DaniAffCH's picture
[GSoC] Add block quantized models (#270)
85a27e0
# Quantization with ONNXRUNTIME and Neural Compressor
[ONNXRUNTIME](https://github.com/microsoft/onnxruntime) and [Neural Compressor](https://github.com/intel/neural-compressor) are used for quantization in the Zoo.
Install dependencies before trying quantization:
```shell
pip install -r requirements.txt
```
## Quantization Usage
Quantize all models in the Zoo:
```shell
python quantize-ort.py
python quantize-inc.py
```
Quantize one of the models in the Zoo:
```shell
# python quantize.py <key_in_models>
python quantize-ort.py yunet
python quantize-inc.py mobilenetv1
```
Customizing quantization configs:
```python
# Quantize with ONNXRUNTIME
# 1. add your model into `models` dict in quantize-ort.py
models = dict(
# ...
model1=Quantize(model_path='/path/to/model1.onnx',
calibration_image_dir='/path/to/images',
transforms=Compose([''' transforms ''']), # transforms can be found in transforms.py
per_channel=False, # set False to quantize in per-tensor style
act_type='int8', # available types: 'int8', 'uint8'
wt_type='int8' # available types: 'int8', 'uint8'
)
)
# 2. quantize your model
python quantize-ort.py model1
# Quantize with Intel Neural Compressor
# 1. add your model into `models` dict in quantize-inc.py
models = dict(
# ...
model1=Quantize(model_path='/path/to/model1.onnx',
config_path='/path/to/model1.yaml'),
)
# 2. prepare your YAML config model1.yaml (see configs in ./inc_configs)
# 3. quantize your model
python quantize-inc.py model1
```
## Blockwise quantization usage
Block-quantized models under each model directory are generated with `--block_size=64`
`block_quantize.py` requires Python>=3.7
To perform weight-only blockwise quantization:
```shell
python block_quantize.py --input_model INPUT_MODEL.onnx --output_model OUTPUT_MODEL.onnx --block_size {block size} --bits {8,16}
```
## Dataset
Some models are quantized with extra datasets.
- [MP-PalmDet](../../models/palm_detection_mediapipe) and [MP-HandPose](../../models/handpose_estimation_mediapipe) are quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Download the dataset from [this link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and replace `path/to/dataset` with the path to `FreiHAND_pub_v2_eval/evaluation/rgb`.