prithivMLmods's picture
Update README.md
1c717e6 verified
---
license: apache-2.0
datasets:
- AadityaJain/Fromula_text_classification
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- Formula-Text-Detection
- SigLIP2
- Image-Classification
---
![3.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/lg90wKzVcHjnTXs8_EGCR.png)
# **Formula-Text-Detection**
> **Formula-Text-Detection** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **binary image classification**. It is built using the **SiglipForImageClassification** architecture to distinguish between **mathematical formulas** and **natural text** in document or image regions.
> [!Note]
> Note: This model works best with plain text or formulas using the same font style
```py
Classification Report:
precision recall f1-score support
formula 0.9983 1.0000 0.9991 6375
text 1.0000 0.9980 0.9990 5457
accuracy 0.9991 11832
macro avg 0.9991 0.9990 0.9991 11832
weighted avg 0.9991 0.9991 0.9991 11832
```
![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/OdNUMSb_utc_RBWd3Gjfq.png)
---
> [!note]
*SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786
---
## **Label Space: 2 Classes**
The model classifies each input image into one of the following categories:
```
Class 0: "formula"
Class 1: "text"
```
---
## **Install Dependencies**
```bash
pip install -q transformers torch pillow gradio
```
---
## **Inference Code**
```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Formula-Text-Detection" # Replace with your model path if different
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
"0": "formula",
"1": "text"
}
def classify_formula_or_text(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_formula_or_text,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Formula or Text"),
title="Formula-Text-Detection",
description="Upload an image region to classify whether it contains a mathematical formula or natural text."
)
if __name__ == "__main__":
iface.launch()
```
## **Demo Inference**
> [!Important]
> Text
![Screenshot 2025-04-30 at 04-57-23 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/KulSEk6AEV-QgMX4rFimq.png)
![Screenshot 2025-04-30 at 04-57-50 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3y1nWn2moOgga939LlhzB.png)
![Screenshot 2025-04-30 at 04-58-16 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xvliPSGTHtA_bkEl5utIM.png)
> [!Important]
> Formula
![Screenshot 2025-04-30 at 04-58-51 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4TbEz_vLKochuTuNiq7cH.png)
![Screenshot 2025-04-30 at 04-59-28 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/fS_EoLZ7pnfWoWB5pVooL.png)
![Screenshot 2025-04-30 at 05-01-42 Formula-Text-Detection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/utc88h1KQLLXKB-qllT4v.png)
---
## **Intended Use**
**Formula-Text-Detection** can be used in:
- **OCR Preprocessing** – Improve document OCR accuracy by separating formulas from text.
- **Scientific Document Analysis** – Automatically detect mathematical content.
- **Educational Platforms** – Classify and annotate scanned materials.
- **Layout Understanding** – Help AI systems interpret mixed-content documents.