Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
# 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua, Shengqiang Li) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import queue | |
import random | |
import time | |
import threading | |
from typing import Dict, Optional, Callable, List, Generator | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from transformers import Qwen2ForCausalLM | |
from torch.nn.utils.rnn import pad_sequence, unpad_sequence | |
from cosyvoice.utils.common import IGNORE_ID | |
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss | |
from cosyvoice.utils.common import th_accuracy | |
from cosyvoice.utils.file_utils import logging | |
from cosyvoice.utils.mask import make_pad_mask | |
class TransformerLM(torch.nn.Module): | |
def __init__( | |
self, | |
text_encoder_input_size: int, | |
llm_input_size: int, | |
llm_output_size: int, | |
text_token_size: int, | |
speech_token_size: int, | |
text_encoder: torch.nn.Module, | |
llm: torch.nn.Module, | |
sampling: Callable, | |
length_normalized_loss: bool = True, | |
lsm_weight: float = 0.0, | |
spk_embed_dim: int = 192, | |
): | |
super().__init__() | |
self.llm_input_size = llm_input_size | |
self.speech_token_size = speech_token_size | |
# 1. build text token inputs related modules | |
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size) | |
self.text_encoder = text_encoder | |
self.text_encoder_affine_layer = nn.Linear( | |
self.text_encoder.output_size(), | |
llm_input_size | |
) | |
# 2. build speech token language model related modules | |
self.sos_eos = 0 | |
self.task_id = 1 | |
self.llm_embedding = torch.nn.Embedding(2, llm_input_size) | |
self.llm = llm | |
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1) | |
self.criterion_ce = LabelSmoothingLoss( | |
size=speech_token_size + 1, | |
padding_idx=IGNORE_ID, | |
smoothing=lsm_weight, | |
normalize_length=length_normalized_loss, | |
) | |
# 3. [Optional] build speech token related modules | |
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size) | |
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size) | |
# 4. sampling method | |
self.sampling = sampling | |
def encode( | |
self, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
): | |
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1) | |
encoder_out_lens = encoder_mask.squeeze(1).sum(1) | |
encoder_out = self.text_encoder_affine_layer(encoder_out) | |
return encoder_out, encoder_out_lens | |
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len): | |
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True) | |
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) | |
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) | |
for i in range(len(text_token))] | |
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32) | |
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID) | |
return lm_input, lm_input_len | |
def forward( | |
self, | |
batch: dict, | |
device: torch.device, | |
) -> Dict[str, Optional[torch.Tensor]]: | |
""" | |
Args: | |
text: (B, L, D) | |
text_lengths: (B,) | |
audio: (B, T, N) or (B, T) | |
audio_lengths: (B,) | |
""" | |
text_token = batch['text_token'].to(device) | |
text_token_len = batch['text_token_len'].to(device) | |
speech_token = batch['speech_token'].to(device) | |
speech_token_len = batch['speech_token_len'].to(device) | |
embedding = batch['embedding'].to(device) | |
# 1. prepare llm_target | |
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + | |
[self.speech_token_size]) for i in range(text_token.size(0))] | |
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device) | |
# 1. encode text_token | |
text_token = self.text_embedding(text_token) | |
text_token, text_token_len = self.encode(text_token, text_token_len) | |
# 2. embedding projection | |
embedding = F.normalize(embedding, dim=1) | |
embedding = self.spk_embed_affine_layer(embedding) | |
embedding = embedding.unsqueeze(1) | |
# 3. eos and task_id | |
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
# 4. encode speech_token | |
speech_token = self.speech_embedding(speech_token) | |
# 5. unpad and pad | |
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, | |
task_id_emb, speech_token, speech_token_len) | |
# 6. run lm forward | |
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) | |
logits = self.llm_decoder(lm_output) | |
loss = self.criterion_ce(logits, lm_target) | |
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID) | |
return {'loss': loss, 'acc': acc} | |
def sampling_ids( | |
self, | |
weighted_scores: torch.Tensor, | |
decoded_tokens: List, | |
sampling: int, | |
ignore_eos: bool = True, | |
): | |
num_trials, max_trials = 0, 100 | |
while True: | |
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling) | |
if (not ignore_eos) or (self.speech_token_size not in top_ids): | |
break | |
num_trials += 1 | |
if num_trials > max_trials: | |
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials)) | |
return top_ids | |
def inference( | |
self, | |
text: torch.Tensor, | |
text_len: torch.Tensor, | |
prompt_text: torch.Tensor, | |
prompt_text_len: torch.Tensor, | |
prompt_speech_token: torch.Tensor, | |
prompt_speech_token_len: torch.Tensor, | |
embedding: torch.Tensor, | |
sampling: int = 25, | |
max_token_text_ratio: float = 20, | |
min_token_text_ratio: float = 2, | |
uuid: str = '', | |
) -> Generator[torch.Tensor, None, None]: | |
device = text.device | |
text = torch.concat([prompt_text, text], dim=1) | |
text_len += prompt_text_len | |
text = self.text_embedding(text) | |
# 1. encode text | |
text, text_len = self.encode(text, text_len) | |
# 2. encode embedding | |
if embedding.shape[0] != 0: | |
embedding = F.normalize(embedding, dim=1) | |
embedding = self.spk_embed_affine_layer(embedding) | |
embedding = embedding.unsqueeze(dim=1) | |
else: | |
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype) | |
# 3. concat llm_input | |
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
if prompt_speech_token_len != 0: | |
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) | |
else: | |
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) | |
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1) | |
# 4. cal min/max_length | |
min_len = int((text_len - prompt_text_len) * min_token_text_ratio) | |
max_len = int((text_len - prompt_text_len) * max_token_text_ratio) | |
# 5. step by step decode | |
out_tokens = [] | |
offset = 0 | |
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device) | |
for i in range(max_len): | |
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1, | |
att_cache=att_cache, cnn_cache=cnn_cache, | |
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), | |
device=lm_input.device)).to(torch.bool)) | |
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) | |
# force continue decode first token | |
if i == 0: | |
logp[:, self.speech_token_size] = -float('inf') | |
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() | |
if top_ids == self.speech_token_size: | |
break | |
# in stream mode, yield token one by one | |
yield top_ids | |
out_tokens.append(top_ids) | |
offset += lm_input.size(1) | |
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) | |
class Qwen2Encoder(torch.nn.Module): | |
def __init__(self, pretrain_path): | |
super().__init__() | |
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path) | |
def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor): | |
T = xs.size(1) | |
masks = ~make_pad_mask(xs_lens, T) | |
outs = self.model( | |
inputs_embeds=xs, | |
attention_mask=masks, | |
output_hidden_states=True, | |
return_dict=True, | |
) | |
return outs.hidden_states[-1], masks.unsqueeze(1) | |
def forward_one_step(self, xs, masks, cache=None): | |
input_masks = masks[:, -1, :] | |
outs = self.model( | |
inputs_embeds=xs, | |
attention_mask=input_masks, | |
output_hidden_states=True, | |
return_dict=True, | |
use_cache=True, | |
past_key_values=cache, | |
) | |
xs = outs.hidden_states[-1] | |
new_cache = outs.past_key_values | |
return xs, new_cache | |
class Qwen2LM(TransformerLM): | |
def __init__( | |
self, | |
llm_input_size: int, | |
llm_output_size: int, | |
speech_token_size: int, | |
llm: torch.nn.Module, | |
sampling: Callable, | |
length_normalized_loss: bool = True, | |
lsm_weight: float = 0.0, | |
mix_ratio: List[int] = [5, 15], | |
): | |
torch.nn.Module.__init__(self) | |
self.llm_input_size = llm_input_size | |
self.llm_output_size = llm_output_size | |
self.speech_token_size = speech_token_size | |
# 2. build speech token language model related modules | |
self.sos_eos = 0 | |
self.task_id = 1 | |
self.fill_token = 2 | |
self.llm_embedding = torch.nn.Embedding(2, llm_input_size) | |
self.llm = llm | |
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3) | |
self.criterion_ce = LabelSmoothingLoss( | |
size=speech_token_size + 3, | |
padding_idx=IGNORE_ID, | |
smoothing=lsm_weight, | |
normalize_length=length_normalized_loss, | |
) | |
# 3. [Optional] build speech token related modules | |
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size) | |
# 4. sampling method | |
self.sampling = sampling | |
self.mix_ratio = mix_ratio | |
# 5. vllm related | |
self.stop_token_ids = [speech_token_size + i for i in range(3)] | |
self.vllm_output_queue = {} | |
def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len): | |
lm_target, lm_input = [], [] | |
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True) | |
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) | |
text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True) | |
speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True) | |
for i in range(len(text_token)): | |
# bistream sequence | |
if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]: | |
this_lm_target, this_lm_input = [], [] | |
this_lm_target.append(IGNORE_ID) | |
this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1)) | |
for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()): | |
this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist() | |
this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist() | |
if len(this_text_token) == self.mix_ratio[0]: | |
assert len(this_speech_token) == self.mix_ratio[1] | |
this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1) | |
this_lm_target += this_speech_token | |
this_lm_target.append(self.speech_token_size + 2) | |
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]]) | |
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]]) | |
else: | |
this_lm_target += [-1] * len(this_text_token) | |
this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist() | |
this_lm_target.append(self.speech_token_size) | |
this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:]) | |
this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1)) | |
this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:]) | |
