ] misscovm <- covm[missix, , drop = F] missv <- mv[missix] ma <- lapply(1 : length(mx), creata, theta, cmptresp, p, mx, cmptv) cmptscore <- do.call(rbind, lapply(1 : cn,completescore, theta, cmptresp, cn, p, ma, cmptcovm, cmptv)) #browser() if(mn > 0){ missscore <- do.call(rbind, lapply(1 : mn, missingscore, theta, missresp, cmptresp, mn, cn, p, misscovm, cmptcovm, cmptscore, missv)) #browser() score <- apply(rbind(cmptscore, missscore), 2, sum) }else{ score <- apply((cmptscore), 2, sum) } score <- c(score[1:3], 0, 0, 0, score[4:length(score)]) /n } simuRsk <- function(i, n, p, theta, cen1, cen2 ,covm = NULL){ if(is.null(covm)){ covm <- matrix(rbinom(1, 1, 0.5), 1, p) } kappa1 <- theta[1] ^ 2 kappa2 <- theta[2] ^ 2 kappa3 <- theta[3] ^ 2 alpha1 <- theta[4] alpha2 <- theta[5] alpha3 <- theta[6] beta1 <- theta[7 : (6 + p)] beta2 <- theta[(7 + p) : (6 + 2 * p)] beta3 <- theta[(7 + 2* p) : (6 + 3 * p)] x <- covm g <- runif(1, 0.5, 1.5) lb1 <- exp((- t(beta1)%*%x - log(g))/kappa1) lb2 <- exp((- t(beta2)%*%x - log(g))/kappa2) lb3 <- exp((- t(beta3)%*%x - log(g))/kappa3) a1 <- 1/kappa1 a2 <- 1/kappa2 a3 <- 1/kappa3 p1g2 <- lb2 /(lb1 + lb2) r <- rbinom(1, 1, p1g2) c <- runif(1, cen1, cen2) if(r == 1){ u <- runif(1) t2 <- (- log(1- u) / (lb1 + lb2))^(1/a2) t1 = t2 + 3 }else{ u <- runif(1) t1 <- (- log(1- u) / (lb1 + lb2))^(1/a1) u <- runif(1) t2 <- (-log((1 - u) * exp(-lb3 * t1 ^ a3)) / lb3) ^ (1/a3) } y2 = min(t2, c) y1 = min(t1, y2) d1 <- as.numeric(t1 < y2) d2 <- as.numeric(y2 < c) simdata <- cbind(y1, d1, y2, d2) colnames(simdata) <- c("y1", "d1", "y2", "d2") return(c(simdata, covm, g)) } kert <- function(t1, vt2, h){ dnorm((t1 - vt2)/h) } kerx <- function(x1, vx2, h){ vx2 <- matrix(vx2, ncol = p) x1 <- matrix(rep(x1, nrow(vx2)), ncol = p, byrow = T) h <- matrix(rep(h, nrow(vx2)), ncol = p, byrow = T) apply(dnorm((vx2 - x1)/h), 1, prod) } #a <- solve(mA) %*% mb set.seed(2013) survData <- do.call(rbind, lapply(1:n, simuRsk, n, p, theta, 10000, 300000)) resp <- cbind(1 - exp(-survData[, 1]), survData[, 2], 1 - exp(-survData[, 3]), survData[, 4]) colnames(resp) <- c("y1", "d1", "y2", "d2") covm <- survData[, 5] estm2 <- function(...){ estm(...)^2 } rt <- c(max(resp[, 1]), max(resp[, 3])) area <- prod(rt) set.seed(2014) vta <- runif(100000, 0, 1) vtb <- runif(100000, 0, 1) vtg <- cbind(vta, vtb) findint <- function(vv){ set.seed(2014) va <- vv[1] vb <- vv[2] #vc <- vv[3] #vd <- vv[4] vt <- cbind(runif(10000, va, 1), runif(10000, vb, 1)) res <- try(sum(abs(apply(score(vt, theta, covm[1], vg[1]) / (dunif(vt[,1], va, 1) * dunif(vt[, 2], vb, 1)), 2, mean) - d$integral))) if(is.nan(res)){ browser() } return(res) } ng <- 32 cx <- gaussLegendre(ng, 0.01, 0.99) x <- cx$x wx <- cx$w cy <- gaussLegendre(ng, 0.01, 0.99) y <- cy$x wy <- cy$w mgrid <- meshgrid(x, y) my2d <- function (f, mgrid, nf, ...) { fun <- match.fun(f) f <- function(vt) fun(vt, ...) mZ <- as.matrix(f(cbind(as.vector(mgrid$X), as.vector(mgrid$Y))), ncol = nf) temp <- function(i){ Z <- matrix(mZ[, i], ng, ng) Q <- c( wx %*% Z %*% as.matrix(wy)) } Q <- sapply(1 : nf, temp) return(Q) } #dfsane(c(rep(0.5, 6), rep(-0.5, 3)), estm, method = 2, control = list(tol = 1.e-5, noimp = 100 ), quiet = FALSE, resp, covm, n, p, rep(min(resp[, 1] /2), n)) mx <- matrix(c(0, 1), ncol = p) #multiroot(estm, c(rep(1, 6), rep(-0.5, 3)), maxiter = 100, rtol = 1e-6, atol = 1e-8, ctol = 1e-8,useFortran = TRUE, positive = FALSE,jacfunc = NULL, jactype = "fullint", verbose = FALSE, bandup = 1, banddown = 1,resp, covm, n, p) theta<- c(0.08241974, -0.06403001, 0.21495395, 0.50000000, 0.50000000, 0.50000000, -0.44144138, -0.50645970, -0.85097759) Z<- rnorm(1000, 0, 1) p <- rbinom(1000, 1, pnorm(Z, 0, 1)) g <- rgamma(1000, 1, 1/0.5) * p + (2 + rgamma(1000, 1, 1/6)) * (1 - p) plot(density(g), main = "")
#!/usr/bin/env Rscript #test how to use anova in windows: suppressPackageStartupMessages(library("argparse")) suppressPackageStartupMessages(library("reshape2")) suppressPackageStartupMessages(library("zoo")) suppressPackageStartupMessages(library("ggplot2")) # create parser object parser <- ArgumentParser() # specify our desired options parser$add_argument("-e", "--rseed", type="integer", default=0, help="random number generator seed (default=0).") parser$add_argument("-r", "--reps", type="integer", default=20, help="Number of replicate control individuals (default=20).") parser$add_argument("-R", "--sperm_reps", type="integer", default=20, help="Number of replicate sperm samples (default=20).") parser$add_argument("-g", "--gensize", type="integer", default=2000, help="Number of heterozygous SNPs in the genome (default=2000).") parser$add_argument("-t", "--treatsize", type="integer", default=1000, help="Number of heterozygous SNPs in the distorted region (default=1000).") parser$add_argument("-c", "--chroms", type="integer", default=4, help="Number of chromosomes per genome(default=4).") parser$add_argument("-b", "--bps_per_hetsnp", type="integer", default=2000, help="Basepairs per heterozygous SNP (default=2000).") parser$add_argument("-d", "--distortion_frac", type="double", default=0.1, help="Degree of distortion as a fraction of allele frequency(default=0.1).") parser$add_argument("-a", "--average_coverage", type="double", default=1.75, help="Average genome coverage (default=1.75).") parser$add_argument("-O", "--simulation_data_out", default="out_sim.txt", help="Path to simulation data output file (default=out_sim.txt).") parser$add_argument("-p", "--pdf_out", default="out.pdf", help="Path to pdf output file (default=out.pdf).") parser$add_argument("-m", "--pdf_title", default="2Mb sliding window ANOVA (simulated)", help="Title of plot.") # get command line options, if help option encountered print help and exit, # otherwise if options not found on command line then set defaults, args <- parser$parse_args() rseed = args$rseed gensize = args$gensize treatsize = args$treatsize winsize = args$winsize winstep = args$winstep bps_per_hetsnp = args$bps_per_hetsnp distortion_frac = args$distortion_frac txt_sim_out = args$simulation_data_out pdf_out = args$pdf_out pdf_title = args$pdf_title reps = args$reps sperm_reps = args$sperm_reps nchroms = args$chroms avgcov = args$average_coverage # set random seed set.seed(seed = rseed) # generate mean for each locus means <- rnorm(gensize) # generate a set of identical sperm samples b <- t(sapply(means, function(x){rep(x, reps)})) # generate a set of identical blood samples a <- t(sapply(means, function(x){rep(x, reps)})) colnames(a) = 1:ncol(a) colnames(b) = 1:ncol(b) # melt sperm and blood samples, name them a=melt(a) a$tissue = rep("sperm", nrow(a)) b=melt(b) b$tissue = rep("blood", nrow(b)) # combine blood and sperm samples new2_ab = as.data.frame(rbind(a,b)) # specify chromosomes for all samples new2_ab$chrom = rep( rep( seq(1,nchroms), each=gensize / nchroms ), nrow(new2_ab) / gensize ) # generate per-chromosome gc bias values, add to data gcs = rnorm(n=nchroms) new2_ab$gc = sapply(new2_ab$chrom, function(x){gcs[x]}) # make sure chroms are factors new2_ab$chrom = factor(new2_ab$chrom) # assign a unique sample number to each sample new2_ab$sample = rep(seq(1,nrow(new2_ab) / gensize), each = gensize) # name pos and indiv columns correctly colnames(new2_ab)[1] = "pos" colnames(new2_ab)[2] = "indiv" # generate and apply sample biases biases = 0.5 + rnorm(n=length(levels(factor(new2_ab$sample))), sd=0.1) new2_ab$bias = sapply(new2_ab$sample, function(x){biases[x]}) # generate coverage counts at each locus, with bias based on sample new2_ab$count = rpois(nrow(new2_ab), (rep(avgcov, nrow(new2_ab)) + new2_ab$bias)) # generate allele counts based on binomial draws from coverage new2_ab$hits = rbinom(nrow(new2_ab), new2_ab$count, new2_ab$bias) # make sure 1 region of the genome is selected, and give it a bias toward 1 allele # this region of the genome should be found in only 1 chromosome of 1 individual selectedstart = (gensize-treatsize) + 1 selectedend = gensize selectedrange = selectedstart:selectedend new2_ab$hits[selectedrange] = rbinom((selectedend - selectedstart) + 1, new2_ab$count[selectedrange], new2_ab$bias[selectedrange] + (distortion_frac * sample(c(1,-1),selectedend-selectedstart,replace=TRUE)) write.table(new2_ab, txt_sim_out)
/Distortion_2019/simulation/full_binomdat_sim_unphased.R
no_license
jgbaldwinbrown/jgbutils
R
false
false
4,572
r
#!/usr/bin/env Rscript #test how to use anova in windows: suppressPackageStartupMessages(library("argparse")) suppressPackageStartupMessages(library("reshape2")) suppressPackageStartupMessages(library("zoo")) suppressPackageStartupMessages(library("ggplot2")) # create parser object parser <- ArgumentParser() # specify our desired options parser$add_argument("-e", "--rseed", type="integer", default=0, help="random number generator seed (default=0).") parser$add_argument("-r", "--reps", type="integer", default=20, help="Number of replicate control individuals (default=20).") parser$add_argument("-R", "--sperm_reps", type="integer", default=20, help="Number of replicate sperm samples (default=20).") parser$add_argument("-g", "--gensize", type="integer", default=2000, help="Number of heterozygous SNPs in the genome (default=2000).") parser$add_argument("-t", "--treatsize", type="integer", default=1000, help="Number of heterozygous SNPs in the distorted region (default=1000).") parser$add_argument("-c", "--chroms", type="integer", default=4, help="Number of chromosomes per genome(default=4).") parser$add_argument("-b", "--bps_per_hetsnp", type="integer", default=2000, help="Basepairs per heterozygous SNP (default=2000).") parser$add_argument("-d", "--distortion_frac", type="double", default=0.1, help="Degree of distortion as a fraction of allele frequency(default=0.1).") parser$add_argument("-a", "--average_coverage", type="double", default=1.75, help="Average genome coverage (default=1.75).") parser$add_argument("-O", "--simulation_data_out", default="out_sim.txt", help="Path to simulation data output file (default=out_sim.txt).") parser$add_argument("-p", "--pdf_out", default="out.pdf", help="Path to pdf output file (default=out.pdf).") parser$add_argument("-m", "--pdf_title", default="2Mb sliding window ANOVA (simulated)", help="Title of plot.") # get command line options, if help option encountered print help and exit, # otherwise if options not found on command line then set defaults, args <- parser$parse_args() rseed = args$rseed gensize = args$gensize treatsize = args$treatsize winsize = args$winsize winstep = args$winstep bps_per_hetsnp = args$bps_per_hetsnp distortion_frac = args$distortion_frac txt_sim_out = args$simulation_data_out pdf_out = args$pdf_out pdf_title = args$pdf_title reps = args$reps sperm_reps = args$sperm_reps nchroms = args$chroms avgcov = args$average_coverage # set random seed set.seed(seed = rseed) # generate mean for each locus means <- rnorm(gensize) # generate a set of identical sperm samples b <- t(sapply(means, function(x){rep(x, reps)})) # generate a set of identical blood samples a <- t(sapply(means, function(x){rep(x, reps)})) colnames(a) = 1:ncol(a) colnames(b) = 1:ncol(b) # melt sperm and blood samples, name them a=melt(a) a$tissue = rep("sperm", nrow(a)) b=melt(b) b$tissue = rep("blood", nrow(b)) # combine blood and sperm samples new2_ab = as.data.frame(rbind(a,b)) # specify chromosomes for all samples new2_ab$chrom = rep( rep( seq(1,nchroms), each=gensize / nchroms ), nrow(new2_ab) / gensize ) # generate per-chromosome gc bias values, add to data gcs = rnorm(n=nchroms) new2_ab$gc = sapply(new2_ab$chrom, function(x){gcs[x]}) # make sure chroms are factors new2_ab$chrom = factor(new2_ab$chrom) # assign a unique sample number to each sample new2_ab$sample = rep(seq(1,nrow(new2_ab) / gensize), each = gensize) # name pos and indiv columns correctly colnames(new2_ab)[1] = "pos" colnames(new2_ab)[2] = "indiv" # generate and apply sample biases biases = 0.5 + rnorm(n=length(levels(factor(new2_ab$sample))), sd=0.1) new2_ab$bias = sapply(new2_ab$sample, function(x){biases[x]}) # generate coverage counts at each locus, with bias based on sample new2_ab$count = rpois(nrow(new2_ab), (rep(avgcov, nrow(new2_ab)) + new2_ab$bias)) # generate allele counts based on binomial draws from coverage new2_ab$hits = rbinom(nrow(new2_ab), new2_ab$count, new2_ab$bias) # make sure 1 region of the genome is selected, and give it a bias toward 1 allele # this region of the genome should be found in only 1 chromosome of 1 individual selectedstart = (gensize-treatsize) + 1 selectedend = gensize selectedrange = selectedstart:selectedend new2_ab$hits[selectedrange] = rbinom((selectedend - selectedstart) + 1, new2_ab$count[selectedrange], new2_ab$bias[selectedrange] + (distortion_frac * sample(c(1,-1),selectedend-selectedstart,replace=TRUE)) write.table(new2_ab, txt_sim_out)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{Datasets} \alias{Datasets} \alias{data_all} \title{data_all} \format{ An object of class \code{list} of length 22. } \usage{ data(data_all) } \description{ See wichita } \details{ See description. } \keyword{datasets}
/man/Datasets.Rd
no_license
FranzKrah/ClimInd
R
false
true
324
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{Datasets} \alias{Datasets} \alias{data_all} \title{data_all} \format{ An object of class \code{list} of length 22. } \usage{ data(data_all) } \description{ See wichita } \details{ See description. } \keyword{datasets}
## directory to download reports dl.dir <- file.path(getwd(), paste0("downloads.", format(Sys.time(), "%Y%m%d.%H%M%S"))) dir.create(dl.dir) ## connect to server and navigate to page require(RSelenium) rd <- rsDriver(browser="chrome", extraCapabilities=list(chromeOptions=list(prefs=list("download.default_directory"=dl.dir)))) cl <- rd$client cl$navigate("https://dashboards.lordashcroftpolls.com/login.aspx?target=1rH46DzH68RfFl7AknVWbbl4nsH0s%2f%2fj5uXrUWFycQ4%3d") ## dropdown for selecting constituencies dropdown <- cl$findElement(using="css", "button.ui-multiselect") dd.elems <- cl$findElements(using="css", "ul.ui-multiselect-checkboxes > li > label") update.dd <- cl$findElement(using="css", "span#btnUpdateCharts") dd.elem.name <- function(e) { ## have to open and close dropdown dropdown$clickElement() nm <- e$findChildElement(value="span")$getElementText() dropdown$clickElement() stopifnot(length(nm) == 1) nm[[1]] } select.const <- function(e) { dropdown$clickElement() e$clickElement() update.dd$clickElement() } ## should be 633 elements: 1 "no selection" + 632 constituencies stopifnot(length(dd.elems) == 633) ## drop first "no selection" stopifnot(dd.elem.name(dd.elems[[1]]) == "No selection") dd.elems <- dd.elems[-1] ## export export.btn <- cl$findElement(using="css", "div#btnOpenExportPanel") export.btn$clickElement(); export.btn$clickElement() ## open and close to load panel excel.btn <- cl$findElement(using="css", "input#downloadSelectedPPTExcel") dl <- function(max.wait=30) { ## generate and wait for link export.btn$clickElement() len <- length(cl$findElements(using="css", "div#downloadReportsPowerpoint > a")) excel.btn$clickElement() for (i in seq(max.wait)) { lnk <- cl$findElements(using="css", "div#downloadReportsPowerpoint > a") if (length(lnk) > len) break Sys.sleep(1) } if (length(lnk) <= len) { excel.btn$clickElement() stop("timeout: waiting for link") } lnk <- lnk[[length(lnk)]] ## download and wait prev.f <- list.files(dl.dir, "^Welcome.*\\.zip$", full.names=TRUE) lnk$clickElement() export.btn$clickElement() for (i in seq(max.wait)) { f <- list.files(dl.dir, "^Welcome.*\\.zip$", full.names=TRUE) if (length(f) > length(prev.f)) return(setdiff(f, prev.f)) Sys.sleep(1) } stop("timeout: waiting for download") } ## generate and download all for (i in seq_along(dd.elems)) { nm <- dd.elem.name(dd.elems[[i]]) cat(nm, "\n") select.const(dd.elems[[i]]) f <- dl() print(f) }
/scraper.R
no_license
johnlaing/ashcroft.polls.scraper
R
false
false
2,621
r
## directory to download reports dl.dir <- file.path(getwd(), paste0("downloads.", format(Sys.time(), "%Y%m%d.%H%M%S"))) dir.create(dl.dir) ## connect to server and navigate to page require(RSelenium) rd <- rsDriver(browser="chrome", extraCapabilities=list(chromeOptions=list(prefs=list("download.default_directory"=dl.dir)))) cl <- rd$client cl$navigate("https://dashboards.lordashcroftpolls.com/login.aspx?target=1rH46DzH68RfFl7AknVWbbl4nsH0s%2f%2fj5uXrUWFycQ4%3d") ## dropdown for selecting constituencies dropdown <- cl$findElement(using="css", "button.ui-multiselect") dd.elems <- cl$findElements(using="css", "ul.ui-multiselect-checkboxes > li > label") update.dd <- cl$findElement(using="css", "span#btnUpdateCharts") dd.elem.name <- function(e) { ## have to open and close dropdown dropdown$clickElement() nm <- e$findChildElement(value="span")$getElementText() dropdown$clickElement() stopifnot(length(nm) == 1) nm[[1]] } select.const <- function(e) { dropdown$clickElement() e$clickElement() update.dd$clickElement() } ## should be 633 elements: 1 "no selection" + 632 constituencies stopifnot(length(dd.elems) == 633) ## drop first "no selection" stopifnot(dd.elem.name(dd.elems[[1]]) == "No selection") dd.elems <- dd.elems[-1] ## export export.btn <- cl$findElement(using="css", "div#btnOpenExportPanel") export.btn$clickElement(); export.btn$clickElement() ## open and close to load panel excel.btn <- cl$findElement(using="css", "input#downloadSelectedPPTExcel") dl <- function(max.wait=30) { ## generate and wait for link export.btn$clickElement() len <- length(cl$findElements(using="css", "div#downloadReportsPowerpoint > a")) excel.btn$clickElement() for (i in seq(max.wait)) { lnk <- cl$findElements(using="css", "div#downloadReportsPowerpoint > a") if (length(lnk) > len) break Sys.sleep(1) } if (length(lnk) <= len) { excel.btn$clickElement() stop("timeout: waiting for link") } lnk <- lnk[[length(lnk)]] ## download and wait prev.f <- list.files(dl.dir, "^Welcome.*\\.zip$", full.names=TRUE) lnk$clickElement() export.btn$clickElement() for (i in seq(max.wait)) { f <- list.files(dl.dir, "^Welcome.*\\.zip$", full.names=TRUE) if (length(f) > length(prev.f)) return(setdiff(f, prev.f)) Sys.sleep(1) } stop("timeout: waiting for download") } ## generate and download all for (i in seq_along(dd.elems)) { nm <- dd.elem.name(dd.elems[[i]]) cat(nm, "\n") select.const(dd.elems[[i]]) f <- dl() print(f) }
## pattern scaling ## run timeshift.r library(stringi) library(dplyr) setwd('~/Desktop/PatternScaling/xtreme_indices') ndxs <- list.files(pattern = 'RData_allscenarios') index_names = c('cdd','fd','gsl','r10mm','r95ptot','rx5day', 'sdii','tnn','txx','wsdi') ## scenarios scenarios = c('1pt5degC','2pt0degC','RCP45','RCP85') highscenarios = scenarios[3:4] lowscenarios = scenarios[1:2] source('timeshift.R') ## all global temp objs glbtemps <- ls(pattern = "^annglbtas*") ## take average global temperature for begining and end of century temp_avgs <- c() for(g in scenarios){ scen = paste('annglbtas',g,sep = '.') glbtemp = eval(parse(text = scen)) change <- apply(tail(glbtemp,20),2,mean) - apply(glbtemp[1:20,],2,mean) temp_avgs <- rbind(temp_avgs,c(g,change)) } ######################################################## # # # pattern scaling loop # # each iteration we approximate # # 1.5C and 2.0 values for one index # # # ######################################################## i = 1 for (ndx in ndxs) { print(paste('pattern scaling:',ndx)) load(ndx) for (scen in highscenarios) { print(paste(index_names[i],scen,sep = '.')) x = paste(index_names[i],scen,sep = '.') mx = eval(parse(text = x)) ## mean at each gridpoint of first 20 years first_mean = apply(mx[,,1:20,],c(1,2,4),mean, na.rm=TRUE) ## mean at each gridpoint of last 20 years second_mean = apply(mx[,,(dim(mx)[3]-20):dim(mx)[3],],c(1,2,4),mean,na.rm = TRUE) ## century change change = second_mean - first_mean ## gat gat = as.numeric(temp_avgs[temp_avgs[,1] == scen,][2:11]) ## grid (pattern) of local change per degree of warming pattern = aperm(change,c(3,1,2)) / rep(gat,288*192) ## get GAT for the scenarios gat1.5 = as.numeric(temp_avgs[temp_avgs[,1] == "1pt5degC",][2:11]) gat2 = as.numeric(temp_avgs[temp_avgs[,1] == "2pt0degC",][2:11]) ## now scale the pattern to the scenario we want to approximate scaled1.5 = pattern * rep(gat1.5,288*192) scaled2 = pattern * rep(gat2,288*192) scaled1.5 = round(aperm(scaled1.5,c(2,3,1)),digits = 2) scaled2 = round(aperm(scaled2,c(2,3,1)),digits = 2) cutoffs1.5 = as.numeric(filter(tshift_cutoffs, hscen == scen, lscen == '1pt5degC')[3:4]) cutoffs2 = as.numeric(filter(tshift_cutoffs, hscen == scen, lscen == '2pt0degC')[3:4]) scaled1.5_tshift = apply(mx[,,cutoffs1.5[1]:cutoffs1.5[2],],c(1,2,4),mean,na.rm = TRUE) - apply(mx[,,1:20,],c(1,2,4),mean,na.rm = TRUE) scaled2_tshift = apply(mx[,,cutoffs2[1]:cutoffs2[2],],c(1,2,4),mean,na.rm = TRUE) - apply(mx[,,1:20,],c(1,2,4),mean,na.rm = TRUE) assign(paste(index_names[i],'scaled_1.5','from',scen,sep = '_'),scaled1.5) assign(paste(index_names[i],'scaled_2','from',scen,sep = '_'),scaled2) assign(paste(index_names[i],'timeshift_scaled_1.5','from',scen,sep = '_'),scaled1.5_tshift) assign(paste(index_names[i],'timeshift_scaled_2','from',scen,sep = '_'),scaled2_tshift) } to_rm = ls(pattern = paste0('^',index_names[i],'\\.')) rm(list = to_rm) i = i + 1 }
/scaling.R
no_license
armbuster/Pattern-Scaling-Research
R
false
false
3,413
r
## pattern scaling ## run timeshift.r library(stringi) library(dplyr) setwd('~/Desktop/PatternScaling/xtreme_indices') ndxs <- list.files(pattern = 'RData_allscenarios') index_names = c('cdd','fd','gsl','r10mm','r95ptot','rx5day', 'sdii','tnn','txx','wsdi') ## scenarios scenarios = c('1pt5degC','2pt0degC','RCP45','RCP85') highscenarios = scenarios[3:4] lowscenarios = scenarios[1:2] source('timeshift.R') ## all global temp objs glbtemps <- ls(pattern = "^annglbtas*") ## take average global temperature for begining and end of century temp_avgs <- c() for(g in scenarios){ scen = paste('annglbtas',g,sep = '.') glbtemp = eval(parse(text = scen)) change <- apply(tail(glbtemp,20),2,mean) - apply(glbtemp[1:20,],2,mean) temp_avgs <- rbind(temp_avgs,c(g,change)) } ######################################################## # # # pattern scaling loop # # each iteration we approximate # # 1.5C and 2.0 values for one index # # # ######################################################## i = 1 for (ndx in ndxs) { print(paste('pattern scaling:',ndx)) load(ndx) for (scen in highscenarios) { print(paste(index_names[i],scen,sep = '.')) x = paste(index_names[i],scen,sep = '.') mx = eval(parse(text = x)) ## mean at each gridpoint of first 20 years first_mean = apply(mx[,,1:20,],c(1,2,4),mean, na.rm=TRUE) ## mean at each gridpoint of last 20 years second_mean = apply(mx[,,(dim(mx)[3]-20):dim(mx)[3],],c(1,2,4),mean,na.rm = TRUE) ## century change change = second_mean - first_mean ## gat gat = as.numeric(temp_avgs[temp_avgs[,1] == scen,][2:11]) ## grid (pattern) of local change per degree of warming pattern = aperm(change,c(3,1,2)) / rep(gat,288*192) ## get GAT for the scenarios gat1.5 = as.numeric(temp_avgs[temp_avgs[,1] == "1pt5degC",][2:11]) gat2 = as.numeric(temp_avgs[temp_avgs[,1] == "2pt0degC",][2:11]) ## now scale the pattern to the scenario we want to approximate scaled1.5 = pattern * rep(gat1.5,288*192) scaled2 = pattern * rep(gat2,288*192) scaled1.5 = round(aperm(scaled1.5,c(2,3,1)),digits = 2) scaled2 = round(aperm(scaled2,c(2,3,1)),digits = 2) cutoffs1.5 = as.numeric(filter(tshift_cutoffs, hscen == scen, lscen == '1pt5degC')[3:4]) cutoffs2 = as.numeric(filter(tshift_cutoffs, hscen == scen, lscen == '2pt0degC')[3:4]) scaled1.5_tshift = apply(mx[,,cutoffs1.5[1]:cutoffs1.5[2],],c(1,2,4),mean,na.rm = TRUE) - apply(mx[,,1:20,],c(1,2,4),mean,na.rm = TRUE) scaled2_tshift = apply(mx[,,cutoffs2[1]:cutoffs2[2],],c(1,2,4),mean,na.rm = TRUE) - apply(mx[,,1:20,],c(1,2,4),mean,na.rm = TRUE) assign(paste(index_names[i],'scaled_1.5','from',scen,sep = '_'),scaled1.5) assign(paste(index_names[i],'scaled_2','from',scen,sep = '_'),scaled2) assign(paste(index_names[i],'timeshift_scaled_1.5','from',scen,sep = '_'),scaled1.5_tshift) assign(paste(index_names[i],'timeshift_scaled_2','from',scen,sep = '_'),scaled2_tshift) } to_rm = ls(pattern = paste0('^',index_names[i],'\\.')) rm(list = to_rm) i = i + 1 }
library(jstor) ### Name: find_article ### Title: Defunct: Extract meta information for articles ### Aliases: find_article ### ** Examples ## Not run: ##D ##D find_article(jstor_example("sample_with_references.xml")) ## End(Not run)
/data/genthat_extracted_code/jstor/examples/find_article.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
242
r
library(jstor) ### Name: find_article ### Title: Defunct: Extract meta information for articles ### Aliases: find_article ### ** Examples ## Not run: ##D ##D find_article(jstor_example("sample_with_references.xml")) ## End(Not run)
## ----setup, echo = FALSE, include=FALSE--------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----logo, echo=FALSE, fig.height=8.5, fig.pos="H", fig.align='center'-------- knitr::include_graphics('img/logo.png') ## ----libraries, echo=TRUE, message=FALSE-------------------------------------- library(waydown) # To calculate some trajectories library(deSolve) # To plot our results library(ggplot2) # To arrange our plots in panels library(latticeExtra) library(gridExtra) # For nicer plots library(colorRamps) ## ----Allee-def---------------------------------------------------------------- r <- 1 A <- 0.5 K <- 1 f <- function(x) { r * x * (x/A - 1) * (1 - x/K) } ## ----Allee-points------------------------------------------------------------- xs <- seq(0, 1.25, by = 0.01) ## ----Allee-algorithm, cache = TRUE-------------------------------------------- Vs <- approxPot1D(f, xs) ## ----Allee-plot--------------------------------------------------------------- plot(xs, Vs, type = 'l', xlab = 'N', ylab = 'V') ## ----Four-def----------------------------------------------------------------- f <- function(x) {c(-x[1]*(x[1]^2 - 1), -x[2]*(x[2]^2 - 1))} ## ----Four-points-------------------------------------------------------------- xs <- seq(-1.5, 1.5, by = 0.025) ys <- seq(-1.5, 1.5, by = 0.025) ## ----Four-algorithm, cache = TRUE--------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----Four-extra, include=FALSE------------------------------------------------ # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) eqPoints <- data.frame(x_eq = c(-1, -1, 0, 1, 1), y_eq = c(-1, 1, 0, -1, 1), equilibrium = factor(c('stable', 'stable', 'unstable', 'stable', 'stable'))) ## ----Four-plot, echo=FALSE, message=FALSE, warning=FALSE---------------------- nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + # geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) ## ----Four-check--------------------------------------------------------------- max(result$err) == 0 ## ----Curl-def----------------------------------------------------------------- f <- function(x) {c(-x[2], x[1])} ## ----Curl-points-------------------------------------------------------------- xs <- seq(-2, 2, by = 0.05) ys <- seq(-2, 2, by = 0.05) ## ----Curl-algorithm, cache = TRUE--------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----Curl-extra, include=FALSE------------------------------------------------ # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) eqPoints <- data.frame(x_eq = c(0), y_eq = c(0), equilibrium = factor(c('unstable'))) ## ----Curl-plot, echo=FALSE, message=FALSE, warning=FALSE---------------------- nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + # geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) ## ----Wadd-def----------------------------------------------------------------- # Parameters bx <- 0.2 ax <- 0.125 kx <- 0.0625 rx <- 1 by <- 0.05 ay <- 0.1094 ky <- 0.0625 ry <- 1 n <- 4 # Dynamics f <- function(x) {c(bx - rx*x[1] + ax/(kx + x[2]^n), by - ry*x[2] + ay/(ky + x[1]^n))} ## ----Wadd-points-------------------------------------------------------------- xs <- seq(0, 4, by = 0.05) ys <- seq(0, 4, by = 0.05) ## ----Wadd-algorithm, cache = TRUE--------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----Wadd-extra, include=FALSE------------------------------------------------ # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) # # Estimated with Wolfram Alpha # Prompt: 0 = 0.2 - x + 0.125/(0.0625 + y^4); 0 = 0.05 - y + 0.1094/(0.0625 + x^4) eqPoints <- data.frame(x_eq = c(0.213416, 0.559865, 2.19971), y_eq = c(1.74417, 0.730558, 0.0546602), equilibrium = factor(c('stable', 'unstable', 'stable'))) ## ----Wadd-plot, echo=FALSE, message=FALSE, warning=FALSE---------------------- nbins <- 25 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) ## ----Selkov-def--------------------------------------------------------------- # Parameters a <- 0.1 b <- 0.5 # Dynamics f <- function(x) {c(-x[1] + a*x[2] + x[1]^2*x[2], b - a*x[2] - x[1]^2*x[2])} ## ----Selkov-solution, echo = FALSE-------------------------------------------- # Package desolve requires a slightly different syntax f_dyn <- function(t, state, parameters) { with(as.list(c(state, parameters)),{ # rate of change df <- f(state) dX <- df[1] dY <- df[2] # return the rate of change list(c(dX, dY)) }) # end with(as.list ... } roi <- c(0, 2.5, 0, 2.5) init_state <- c(1, .05) ts <- seq(0, 1000, by = 0.01) bs <- c(0.1, 0.6, 1.3) for (b in bs) { out <- ode(y = init_state, times = ts, func = f_dyn, parms = c(a = a, b = b)) colnames(out) <- c("time", "x", "y") out <- as.data.frame(out) xs <- seq(roi[1], roi[2], by = 0.05) ys <- seq(roi[3], roi[4], by = 0.05) result <- approxPot2D(f, xs, ys) # Get the limit cycle attractor attr <- dplyr::filter(as.data.frame(out), time > 0) # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle(sprintf("Error map. b = %.3f ", b)) + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) } ## ----VL-def------------------------------------------------------------------- # Parameters r <- 1 k <- 10 h <- 2 e <- 0.2 m <- 0.1 # Auxiliary function g <- function(x) {1/(h + x)} # Dynamics f <- function(x) {c(r*x[1]*(1 - x[1]/k) -g(x[1])*x[1]*x[2], e*g(x[1])*x[1]*x[2] - m*x[2])} ## ----VL-solution, echo = FALSE------------------------------------------------ # Package desolve requires a slightly different syntax f_dyn <- function(t, state, parameters) { with(as.list(c(state, parameters)),{ # rate of change df <- f(state) dX <- df[1] dY <- df[2] # return the rate of change list(c(dX, dY)) }) # end with(as.list ... } parms <- c(r =r, k = k, h = h, e = e, m = m) init_state <- c(1,2) ts <- seq(0, 300, by = 0.01) out <- ode(y = init_state, times = ts, func = f_dyn, parms = parms) colnames(out) <- c("time", "x", "y") out <- as.data.frame(out) plot(out$x, out$y, type = 'l', asp = 1, main = 'Trajectory', xlab = 'x (prey biomass)', ylab = 'y (predator biomass)') ## ----VL-points---------------------------------------------------------------- xs <- seq(0, 10, by = 0.05) ys <- seq(0, 5, by = 0.05) ## ----VL-algorithm, cache = TRUE----------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----VL-extra, echo = FALSE--------------------------------------------------- # Get the limit cycle attractor attr <- dplyr::filter(as.data.frame(out), time > 200) # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) eqPoints <- data.frame(x_eq = c(0), y_eq = c(0), equilibrium = factor(c('unstable'))) ## ----VL-plot, echo=FALSE, message=FALSE, warning=FALSE------------------------ nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2)
/inst/doc/examples.R
permissive
cran/waydown
