|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: poopchute |
|
- text: Made |
|
- text: prox |
|
- text: What happens, uncle, everything in order? |
|
- text: I need Maritima Avenue to reduce congestion |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
--- |
|
|
|
# English Input Classifier |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:-------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| request | <ul><li>'necessary lingerie'</li><li>'necessary material for today'</li><li>'I finished the room 234'</li></ul> | |
|
| conversation | <ul><li>"What's up, uncle, all good?"</li><li>'Good, how is the thing going?!'</li><li>'Hello how are you'</li></ul> | |
|
| help | <ul><li>'Please help'</li><li>"Help I don't know what I can do"</li><li>'Hello, what can I do'</li></ul> | |
|
| censorship | <ul><li>'You are a useless complete, you are useless'</li><li>'Always saying stupidities, better shut up'</li><li>'Your single existence is a shame'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("monentiadev/en-input-classifier") |
|
# Run inference |
|
preds = model("Hello") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 1 | 5.1483 | 40 | |
|
|
|
| Label | Training Sample Count | |
|
|:-------------|:----------------------| |
|
| censorship | 576 | |
|
| conversation | 123 | |
|
| help | 204 | |
|
| request | 520 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (128, 128) |
|
- num_epochs: (3, 3) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0022 | 1 | 0.3104 | - | |
|
| 0.1124 | 50 | 0.3267 | - | |
|
| 0.2247 | 100 | 0.2008 | - | |
|
| 0.3371 | 150 | 0.0842 | - | |
|
| 0.4494 | 200 | 0.0218 | - | |
|
| 0.5618 | 250 | 0.0103 | - | |
|
| 0.6742 | 300 | 0.0052 | - | |
|
| 0.7865 | 350 | 0.0034 | - | |
|
| 0.8989 | 400 | 0.0025 | - | |
|
| 1.0112 | 450 | 0.0019 | - | |
|
| 1.1236 | 500 | 0.0019 | - | |
|
| 1.2360 | 550 | 0.0017 | - | |
|
| 1.3483 | 600 | 0.001 | - | |
|
| 1.4607 | 650 | 0.001 | - | |
|
| 1.5730 | 700 | 0.0011 | - | |
|
| 1.6854 | 750 | 0.0009 | - | |
|
| 1.7978 | 800 | 0.001 | - | |
|
| 1.9101 | 850 | 0.0007 | - | |
|
| 2.0225 | 900 | 0.0008 | - | |
|
| 2.1348 | 950 | 0.0007 | - | |
|
| 2.2472 | 1000 | 0.0007 | - | |
|
| 2.3596 | 1050 | 0.0006 | - | |
|
| 2.4719 | 1100 | 0.0006 | - | |
|
| 2.5843 | 1150 | 0.0006 | - | |
|
| 2.6966 | 1200 | 0.0006 | - | |
|
| 2.8090 | 1250 | 0.0006 | - | |
|
| 2.9213 | 1300 | 0.0006 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.0 |
|
- SetFit: 1.1.2 |
|
- Sentence Transformers: 5.0.0 |
|
- Transformers: 4.53.1 |
|
- PyTorch: 2.7.1+cu126 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.21.2 |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |