rishavranaut's picture
rishavranaut/Llama3_8B_final_Task2_2.0
aa4d499 verified
metadata
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
metrics:
  - accuracy
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: Llama3_8B_final_Task2_2.0
    results: []

Llama3_8B_final_Task2_2.0

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5334
  • Accuracy: 0.9129
  • Precision: 0.9050
  • Recall: 0.9231
  • F1 score: 0.9140

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 score
0.6105 0.2725 200 0.3962 0.8486 0.8793 0.8091 0.8427
0.4553 0.5450 400 0.3388 0.8757 0.8729 0.8803 0.8766
0.4318 0.8174 600 0.3273 0.89 0.9006 0.8775 0.8889
0.3155 1.0899 800 0.3807 0.89 0.9281 0.8462 0.8852
0.3279 1.3624 1000 0.3757 0.8943 0.9601 0.8234 0.8865
0.2451 1.6349 1200 0.3784 0.89 0.8683 0.9202 0.8935
0.2956 1.9074 1400 0.3187 0.9143 0.9318 0.8946 0.9128
0.2107 2.1798 1600 0.3999 0.89 0.8513 0.9459 0.8961
0.1744 2.4523 1800 0.6330 0.8857 0.9788 0.7892 0.8738
0.191 2.7248 2000 0.4101 0.91 0.9444 0.8718 0.9067
0.1378 2.9973 2200 0.4604 0.8957 0.8582 0.9487 0.9012
0.0703 3.2698 2400 0.4276 0.9 0.8958 0.9060 0.9008
0.0582 3.5422 2600 0.5431 0.9086 0.9527 0.8604 0.9042
0.0887 3.8147 2800 0.4993 0.9157 0.9534 0.8746 0.9123
0.0976 4.0872 3000 0.4540 0.9157 0.9269 0.9031 0.9149
0.0179 4.3597 3200 0.5068 0.92 0.9086 0.9345 0.9213
0.0277 4.6322 3400 0.5119 0.9157 0.9269 0.9031 0.9149
0.0231 4.9046 3600 0.5334 0.9129 0.9050 0.9231 0.9140

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1