R
false
false
12,358
r
## ----setup, echo = FALSE, include=FALSE--------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----logo, echo=FALSE, fig.height=8.5, fig.pos="H", fig.align='center'-------- knitr::include_graphics('img/logo.png') ## ----libraries, echo=TRUE, message=FALSE-------------------------------------- library(waydown) # To calculate some trajectories library(deSolve) # To plot our results library(ggplot2) # To arrange our plots in panels library(latticeExtra) library(gridExtra) # For nicer plots library(colorRamps) ## ----Allee-def---------------------------------------------------------------- r <- 1 A <- 0.5 K <- 1 f <- function(x) { r * x * (x/A - 1) * (1 - x/K) } ## ----Allee-points------------------------------------------------------------- xs <- seq(0, 1.25, by = 0.01) ## ----Allee-algorithm, cache = TRUE-------------------------------------------- Vs <- approxPot1D(f, xs) ## ----Allee-plot--------------------------------------------------------------- plot(xs, Vs, type = 'l', xlab = 'N', ylab = 'V') ## ----Four-def----------------------------------------------------------------- f <- function(x) {c(-x[1]*(x[1]^2 - 1), -x[2]*(x[2]^2 - 1))} ## ----Four-points-------------------------------------------------------------- xs <- seq(-1.5, 1.5, by = 0.025) ys <- seq(-1.5, 1.5, by = 0.025) ## ----Four-algorithm, cache = TRUE--------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----Four-extra, include=FALSE------------------------------------------------ # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) eqPoints <- data.frame(x_eq = c(-1, -1, 0, 1, 1), y_eq = c(-1, 1, 0, -1, 1), equilibrium = factor(c('stable', 'stable', 'unstable', 'stable', 'stable'))) ## ----Four-plot, echo=FALSE, message=FALSE, warning=FALSE---------------------- nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + # geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) ## ----Four-check--------------------------------------------------------------- max(result$err) == 0 ## ----Curl-def----------------------------------------------------------------- f <- function(x) {c(-x[2], x[1])} ## ----Curl-points-------------------------------------------------------------- xs <- seq(-2, 2, by = 0.05) ys <- seq(-2, 2, by = 0.05) ## ----Curl-algorithm, cache = TRUE--------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----Curl-extra, include=FALSE------------------------------------------------ # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) eqPoints <- data.frame(x_eq = c(0), y_eq = c(0), equilibrium = factor(c('unstable'))) ## ----Curl-plot, echo=FALSE, message=FALSE, warning=FALSE---------------------- nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + # geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) ## ----Wadd-def----------------------------------------------------------------- # Parameters bx <- 0.2 ax <- 0.125 kx <- 0.0625 rx <- 1 by <- 0.05 ay <- 0.1094 ky <- 0.0625 ry <- 1 n <- 4 # Dynamics f <- function(x) {c(bx - rx*x[1] + ax/(kx + x[2]^n), by - ry*x[2] + ay/(ky + x[1]^n))} ## ----Wadd-points-------------------------------------------------------------- xs <- seq(0, 4, by = 0.05) ys <- seq(0, 4, by = 0.05) ## ----Wadd-algorithm, cache = TRUE--------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----Wadd-extra, include=FALSE------------------------------------------------ # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) # # Estimated with Wolfram Alpha # Prompt: 0 = 0.2 - x + 0.125/(0.0625 + y^4); 0 = 0.05 - y + 0.1094/(0.0625 + x^4) eqPoints <- data.frame(x_eq = c(0.213416, 0.559865, 2.19971), y_eq = c(1.74417, 0.730558, 0.0546602), equilibrium = factor(c('stable', 'unstable', 'stable'))) ## ----Wadd-plot, echo=FALSE, message=FALSE, warning=FALSE---------------------- nbins <- 25 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) ## ----Selkov-def--------------------------------------------------------------- # Parameters a <- 0.1 b <- 0.5 # Dynamics f <- function(x) {c(-x[1] + a*x[2] + x[1]^2*x[2], b - a*x[2] - x[1]^2*x[2])} ## ----Selkov-solution, echo = FALSE-------------------------------------------- # Package desolve requires a slightly different syntax f_dyn <- function(t, state, parameters) { with(as.list(c(state, parameters)),{ # rate of change df <- f(state) dX <- df[1] dY <- df[2] # return the rate of change list(c(dX, dY)) }) # end with(as.list ... } roi <- c(0, 2.5, 0, 2.5) init_state <- c(1, .05) ts <- seq(0, 1000, by = 0.01) bs <- c(0.1, 0.6, 1.3) for (b in bs) { out <- ode(y = init_state, times = ts, func = f_dyn, parms = c(a = a, b = b)) colnames(out) <- c("time", "x", "y") out <- as.data.frame(out) xs <- seq(roi[1], roi[2], by = 0.05) ys <- seq(roi[3], roi[4], by = 0.05) result <- approxPot2D(f, xs, ys) # Get the limit cycle attractor attr <- dplyr::filter(as.data.frame(out), time > 0) # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle(sprintf("Error map. b = %.3f ", b)) + theme_bw() grid.arrange(plotV, plotErr, ncol = 2) } ## ----VL-def------------------------------------------------------------------- # Parameters r <- 1 k <- 10 h <- 2 e <- 0.2 m <- 0.1 # Auxiliary function g <- function(x) {1/(h + x)} # Dynamics f <- function(x) {c(r*x[1]*(1 - x[1]/k) -g(x[1])*x[1]*x[2], e*g(x[1])*x[1]*x[2] - m*x[2])} ## ----VL-solution, echo = FALSE------------------------------------------------ # Package desolve requires a slightly different syntax f_dyn <- function(t, state, parameters) { with(as.list(c(state, parameters)),{ # rate of change df <- f(state) dX <- df[1] dY <- df[2] # return the rate of change list(c(dX, dY)) }) # end with(as.list ... } parms <- c(r =r, k = k, h = h, e = e, m = m) init_state <- c(1,2) ts <- seq(0, 300, by = 0.01) out <- ode(y = init_state, times = ts, func = f_dyn, parms = parms) colnames(out) <- c("time", "x", "y") out <- as.data.frame(out) plot(out$x, out$y, type = 'l', asp = 1, main = 'Trajectory', xlab = 'x (prey biomass)', ylab = 'y (predator biomass)') ## ----VL-points---------------------------------------------------------------- xs <- seq(0, 10, by = 0.05) ys <- seq(0, 5, by = 0.05) ## ----VL-algorithm, cache = TRUE----------------------------------------------- result <- approxPot2D(f, xs, ys) ## ----VL-extra, echo = FALSE--------------------------------------------------- # Get the limit cycle attractor attr <- dplyr::filter(as.data.frame(out), time > 200) # Transform result into dataframe data <- expand.grid(X = xs, Y = ys) data$V <- as.vector(result$V) data$err <- as.vector(result$err) # Input equilibrium points (calculated externally) eqPoints <- data.frame(x_eq = c(0), y_eq = c(0), equilibrium = factor(c('unstable'))) ## ----VL-plot, echo=FALSE, message=FALSE, warning=FALSE------------------------ nbins <- 15 plotV <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = V)) + geom_contour(data = data, aes(x = X, y = Y, z = V), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::matlab.like(nbins)) + xlab("x") + ylab("y") + ggtitle("Approximate potential") + theme_bw() plotErr <- ggplot() + geom_tile(data = data, aes(x = X, y = Y, fill = err)) + geom_contour(data = data, aes(x = X, y = Y, z = err), colour = 'white', alpha = 0.5, bins = nbins) + geom_point(data = eqPoints, aes(x = x_eq, y = y_eq, color = equilibrium)) + geom_path(data = attr, aes(x = x, y = y)) + coord_fixed() + scale_fill_gradientn(colours = colorRamps::green2red(nbins), limits = c(0,1)) + xlab("x") + ylab("y") + ggtitle("Error map") + theme_bw() grid.arrange(plotV, plotErr, ncol = 2)
\name{standardColors} \alias{standardColors} \title{Colors this library uses for labeling modules.} \description{ Returns the vector of color names in the order they are assigned by other functions in this library. } \usage{ standardColors(n = NULL) } \arguments{ \item{n}{Number of colors requested. If \code{NULL}, all (approx. 450) colors will be returned. Any other invalid argument such as less than one or more than maximum (\code{length(standardColors())}) will trigger an error. } } \value{ A vector of character color names of the requested length. } \author{ Peter Langfelder, \email{Peter.Langfelder@gmail.com} } \examples{ standardColors(10); } \keyword{color} \keyword{misc}
/man/standardColors.Rd
no_license
cran/WGCNA
R
false
false
697
rd
\name{standardColors} \alias{standardColors} \title{Colors this library uses for labeling modules.} \description{ Returns the vector of color names in the order they are assigned by other functions in this library. } \usage{ standardColors(n = NULL) } \arguments{ \item{n}{Number of colors requested. If \code{NULL}, all (approx. 450) colors will be returned. Any other invalid argument such as less than one or more than maximum (\code{length(standardColors())}) will trigger an error. } } \value{ A vector of character color names of the requested length. } \author{ Peter Langfelder, \email{Peter.Langfelder@gmail.com} } \examples{ standardColors(10); } \keyword{color} \keyword{misc}
## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(C50) library(modeldata) ## ----credit-data-------------------------------------------------------------- library(modeldata) data(credit_data) ## ----credit-vars-------------------------------------------------------------- vars <- c("Home", "Seniority") str(credit_data[, c(vars, "Status")]) # a simple split set.seed(2411) in_train <- sample(1:nrow(credit_data), size = 3000) train_data <- credit_data[ in_train,] test_data <- credit_data[-in_train,] ## ----tree-mod----------------------------------------------------------------- library(C50) tree_mod <- C5.0(x = train_data[, vars], y = train_data$Status) tree_mod ## ----tree-summ---------------------------------------------------------------- summary(tree_mod) ## ----tree-plot, fig.width = 10------------------------------------------------ plot(tree_mod) ## ----tree-boost--------------------------------------------------------------- tree_boost <- C5.0(x = train_data[, vars], y = train_data$Status, trials = 3) summary(tree_boost) ## ----rule-mod----------------------------------------------------------------- rule_mod <- C5.0(x = train_data[, vars], y = train_data$Status, rules = TRUE) rule_mod summary(rule_mod) ## ----pred--------------------------------------------------------------------- predict(rule_mod, newdata = test_data[1:3, vars]) predict(tree_boost, newdata = test_data[1:3, vars], type = "prob") ## ----cost--------------------------------------------------------------------- cost_mat <- matrix(c(0, 2, 1, 0), nrow = 2) rownames(cost_mat) <- colnames(cost_mat) <- c("bad", "good") cost_mat cost_mod <- C5.0(x = train_data[, vars], y = train_data$Status, costs = cost_mat) summary(cost_mod) # more samples predicted as "bad" table(predict(cost_mod, test_data[, vars])) # that previously table(predict(tree_mod, test_data[, vars]))
/inst/doc/C5.0.R
no_license
cran/C50
R
false
false
1,969
r
## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(C50) library(modeldata) ## ----credit-data-------------------------------------------------------------- library(modeldata) data(credit_data) ## ----credit-vars-------------------------------------------------------------- vars <- c("Home", "Seniority") str(credit_data[, c(vars, "Status")]) # a simple split set.seed(2411) in_train <- sample(1:nrow(credit_data), size = 3000) train_data <- credit_data[ in_train,] test_data <- credit_data[-in_train,] ## ----tree-mod----------------------------------------------------------------- library(C50) tree_mod <- C5.0(x = train_data[, vars], y = train_data$Status) tree_mod ## ----tree-summ---------------------------------------------------------------- summary(tree_mod) ## ----tree-plot, fig.width = 10------------------------------------------------ plot(tree_mod) ## ----tree-boost--------------------------------------------------------------- tree_boost <- C5.0(x = train_data[, vars], y = train_data$Status, trials = 3) summary(tree_boost) ## ----rule-mod----------------------------------------------------------------- rule_mod <- C5.0(x = train_data[, vars], y = train_data$Status, rules = TRUE) rule_mod summary(rule_mod) ## ----pred--------------------------------------------------------------------- predict(rule_mod, newdata = test_data[1:3, vars]) predict(tree_boost, newdata = test_data[1:3, vars], type = "prob") ## ----cost--------------------------------------------------------------------- cost_mat <- matrix(c(0, 2, 1, 0), nrow = 2) rownames(cost_mat) <- colnames(cost_mat) <- c("bad", "good") cost_mat cost_mod <- C5.0(x = train_data[, vars], y = train_data$Status, costs = cost_mat) summary(cost_mod) # more samples predicted as "bad" table(predict(cost_mod, test_data[, vars])) # that previously table(predict(tree_mod, test_data[, vars]))
#' @description #' Simple interface for the Keywords Everywhere API. #' @keywords internal #' @importFrom httr GET POST add_headers #' @importFrom jsonlite fromJSON "_PACKAGE"
/R/kwewr.R
no_license
retowyss/kwewr
R
false
false
176
r
#' @description #' Simple interface for the Keywords Everywhere API. #' @keywords internal #' @importFrom httr GET POST add_headers #' @importFrom jsonlite fromJSON "_PACKAGE"
library(testthat) library(devtools) library(doParallel) library(StepwiseTest) library(matrixcalc) library(foreach) library(mvtnorm) # # THIS TEST TAKES A WHILE BECAUSE IT RUNS 500 RESAMPLES # # COMMENT IT OUT IF YOU WANT TO AVOID IT # # test that increasing the correlation between outcomes increases width of null interval # test_that("corr_tests #2", { # # ######## Low Correlation Between Outcomes ######## # N = 250 # # cor = make_corr_mat( nX = 3, # nY = 100, # rho.XX = 0, # rho.YY = 0.05, # rho.XY = 0, # prop.corr = 1 ) # # d = sim_data( n = N, cor = cor ) # all.covars = names(d)[ grep( "X", names(d) ) ] # C = all.covars[ !all.covars == "X1" ] # Y = names(d)[ grep( "Y", names(d) ) ] # # res1 = corr_tests( d, # X = "X1", # C = C, # Ys = Y, # B = 500, # alpha = 0.1, # alpha.fam=0.1, # method = c( "nreject", "bonferroni", "holm", "minP", "Wstep", "romano" ) ) # # ######## Check Results of First Sample ######## # # check inference: excess hits # expect_equal( as.numeric(res1$samp.res$rej) - as.numeric(res1$null.int[2]), # res1$excess.hits ) # # # check inference: critical value from global test # expect_equal( as.numeric( quantile( res1$nrej.bt, 1-0.1 ) ), # as.numeric( res1$global.test$crit[ res1$global.test$method == "nreject"] ) ) # # # check p-value of global test # expect_equal( sum( res1$nrej.bt >= res1$samp.res$rej ) / length( res1$nrej.bt ), # res1$global.test$pval[ res1$global.test$method == "nreject"] ) # # # # check results from original sample # # do analysis manually # alpha = 0.1 # # rej.man = 0 # tvals.man = c() # bhats.man = c() # pvals.man = c() # resid.man = matrix( NA, nrow = nrow(d), ncol = length(Y) ) # # for ( i in 1:length(Y) ) { # m = lm( d[[ Y[i] ]] ~ X1 + X2 + X3, data = d ) # bhats.man[i] = coef(m)[["X1"]] # tvals.man[i] = summary(m)$coefficients["X1","t value"] # pvals.man[i] = summary(m)$coefficients["X1", "Pr(>|t|)"] # resid.man[,i] = residuals(m) # # # did we reject it? # if ( summary(m)$coefficients["X1", "Pr(>|t|)"] < alpha ) rej.man = rej.man + 1 # } # # # check bhats # expect_equal( bhats.man, res1$samp.res$bhats ) # expect_equal( tvals.man, res1$samp.res$tvals ) # expect_equal( pvals.man, res1$samp.res$pvals ) # expect_equal( as.numeric(as.matrix(resid.man)), # as.numeric(as.matrix(res1$samp.res$resid)) ) # # expect_equal( sum( pvals.man < alpha ), # sum( res1$samp.res$rej ) ) # # # check other global tests # expect_equal( res1$global.test$pval[ res1$global.test$method == "Wstep" ], # min( adj_Wstep( p = res1$samp.res$pvals, p.bt = res1$pvals.bt ) ) ) # # expect_equal( res1$global.test$pval[ res1$global.test$method == "minP" ], # min( adj_minP( p = res1$samp.res$pvals, p.bt = res1$pvals.bt ) ) ) # # expect_equal( res1$global.test$pval[ res1$global.test$method == "bonferroni" ], # min( p.adjust( res1$samp.res$pvals, method="bonferroni" ) ) ) # # expect_equal( res1$global.test$pval[ res1$global.test$method == "holm" ], # min( p.adjust( res1$samp.res$pvals, method="holm" ) ) ) # # expect_equal( res1$global.test$reject[ res1$global.test$method == "romano" ], # any( FWERkControl( res1$samp.res$tvals, as.matrix( res1$tvals.bt ), k = 1, alpha = .1 )$Reject == 1 ) ) # # ######## Higher Correlation Between Outcomes ######## # cor = make_corr_mat( nX = 3, # nY = 100, # rho.XX = 0, # rho.YY = 0.25, # rho.XY = 0, # prop.corr = 1 ) # # d = sim_data( n = N, cor = cor ) # all.covars = names(d)[ grep( "X", names(d) ) ] # C = all.covars[ !all.covars == "X1" ] # Y = names(d)[ grep( "Y", names(d) ) ] # # res2 = corr_tests( d, # X = "X1", # C = C, # Ys = Y, # B = 500, # alpha = 0.1, # alpha.fam = 0.1, # method = c( "nreject", "bonferroni", "holm", "minP", "Wstep", "romano" ) ) # # # ######## Tests ######## # # null interval should be wider for the second one # expect_equal( as.logical( res2$null.int[2] >= res1$null.int[2] ), TRUE ) # # # p-value should be larger for the second one # expect_equal( as.logical( res2$global.test$pval[ res2$global.test$method == "nreject" ] >= # res1$global.test$pval[ res1$global.test$method == "nreject" ] ), TRUE ) # # } ) # only checks a few things: # two of the global tests # and the average number of rejections in resamples test_that( "corr_tests #1", { library(carData) data(Soils) X = "pH" C = c("Na", "Conduc") Y = c("N", "Dens", "P", "Ca", "Mg", "K") res = corr_tests( Soils, X = X, Ys = Y, B = 200, alpha = 0.1, method = c( "nreject", "bonferroni", "holm", "minP", "Wstep", "romano" ) ) # should be about equal expect_equal( mean(res$nrej.bt), .10*length(Y), tolerance = 0.1 ) # Bonferroni: should be exactly equal expect_equal( min( res$samp.res$pvals * length(Y) ), res$global.test$pval[2] ) # Holm: should be exactly equal expect_equal( min( p.adjust( res$samp.res$pvals, method = "holm" ) ), res$global.test$pval[3] ) } ) ###################### TEST FNS FOR APPLYING OUR METRICS ###################### # fix_input with extra covariates # X1 is extra and should be removed test_that("fix_input #2", { cor = make_corr_mat( nX = 1, nY = 4, rho.XX = 0, rho.YY = 0.25, rho.XY = 0, prop.corr = 1 ) d = sim_data( n = 20, cor = cor ) all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == "X1" ] ##### Add Bad Input ###### # insert missing data d[1,4] = NA # insert a decoy variable that should be removed in analysis d$X20 = rnorm( n = nrow(d) ) d$X21 = rnorm( n = nrow(d) ) # make one of the covariates not mean-centered d$X1 = d$X1 + 2 d = fix_input( X="X1", C=NA, Ys=names(d)[ grep( "Y", names(d) ) ], d = d ) # check that it caught bad input expect_equal( c( "X20", "X21" ) %in% names(d), c(FALSE, FALSE) ) expect_equal( any( is.na(d) ), FALSE ) } ) # fix_input with extra covariates test_that("fix_input #1", { cor = make_corr_mat( nX = 5, nY = 10, rho.XX = -0.06, rho.YY = 0.1, rho.XY = -0.1, prop.corr = 8/40 ) d = sim_data( n = 20, cor = cor ) all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == "X1" ] ##### Add Bad Input ###### # insert missing data d[1,4] = NA # insert a decoy variable that should be removed in analysis d$X20 = rnorm( n = nrow(d) ) d$X21 = rnorm( n = nrow(d) ) # make one of the covariates not mean-centered d$X5 = d$X5 + 2 d = fix_input( X="X1", C=C, Ys=names(d)[ grep( "Y", names(d) ) ], d = d ) # check that it caught bad input expect_equal( c( "X20", "X21" ) %in% names(d), c(FALSE, FALSE) ) expect_equal( any( is.na(d) ), FALSE ) } ) # fit_model doesn't need a test because we test it through the dataset_result tests # without centering test stats test_that("dataset_result #1", { cor = make_corr_mat( nX = 5, nY = 2, rho.XX = -0.06, rho.YY = 0.1, rho.XY = -0.1, prop.corr = 8/40 ) d = sim_data( n = 50, cor = cor ) # try to confuse fn by choosing a different X as covariate of interest Ys = names(d)[ grep( "Y", names(d) ) ] X = "X2" all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == X ] # do analysis manually alpha = 0.05 rej.man = 0 tvals.man = c() bhats.man = c() pvals.man = c() resid.man = matrix( NA, nrow = 50, ncol = 2 ) for ( i in 1:length(Ys) ) { m = lm( d[[ Ys[i] ]] ~ X1 + X2 + X3 + X4 + X5, data = d ) bhats.man[i] = coef(m)[[X]] tvals.man[i] = summary(m)$coefficients[X,"t value"] pvals.man[i] = summary(m)$coefficients[X, "Pr(>|t|)"] resid.man[,i] = residuals(m) # did we reject it? if ( summary(m)$coefficients[X, "Pr(>|t|)"] < alpha ) rej.man = rej.man + 1 } # with function samp.res = dataset_result( d = d, X = X, C = C, Ys = Ys, # all outcome names alpha = alpha, center.stats = FALSE, bhat.orig = NA ) resid.man = as.data.frame(resid.man) names(resid.man) = Ys expect_equal( rej.man, samp.res$rej ) expect_equal( bhats.man, samp.res$bhat ) expect_equal( tvals.man, samp.res$tvals ) expect_equal( pvals.man, samp.res$pvals ) expect_equal( as.matrix(resid.man), as.matrix(samp.res$resid) ) } ) # with centered test stats test_that("dataset_result #2", { cor = make_corr_mat( nX = 5, nY = 20, rho.XX = 0.16, rho.YY = 0.1, rho.XY = 0.1, prop.corr = 1 ) d = sim_data( n = 50, cor = cor ) # try to confuse fn by choosing a different X as covariate of interest Ys = names(d)[ grep( "Y", names(d) ) ] X = "X2" all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == X ] # do analysis manually # choose an unusual alpha level to make sure it's working alpha = 0.4 rej.man = 0 tvals.man = c() bhats.man = c() pvals.man = c() resid.man = matrix( NA, nrow = 50, ncol = length(Ys) ) # fake original coefficients bhat.orig = rnorm( n=length(Ys), mean = 0.8, sd = 2 ) for ( i in 1:length(Ys) ) { m = lm( d[[ Ys[i] ]] ~ X1 + X2 + X3 + X4 + X5, data = d ) bhats.man[i] = coef(m)[[X]] - bhat.orig[i] df = 50 - 5 - 1 se = summary(m)$coefficients[X, "Std. Error"] tvals.man[i] = bhats.man[i] / se pvals.man[i] = 2 * ( 1 - pt( abs( tvals.man[i] ), df = df ) ) resid.man[,i] = residuals(m) # did we reject it? if ( pvals.man[i] < alpha ) rej.man = rej.man + 1 } # with function samp.res = dataset_result( d = d, X = X, C = C, Ys = Ys, # all outcome names alpha = alpha, center.stats = TRUE, bhat.orig = bhat.orig ) resid.man = as.data.frame(resid.man) names(resid.man) = Ys expect_equal( rej.man, samp.res$rej ) expect_equal( bhats.man, samp.res$bhat ) expect_equal( tvals.man, samp.res$tvals ) expect_equal( pvals.man, samp.res$pvals ) expect_equal( as.matrix(resid.man), as.matrix(samp.res$resid) ) } ) ###################### TEST FNS FOR SIMULATING DATA ###################### test_that("cell_corr #1", { expect_equal( -0.1, cell_corr( vname.1 = "X1", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 6, prop.corr = 1 ) ) expect_equal( 0.25, cell_corr( vname.1 = "Y1", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 6, prop.corr = 1 ) ) expect_equal( 0, cell_corr( vname.1 = "X2", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 6, prop.corr = 1 ) ) expect_equal( -0.1, cell_corr( vname.1 = "X1", vname.2 = "Y2", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 10, prop.corr = .2 ) ) expect_equal( 0, cell_corr( vname.1 = "X1", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 10, prop.corr = .2 ) ) } ) test_that("make_corr_mat #1", { # sanity checks cor = make_corr_mat( nX = 1, nY = 40, rho.XX = 0, rho.YY = 0.25, rho.XY = 0.1, prop.corr = 8/40 ) # do we have the right number of each type of correlation? # only look at first row (correlations of X1 with everything else) expect_equal( c( 1, rep(0.10, 8), rep(0, 40-8) ), as.numeric( cor[1,] ) ) } ) test_that("make_corr_mat #1", { cor = make_corr_mat( nX = 2, nY = 40, rho.XX = 0.35, rho.YY = 0.25, rho.XY = 0.1, prop.corr = 8/40 ) d = sim_data( n = 10000, cor = cor ) # rho.XX correlations expect_equal( cor(d$X1, d$X2), 0.35, tolerance = 0.05 ) # rho.XY correlations for non-null ones names = paste( "Y", seq(1,8,1), sep="" ) expect_equal( as.numeric( cor( d$X1, d[, names] ) ), rep( 0.1, 8 ), tolerance = 0.05 ) # rho.XY correlations for null ones names = paste( "Y", seq(9,40,1), sep="" ) expect_equal( as.numeric( cor( d$X1, d[, names] ) ), rep( 0, 40-8 ), tolerance = 0.05 ) # plot empirical vs. real correlations #plot( as.numeric(cor(d)), as.numeric(as.matrix(cor)) ); abline( a = 0, b = 1, col="red") } ) ###################### TEST WESTFALL FNS ###################### test_that("adj_minP #1", { # sanity check B = 200 n.tests = 10 # generate fake p-values under strong null p.bt = matrix( runif(B*n.tests, 0, 1), nrow = n.tests) # generate fake p-values from real dataset p = runif( n.tests, 0, .1) p.adj = adj_minP( p, p.bt ) #plot(p, p.adj) # manually adjust second p-value mins = apply( p.bt, MARGIN = 2, FUN = min ) expect_equal( prop.table( table( mins <= p[2] ) )[["TRUE"]], p.adj[2] ) }) test_that("adjust_Wstep #1", { # # Sanity Check # nX = 1 # nY = 3 # B = 5 # # library(matrixcalc) # library(mvtnorm) # # cor = make_corr_mat( nX = nX, # nY = nY, # rho.XX = 0, # rho.YY = 0.25, # rho.XY = 0.05, # prop.corr = 1 ) # # d = sim_data( n = 1000, cor = cor ) # # samp.res = dataset_result( X = "X1", # C = NA, # Ys = c("Y1", "Y2", "Y3"), # d = d, # alpha = 0.05, # center.stats = FALSE ) # # # # do 5 bootstraps # resamps = resample_resid( X = "X1", # C = NA, # Ys = c("Y1", "Y2", "Y3"), # d = d, # alpha = 0.05, # resid = samp.res$resid, # bhat.orig = samp.res$bhats, # B=5, # cores = 8 ) # p.bt = t( resamps$p.bt ) # pvals = samp.res$pvals pvals = c(0.00233103655078803, 0.470366742594242, 0.00290278216035089 ) p.bt = structure(c(0.308528665936264, 0.517319402377912, 0.686518314693482, 0.637306248855186, 0.106805510862352, 0.116705315041494, 0.0732076817175753, 0.770308936364482, 0.384405349738909, 0.0434358213611965, 0.41497067850141, 0.513471489744384, 0.571213377144122, 0.628054979652722, 0.490196884985226 ), .Dim = c(5L, 3L)) # indicators of which hypothesis the sorted p-vals go with sort(pvals) r = c(1,3,2) qstar = matrix( NA, nrow = nrow(p.bt), ncol = ncol(p.bt) ) for (i in 1:nrow(p.bt)) { qstar[i,3] = p.bt[ i, r[3] ] qstar[i,2] = min( qstar[i,3], p.bt[ i, r[2] ] ) qstar[i,1] = min( qstar[i,2], p.bt[ i, r[1] ] ) } less = t( apply( qstar, MARGIN = 1, function(row) row <= sort(pvals) ) ) p.tilde = colMeans(less) # enforce monotonicity p.tilde.sort = sort(p.tilde) p.tilde.sort[2] = max( p.tilde.sort[1], p.tilde.sort[2] ) p.tilde.sort[3] = max( p.tilde.sort[2], p.tilde.sort[3] ) # put back in original order p.adj = p.tilde.sort[r] expect_equal( p.adj, adj_Wstep( p = pvals, p.bt = t(p.bt) ) ) }) ###################### TEST RESAMPLE_RESID ###################### # generate data NOT under null and # check that mean p-value is .5 in resamples # and that we have the expected number of rejections test_that("resample_resid #1", { # Sanity Check nX = 1 nY = 3 B = 5 library(matrixcalc) library(mvtnorm) cor = make_corr_mat( nX = nX, nY = nY, rho.XX = 0, rho.YY = 0.25, rho.XY = 0.05, prop.corr = 1 ) d = sim_data( n = 1000, cor = cor ) # mean-center them d = as.data.frame( apply( d, 2, function(col) col - mean(col) ) ) # bookmark samp.res = dataset_result( X = "X1", C = NA, Ys = c("Y1", "Y2", "Y3"), d = d, alpha = 0.05, center.stats = FALSE ) # do 5 bootstraps resamps = resample_resid( X = "X1", C = NA, Ys = c("Y1", "Y2", "Y3"), d = d, alpha = 0.05, resid = samp.res$resid, bhat.orig = samp.res$bhats, B=500, cores = 8 ) expect_equal( mean(resamps$p.bt), .5, tolerance = 0.03 ) expect_equal( mean(resamps$rej.bt), .05*nY, tolerance = 0.03 ) } )
/NRejections/tests/testthat/testthat.R
no_license
mayamathur/NRejections
R
false
false
18,836
r
