|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- HuggingFaceFW/fineweb-edu |
|
- HuggingFaceH4/MATH-500 |
|
- openai/gsm8k |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- mesh |
|
- moe |
|
- mesh-labs |
|
- alpha |
|
- preview |
|
- research |
|
- experiment |
|
- routing |
|
- innovative |
|
- innovation |
|
- mesh-moe |
|
- custom_code |
|
--- |
|
|
|
# Mesh-v0.1-2x2 (Stage 003) |
|
 |
|
|
|
## Introducing mesh |
|
|
|
This is our first ever model! Allow us to explain how the `mesh` architecture works in detail. |
|
|
|
- Neural Mesh extends the concept of Mixture of Experts by allowing bidirectional expert communication. |
|
|
|
- The experts are shared in a bidimensional grid (2x2, 4x4, etc.) layout, that allows for them to communicate with their neighbors using the "Neighbor Exchange" method. |
|
- Just like MoE models, Mesh models have dynamic routing, and through the `routing_k` parameter you can define the amount of active parameters. For this model (2x2): |
|
- top-1 routing: 173M active parameters |
|
- top-2 routing: 242M active parameters (default) |
|
- dense routing: 302M active parameters |
|
|
|
## Here's how the mesh architecture works: |
|
 |
|
|
|
## How to load the model |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, PretrainedConfig, PreTrainedModel |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation import GenerationMixin |
|
import os |
|
|
|
class MeshConfig(PretrainedConfig): |
|
model_type = "mesh" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=768, |
|
intermediate_size=2048, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_key_value_heads=12, |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
mesh_grid_size=(2, 2), |
|
expert_intermediate_size=256, |
|
routing_k=2, |
|
neighbor_exchange_enabled=True, |
|
cross_expert_attention_enabled=True, |
|
expert_scale_factor="sqrt_k", |
|
load_in_8bit=False, |
|
load_in_4bit=False, |
|
**kwargs |
|
): |
|
super().__init__( |
|
vocab_size=vocab_size, |
|
hidden_size=hidden_size, |
|
intermediate_size=intermediate_size, |
|
num_hidden_layers=num_hidden_layers, |
|
num_attention_heads=num_attention_heads, |
|
num_key_value_heads=num_key_value_heads, |
|
max_position_embeddings=max_position_embeddings, |
|
initializer_range=initializer_range, |
|
rms_norm_eps=rms_norm_eps, |
|
use_cache=use_cache, |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
self.mesh_grid_size = mesh_grid_size |
|
self.expert_intermediate_size = kwargs.pop("expert_intermediate_size", intermediate_size // (mesh_grid_size[0] * mesh_grid_size[1])) |
|
self.routing_k = routing_k |
|
self.neighbor_exchange_enabled = neighbor_exchange_enabled |
|
self.cross_expert_attention_enabled = cross_expert_attention_enabled |
|
self.expert_scale_factor = expert_scale_factor |
|
self.load_in_8bit = load_in_8bit |
|
self.load_in_4bit = load_in_4bit |
|
|
|
class MeshExpert(nn.Module): |
|
def __init__(self, config: MeshConfig): |
|
super().__init__() |
|
self.fc1 = nn.Linear(config.hidden_size, config.expert_intermediate_size) |
|
self.gelu = nn.GELU() |
|
self.fc2 = nn.Linear(config.expert_intermediate_size, config.hidden_size) |
|
|
|
def forward(self, x): |
|
return self.fc2(self.gelu(self.fc1(x))) |
|
|
|
class MeshRouter(nn.Module): |
|
def __init__(self, config: MeshConfig): |
|
super().__init__() |
|
self.gate = nn.Linear(config.hidden_size, config.mesh_grid_size[0] * config.mesh_grid_size[1]) |
|
self.softmax = nn.Softmax(dim=-1) |
|
self.routing_k = config.routing_k |
|
|
|
def forward(self, x): |
|
gate_scores = self.gate(x) |
|
gate_weights = self.softmax(gate_scores) |
|
topk_weights, topk_indices = torch.topk(gate_weights, self.routing_k, dim=-1) |
|
return topk_weights, topk_indices |
|
|
|
class NeighborExchange(nn.Module): |
|
def __init__(self, config: MeshConfig): |
|
super().__init__() |
|
self.config = config |
|
self.num_experts_x = config.mesh_grid_size[0] |
|
self.num_experts_y = config.mesh_grid_size[1] |
|
self.num_experts = self.num_experts_x * self.num_experts_y |
|
|
|
self.exchange_projection = nn.Linear(config.hidden_size, config.hidden_size) |
|
|
|
def forward(self, expert_outputs, expert_indices=None): |
|
if not self.config.neighbor_exchange_enabled: |
|
return expert_outputs |
|
|
|
batch_size, seq_length, num_experts, hidden_size = expert_outputs.shape |
|
reshaped_outputs = expert_outputs.view(batch_size, seq_length, self.num_experts_x, self.num_experts_y, hidden_size) |
|
aggregated_neighbor_info = torch.zeros_like(reshaped_outputs) |
