LSIbabnikz
Adding eDifFIQA(T) a light-weight model for face image quality assessment. (#263)
4c44ba2
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
import sys
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
sys.path.append('../face_detection_yunet')
from yunet import YuNet
from ediffiqa import eDifFIQA
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
REFERENCE_FACIAL_POINTS = [
[38.2946 , 51.6963 ],
[73.5318 , 51.5014 ],
[56.0252 , 71.7366 ],
[41.5493 , 92.3655 ],
[70.729904, 92.2041 ]
]
parser = argparse.ArgumentParser(description='eDifFIQA: Towards Efficient Face Image Quality Assessment based on Denoising Diffusion Probabilistic Models (https://github.com/LSIbabnikz/eDifFIQA).')
parser.add_argument('--input', '-i', type=str, default='./sample_image.jpg',
help='Usage: Set input to a certain image, defaults to "./sample_image.jpg".')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
ediffiqa_parser = parser.add_argument_group("eDifFIQA", " Parameters of eDifFIQA - For face image quality assessment ")
ediffiqa_parser.add_argument('--model_q', '-mq', type=str, default='ediffiqa_tiny_jun2024.onnx',
help="Usage: Set model type, defaults to 'ediffiqa_tiny_jun2024.onnx'.")
yunet_parser = parser.add_argument_group("YuNet", " Parameters of YuNet - For face detection ")
yunet_parser.add_argument('--model_d', '-md', type=str, default='../face_detection_yunet/face_detection_yunet_2023mar.onnx',
help="Usage: Set model type, defaults to '../face_detection_yunet/face_detection_yunet_2023mar.onnx'.")
yunet_parser.add_argument('--conf_threshold', type=float, default=0.9,
help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
yunet_parser.add_argument('--nms_threshold', type=float, default=0.3,
help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.')
yunet_parser.add_argument('--top_k', type=int, default=5000,
help='Usage: Keep top_k bounding boxes before NMS.')
args = parser.parse_args()
def visualize(image, results):
output = image.copy()
cv.putText(output, f"{results:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, .8, (0, 0, 255))
return output
def align_image(image, detection_data):
""" Performs face alignment on given image using the provided face landmarks (keypoints)
Args:
image (np.array): Unaligned face image
detection_data (np.array): Detection data provided by YuNet
Returns:
np.array: Aligned image
"""
reference_pts = REFERENCE_FACIAL_POINTS
ref_pts = np.float32(reference_pts)
ref_pts_shp = ref_pts.shape
if ref_pts_shp[0] == 2:
ref_pts = ref_pts.T
# Get source keypoints from YuNet detection data
src_pts = np.float32(detection_data[0][4:-1]).reshape(5,2)
src_pts_shp = src_pts.shape
if src_pts_shp[0] == 2:
src_pts = src_pts.T
tfm, _ = cv.estimateAffinePartial2D(src_pts, ref_pts, method=cv.LMEDS)
face_img = cv.warpAffine(image, tfm, (112, 112))
return face_img
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate eDifFIQA(T) (quality assesment)
model_quality = eDifFIQA(
modelPath=args.model_q,
inputSize=[112, 112],
)
model_quality.setBackendAndTarget(
backendId=backend_id,
targetId=target_id
)
# Instantiate YuNet (face detection)
model_detect = YuNet(
modelPath=args.model_d,
inputSize=[320, 320],
confThreshold=args.conf_threshold,
nmsThreshold=args.nms_threshold,
topK=args.top_k,
backendId=backend_id,
targetId=target_id
)
# If input is an image
image = cv.imread(args.input)
h, w, _ = image.shape
# Face Detection
model_detect.setInputSize([w, h])
results_detect = model_detect.infer(image)
assert results_detect.size != 0, f" Face could not be detected in: {args.input}. "
# Face Alignment
aligned_image = align_image(image, results_detect)
# Quality Assesment
quality = model_quality.infer(aligned_image)
quality = np.squeeze(quality).item()
viz_image = visualize(aligned_image, quality)
print(f" Quality score of {args.input}: {quality:.3f} ")
print(f" Saving visualization to results.jpg. ")
cv.imwrite('results.jpg', viz_image)