|
--- |
|
library_name: transformers |
|
language: |
|
- nl |
|
license: mit |
|
base_model: microsoft/speecht5_tts |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- procit007/saskia_may23_39768 |
|
model-index: |
|
- name: speecht5_tts_v1_100 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# speecht5_tts_v1_100 |
|
|
|
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the saskia_may23_39768 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4580 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 90 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:-----:|:---------------:| |
|
| 0.5267 | 2.7939 | 1000 | 0.4852 | |
|
| 0.4925 | 5.5870 | 2000 | 0.4635 | |
|
| 0.488 | 8.3802 | 3000 | 0.4534 | |
|
| 0.4771 | 11.1733 | 4000 | 0.4528 | |
|
| 0.4703 | 13.9672 | 5000 | 0.4473 | |
|
| 0.4566 | 16.7603 | 6000 | 0.4435 | |
|
| 0.4548 | 19.5535 | 7000 | 0.4532 | |
|
| 0.4499 | 22.3466 | 8000 | 0.4473 | |
|
| 0.456 | 25.1398 | 9000 | 0.4446 | |
|
| 0.4531 | 27.9336 | 10000 | 0.4457 | |
|
| 0.4479 | 30.7268 | 11000 | 0.4495 | |
|
| 0.4461 | 33.5199 | 12000 | 0.4430 | |
|
| 0.4384 | 36.3131 | 13000 | 0.4410 | |
|
| 0.4346 | 39.1062 | 14000 | 0.4475 | |
|
| 0.4399 | 41.9001 | 15000 | 0.4461 | |
|
| 0.4342 | 44.6932 | 16000 | 0.4455 | |
|
| 0.433 | 47.4864 | 17000 | 0.4486 | |
|
| 0.4344 | 50.2795 | 18000 | 0.4568 | |
|
| 0.433 | 53.0727 | 19000 | 0.4490 | |
|
| 0.4318 | 55.8665 | 20000 | 0.4554 | |
|
| 0.4292 | 58.6597 | 21000 | 0.4535 | |
|
| 0.4289 | 61.4528 | 22000 | 0.4510 | |
|
| 0.4284 | 64.2460 | 23000 | 0.4534 | |
|
| 0.43 | 67.0391 | 24000 | 0.4489 | |
|
| 0.4277 | 69.8330 | 25000 | 0.4541 | |
|
| 0.429 | 72.6261 | 26000 | 0.4548 | |
|
| 0.423 | 75.4193 | 27000 | 0.4612 | |
|
| 0.4265 | 78.2124 | 28000 | 0.4516 | |
|
| 0.4344 | 81.0056 | 29000 | 0.4584 | |
|
| 0.4303 | 83.7994 | 30000 | 0.4610 | |
|
| 0.4279 | 86.5926 | 31000 | 0.4562 | |
|
| 0.428 | 89.3857 | 32000 | 0.4580 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.56.0.dev0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.2 |
|
|