|
--- |
|
title: AutoML Lite |
|
emoji: π€ |
|
colorFrom: blue |
|
colorTo: purple |
|
sdk: gradio |
|
sdk_version: 4.0.0 |
|
app_file: app.py |
|
pinned: false |
|
license: mit |
|
tags: |
|
- automl |
|
- machine-learning |
|
- deep-learning |
|
- time-series |
|
- classification |
|
- regression |
|
- feature-engineering |
|
- interpretability |
|
- experiment-tracking |
|
- production |
|
--- |
|
|
|
# AutoML Lite π€ |
|
|
|
**Automated Machine Learning Made Simple** |
|
|
|
A lightweight, production-ready automated machine learning library that simplifies the entire ML pipeline from data preprocessing to model deployment. |
|
|
|
## π¬ Demo |
|
|
|
### AutoML Lite in Action |
|
 |
|
|
|
### Generated HTML Reports |
|
 |
|
|
|
### Weights & Biases Integration |
|
 |
|
|
|
## π Quick Start |
|
|
|
### Installation |
|
```bash |
|
pip install automl-lite |
|
``` |
|
|
|
### 5-Line ML Pipeline |
|
```python |
|
from automl_lite import AutoMLite |
|
import pandas as pd |
|
|
|
# Load your data |
|
data = pd.read_csv('your_data.csv') |
|
|
|
# Initialize AutoML (zero configuration!) |
|
automl = AutoMLite(time_budget=300) |
|
|
|
# Train and get the best model |
|
best_model = automl.fit(data, target_column='target') |
|
|
|
# Make predictions |
|
predictions = automl.predict(new_data) |
|
``` |
|
|
|
## β¨ Key Features |
|
|
|
### π§ Intelligent Automation |
|
- **Auto Feature Engineering**: 11.6x feature expansion (20β232 features) |
|
- **Smart Model Selection**: Tests 15+ algorithms automatically |
|
- **Hyperparameter Optimization**: Uses Optuna for efficient tuning |
|
- **Ensemble Methods**: Automatic voting classifiers |
|
|
|
### π Production-Ready |
|
- **Deep Learning**: TensorFlow and PyTorch integration |
|
- **Time Series**: ARIMA, Prophet, LSTM forecasting |
|
- **Advanced Interpretability**: SHAP, LIME, permutation importance |
|
- **Experiment Tracking**: MLflow, W&B, TensorBoard |
|
- **Interactive Dashboards**: Real-time monitoring |
|
|
|
### π Comprehensive Reporting |
|
- **Interactive HTML Reports**: Beautiful visualizations |
|
- **Model Performance Analysis**: Confusion matrices, ROC curves |
|
- **Feature Importance**: Detailed analysis and correlations |
|
- **Training History**: Complete logs and metrics |
|
|
|
## π― Supported Problem Types |
|
|
|
- β
**Classification** (Binary & Multi-class) |
|
- β
**Regression** |
|
- β
**Time Series Forecasting** |
|
- β
**Deep Learning Tasks** |
|
|
|
## π₯ Performance Metrics |
|
|
|
### Production Demo Results |
|
- **Training Time**: 391.92 seconds for complete pipeline |
|
- **Best Model**: Random Forest (80.00% accuracy) |
|
- **Feature Engineering**: 20 β 232 features (11.6x expansion) |
|
- **Feature Selection**: 132/166 features intelligently selected |
|
- **Hyperparameter Optimization**: 50 trials with Optuna |
|
|
|
## π οΈ Advanced Usage |
|
|
|
### Custom Configuration |
|
```python |
|
config = { |
|
'time_budget': 600, |
|
'max_models': 20, |
|
'cv_folds': 5, |
|
'feature_engineering': True, |
|
'ensemble_method': 'voting', |
|
'interpretability': True |
|
} |
|
|
|
automl = AutoMLite(**config) |
|
``` |
|
|
|
### Time Series Forecasting |
|
```python |
|
automl = AutoMLite(problem_type='time_series') |
|
model = automl.fit(data, target_column='sales', date_column='date') |
|
forecast = automl.predict_future(periods=30) |
|
``` |
|
|
|
### Deep Learning |
|
```python |
|
automl = AutoMLite( |
|
include_deep_learning=True, |
|
deep_learning_framework='tensorflow' |
|
) |
|
model = automl.fit(data, target_column='target') |
|
``` |
|
|
|
## π CLI Interface |
|
|
|
```bash |
|
# Basic usage |
|
automl-lite train data.csv --target target_column |
|
|
|
# With custom config |
|
automl-lite train data.csv --target target_column --config config.yaml |
|
|
|
# Generate report |
|