this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0) | |
# unistream sequence | |
else: | |
this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size]) | |
this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i], | |
self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0) | |
lm_target.append(this_lm_target) | |
lm_input.append(this_lm_input) | |
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32) | |
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID) | |
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID) | |
return lm_target, lm_input, lm_input_len | |
def forward( | |
self, | |
batch: dict, | |
device: torch.device, | |
) -> Dict[str, Optional[torch.Tensor]]: | |
""" | |
Args: | |
text: (B, L, D) | |
text_lengths: (B,) | |
audio: (B, T, N) or (B, T) | |
audio_lengths: (B,) | |
""" | |
text_token = batch['text_token'].to(device) | |
text_token_len = batch['text_token_len'].to(device) | |
speech_token = batch['speech_token'].to(device) | |
speech_token_len = batch['speech_token_len'].to(device) | |
# 1. encode text_token | |
text_token_emb = self.llm.model.model.embed_tokens(text_token) | |
# 2. encode speech_token | |
speech_token_emb = self.speech_embedding(speech_token) | |
# 3. prepare llm_input/target | |
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len) | |
lm_target = lm_target.to(device) | |
# 4. run lm forward | |
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) | |
logits = self.llm_decoder(lm_output) | |
loss = self.criterion_ce(logits, lm_target.to(device)) | |
acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID) | |
return {'loss': loss, 'acc': acc} | |
def forward_dpo( | |
self, | |
batch: dict, | |
device: torch.device, | |
) -> Dict[str, Optional[torch.Tensor]]: | |
text_token = batch['text_token'].to(device) | |
text_token_len = batch['text_token_len'].to(device) | |
speech_token = batch['speech_token'].to(device) | |
speech_token_len = batch['speech_token_len'].to(device) | |
reject_speech_token = batch['reject_speech_token'].to(device) | |
reject_speech_token_len = batch['reject_speech_token_len'].to(device) | |
# 1. encode text_token | |
text_token_emb = self.llm.model.model.embed_tokens(text_token) | |
# 2. encode speech_token | |
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) | |
reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True) | |
speech_token_combined = speech_token + reject_speech_token | |
speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0) | |
speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0) | |
speech_token_combined_emb = self.speech_embedding(speech_token_combined) | |
# 3. prepare llm_input/target | |
lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2), | |
speech_token_combined, speech_token_combined_emb, speech_token_combined_len) | |
lm_target = lm_target.to(device) | |
# 4. run lm forward | |
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device)) | |
logits = self.llm_decoder(lm_output) | |
chosen_logits = logits[:text_token.shape[0]] | |
rejected_logits = logits[text_token.shape[0]:] | |
chosen_lm_target = lm_target[:text_token.shape[0]] | |
rejected_lm_target = lm_target[text_token.shape[0]:] | |
loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device)) | |
acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID) | |
# 5. calculate dpo logits | |
chosen_lm_mask = chosen_lm_target == IGNORE_ID | |
rejected_lm_mask = rejected_lm_target == IGNORE_ID | |
chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1) | |
rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1) | |
chosen_logps = (chosen_logps * chosen_lm_mask).sum(dim=-1) / chosen_lm_mask.sum(dim=-1) | |
rejected_logps = (rejected_logps * rejected_lm_mask).sum(dim=-1) / rejected_lm_mask.sum(dim=-1) | |
return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps} | |
def inference( | |
self, | |
text: torch.Tensor, | |
text_len: torch.Tensor, | |
prompt_text: torch.Tensor, | |
prompt_text_len: torch.Tensor, | |
prompt_speech_token: torch.Tensor, | |
prompt_speech_token_len: torch.Tensor, | |
embedding: torch.Tensor, | |
sampling: int = 25, | |
max_token_text_ratio: float = 20, | |
min_token_text_ratio: float = 2, | |
uuid: str = '', | |
) -> Generator[torch.Tensor, None, None]: | |
device = text.device | |
text = torch.concat([prompt_text, text], dim=1) | |
text_len += prompt_text_len | |
text = self.llm.model.model.embed_tokens(text) | |
# 3. concat llm_input | |
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
if prompt_speech_token_len != 0: | |
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) | |
else: | |
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) | |
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1) | |
# 4. cal min/max_length | |
min_len = int((text_len - prompt_text_len) * min_token_text_ratio) | |
max_len = int((text_len - prompt_text_len) * max_token_text_ratio) | |
# 5. step by step decode | |
for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid): | |
yield token | |
def inference_wrapper(self, lm_input, sampling, min_len, max_len, uuid): | |
if hasattr(self, 'vllm'): | |
from vllm import SamplingParams, RequestOutput | |
sampling_params = SamplingParams(top_k=sampling, | |
stop_token_ids=self.stop_token_ids, | |
min_tokens=min_len, | |
max_tokens=max_len) | |
with self.lock: | |
self.vllm.add_request(uuid, {"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(lm_input.device)}, sampling_params) | |
