|
--- |
|
library_name: peft |
|
license: gemma |
|
base_model: google/gemma-3-1b-it |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- deepakkarkala/sft_sitcom_chandlerbing_jsonl |
|
model-index: |
|
- name: gemma3_1b_lora_sft_sitcom |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.10.0.dev0` |
|
```yaml |
|
adapter: qlora |
|
base_model: google/gemma-3-1b-it |
|
bf16: auto |
|
chat_template: gemma3 |
|
datasets: |
|
- path: deepakkarkala/sft_sitcom_chandlerbing_jsonl |
|
split: train_without_fewshots |
|
type: alpaca |
|
ddp_find_unused_parameters: true |
|
eval_sample_packing: false |
|
evals_per_epoch: null |
|
flash_attention: true |
|
gradient_accumulation_steps: 8 |
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
hub_model_id: deepakkarkala/gemma3_1b_lora_sft_sitcom |
|
learning_rate: 0.0002 |
|
load_in_4bit: true |
|
load_in_8bit: false |
|
logging_steps: 1 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_r: 32 |
|
lora_target_linear: true |
|
lr_scheduler: cosine |
|
micro_batch_size: 2 |
|
model_type: AutoModelForCausalLM |
|
num_epochs: 4 |
|
optimizer: adamw_bnb_8bit |
|
output_dir: ./outputs/out |
|
pad_to_sequence_len: true |
|
resume_from_checkpoint: null |
|
sample_packing: true |
|
saves_per_epoch: 1 |
|
sequence_len: 2048 |
|
special_tokens: null |
|
tf32: true |
|
tokenizer_type: AutoTokenizer |
|
val_set_size: 0.05 |
|
wandb_entity: deepakkarkala-personal |
|
wandb_log_model: checkpoint |
|
wandb_name: sft_gemma3_1b |
|
wandb_project: finetuning_llama31_8b_sitcom |
|
wandb_run_id: sft_gemma3_1b_2 |
|
wandb_watch: null |
|
warmup_ratio: 0.1 |
|
weight_decay: 0.0 |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/deepakkarkala-personal/finetuning_llama31_8b_sitcom/runs/sft_gemma3_1b_2) |
|
# gemma3_1b_lora_sft_sitcom |
|
|
|
This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the deepakkarkala/sft_sitcom_chandlerbing_jsonl dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 26 |
|
- training_steps: 264 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.2 |
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.5.1 |
|
- Tokenizers 0.21.1 |