|
|
|
for i in range(self.num_experts_x): |
|
for j in range(self.num_experts_y): |
|
current_expert_output = reshaped_outputs[:, :, i, j, :] |
|
neighbor_info = torch.zeros_like(current_expert_output) |
|
neighbors = [] |
|
if i > 0: neighbors.append(reshaped_outputs[:, :, i-1, j, :]) |
|
if i < self.num_experts_x - 1: neighbors.append(reshaped_outputs[:, :, i+1, j, :]) |
|
if j > 0: neighbors.append(reshaped_outputs[:, :, i, j-1, :]) |
|
if j < self.num_experts_y - 1: neighbors.append(reshaped_outputs[:, :, i, j+1, :]) |
|
|
|
if neighbors: |
|
neighbor_stack = torch.stack(neighbors, dim=-2) |
|
aggregated_info = torch.mean(neighbor_stack, dim=-2) |
|
neighbor_info = aggregated_info |
|
|
|
transformed_neighbor_info = self.exchange_projection(neighbor_info) |
|
aggregated_neighbor_info[:, :, i, j, :] = transformed_neighbor_info |
|
|
|
aggregated_neighbor_info = aggregated_neighbor_info.view(batch_size, seq_length, num_experts, hidden_size) |
|
exchanged_expert_outputs = expert_outputs + aggregated_neighbor_info |
|
|
|
return exchanged_expert_outputs |
|
|
|
class CrossExpertAttention(nn.Module): |
|
def __init__(self, config: MeshConfig): |
|
super().__init__() |
|
self.config = config |
|
self.cross_attention = nn.MultiheadAttention( |
|
embed_dim=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
batch_first=True |
|
) |
|
|
|
def forward(self, expert_outputs): |
|
if not self.config.cross_expert_attention_enabled: |
|
return expert_outputs |
|
|
|
batch_seq_size = expert_outputs.shape[0] * expert_outputs.shape[1] |
|
reshaped_outputs = expert_outputs.view(batch_seq_size, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size) |
|
cross_attn_output, _ = self.cross_attention(reshaped_outputs, reshaped_outputs, reshaped_outputs) |
|
cross_attn_output = cross_attn_output.view( |
|
expert_outputs.shape[0], expert_outputs.shape[1], self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size |
|
) |
|
return cross_attn_output |
|
|
|
class MeshLayer(nn.Module): |
|
def __init__(self, config: MeshConfig): |
|
super().__init__() |
|
self.config = config |
|
self.router = MeshRouter(config) |
|
self.experts = nn.ModuleList([MeshExpert(config) for _ in range(config.mesh_grid_size[0] * config.mesh_grid_size[1])]) |
|
self.neighbor_exchange = NeighborExchange(config) |
|
self.cross_expert_attention = CrossExpertAttention(config) |
|
|
|
def forward(self, hidden_states): |
|
topk_weights, topk_indices = self.router(hidden_states) |
|
expanded_hidden_states = hidden_states.unsqueeze(2).expand(-1, -1, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], -1) |
|
|
|
if self.config.expert_scale_factor == "sqrt_k": |
|
scaling_factor = math.sqrt(self.config.routing_k) |
|
scaled_expert_inputs = expanded_hidden_states * scaling_factor |
|
elif self.config.expert_scale_factor == "1_over_k": |
|
scaling_factor = 1.0 / self.config.routing_k |
|
scaled_expert_inputs = expanded_hidden_states * scaling_factor |
|
else: |
|
scaled_expert_inputs = expanded_hidden_states |
|
|
|
expert_outputs_list = [expert(scaled_expert_inputs[:, :, i, :]) for i, expert in enumerate(self.experts)] |
|
expert_outputs = torch.stack(expert_outputs_list, dim=2) |
|
|
|
exchanged_expert_outputs = self.neighbor_exchange(expert_outputs, topk_indices) |
|
cross_attned_expert_outputs = self.cross_expert_attention(exchanged_expert_outputs) |
|
|
|
gathered_outputs = torch.gather( |
|
cross_attned_expert_outputs, |
|
dim=2, |
|
index=topk_indices.unsqueeze(-1).expand(-1, -1, -1, self.config.hidden_size) |
|
) |
|
|
|
combined_output = (gathered_outputs * topk_weights.unsqueeze(-1)).sum(dim=2) |
|
|
|
return combined_output, topk_indices |
|
|
|
class MeshModel(PreTrainedModel, GenerationMixin): |
|
config_class = MeshConfig |
|
|
|
def __init__(self, config: MeshConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = nn.ModuleList([MeshLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
self._supports_gradient_checkpointing = True |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
return_dict=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
past_key_values=None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
inputs_embeds = self.embedding(input_ids) |
|
elif inputs_embeds is not None: |
|
pass |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
import torch.utils.checkpoint |
|
|
|
for i, layer in enumerate(self.layers): |
|
if hasattr(layer, 'forward') and callable(layer.forward): |
|
if self.gradient_checkpointing and self.training: |
|