library(testthat) library(devtools) library(doParallel) library(StepwiseTest) library(matrixcalc) library(foreach) library(mvtnorm) # # THIS TEST TAKES A WHILE BECAUSE IT RUNS 500 RESAMPLES # # COMMENT IT OUT IF YOU WANT TO AVOID IT # # test that increasing the correlation between outcomes increases width of null interval # test_that("corr_tests #2", { # # ######## Low Correlation Between Outcomes ######## # N = 250 # # cor = make_corr_mat( nX = 3, # nY = 100, # rho.XX = 0, # rho.YY = 0.05, # rho.XY = 0, # prop.corr = 1 ) # # d = sim_data( n = N, cor = cor ) # all.covars = names(d)[ grep( "X", names(d) ) ] # C = all.covars[ !all.covars == "X1" ] # Y = names(d)[ grep( "Y", names(d) ) ] # # res1 = corr_tests( d, # X = "X1", # C = C, # Ys = Y, # B = 500, # alpha = 0.1, # alpha.fam=0.1, # method = c( "nreject", "bonferroni", "holm", "minP", "Wstep", "romano" ) ) # # ######## Check Results of First Sample ######## # # check inference: excess hits # expect_equal( as.numeric(res1$samp.res$rej) - as.numeric(res1$null.int[2]), # res1$excess.hits ) # # # check inference: critical value from global test # expect_equal( as.numeric( quantile( res1$nrej.bt, 1-0.1 ) ), # as.numeric( res1$global.test$crit[ res1$global.test$method == "nreject"] ) ) # # # check p-value of global test # expect_equal( sum( res1$nrej.bt >= res1$samp.res$rej ) / length( res1$nrej.bt ), # res1$global.test$pval[ res1$global.test$method == "nreject"] ) # # # # check results from original sample # # do analysis manually # alpha = 0.1 # # rej.man = 0 # tvals.man = c() # bhats.man = c() # pvals.man = c() # resid.man = matrix( NA, nrow = nrow(d), ncol = length(Y) ) # # for ( i in 1:length(Y) ) { # m = lm( d[[ Y[i] ]] ~ X1 + X2 + X3, data = d ) # bhats.man[i] = coef(m)[["X1"]] # tvals.man[i] = summary(m)$coefficients["X1","t value"] # pvals.man[i] = summary(m)$coefficients["X1", "Pr(>|t|)"] # resid.man[,i] = residuals(m) # # # did we reject it? # if ( summary(m)$coefficients["X1", "Pr(>|t|)"] < alpha ) rej.man = rej.man + 1 # } # # # check bhats # expect_equal( bhats.man, res1$samp.res$bhats ) # expect_equal( tvals.man, res1$samp.res$tvals ) # expect_equal( pvals.man, res1$samp.res$pvals ) # expect_equal( as.numeric(as.matrix(resid.man)), # as.numeric(as.matrix(res1$samp.res$resid)) ) # # expect_equal( sum( pvals.man < alpha ), # sum( res1$samp.res$rej ) ) # # # check other global tests # expect_equal( res1$global.test$pval[ res1$global.test$method == "Wstep" ], # min( adj_Wstep( p = res1$samp.res$pvals, p.bt = res1$pvals.bt ) ) ) # # expect_equal( res1$global.test$pval[ res1$global.test$method == "minP" ], # min( adj_minP( p = res1$samp.res$pvals, p.bt = res1$pvals.bt ) ) ) # # expect_equal( res1$global.test$pval[ res1$global.test$method == "bonferroni" ], # min( p.adjust( res1$samp.res$pvals, method="bonferroni" ) ) ) # # expect_equal( res1$global.test$pval[ res1$global.test$method == "holm" ], # min( p.adjust( res1$samp.res$pvals, method="holm" ) ) ) # # expect_equal( res1$global.test$reject[ res1$global.test$method == "romano" ], # any( FWERkControl( res1$samp.res$tvals, as.matrix( res1$tvals.bt ), k = 1, alpha = .1 )$Reject == 1 ) ) # # ######## Higher Correlation Between Outcomes ######## # cor = make_corr_mat( nX = 3, # nY = 100, # rho.XX = 0, # rho.YY = 0.25, # rho.XY = 0, # prop.corr = 1 ) # # d = sim_data( n = N, cor = cor ) # all.covars = names(d)[ grep( "X", names(d) ) ] # C = all.covars[ !all.covars == "X1" ] # Y = names(d)[ grep( "Y", names(d) ) ] # # res2 = corr_tests( d, # X = "X1", # C = C, # Ys = Y, # B = 500, # alpha = 0.1, # alpha.fam = 0.1, # method = c( "nreject", "bonferroni", "holm", "minP", "Wstep", "romano" ) ) # # # ######## Tests ######## # # null interval should be wider for the second one # expect_equal( as.logical( res2$null.int[2] >= res1$null.int[2] ), TRUE ) # # # p-value should be larger for the second one # expect_equal( as.logical( res2$global.test$pval[ res2$global.test$method == "nreject" ] >= # res1$global.test$pval[ res1$global.test$method == "nreject" ] ), TRUE ) # # } ) # only checks a few things: # two of the global tests # and the average number of rejections in resamples test_that( "corr_tests #1", { library(carData) data(Soils) X = "pH" C = c("Na", "Conduc") Y = c("N", "Dens", "P", "Ca", "Mg", "K") res = corr_tests( Soils, X = X, Ys = Y, B = 200, alpha = 0.1, method = c( "nreject", "bonferroni", "holm", "minP", "Wstep", "romano" ) ) # should be about equal expect_equal( mean(res$nrej.bt), .10*length(Y), tolerance = 0.1 ) # Bonferroni: should be exactly equal expect_equal( min( res$samp.res$pvals * length(Y) ), res$global.test$pval[2] ) # Holm: should be exactly equal expect_equal( min( p.adjust( res$samp.res$pvals, method = "holm" ) ), res$global.test$pval[3] ) } ) ###################### TEST FNS FOR APPLYING OUR METRICS ###################### # fix_input with extra covariates # X1 is extra and should be removed test_that("fix_input #2", { cor = make_corr_mat( nX = 1, nY = 4, rho.XX = 0, rho.YY = 0.25, rho.XY = 0, prop.corr = 1 ) d = sim_data( n = 20, cor = cor ) all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == "X1" ] ##### Add Bad Input ###### # insert missing data d[1,4] = NA # insert a decoy variable that should be removed in analysis d$X20 = rnorm( n = nrow(d) ) d$X21 = rnorm( n = nrow(d) ) # make one of the covariates not mean-centered d$X1 = d$X1 + 2 d = fix_input( X="X1", C=NA, Ys=names(d)[ grep( "Y", names(d) ) ], d = d ) # check that it caught bad input expect_equal( c( "X20", "X21" ) %in% names(d), c(FALSE, FALSE) ) expect_equal( any( is.na(d) ), FALSE ) } ) # fix_input with extra covariates test_that("fix_input #1", { cor = make_corr_mat( nX = 5, nY = 10, rho.XX = -0.06, rho.YY = 0.1, rho.XY = -0.1, prop.corr = 8/40 ) d = sim_data( n = 20, cor = cor ) all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == "X1" ] ##### Add Bad Input ###### # insert missing data d[1,4] = NA # insert a decoy variable that should be removed in analysis d$X20 = rnorm( n = nrow(d) ) d$X21 = rnorm( n = nrow(d) ) # make one of the covariates not mean-centered d$X5 = d$X5 + 2 d = fix_input( X="X1", C=C, Ys=names(d)[ grep( "Y", names(d) ) ], d = d ) # check that it caught bad input expect_equal( c( "X20", "X21" ) %in% names(d), c(FALSE, FALSE) ) expect_equal( any( is.na(d) ), FALSE ) } ) # fit_model doesn't need a test because we test it through the dataset_result tests # without centering test stats test_that("dataset_result #1", { cor = make_corr_mat( nX = 5, nY = 2, rho.XX = -0.06, rho.YY = 0.1, rho.XY = -0.1, prop.corr = 8/40 ) d = sim_data( n = 50, cor = cor ) # try to confuse fn by choosing a different X as covariate of interest Ys = names(d)[ grep( "Y", names(d) ) ] X = "X2" all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == X ] # do analysis manually alpha = 0.05 rej.man = 0 tvals.man = c() bhats.man = c() pvals.man = c() resid.man = matrix( NA, nrow = 50, ncol = 2 ) for ( i in 1:length(Ys) ) { m = lm( d[[ Ys[i] ]] ~ X1 + X2 + X3 + X4 + X5, data = d ) bhats.man[i] = coef(m)[[X]] tvals.man[i] = summary(m)$coefficients[X,"t value"] pvals.man[i] = summary(m)$coefficients[X, "Pr(>|t|)"] resid.man[,i] = residuals(m) # did we reject it? if ( summary(m)$coefficients[X, "Pr(>|t|)"] < alpha ) rej.man = rej.man + 1 } # with function samp.res = dataset_result( d = d, X = X, C = C, Ys = Ys, # all outcome names alpha = alpha, center.stats = FALSE, bhat.orig = NA ) resid.man = as.data.frame(resid.man) names(resid.man) = Ys expect_equal( rej.man, samp.res$rej ) expect_equal( bhats.man, samp.res$bhat ) expect_equal( tvals.man, samp.res$tvals ) expect_equal( pvals.man, samp.res$pvals ) expect_equal( as.matrix(resid.man), as.matrix(samp.res$resid) ) } ) # with centered test stats test_that("dataset_result #2", { cor = make_corr_mat( nX = 5, nY = 20, rho.XX = 0.16, rho.YY = 0.1, rho.XY = 0.1, prop.corr = 1 ) d = sim_data( n = 50, cor = cor ) # try to confuse fn by choosing a different X as covariate of interest Ys = names(d)[ grep( "Y", names(d) ) ] X = "X2" all.covars = names(d)[ grep( "X", names(d) ) ] C = all.covars[ !all.covars == X ] # do analysis manually # choose an unusual alpha level to make sure it's working alpha = 0.4 rej.man = 0 tvals.man = c() bhats.man = c() pvals.man = c() resid.man = matrix( NA, nrow = 50, ncol = length(Ys) ) # fake original coefficients bhat.orig = rnorm( n=length(Ys), mean = 0.8, sd = 2 ) for ( i in 1:length(Ys) ) { m = lm( d[[ Ys[i] ]] ~ X1 + X2 + X3 + X4 + X5, data = d ) bhats.man[i] = coef(m)[[X]] - bhat.orig[i] df = 50 - 5 - 1 se = summary(m)$coefficients[X, "Std. Error"] tvals.man[i] = bhats.man[i] / se pvals.man[i] = 2 * ( 1 - pt( abs( tvals.man[i] ), df = df ) ) resid.man[,i] = residuals(m) # did we reject it? if ( pvals.man[i] < alpha ) rej.man = rej.man + 1 } # with function samp.res = dataset_result( d = d, X = X, C = C, Ys = Ys, # all outcome names alpha = alpha, center.stats = TRUE, bhat.orig = bhat.orig ) resid.man = as.data.frame(resid.man) names(resid.man) = Ys expect_equal( rej.man, samp.res$rej ) expect_equal( bhats.man, samp.res$bhat ) expect_equal( tvals.man, samp.res$tvals ) expect_equal( pvals.man, samp.res$pvals ) expect_equal( as.matrix(resid.man), as.matrix(samp.res$resid) ) } ) ###################### TEST FNS FOR SIMULATING DATA ###################### test_that("cell_corr #1", { expect_equal( -0.1, cell_corr( vname.1 = "X1", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 6, prop.corr = 1 ) ) expect_equal( 0.25, cell_corr( vname.1 = "Y1", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 6, prop.corr = 1 ) ) expect_equal( 0, cell_corr( vname.1 = "X2", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 6, prop.corr = 1 ) ) expect_equal( -0.1, cell_corr( vname.1 = "X1", vname.2 = "Y2", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 10, prop.corr = .2 ) ) expect_equal( 0, cell_corr( vname.1 = "X1", vname.2 = "Y3", rho.XX = 0, rho.YY = 0.25, rho.XY = -0.1, nY = 10, prop.corr = .2 ) ) } ) test_that("make_corr_mat #1", { # sanity checks cor = make_corr_mat( nX = 1, nY = 40, rho.XX = 0, rho.YY = 0.25, rho.XY = 0.1, prop.corr = 8/40 ) # do we have the right number of each type of correlation? # only look at first row (correlations of X1 with everything else) expect_equal( c( 1, rep(0.10, 8), rep(0, 40-8) ), as.numeric( cor[1,] ) ) } ) test_that("make_corr_mat #1", { cor = make_corr_mat( nX = 2, nY = 40, rho.XX = 0.35, rho.YY = 0.25, rho.XY = 0.1, prop.corr = 8/40 ) d = sim_data( n = 10000, cor = cor ) # rho.XX correlations expect_equal( cor(d$X1, d$X2), 0.35, tolerance = 0.05 ) # rho.XY correlations for non-null ones names = paste( "Y", seq(1,8,1), sep="" ) expect_equal( as.numeric( cor( d$X1, d[, names] ) ), rep( 0.1, 8 ), tolerance = 0.05 ) # rho.XY correlations for null ones names = paste( "Y", seq(9,40,1), sep="" ) expect_equal( as.numeric( cor( d$X1, d[, names] ) ), rep( 0, 40-8 ), tolerance = 0.05 ) # plot empirical vs. real correlations #plot( as.numeric(cor(d)), as.numeric(as.matrix(cor)) ); abline( a = 0, b = 1, col="red") } ) ###################### TEST WESTFALL FNS ###################### test_that("adj_minP #1", { # sanity check B = 200 n.tests = 10 # generate fake p-values under strong null p.bt = matrix( runif(B*n.tests, 0, 1), nrow = n.tests) # generate fake p-values from real dataset p = runif( n.tests, 0, .1) p.adj = adj_minP( p, p.bt ) #plot(p, p.adj) # manually adjust second p-value mins = apply( p.bt, MARGIN = 2, FUN = min ) expect_equal( prop.table( table( mins <= p[2] ) )[["TRUE"]], p.adj[2] ) }) test_that("adjust_Wstep #1", { # # Sanity Check # nX = 1 # nY = 3 # B = 5 # # library(matrixcalc) # library(mvtnorm) # # cor = make_corr_mat( nX = nX, # nY = nY, # rho.XX = 0, # rho.YY = 0.25, # rho.XY = 0.05, # prop.corr = 1 ) # # d = sim_data( n = 1000, cor = cor ) # # samp.res = dataset_result( X = "X1", # C = NA, # Ys = c("Y1", "Y2", "Y3"), # d = d, # alpha = 0.05, # center.stats = FALSE ) # # # # do 5 bootstraps # resamps = resample_resid( X = "X1", # C = NA, # Ys = c("Y1", "Y2", "Y3"), # d = d, # alpha = 0.05, # resid = samp.res$resid, # bhat.orig = samp.res$bhats, # B=5, # cores = 8 ) # p.bt = t( resamps$p.bt ) # pvals = samp.res$pvals pvals = c(0.00233103655078803, 0.470366742594242, 0.00290278216035089 ) p.bt = structure(c(0.308528665936264, 0.517319402377912, 0.686518314693482, 0.637306248855186, 0.106805510862352, 0.116705315041494, 0.0732076817175753, 0.770308936364482, 0.384405349738909, 0.0434358213611965, 0.41497067850141, 0.513471489744384, 0.571213377144122, 0.628054979652722, 0.490196884985226 ), .Dim = c(5L, 3L)) # indicators of which hypothesis the sorted p-vals go with sort(pvals) r = c(1,3,2) qstar = matrix( NA, nrow = nrow(p.bt), ncol = ncol(p.bt) ) for (i in 1:nrow(p.bt)) { qstar[i,3] = p.bt[ i, r[3] ] qstar[i,2] = min( qstar[i,3], p.bt[ i, r[2] ] ) qstar[i,1] = min( qstar[i,2], p.bt[ i, r[1] ] ) } less = t( apply( qstar, MARGIN = 1, function(row) row <= sort(pvals) ) ) p.tilde = colMeans(less) # enforce monotonicity p.tilde.sort = sort(p.tilde) p.tilde.sort[2] = max( p.tilde.sort[1], p.tilde.sort[2] ) p.tilde.sort[3] = max( p.tilde.sort[2], p.tilde.sort[3] ) # put back in original order p.adj = p.tilde.sort[r] expect_equal( p.adj, adj_Wstep( p = pvals, p.bt = t(p.bt) ) ) }) ###################### TEST RESAMPLE_RESID ###################### # generate data NOT under null and # check that mean p-value is .5 in resamples # and that we have the expected number of rejections test_that("resample_resid #1", { # Sanity Check nX = 1 nY = 3 B = 5 library(matrixcalc) library(mvtnorm) cor = make_corr_mat( nX = nX, nY = nY, rho.XX = 0, rho.YY = 0.25, rho.XY = 0.05, prop.corr = 1 ) d = sim_data( n = 1000, cor = cor ) # mean-center them d = as.data.frame( apply( d, 2, function(col) col - mean(col) ) ) # bookmark samp.res = dataset_result( X = "X1", C = NA, Ys = c("Y1", "Y2", "Y3"), d = d, alpha = 0.05, center.stats = FALSE ) # do 5 bootstraps resamps = resample_resid( X = "X1", C = NA, Ys = c("Y1", "Y2", "Y3"), d = d, alpha = 0.05, resid = samp.res$resid, bhat.orig = samp.res$bhats, B=500, cores = 8 ) expect_equal( mean(resamps$p.bt), .5, tolerance = 0.03 ) expect_equal( mean(resamps$rej.bt), .05*nY, tolerance = 0.03 ) } )
#' Martingale Difference Divergence #' #' \code{mdd} measures conditional mean dependence of \code{Y} given \code{X}, #' where each contains one variable (univariate) or more variables (multivariate). #' #' @param X A vector, matrix or data frame, where rows represent samples, and columns represent variables. #' @param Y A vector, matrix or data frame, where rows represent samples, and columns represent variables. #' @param compute The method for computation, including #' \itemize{ #' \item \code{C}: computation implemented in C code; #' \item \code{R}: computation implemented in R code. #' } #' @param center The approach for centering, including #' \itemize{ #' \item \code{U}: U-centering which leads to an unbiased estimator; #' \item \code{D}: double-centering which leads to a biased estimator. #' } #' #' @return \code{mdd} returns the squared martingale difference divergence of \code{Y} given \code{X}. #' #' @references Shao, X., and Zhang, J. (2014). #' Martingale difference correlation and its use in high-dimensional variable screening. #' Journal of the American Statistical Association, 109(507), 1302-1318. #' \url{http://dx.doi.org/10.1080/01621459.2014.887012}. #' @references Park, T., Shao, X., and Yao, S. (2015). #' Partial martingale difference correlation. #' Electronic Journal of Statistics, 9(1), 1492-1517. #' \url{http://dx.doi.org/10.1214/15-EJS1047}. #' #' @importFrom stats dist #' #' @include cmdm_functions.R #' #' @export #' #' @examples #' # X, Y are vectors with 10 samples and 1 variable #' X <- rnorm(10) #' Y <- rnorm(10) #' #' mdd(X, Y, compute = "C") #' mdd(X, Y, compute = "R") #' #' # X, Y are 10 x 2 matrices with 10 samples and 2 variables #' X <- matrix(rnorm(10 * 2), 10, 2) #' Y <- matrix(rnorm(10 * 2), 10, 2) #' #' mdd(X, Y, center = "U") #' mdd(X, Y, center = "D") mdd <- function(X, Y, compute = "C", center = "U") { X <- as.matrix(X) Y <- as.matrix(Y) n <- nrow(X) if (n != nrow(Y)) { stop("The dimensions of X and Y do not agree.") } p <- ncol(X) q <- ncol(Y) if (compute == "C") { X <- as.vector(X) Y <- as.vector(Y) if (center == "U") { mdd <- .C("MDD_UCenter", N = as.integer(n), P = as.integer(p), Q = as.integer(q), X = as.double(X), Y = as.double(Y), V = as.double(numeric(1)), PACKAGE = "EDMeasure")$V } else if (center == "D") { mdd <- .C("MDD_DCenter", N = as.integer(n), P = as.integer(p), Q = as.integer(q), X = as.double(X), Y = as.double(Y), V = as.double(numeric(1)), PACKAGE = "EDMeasure")$V } else { stop("Invalid center. Read ?mdd for proper syntax.") } } else if (compute == "R") { if (center == "U") { A <- u.center(X) B <- u.center(0.5 * as.matrix(dist(Y))^2) mdd <- u.inner(A, B) } else if (center == "D") { A <- d.center(X) B <- d.center(0.5 * as.matrix(dist(Y))^2) mdd <- d.inner(A, B) } else { stop("Invalid center. Read ?mdd for proper syntax.") } } else { stop("Invalid compute. Read ?mdd for proper syntax.") } return(mdd) }
/R/mdd.R
no_license
cran/EDMeasure
R
false
false
3,410
r
#' Martingale Difference Divergence #' #' \code{mdd} measures conditional mean dependence of \code{Y} given \code{X}, #' where each contains one variable (univariate) or more variables (multivariate). #' #' @param X A vector, matrix or data frame, where rows represent samples, and columns represent variables. #' @param Y A vector, matrix or data frame, where rows represent samples, and columns represent variables. #' @param compute The method for computation, including #' \itemize{ #' \item \code{C}: computation implemented in C code; #' \item \code{R}: computation implemented in R code. #' } #' @param center The approach for centering, including #' \itemize{ #' \item \code{U}: U-centering which leads to an unbiased estimator; #' \item \code{D}: double-centering which leads to a biased estimator. #' } #' #' @return \code{mdd} returns the squared martingale difference divergence of \code{Y} given \code{X}. #' #' @references Shao, X., and Zhang, J. (2014). #' Martingale difference correlation and its use in high-dimensional variable screening. #' Journal of the American Statistical Association, 109(507), 1302-1318. #' \url{http://dx.doi.org/10.1080/01621459.2014.887012}. #' @references Park, T., Shao, X., and Yao, S. (2015). #' Partial martingale difference correlation. #' Electronic Journal of Statistics, 9(1), 1492-1517. #' \url{http://dx.doi.org/10.1214/15-EJS1047}. #' #' @importFrom stats dist #' #' @include cmdm_functions.R #' #' @export #' #' @examples #' # X, Y are vectors with 10 samples and 1 variable #' X <- rnorm(10) #' Y <- rnorm(10) #' #' mdd(X, Y, compute = "C") #' mdd(X, Y, compute = "R") #' #' # X, Y are 10 x 2 matrices with 10 samples and 2 variables #' X <- matrix(rnorm(10 * 2), 10, 2) #' Y <- matrix(rnorm(10 * 2), 10, 2) #' #' mdd(X, Y, center = "U") #' mdd(X, Y, center = "D") mdd <- function(X, Y, compute = "C", center = "U") { X <- as.matrix(X) Y <- as.matrix(Y) n <- nrow(X) if (n != nrow(Y)) { stop("The dimensions of X and Y do not agree.") } p <- ncol(X) q <- ncol(Y) if (compute == "C") { X <- as.vector(X) Y <- as.vector(Y) if (center == "U") { mdd <- .C("MDD_UCenter", N = as.integer(n), P = as.integer(p), Q = as.integer(q), X = as.double(X), Y = as.double(Y), V = as.double(numeric(1)), PACKAGE = "EDMeasure")$V } else if (center == "D") { mdd <- .C("MDD_DCenter", N = as.integer(n), P = as.integer(p), Q = as.integer(q), X = as.double(X), Y = as.double(Y), V = as.double(numeric(1)), PACKAGE = "EDMeasure")$V } else { stop("Invalid center. Read ?mdd for proper syntax.") } } else if (compute == "R") { if (center == "U") { A <- u.center(X) B <- u.center(0.5 * as.matrix(dist(Y))^2) mdd <- u.inner(A, B) } else if (center == "D") { A <- d.center(X) B <- d.center(0.5 * as.matrix(dist(Y))^2) mdd <- d.inner(A, B) } else { stop("Invalid center. Read ?mdd for proper syntax.") } } else { stop("Invalid compute. Read ?mdd for proper syntax.") } return(mdd) }
pollutantmean <- function(directory, pollutant, id = 1:332) { ## A function calculates the mean of a pollutant (sulfate or ## nitrate) across a specified list of monitors. ## ## Args: ## 'directory' : a character vector of length 1 indicating ## the location of the CSV files ## 'pollutant' : a character vector of length 1 indicating ## the name of the pollutant for which we will ## calculate the mean ## 'id' : an integer vector indicating the monitor ID numbers ## to be used ## ## Returns: ## The mean of the pollutant across all monitors list ## in the 'id' vector (ignoring NA values) # Get a list of CSV files to process files_list <- list.files(directory, full.names = TRUE) # Initialize empty data frame data <- data.frame() # Iterate over each of the specified monitor results and merge them into # one frame for(i in id) { temp_data <- read.csv(files_list[i]) data <- rbind(data, temp_data) } # Extract the column for which the mean is being calculated values <- data[[pollutant]] # Calculate the mean of the given column, ignoring the missing values result <- mean(values, na.rm=TRUE) # Return the result result }
/assignment01/pollutantmean.R
permissive
ksokolovic/R-Programming
R
false
false
1,339
r
pollutantmean <- function(directory, pollutant, id = 1:332) { ## A function calculates the mean of a pollutant (sulfate or ## nitrate) across a specified list of monitors. ## ## Args: ## 'directory' : a character vector of length 1 indicating ## the location of the CSV files ## 'pollutant' : a character vector of length 1 indicating ## the name of the pollutant for which we will ## calculate the mean ## 'id' : an integer vector indicating the monitor ID numbers ## to be used ## ## Returns: ## The mean of the pollutant across all monitors list ## in the 'id' vector (ignoring NA values) # Get a list of CSV files to process files_list <- list.files(directory, full.names = TRUE) # Initialize empty data frame data <- data.frame() # Iterate over each of the specified monitor results and merge them into # one frame for(i in id) { temp_data <- read.csv(files_list[i]) data <- rbind(data, temp_data) } # Extract the column for which the mean is being calculated values <- data[[pollutant]] # Calculate the mean of the given column, ignoring the missing values result <- mean(values, na.rm=TRUE) # Return the result result }
# 2.2 ATE y estimación MCO library(Matching) library(stargazer) data(lalonde) attach(lalonde) mean(re78[treat==1]) - mean(re78[treat==0]) # Prueba de Neyman # se vió clase pasada reg1 <- lm(re78~treat) stargazer(reg1,type="text") c(mean(age[treat==1]),mean(age[treat==0])) t.test( x = age[treat==1], y = age[treat==0] )
/clase03_lalonde.R
no_license
rsf94/taller_econometria
R
false
false
333
r
# 2.2 ATE y estimación MCO library(Matching) library(stargazer) data(lalonde) attach(lalonde) mean(re78[treat==1]) - mean(re78[treat==0]) # Prueba de Neyman # se vió clase pasada reg1 <- lm(re78~treat) stargazer(reg1,type="text") c(mean(age[treat==1]),mean(age[treat==0])) t.test( x = age[treat==1], y = age[treat==0] )
#' Make study function #' #' This is the main study function and runs the entire study. #' @param data_path Path to data set. Should be a character vector of length 1. Defaults to c("../data/mdf.csv") #' @param bs_samples The number of bootstrap samples to be generated as int. Defaults to 10 #' @export make.study <- function( data_path = c("./extdata/sample.csv"), bs_samples = 5 ) { ## Set seed for reproducability set.seed(123) ## Load all required packages (remove when turned into package) load.required.packages() ## Import study data study_data <- read.csv(data_path, stringsAsFactors = FALSE) ## Drop obsevations collected before all centres started collecting triage ## category data and observations later than one month prior to creating ## this dataset study_data <- drop.observations(study_data, test = TRUE) ## Get data dictionary data_dictionary <- get.data.dictionary() ## Keep only variables relevant to this study study_data <- keep.relevant.variables(study_data, data_dictionary) ## Define 999 as missing study_data[study_data == 999] <- NA ## Prepare study data using the data dictionary study_data <- prepare.study.data(study_data, data_dictionary, test = TRUE) ## Set patients to dead if dead at discharge or at 24 hours ## and alive if coded alive and admitted to other hospital study_data <- set.to.outcome(study_data) ## Replace age >89 with 90 and make age numeric study_data$age[study_data$age == ">89"] <- "90" study_data$age <- as.numeric(study_data$age) ## Collapse mechanism of injury study_data <- collapse.moi(study_data) ## Add time between injury and arrival and drop date and time variables from ## study data study_data <- add.time.between.injury.and.arrival(study_data, data_dictionary) ## Apply exclusion criteria, i.e. drop observations with missing outcome ## data and save exclusions to results list results <- list() # List to hold results study_data <- apply.exclusion.criteria(study_data) ## Create missing indicator variables and save table of number of missing ## values per variable study_data <- add.missing.indicator.variables(study_data) ## Prepare data for SuperLearner predictions prepped_data <- prep.data.for.superlearner(study_data, test = TRUE) ## Create table of sample characteristics tables <- create.table.of.sample.characteristics(prepped_data, data_dictionary) results$table_of_sample_characteristics <- tables$formatted results$raw_table_of_sample_characteristics <- tables$raw ## Transform factors into dummy variables prepped_data <- to.dummy.variables(prepped_data) ## Train and review SuperLearner on study sample study_sample <- predictions.with.superlearner(prepped_data) ## Bootstrap samples samples <- generate.bootstrap.samples(study_data, bs_samples) ## Prepare samples prepped_samples <- prep.bssamples(samples) ## Train and review SuperLearner on bootstrap samples samples <- train.predict.bssamples(prepped_samples) ## Create list of analysis to conduct funcList <- list(list(func = 'model.review.AUROCC', model_or_pe = c('pred_cat', 'tc'), diffci_or_ci = "diff"), list(func = 'model.review.reclassification', model_or_pe = c('NRI+', 'NRI'), diffci_or_ci = "ci")) ## Generate confidence intervals around point estimates from funcList CIs <- lapply(funcList, function(i) generate.confidence.intervals(study_sample, func = get(i$func), model_or_pointestimate = i$model_or_pe, samples = samples, diffci_or_ci = i$diffci_or_ci)) ## Set names of cis names(CIs) <- c('AUROCC', 'reclassification') ## Compile manuscript compile.manuscript(results, "superlearner_vs_clinicians_manuscript") }
/R/make.study.r
no_license
martingerdin/SupaLarna
R
false
false
4,403
r
#' Make study function #' #' This is the main study function and runs the entire study. #' @param data_path Path to data set. Should be a character vector of length 1. Defaults to c("../data/mdf.csv") #' @param bs_samples The number of bootstrap samples to be generated as int. Defaults to 10 #' @export make.study <- function( data_path = c("./extdata/sample.csv"), bs_samples = 5 ) { ## Set seed for reproducability set.seed(123) ## Load all required packages (remove when turned into package) load.required.packages() ## Import study data study_data <- read.csv(data_path, stringsAsFactors = FALSE) ## Drop obsevations collected before all centres started collecting triage ## category data and observations later than one month prior to creating ## this dataset study_data <- drop.observations(study_data, test = TRUE) ## Get data dictionary data_dictionary <- get.data.dictionary() ## Keep only variables relevant to this study study_data <- keep.relevant.variables(study_data, data_dictionary) ## Define 999 as missing study_data[study_data == 999] <- NA ## Prepare study data using the data dictionary study_data <- prepare.study.data(study_data, data_dictionary, test = TRUE) ## Set patients to dead if dead at discharge or at 24 hours ## and alive if coded alive and admitted to other hospital study_data <- set.to.outcome(study_data) ## Replace age >89 with 90 and make age numeric study_data$age[study_data$age == ">89"] <- "90" study_data$age <- as.numeric(study_data$age) ## Collapse mechanism of injury study_data <- collapse.moi(study_data) ## Add time between injury and arrival and drop date and time variables from ## study data study_data <- add.time.between.injury.and.arrival(study_data, data_dictionary) ## Apply exclusion criteria, i.e. drop observations with missing outcome ## data and save exclusions to results list results <- list() # List to hold results study_data <- apply.exclusion.criteria(study_data) ## Create missing indicator variables and save table of number of missing ## values per variable study_data <- add.missing.indicator.variables(study_data) ## Prepare data for SuperLearner predictions prepped_data <- prep.data.for.superlearner(study_data, test = TRUE) ## Create table of sample characteristics tables <- create.table.of.sample.characteristics(prepped_data, data_dictionary) results$table_of_sample_characteristics <- tables$formatted results$raw_table_of_sample_characteristics <- tables$raw ## Transform factors into dummy variables prepped_data <- to.dummy.variables(prepped_data) ## Train and review SuperLearner on study sample study_sample <- predictions.with.superlearner(prepped_data) ## Bootstrap samples samples <- generate.bootstrap.samples(study_data, bs_samples) ## Prepare samples prepped_samples <- prep.bssamples(samples) ## Train and review SuperLearner on bootstrap samples samples <- train.predict.bssamples(prepped_samples) ## Create list of analysis to conduct funcList <- list(list(func = 'model.review.AUROCC', model_or_pe = c('pred_cat', 'tc'), diffci_or_ci = "diff"), list(func = 'model.review.reclassification', model_or_pe = c('NRI+', 'NRI'), diffci_or_ci = "ci")) ## Generate confidence intervals around point estimates from funcList CIs <- lapply(funcList, function(i) generate.confidence.intervals(study_sample, func = get(i$func), model_or_pointestimate = i$model_or_pe, samples = samples, diffci_or_ci = i$diffci_or_ci)) ## Set names of cis names(CIs) <- c('AUROCC', 'reclassification') ## Compile manuscript compile.manuscript(results, "superlearner_vs_clinicians_manuscript") }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paws.R \name{emr} \alias{emr} \title{Amazon EMR} \usage{ emr(config = list()) } \arguments{ \item{config}{Optional configuration of credentials, endpoint, and/or region. \itemize{ \item{\strong{access_key_id}:} {AWS access key ID} \item{\strong{secret_access_key}:} {AWS secret access key} \item{\strong{session_token}:} {AWS temporary session token} \item{\strong{profile}:} {The name of a profile to use. If not given, then the default profile is used.} \item{\strong{anonymous}:} {Set anonymous credentials.} \item{\strong{endpoint}:} {The complete URL to use for the constructed client.} \item{\strong{region}:} {The AWS Region used in instantiating the client.} \item{\strong{close_connection}:} {Immediately close all HTTP connections.} \item{\strong{timeout}:} {The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.} \item{\strong{s3_force_path_style}:} {Set this to \code{true} to force the request to use path-style addressing, i.e., \verb{http://s3.amazonaws.com/BUCKET/KEY}.} }} } \value{ A client for the service. You can call the service's operations using syntax like \code{svc$operation(...)