liamchalcroft's picture
Update README.md
1821564 verified
---
license: mit
library_name: pytorch
tags:
- medical
- segmentation
- stroke
- neurology
- mri
pipeline_tag: image-segmentation
---
# SynthPseudo
Synthseg-style model trained on synthetic data derived from OASIS3 tissue maps and ATLAS binary lesion masks. Augmented with pseudo-labels from a private T1w dataset.
## Model Details
- **Name**: SynthPseudo
- **Classes**: 0 (Background), 1 (Gray Matter), 2 (White Matter), 3 (Gray/White Matter Partial Volume), 4 (Cerebro-Spinal Fluid), 5 (Stroke)
- **Patch Size**: 192³
- **Voxel Spacing**: 1mm³
- **Input Channels**: 1
## Usage
### Loading from Hugging Face Hub
```python
import torch
from synthstroke_model import SynthStrokeModel
# Load the model from Hugging Face Hub
model = SynthStrokeModel.from_pretrained("liamchalcroft/synthstroke-synth-pseudo")
# Prepare your input (example shape: batch_size=1, channels=1, H, W, D)
input_tensor = torch.randn(1, 1, 192, 192, 192)
# Get predictions (with optional TTA for improved accuracy)
predictions = model.predict_segmentation(input_tensor, use_tta=True)
# Get tissue probability maps
background = predictions[:, 0] # Background
gray_matter = predictions[:, 1] # Gray Matter
white_matter = predictions[:, 2] # White Matter
partial_volume = predictions[:, 3] # Gray/White Matter PV
csf = predictions[:, 4] # Cerebro-Spinal Fluid
stroke = predictions[:, 5] # Stroke lesion
# Alternative: Get logits without TTA
logits = model.predict_segmentation(input_tensor, apply_softmax=False)
```
## Citation
[Machine Learning for Biomedical Imaging](https://www.melba-journal.org/papers/2025:014.html)
```bibtex
@article{chalcroft2025synthetic,
title={Synthetic Data for Robust Stroke Segmentation},
author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John},
journal={Machine Learning for Biomedical Imaging},
volume={3},
pages={317--346},
year={2025},
publisher={Machine Learning for Biomedical Imaging},
doi={10.59275/j.melba.2025-f3g6},
url={https://www.melba-journal.org/papers/2025:014.html}
}
```
For the original arXiv preprint:
[arXiv](https://arxiv.org/abs/2404.01946)
```bibtex
@article{Chalcroft_2025,
title={Synthetic Data for Robust Stroke Segmentation},
volume={3},
ISSN={2766-905X},
url={http://dx.doi.org/10.59275/j.melba.2025-f3g6},
DOI={10.59275/j.melba.2025-f3g6},
number={August 2025},
journal={Machine Learning for Biomedical Imaging},
publisher={Machine Learning for Biomedical Imaging},
author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John},
year={2025},
month=aug, pages={317–346}
}
```
## License
MIT License - see the [LICENSE](https://github.com/liamchalcroft/synthstroke/blob/main/LICENSE) file for details.