|
--- |
|
base_model: |
|
- microsoft/Phi-4-mini-instruct |
|
language: |
|
- multilingual |
|
library_name: transformers |
|
license: bsd-3-clause |
|
pipeline_tag: text-generation |
|
tags: |
|
- torchao |
|
- phi |
|
- phi4 |
|
- nlp |
|
- code |
|
- math |
|
- chat |
|
- conversational |
|
--- |
|
|
|
This repository hosts the **Phi4-mini-instruct** model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) |
|
using int4 weight-only quantization and the [awq](https://arxiv.org/abs/2306.00978) algorithm. |
|
This work is brought to you by the PyTorch team. This model can be used directly or served using [vLLM](https://docs.vllm.ai/en/latest/) for 56% VRAM reduction (3.95 GB needed) |
|
and 1.17x speedup on H100 GPUs. The model is calibrated with 2 samples from `mmlu_pro` task to recover the accuracy for `mmlu_pro` specifically. |
|
|
|
# Inference with vLLM |
|
Install vllm nightly and torchao nightly to get some recent changes: |
|
``` |
|
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly |
|
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
``` |
|
|
|
## Serving |
|
Then we can serve with the following command: |
|
```Shell |
|
# Server |
|
export MODEL=pytorch/Phi-4-mini-instruct-AWQ-INT4 |
|
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 |
|
``` |
|
|
|
```Shell |
|
# Client |
|
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{ |
|
"model": "pytorch/Phi-4-mini-instruct-AWQ-INT4", |
|
"messages": [ |
|
{"role": "user", "content": "Give me a short introduction to large language models."} |
|
], |
|
"temperature": 0.6, |
|
"top_p": 0.95, |
|
"top_k": 20, |
|
"max_tokens": 32768 |
|
}' |
|
``` |
|
|
|
Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao, |
|
this is expected be resolved in pytorch 2.8. |
|
|
|
# Inference with Transformers |
|
|
|
Install the required packages: |
|
```Shell |
|
pip install git+https://github.com/huggingface/transformers@main |
|
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
pip install accelerate |
|
``` |
|
|
|
Example: |
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "pytorch/Phi-4-mini-instruct-AWQ-INT4" |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
# prepare the model input |
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32768 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
# parsing thinking content |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
|
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip(" |
|
") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip(" |
|
") |
|
|
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
``` |
|
|
|
|
|
|
|
|
|
# Quantization Recipe |
|
|
|
Install the required packages: |
|
```Shell |
|
pip install git+https://github.com/huggingface/transformers@main |
|
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
pip install accelerate |
|
``` |
|
|
|
|
|
|
|
Use the following code to get the quantized model: |
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
model_id = "microsoft/Phi-4-mini-instruct" |
|
model_to_quantize = "microsoft/Phi-4-mini-instruct" |
|
|
|
|
|
from torchao.quantization import Int4WeightOnlyConfig, quantize_ |
|
from torchao.prototype.awq import ( |
|
AWQConfig, |
|
) |
|
from torchao._models._eval import TransformerEvalWrapper |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_to_quantize, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
base_config = Int4WeightOnlyConfig(group_size=128, version=2) |
|
quant_config = AWQConfig(base_config, step="prepare") |
|
quantize_( |
|
model, |
|
quant_config, |
|
) |
|
tasks = ["mmlu_pro"] |
|
TransformerEvalWrapper( |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_seq_length=max_seq_length, |
|
).run_eval( |
|
tasks=tasks, |
|
limit=calibration_limit, |
|
) |
|
quant_config = AWQConfig(base_config, step="convert") |
|
quantize_(model, quant_config) |
|
|
|
quantized_model = model |
|
quant_config = AWQConfig(base_config, step="prepare_for_loading") |
|
quantized_model.config.quantization_config = TorchAoConfig(quant_config) |
|
|
|
|
|
# Push to hub |
|
USER_ID = "YOUR_USER_ID" |
|
MODEL_NAME = model_id.split("/")[-1] |
|
save_to = f"{USER_ID}/{MODEL_NAME}-AWQ-INT4" |
|
quantized_model.push_to_hub(save_to, safe_serialization=False) |
|
tokenizer.push_to_hub(save_to) |
|
|
|
# Manual Testing |
|
prompt = "Hey, are you conscious? Can you talk to me?" |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "", |
|
}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
templated_prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