}, where \code{svc} is the name you've assigned to the client. The available operations are listed in the Operations section. } \description{ Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management. } \section{Service syntax}{ \if{html}{\out{<div class="sourceCode">}}\preformatted{svc <- emr( config = list( credentials = list( creds = list( access_key_id = "string", secret_access_key = "string", session_token = "string" ), profile = "string", anonymous = "logical" ), endpoint = "string", region = "string", close_connection = "logical", timeout = "numeric", s3_force_path_style = "logical" ) ) }\if{html}{\out{</div>}} } \section{Operations}{ \tabular{ll}{ \link[paws.analytics:emr_add_instance_fleet]{add_instance_fleet} \tab Adds an instance fleet to a running cluster\cr \link[paws.analytics:emr_add_instance_groups]{add_instance_groups} \tab Adds one or more instance groups to a running cluster\cr \link[paws.analytics:emr_add_job_flow_steps]{add_job_flow_steps} \tab AddJobFlowSteps adds new steps to a running cluster\cr \link[paws.analytics:emr_add_tags]{add_tags} \tab Adds tags to an Amazon EMR resource, such as a cluster or an Amazon EMR Studio\cr \link[paws.analytics:emr_cancel_steps]{cancel_steps} \tab Cancels a pending step or steps in a running cluster\cr \link[paws.analytics:emr_create_security_configuration]{create_security_configuration} \tab Creates a security configuration, which is stored in the service and can be specified when a cluster is created\cr \link[paws.analytics:emr_create_studio]{create_studio} \tab Creates a new Amazon EMR Studio\cr \link[paws.analytics:emr_create_studio_session_mapping]{create_studio_session_mapping} \tab Maps a user or group to the Amazon EMR Studio specified by StudioId, and applies a session policy to refine Studio permissions for that user or group\cr \link[paws.analytics:emr_delete_security_configuration]{delete_security_configuration} \tab Deletes a security configuration\cr \link[paws.analytics:emr_delete_studio]{delete_studio} \tab Removes an Amazon EMR Studio from the Studio metadata store\cr \link[paws.analytics:emr_delete_studio_session_mapping]{delete_studio_session_mapping} \tab Removes a user or group from an Amazon EMR Studio\cr \link[paws.analytics:emr_describe_cluster]{describe_cluster} \tab Provides cluster-level details including status, hardware and software configuration, VPC settings, and so on\cr \link[paws.analytics:emr_describe_job_flows]{describe_job_flows} \tab This API is no longer supported and will eventually be removed\cr \link[paws.analytics:emr_describe_notebook_execution]{describe_notebook_execution} \tab Provides details of a notebook execution\cr \link[paws.analytics:emr_describe_release_label]{describe_release_label} \tab Provides Amazon EMR release label details, such as the releases available the Region where the API request is run, and the available applications for a specific Amazon EMR release label\cr \link[paws.analytics:emr_describe_security_configuration]{describe_security_configuration} \tab Provides the details of a security configuration by returning the configuration JSON\cr \link[paws.analytics:emr_describe_step]{describe_step} \tab Provides more detail about the cluster step\cr \link[paws.analytics:emr_describe_studio]{describe_studio} \tab Returns details for the specified Amazon EMR Studio including ID, Name, VPC, Studio access URL, and so on\cr \link[paws.analytics:emr_get_auto_termination_policy]{get_auto_termination_policy} \tab Returns the auto-termination policy for an Amazon EMR cluster\cr \link[paws.analytics:emr_get_block_public_access_configuration]{get_block_public_access_configuration} \tab Returns the Amazon EMR block public access configuration for your Amazon Web Services account in the current Region\cr \link[paws.analytics:emr_get_cluster_session_credentials]{get_cluster_session_credentials} \tab Provides temporary, HTTP basic credentials that are associated with a given runtime IAM role and used by a cluster with fine-grained access control activated\cr \link[paws.analytics:emr_get_managed_scaling_policy]{get_managed_scaling_policy} \tab Fetches the attached managed scaling policy for an Amazon EMR cluster\cr \link[paws.analytics:emr_get_studio_session_mapping]{get_studio_session_mapping} \tab Fetches mapping details for the specified Amazon EMR Studio and identity (user or group)\cr \link[paws.analytics:emr_list_bootstrap_actions]{list_bootstrap_actions} \tab Provides information about the bootstrap actions associated with a cluster\cr \link[paws.analytics:emr_list_clusters]{list_clusters} \tab Provides the status of all clusters visible to this Amazon Web Services account\cr \link[paws.analytics:emr_list_instance_fleets]{list_instance_fleets} \tab Lists all available details about the instance fleets in a cluster\cr \link[paws.analytics:emr_list_instance_groups]{list_instance_groups} \tab Provides all available details about the instance groups in a cluster\cr \link[paws.analytics:emr_list_instances]{list_instances} \tab Provides information for all active Amazon EC2 instances and Amazon EC2 instances terminated in the last 30 days, up to a maximum of 2,000\cr \link[paws.analytics:emr_list_notebook_executions]{list_notebook_executions} \tab Provides summaries of all notebook executions\cr \link[paws.analytics:emr_list_release_labels]{list_release_labels} \tab Retrieves release labels of Amazon EMR services in the Region where the API is called\cr \link[paws.analytics:emr_list_security_configurations]{list_security_configurations} \tab Lists all the security configurations visible to this account, providing their creation dates and times, and their names\cr \link[paws.analytics:emr_list_steps]{list_steps} \tab Provides a list of steps for the cluster in reverse order unless you specify stepIds with the request or filter by StepStates\cr \link[paws.analytics:emr_list_studios]{list_studios} \tab Returns a list of all Amazon EMR Studios associated with the Amazon Web Services account\cr \link[paws.analytics:emr_list_studio_session_mappings]{list_studio_session_mappings} \tab Returns a list of all user or group session mappings for the Amazon EMR Studio specified by StudioId\cr \link[paws.analytics:emr_modify_cluster]{modify_cluster} \tab Modifies the number of steps that can be executed concurrently for the cluster specified using ClusterID\cr \link[paws.analytics:emr_modify_instance_fleet]{modify_instance_fleet} \tab Modifies the target On-Demand and target Spot capacities for the instance fleet with the specified InstanceFleetID within the cluster specified using ClusterID\cr \link[paws.analytics:emr_modify_instance_groups]{modify_instance_groups} \tab ModifyInstanceGroups modifies the number of nodes and configuration settings of an instance group\cr \link[paws.analytics:emr_put_auto_scaling_policy]{put_auto_scaling_policy} \tab Creates or updates an automatic scaling policy for a core instance group or task instance group in an Amazon EMR cluster\cr \link[paws.analytics:emr_put_auto_termination_policy]{put_auto_termination_policy} \tab Auto-termination is supported in Amazon EMR releases 5\cr \link[paws.analytics:emr_put_block_public_access_configuration]{put_block_public_access_configuration} \tab Creates or updates an Amazon EMR block public access configuration for your Amazon Web Services account in the current Region\cr \link[paws.analytics:emr_put_managed_scaling_policy]{put_managed_scaling_policy} \tab Creates or updates a managed scaling policy for an Amazon EMR cluster\cr \link[paws.analytics:emr_remove_auto_scaling_policy]{remove_auto_scaling_policy} \tab Removes an automatic scaling policy from a specified instance group within an Amazon EMR cluster\cr \link[paws.analytics:emr_remove_auto_termination_policy]{remove_auto_termination_policy} \tab Removes an auto-termination policy from an Amazon EMR cluster\cr \link[paws.analytics:emr_remove_managed_scaling_policy]{remove_managed_scaling_policy} \tab Removes a managed scaling policy from a specified Amazon EMR cluster\cr \link[paws.analytics:emr_remove_tags]{remove_tags} \tab Removes tags from an Amazon EMR resource, such as a cluster or Amazon EMR Studio\cr \link[paws.analytics:emr_run_job_flow]{run_job_flow} \tab RunJobFlow creates and starts running a new cluster (job flow)\cr \link[paws.analytics:emr_set_termination_protection]{set_termination_protection} \tab SetTerminationProtection locks a cluster (job flow) so the Amazon EC2 instances in the cluster cannot be terminated by user intervention, an API call, or in the event of a job-flow error\cr \link[paws.analytics:emr_set_visible_to_all_users]{set_visible_to_all_users} \tab The SetVisibleToAllUsers parameter is no longer supported\cr \link[paws.analytics:emr_start_notebook_execution]{start_notebook_execution} \tab Starts a notebook execution\cr \link[paws.analytics:emr_stop_notebook_execution]{stop_notebook_execution} \tab Stops a notebook execution\cr \link[paws.analytics:emr_terminate_job_flows]{terminate_job_flows} \tab TerminateJobFlows shuts a list of clusters (job flows) down\cr \link[paws.analytics:emr_update_studio]{update_studio} \tab Updates an Amazon EMR Studio configuration, including attributes such as name, description, and subnets\cr \link[paws.analytics:emr_update_studio_session_mapping]{update_studio_session_mapping} \tab Updates the session policy attached to the user or group for the specified Amazon EMR Studio } } \examples{ \dontrun{ svc <- emr() svc$add_instance_fleet( Foo = 123 ) } }
/man/emr.Rd
no_license
cran/paws
R
false
true
11,114
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paws.R \name{emr} \alias{emr} \title{Amazon EMR} \usage{ emr(config = list()) } \arguments{ \item{config}{Optional configuration of credentials, endpoint, and/or region. \itemize{ \item{\strong{access_key_id}:} {AWS access key ID} \item{\strong{secret_access_key}:} {AWS secret access key} \item{\strong{session_token}:} {AWS temporary session token} \item{\strong{profile}:} {The name of a profile to use. If not given, then the default profile is used.} \item{\strong{anonymous}:} {Set anonymous credentials.} \item{\strong{endpoint}:} {The complete URL to use for the constructed client.} \item{\strong{region}:} {The AWS Region used in instantiating the client.} \item{\strong{close_connection}:} {Immediately close all HTTP connections.} \item{\strong{timeout}:} {The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.} \item{\strong{s3_force_path_style}:} {Set this to \code{true} to force the request to use path-style addressing, i.e., \verb{http://s3.amazonaws.com/BUCKET/KEY}.} }} } \value{ A client for the service. You can call the service's operations using syntax like \code{svc$operation(...)}, where \code{svc} is the name you've assigned to the client. The available operations are listed in the Operations section. } \description{ Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management. } \section{Service syntax}{ \if{html}{\out{<div class="sourceCode">}}\preformatted{svc <- emr( config = list( credentials = list( creds = list( access_key_id = "string", secret_access_key = "string", session_token = "string" ), profile = "string", anonymous = "logical" ), endpoint = "string", region = "string", close_connection = "logical", timeout = "numeric", s3_force_path_style = "logical" ) ) }\if{html}{\out{</div>}} } \section{Operations}{ \tabular{ll}{ \link[paws.analytics:emr_add_instance_fleet]{add_instance_fleet} \tab Adds an instance fleet to a running cluster\cr \link[paws.analytics:emr_add_instance_groups]{add_instance_groups} \tab Adds one or more instance groups to a running cluster\cr \link[paws.analytics:emr_add_job_flow_steps]{add_job_flow_steps} \tab AddJobFlowSteps adds new steps to a running cluster\cr \link[paws.analytics:emr_add_tags]{add_tags} \tab Adds tags to an Amazon EMR resource, such as a cluster or an Amazon EMR Studio\cr \link[paws.analytics:emr_cancel_steps]{cancel_steps} \tab Cancels a pending step or steps in a running cluster\cr \link[paws.analytics:emr_create_security_configuration]{create_security_configuration} \tab Creates a security configuration, which is stored in the service and can be specified when a cluster is created\cr \link[paws.analytics:emr_create_studio]{create_studio} \tab Creates a new Amazon EMR Studio\cr \link[paws.analytics:emr_create_studio_session_mapping]{create_studio_session_mapping} \tab Maps a user or group to the Amazon EMR Studio specified by StudioId, and applies a session policy to refine Studio permissions for that user or group\cr \link[paws.analytics:emr_delete_security_configuration]{delete_security_configuration} \tab Deletes a security configuration\cr \link[paws.analytics:emr_delete_studio]{delete_studio} \tab Removes an Amazon EMR Studio from the Studio metadata store\cr \link[paws.analytics:emr_delete_studio_session_mapping]{delete_studio_session_mapping} \tab Removes a user or group from an Amazon EMR Studio\cr \link[paws.analytics:emr_describe_cluster]{describe_cluster} \tab Provides cluster-level details including status, hardware and software configuration, VPC settings, and so on\cr \link[paws.analytics:emr_describe_job_flows]{describe_job_flows} \tab This API is no longer supported and will eventually be removed\cr \link[paws.analytics:emr_describe_notebook_execution]{describe_notebook_execution} \tab Provides details of a notebook execution\cr \link[paws.analytics:emr_describe_release_label]{describe_release_label} \tab Provides Amazon EMR release label details, such as the releases available the Region where the API request is run, and the available applications for a specific Amazon EMR release label\cr \link[paws.analytics:emr_describe_security_configuration]{describe_security_configuration} \tab Provides the details of a security configuration by returning the configuration JSON\cr \link[paws.analytics:emr_describe_step]{describe_step} \tab Provides more detail about the cluster step\cr \link[paws.analytics:emr_describe_studio]{describe_studio} \tab Returns details for the specified Amazon EMR Studio including ID, Name, VPC, Studio access URL, and so on\cr \link[paws.analytics:emr_get_auto_termination_policy]{get_auto_termination_policy} \tab Returns the auto-termination policy for an Amazon EMR cluster\cr \link[paws.analytics:emr_get_block_public_access_configuration]{get_block_public_access_configuration} \tab Returns the Amazon EMR block public access configuration for your Amazon Web Services account in the current Region\cr \link[paws.analytics:emr_get_cluster_session_credentials]{get_cluster_session_credentials} \tab Provides temporary, HTTP basic credentials that are associated with a given runtime IAM role and used by a cluster with fine-grained access control activated\cr \link[paws.analytics:emr_get_managed_scaling_policy]{get_managed_scaling_policy} \tab Fetches the attached managed scaling policy for an Amazon EMR cluster\cr \link[paws.analytics:emr_get_studio_session_mapping]{get_studio_session_mapping} \tab Fetches mapping details for the specified Amazon EMR Studio and identity (user or group)\cr \link[paws.analytics:emr_list_bootstrap_actions]{list_bootstrap_actions} \tab Provides information about the bootstrap actions associated with a cluster\cr \link[paws.analytics:emr_list_clusters]{list_clusters} \tab Provides the status of all clusters visible to this Amazon Web Services account\cr \link[paws.analytics:emr_list_instance_fleets]{list_instance_fleets} \tab Lists all available details about the instance fleets in a cluster\cr \link[paws.analytics:emr_list_instance_groups]{list_instance_groups} \tab Provides all available details about the instance groups in a cluster\cr \link[paws.analytics:emr_list_instances]{list_instances} \tab Provides information for all active Amazon EC2 instances and Amazon EC2 instances terminated in the last 30 days, up to a maximum of 2,000\cr \link[paws.analytics:emr_list_notebook_executions]{list_notebook_executions} \tab Provides summaries of all notebook executions\cr \link[paws.analytics:emr_list_release_labels]{list_release_labels} \tab Retrieves release labels of Amazon EMR services in the Region where the API is called\cr \link[paws.analytics:emr_list_security_configurations]{list_security_configurations} \tab Lists all the security configurations visible to this account, providing their creation dates and times, and their names\cr \link[paws.analytics:emr_list_steps]{list_steps} \tab Provides a list of steps for the cluster in reverse order unless you specify stepIds with the request or filter by StepStates\cr \link[paws.analytics:emr_list_studios]{list_studios} \tab Returns a list of all Amazon EMR Studios associated with the Amazon Web Services account\cr \link[paws.analytics:emr_list_studio_session_mappings]{list_studio_session_mappings} \tab Returns a list of all user or group session mappings for the Amazon EMR Studio specified by StudioId\cr \link[paws.analytics:emr_modify_cluster]{modify_cluster} \tab Modifies the number of steps that can be executed concurrently for the cluster specified using ClusterID\cr \link[paws.analytics:emr_modify_instance_fleet]{modify_instance_fleet} \tab Modifies the target On-Demand and target Spot capacities for the instance fleet with the specified InstanceFleetID within the cluster specified using ClusterID\cr \link[paws.analytics:emr_modify_instance_groups]{modify_instance_groups} \tab ModifyInstanceGroups modifies the number of nodes and configuration settings of an instance group\cr \link[paws.analytics:emr_put_auto_scaling_policy]{put_auto_scaling_policy} \tab Creates or updates an automatic scaling policy for a core instance group or task instance group in an Amazon EMR cluster\cr \link[paws.analytics:emr_put_auto_termination_policy]{put_auto_termination_policy} \tab Auto-termination is supported in Amazon EMR releases 5\cr \link[paws.analytics:emr_put_block_public_access_configuration]{put_block_public_access_configuration} \tab Creates or updates an Amazon EMR block public access configuration for your Amazon Web Services account in the current Region\cr \link[paws.analytics:emr_put_managed_scaling_policy]{put_managed_scaling_policy} \tab Creates or updates a managed scaling policy for an Amazon EMR cluster\cr \link[paws.analytics:emr_remove_auto_scaling_policy]{remove_auto_scaling_policy} \tab Removes an automatic scaling policy from a specified instance group within an Amazon EMR cluster\cr \link[paws.analytics:emr_remove_auto_termination_policy]{remove_auto_termination_policy} \tab Removes an auto-termination policy from an Amazon EMR cluster\cr \link[paws.analytics:emr_remove_managed_scaling_policy]{remove_managed_scaling_policy} \tab Removes a managed scaling policy from a specified Amazon EMR cluster\cr \link[paws.analytics:emr_remove_tags]{remove_tags} \tab Removes tags from an Amazon EMR resource, such as a cluster or Amazon EMR Studio\cr \link[paws.analytics:emr_run_job_flow]{run_job_flow} \tab RunJobFlow creates and starts running a new cluster (job flow)\cr \link[paws.analytics:emr_set_termination_protection]{set_termination_protection} \tab SetTerminationProtection locks a cluster (job flow) so the Amazon EC2 instances in the cluster cannot be terminated by user intervention, an API call, or in the event of a job-flow error\cr \link[paws.analytics:emr_set_visible_to_all_users]{set_visible_to_all_users} \tab The SetVisibleToAllUsers parameter is no longer supported\cr \link[paws.analytics:emr_start_notebook_execution]{start_notebook_execution} \tab Starts a notebook execution\cr \link[paws.analytics:emr_stop_notebook_execution]{stop_notebook_execution} \tab Stops a notebook execution\cr \link[paws.analytics:emr_terminate_job_flows]{terminate_job_flows} \tab TerminateJobFlows shuts a list of clusters (job flows) down\cr \link[paws.analytics:emr_update_studio]{update_studio} \tab Updates an Amazon EMR Studio configuration, including attributes such as name, description, and subnets\cr \link[paws.analytics:emr_update_studio_session_mapping]{update_studio_session_mapping} \tab Updates the session policy attached to the user or group for the specified Amazon EMR Studio } } \examples{ \dontrun{ svc <- emr() svc$add_instance_fleet( Foo = 123 ) } }
################################################################################################### #HOMEWORK 04# ################################################################################################### Kamilar_Cooper <- read.csv("~/Desktop/Development/Assignment_4/Kamilar_Cooper.csv") View(Kamilar_Cooper) KC <- Kamilar_Cooper #Remove any Nas KC <- na.omit(KC) #Run a basic linear model to see the initial pattern plot(data = KC, log(HomeRange_km2) ~ log(Body_mass_female_mean)) #Run a linear model of the interaction m1 <- lm(log(HomeRange_km2) ~ log(Body_mass_female_mean), data = KC) m1 #model output: Beta0(Intercept) = -9.354 # Beta 1 = 1.024 print(coef(summary(m1))[,"Std. Error"]) #Standard Error from m1 linear model: #Intercept = 1.6380707 #log(Body_Mass_Female) = 0.1868741 confint(m1) #OUTPUT: # 2.5 % 97.5 % # (Intercept) -12.7511475 -5.956846 #log(Body_mass_female_mean) 0.6364542 1.411560 #QUestion 2 Bootstrapping #from https://www.rdocumentation.org/packages/simpleboot/versions/1.1-7/topics/lm.boot #library(simpleboot) #lm.object <- lm(log(HomeRange_km2) ~ log(Body_mass_female_mean), data = KC) #R <- 1000 #m2 <- lm.boot(lm.object, R, rows = TRUE) #from https://rdrr.io/cran/car/man/Boot.html library(car) data=na.omit(KC) m2 <- Boot(m1, R=1000, method=c("case")) summary(m2) #Output #Number of bootstrap replications R = 999 # original bootBias bootSE bootMed #(Intercept) -9.354 -0.319302 1.73792 -9.5455 #log(Body_mass_female_mean) 1.024 0.036161 0.19585 1.0460 confint(m2) #Output #Bootstrap bca confidence intervals # 2.5 % 97.5 % # (Intercept) -12.3244897 -5.921240 #log(Body_mass_female_mean) 0.6406987 1.352249 hist(m2) #### Question 3 ##### #Estimate the standard error for each of your β coefficients as the standard deviation of the sampling distribution from your bootstrap. summary(m2) #coef(summary(m2))[,"bootSE"] #coef(summary(m2)) # I want to pull out the results for each iteration of the bootstrap. #Should be a matrix with 1000 rows (1000 iterations), and 2 columns, one for each B coefficient m2_rep_results <- m2$t m2_rep_results <- as.data.frame(m2_rep_results) # Now calculate the Standard Error from the sampling distribution #m2_rep_se <- sd(m2_rep_results$Intercept)/sqrt(length(m2_rep_results$Intercept)) #m2_Intercept_se <- sd(m2_rep_results[, 1])/sqrt(length(m2_rep_results[, 1])) #print(m2_rep_se) #SE for the "Intercept" sampling distribution is 0.05498 #m2_bodymass_se <- sd(m2_rep_results[, 2])/sqrt(length(m2_rep_results[, 2])) #print(m2_bodymass_se) #SE for log(Body_Mass_Female) sampling distribution is 0.05498529 sd_m2_intercept <- sd(m2_rep_results$`(Intercept)`) sd_m2_bodymass <- sd(m2_rep_results$`log(Body_mass_female_mean)`) se_m2_intercept <- sd_m2_intercept/sqrt(length(m2_rep_results)) print(se_m2_intercept) #Output: 1.150876 se_m2_bodymass <- sd_m2_bodymass/sqrt(length(m2_rep_results)) print(se_m2_bodymass) #Output: 0.1289406 #### Question 4 ###### # Also determine the 95% CI for each of your β coefficients based on the appropriate quantiles from your sampling distribution. # 'boot' R package should have already generated the confidence interval. I just need to call it. library(boot) boot.ci(m2, conf=0.95, type="basic") #95% CI = (-12.251, -6.010) boot.ci(m2, conf=0.95, type="bca") #95% CI = (-12.647, -6.336 )
/Homework_04.R
no_license
naivers/Ivers_Nick_Homework-04
R
false
false
3,576
r
################################################################################################### #HOMEWORK 04# ################################################################################################### Kamilar_Cooper <- read.csv("~/Desktop/Development/Assignment_4/Kamilar_Cooper.csv") View(Kamilar_Cooper) KC <- Kamilar_Cooper #Remove any Nas KC <- na.omit(KC) #Run a basic linear model to see the initial pattern plot(data = KC, log(HomeRange_km2) ~ log(Body_mass_female_mean)) #Run a linear model of the interaction m1 <- lm(log(HomeRange_km2) ~ log(Body_mass_female_mean), data = KC) m1 #model output: Beta0(Intercept) = -9.354 # Beta 1 = 1.024 print(coef(summary(m1))[,"Std. Error"]) #Standard Error from m1 linear model: #Intercept = 1.6380707 #log(Body_Mass_Female) = 0.1868741 confint(m1) #OUTPUT: # 2.5 % 97.5 % # (Intercept) -12.7511475 -5.956846 #log(Body_mass_female_mean) 0.6364542 1.411560 #QUestion 2 Bootstrapping #from https://www.rdocumentation.org/packages/simpleboot/versions/1.1-7/topics/lm.boot #library(simpleboot) #lm.object <- lm(log(HomeRange_km2) ~ log(Body_mass_female_mean), data = KC) #R <- 1000 #m2 <- lm.boot(lm.object, R, rows = TRUE) #from https://rdrr.io/cran/car/man/Boot.html library(car) data=na.omit(KC) m2 <- Boot(m1, R=1000, method=c("case")) summary(m2) #Output #Number of bootstrap replications R = 999 # original bootBias bootSE bootMed #(Intercept) -9.354 -0.319302 1.73792 -9.5455 #log(Body_mass_female_mean) 1.024 0.036161 0.19585 1.0460 confint(m2) #Output #Bootstrap bca confidence intervals # 2.5 % 97.5 % # (Intercept) -12.3244897 -5.921240 #log(Body_mass_female_mean) 0.6406987 1.352249 hist(m2) #### Question 3 ##### #Estimate the standard error for each of your β coefficients as the standard deviation of the sampling distribution from your bootstrap. summary(m2) #coef(summary(m2))[,"bootSE"] #coef(summary(m2)) # I want to pull out the results for each iteration of the bootstrap. #Should be a matrix with 1000 rows (1000 iterations), and 2 columns, one for each B coefficient m2_rep_results <- m2$t m2_rep_results <- as.data.frame(m2_rep_results) # Now calculate the Standard Error from the sampling distribution #m2_rep_se <- sd(m2_rep_results$Intercept)/sqrt(length(m2_rep_results$Intercept)) #m2_Intercept_se <- sd(m2_rep_results[, 1])/sqrt(length(m2_rep_results[, 1])) #print(m2_rep_se) #SE for the "Intercept" sampling distribution is 0.05498 #m2_bodymass_se <- sd(m2_rep_results[, 2])/sqrt(length(m2_rep_results[, 2])) #print(m2_bodymass_se) #SE for log(Body_Mass_Female) sampling distribution is 0.05498529 sd_m2_intercept <- sd(m2_rep_results$`(Intercept)`) sd_m2_bodymass <- sd(m2_rep_results$`log(Body_mass_female_mean)`) se_m2_intercept <- sd_m2_intercept/sqrt(length(m2_rep_results)) print(se_m2_intercept) #Output: 1.150876 se_m2_bodymass <- sd_m2_bodymass/sqrt(length(m2_rep_results)) print(se_m2_bodymass) #Output: 0.1289406 #### Question 4 ###### # Also determine the 95% CI for each of your β coefficients based on the appropriate quantiles from your sampling distribution. # 'boot' R package should have already generated the confidence interval. I just need to call it. library(boot) boot.ci(m2, conf=0.95, type="basic") #95% CI = (-12.251, -6.010) boot.ci(m2, conf=0.95, type="bca") #95% CI = (-12.647, -6.336 )
################################################## # UI ################################################## #' @import shiny #' @import shinydashboard #' @import leaflet #' @import shiny #' @import ggplot2 #' @import shinyMobile mobile_app_ui <- function(request) { tagList( mobile_golem_add_external_resources(), f7Page( init = f7Init( skin = 'ios', # c("ios", "md", "auto", "aurora"), theme = 'light', #c("dark", "light"), filled = TRUE ), title = "Databrew's COVID-19 epidemic curve explorer", f7SingleLayout( navbar = f7Navbar( title = "Databrew's COVID-19 epidemic curve explorer", hairline = TRUE, shadow = TRUE ), toolbar = f7Toolbar( position = "bottom", f7Link(label = "Databrew", src = "https://databrew.cc", external = TRUE), f7Link(label = "Blog post on COVID-19 epidemic curves", src = "https://www.databrew.cc/posts/covid.html", external = TRUE) ), # main content f7Shadow( intensity = 10, hover = TRUE, f7Card( plotOutput('day0'), selectInput('country', 'Country/Countries', multiple = TRUE, choices = sort(unique(sort(unique(covid19::df_country$country)))), selected = c('Italy', 'Spain', 'France', 'US')), # f7Stepper('day0', '"Critical mass": number of cases to be considered start of outbreak (day 0)', min = 1, max = 500, value = 150, step = 5), sliderInput('day0', '"Critical mass" adjustment: Number of cases to be considered "day 0"', min = 1, max = 500, value = 150, # scale = TRUE, step = 1), f7Toggle('deaths', 'Deaths instead of cases?', checked = FALSE), f7Toggle('pop', 'Adjust by population?', checked = FALSE), height = 300, ) ), f7Shadow( intensity = 10, hover = TRUE, f7Card( sliderInput('time_before', 'Number of days to show before "critical mass"', min = -20, max = 0, value = 0, # scale = TRUE, step = 1), br(), f7Toggle('ylog', 'Logarithmic y-axis?', checked = TRUE), br(), f7Toggle('cumulative', 'Cumulative cases?', checked = TRUE), br(), f7Toggle('add_markers', 'Add visual markers at "critical mass"?', checked = TRUE), br(), f7Stepper('line_size', 'Line thickness', min = 0.5, max = 4, value = 1, step = 0.5), br(), ) ) ) ) ) } #' Add external Resources to the Application #' #' This function is internally used to add external #' resources inside the Shiny application. #' #' @import shiny #' @importFrom golem add_resource_path activate_js favicon bundle_resources #' @noRd mobile_golem_add_external_resources <- function(){ # addResourcePath( # 'www', system.file('app/www', package = 'covid19') # ) share <- list( title = "Databrew's COVID-19 Data Explorer", url = "https://datacat.cc/covid19/", image = "http://www.databrew.cc/images/blog/covid2.png", description = "Comparing epidemic curves across countries", twitter_user = "data_brew" ) tags$head( # Facebook OpenGraph tags tags$meta(property = "og:title", content = share$title), tags$meta(property = "og:type", content = "website"), tags$meta(property = "og:url", content = share$url), tags$meta(property = "og:image", content = share$image), tags$meta(property = "og:description", content = share$description), # Twitter summary cards tags$meta(name = "twitter:card", content = "summary"), tags$meta(name = "twitter:site", content = paste0("@", share$twitter_user)), tags$meta(name = "twitter:creator", content = paste0("@", share$twitter_user)), tags$meta(name = "twitter:title", content = share$title), tags$meta(name = "twitter:description", content = share$description), tags$meta(name = "twitter:image", content = share$image), # golem::activate_js(), # golem::favicon(), # Add here all the external resources # Google analytics script includeHTML(system.file('app/www/google-analytics-mini.html', package = 'covid19')), includeScript(system.file('app/www/script.js', package = 'covid19')), includeScript(system.file('app/www/mobile.js', package = 'covid19')), # includeScript('inst/app/www/script.js'), # includeScript('www/google-analytics.js'), # If you have a custom.css in the inst/app/www tags$link(rel="stylesheet", type="text/css", href="www/custom.css") # tags$link(rel="stylesheet", type="text/css", href="www/custom.css") ) } ################################################## # SERVER ################################################## #' @import shiny #' @import leaflet mobile_app_server <- function(input, output, session) { output$day0 <- renderPlot({ plot_day_zero(countries = input$country, ylog = input$ylog, day0 = input$day0, cumulative = input$cumulative, time_before = input$time_before, line_size = input$line_size, add_markers = input$add_markers, deaths = input$deaths, pop = input$pop) }) } mobile_app <- function(){ # Detect the system. If on AWS, don't launch browswer is_aws <- grepl('aws', tolower(Sys.info()['release'])) shinyApp(ui = mobile_app_ui, server = mobile_app_server, options = list('launch.browswer' = !is_aws)) }
/R/mobile_app.R
permissive
griu/covid19
R
false
false
6,057
r
################################################## # UI ################################################## #' @import shiny #' @import shinydashboard #' @import leaflet #' @import shiny #' @import ggplot2 #' @import shinyMobile mobile_app_ui <- function(request) { tagList( mobile_golem_add_external_resources(), f7Page( init = f7Init( skin = 'ios', # c("ios", "md", "auto", "aurora"), theme = 'light', #c("dark", "light"), filled = TRUE ), title = "Databrew's COVID-19 epidemic curve explorer", f7SingleLayout( navbar = f7Navbar( title = "Databrew's COVID-19 epidemic curve explorer", hairline = TRUE, shadow = TRUE ), toolbar = f7Toolbar( position = "bottom", f7Link(label = "Databrew", src = "https://databrew.cc", external = TRUE), f7Link(label = "Blog post on COVID-19 epidemic curves", src = "https://www.databrew.cc/posts/covid.html", external = TRUE) ), # main content f7Shadow( intensity = 10, hover = TRUE, f7Card( plotOutput('day0'), selectInput('country', 'Country/Countries', multiple = TRUE, choices = sort(unique(sort(unique(covid19::df_country$country)))), selected = c('Italy', 'Spain', 'France', 'US')), # f7Stepper('day0', '"Critical mass": number of cases to be considered start of outbreak (day 0)', min = 1, max = 500, value = 150, step = 5), sliderInput('day0', '"Critical mass" adjustment: Number of cases to be considered "day 0"', min = 1, max = 500, value = 150, # scale = TRUE, step = 1), f7Toggle('deaths', 'Deaths instead of cases?', checked = FALSE), f7Toggle('pop', 'Adjust by population?', checked = FALSE), height = 300, ) ), f7Shadow( intensity = 10, hover = TRUE, f7Card( sliderInput('time_before', 'Number of days to show before "critical mass"', min = -20, max = 0, value = 0, # scale = TRUE, step = 1), br(), f7Toggle('ylog', 'Logarithmic y-axis?', checked = TRUE), br(), f7Toggle('cumulative', 'Cumulative cases?', checked = TRUE), br(), f7Toggle('add_markers', 'Add visual markers at "critical mass"?', checked = TRUE), br(), f7Stepper('line_size', 'Line thickness', min = 0.5, max = 4, value = 1, step = 0.5), br(), ) ) ) ) ) } #' Add external Resources to the Application #' #' This function is internally used to add external #' resources inside the Shiny application. #' #' @import shiny #' @importFrom golem add_resource_path activate_js favicon bundle_resources #' @noRd mobile_golem_add_external_resources <- function(){ # addResourcePath( # 'www', system.file('app/www', package = 'covid19') # ) share <- list( title = "Databrew's COVID-19 Data Explorer", url = "https://datacat.cc/covid19/", image = "http://www.databrew.cc/images/blog/covid2.png", description = "Comparing epidemic curves across countries", twitter_user = "data_brew" ) tags$head( # Facebook OpenGraph tags tags$meta(property = "og:title", content = share$title), tags$meta(property = "og:type", content = "website"), tags$meta(property = "og:url", content = share$url), tags$meta(property = "og:image", content = share$image), tags$meta(property = "og:description", content = share$description), # Twitter summary cards tags$meta(name = "twitter:card", content = "summary"), tags$meta(name = "twitter:site", content = paste0("@", share$twitter_user)), tags$meta(name = "twitter:creator", content = paste0("@", share$twitter_user)), tags$meta(name = "twitter:title", content = share$title), tags$meta(name = "twitter:description", content = share$description), tags$meta(name = "twitter:image", content = share$image), # golem::activate_js(), # golem::favicon(), # Add here all the external resources # Google analytics script includeHTML(system.file('app/www/google-analytics-mini.html', package = 'covid19')), includeScript(system.file('app/www/script.js', package = 'covid19')), includeScript(system.file('app/www/mobile.js', package = 'covid19')), # includeScript('inst/app/www/script.js'), # includeScript('www/google-analytics.js'), # If you have a custom.css in the inst/app/www tags$link(rel="stylesheet", type="text/css", href="www/custom.css") # tags$link(rel="stylesheet", type="text/css", href="www/custom.css") ) } ################################################## # SERVER ################################################## #' @import shiny #' @import leaflet mobile_app_server <- function(input, output, session) { output$day0 <- renderPlot({ plot_day_zero(countries = input$country, ylog = input$ylog, day0 = input$day0, cumulative = input$cumulative, time_before = input$time_before, line_size = input$line_size, add_markers = input$add_markers, deaths = input$deaths, pop = input$pop) }) } mobile_app <- function(){ # Detect the system. If on AWS, don't launch browswer is_aws <- grepl('aws', tolower(Sys.info()['release'])) shinyApp(ui = mobile_app_ui, server = mobile_app_server, options = list('launch.browswer' = !is_aws)) }