checkpoint_output = torch.utils.checkpoint.checkpoint( |
|
layer, hidden_states, use_reentrant=False |
|
) |
|
if isinstance(checkpoint_output, tuple): |
|
hidden_states = checkpoint_output[0] |
|
else: |
|
hidden_states = checkpoint_output |
|
|
|
else: |
|
layer_output = layer(hidden_states) |
|
hidden_states = layer_output[0] |
|
else: |
|
print(f"Warning: Layer {i} does not have a callable forward method. Skipping layer processing.") |
|
|
|
hidden_states = self.norm(hidden_states) |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) |
|
|
|
if return_dict: |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
) |
|
else: |
|
return (loss, logits) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if inputs_embeds is not None: |
|
inputs_embeds = inputs_embeds[:, -1, :].unsqueeze(1) |
|
|
|
if inputs_embeds is not None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
if "attention_mask" in kwargs: |
|
model_inputs["attention_mask"] = kwargs["attention_mask"] |
|
|
|
return model_inputs |
|
|
|
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): |
|
self.gradient_checkpointing = True |
|
self.config.gradient_checkpointing = True |
|
print("Gradient checkpointing enabled on MeshModel.") |
|
|
|
def gradient_checkpointing_disable(self): |
|
self.gradient_checkpointing = False |
|
self.config.gradient_checkpointing = False |
|
print("Gradient checkpointing disabled on MeshModel.") |
|
|
|
def _set_gradient_checkpointing(self, enable=True): |
|
if enable: |
|
self.gradient_checkpointing_enable() |
|
else: |
|
self.gradient_checkpointing_disable() |
|
|
|
from transformers import AutoConfig |
|
AutoConfig.register("mesh", MeshConfig) |
|
AutoModelForCausalLM.register(MeshConfig, MeshModel) |
|
|
|
HF_MERGED_REPO_STAGE003 = "mesh-labs/v0.1-2x2-stage003" |
|
|
|
loaded_model_stage003 = None |
|
loaded_tokenizer_stage003 = None |
|
|
|
try: |
|
print(f"Attempting to load Stage 003 merged model from HF: {HF_MERGED_REPO_STAGE003}...") |
|
device_map = "auto" |
|
|
|
loaded_model_stage003 = AutoModelForCausalLM.from_pretrained( |
|
HF_MERGED_REPO_STAGE003, |
|
trust_remote_code=True, |
|
device_map=device_map, |
|
torch_dtype=torch.float32 |
|
) |
|
|
|
if torch.cuda.is_available(): |
|
loaded_model_stage003.to('cuda') |
|
print("Stage 003 merged model moved to GPU.") |
|
else: |
|
print("Stage 003 merged model loaded on CPU.") |
|
|
|
loaded_tokenizer_stage003 = AutoTokenizer.from_pretrained( |
|
HF_MERGED_REPO_STAGE003, |
|
trust_remote_code=True, |
|
use_fast=False |
|
) |
|
|
|
print("Stage 003 merged model and tokenizer loaded successfully from Hugging Face Hub.") |
|
|
|
except Exception as e: |
|
print(f"Error loading Stage 003 merged model or tokenizer from Hugging Face Hub: {e}") |
|
loaded_model_stage003 = None |
|
loaded_tokenizer_stage003 = None |
|
|
|
if loaded_model_stage003 is not None and loaded_tokenizer_stage003 is not None: |
|
print("\n--- Starting Chat Interface ---") |
|
print("Type your message and press Enter. Type 'quit' to exit.") |
|
|
|
loaded_model_stage003.eval() |
|
|
|
while True: |
|
try: |
|
user_input = input("You: ") |
|
if user_input.lower() == 'quit': |
|
break |
|
|
|
prompt = f"Question: {user_input}\nAnswer:" |
|
|
|
inputs = loaded_tokenizer_stage003(prompt, return_tensors="pt") |
|
|
|
if torch.cuda.is_available(): |
|
inputs = {k: v.to('cuda') for k, v in inputs.items()} |
|
|
|
with torch.no_grad(): |
|
outputs = loaded_model_stage003.generate( |
|
**inputs, |
|
max_new_tokens=128, |
|
num_beams=1, |
|
do_sample=False, |
|
) |
|
|
|
generated_sequence = loaded_tokenizer_stage003.decode(outputs[0], skip_special_tokens=True) |
|
|
|
answer_prefix = "Answer:" |
|
answer_start_index = generated_sequence.find(answer_prefix) |
|
|
|
if answer_start_index != -1: |
|
generated_answer = generated_sequence[answer_start_index + len(answer_prefix):].strip() |
|
else: |
|
print("Warning: 'Answer:' prefix not found in generated text. Showing full generated sequence.") |
|
generated_answer = generated_sequence.strip() |
|
|
|
print("Model:", generated_answer) |
|
|
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
print("Please try again or type 'quit' to exit.") |
|
|
|
else: |
|
print("\nModel or tokenizer not loaded. Cannot start chat interface.") |
|
``` |
|
|
|
## Disclaimer |
|
This small language model is just a proof-of-concept, paving the way to the final release, which is likely to happen in Q4 2025, and include more models and better support from external libraries such as Transformers and Llama.cpp. |