|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: EleutherAI/pythia-2.8b |
|
tags: |
|
- base_model:adapter:EleutherAI/pythia-2.8b |
|
- lora |
|
- transformers |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: pythia-2.8b-sft |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pythia-2.8b-sft |
|
|
|
This model is a fine-tuned version of [EleutherAI/pythia-2.8b](https://huggingface.co/EleutherAI/pythia-2.8b) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6671 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.8621 | 0.0442 | 100 | 1.7438 | |
|
| 1.7909 | 0.0884 | 200 | 1.7135 | |
|
| 1.7775 | 0.1327 | 300 | 1.7020 | |
|
| 1.7587 | 0.1769 | 400 | 1.6937 | |
|
| 1.7683 | 0.2211 | 500 | 1.6876 | |
|
| 1.7488 | 0.2653 | 600 | 1.6824 | |
|
| 1.7646 | 0.3096 | 700 | 1.6799 | |
|
| 1.7557 | 0.3538 | 800 | 1.6776 | |
|
| 1.7485 | 0.3980 | 900 | 1.6743 | |
|
| 1.7368 | 0.4422 | 1000 | 1.6729 | |
|
| 1.7298 | 0.4865 | 1100 | 1.6705 | |
|
| 1.7525 | 0.5307 | 1200 | 1.6724 | |
|
| 1.7386 | 0.5749 | 1300 | 1.6703 | |
|
| 1.7325 | 0.6191 | 1400 | 1.6684 | |
|
| 1.7306 | 0.6633 | 1500 | 1.6682 | |
|
| 1.7262 | 0.7076 | 1600 | 1.6669 | |
|
| 1.7333 | 0.7518 | 1700 | 1.6675 | |
|
| 1.7318 | 0.7960 | 1800 | 1.6673 | |
|
| 1.7293 | 0.8402 | 1900 | 1.6668 | |
|
| 1.7326 | 0.8845 | 2000 | 1.6671 | |
|
| 1.7378 | 0.9287 | 2100 | 1.6668 | |
|
| 1.7259 | 0.9729 | 2200 | 1.6671 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.17.0 |
|
- Transformers 4.55.0 |
|
- Pytorch 2.7.1+cu126 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.4 |