testlist <- list(m = NULL, repetitions = 0L, in_m = structure(c(2.32784507357645e-308, 9.53818252170339e+295, 2.73876647344422e+189, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L))) result <- do.call(CNull:::communities_individual_based_sampling_beta,testlist) str(result)
/CNull/inst/testfiles/communities_individual_based_sampling_beta/AFL_communities_individual_based_sampling_beta/communities_individual_based_sampling_beta_valgrind_files/1615831338-test.R
no_license
akhikolla/updatedatatype-list2
R
false
false
362
r
testlist <- list(m = NULL, repetitions = 0L, in_m = structure(c(2.32784507357645e-308, 9.53818252170339e+295, 2.73876647344422e+189, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L))) result <- do.call(CNull:::communities_individual_based_sampling_beta,testlist) str(result)
#' Framework 7 searchbar #' #' Searchbar to filter elements in a page. #' #' @param id Necessary when using \link{f7SearchbarTrigger}. NULL otherwise. #' @param placeholder Searchbar placeholder. #' @param expandable Whether to enable the searchbar with a target link, #' in the navbar. See \link{f7SearchbarTrigger}. #' @param inline Useful to add a \link{f7Searchbar} in a \link{f7Appbar}. #' Notice that utilities like \link{f7HideOnSearch} and \link{f7NotFound} are not #' compatible with this mode. #' @export #' #' @examples #' if (interactive()) { #' library(shiny) #' library(shinyMobile) #' #' cars <- rownames(mtcars) #' #' shinyApp( #' ui = f7Page( #' title = "Simple searchbar", #' f7SingleLayout( #' navbar = f7Navbar( #' title = "f7Searchbar", #' hairline = FALSE, #' shadow = TRUE, #' subNavbar = f7SubNavbar( #' f7Searchbar(id = "search1") #' ) #' ), #' f7Block( #' "This block will be hidden on search. #' Lorem ipsum dolor sit amet, consectetur adipisicing elit." #' ) %>% f7HideOnSearch(), #' f7List( #' lapply(seq_along(cars), function(i) { #' f7ListItem(cars[i]) #' }) #' ) %>% f7Found(), #' #' f7Block( #' p("Nothing found") #' ) %>% f7NotFound() #' #' ) #' ), #' server = function(input, output) {} #' ) #' #' # Expandable searchbar with trigger #' cities <- names(precip) #' #' shiny::shinyApp( #' ui = f7Page( #' title = "Expandable searchbar", #' f7SingleLayout( #' navbar = f7Navbar( #' title = "f7Searchbar with trigger", #' hairline = FALSE, #' shadow = TRUE, #' f7SearchbarTrigger(targetId = "search1"), #' subNavbar = f7SubNavbar( #' f7Searchbar(id = "search1", expandable = TRUE) #' ) #' ), #' f7Block( #' "This block will be hidden on search. #' Lorem ipsum dolor sit amet, consectetur adipisicing elit." #' ) %>% f7HideOnSearch(), #' f7List( #' lapply(seq_along(cities), function(i) { #' f7ListItem(cities[i]) #' }) #' ) %>% f7Found(), #' #' f7Block( #' p("Nothing found") #' ) %>% f7NotFound() #' #' ) #' ), #' server = function(input, output) {} #' ) #' #' # Searchbar in \link{f7Appbar} #' shinyApp( #' ui = f7Page( #' title = "Searchbar in appbar", #' f7Appbar( #' f7Searchbar(id = "search1", inline = TRUE) #' ), #' f7SingleLayout( #' navbar = f7Navbar( #' title = "f7Searchbar in f7Appbar", #' hairline = FALSE, #' shadow = TRUE #' ), #' f7List( #' lapply(seq_along(cities), function(i) { #' f7ListItem(cities[i]) #' }) #' ) %>% f7Found() #' ) #' ), #' server = function(input, output) {} #' ) #' } f7Searchbar <- function(id, placeholder = "Search", expandable = FALSE, inline = FALSE) { searchBarCl <- "searchbar" if (expandable) searchBarCl <- paste0(searchBarCl, " searchbar-expandable") if (inline) { shiny::tags$div( class = "searchbar searchbar-inline", id = id, shiny::tags$div( class = "searchbar-input-wrap", shiny::tags$input(type = "search", placeholder = placeholder), shiny::tags$i(class = "searchbar-icon"), shiny::tags$span(class = "input-clear-button") ) ) } else { shiny::tags$form( class = searchBarCl, id = id, shiny::tags$div( class = "searchbar-inner", shiny::tags$div( class = "searchbar-input-wrap", shiny::tags$input(type = "search", placeholder = placeholder), shiny::tags$i(class = "searchbar-icon"), shiny::tags$span(class = "input-clear-button") ), shiny::tags$span(class = "searchbar-disable-button", "Cancel") ) ) } } #' Framework 7 searchbar trigger #' #' Element that triggers the searchbar. #' #' @param targetId Id of the \link{f7Searchbar}. #' @export #' #' @examples #' if (interactive()) { #' #' } f7SearchbarTrigger <- function(targetId) { shiny::tags$a( class = "link icon-only searchbar-enable", `data-searchbar` = paste0("#", targetId), shiny::tags$i(class = "icon f7-icons if-not-md", "search"), shiny::tags$i(class = "icon material-icons md-only", "search") ) } #' Utility to hide a given tag on search #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to hide. #' @export f7HideOnSearch <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-hide-on-search") return(tag) } #' Utility to hide a given tag when \link{f7Searchbar} is enabled. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to hide. #' @export f7HideOnEnable <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-hide-on-enable") return(tag) } #' Utility to display an item when the search is unsuccessful. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to use. #' @export f7NotFound <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-not-found") return(tag) } #' Utility to display an item when the search is successful. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to display. When using \link{f7Searchbar}, one must #' wrap the items to search in inside \link{f7Found}. #' @export f7Found <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-found") return(tag) } #' Utility to ignore an item from search. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to ignore. #' @export f7SearchIgnore <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-ignore") return(tag) }
/R/f7Searchbar.R
no_license
grambretagna/shinyMobile
R
false
false
5,812
r
#' Framework 7 searchbar #' #' Searchbar to filter elements in a page. #' #' @param id Necessary when using \link{f7SearchbarTrigger}. NULL otherwise. #' @param placeholder Searchbar placeholder. #' @param expandable Whether to enable the searchbar with a target link, #' in the navbar. See \link{f7SearchbarTrigger}. #' @param inline Useful to add a \link{f7Searchbar} in a \link{f7Appbar}. #' Notice that utilities like \link{f7HideOnSearch} and \link{f7NotFound} are not #' compatible with this mode. #' @export #' #' @examples #' if (interactive()) { #' library(shiny) #' library(shinyMobile) #' #' cars <- rownames(mtcars) #' #' shinyApp( #' ui = f7Page( #' title = "Simple searchbar", #' f7SingleLayout( #' navbar = f7Navbar( #' title = "f7Searchbar", #' hairline = FALSE, #' shadow = TRUE, #' subNavbar = f7SubNavbar( #' f7Searchbar(id = "search1") #' ) #' ), #' f7Block( #' "This block will be hidden on search. #' Lorem ipsum dolor sit amet, consectetur adipisicing elit." #' ) %>% f7HideOnSearch(), #' f7List( #' lapply(seq_along(cars), function(i) { #' f7ListItem(cars[i]) #' }) #' ) %>% f7Found(), #' #' f7Block( #' p("Nothing found") #' ) %>% f7NotFound() #' #' ) #' ), #' server = function(input, output) {} #' ) #' #' # Expandable searchbar with trigger #' cities <- names(precip) #' #' shiny::shinyApp( #' ui = f7Page( #' title = "Expandable searchbar", #' f7SingleLayout( #' navbar = f7Navbar( #' title = "f7Searchbar with trigger", #' hairline = FALSE, #' shadow = TRUE, #' f7SearchbarTrigger(targetId = "search1"), #' subNavbar = f7SubNavbar( #' f7Searchbar(id = "search1", expandable = TRUE) #' ) #' ), #' f7Block( #' "This block will be hidden on search. #' Lorem ipsum dolor sit amet, consectetur adipisicing elit." #' ) %>% f7HideOnSearch(), #' f7List( #' lapply(seq_along(cities), function(i) { #' f7ListItem(cities[i]) #' }) #' ) %>% f7Found(), #' #' f7Block( #' p("Nothing found") #' ) %>% f7NotFound() #' #' ) #' ), #' server = function(input, output) {} #' ) #' #' # Searchbar in \link{f7Appbar} #' shinyApp( #' ui = f7Page( #' title = "Searchbar in appbar", #' f7Appbar( #' f7Searchbar(id = "search1", inline = TRUE) #' ), #' f7SingleLayout( #' navbar = f7Navbar( #' title = "f7Searchbar in f7Appbar", #' hairline = FALSE, #' shadow = TRUE #' ), #' f7List( #' lapply(seq_along(cities), function(i) { #' f7ListItem(cities[i]) #' }) #' ) %>% f7Found() #' ) #' ), #' server = function(input, output) {} #' ) #' } f7Searchbar <- function(id, placeholder = "Search", expandable = FALSE, inline = FALSE) { searchBarCl <- "searchbar" if (expandable) searchBarCl <- paste0(searchBarCl, " searchbar-expandable") if (inline) { shiny::tags$div( class = "searchbar searchbar-inline", id = id, shiny::tags$div( class = "searchbar-input-wrap", shiny::tags$input(type = "search", placeholder = placeholder), shiny::tags$i(class = "searchbar-icon"), shiny::tags$span(class = "input-clear-button") ) ) } else { shiny::tags$form( class = searchBarCl, id = id, shiny::tags$div( class = "searchbar-inner", shiny::tags$div( class = "searchbar-input-wrap", shiny::tags$input(type = "search", placeholder = placeholder), shiny::tags$i(class = "searchbar-icon"), shiny::tags$span(class = "input-clear-button") ), shiny::tags$span(class = "searchbar-disable-button", "Cancel") ) ) } } #' Framework 7 searchbar trigger #' #' Element that triggers the searchbar. #' #' @param targetId Id of the \link{f7Searchbar}. #' @export #' #' @examples #' if (interactive()) { #' #' } f7SearchbarTrigger <- function(targetId) { shiny::tags$a( class = "link icon-only searchbar-enable", `data-searchbar` = paste0("#", targetId), shiny::tags$i(class = "icon f7-icons if-not-md", "search"), shiny::tags$i(class = "icon material-icons md-only", "search") ) } #' Utility to hide a given tag on search #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to hide. #' @export f7HideOnSearch <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-hide-on-search") return(tag) } #' Utility to hide a given tag when \link{f7Searchbar} is enabled. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to hide. #' @export f7HideOnEnable <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-hide-on-enable") return(tag) } #' Utility to display an item when the search is unsuccessful. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to use. #' @export f7NotFound <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-not-found") return(tag) } #' Utility to display an item when the search is successful. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to display. When using \link{f7Searchbar}, one must #' wrap the items to search in inside \link{f7Found}. #' @export f7Found <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-found") return(tag) } #' Utility to ignore an item from search. #' #' Use with \link{f7Searchbar}. #' #' @param tag tag to ignore. #' @export f7SearchIgnore <- function(tag) { tag$attribs$class <- paste0(tag$attribs$class, " searchbar-ignore") return(tag) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rank_sites.R \name{rank_sites_DT} \alias{rank_sites_DT} \alias{rank_sites} \title{Rank sites by EAR} \usage{ rank_sites_DT( chemical_summary, category = "Biological", mean_logic = FALSE, sum_logic = TRUE, hit_threshold = 0.1 ) rank_sites( chemical_summary, category, hit_threshold = 0.1, mean_logic = FALSE, sum_logic = TRUE ) } \arguments{ \item{chemical_summary}{Data frame from \code{\link{get_chemical_summary}}.} \item{category}{Character. Either "Biological", "Chemical Class", or "Chemical".} \item{mean_logic}{Logical. \code{TRUE} displays the mean sample from each site, \code{FALSE} displays the maximum sample from each site.} \item{sum_logic}{Logical. \code{TRUE} sums the EARs in a specified grouping, \code{FALSE} does not. \code{FALSE} may be better for traditional benchmarks as opposed to ToxCast benchmarks.} \item{hit_threshold}{Numeric threshold defining a "hit".} } \value{ data frame with one row per site, and the mas or mean EAR and frequency of hits based on the category. } \description{ The \code{rank_sites_DT} (DT option) and \code{rank_sites} (data frame option) functions create tables with one row per site. Columns represent the maximum or mean EAR (depending on the mean_logic argument) for each category ("Chemical Class", "Chemical", or "Biological") and the frequency of the maximum or mean EAR exceeding a user specified hit_threshold. } \details{ The tables show slightly different results for a single site. Rather than multiple columns for categories, there is now 1 row per category (since the site is known). } \examples{ # This is the example workflow: path_to_tox <- system.file("extdata", package="toxEval") file_name <- "OWC_data_fromSup.xlsx" full_path <- file.path(path_to_tox, file_name) tox_list <- create_toxEval(full_path) ACC <- get_ACC(tox_list$chem_info$CAS) ACC <- remove_flags(ACC) cleaned_ep <- clean_endPoint_info(end_point_info) filtered_ep <- filter_groups(cleaned_ep) chemical_summary <- get_chemical_summary(tox_list, ACC, filtered_ep) stats_df <- rank_sites(chemical_summary, "Biological") rank_sites_DT(chemical_summary, category = "Biological") rank_sites_DT(chemical_summary, category = "Chemical Class") rank_sites_DT(chemical_summary, category = "Chemical") }
/man/rank_sites_DT.Rd
permissive
jcmartinmu/toxEval
R
false
true
2,348
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rank_sites.R \name{rank_sites_DT} \alias{rank_sites_DT} \alias{rank_sites} \title{Rank sites by EAR} \usage{ rank_sites_DT( chemical_summary, category = "Biological", mean_logic = FALSE, sum_logic = TRUE, hit_threshold = 0.1 ) rank_sites( chemical_summary, category, hit_threshold = 0.1, mean_logic = FALSE, sum_logic = TRUE ) } \arguments{ \item{chemical_summary}{Data frame from \code{\link{get_chemical_summary}}.} \item{category}{Character. Either "Biological", "Chemical Class", or "Chemical".} \item{mean_logic}{Logical. \code{TRUE} displays the mean sample from each site, \code{FALSE} displays the maximum sample from each site.} \item{sum_logic}{Logical. \code{TRUE} sums the EARs in a specified grouping, \code{FALSE} does not. \code{FALSE} may be better for traditional benchmarks as opposed to ToxCast benchmarks.} \item{hit_threshold}{Numeric threshold defining a "hit".} } \value{ data frame with one row per site, and the mas or mean EAR and frequency of hits based on the category. } \description{ The \code{rank_sites_DT} (DT option) and \code{rank_sites} (data frame option) functions create tables with one row per site. Columns represent the maximum or mean EAR (depending on the mean_logic argument) for each category ("Chemical Class", "Chemical", or "Biological") and the frequency of the maximum or mean EAR exceeding a user specified hit_threshold. } \details{ The tables show slightly different results for a single site. Rather than multiple columns for categories, there is now 1 row per category (since the site is known). } \examples{ # This is the example workflow: path_to_tox <- system.file("extdata", package="toxEval") file_name <- "OWC_data_fromSup.xlsx" full_path <- file.path(path_to_tox, file_name) tox_list <- create_toxEval(full_path) ACC <- get_ACC(tox_list$chem_info$CAS) ACC <- remove_flags(ACC) cleaned_ep <- clean_endPoint_info(end_point_info) filtered_ep <- filter_groups(cleaned_ep) chemical_summary <- get_chemical_summary(tox_list, ACC, filtered_ep) stats_df <- rank_sites(chemical_summary, "Biological") rank_sites_DT(chemical_summary, category = "Biological") rank_sites_DT(chemical_summary, category = "Chemical Class") rank_sites_DT(chemical_summary, category = "Chemical") }
library(shiny) library(dplyr) library(ggplot2) library(cgdsr) load(file.path("data", "pam50centroids.rda")) source("utility_functions.R") ggplot2::theme_set(theme_classic() + theme(axis.line.x = element_blank()) + theme(axis.line.y = element_blank())) colmutcat <- c("(germline)" = "black", "mutated" = "#1070b8") alphamutcat <- c("(germline)" = 0.5, "mutated" = 1) shapemutcat <- c("(germline)" = 1, "mutated" = 16) conn <- CGDS("http://www.cbioportal.org/public-portal/") subtype_data <- perform_subtype_classification(conn, pam50centroids) function(input, output) { conn <- CGDS("http://www.cbioportal.org/public-portal/") retrieved_tcga_data <- reactive({ input$retrieve_data_button ids <- split_query_str(isolate(input$query_str)) retrieve_tcga_data(conn, ids) }) output$retrieved_genes <- renderUI({ p("Data retrieved for genes:", lapply(retrieved_tcga_data()$ids, function(x) a(x, href = paste0("http://www.genecards.org/cgi-bin/carddisp.pl?gene=", x), target = "_blank"))) }) output$var_y_ui = renderUI({ ids <- retrieved_tcga_data()$ids selectInput("var_y", "Gene on vertical axis", choices = ids, selected = ids[1]) }) output$var_x_ui = renderUI({ ids <- retrieved_tcga_data()$ids selectInput("var_x", "Gene on horizontal axes", choices = ids, selected = ids[min(2, length(ids))]) }) assembled_graphics_data <- reactive({ ids <- retrieved_tcga_data()$ids var_x <- input$var_x var_y <- input$var_y if (is.null(var_x) | is.null(var_y)) { var_x <- ids[min(2, length(ids))] var_y <- ids[1] } if (!(var_x %in% ids)) { var_x <- ids[min(2, length(ids))] } if (!(var_y %in% ids)) { var_y <- ids[1] } graphics_data <- retrieved_tcga_data()$data %>% mutate_( x_mut = paste0(var_x, "_mutations"), x_gistic = paste0(var_x, "_gistic"), x_rna = paste0(var_x, "_rna"), y = paste0(var_y, "_rna")) %>% mutate( x_mutcat = factor(x_mut == "(germline)", levels = c(TRUE, FALSE), labels = c("(germline)", "mutated"))) %>% '['(c("subjid", "x_mut", "x_mutcat", "x_gistic", "x_rna", "y")) %>% left_join(subtype_data, by = "subjid") graphics_data }) output$tab1 <- renderTable({ tab1 <- assembled_graphics_data() %>% filter(!is.na(x_mut) & !is.na(y)) %>% '['("x_mut") %>% table() %>% as.data.frame.table() names(tab1) <- c(paste0(input$var_x, ", AA change(s)"), "n") tab1 }) output$fig1 <- renderPlot({ if (input$show_mut) { gg <- assembled_graphics_data() %>% filter(!is.na(x_mut) & !is.na(y)) %>% ggplot(aes(x = x_mut, y = y)) } else { gg <- assembled_graphics_data() %>% filter(!is.na(x_mut) & !is.na(y)) %>% ggplot(aes(x = x_mutcat, y = y)) } if (input$mark_mut) { gg <- gg + geom_point(aes(col = x_mutcat, alpha = x_mutcat, shape = x_mutcat), position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + scale_colour_manual(values = colmutcat, na.value = "black", guide = FALSE) + scale_alpha_manual(values = alphamutcat, na.value = 1, guide = FALSE) + scale_shape_manual(values = shapemutcat, na.value = 4, guide = FALSE) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", predicted somatic non-silent mutation"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } else { gg <- gg + geom_point(shape = 1, alpha = 0.5, position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", predicted somatic non-silent mutation"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } if (input$by_subtype) gg <- gg + facet_wrap(~ subtype2, nrow = 2, as.table = FALSE) plot(gg) }) output$fig2 <- renderPlot({ gg <- assembled_graphics_data() %>% filter(!is.na(x_gistic) & !is.na(y)) %>% ggplot(aes(x = x_gistic, y = y)) if (input$mark_mut) { gg <- gg + geom_point(aes(col = x_mutcat, alpha = x_mutcat, shape = x_mutcat), position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + scale_colour_manual(values = colmutcat, na.value = "black") + scale_alpha_manual(values = alphamutcat, na.value = 1) + scale_shape_manual(values = shapemutcat, na.value = 4) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", putative CNA (GISTIC)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)"), col = input$var_x, alpha = input$var_x, shape = input$var_x) } else { gg <- gg + geom_point(shape = 1, alpha = 0.5, position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", putative CNA (GISTIC)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } if (input$by_subtype) gg <- gg + facet_wrap(~ subtype2, nrow = 2, as.table = FALSE) plot(gg) }) output$fig3 <- renderPlot({ gg <- assembled_graphics_data() %>% filter(!is.na(x_rna) & !is.na(y)) %>% ggplot(aes(x = x_rna, y = y)) if (input$mark_mut) { gg <- gg + geom_point(aes(col = x_mutcat, alpha = x_mutcat, shape = x_mutcat)) + scale_colour_manual(values = colmutcat, na.value = "black") + scale_alpha_manual(values = alphamutcat, na.value = 1) + scale_shape_manual(values = shapemutcat, na.value = 4) + labs( x = paste0(input$var_x, ", mRNA expression (log2 RNA-seq)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)"), col = input$var_x, alpha = input$var_x, shape = input$var_x) } else { gg <- gg + geom_point(shape = 1, alpha = 0.5) + labs( x = paste0(input$var_x, ", mRNA expression (log2 RNA-seq)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } if (input$fig3_smooth_method != "(none)") gg <- gg + geom_smooth(col = "darkred", method = input$fig3_smooth_method) if (input$by_subtype) gg <- gg + facet_wrap(~ subtype2, nrow = 2, as.table = FALSE) plot(gg) }) output$tab2 <- renderTable({ graphics_data <- assembled_graphics_data() r_all <- cor( graphics_data$x_rna, graphics_data$y, use = "complete.obs", method = "spearman") r_subtype <- unlist(lapply( split(graphics_data, graphics_data$subtype), function(df) cor(df$x_rna, df$y, use = "complete.obs", method = "spearman"))) tab2 <- data.frame( grp = c("(all)", names(r_subtype)), r = c(r_all, r_subtype)) names(tab2) <- c("Molecular subtype", "r") tab2 }) }
/server.R
permissive
gsh150801/tcga-brca-explorer
R
false
false
7,582
r
library(shiny) library(dplyr) library(ggplot2) library(cgdsr) load(file.path("data", "pam50centroids.rda")) source("utility_functions.R") ggplot2::theme_set(theme_classic() + theme(axis.line.x = element_blank()) + theme(axis.line.y = element_blank())) colmutcat <- c("(germline)" = "black", "mutated" = "#1070b8") alphamutcat <- c("(germline)" = 0.5, "mutated" = 1) shapemutcat <- c("(germline)" = 1, "mutated" = 16) conn <- CGDS("http://www.cbioportal.org/public-portal/") subtype_data <- perform_subtype_classification(conn, pam50centroids) function(input, output) { conn <- CGDS("http://www.cbioportal.org/public-portal/") retrieved_tcga_data <- reactive({ input$retrieve_data_button ids <- split_query_str(isolate(input$query_str)) retrieve_tcga_data(conn, ids) }) output$retrieved_genes <- renderUI({ p("Data retrieved for genes:", lapply(retrieved_tcga_data()$ids, function(x) a(x, href = paste0("http://www.genecards.org/cgi-bin/carddisp.pl?gene=", x), target = "_blank"))) }) output$var_y_ui = renderUI({ ids <- retrieved_tcga_data()$ids selectInput("var_y", "Gene on vertical axis", choices = ids, selected = ids[1]) }) output$var_x_ui = renderUI({ ids <- retrieved_tcga_data()$ids selectInput("var_x", "Gene on horizontal axes", choices = ids, selected = ids[min(2, length(ids))]) }) assembled_graphics_data <- reactive({ ids <- retrieved_tcga_data()$ids var_x <- input$var_x var_y <- input$var_y if (is.null(var_x) | is.null(var_y)) { var_x <- ids[min(2, length(ids))] var_y <- ids[1] } if (!(var_x %in% ids)) { var_x <- ids[min(2, length(ids))] } if (!(var_y %in% ids)) { var_y <- ids[1] } graphics_data <- retrieved_tcga_data()$data %>% mutate_( x_mut = paste0(var_x, "_mutations"), x_gistic = paste0(var_x, "_gistic"), x_rna = paste0(var_x, "_rna"), y = paste0(var_y, "_rna")) %>% mutate( x_mutcat = factor(x_mut == "(germline)", levels = c(TRUE, FALSE), labels = c("(germline)", "mutated"))) %>% '['(c("subjid", "x_mut", "x_mutcat", "x_gistic", "x_rna", "y")) %>% left_join(subtype_data, by = "subjid") graphics_data }) output$tab1 <- renderTable({ tab1 <- assembled_graphics_data() %>% filter(!is.na(x_mut) & !is.na(y)) %>% '['("x_mut") %>% table() %>% as.data.frame.table() names(tab1) <- c(paste0(input$var_x, ", AA change(s)"), "n") tab1 }) output$fig1 <- renderPlot({ if (input$show_mut) { gg <- assembled_graphics_data() %>% filter(!is.na(x_mut) & !is.na(y)) %>% ggplot(aes(x = x_mut, y = y)) } else { gg <- assembled_graphics_data() %>% filter(!is.na(x_mut) & !is.na(y)) %>% ggplot(aes(x = x_mutcat, y = y)) } if (input$mark_mut) { gg <- gg + geom_point(aes(col = x_mutcat, alpha = x_mutcat, shape = x_mutcat), position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + scale_colour_manual(values = colmutcat, na.value = "black", guide = FALSE) + scale_alpha_manual(values = alphamutcat, na.value = 1, guide = FALSE) + scale_shape_manual(values = shapemutcat, na.value = 4, guide = FALSE) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", predicted somatic non-silent mutation"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } else { gg <- gg + geom_point(shape = 1, alpha = 0.5, position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", predicted somatic non-silent mutation"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } if (input$by_subtype) gg <- gg + facet_wrap(~ subtype2, nrow = 2, as.table = FALSE) plot(gg) }) output$fig2 <- renderPlot({ gg <- assembled_graphics_data() %>% filter(!is.na(x_gistic) & !is.na(y)) %>% ggplot(aes(x = x_gistic, y = y)) if (input$mark_mut) { gg <- gg + geom_point(aes(col = x_mutcat, alpha = x_mutcat, shape = x_mutcat), position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + scale_colour_manual(values = colmutcat, na.value = "black") + scale_alpha_manual(values = alphamutcat, na.value = 1) + scale_shape_manual(values = shapemutcat, na.value = 4) + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", putative CNA (GISTIC)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)"), col = input$var_x, alpha = input$var_x, shape = input$var_x) } else { gg <- gg + geom_point(shape = 1, alpha = 0.5, position = position_jitter(h = 0, w = 0.1)) + geom_boxplot(col = "darkred", varwidth = TRUE, fill = "transparent", outlier.colour = "transparent") + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs( x = paste0(input$var_x, ", putative CNA (GISTIC)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } if (input$by_subtype) gg <- gg + facet_wrap(~ subtype2, nrow = 2, as.table = FALSE) plot(gg) }) output$fig3 <- renderPlot({ gg <- assembled_graphics_data() %>% filter(!is.na(x_rna) & !is.na(y)) %>% ggplot(aes(x = x_rna, y = y)) if (input$mark_mut) { gg <- gg + geom_point(aes(col = x_mutcat, alpha = x_mutcat, shape = x_mutcat)) + scale_colour_manual(values = colmutcat, na.value = "black") + scale_alpha_manual(values = alphamutcat, na.value = 1) + scale_shape_manual(values = shapemutcat, na.value = 4) + labs( x = paste0(input$var_x, ", mRNA expression (log2 RNA-seq)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)"), col = input$var_x, alpha = input$var_x, shape = input$var_x) } else { gg <- gg + geom_point(shape = 1, alpha = 0.5) + labs( x = paste0(input$var_x, ", mRNA expression (log2 RNA-seq)"), y = paste0(input$var_y, ", mRNA expression (log2 RNA-seq)")) } if (input$fig3_smooth_method != "(none)") gg <- gg + geom_smooth(col = "darkred", method = input$fig3_smooth_method) if (input$by_subtype) gg <- gg + facet_wrap(~ subtype2, nrow = 2, as.table = FALSE) plot(gg) }) output$tab2 <- renderTable({ graphics_data <- assembled_graphics_data() r_all <- cor( graphics_data$x_rna, graphics_data$y, use = "complete.obs", method = "spearman") r_subtype <- unlist(lapply( split(graphics_data, graphics_data$subtype), function(df) cor(df$x_rna, df$y, use = "complete.obs", method = "spearman"))) tab2 <- data.frame( grp = c("(all)", names(r_subtype)), r = c(r_all, r_subtype)) names(tab2) <- c("Molecular subtype", "r") tab2 }) }
setwd("~/Dropbox/@Next/AI/JH_EDA/HW1") library(readr) household_power_consumption <- read_delim("household_power_consumption.txt", ";", escape_double = FALSE, locale = locale(date_format = "%d/%m/%Y"), na = "NA", trim_ws = TRUE) names(household_power_consumption)<-tolower(names(household_power_consumption)) library(dplyr) hh_subdata<-filter(household_power_consumption, date>="2007-02-01" & date<="2007-02-02") rm (household_power_consumption) hh_subdata$datetime <- as.POSIXct(paste(hh_subdata$date, hh_subdata$time), format="%Y-%m-%d %H:%M:%S") par(mfrow=c(1,1)) plot(hh_subdata$datetime,as.numeric(hh_subdata$sub_metering_1),type="l", col="black",xlab="",ylab="Energy sub metering") lines(hh_subdata$datetime,as.numeric(hh_subdata$sub_metering_2), col="red") lines(hh_subdata$datetime,as.numeric(hh_subdata$sub_metering_3), col="blue") legend("topright",legend=c("Sub_metering_1","Sub_metering_2","Sub_metering_3"),lty=c(1,1,1) ,col=c("black", "red", "blue") ) dev.copy(png,file="plot3.png",width=480,height=480) dev.off()
/plot3.r
no_license
rjcc/ExData_Plotting1_RJCC
R
false
false
1,031
r
setwd("~/Dropbox/@Next/AI/JH_EDA/HW1") library(readr) household_power_consumption <- read_delim("household_power_consumption.txt", ";", escape_double = FALSE, locale = locale(date_format = "%d/%m/%Y"), na = "NA", trim_ws = TRUE) names(household_power_consumption)<-tolower(names(household_power_consumption)) library(dplyr) hh_subdata<-filter(household_power_consumption, date>="2007-02-01" & date<="2007-02-02") rm (household_power_consumption) hh_subdata$datetime <- as.POSIXct(paste(hh_subdata$date, hh_subdata$time), format="%Y-%m-%d %H:%M:%S") par(mfrow=c(1,1)) plot(hh_subdata$datetime,as.numeric(hh_subdata$sub_metering_1),type="l", col="black",xlab="",ylab="Energy sub metering") lines(hh_subdata$datetime,as.numeric(hh_subdata$sub_metering_2), col="red") lines(hh_subdata$datetime,as.numeric(hh_subdata$sub_metering_3), col="blue") legend("topright",legend=c("Sub_metering_1","Sub_metering_2","Sub_metering_3"),lty=c(1,1,1) ,col=c("black", "red", "blue") ) dev.copy(png,file="plot3.png",width=480,height=480) dev.off()
#Monty Hall Problem #Keeping your choice montyhall1<-function(n){ count=0 for (i in 1:n){ #Assigning a car to one door car=sample(3,1) #Selecting your door pick=1 #If your pick matches your car if (pick==car){ count=count+1 } } print(count/n) } #Changing your choice montyhall2<-function(n){ count=0 for (i in 1:n){ car=sample(3,1) pick=sample(3,1) v=c(1:3) monty=v[!v %in% c(car,pick)][1] newpick=v[!v %in% c(pick,monty)] if (newpick==car){ count=count+1 } } print(count/n) } montyhall1(10000) montyhall2(10000)
/University/Monty Hall Problem/montyhallproblem.R
no_license
michaelfilletti/myrepository
R
false
false
561
r
#Monty Hall Problem #Keeping your choice montyhall1<-function(n){ count=0 for (i in 1:n){ #Assigning a car to one door car=sample(3,1) #Selecting your door pick=1 #If your pick matches your car if (pick==car){ count=count+1 } } print(count/n) } #Changing your choice montyhall2<-function(n){ count=0 for (i in 1:n){ car=sample(3,1) pick=sample(3,1) v=c(1:3) monty=v[!v %in% c(car,pick)][1] newpick=v[!v %in% c(pick,monty)] if (newpick==car){ count=count+1 } } print(count/n) } montyhall1(10000) montyhall2(10000)
% Generated by roxygen2 (4.0.1): do not edit by hand \name{chart.RollingCorr} \alias{chart.RollingCorr} \title{\code{chart.RollingCorr}} \usage{ chart.RollingCorr(Ra, Rb, width = 12, xaxis = TRUE, legend.loc = NULL, colorset = (1:12), ylimmin = -1, ylimmax = 1, ..., fill = NA) } \arguments{ \item{Ra}{A univariate xts object of returns.} \item{Rb}{A univariate or multivariate xts object of returns.} \item{width}{Number of periods to compute correlation over.} \item{legend.loc}{places a legend into one of nine locations on the chart: bottomright, bottom, bottomleft, left, topleft, top, topright, right, or center.} \item{xaxis}{If true, draws the x axis} \item{colorset}{Color palette to use, set by default to rational choices} \item{...}{any other passthru parameters} \item{ylimmin}{ylim minimum value} \item{ylimmax}{ylim maximum value} \item{fill}{a three-component vector or list (recycled otherwise) providing filling values at the left/within/to the right of the data range. See the fill argument of na.fill for details.} } \value{ A univariate xts object representing the average of averages. } \description{ chart.RollingCorrelation from PerformanceAnalytics using Spearman method and customized ylim } \examples{ data(data) Ra<-RTL:::data_ret(x=Cl(CL1),returntype=c("relative")) Rb<-RTL:::data_ret(x=(CL2),returntype=c("relative")) chart.RollingCorr<-function (Ra=Ra, Rb=Rb, width = 12, xaxis = TRUE, legend.loc = NULL,colorset = (1:12), ylimmin=-1,ylimmax=1,..., fill = NA) } \author{ Philippe Cote <coteph@mac.com,philippe.cote@scotiabank.com>, Nima Safain <nima.safaian@gmail.com,nima.safaian@scotiabank.com> }
/man/chart.RollingCorr.Rd
no_license
bigdatalib/RTL
R
false
false
1,642
rd
% Generated by roxygen2 (4.0.1): do not edit by hand \name{chart.RollingCorr} \alias{chart.RollingCorr} \title{\code{chart.RollingCorr}} \usage{ chart.RollingCorr(Ra, Rb, width = 12, xaxis = TRUE, legend.loc = NULL, colorset = (1:12), ylimmin = -1, ylimmax = 1, ..., fill = NA) } \arguments{ \item{Ra}{A univariate xts object of returns.} \item{Rb}{A univariate or multivariate xts object of returns.} \item{width}{Number of periods to compute correlation over.} \item{legend.loc}{places a legend into one of nine locations on the chart: bottomright, bottom, bottomleft, left, topleft, top, topright, right, or center.} \item{xaxis}{If true, draws the x axis} \item{colorset}{Color palette to use, set by default to rational choices} \item{...}{any other passthru parameters} \item{ylimmin}{ylim minimum value} \item{ylimmax}{ylim maximum value} \item{fill}{a three-component vector or list (recycled otherwise) providing filling values at the left/within/to the right of the data range. See the fill argument of na.fill for details.} } \value{ A univariate xts object representing the average of averages. } \description{ chart.RollingCorrelation from PerformanceAnalytics using Spearman method and customized ylim } \examples{ data(data) Ra<-RTL:::data_ret(x=Cl(CL1),returntype=c("relative")) Rb<-RTL:::data_ret(x=(CL2),returntype=c("relative")) chart.RollingCorr<-function (Ra=Ra, Rb=Rb, width = 12, xaxis = TRUE, legend.loc = NULL,colorset = (1:12), ylimmin=-1,ylimmax=1,..., fill = NA) } \author{ Philippe Cote <coteph@mac.com,philippe.cote@scotiabank.com>, Nima Safain <nima.safaian@gmail.com,nima.safaian@scotiabank.com> }
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/getIndex.R \name{getIndex} \alias{getIndex} \title{Group experiments.} \usage{ getIndex(reg, ids, by.prob = FALSE, by.algo = FALSE, by.repl = FALSE, by.prob.pars, by.algo.pars, enclos = parent.frame()) } \arguments{ \item{reg}{[\code{\link{ExperimentRegistry}}]\cr Registry.} \item{ids}{[\code{integer}]\cr If not missing, restict grouping to this subset of experiment ids.} \item{by.prob}{[\code{logical}]\cr Group experiments by problem. Default is \code{FALSE}.} \item{by.algo}{[\code{logical}]\cr Group experiments by algorithm. Default is \code{FALSE}.} \item{by.repl}{[\code{logical}]\cr Group experiments by replication. Default is \code{FALSE}.} \item{by.prob.pars}{[R expression]\cr If not missing, group experiments by this R expression. The expression is evaluated in the environment of problem parameters and converted to a factor using \code{as.factor}.} \item{by.algo.pars}{[R expression]\cr If not missing, group experiments by this R expression. The expression is evaluated in the environment of algorithm parameters and converted to a factor using \code{\link{as.factor}}.} \item{enclos}{[\code{environment}]\cr Enclosing frame for evaluation of parameters used by \code{by.prob.pars} and \code{by.algo.pars}, see \code{\link[base]{eval}}. Defaults to the parent frame.} } \value{ [\code{list}]. List of factors. } \description{ Creates a list of \code{\link{factor}} to use in functions like \code{\link{tapply}}, \code{\link{by}} or \code{\link{aggregate}}. } \examples{ # create a registry and add problems and algorithms reg = makeExperimentRegistry("getIndex", file.dir = tempfile("")) addProblem(reg, "prob", static = 1) addAlgorithm(reg, "f0", function(static, dynamic) static) addAlgorithm(reg, "f1", function(static, dynamic, i, k) static * i^k) ad = list(makeDesign("f0"), makeDesign("f1", exhaustive = list(i = 1:5, k = 1:3))) addExperiments(reg, algo.designs = ad) submitJobs(reg) # get grouped job ids ids = getJobIds(reg) by(ids, getIndex(reg, by.prob = TRUE, by.algo = TRUE), identity) ids = findExperiments(reg, algo.pattern = "f1") by(ids, getIndex(reg, ids, by.algo.pars = (k == 1)), identity) # groupwise reduction ids = findExperiments(reg, algo.pattern = "f1") showStatus(reg, ids) f = function(aggr, job, res) aggr + res by(ids, getIndex(reg, ids, by.algo.pars = k), reduceResults, reg = reg, fun = f) by(ids, getIndex(reg, ids, by.algo.pars = i), reduceResults, reg = reg, fun = f) }
/man/getIndex.Rd
no_license
renozao/BatchExperiments
R
false
false
2,522
rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/getIndex.R \name{getIndex} \alias{getIndex} \title{Group experiments.} \usage{ getIndex(reg, ids, by.prob = FALSE, by.algo = FALSE, by.repl = FALSE, by.prob.pars, by.algo.pars, enclos = parent.frame()) } \arguments{ \item{reg}{[\code{\link{ExperimentRegistry}}]\cr Registry.} \item{ids}{[\code{integer}]\cr If not missing, restict grouping to this subset of experiment ids.} \item{by.prob}{[\code{logical}]\cr Group experiments by problem. Default is \code{FALSE}.} \item{by.algo}{[\code{logical}]\cr Group experiments by algorithm. Default is \code{FALSE}.} \item{by.repl}{[\code{logical}]\cr Group experiments by replication. Default is \code{FALSE}.} \item{by.prob.pars}{[R expression]\cr If not missing, group experiments by this R expression. The expression is evaluated in the environment of problem parameters and converted to a factor using \code{as.factor}.} \item{by.algo.pars}{[R expression]\cr If not missing, group experiments by this R expression. The expression is evaluated in the environment of algorithm parameters and converted to a factor using \code{\link{as.factor}}.} \item{enclos}{[\code{environment}]\cr Enclosing frame for evaluation of parameters used by \code{by.prob.pars} and \code{by.algo.pars}, see \code{\link[base]{eval}}. Defaults to the parent frame.} } \value{ [\code{list}]. List of factors. } \description{ Creates a list of \code{\link{factor}} to use in functions like \code{\link{tapply}}, \code{\link{by}} or \code{\link{aggregate}}. } \examples{ # create a registry and add problems and algorithms reg = makeExperimentRegistry("getIndex", file.dir = tempfile("")) addProblem(reg, "prob", static = 1) addAlgorithm(reg, "f0", function(static, dynamic) static) addAlgorithm(reg, "f1", function(static, dynamic, i, k) static * i^k) ad = list(makeDesign("f0"), makeDesign("f1", exhaustive = list(i = 1:5, k = 1:3))) addExperiments(reg, algo.designs = ad) submitJobs(reg) # get grouped job ids ids = getJobIds(reg) by(ids, getIndex(reg, by.prob = TRUE, by.algo = TRUE), identity) ids = findExperiments(reg, algo.pattern = "f1") by(ids, getIndex(reg, ids, by.algo.pars = (k == 1)), identity) # groupwise reduction ids = findExperiments(reg, algo.pattern = "f1") showStatus(reg, ids) f = function(aggr, job, res) aggr + res by(ids, getIndex(reg, ids, by.algo.pars = k), reduceResults, reg = reg, fun = f) by(ids, getIndex(reg, ids, by.algo.pars = i), reduceResults, reg = reg, fun = f) }
# Adobe Experience Manager OSGI config (AEM) API # # Swagger AEM OSGI is an OpenAPI specification for Adobe Experience Manager (AEM) OSGI Configurations API # # OpenAPI spec version: 1.0.0-pre.0 # Contact: opensource@shinesolutions.com # Generated by: https://openapi-generator.tech #' ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfo Class #' #' @field pid #' @field title #' @field description #' @field properties #' @field bundle_location #' @field service_location #' #' @importFrom R6 R6Class #' @importFrom jsonlite fromJSON toJSON #' @export ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfo <- R6::R6Class( 'ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfo', public = list( `pid` = NULL, `title` = NULL, `description` = NULL, `properties` = NULL, `bundle_location` = NULL, `service_location` = NULL, initialize = function(`pid`, `title`, `description`, `properties`, `bundle_location`, `service_location`){ if (!missing(`pid`)) { stopifnot(is.character(`pid`), length(`pid`) == 1) self$`pid` <- `pid` } if (!missing(`title`)) { stopifnot(is.character(`title`), length(`title`) == 1) self$`title` <- `title` } if (!missing(`description`)) { stopifnot(is.character(`description`), length(`description`) == 1) self$`description` <- `description` } if (!missing(`properties`)) { stopifnot(R6::is.R6(`properties`)) self$`properties` <- `properties` } if (!missing(`bundle_location`)) { stopifnot(is.character(`bundle_location`), length(`bundle_location`) == 1) self$`bundle_location` <- `bundle_location` } if (!missing(`service_location`)) { stopifnot(is.character(`service_location`), length(`service_location`) == 1) self$`service_location` <- `service_location` } }, toJSON = function() { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject <- list() if (!is.null(self$`pid`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['pid']] <- self$`pid` } if (!is.null(self$`title`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['title']] <- self$`title` } if (!is.null(self$`description`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['description']] <- self$`description` } if (!is.null(self$`properties`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['properties']] <- self$`properties`$toJSON() } if (!is.null(self$`bundle_location`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['bundle_location']] <- self$`bundle_location` } if (!is.null(self$`service_location`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['service_location']] <- self$`service_location` } ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject }, fromJSON = function(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject <- jsonlite::fromJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`pid`)) { self$`pid` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`pid` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`title`)) { self$`title` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`title` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`description`)) { self$`description` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`description` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`properties`)) { propertiesObject <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterProperties$new() propertiesObject$fromJSON(jsonlite::toJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$properties, auto_unbox = TRUE)) self$`properties` <- propertiesObject } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`bundle_location`)) { self$`bundle_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`bundle_location` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`service_location`)) { self$`service_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`service_location` } }, toJSONString = function() { sprintf( '{ "pid": %s, "title": %s, "description": %s, "properties": %s, "bundle_location": %s, "service_location": %s }', self$`pid`, self$`title`, self$`description`, self$`properties`$toJSON(), self$`bundle_location`, self$`service_location` ) }, fromJSONString = function(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject <- jsonlite::fromJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) self$`pid` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`pid` self$`title` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`title` self$`description` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`description` ComDayCqWcmMobileCoreImplRedirectRedirectFilterPropertiesObject <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterProperties$new() self$`properties` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterPropertiesObject$fromJSON(jsonlite::toJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$properties, auto_unbox = TRUE)) self$`bundle_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`bundle_location` self$`service_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`service_location` } ) )
/clients/r/generated/R/ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfo.r
permissive
shinesolutions/swagger-aem-osgi
R
false
false
6,119
r
# Adobe Experience Manager OSGI config (AEM) API # # Swagger AEM OSGI is an OpenAPI specification for Adobe Experience Manager (AEM) OSGI Configurations API # # OpenAPI spec version: 1.0.0-pre.0 # Contact: opensource@shinesolutions.com # Generated by: https://openapi-generator.tech #' ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfo Class #' #' @field pid #' @field title #' @field description #' @field properties #' @field bundle_location #' @field service_location #' #' @importFrom R6 R6Class #' @importFrom jsonlite fromJSON toJSON #' @export ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfo <- R6::R6Class( 'ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfo', public = list( `pid` = NULL, `title` = NULL, `description` = NULL, `properties` = NULL, `bundle_location` = NULL, `service_location` = NULL, initialize = function(`pid`, `title`, `description`, `properties`, `bundle_location`, `service_location`){ if (!missing(`pid`)) { stopifnot(is.character(`pid`), length(`pid`) == 1) self$`pid` <- `pid` } if (!missing(`title`)) { stopifnot(is.character(`title`), length(`title`) == 1) self$`title` <- `title` } if (!missing(`description`)) { stopifnot(is.character(`description`), length(`description`) == 1) self$`description` <- `description` } if (!missing(`properties`)) { stopifnot(R6::is.R6(`properties`)) self$`properties` <- `properties` } if (!missing(`bundle_location`)) { stopifnot(is.character(`bundle_location`), length(`bundle_location`) == 1) self$`bundle_location` <- `bundle_location` } if (!missing(`service_location`)) { stopifnot(is.character(`service_location`), length(`service_location`) == 1) self$`service_location` <- `service_location` } }, toJSON = function() { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject <- list() if (!is.null(self$`pid`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['pid']] <- self$`pid` } if (!is.null(self$`title`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['title']] <- self$`title` } if (!is.null(self$`description`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['description']] <- self$`description` } if (!is.null(self$`properties`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['properties']] <- self$`properties`$toJSON() } if (!is.null(self$`bundle_location`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['bundle_location']] <- self$`bundle_location` } if (!is.null(self$`service_location`)) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject[['service_location']] <- self$`service_location` } ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject }, fromJSON = function(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject <- jsonlite::fromJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`pid`)) { self$`pid` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`pid` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`title`)) { self$`title` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`title` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`description`)) { self$`description` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`description` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`properties`)) { propertiesObject <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterProperties$new() propertiesObject$fromJSON(jsonlite::toJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$properties, auto_unbox = TRUE)) self$`properties` <- propertiesObject } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`bundle_location`)) { self$`bundle_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`bundle_location` } if (!is.null(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`service_location`)) { self$`service_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`service_location` } }, toJSONString = function() { sprintf( '{ "pid": %s, "title": %s, "description": %s, "properties": %s, "bundle_location": %s, "service_location": %s }', self$`pid`, self$`title`, self$`description`, self$`properties`$toJSON(), self$`bundle_location`, self$`service_location` ) }, fromJSONString = function(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) { ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject <- jsonlite::fromJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoJson) self$`pid` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`pid` self$`title` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`title` self$`description` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`description` ComDayCqWcmMobileCoreImplRedirectRedirectFilterPropertiesObject <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterProperties$new() self$`properties` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterPropertiesObject$fromJSON(jsonlite::toJSON(ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$properties, auto_unbox = TRUE)) self$`bundle_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`bundle_location` self$`service_location` <- ComDayCqWcmMobileCoreImplRedirectRedirectFilterInfoObject$`service_location` } ) )
library(geosphere) lon1 = -97.040443 lat1 = 32.897480 lon2 = -97.0150 lat2 = 32.9546 distm(c(lon1, lat1), c(lon2, lat2), fun = distHaversine) * 0.000621371
/usefulFunctions/distance.between.locations.r
no_license
gsdavis1959/R_examples
R
false
false
159
r
library(geosphere) lon1 = -97.040443 lat1 = 32.897480 lon2 = -97.0150 lat2 = 32.9546 distm(c(lon1, lat1), c(lon2, lat2), fun = distHaversine) * 0.000621371
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/convert.r \name{create.capt} \alias{create.capt} \title{Creating capture history object.} \usage{ create.capt(captures, n.traps = NULL) } \arguments{ \item{captures}{A data frame of capture records, see 'Details' for the correct format.} \item{n.traps}{The total number of traps. If \code{NULL} then the number of traps is assumed to be the largest value in the \code{traps} column of the \code{captures} argument.} } \description{ Creates a capture history object to use with the function \code{\link{fit.ascr}}. } \details{ The \code{captures} argument to this function is intended to be of a similar format to the \code{captures} argument to \link{make.capthist} in the \link{secr} package. That is, users can use the same \code{captures} data frame with \code{create.capt} and \code{make.capthist}, which generate capture histories for use with the \code{ascr} and \link{secr} packages respectively. As such, the second and fourth columns should provide the ID of the detection and the trap number of the trap which made the detection (where the trap number is the row number of the corresponding trap in the matrix of trap locations). Note that the first and third columns provide the 'session' and 'occassion' of the detection for \link{make.capthist}, but as the ascr package does not presently have the capabilities to deal with multi-session or multi-occassion data, these columns are ignored by \code{create.capt}. Additional optional columns can specify the additional information collected over the course of the survey: \itemize{ \item A column named \code{bearing} containing estimated bearings from which the detector detected the individual. \item A column named \code{dist} containing the estimated distance between the individual detected and the detector. \item A column named \code{ss} containing the measured signal strengh of the detected acoustic signal (only possible when detectors are microphones). \item A column named \code{toa} containing the measured time of arrival (in seconds) since the start of the survey (or some other reference time) of the detected acoustic signal (only possible when the detectors are microphones). \item A column named \code{mrds} containing the \emph{known} (not estimated) distance between the individual detected and the detector. } }
/man/create.capt.Rd
no_license
cmjt/ascr
R
false
true
2,458
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/convert.r \name{create.capt} \alias{create.capt} \title{Creating capture history object.} \usage{ create.capt(captures, n.traps = NULL) } \arguments{ \item{captures}{A data frame of capture records, see 'Details' for the correct format.} \item{n.traps}{The total number of traps. If \code{NULL} then the number of traps is assumed to be the largest value in the \code{traps} column of the \code{captures} argument.} } \description{ Creates a capture history object to use with the function \code{\link{fit.ascr}}. } \details{ The \code{captures} argument to this function is intended to be of a similar format to the \code{captures} argument to \link{make.capthist} in the \link{secr} package. That is, users can use the same \code{captures} data frame with \code{create.capt} and \code{make.capthist}, which generate capture histories for use with the \code{ascr} and \link{secr} packages respectively. As such, the second and fourth columns should provide the ID of the detection and the trap number of the trap which made the detection (where the trap number is the row number of the corresponding trap in the matrix of trap locations). Note that the first and third columns provide the 'session' and 'occassion' of the detection for \link{make.capthist}, but as the ascr package does not presently have the capabilities to deal with multi-session or multi-occassion data, these columns are ignored by \code{create.capt}. Additional optional columns can specify the additional information collected over the course of the survey: \itemize{ \item A column named \code{bearing} containing estimated bearings from which the detector detected the individual. \item A column named \code{dist} containing the estimated distance between the individual detected and the detector. \item A column named \code{ss} containing the measured signal strengh of the detected acoustic signal (only possible when detectors are microphones). \item A column named \code{toa} containing the measured time of arrival (in seconds) since the start of the survey (or some other reference time) of the detected acoustic signal (only possible when the detectors are microphones). \item A column named \code{mrds} containing the \emph{known} (not estimated) distance between the individual detected and the detector. } }
##MDML Final Project ##Shannon Kay, Jaejin Kim, & Jessica Spencer ##December 13, 2019 ##Preprocess Chicago Restaurant Data ##Load required packages and data library(tidyverse) chicago <- read_csv("../Food_Inspections.csv") #1. Drop unnecessary columns and rename variables chicago <- chicago %>% select(-`DBA Name`, -Latitude, -Longitude, -Location, -Risk, -Address, -State) %>% rename(Name = `AKA Name`, Restaurant_ID = `License #`, Inspection_Type = `Inspection Type`, Inspection_ID = `Inspection ID`, Zip_code = Zip) #2. Drop rows with 'results' that are not relevant, filter 'facility type' and 'inspection type' to only have relevant types, create Date, Year, Month and Weekday, and filter to relevant years chicago <- chicago %>% filter(!Results %in% c("Out of Business", "Not Ready"))%>% mutate(Facility_Type = tolower(`Facility Type`), Inspection_Type = tolower(Inspection_Type))%>% select(-`Facility Type`) %>% filter(Facility_Type %in% c("bakery", "cafe", "restaurant", "tavern", "deli", "ice cream", "paleteria"), Inspection_Type %in% c("canvass", "complaint", "license", "suspected food poisoning")) %>% mutate(Date = lubridate::mdy(`Inspection Date`), Year = lubridate::year(Date), Month = lubridate::month(Date), Weekday = weekdays(Date)) %>% filter(Year %in% c(2015, 2016, 2017)) %>% select(-`Inspection Date`) #3. calculate # of violations per inspection for each restaurant ##grouping by Inspection ID because restaurants with the same name may have multiple locations ##Also documenting the presence of violations #1-14, which are identified as critical violations in the Chicago data dictionary chicago <- chicago %>% separate_rows(Violations, sep = "\\|") %>% group_by(Inspection_ID) %>% mutate(Number_Violations = n(), violation_num = as.numeric(substr(Violations,1,3)), flag = ifelse(violation_num < 15, 1, 0), critical_flag = sum(flag)) %>% select(Inspection_ID, Name, Restaurant_ID, City, Zip_code, Date, Year, Month, Weekday, Inspection_Type, Results, Facility_Type, Number_Violations, critical_flag) %>% unique() #4. Change critical flag from the sum of critical violations to an indicator variable chicago <- chicago %>% group_by(Inspection_ID) %>% mutate(critical_flag = ifelse(critical_flag > 0, 1,0)) %>% ungroup() #5. NA's didn't get changed to 0's to changed them separately chicago$critical_flag <- ifelse(is.na(chicago$critical_flag), 0, chicago$critical_flag) #6. Create outcome variable- fail is 1 chicago$outcome <- ifelse(chicago$Results %in% "Pass", 0, 1) #7. Standardize dataset chicago <- chicago %>% select(Restaurant_ID, Name, City, Zip_code, Date, Year, Month, Weekday, Inspection_Type, Number_Violations, critical_flag, outcome) #8. write final data to csv write_csv(chicago, path = "data/pre-processed_chicago_final.csv")
/Code/preprocess_chicago.R
no_license
Jaejin-Kim/Restaurant_Inspection_Forecasting
R
false
false
3,243
r
##MDML Final Project ##Shannon Kay, Jaejin Kim, & Jessica Spencer ##December 13, 2019 ##Preprocess Chicago Restaurant Data ##Load required packages and data library(tidyverse) chicago <- read_csv("../Food_Inspections.csv") #1. Drop unnecessary columns and rename variables chicago <- chicago %>% select(-`DBA Name`, -Latitude, -Longitude, -Location, -Risk, -Address, -State) %>% rename(Name = `AKA Name`, Restaurant_ID = `License #`, Inspection_Type = `Inspection Type`, Inspection_ID = `Inspection ID`, Zip_code = Zip) #2. Drop rows with 'results' that are not relevant, filter 'facility type' and 'inspection type' to only have relevant types, create Date, Year, Month and Weekday, and filter to relevant years chicago <- chicago %>% filter(!Results %in% c("Out of Business", "Not Ready"))%>% mutate(Facility_Type = tolower(`Facility Type`), Inspection_Type = tolower(Inspection_Type))%>% select(-`Facility Type`) %>% filter(Facility_Type %in% c("bakery", "cafe", "restaurant", "tavern", "deli", "ice cream", "paleteria"), Inspection_Type %in% c("canvass", "complaint", "license", "suspected food poisoning")) %>% mutate(Date = lubridate::mdy(`Inspection Date`), Year = lubridate::year(Date), Month = lubridate::month(Date), Weekday = weekdays(Date)) %>% filter(Year %in% c(2015, 2016, 2017)) %>% select(-`Inspection Date`) #3. calculate # of violations per inspection for each restaurant ##grouping by Inspection ID because restaurants with the same name may have multiple locations ##Also documenting the presence of violations #1-14, which are identified as critical violations in the Chicago data dictionary chicago <- chicago %>% separate_rows(Violations, sep = "\\|") %>% group_by(Inspection_ID) %>% mutate(Number_Violations = n(), violation_num = as.numeric(substr(Violations,1,3)), flag = ifelse(violation_num < 15, 1, 0), critical_flag = sum(flag)) %>% select(Inspection_ID, Name, Restaurant_ID, City, Zip_code, Date, Year, Month, Weekday, Inspection_Type, Results, Facility_Type, Number_Violations, critical_flag) %>% unique() #4. Change critical flag from the sum of critical violations to an indicator variable chicago <- chicago %>% group_by(Inspection_ID) %>% mutate(critical_flag = ifelse(critical_flag > 0, 1,0)) %>% ungroup() #5. NA's didn't get changed to 0's to changed them separately chicago$critical_flag <- ifelse(is.na(chicago$critical_flag), 0, chicago$critical_flag) #6. Create outcome variable- fail is 1 chicago$outcome <- ifelse(chicago$Results %in% "Pass", 0, 1) #7. Standardize dataset chicago <- chicago %>% select(Restaurant_ID, Name, City, Zip_code, Date, Year, Month, Weekday, Inspection_Type, Number_Violations, critical_flag, outcome) #8. write final data to csv write_csv(chicago, path = "data/pre-processed_chicago_final.csv")