self.vllm_output_queue[uuid] = queue.Queue() | |
out_tokens = [] | |
while True: | |
with self.lock: | |
if self.vllm_output_queue[uuid].empty() is True: | |
request_outputs: List[RequestOutput] = self.vllm.step() | |
for request_output in request_outputs: | |
top_ids = list(request_output.outputs[0].token_ids)[-1] | |
self.vllm_output_queue[request_output.request_id].put(top_ids) | |
if self.vllm_output_queue[uuid].empty() is False: | |
top_ids = self.vllm_output_queue[uuid].get() | |
if top_ids in self.stop_token_ids: | |
break | |
# in stream mode, yield token one by one | |
yield top_ids | |
out_tokens.append(top_ids) | |
if len(out_tokens) == max_len: | |
break | |
time.sleep(0.001) | |
with self.lock: | |
self.vllm_output_queue.pop(uuid) | |
else: | |
out_tokens = [] | |
cache = None | |
for i in range(max_len): | |
y_pred, cache = self.llm.forward_one_step(lm_input, | |
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool), | |
cache=cache) | |
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) | |
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() | |
if top_ids == self.speech_token_size: | |
break | |
if top_ids > self.speech_token_size: | |
continue | |
# in stream mode, yield token one by one | |
yield top_ids | |
out_tokens.append(top_ids) | |
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) | |
def inference_bistream( | |
self, | |
text: Generator, | |
prompt_text: torch.Tensor, | |
prompt_text_len: torch.Tensor, | |
prompt_speech_token: torch.Tensor, | |
prompt_speech_token_len: torch.Tensor, | |
embedding: torch.Tensor, | |
sampling: int = 25, | |
max_token_text_ratio: float = 20, | |
min_token_text_ratio: float = 2, | |
) -> Generator[torch.Tensor, None, None]: | |
device = prompt_text.device | |
# 1. prepare input | |
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) | |
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) | |
if prompt_speech_token_len != 0: | |
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) | |
else: | |
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device) | |
lm_input = torch.concat([sos_eos_emb], dim=1) | |
# 2. iterate text | |
out_tokens = [] | |
cache = None | |
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5 | |
text_cache = self.llm.model.model.embed_tokens(prompt_text) | |
next_fill_index = -1 | |
for this_text in text: | |
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1) | |
# prompt_speech_token_emb not empty, try append to lm_input | |
while prompt_speech_token_emb.size(1) != 0: | |
if text_cache.size(1) >= self.mix_ratio[0]: | |
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]] | |
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1))) | |
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1) | |
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:] | |
else: | |
logging.info('not enough text token to decode, wait for more') | |
break | |
# no prompt_speech_token_emb remain, can decode some speech token | |
if prompt_speech_token_emb.size(1) == 0: | |
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1): | |
logging.info('get fill token, need to append more text token') | |
if text_cache.size(1) >= self.mix_ratio[0]: | |
lm_input_text = text_cache[:, :self.mix_ratio[0]] | |
logging.info('append {} text token'.format(lm_input_text.size(1))) | |
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2: | |
lm_input = lm_input_text | |
else: | |
lm_input = torch.concat([lm_input, lm_input_text], dim=1) | |
text_cache = text_cache[:, self.mix_ratio[0]:] | |
else: | |
logging.info('not enough text token to decode, wait for more') | |
continue | |
while True: | |
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2) | |
y_pred, cache = self.llm.forward_one_step(lm_input, | |
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool), | |
cache=cache) | |
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) | |
if next_fill_index != -1 and len(out_tokens) == next_fill_index: | |
top_ids = self.speech_token_size + 2 | |
next_fill_index += (self.mix_ratio[1] + 1) | |
else: | |
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item() | |
if top_ids == self.speech_token_size + 2: | |
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1 | |
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index)) | |
out_tokens.append(top_ids) | |
if top_ids >= self.speech_token_size: | |
if top_ids == self.speech_token_size + 2: | |
break | |
else: | |
raise ValueError('should not get token {}'.format(top_ids)) | |
yield top_ids | |
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) | |
# 3. final decode | |
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1) | |
logging.info('no more text token, decode until met eos') | |
while True: | |
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2) | |
y_pred, cache = self.llm.forward_one_step(lm_input, | |
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool), | |
cache=cache) | |
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1) | |
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item() | |
out_tokens.append(top_ids) | |
if top_ids >= self.speech_token_size: | |
if top_ids == self.speech_token_size: | |
break | |
else: | |
raise ValueError('should not get token {}'.format(top_ids)) | |
# in stream mode, yield token one by one | |
yield top_ids | |
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1) | |