Files changed (1) hide show
  1. README.md +85 -84
README.md CHANGED
@@ -1,84 +1,85 @@
1
- ---
2
- license: mit
3
- library_name: BEVANet
4
- tags:
5
- - real-time-semantic-segmentation
6
- - real-time
7
- - semantic-segmentation
8
- - computer-vision
9
- - pytorch
10
- datasets:
11
- - Cityscapes
12
- metrics:
13
- - mIoU
14
- - FPS
15
- ---
16
-
17
-
18
- <div align="center">
19
- <h1> BEVANet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation (ICIP 2025 spotlight) </h1>
20
-
21
- [![arXiv paper](https://img.shields.io/badge/arXiv%20paper-2508.07300-red.svg?logo=arXiv)](https://arxiv.org/abs/2508.07300)
22
- [![ICIP paper](https://img.shields.io/badge/IEEE%20paper-ICIP25%20spotlight-blue.svg?logo=IEEE)](https://ieeexplore.ieee.org/document/11084676)
23
- [![GitHub Code](https://img.shields.io/badge/Code-GitHub-black.svg?logo=github)](https://github.com/maomao0819/BEVANet)
24
- [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
25
-
26
- [Ping-Mao Huang](https://www.linkedin.com/in/maomao0819/), I-Tien Chao, Ping-Chia Huang, Jia-Wei Liao, Yung-Yu Chuang<br>
27
- National Taiwan University
28
-
29
- </div>
30
-
31
- ## Model Description
32
-
33
- - **Task**: Real-Time Semantic Segmentation
34
- - **Dataset**: Cityscapes
35
- - **Model**: BEVANet
36
-
37
- BEVANet semantic segmentation model trained on Cityscapes dataset. Achieves 81.0% mIoU with 32.8 FPS on RTX3090.
38
-
39
- ## Performance
40
-
41
- - **mIoU**: 81.0%
42
- - **FPS**: 32.8 (RTX3090)
43
- - **Parameters**: 58.6M
44
-
45
- ## Usage
46
-
47
- ```python
48
- from models.BEVANet import BEVANet_SEG
49
-
50
- # Load model from specific branch
51
- model = BEVANet_SEG.from_pretrained(
52
- "maomao0819/BEVANet",
53
- revision="main"
54
- )
55
-
56
- # For main branch (no revision needed)
57
- # model = BEVANet_SEG.from_pretrained("maomao0819/BEVANet")
58
- ```
59
-
60
- ## All Model Variants
61
-
62
- | Model | Branch | Dataset | Task | Performance | FPS | Parameters |
63
- |-------|--------|---------|------|-------------|-----|------------|
64
- | BEVANet-S | `imagenet-bevanet-s` | ImageNet | Classification | 71.1% Top-1 | 198.6 | 16.3M |
65
- | BEVANet | `imagenet-bevanet` | ImageNet | Classification | 76.3% Top-1 | 82.3 | 57.4M |
66
- | BEVANet-S | `cityscapes-bevanet-s` | Cityscapes | Segmentation | 78.2% mIoU | 70.0 | 15.2M |
67
- | BEVANet | `main` | Cityscapes | Segmentation | 81.0% mIoU | 32.8 | 58.6M |
68
- | BEVANet-S | `camvid-bevanet-s` | CamVid | Segmentation | 83.1% mIoU | 79.4 | 15.2M |
69
- | BEVANet | `ade20k-bevanet` | ADE20K | Segmentation | 39.8% mIoU | 73.3 | 58.9M |
70
-
71
- ## Citation
72
-
73
- If you use this model, please cite:
74
-
75
- ```bibtex
76
- @inproceedings{huang2025bevanet,
77
- title={Bevanet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation},
78
- author={Huang, Ping-Mao and Chao, I-Tien and Huang, Ping-Chia and Liao, Jia-Wei and Chuang, Yung-Yu},
79
- booktitle={2025 IEEE International Conference on Image Processing (ICIP)},
80
- pages={2778--2783},
81
- year={2025},
82