library(shiny) # library(ggplot2) # for the diamonds dataset shinyUI(fluidPage( title = 'Examples of DataTables', titlePanel("The Paradox for Accuracy and Kappa Statistic"), sidebarLayout( sidebarPanel( conditionalPanel( 'input.dataset === "Paradox"', helpText('To see a demonstration, click the "Demo" tab.') ), conditionalPanel( 'input.dataset === "Demo"', helpText('Set the values of several parameters:'), sliderInput("prevalence", "Prevalence (%):", min = 0, max = 100, value = 70, step = 1), br(), sliderInput("sensitivity", "Sensitivity (%):", min = 0, max = 100, value = 50, step = 1), br(), sliderInput("specificity", "Specificity (%):", min = 0, max = 100, value = 50, step = 1), br() ) # end of conditional panel ), # end of sidebarPanel mainPanel( tabsetPanel( id = 'dataset', tabPanel('Paradox', h5('Introduction:'), p('The result of a classification problem in machine learning can be represented by a confusion matrix. A confusion matrix is a fourfold table showing the binary agreement between the classifier and the true data labels (also known as the "gold standard"). As an example, the following table shows a confusion matrix, where columns indicate the true outcomes from the gold standard and rows indicate the classification results from a machine learning algorithm.'), tableOutput("myConfMatrixDemo"), p('One typical performance measure to assess a classifier is the accuracy, which calculates the proportion of the concordant results among all records. Mathematically, it can be formulated as:'), p('P_obs = (TP + TN)/population'), # h3(withMathJax('$$\\text{P}_{\\text{obs}} = \\frac{\\text{TP + TN}} # {\\text{Total Population}}.$$')), p('Usually, a high accuracy indicates a high concordance between the classifier and the truth. However, in certain cases a high accuracy may due to the fact that the classifier agrees with the truth just by chance. To adjust this, in some research areas, particularly in medical field on diagnosis, researchers use kappa statistic to report the model performance. The advantage of the kappa statistic is that it corrects the amount of agreement that can be expected to occur by chance. To calculate the kappa statistic, we first computes the expected agreement by chance:'), p('P_exp = (TP + FN) * (TP + FP)/population^2 + (FN + TN) * (FP + TN)/population^2'), # h3(withMathJax('$$\\text{P}_{\\text{exp}} = \\frac{\\text{TP + FN}} # {\\text{Total Population}} * \\frac{\\text{TP + FP}} # {\\text{Total Population}} + \\frac{\\text{FN + TN}} # {\\text{Total Population}} * \\frac{\\text{FP + TN}} # {\\text{Total Population}}.$$')), p('Then, the kappa statistic is defined by'), p('kappa = (p_obs - p_exp)/(1 - p_exp)'), # h3(withMathJax('$$\\kappa = \\frac{\\text{P}_{\\text{obs}} - \\text{P}_{\\text{exp}}} # {1 - \\text{P}_{\\text{exp}}}.$$')), p('Kappa statistic takes value between -1 and 1, where a kappa of 0 indicates agreement equivalent to chance, kappa gets close to 1 indicates strong agreement and close to -1 indicates strong disagreement. Since kappa statistic is a correction term for accuracy, a first reaction is that kappa and accuracy should have similar trend on each data. However, in many real cases we find that high accuracy can sometimes associate with kappa statistic close to 0. This phenomenon is more often to happen when the dataset has a strong disproportinate prevalence (i.e., the original data has very low percentage of positive cases, or vice versa). In general, for a data with significantly disproportionate prevalence, a low kappa value may not necessarily reflect low rates of overall agreement.') ), # end of tabPanel tabPanel('Demo', h5('Instruction:'), p('This demonstration shows how accuracy and kappa statistic look like with data in different distributions. Without loss of generality, we set the data size to be 10,000. There are three tuning parameters in this demonstration - prevalence, sensitivity, and specificity. Prevalence is the true percent of positve (yes) cases. Sensitivity is the percent of correctly identified records among all positive (yes) cases. Specificity is the percent of correctly identified records among all negative (no) cases. One can customize these parameters to illustrate outcomes in different scenarios.'), br(), p('First, one could choose a relatively balanced prevalence with high sensitivity and specificity. Then gradually reduce the value prevalence and check its impact on kappa statistic and accuracy.'), br(), h5('Results:'), p('The confusion matrix is (Column = the truth, or gold standard, Row = outcomes by the classifier):'), tableOutput("myConfMatrix"), br(), p('The kappa statistic for the confusion matrix is:'), textOutput("myKappa"), br(), p('The accuracy for the confusion matrix is:'), textOutput("myAccuracy") ) # end of tabPanel ) # end of tabsetPanel ) # end of mainPanel ) # end of sidebarLayout ) # end of fluidPage ) # end of shinyUI
/ui.r
no_license
firefreezing/developing-data-products
R
false
false
7,347
r
library(shiny) # library(ggplot2) # for the diamonds dataset shinyUI(fluidPage( title = 'Examples of DataTables', titlePanel("The Paradox for Accuracy and Kappa Statistic"), sidebarLayout( sidebarPanel( conditionalPanel( 'input.dataset === "Paradox"', helpText('To see a demonstration, click the "Demo" tab.') ), conditionalPanel( 'input.dataset === "Demo"', helpText('Set the values of several parameters:'), sliderInput("prevalence", "Prevalence (%):", min = 0, max = 100, value = 70, step = 1), br(), sliderInput("sensitivity", "Sensitivity (%):", min = 0, max = 100, value = 50, step = 1), br(), sliderInput("specificity", "Specificity (%):", min = 0, max = 100, value = 50, step = 1), br() ) # end of conditional panel ), # end of sidebarPanel mainPanel( tabsetPanel( id = 'dataset', tabPanel('Paradox', h5('Introduction:'), p('The result of a classification problem in machine learning can be represented by a confusion matrix. A confusion matrix is a fourfold table showing the binary agreement between the classifier and the true data labels (also known as the "gold standard"). As an example, the following table shows a confusion matrix, where columns indicate the true outcomes from the gold standard and rows indicate the classification results from a machine learning algorithm.'), tableOutput("myConfMatrixDemo"), p('One typical performance measure to assess a classifier is the accuracy, which calculates the proportion of the concordant results among all records. Mathematically, it can be formulated as:'), p('P_obs = (TP + TN)/population'), # h3(withMathJax('$$\\text{P}_{\\text{obs}} = \\frac{\\text{TP + TN}} # {\\text{Total Population}}.$$')), p('Usually, a high accuracy indicates a high concordance between the classifier and the truth. However, in certain cases a high accuracy may due to the fact that the classifier agrees with the truth just by chance. To adjust this, in some research areas, particularly in medical field on diagnosis, researchers use kappa statistic to report the model performance. The advantage of the kappa statistic is that it corrects the amount of agreement that can be expected to occur by chance. To calculate the kappa statistic, we first computes the expected agreement by chance:'), p('P_exp = (TP + FN) * (TP + FP)/population^2 + (FN + TN) * (FP + TN)/population^2'), # h3(withMathJax('$$\\text{P}_{\\text{exp}} = \\frac{\\text{TP + FN}} # {\\text{Total Population}} * \\frac{\\text{TP + FP}} # {\\text{Total Population}} + \\frac{\\text{FN + TN}} # {\\text{Total Population}} * \\frac{\\text{FP + TN}} # {\\text{Total Population}}.$$')), p('Then, the kappa statistic is defined by'), p('kappa = (p_obs - p_exp)/(1 - p_exp)'), # h3(withMathJax('$$\\kappa = \\frac{\\text{P}_{\\text{obs}} - \\text{P}_{\\text{exp}}} # {1 - \\text{P}_{\\text{exp}}}.$$')), p('Kappa statistic takes value between -1 and 1, where a kappa of 0 indicates agreement equivalent to chance, kappa gets close to 1 indicates strong agreement and close to -1 indicates strong disagreement. Since kappa statistic is a correction term for accuracy, a first reaction is that kappa and accuracy should have similar trend on each data. However, in many real cases we find that high accuracy can sometimes associate with kappa statistic close to 0. This phenomenon is more often to happen when the dataset has a strong disproportinate prevalence (i.e., the original data has very low percentage of positive cases, or vice versa). In general, for a data with significantly disproportionate prevalence, a low kappa value may not necessarily reflect low rates of overall agreement.') ), # end of tabPanel tabPanel('Demo', h5('Instruction:'), p('This demonstration shows how accuracy and kappa statistic look like with data in different distributions. Without loss of generality, we set the data size to be 10,000. There are three tuning parameters in this demonstration - prevalence, sensitivity, and specificity. Prevalence is the true percent of positve (yes) cases. Sensitivity is the percent of correctly identified records among all positive (yes) cases. Specificity is the percent of correctly identified records among all negative (no) cases. One can customize these parameters to illustrate outcomes in different scenarios.'), br(), p('First, one could choose a relatively balanced prevalence with high sensitivity and specificity. Then gradually reduce the value prevalence and check its impact on kappa statistic and accuracy.'), br(), h5('Results:'), p('The confusion matrix is (Column = the truth, or gold standard, Row = outcomes by the classifier):'), tableOutput("myConfMatrix"), br(), p('The kappa statistic for the confusion matrix is:'), textOutput("myKappa"), br(), p('The accuracy for the confusion matrix is:'), textOutput("myAccuracy") ) # end of tabPanel ) # end of tabsetPanel ) # end of mainPanel ) # end of sidebarLayout ) # end of fluidPage ) # end of shinyUI
# increase console log limit options(max.print=1000000) rm(list = ls()) library(broom) library(dplyr) library(foreach) library(car) library(Hmisc) library(survey) library(mfx) library(margins) library(hash) # library(stargazer) library(testthat) library(crayon) library(readxl) library(jsonlite) # library("xlsx") No need anymore xls and xlsx have hard limit on max umber of chars in a cell... # Run R.version and if you see x86_64 you need to install Java 64 bit # https://java.com/en/download/manual.jsp `%notin%` <- Negate(`%in%`) current_dir_path = dirname(rstudioapi::getActiveDocumentContext()$path) setwd(current_dir_path) source('EWAS_analysis_base_functions.R') ###################################################################### ########### Settings 1 ############ ###################################################################### # This will load all independent variables from Patel's dataset source('EWAS_analysis_Patel_variables.R') only_work_on_selected_vars <- TRUE # Select on which nutrient panel the analysis work on nut_panel = c('12', '58')[2] dir_reg_analysis <- c( paste0('caloric_intake_PSJ1', '_', nut_panel, '_nuts'), paste0('caloric_intake_PSJ1', '_', nut_panel, '_nuts_temp'), paste0('caloric_intake_PSJ1', '_', nut_panel, '_nuts_y234') # )[1] cat('Path to reg analysis:', bold(dir_reg_analysis), '\n') survey_year <- 'all' #### +-+-+-+- IMPORTAN If set to 1 it WILL NOT RUN regressions generate_desciptive_statistics <- 0 debug_run <- TRUE # log <- TRUE # survey_year_code <- 4 # var <- 'LBXV1A' # Patel marked this is binary. var_desc: Blood 1,1-Dichloroethane (ng/mL) # var <- 'LBXGLU' # 'PHAFSTHR' # is_binary_or_categorical_var(var, df, survey_year_code, TRUE) ########################################## # Select Diet Data Here ########################################## # path_diet_data = paste0('all_diet_data_1999_2006_',nut_panel,'_nuts_Processing index J1.csv') # path_diet_data = paste0('all_diet_data_1999_2006_',nut_panel,'_nuts_single_and_ensemble_FPro.csv') # path_diet_data <- 'all_diet_data_1999_2006_58_nuts_ens_FPS.csv' path_diet_data <- 'input_data/all_diet_data_1999_2006_58_nuts_single_and_ensemble_FPro.csv' # path_diet_data <- 'all_diet_data_1999_2018_58_nuts_single_and_ensemble_FPro.csv' # path_diet_data <- 'all_diet_data_1999_2006_58_nuts_single_and_ensemble_FPro__FNDDS9906_C2009.csv' nhanesCCNR <- read.csv(path_diet_data) # table(nhanesCCNR$metabolic.syndrome.examination.and.drug, exclude = NULL) cat(bold('Diet Data File Name: ', current_dir_path, '/', path_diet_data, sep=''), '\n') load('input_data/nh_99-06.Rdata') # we added custom vars like t2d so read it from here VarDescription <- read_excel('input_data/EWAS_VarDescription.xlsx') VarDescription <- VarDescription %>% mutate_if(is.character, list(~na_if(.,"NA"))) if (FALSE){ # WHYYYYYYYYYYYYY THESE TWO ARE NOT EQUAL!!!!!!!!!!! VarDescription[(VarDescription$var == 'LBXV1A') & (VarDescription$series_num == 3), ] VarDescription[(VarDescription$var == 'LBXV1A') && (VarDescription$series_num == 3), ] # RETURN EMPTY!!!! } if (only_work_on_selected_vars == TRUE){ selected_vars_CCNR <- read_excel("input_data/EWAS_exposome_CCNR_selection_modules.xlsx") selected_vars_CCNR <- selected_vars_CCNR %>% dplyr::filter(CCNR_selected == 1) resp_vars_to_work_on <- unique(c( response_vars$custom_variables_by_CCNR, selected_vars_CCNR$var )) } else{ # Run regressions on all variable (both custom CCNR and Patel) resp_vars_to_work_on <- unique(VarDescription$var) } total_independend_vars <- length(resp_vars_to_work_on) MainTable <- merge(x = MainTable, y = nhanesCCNR[ , c( "SEQN", 'num_unique_dishes', 'metabolic.syndrome.only.examination', 'metabolic.syndrome.examination.and.drug', 'LBXACR_lab_detectable', 'LBXGLY_lab_detectable', # 'framingham_risk_10_years', THIS IS THE PYTHON BUT THE R VERSION IS MORE RELIABLE 'ascvd_10y_accaha_lab', 'ascvd_10y_frs_lab', 'ascvd_10y_frs_simple_lab', "Total.calories.consumed.mean.both.days", "HEI2015_TOTAL_SCORE", "FPro.RW.WFDPI.mean.of.both.days.sum", "FPro.WFDPI.mean.of.both.days.sum", "FPro.WCDPI.mean.of.both.days.sum", "ens_FPro.WFDPI.mean.of.both.days.sum", "ens_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_FPro.WCDPI.mean.of.both.days.sum", "ens_min_FPro.WFDPI.mean.of.both.days.sum", "ens_min_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_min_FPro.WCDPI.mean.of.both.days.sum", # "predNOVA4.consumption.kcal.percentage.over.sum.both.days", # "predNOVA4.consumption.RW.grams.percentage.over.sum.both.days", # "predNOVA4.consumption.grams.percentage.over.sum.both.days" "manualNOVA4.consumption.kcal.percentage.over.sum.both.days" )], by = "SEQN") nrow(MainTable) #################################################################### # Custom vars by CCNR #################################################################### MainTable$t2d <- I(MainTable$LBXGLU >= 126) MainTable$metabolic_syndrome_examination <- MainTable$metabolic.syndrome.only.examination MainTable$metabolic_syndrome <- MainTable$metabolic.syndrome.examination.and.drug # keep age in its current form because it will be normalized MainTable$age <- MainTable$RIDAGEYR if (survey_year == 'all') { ###### ## Create sample weights for 8 years based on ## https://wwwn.cdc.gov/nchs/nhanes/tutorials/module3.aspx #### MainTable[MainTable$SDDSRVYR == 1, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 1, 'WTMEC4YR'] * (2 / 4) MainTable[MainTable$SDDSRVYR == 2, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 2, 'WTMEC4YR'] * (2 / 4) MainTable[MainTable$SDDSRVYR == 3, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 3, 'WTMEC2YR'] * (1 / 4) MainTable[MainTable$SDDSRVYR == 4, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 4, 'WTMEC2YR'] * (1 / 4) #dat <- subset(MainTable2, SDDSRVYR < 5 & age >= 18) cat(bold('Number of rows with weight=0 that will be removed:'), nrow(MainTable[MainTable$WTMEC8YR == 0, ]), '\n') nhanesDesign <- svydesign(id = ~SDMVPSU, strata = ~SDMVSTRA, weights = ~WTMEC8YR, # Use 8 year weights nest =T, data = MainTable ) # nrow(nhanesDesign) # svymean(~age, nhanesDesign, ci=FALSE) #svyby(~age, ~age > 0, design=nhanesDesign, FUN=svymean, ci=TRUE) sink(paste0("output_console/", dir_reg_analysis, "/R_svydesign_FULL_nhanes.txt")) # Store summary of svydesign print(summary(nhanesDesign)) sink() # returns output to the console #### Backup raw ALL DATA if (debug_run == TRUE) { path_tmp <- paste0('output_console/', dir_reg_analysis, '/nhanesDesign_RAW_ALL_dataset_', dir_reg_analysis, '_cohort_', survey_year, '.csv') write.csv(nhanesDesign$variables, path_tmp) cat('Saved RAW ALL Data at: ', bold(path_tmp), '\n') } #### ##################### # CORRECT WAY TO SUBSET survey data is # https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/book/12-usingNHANESweights.html # https://r-survey.r-forge.r-project.org/survey/html/subset.survey.design.html ##################### ageDesign <- subset(nhanesDesign, age >= 18 & WTMEC8YR > 0 & ens_FPro.WFDPI.mean.of.both.days.sum > 0 ) nrow(ageDesign$variables) svymean(~age, ageDesign, ci=TRUE) sink(paste0("output_console/", dir_reg_analysis, "/R_svydesign_ageDesign_nhanes.txt")) # Store summary of svydesign print(summary(ageDesign)) sink() # returns output to the console } ###################################################################### ######### End Settings 1 ########## ###################################################################### #DEL EM if (FALSE){ svyhist(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, nhanesDesign) svymean(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, nhanesDesign, na.rm=TRUE) svyhist(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, nhanesDesign) svyhist(~logit_trans(manualNOVA4.consumption.kcal.percentage.over.sum.both.days), nhanesDesign) svyhist(~ens_FPro.WCDPI.mean.of.both.days.sum, nhanesDesign) svyhist(~logit_trans(ens_FPro.WCDPI.mean.of.both.days.sum), nhanesDesign) box_cox_out = boxcox_trans_return_lambda( ageDesign$variables, 'ens_FPro.RW.WFDPI.mean.of.both.days.sum' ) ageDesign$variables$ens_FPro.RW.WFDPI.mean.of.both.days.sum.boxcox = box_cox_out$out print(paste('lambda for ens_FPro.RW.WFDPI.mean.of.both.days.sum', box_cox_out$lambda)) svyhist(~ens_FPro.RW.WFDPI.mean.of.both.days.sum, ageDesign) svyhist(~ens_FPro.RW.WFDPI.mean.of.both.days.sum.boxcox, ageDesign) svyhist(~logit_trans(ens_FPro.RW.WFDPI.mean.of.both.days.sum), ageDesign) svyhist(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, ageDesign) svymean(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, ageDesign, na.rm=TRUE) } ###################################################################### ########### Settings 2 ############ ###################################################################### covar <- c( 'FPro.WFDPI.mean.of.both.days.sum', # Diet Processing Score Gram Weighted 'FPro.RW.WFDPI.mean.of.both.days.sum', # Removed Water - Diet Processing Score Gram Weighted 'FPro.WCDPI.mean.of.both.days.sum', # Diet Processing Score Calorie Weighted "ens_FPro.WFDPI.mean.of.both.days.sum", "ens_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_FPro.WCDPI.mean.of.both.days.sum", "ens_min_FPro.WFDPI.mean.of.both.days.sum", "ens_min_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_min_FPro.WCDPI.mean.of.both.days.sum", 'HEI2015_TOTAL_SCORE', #'predNOVA4.consumption.kcal.percentage.over.sum.both.days', #'NOVA4.consumption.grams.percentage.over.sum.both.days', #'NOVA4.consumption.RW.grams.percentage.over.sum.both.days' 'manualNOVA4.consumption.kcal.percentage.over.sum.both.days' ) logit_transform_vars <- c( # 'framingham_risk_10_years', 'ascvd_10y_accaha_lab', 'ascvd_10y_frs_lab', 'ascvd_10y_frs_simple_lab' ) # Adjusting vars # 'male', 'other_eth' are not added because of singularities adj <- c('BMXBMI', 'RIDAGEYR', 'female', 'INDFMPIR', #poverty income ratio 'white', 'black', 'mexican', 'other_hispanic' ,'Total.calories.consumed.mean.both.days', 'current_past_smoking' # 0 means never smoked, 1 is past smoker, 2 is currently smoker, none cant identify ) # Make sure adjusting vars wont be used as respone variable, # it can happen for BMXBMI. Also, use this to ignore a response var if needed! ignore_resp_vars <- c(adj) resp_vars_to_work_on <- resp_vars_to_work_on[resp_vars_to_work_on %notin% ignore_resp_vars] # These variables will be transformed AT MODEL LEVEL. boxcox_vars <- c( covar, 'BMXBMI', 'RIDAGEYR', 'INDFMPIR' # 'INDFMPIR' is poverty ratio ) for (patel_tab in keys(response_vars)){ for(patel_var in response_vars[[patel_tab]]){ if (patel_var %in% logit_transform_vars){ next } if(is_binary_or_categorical_var(patel_var, ageDesign$variables, 'all', TRUE) == 0){ # Only work on selected variables! if (patel_var %in% resp_vars_to_work_on){ boxcox_vars <- c(boxcox_vars, patel_var) } } else{ cat(blue("Is Binary: ", patel_var), "\n") } } } boxcox_vars <- unique(boxcox_vars) # If you want to avoid running all tabs in keys(response_vars), # you can use this variable to run a selected few, otherwise set it empty. only_work_on_tabs <- c('Heavy_Metals', 'Any_Disease', 'custom_variables_by_CCNR', 'Pharmaceutical Use', 'Blood_Pressure') only_work_on_tabs <- c('C_Reactive_Protein', 'Environmental_phenols', 'Total_Cholesterol', 'Urinary_Albumin_and_Creatinine') only_work_on_tabs <- c('Vitamin_A_E_and_Carotenoids', 'Melamine_Surplus_Urine') if (TRUE) {only_work_on_tabs <- c()} ###################################################################### ######### End Settings 2 ########## ###################################################################### print(paste( "Number of non-binary vars to be tranformed by BoxCox (at model level): ", length(boxcox_vars))) # Apply z transformation on these vars scale_vars <- unique(c(boxcox_vars, logit_transform_vars)) print(paste( "Number of non-binary vars to be centered by Z-transformation", "(at model level after BoxCox or logit transformation): ", length(scale_vars))) ################################## # Backup ageDesign data if (TRUE && debug_run == TRUE) { path_tmp <- paste0('output_console/', dir_reg_analysis, '/ageDesign_dataset_', dir_reg_analysis, '_cohort_', survey_year, '.csv') write.csv(ageDesign$variables, path_tmp) cat('Saved ageDesign dataset at: ', bold(path_tmp), '\n') } #################################################################### ################### Analyze (Run Regressions)####################### #################################################################### # Check you dont get empty subset cat(bold('----------------- Year: '), survey_year, bold(' Subjects {nrow(ageDesign)}: '), nrow(ageDesign), '\n') table(ageDesign$variables$current_past_smoking) sum(is.na(ageDesign$variables$current_past_smoking)) resp_var_done_regression <- c() boxcox_lambda_df <- data.frame(matrix(ncol = 3)) colnames(boxcox_lambda_df) <- c( 'resp_var', 'var', 'lambda') boxcox_lambda_i <- 1 j = 0 time_start_regs <- Sys.time() #module_file_name <- keys(response_vars)[1] #module_file_name <- 'custom_variables_by_CCNR' #module_file_name <- 'Blood_Pressure' #module_file_name <- 'Total_Cholesterol' #module_file_name <- only_work_on_tabs[2] for (module_file_name in keys(response_vars)) { skip = FALSE if(length(only_work_on_tabs) > 0){ skip = TRUE if (module_file_name %in% only_work_on_tabs){ skip = FALSE } } if (skip == TRUE) { next } file_name <- module_file_name cat(bold("\n\n**********WORKING ON TAB:", file_name, ' & year: ', survey_year, ' **********'), '\n') response_vars_tab <- response_vars[[module_file_name]] ######### out_df <- data.frame(matrix(ncol = 16)) colnames(out_df) <- c( 'resp_var', 'resp_var_type', 'N', 'NA_count', 'covariate', 'reg_family', 'num_covars', 'unique_val_counts', 'value_counts', 'coef','std_error', 't_value', 'p_val', 'dispersion', 'coefficients', 'summary') i <- 1 # resp_var <- c('LBXTHG', 'prostate_cancer_self_report')[2] #DELME !! # resp_var <- response_vars_tab[3] for (resp_var in response_vars_tab){ # Only work on the selected variables if (resp_var %notin% resp_vars_to_work_on){ next; } ############### #Do not repeat regressions for a variable ############### if(TRUE){ if (resp_var %in% resp_var_done_regression){ cat(bold(blue('Already done regressions for respone variable')), bold(resp_var), '\n') next; } resp_var_done_regression <- c(resp_var_done_regression, resp_var) } ########################################## phenotypeDesign <- subset(ageDesign, is.na(ageDesign$variables[[resp_var]]) == FALSE & is.na(INDFMPIR) == FALSE ) # nrow(phenotypeDesign) resp_var_subset = data.table::copy(phenotypeDesign$variables) cat(bold( '\n+++++++++[STATS] Response Var:', resp_var, '| Num Subjects:' , nrow(phenotypeDesign) ), blue( '\nAFTER REMOVING subject with NA socio-economic status (NDFMPIR):', red( nrow(ageDesign$variables %>% filter(!is.na(ageDesign$variables[[resp_var]]) & is.na(INDFMPIR))) ) ), '+++++++++\n\n') ################################################ ## Transformations for this model ################################################ reg_all_vars = c(resp_var, covar, adj) #var_tmp <- reg_all_vars[1] for (var_tmp in reg_all_vars) { if (var_tmp %in% boxcox_vars){ tryCatch( { boxcox_trans_out <- boxcox_trans_return_lambda( phenotypeDesign$variables, var_tmp ) phenotypeDesign$variables[[var_tmp]] <- boxcox_trans_out$out[,1] boxcox_lambda_df[boxcox_lambda_i, 'resp_var'] <- resp_var boxcox_lambda_df[boxcox_lambda_i, 'var'] <- var_tmp boxcox_lambda_df[boxcox_lambda_i, 'lambda'] <- boxcox_trans_out$lambda boxcox_lambda_i <- boxcox_lambda_i + 1 cat(bold('[Tranform BoxCox] '), 'on var:', blue(var_tmp), 'lambda', boxcox_trans_out$lambda, '\n') }, error=function(error_message) { # message(error_message) cat(red(bold( "!!! BoxCox Failed !!! VarName:", var_tmp )) # , 'error_message:', error_message , '\n' ) cat(red("This variable might be empty; length(unique(", var_tmp, "))=", length(unique(phenotypeDesign$variables[[var_tmp]])) ), ';\n') return(NA) } ) } } for (var_tmp in reg_all_vars) { if (var_tmp %in% logit_transform_vars){ tryCatch( { phenotypeDesign$variables[[var_tmp]] <- logit_trans( phenotypeDesign$variables[[var_tmp]] ) cat(bold('[Tranform Logit] '), 'on var:', blue(var_tmp), '\n') }, error=function(error_message) { message(paste("!!! logit_trans Failed !!! VarName: ", var_tmp)) cat(red("This variable might be empty: unique(", var_tmp, ")=", unique(phenotypeDesign$variables[[var_tmp]])), '\n') message(error_message) return(NA) } ) } } for (var_tmp in reg_all_vars) { if (var_tmp %in% scale_vars){ tryCatch( { phenotypeDesign$variables[[var_tmp]] <- scale( phenotypeDesign$variables[[var_tmp]], center = TRUE, scale = TRUE ) cat(bold('[Tranform Scale] '), 'on var:', blue(var_tmp), '\n') }, error=function(error_message){ message(paste("!!! Z-Transformation Failed !!! VarName: ", var_tmp)) cat(red("This variable might be empty: unique(", var_tmp, ")=", unique( MainTable_subset[[var_tmp]])), '\n') message(error_message) return(NA) } ) } } ################################################ ################################################ ################################################ # cov_ <- covar[1] for (cov_ in covar){ out_df[i, 'resp_var'] <- resp_var out_df[i, 'N'] <- nrow(phenotypeDesign) out_df[i, 'NA_count'] <- nrow( ageDesign$variables[is.na(ageDesign$variables[[resp_var]]), ] ) out_df[i, 'covariate'] <- cov_ out_df[i, 'unique_val_counts'] <- length(unique(phenotypeDesign$variables[[resp_var]])) # Check if an adjusting variable is binary convert it to factor adj_vars_prepped = c() # adj_var <- adj[1] for(adj_var in adj) { adj_var_type <- is_binary_or_categorical_var(adj_var, resp_var_subset, survey_year, FALSE) # print(paste(adj_var, adj_var_type)) if (adj_var_type > 0){ ########################################## # TODO MAYBE filter a covar if it has not enough levels. # adj_var_length <- length(unique(phenotypeDesign$variables[[adj_var]])) # in other words, put condition on 'adj_var_length' ########################################## if(length(unique(phenotypeDesign$variables[[adj_var]])) > 1 ){ adj_vars_prepped <- c(adj_vars_prepped, paste0('factor(', adj_var, ')')) } else { cat(bold('!!! Adjusting var "', adj_var, '" removed because not enough levels to be factored.'), '\n') } }else{ adj_vars_prepped <- c(adj_vars_prepped, adj_var) } } ###### # Check if independent variable is binary, convert it to factor. # Use MainTable_subset to assess in the whole dataset not a subset ###### resp_var_type <- is_binary_or_categorical_var(resp_var, resp_var_subset, survey_year, TRUE) out_df[i, 'resp_var_type'] <- resp_var_type if (resp_var_type > 0){ doForm <- as.formula(paste0( 'factor(', resp_var, ')', '~', paste(c(cov_, adj_vars_prepped), collapse = '+') )) ############## value_counts <- as.data.frame(table(phenotypeDesign$variables[[resp_var]])) names(value_counts) <- substring(names(value_counts), first = 1, last = 1) value_counts <- value_counts[order(-value_counts$F),] out_df[i, 'value_counts'] <- capture_output(toJSON(value_counts), width=800, print=TRUE) } else { doForm <- as.formula(paste(resp_var, '~', paste(c(cov_, adj_vars_prepped), collapse = '+'))) ############## Store value count for numerical variables as well value_counts <- as.data.frame(table(phenotypeDesign$variables[[resp_var]])) names(value_counts) <- substring(names(value_counts), first = 1, last = 1) value_counts <- value_counts[order(-value_counts$F),] out_df[i, 'value_counts'] <- capture_output(toJSON(value_counts), width=800, print=TRUE) } out_df[i, 'num_covars'] <- length(adj_vars_prepped) + 1 print(doForm) reg_family = gaussian() if(resp_var_type > 0){ reg_family = quasibinomial(link = logit) } out_df[i, 'reg_family'] <- trimws(capture_output(reg_family, width=800, print=TRUE)) tryCatch( { reg <- svyglm(formula = doForm , design=phenotypeDesign, family=reg_family) reg_sum <- summary(reg) out_df[i, 'coef'] <- reg_sum$coefficients[2,][1] out_df[i, 'std_error'] <- reg_sum$coefficients[2,][2] out_df[i, 't_value'] <- reg_sum$coefficients[2,][3] out_df[i, 'p_val'] <- reg_sum$coefficients[2,][4] last_reg_output <- paste( capture_output(doForm, width=800, print=TRUE), capture_output(reg_sum, width = 800, print=TRUE), sep = "\n" ) # Save all output of regression out_df[i, 'summary'] <- last_reg_output ############# Save Coef ############ out_df[i, 'coefficients'] <- toJSON( as.data.frame(reg_sum$coefficients), digits=10 ) out_df[i, 'dispersion'] <- reg_sum$dispersion }, error=function(error_message) { message(paste("!!! ERROR !!!!")) cat(red(bold(error_message))) out_df[i, 'summary'] <- paste(error_message, sep = "\n") return(NA) } ) i <- i + 1 j <- j + 1 if (j %% 10 == 0){ cat(bold(blue( #round(j/(total_independend_vars * length(covar)), 3) * 100, round(j/(1577 * length(covar)), 3) * 100, ## see below comments why I used 1577! '% of regressions (', (total_independend_vars * length(covar)), 'total) completed from survey year ', survey_year , '...\n' ))) } } } out_df$sig <- out_df$p_val <= 0.05 round_df(out_df, 3) write.csv(out_df, paste0('output_console/', dir_reg_analysis, '/', survey_year ,'/reg_analysis_boxcox_', file_name , '.csv')) print(paste0('output_console/', dir_reg_analysis, '/', survey_year ,'/reg_analysis_boxcox_', file_name , '.csv')) } cat('########## DONE REGRESSIONS ##############\n') path_lambda_boxcox <- paste0('output_console/', dir_reg_analysis, '/ageDesign_lambda_boxcox_cohort_', survey_year, '.csv') cat(bold('EXPORT Lambda Box Cox --> ', path_lambda_boxcox), '\n') write.csv(boxcox_lambda_df, path_lambda_boxcox) cat('Regs started:', format(time_start_regs), 'and ended:', format(Sys.time()) )
/EWAS_survey_regression_on_NHANES_1999_2006.R
no_license
menicgiulia/MLFoodProcessing
R
false
false
25,186
r
