|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- twitter-sentiment-analysis |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: twitter-sentiment-analysis-v2 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: twitter-sentiment-analysis |
|
type: twitter-sentiment-analysis |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8366721507145392 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8366721507145392 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twitter-sentiment-analysis-v2 |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the twitter-sentiment-analysis dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3771 |
|
- Accuracy: 0.8367 |
|
- F1: 0.8367 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: reduce_lr_on_plateau |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 0.3957 | 0.13 | 1000 | 0.4273 | 0.8075 | 0.8005 | |
|
| 0.4086 | 0.27 | 2000 | 0.4081 | 0.8211 | 0.8139 | |
|
| 0.4085 | 0.4 | 3000 | 0.3971 | 0.8274 | 0.8237 | |
|
| 0.3936 | 0.53 | 4000 | 0.3857 | 0.8304 | 0.8307 | |
|
| 0.3783 | 0.67 | 5000 | 0.3978 | 0.8317 | 0.8300 | |
|
| 0.3858 | 0.8 | 6000 | 0.3887 | 0.8281 | 0.8182 | |
|
| 0.3779 | 0.93 | 7000 | 0.3771 | 0.8367 | 0.8367 | |
|
| 0.2971 | 1.07 | 8000 | 0.4023 | 0.8352 | 0.8310 | |
|
| 0.2994 | 1.2 | 9000 | 0.3865 | 0.8326 | 0.8342 | |
|
| 0.293 | 1.33 | 10000 | 0.4454 | 0.8299 | 0.8197 | |
|
| 0.3053 | 1.47 | 11000 | 0.3929 | 0.8364 | 0.8349 | |
|
| 0.3125 | 1.6 | 12000 | 0.4141 | 0.8366 | 0.8314 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|