|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- google/siglip2-base-patch32-256 |
|
datasets: |
|
- strangerguardhf/DSE1 |
|
language: |
|
- en |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- siglip2 |
|
- '384' |
|
- explicit-content |
|
- adult-content |
|
- classification |
|
--- |
|
|
|
 |
|
|
|
# **siglip2-x256p32-explicit-content** |
|
|
|
> **siglip2-x256p32-explicit-content** is a vision-language encoder model fine-tuned from **siglip2-base-patch32-256** for **multi-class image classification**. Based on the **SiglipForImageClassification** architecture, this model is designed to detect and categorize various forms of visual content, from safe to explicit, making it ideal for content moderation and media filtering. |
|
|
|
> [!note] |
|
*SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 |
|
|
|
--- |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
Anime Picture 0.9314 0.9139 0.9226 5600 |
|
Hentai Picture 0.9349 0.9213 0.9281 4180 |
|
Normal or Safe 0.9340 0.9328 0.9334 5503 |
|
Pornography 0.9769 0.9650 0.9709 5600 |
|
Enticing or Sensual 0.9264 0.9663 0.9459 5600 |
|
|
|
accuracy 0.9409 26483 |
|
macro avg 0.9407 0.9398 0.9402 26483 |
|
weighted avg 0.9410 0.9409 0.9408 26483 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
## **Label Space: 5 Classes** |
|
|
|
This model classifies each image into one of the following content types: |
|
|
|
``` |
|
Class 0: "Anime Picture" |
|
Class 1: "Hentai Picture" |
|
Class 2: "Normal or Safe" |
|
Class 3: "Pornography" |
|
Class 4: "Enticing or Sensual" |
|
``` |
|
|
|
--- |
|
|
|
## **Install Dependencies** |
|
|
|
```bash |
|
pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
--- |
|
|
|
## **Inference Code** |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/siglip2-x256p32-explicit-content" # Replace with your HF model path if needed |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
# ID to Label mapping |
|
id2label = { |
|
"0": "Anime Picture", |
|
"1": "Hentai Picture", |
|
"2": "Normal or Safe", |
|
"3": "Pornography", |
|
"4": "Enticing or Sensual" |
|
} |
|
|
|
def classify_explicit_content(image): |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
prediction = { |
|
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) |
|
} |
|
|
|
return prediction |
|
|
|
# Gradio Interface |
|
iface = gr.Interface( |
|
fn=classify_explicit_content, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(num_top_classes=5, label="Predicted Content Type"), |
|
title= "siglip2-x256p32-explicit-content", |
|
description="Classifies images as Anime, Hentai, Pornography, Enticing, or Safe for use in moderation systems." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
## **Intended Use** |
|
|
|
This model is ideal for: |
|
|
|
- **AI-Powered Content Moderation** |
|
- **NSFW and Explicit Media Detection** |
|
- **Content Filtering in Social Media Platforms** |
|
- **Image Dataset Cleaning & Annotation** |
|
- **Parental Control Solutions** |