# increase console log limit options(max.print=1000000) rm(list = ls()) library(broom) library(dplyr) library(foreach) library(car) library(Hmisc) library(survey) library(mfx) library(margins) library(hash) # library(stargazer) library(testthat) library(crayon) library(readxl) library(jsonlite) # library("xlsx") No need anymore xls and xlsx have hard limit on max umber of chars in a cell... # Run R.version and if you see x86_64 you need to install Java 64 bit # https://java.com/en/download/manual.jsp `%notin%` <- Negate(`%in%`) current_dir_path = dirname(rstudioapi::getActiveDocumentContext()$path) setwd(current_dir_path) source('EWAS_analysis_base_functions.R') ###################################################################### ########### Settings 1 ############ ###################################################################### # This will load all independent variables from Patel's dataset source('EWAS_analysis_Patel_variables.R') only_work_on_selected_vars <- TRUE # Select on which nutrient panel the analysis work on nut_panel = c('12', '58')[2] dir_reg_analysis <- c( paste0('caloric_intake_PSJ1', '_', nut_panel, '_nuts'), paste0('caloric_intake_PSJ1', '_', nut_panel, '_nuts_temp'), paste0('caloric_intake_PSJ1', '_', nut_panel, '_nuts_y234') # )[1] cat('Path to reg analysis:', bold(dir_reg_analysis), '\n') survey_year <- 'all' #### +-+-+-+- IMPORTAN If set to 1 it WILL NOT RUN regressions generate_desciptive_statistics <- 0 debug_run <- TRUE # log <- TRUE # survey_year_code <- 4 # var <- 'LBXV1A' # Patel marked this is binary. var_desc: Blood 1,1-Dichloroethane (ng/mL) # var <- 'LBXGLU' # 'PHAFSTHR' # is_binary_or_categorical_var(var, df, survey_year_code, TRUE) ########################################## # Select Diet Data Here ########################################## # path_diet_data = paste0('all_diet_data_1999_2006_',nut_panel,'_nuts_Processing index J1.csv') # path_diet_data = paste0('all_diet_data_1999_2006_',nut_panel,'_nuts_single_and_ensemble_FPro.csv') # path_diet_data <- 'all_diet_data_1999_2006_58_nuts_ens_FPS.csv' path_diet_data <- 'input_data/all_diet_data_1999_2006_58_nuts_single_and_ensemble_FPro.csv' # path_diet_data <- 'all_diet_data_1999_2018_58_nuts_single_and_ensemble_FPro.csv' # path_diet_data <- 'all_diet_data_1999_2006_58_nuts_single_and_ensemble_FPro__FNDDS9906_C2009.csv' nhanesCCNR <- read.csv(path_diet_data) # table(nhanesCCNR$metabolic.syndrome.examination.and.drug, exclude = NULL) cat(bold('Diet Data File Name: ', current_dir_path, '/', path_diet_data, sep=''), '\n') load('input_data/nh_99-06.Rdata') # we added custom vars like t2d so read it from here VarDescription <- read_excel('input_data/EWAS_VarDescription.xlsx') VarDescription <- VarDescription %>% mutate_if(is.character, list(~na_if(.,"NA"))) if (FALSE){ # WHYYYYYYYYYYYYY THESE TWO ARE NOT EQUAL!!!!!!!!!!! VarDescription[(VarDescription$var == 'LBXV1A') & (VarDescription$series_num == 3), ] VarDescription[(VarDescription$var == 'LBXV1A') && (VarDescription$series_num == 3), ] # RETURN EMPTY!!!! } if (only_work_on_selected_vars == TRUE){ selected_vars_CCNR <- read_excel("input_data/EWAS_exposome_CCNR_selection_modules.xlsx") selected_vars_CCNR <- selected_vars_CCNR %>% dplyr::filter(CCNR_selected == 1) resp_vars_to_work_on <- unique(c( response_vars$custom_variables_by_CCNR, selected_vars_CCNR$var )) } else{ # Run regressions on all variable (both custom CCNR and Patel) resp_vars_to_work_on <- unique(VarDescription$var) } total_independend_vars <- length(resp_vars_to_work_on) MainTable <- merge(x = MainTable, y = nhanesCCNR[ , c( "SEQN", 'num_unique_dishes', 'metabolic.syndrome.only.examination', 'metabolic.syndrome.examination.and.drug', 'LBXACR_lab_detectable', 'LBXGLY_lab_detectable', # 'framingham_risk_10_years', THIS IS THE PYTHON BUT THE R VERSION IS MORE RELIABLE 'ascvd_10y_accaha_lab', 'ascvd_10y_frs_lab', 'ascvd_10y_frs_simple_lab', "Total.calories.consumed.mean.both.days", "HEI2015_TOTAL_SCORE", "FPro.RW.WFDPI.mean.of.both.days.sum", "FPro.WFDPI.mean.of.both.days.sum", "FPro.WCDPI.mean.of.both.days.sum", "ens_FPro.WFDPI.mean.of.both.days.sum", "ens_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_FPro.WCDPI.mean.of.both.days.sum", "ens_min_FPro.WFDPI.mean.of.both.days.sum", "ens_min_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_min_FPro.WCDPI.mean.of.both.days.sum", # "predNOVA4.consumption.kcal.percentage.over.sum.both.days", # "predNOVA4.consumption.RW.grams.percentage.over.sum.both.days", # "predNOVA4.consumption.grams.percentage.over.sum.both.days" "manualNOVA4.consumption.kcal.percentage.over.sum.both.days" )], by = "SEQN") nrow(MainTable) #################################################################### # Custom vars by CCNR #################################################################### MainTable$t2d <- I(MainTable$LBXGLU >= 126) MainTable$metabolic_syndrome_examination <- MainTable$metabolic.syndrome.only.examination MainTable$metabolic_syndrome <- MainTable$metabolic.syndrome.examination.and.drug # keep age in its current form because it will be normalized MainTable$age <- MainTable$RIDAGEYR if (survey_year == 'all') { ###### ## Create sample weights for 8 years based on ## https://wwwn.cdc.gov/nchs/nhanes/tutorials/module3.aspx #### MainTable[MainTable$SDDSRVYR == 1, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 1, 'WTMEC4YR'] * (2 / 4) MainTable[MainTable$SDDSRVYR == 2, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 2, 'WTMEC4YR'] * (2 / 4) MainTable[MainTable$SDDSRVYR == 3, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 3, 'WTMEC2YR'] * (1 / 4) MainTable[MainTable$SDDSRVYR == 4, 'WTMEC8YR'] <- MainTable[ MainTable$SDDSRVYR == 4, 'WTMEC2YR'] * (1 / 4) #dat <- subset(MainTable2, SDDSRVYR < 5 & age >= 18) cat(bold('Number of rows with weight=0 that will be removed:'), nrow(MainTable[MainTable$WTMEC8YR == 0, ]), '\n') nhanesDesign <- svydesign(id = ~SDMVPSU, strata = ~SDMVSTRA, weights = ~WTMEC8YR, # Use 8 year weights nest =T, data = MainTable ) # nrow(nhanesDesign) # svymean(~age, nhanesDesign, ci=FALSE) #svyby(~age, ~age > 0, design=nhanesDesign, FUN=svymean, ci=TRUE) sink(paste0("output_console/", dir_reg_analysis, "/R_svydesign_FULL_nhanes.txt")) # Store summary of svydesign print(summary(nhanesDesign)) sink() # returns output to the console #### Backup raw ALL DATA if (debug_run == TRUE) { path_tmp <- paste0('output_console/', dir_reg_analysis, '/nhanesDesign_RAW_ALL_dataset_', dir_reg_analysis, '_cohort_', survey_year, '.csv') write.csv(nhanesDesign$variables, path_tmp) cat('Saved RAW ALL Data at: ', bold(path_tmp), '\n') } #### ##################### # CORRECT WAY TO SUBSET survey data is # https://static-bcrf.biochem.wisc.edu/courses/Tabular-data-analysis-with-R-and-Tidyverse/book/12-usingNHANESweights.html # https://r-survey.r-forge.r-project.org/survey/html/subset.survey.design.html ##################### ageDesign <- subset(nhanesDesign, age >= 18 & WTMEC8YR > 0 & ens_FPro.WFDPI.mean.of.both.days.sum > 0 ) nrow(ageDesign$variables) svymean(~age, ageDesign, ci=TRUE) sink(paste0("output_console/", dir_reg_analysis, "/R_svydesign_ageDesign_nhanes.txt")) # Store summary of svydesign print(summary(ageDesign)) sink() # returns output to the console } ###################################################################### ######### End Settings 1 ########## ###################################################################### #DEL EM if (FALSE){ svyhist(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, nhanesDesign) svymean(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, nhanesDesign, na.rm=TRUE) svyhist(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, nhanesDesign) svyhist(~logit_trans(manualNOVA4.consumption.kcal.percentage.over.sum.both.days), nhanesDesign) svyhist(~ens_FPro.WCDPI.mean.of.both.days.sum, nhanesDesign) svyhist(~logit_trans(ens_FPro.WCDPI.mean.of.both.days.sum), nhanesDesign) box_cox_out = boxcox_trans_return_lambda( ageDesign$variables, 'ens_FPro.RW.WFDPI.mean.of.both.days.sum' ) ageDesign$variables$ens_FPro.RW.WFDPI.mean.of.both.days.sum.boxcox = box_cox_out$out print(paste('lambda for ens_FPro.RW.WFDPI.mean.of.both.days.sum', box_cox_out$lambda)) svyhist(~ens_FPro.RW.WFDPI.mean.of.both.days.sum, ageDesign) svyhist(~ens_FPro.RW.WFDPI.mean.of.both.days.sum.boxcox, ageDesign) svyhist(~logit_trans(ens_FPro.RW.WFDPI.mean.of.both.days.sum), ageDesign) svyhist(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, ageDesign) svymean(~manualNOVA4.consumption.kcal.percentage.over.sum.both.days, ageDesign, na.rm=TRUE) } ###################################################################### ########### Settings 2 ############ ###################################################################### covar <- c( 'FPro.WFDPI.mean.of.both.days.sum', # Diet Processing Score Gram Weighted 'FPro.RW.WFDPI.mean.of.both.days.sum', # Removed Water - Diet Processing Score Gram Weighted 'FPro.WCDPI.mean.of.both.days.sum', # Diet Processing Score Calorie Weighted "ens_FPro.WFDPI.mean.of.both.days.sum", "ens_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_FPro.WCDPI.mean.of.both.days.sum", "ens_min_FPro.WFDPI.mean.of.both.days.sum", "ens_min_FPro.RW.WFDPI.mean.of.both.days.sum", "ens_min_FPro.WCDPI.mean.of.both.days.sum", 'HEI2015_TOTAL_SCORE', #'predNOVA4.consumption.kcal.percentage.over.sum.both.days', #'NOVA4.consumption.grams.percentage.over.sum.both.days', #'NOVA4.consumption.RW.grams.percentage.over.sum.both.days' 'manualNOVA4.consumption.kcal.percentage.over.sum.both.days' ) logit_transform_vars <- c( # 'framingham_risk_10_years', 'ascvd_10y_accaha_lab', 'ascvd_10y_frs_lab', 'ascvd_10y_frs_simple_lab' ) # Adjusting vars # 'male', 'other_eth' are not added because of singularities adj <- c('BMXBMI', 'RIDAGEYR', 'female', 'INDFMPIR', #poverty income ratio 'white', 'black', 'mexican', 'other_hispanic' ,'Total.calories.consumed.mean.both.days', 'current_past_smoking' # 0 means never smoked, 1 is past smoker, 2 is currently smoker, none cant identify ) # Make sure adjusting vars wont be used as respone variable, # it can happen for BMXBMI. Also, use this to ignore a response var if needed! ignore_resp_vars <- c(adj) resp_vars_to_work_on <- resp_vars_to_work_on[resp_vars_to_work_on %notin% ignore_resp_vars] # These variables will be transformed AT MODEL LEVEL. boxcox_vars <- c( covar, 'BMXBMI', 'RIDAGEYR', 'INDFMPIR' # 'INDFMPIR' is poverty ratio ) for (patel_tab in keys(response_vars)){ for(patel_var in response_vars[[patel_tab]]){ if (patel_var %in% logit_transform_vars){ next } if(is_binary_or_categorical_var(patel_var, ageDesign$variables, 'all', TRUE) == 0){ # Only work on selected variables! if (patel_var %in% resp_vars_to_work_on){ boxcox_vars <- c(boxcox_vars, patel_var) } } else{ cat(blue("Is Binary: ", patel_var), "\n") } } } boxcox_vars <- unique(boxcox_vars) # If you want to avoid running all tabs in keys(response_vars), # you can use this variable to run a selected few, otherwise set it empty. only_work_on_tabs <- c('Heavy_Metals', 'Any_Disease', 'custom_variables_by_CCNR', 'Pharmaceutical Use', 'Blood_Pressure') only_work_on_tabs <- c('C_Reactive_Protein', 'Environmental_phenols', 'Total_Cholesterol', 'Urinary_Albumin_and_Creatinine') only_work_on_tabs <- c('Vitamin_A_E_and_Carotenoids', 'Melamine_Surplus_Urine') if (TRUE) {only_work_on_tabs <- c()} ###################################################################### ######### End Settings 2 ########## ###################################################################### print(paste( "Number of non-binary vars to be tranformed by BoxCox (at model level): ", length(boxcox_vars))) # Apply z transformation on these vars scale_vars <- unique(c(boxcox_vars, logit_transform_vars)) print(paste( "Number of non-binary vars to be centered by Z-transformation", "(at model level after BoxCox or logit transformation): ", length(scale_vars))) ################################## # Backup ageDesign data if (TRUE && debug_run == TRUE) { path_tmp <- paste0('output_console/', dir_reg_analysis, '/ageDesign_dataset_', dir_reg_analysis, '_cohort_', survey_year, '.csv') write.csv(ageDesign$variables, path_tmp) cat('Saved ageDesign dataset at: ', bold(path_tmp), '\n') } #################################################################### ################### Analyze (Run Regressions)####################### #################################################################### # Check you dont get empty subset cat(bold('----------------- Year: '), survey_year, bold(' Subjects {nrow(ageDesign)}: '), nrow(ageDesign), '\n') table(ageDesign$variables$current_past_smoking) sum(is.na(ageDesign$variables$current_past_smoking)) resp_var_done_regression <- c() boxcox_lambda_df <- data.frame(matrix(ncol = 3)) colnames(boxcox_lambda_df) <- c( 'resp_var', 'var', 'lambda') boxcox_lambda_i <- 1 j = 0 time_start_regs <- Sys.time() #module_file_name <- keys(response_vars)[1] #module_file_name <- 'custom_variables_by_CCNR' #module_file_name <- 'Blood_Pressure' #module_file_name <- 'Total_Cholesterol' #module_file_name <- only_work_on_tabs[2] for (module_file_name in keys(response_vars)) { skip = FALSE if(length(only_work_on_tabs) > 0){ skip = TRUE if (module_file_name %in% only_work_on_tabs){ skip = FALSE } } if (skip == TRUE) { next } file_name <- module_file_name cat(bold("\n\n**********WORKING ON TAB:", file_name, ' & year: ', survey_year, ' **********'), '\n') response_vars_tab <- response_vars[[module_file_name]] ######### out_df <- data.frame(matrix(ncol = 16)) colnames(out_df) <- c( 'resp_var', 'resp_var_type', 'N', 'NA_count', 'covariate', 'reg_family', 'num_covars', 'unique_val_counts', 'value_counts', 'coef','std_error', 't_value', 'p_val', 'dispersion', 'coefficients', 'summary') i <- 1 # resp_var <- c('LBXTHG', 'prostate_cancer_self_report')[2] #DELME !! # resp_var <- response_vars_tab[3] for (resp_var in response_vars_tab){ # Only work on the selected variables if (resp_var %notin% resp_vars_to_work_on){ next; } ############### #Do not repeat regressions for a variable ############### if(TRUE){ if (resp_var %in% resp_var_done_regression){ cat(bold(blue('Already done regressions for respone variable')), bold(resp_var), '\n') next; } resp_var_done_regression <- c(resp_var_done_regression, resp_var) } ########################################## phenotypeDesign <- subset(ageDesign, is.na(ageDesign$variables[[resp_var]]) == FALSE & is.na(INDFMPIR) == FALSE ) # nrow(phenotypeDesign) resp_var_subset = data.table::copy(phenotypeDesign$variables) cat(bold( '\n+++++++++[STATS] Response Var:', resp_var, '| Num Subjects:' , nrow(phenotypeDesign) ), blue( '\nAFTER REMOVING subject with NA socio-economic status (NDFMPIR):', red( nrow(ageDesign$variables %>% filter(!is.na(ageDesign$variables[[resp_var]]) & is.na(INDFMPIR))) ) ), '+++++++++\n\n') ################################################ ## Transformations for this model ################################################ reg_all_vars = c(resp_var, covar, adj) #var_tmp <- reg_all_vars[1] for (var_tmp in reg_all_vars) { if (var_tmp %in% boxcox_vars){ tryCatch( { boxcox_trans_out <- boxcox_trans_return_lambda( phenotypeDesign$variables, var_tmp ) phenotypeDesign$variables[[var_tmp]] <- boxcox_trans_out$out[,1] boxcox_lambda_df[boxcox_lambda_i, 'resp_var'] <- resp_var boxcox_lambda_df[boxcox_lambda_i, 'var'] <- var_tmp boxcox_lambda_df[boxcox_lambda_i, 'lambda'] <- boxcox_trans_out$lambda boxcox_lambda_i <- boxcox_lambda_i + 1 cat(bold('[Tranform BoxCox] '), 'on var:', blue(var_tmp), 'lambda', boxcox_trans_out$lambda, '\n') }, error=function(error_message) { # message(error_message) cat(red(bold( "!!! BoxCox Failed !!! VarName:", var_tmp )) # , 'error_message:', error_message , '\n' ) cat(red("This variable might be empty; length(unique(", var_tmp, "))=", length(unique(phenotypeDesign$variables[[var_tmp]])) ), ';\n') return(NA) } ) } } for (var_tmp in reg_all_vars) { if (var_tmp %in% logit_transform_vars){ tryCatch( { phenotypeDesign$variables[[var_tmp]] <- logit_trans( phenotypeDesign$variables[[var_tmp]] ) cat(bold('[Tranform Logit] '), 'on var:', blue(var_tmp), '\n') }, error=function(error_message) { message(paste("!!! logit_trans Failed !!! VarName: ", var_tmp)) cat(red("This variable might be empty: unique(", var_tmp, ")=", unique(phenotypeDesign$variables[[var_tmp]])), '\n') message(error_message) return(NA) } ) } } for (var_tmp in reg_all_vars) { if (var_tmp %in% scale_vars){ tryCatch( { phenotypeDesign$variables[[var_tmp]] <- scale( phenotypeDesign$variables[[var_tmp]], center = TRUE, scale = TRUE ) cat(bold('[Tranform Scale] '), 'on var:', blue(var_tmp), '\n') }, error=function(error_message){ message(paste("!!! Z-Transformation Failed !!! VarName: ", var_tmp)) cat(red("This variable might be empty: unique(", var_tmp, ")=", unique( MainTable_subset[[var_tmp]])), '\n') message(error_message) return(NA) } ) } } ################################################ ################################################ ################################################ # cov_ <- covar[1] for (cov_ in covar){ out_df[i, 'resp_var'] <- resp_var out_df[i, 'N'] <- nrow(phenotypeDesign) out_df[i, 'NA_count'] <- nrow( ageDesign$variables[is.na(ageDesign$variables[[resp_var]]), ] ) out_df[i, 'covariate'] <- cov_ out_df[i, 'unique_val_counts'] <- length(unique(phenotypeDesign$variables[[resp_var]])) # Check if an adjusting variable is binary convert it to factor adj_vars_prepped = c() # adj_var <- adj[1] for(adj_var in adj) { adj_var_type <- is_binary_or_categorical_var(adj_var, resp_var_subset, survey_year, FALSE) # print(paste(adj_var, adj_var_type)) if (adj_var_type > 0){ ########################################## # TODO MAYBE filter a covar if it has not enough levels. # adj_var_length <- length(unique(phenotypeDesign$variables[[adj_var]])) # in other words, put condition on 'adj_var_length' ########################################## if(length(unique(phenotypeDesign$variables[[adj_var]])) > 1 ){ adj_vars_prepped <- c(adj_vars_prepped, paste0('factor(', adj_var, ')')) } else { cat(bold('!!! Adjusting var "', adj_var, '" removed because not enough levels to be factored.'), '\n') } }else{ adj_vars_prepped <- c(adj_vars_prepped, adj_var) } } ###### # Check if independent variable is binary, convert it to factor. # Use MainTable_subset to assess in the whole dataset not a subset ###### resp_var_type <- is_binary_or_categorical_var(resp_var, resp_var_subset, survey_year, TRUE) out_df[i, 'resp_var_type'] <- resp_var_type if (resp_var_type > 0){ doForm <- as.formula(paste0( 'factor(', resp_var, ')', '~', paste(c(cov_, adj_vars_prepped), collapse = '+') )) ############## value_counts <- as.data.frame(table(phenotypeDesign$variables[[resp_var]])) names(value_counts) <- substring(names(value_counts), first = 1, last = 1) value_counts <- value_counts[order(-value_counts$F),] out_df[i, 'value_counts'] <- capture_output(toJSON(value_counts), width=800, print=TRUE) } else { doForm <- as.formula(paste(resp_var, '~', paste(c(cov_, adj_vars_prepped), collapse = '+'))) ############## Store value count for numerical variables as well value_counts <- as.data.frame(table(phenotypeDesign$variables[[resp_var]])) names(value_counts) <- substring(names(value_counts), first = 1, last = 1) value_counts <- value_counts[order(-value_counts$F),] out_df[i, 'value_counts'] <- capture_output(toJSON(value_counts), width=800, print=TRUE) } out_df[i, 'num_covars'] <- length(adj_vars_prepped) + 1 print(doForm) reg_family = gaussian() if(resp_var_type > 0){ reg_family = quasibinomial(link = logit) } out_df[i, 'reg_family'] <- trimws(capture_output(reg_family, width=800, print=TRUE)) tryCatch( { reg <- svyglm(formula = doForm , design=phenotypeDesign, family=reg_family) reg_sum <- summary(reg) out_df[i, 'coef'] <- reg_sum$coefficients[2,][1] out_df[i, 'std_error'] <- reg_sum$coefficients[2,][2] out_df[i, 't_value'] <- reg_sum$coefficients[2,][3] out_df[i, 'p_val'] <- reg_sum$coefficients[2,][4] last_reg_output <- paste( capture_output(doForm, width=800, print=TRUE), capture_output(reg_sum, width = 800, print=TRUE), sep = "\n" ) # Save all output of regression out_df[i, 'summary'] <- last_reg_output ############# Save Coef ############ out_df[i, 'coefficients'] <- toJSON( as.data.frame(reg_sum$coefficients), digits=10 ) out_df[i, 'dispersion'] <- reg_sum$dispersion }, error=function(error_message) { message(paste("!!! ERROR !!!!")) cat(red(bold(error_message))) out_df[i, 'summary'] <- paste(error_message, sep = "\n") return(NA) } ) i <- i + 1 j <- j + 1 if (j %% 10 == 0){ cat(bold(blue( #round(j/(total_independend_vars * length(covar)), 3) * 100, round(j/(1577 * length(covar)), 3) * 100, ## see below comments why I used 1577! '% of regressions (', (total_independend_vars * length(covar)), 'total) completed from survey year ', survey_year , '...\n' ))) } } } out_df$sig <- out_df$p_val <= 0.05 round_df(out_df, 3) write.csv(out_df, paste0('output_console/', dir_reg_analysis, '/', survey_year ,'/reg_analysis_boxcox_', file_name , '.csv')) print(paste0('output_console/', dir_reg_analysis, '/', survey_year ,'/reg_analysis_boxcox_', file_name , '.csv')) } cat('########## DONE REGRESSIONS ##############\n') path_lambda_boxcox <- paste0('output_console/', dir_reg_analysis, '/ageDesign_lambda_boxcox_cohort_', survey_year, '.csv') cat(bold('EXPORT Lambda Box Cox --> ', path_lambda_boxcox), '\n') write.csv(boxcox_lambda_df, path_lambda_boxcox) cat('Regs started:', format(time_start_regs), 'and ended:', format(Sys.time()) )
## Analysis of SNA # #======================================================== # --- # ## title: Analysis of social network analysis metrics # author: Marie Gilbertson # date: "01/03/2019" #--- # ## Preamble # # What this code does: # 1. Calculates ranked correlation for node-level SNA metrics between complete and sample networks # Note: correlations are using only individuals from complete network that are in corresponding sample network; # therefore, always comparing networks of the same size. # 2. Exports correlation files for each node-level SNA metric for each simulation # 3. Combines complete and sample metrics for network-level metrics into one dataset and exports (to be # plotted later) # # Social network analysis metrics: Degree, Strength, Betweenness, Transitivity, # Density, Proportion Isolates, Modularity ##### Clear Environment remove(list=ls()) #### Load R libraries library(igraph) library(dplyr) # for left_join() library(beepr) library(ggplot2) #### Set simulations to analyze # the following are for setting up reading in files and looping through different simulation variations # the following may therefore vary pending file naming system nsims <- 500 start.type <- "Random Start" # set starting location type. Options are: "Random Start", "Lattice Start", or "Cluster Start" h.type <- "H15" # set step length distribution. Options are: "H15", "H34", "H60", "SAC1", "SAC3", "SAC4" # can compare complete and sample network metrics with different contact definitions comp.cont.type <- "100m" # set contact threshold type for the COMPLETE network. Options are: "100m", "10m", or "1m" samp.cont.type <- "100m" # set contact threshold type for the SAMPLE networks to compare to the complete network. Options are: "100m", "10m", or "1m" ### function for only keeping KDE results from q24h and q72h individual sampling levels fix.KDE <- function(metric.data){ s.t <- subset(metric.data, metric.data$contact.type=="space-time") kde <- subset(metric.data, metric.data$contact.type=="KDE UDOI") kde <- subset(kde, kde$ind.sample=="q24h" | kde$ind.sample=="q72h") new.data <- rbind(s.t, kde) return(new.data) } ############ Calculate ranked correlation for each node-level metric ############## # set node-level metrics and sampling levels to analyze nl.metrics <- c("Deg", "Str", "Btw", "Clust") ind.sample <- c("q1m", "q15m", "q60m", "q3h", "q12h", "q24h", "q72h") pop.sample <- seq(100, 10, -10) contact.type <- c("space-time", "KDE UDOI") # Loop through by simulation number for(i in 1:nsims){ #### Set simulation number print(paste("Simulation", i, sep = " ")) sim <- i # loop through different node-level SNA metrics for(j in 1:length(nl.metrics)){ metric <- nl.metrics[j] # read in complete network data for given metric # complete.name <- paste(<insert naming structure>, ".Rdata", sep = "") complete.metric <- get(load(file = complete.name)) # read in sampled network data for given metric # sample.name <- paste(<insert naming structure>, ".Rdata", sep = "") sample.metric <- get(load(file = sample.name)) # set up empty object to store results # uses dynamic allocation which is less efficient but functional for these purposes full.cor <- NULL # loop through different sampling levels for given metric and calculate the ranked correlation for(q in 1:length(contact.type)){ ct <- contact.type[q] for(r in 1:length(pop.sample)){ ps <- pop.sample[r] for(s in 1:length(ind.sample)){ is <- ind.sample[s] samp.met_temp <- subset(sample.metric, sample.metric$ind.sample==is & sample.metric$pop.sample==ps & sample.metric$contact.type==ct) # pull out the metric values from the full network that match the ids of sampled individuals match_cmp.met <- complete.metric[complete.metric$id %in% samp.met_temp$id,] # calculate ranked correlation coefficient between the sampled metric calculation and the metric for those individuals from the complete network smp.cor <- data.frame(cor(samp.met_temp[,2], match_cmp.met[,2], method = "spearman")) colnames(smp.cor) <- "cor" # add sampling info for tracking purposes smp.cor$ind.sample <- is smp.cor$pop.sample <- ps smp.cor$contact.type <- ct smp.cor$metric <- metric # save for next round full.cor <- rbind(full.cor, smp.cor) } } } # only keep KDE results for q24h and q72h full.cor <- fix.KDE(full.cor) # add sim.num for tracking purposes full.cor$sim.num <- sim # save correlation data # cor.name <- paste(<insert naming structure>, ".Rdata", sep = "") save(full.cor, file = cor.name) } } beep(4) ########### Combine complete and sample metrics for all network-level metrics ############## # set network-level metrics and sampling levels to analyze nw.metrics <- c("Dens", "Iso", "Mod") ind.sample <- c("q1m", "q15m", "q60m", "q3h", "q12h", "q24h", "q72h") pop.sample <- seq(100, 10, -10) contact.type <- c("space-time", "KDE UDOI") # Loop through by simulation number for(i in 1:nsims){ #### Set simulation number print(paste("Simulation", i, sep = " ")) sim <- i # loop through different network-level SNA metrics for(j in 1:length(nw.metrics)){ metric <- nw.metrics[j] # read in complete network data for given metric # complete.name <- paste(<insert naming strucure>, sep = "") complete.metric <- get(load(file = complete.name)) # read in sampled network data for given metric # sample.name <- paste(<insert naming strucure>, ".Rdata", sep = "") sample.metric <- get(load(file = sample.name)) if(metric!="Mod"){ # add metric value for the complete network to the sample dataset sample.metric$complete <- complete.metric # reorder columns for ease of assessment sample.metric <- sample.metric[,c(5, 1:4)] # add simulation number for tracking purposes sample.metric$sim.num <- sim }else{ # modularity has results for several metrics, so needs to be assessed differently colnames(complete.metric) <- paste("c.", colnames(complete.metric), sep="") # add metric value for the complete network to the sample dataset sample.metric <- cbind(sample.metric, complete.metric) # add simulation number for tracking purposes sample.metric$sim.num <- sim } # save combined data # conc.name <- paste(<insert naming structure>, ".Rdata", sep = "") save(sample.metric, file = conc.name) } } beep(4)
/Analysis_of_SNA.R
no_license
mjones029/Telemetry_Network_Simulations
R
false
false
6,677
r
## Analysis of SNA # #======================================================== # --- # ## title: Analysis of social network analysis metrics # author: Marie Gilbertson # date: "01/03/2019" #--- # ## Preamble # # What this code does: # 1. Calculates ranked correlation for node-level SNA metrics between complete and sample networks # Note: correlations are using only individuals from complete network that are in corresponding sample network; # therefore, always comparing networks of the same size. # 2. Exports correlation files for each node-level SNA metric for each simulation # 3. Combines complete and sample metrics for network-level metrics into one dataset and exports (to be # plotted later) # # Social network analysis metrics: Degree, Strength, Betweenness, Transitivity, # Density, Proportion Isolates, Modularity ##### Clear Environment remove(list=ls()) #### Load R libraries library(igraph) library(dplyr) # for left_join() library(beepr) library(ggplot2) #### Set simulations to analyze # the following are for setting up reading in files and looping through different simulation variations # the following may therefore vary pending file naming system nsims <- 500 start.type <- "Random Start" # set starting location type. Options are: "Random Start", "Lattice Start", or "Cluster Start" h.type <- "H15" # set step length distribution. Options are: "H15", "H34", "H60", "SAC1", "SAC3", "SAC4" # can compare complete and sample network metrics with different contact definitions comp.cont.type <- "100m" # set contact threshold type for the COMPLETE network. Options are: "100m", "10m", or "1m" samp.cont.type <- "100m" # set contact threshold type for the SAMPLE networks to compare to the complete network. Options are: "100m", "10m", or "1m" ### function for only keeping KDE results from q24h and q72h individual sampling levels fix.KDE <- function(metric.data){ s.t <- subset(metric.data, metric.data$contact.type=="space-time") kde <- subset(metric.data, metric.data$contact.type=="KDE UDOI") kde <- subset(kde, kde$ind.sample=="q24h" | kde$ind.sample=="q72h") new.data <- rbind(s.t, kde) return(new.data) } ############ Calculate ranked correlation for each node-level metric ############## # set node-level metrics and sampling levels to analyze nl.metrics <- c("Deg", "Str", "Btw", "Clust") ind.sample <- c("q1m", "q15m", "q60m", "q3h", "q12h", "q24h", "q72h") pop.sample <- seq(100, 10, -10) contact.type <- c("space-time", "KDE UDOI") # Loop through by simulation number for(i in 1:nsims){ #### Set simulation number print(paste("Simulation", i, sep = " ")) sim <- i # loop through different node-level SNA metrics for(j in 1:length(nl.metrics)){ metric <- nl.metrics[j] # read in complete network data for given metric # complete.name <- paste(<insert naming structure>, ".Rdata", sep = "") complete.metric <- get(load(file = complete.name)) # read in sampled network data for given metric # sample.name <- paste(<insert naming structure>, ".Rdata", sep = "") sample.metric <- get(load(file = sample.name)) # set up empty object to store results # uses dynamic allocation which is less efficient but functional for these purposes full.cor <- NULL # loop through different sampling levels for given metric and calculate the ranked correlation for(q in 1:length(contact.type)){ ct <- contact.type[q] for(r in 1:length(pop.sample)){ ps <- pop.sample[r] for(s in 1:length(ind.sample)){ is <- ind.sample[s] samp.met_temp <- subset(sample.metric, sample.metric$ind.sample==is & sample.metric$pop.sample==ps & sample.metric$contact.type==ct) # pull out the metric values from the full network that match the ids of sampled individuals match_cmp.met <- complete.metric[complete.metric$id %in% samp.met_temp$id,] # calculate ranked correlation coefficient between the sampled metric calculation and the metric for those individuals from the complete network smp.cor <- data.frame(cor(samp.met_temp[,2], match_cmp.met[,2], method = "spearman")) colnames(smp.cor) <- "cor" # add sampling info for tracking purposes smp.cor$ind.sample <- is smp.cor$pop.sample <- ps smp.cor$contact.type <- ct smp.cor$metric <- metric # save for next round full.cor <- rbind(full.cor, smp.cor) } } } # only keep KDE results for q24h and q72h full.cor <- fix.KDE(full.cor) # add sim.num for tracking purposes full.cor$sim.num <- sim # save correlation data # cor.name <- paste(<insert naming structure>, ".Rdata", sep = "") save(full.cor, file = cor.name) } } beep(4) ########### Combine complete and sample metrics for all network-level metrics ############## # set network-level metrics and sampling levels to analyze nw.metrics <- c("Dens", "Iso", "Mod") ind.sample <- c("q1m", "q15m", "q60m", "q3h", "q12h", "q24h", "q72h") pop.sample <- seq(100, 10, -10) contact.type <- c("space-time", "KDE UDOI") # Loop through by simulation number for(i in 1:nsims){ #### Set simulation number print(paste("Simulation", i, sep = " ")) sim <- i # loop through different network-level SNA metrics for(j in 1:length(nw.metrics)){ metric <- nw.metrics[j] # read in complete network data for given metric # complete.name <- paste(<insert naming strucure>, sep = "") complete.metric <- get(load(file = complete.name)) # read in sampled network data for given metric # sample.name <- paste(<insert naming strucure>, ".Rdata", sep = "") sample.metric <- get(load(file = sample.name)) if(metric!="Mod"){ # add metric value for the complete network to the sample dataset sample.metric$complete <- complete.metric # reorder columns for ease of assessment sample.metric <- sample.metric[,c(5, 1:4)] # add simulation number for tracking purposes sample.metric$sim.num <- sim }else{ # modularity has results for several metrics, so needs to be assessed differently colnames(complete.metric) <- paste("c.", colnames(complete.metric), sep="") # add metric value for the complete network to the sample dataset sample.metric <- cbind(sample.metric, complete.metric) # add simulation number for tracking purposes sample.metric$sim.num <- sim } # save combined data # conc.name <- paste(<insert naming structure>, ".Rdata", sep = "") save(sample.metric, file = conc.name) } } beep(4)