mliamsinclair's picture
End of training
40fd5e9 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - twitter-sentiment-analysis
metrics:
  - accuracy
  - f1
model-index:
  - name: twitter-sentiment-analysis-v2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: twitter-sentiment-analysis
          type: twitter-sentiment-analysis
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8366721507145392
          - name: F1
            type: f1
            value: 0.8366721507145392

twitter-sentiment-analysis-v2

This model is a fine-tuned version of distilbert-base-uncased on the twitter-sentiment-analysis dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3771
  • Accuracy: 0.8367
  • F1: 0.8367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3957 0.13 1000 0.4273 0.8075 0.8005
0.4086 0.27 2000 0.4081 0.8211 0.8139
0.4085 0.4 3000 0.3971 0.8274 0.8237
0.3936 0.53 4000 0.3857 0.8304 0.8307
0.3783 0.67 5000 0.3978 0.8317 0.8300
0.3858 0.8 6000 0.3887 0.8281 0.8182
0.3779 0.93 7000 0.3771 0.8367 0.8367
0.2971 1.07 8000 0.4023 0.8352 0.8310
0.2994 1.2 9000 0.3865 0.8326 0.8342
0.293 1.33 10000 0.4454 0.8299 0.8197
0.3053 1.47 11000 0.3929 0.8364 0.8349
0.3125 1.6 12000 0.4141 0.8366 0.8314

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2