automl-lite report --model model.pkl --output report.html |
|
``` |
|
|
|
## π¨ Interactive Dashboard |
|
|
|
```python |
|
from automl_lite.ui import launch_dashboard |
|
launch_dashboard(automl) |
|
``` |
|
|
|
## π Model Interpretability |
|
|
|
```python |
|
# Get SHAP values |
|
shap_values = automl.explain_model(X_test) |
|
|
|
# Feature importance |
|
importance = automl.get_feature_importance() |
|
|
|
# Partial dependence plots |
|
automl.plot_partial_dependence('feature_name') |
|
``` |
|
|
|
## π― Use Cases |
|
|
|
### Perfect For: |
|
- π’ **Data Scientists** - Rapid prototyping |
|
- π **ML Engineers** - Production development |
|
- π **Analysts** - Quick insights |
|
- π **Students** - Learning ML concepts |
|
- π **Startups** - Fast MVP development |
|
|
|
### Industries: |
|
- **Finance**: Credit scoring, fraud detection |
|
- **Healthcare**: Disease prediction, monitoring |
|
- **E-commerce**: Segmentation, forecasting |
|
- **Marketing**: Campaign optimization |
|
- **Manufacturing**: Predictive maintenance |
|
|
|
## π§ Configuration Templates |
|
|
|
- **Basic**: Quick experiments |
|
- **Production**: Production deployment |
|
- **Research**: Extensive search |
|
- **Customer Churn**: Churn prediction |
|
- **Fraud Detection**: Fraud detection |
|
- **House Price**: Real estate prediction |
|
|
|
## π¦ Installation Options |
|
|
|
### From PyPI (Recommended) |
|
```bash |
|
pip install automl-lite |
|
``` |
|
|
|
### From Source |
|
```bash |
|
git clone https://github.com/Sherin-SEF-AI/AutoML-Lite.git |
|
cd AutoML-Lite |
|
pip install -e . |
|
``` |
|
|
|
## π€ Contributing |
|
|
|
We welcome contributions! Here's how you can help: |
|
|
|
1. **Fork the repository** |
|
2. **Create a feature branch** |
|
3. **Make your changes** |
|
4. **Add tests** |
|
5. **Submit a pull request** |
|
|
|
## π Documentation & Resources |
|
|
|
- π **Full Documentation**: [GitHub Wiki](https://github.com/Sherin-SEF-AI/AutoML-Lite/wiki) |
|
- π― **API Reference**: [API Docs](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/API_REFERENCE.md) |
|
- π **Examples**: [Example Notebooks](https://github.com/Sherin-SEF-AI/AutoML-Lite/tree/main/examples) |
|
- π **Quick Start**: [Installation Guide](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/INSTALLATION.md) |
|
|
|
## π¬ Join the Community |
|
|
|
- π **Star the Repository**: [GitHub](https://github.com/Sherin-SEF-AI/AutoML-Lite) |
|
- π **Report Issues**: [Issue Tracker](https://github.com/Sherin-SEF-AI/AutoML-Lite/issues) |
|
- π‘ **Feature Requests**: [Discussions](https://github.com/Sherin-SEF-AI/AutoML-Lite/discussions) |
|
- π§ **Contact**: sherin.joseph2217@gmail.com |
|
|
|
## π Why Choose AutoML Lite? |
|
|
|
| Feature | AutoML Lite | Other Libraries | |
|
|---------|-------------|-----------------| |
|
| **Setup Time** | 30 seconds | 30+ minutes | |
|
| **Configuration** | Zero required | Complex configs | |
|
| **Production Ready** | β
Built-in | β Manual setup | |
|
| **Deep Learning** | β
Integrated | β Separate setup | |
|
| **Time Series** | β
Native support | β Limited | |
|
| **Interpretability** | β
Advanced | β Basic | |
|
| **Experiment Tracking** | β
Multi-platform | β Limited | |
|
| **Interactive Reports** | β
Beautiful HTML | β Basic plots | |
|
|
|
## π― Ready to Transform Your ML Workflow? |
|
|
|
**Stop spending hours on boilerplate code. Start building amazing ML models in minutes!** |
|
|
|
```bash |
|
pip install automl-lite |
|
``` |
|
|
|
**Try it now and see the difference!** π |
|
|
|
--- |
|
|
|
*Built with β€οΈ by the AutoML Lite community* |
|
|
|
**Tags**: #python #machinelearning #automl #datascience #ml #ai #automation #productivity #opensource #deeplearning #timeseries #interpretability #experimenttracking #production #deployment |