print("Prompt:", prompt) |
|
print("Templated prompt:", templated_prompt) |
|
inputs = tokenizer( |
|
templated_prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt):]) |
|
``` |
|
|
|
Note: to `push_to_hub` you need to run |
|
```Shell |
|
pip install -U "huggingface_hub[cli]" |
|
huggingface-cli login |
|
``` |
|
and use a token with write access, from https://huggingface.co/settings/tokens |
|
|
|
# Model Quality |
|
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. Here we only run on mmlu for sanity check. |
|
|
|
Since the checkpoint is tuned on `mmlu_pro`, we check against the accuracy for `mmlu_pro`: |
|
|
|
| Benchmark | | | | |
|
|----------------------------------|----------------|---------------------------|---------------------------| |
|
| | microsoft/Phi-4-mini-instruct | pytorch/Phi-4-mini-instruct-INT4 | pytorch/Phi-4-mini-instruct-AWQ-INT4 |
|
| mmlu_pro | 46.43 | 36.74 | 43.13 | |
|
|
|
|
|
<details> |
|
<summary> Reproduce Model Quality Results </summary> |
|
|
|
Need to install lm-eval from source: |
|
https://github.com/EleutherAI/lm-evaluation-harness#install |
|
|
|
## baseline |
|
```Shell |
|
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks mmlu --device cuda:0 --batch_size 8 |
|
``` |
|
|
|
## AWQ-INT4 |
|
```Shell |
|
export MODEL=pytorch/Phi-4-mini-instruct-AWQ-INT4 |
|
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8 |
|
``` |
|
</details> |
|
|
|
|
|
|
|
|
|
# Peak Memory Usage |
|
|
|
## Results |
|
|
|
| Benchmark | | | |
|
|------------------|----------------|--------------------------------| |
|
| | microsoft/Phi-4-mini-instruct | pytorch/Phi-4-mini-instruct-AWQ-INT4 | |
|
| Peak Memory (GB) | 8.91 | 3.95 (55.67% reduction) | |
|
|
|
|
|
|
|
<details> |
|
<summary> Reproduce Peak Memory Usage Results </summary> |
|
|
|
We can use the following code to get a sense of peak memory usage during inference: |
|
|
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
# use "microsoft/Phi-4-mini-instruct" or "pytorch/Phi-4-mini-instruct-AWQ-INT4" |
|
model_id = "pytorch/Phi-4-mini-instruct-AWQ-INT4" |
|
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
prompt = "Hey, are you conscious? Can you talk to me?" |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "", |
|
}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
templated_prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
print("Prompt:", prompt) |
|
print("Templated prompt:", templated_prompt) |
|
inputs = tokenizer( |
|
templated_prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt):]) |
|
|
|
mem = torch.cuda.max_memory_reserved() / 1e9 |
|
print(f"Peak Memory Usage: {mem:.02f} GB") |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
|
|
# Model Performance |
|
|
|
## Results (H100 machine) |
|
| Benchmark (Latency) | | | |
|
|----------------------------------|----------------|--------------------------| |
|
| | microsoft/Phi-4-mini-instruct | pytorch/Phi-4-mini-instruct-AWQ-INT4 | |
|
| latency (batch_size=1) | 1.60s | 1.37s (1.17x speedup) | |
|
| latency (batch_size=256) | 5.47s | 5.55s (0.98x speedup) | |
|
|
|
|
|
Note: it's expected that the awq-int4 checkpoint is slower when batch size is 256 since the problem is not memory bound but becomes compute bound when batch size is larger, while |
|
int4 weight only checkpoint is only expected to have speedup for memory bound situations. |
|
|
|
<details> |
|
<summary> Reproduce Model Performance Results </summary> |
|
|
|
## Setup |
|
|
|
Get vllm source code: |
|
```Shell |
|
git clone git@github.com:vllm-project/vllm.git |
|
``` |
|
|
|
Install vllm |
|
``` |
|
VLLM_USE_PRECOMPILED=1 pip install --editable . |
|
``` |
|
|
|
Run the benchmarks under `vllm` root folder: |
|
|
|
## benchmark_latency |
|
|
|
### baseline |
|
```Shell |
|
export MODEL=microsoft/Phi-4-mini-instruct |
|
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 |
|
``` |
|
|
|
### AWQ-INT4 |
|
```Shell |
|
export MODEL=pytorch/Phi-4-mini-instruct-AWQ-INT4 |
|
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 |
|
``` |
|
</details> |
|
|
|
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization |
|
The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099). |
|
|
|
**Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL . |
|
|
|
# Resources |
|
* **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao) |
|
* **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html) |
|
|
|
|
|
# Disclaimer |
|
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. |
|
|
|
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein. |
|
|