- organization={IEEE}
83
- }
84
- ```
 
 
1
+ ---
2
+ license: mit
3
+ library_name: BEVANet
4
+ tags:
5
+ - image-segmentation
6
+ - real-time-semantic-segmentation
7
+ - real-time
8
+ - semantic-segmentation
9
+ - computer-vision
10
+ - pytorch
11
+ datasets:
12
+ - Cityscapes
13
+ metrics:
14
+ - mIoU
15
+ - FPS
16
+ ---
17
+
18
+
19
+ <div align="center">
20
+ <h1> BEVANet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation (ICIP 2025 spotlight) </h1>
21
+
22
+ [![arXiv paper](https://img.shields.io/badge/arXiv%20paper-2508.07300-red.svg?logo=arXiv)](https://arxiv.org/abs/2508.07300)
23
+ [![ICIP paper](https://img.shields.io/badge/IEEE%20paper-ICIP25%20spotlight-blue.svg?logo=IEEE)](https://ieeexplore.ieee.org/document/11084676)
24
+ [![GitHub Code](https://img.shields.io/badge/Code-GitHub-black.svg?logo=github)](https://github.com/maomao0819/BEVANet)
25
+ [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
26
+
27
+ [Ping-Mao Huang](https://www.linkedin.com/in/maomao0819/), I-Tien Chao, Ping-Chia Huang, Jia-Wei Liao, Yung-Yu Chuang<br>
28
+ National Taiwan University
29
+
30
+ </div>
31
+
32
+ ## Model Description
33
+
34
+ - **Task**: Real-Time Semantic Segmentation
35
+ - **Dataset**: Cityscapes
36
+ - **Model**: BEVANet
37
+
38
+ BEVANet semantic segmentation model trained on Cityscapes dataset. Achieves 81.0% mIoU with 32.8 FPS on RTX3090.
39
+
40
+ ## Performance
41
+
42
+ - **mIoU**: 81.0%
43
+ - **FPS**: 32.8 (RTX3090)
44
+ - **Parameters**: 58.6M
45
+
46
+ ## Usage
47
+
48
+ ```python
49
+ from models.BEVANet import BEVANet_SEG
50
+
51
+ # Load model from specific branch
52
+ model = BEVANet_SEG.from_pretrained(
53
+ "maomao0819/BEVANet",
54
+ revision="main"
55
+ )
56
+
57
+ # For main branch (no revision needed)
58
+ # model = BEVANet_SEG.from_pretrained("maomao0819/BEVANet")
59
+ ```
60
+
61
+ ## All Model Variants
62
+
63
+ | Model | Branch | Dataset | Task | Performance | FPS | Parameters |
64
+ |-------|--------|---------|------|-------------|-----|------------|
65
+ | BEVANet-S | `imagenet-bevanet-s` | ImageNet | Classification | 71.1% Top-1 | 198.6 | 16.3M |
66
+ | BEVANet | `imagenet-bevanet` | ImageNet | Classification | 76.3% Top-1 | 82.3 | 57.4M |
67
+ | BEVANet-S | `cityscapes-bevanet-s` | Cityscapes | Segmentation | 78.2% mIoU | 70.0 | 15.2M |
68
+ | BEVANet | `main` | Cityscapes | Segmentation | 81.0% mIoU | 32.8 | 58.6M |
69
+ | BEVANet-S | `camvid-bevanet-s` | CamVid | Segmentation | 83.1% mIoU | 79.4 | 15.2M |
70
+ | BEVANet | `ade20k-bevanet` | ADE20K | Segmentation | 39.8% mIoU | 73.3 | 58.9M |
71
+
72
+ ## Citation
73
+
74
+ If you use this model, please cite:
75
+
76
+ ```bibtex
77
+ @inproceedings{huang2025bevanet,
78
+ title={Bevanet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation},
79
+ author={Huang, Ping-Mao and Chao, I-Tien and Huang, Ping-Chia and Liao, Jia-Wei and Chuang, Yung-Yu},
80
+ booktitle={2025 IEEE International Conference on Image Processing (ICIP)},
81
+ pages={2778--2783},
82
+ year={2025},
83
+ organization={IEEE}
84
+ }
85
+ ```